WorldWideScience

Sample records for 3d synthetic aperture

  1. See Through the Static: 3D Synthetic Aperture PIV

    Science.gov (United States)

    Belden, Jesse; Truscott, Tadd T.; Techet, Alexandra H.

    2009-11-01

    A new method for resolving three-dimensional (3D) fluid velocity fields using a technique called synthetic aperture particle image velocimetry (PIV) is presented. The method makes use of the lightfield imaging and synthetic aperture refocusing techniques that are emerging in the imaging community. Images are captured using an array of cameras positioned on one plane such that the fields of view of the cameras overlap and images can be easily recombined in software using a warp-shift-average algorithm to digitally refocus on different planes. The result is sharply focused particles in the plane of interest, whereas particles out-of-plane appear blurred. The 3D intensity field of particle-laden flows can be reconstructed by refocusing throughout the entire volume and filtering out the blurred particles. 3DPIV techniques can then be applied to these intensity fields to extract velocity data. This technique shows the potential of enabling larger volumes to be resolved with more particles, yielding higher spatial resolution than existing methods. A simulated vortex ring flow field demonstrates the capability of the technique for resolving vector fields in 3D.

  2. Preliminary comparison of 3D synthetic aperture imaging with Explososcan

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer; Hansen, Jens Munk; Ferin, Guillaume

    2012-01-01

    the cystic resolution, which expresses the ability to detect anechoic cysts in a uniform scattering media, at all depths except at Explososcan's focus point. Synthetic aperture reduced the cyst radius, R20dB, at 90mm depth by 48%. Synthetic aperture imaging was shown to reduce the number of transmit channels...

  3. Robust 4 Camera 3D Synthetic Aperture PIV

    Science.gov (United States)

    Bajpayee, Abhishek; Techet, Alexandra

    2016-11-01

    We present novel processing techniques which allow for robust 4 camera 3D synthetic aperture (SA) PIV. These pre and post processing techniques, applied to raw images and reconstructed volumes, significantly improve SA reconstruction SNR values and consequently allow for accurate SAPIV velocity fields. SA, or light field, PIV has typically required 8 or 9 cameras in order to achieve high reconstruction quality and velocity field reconstruction quality values, Q and Qv respectively. This is primarily because the effective signal to noise ratio (SNR) of refocused images, when using traditional multiplicative or additive refocusing techniques, increases with the number of cameras being used. However, tomographic reconstruction (used with TomoPIV), is able to achieve relatively high SNR reconstructions using 4 or 5 cameras owing to its iterative but significantly more computationally expensive algorithm. Our processing techniques facilitate better recovery of relevant information in SA reconstructions using only 4 views. As a result, we no longer have to trade setup cost and complexity (number of cameras) for computational speed of the reconstruction algorithm.

  4. High Frame Rate Synthetic Aperture 3D Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Holbek, Simon; Stuart, Matthias Bo

    2016-01-01

    3-D blood flow quantification with high spatial and temporal resolution would strongly benefit clinical research on cardiovascular pathologies. Ultrasonic velocity techniques are known for their ability to measure blood flow with high precision at high spatial and temporal resolution. However......, current volumetric ultrasonic flow methods are limited to one velocity component or restricted to a reduced field of view (FOV), e.g. fixed imaging planes, in exchange for higher temporal resolutions. To solve these problems, a previously proposed accurate 2-D high frame rate vector flow imaging (VFI......) technique is extended to estimate the 3-D velocity components inside a volume at high temporal resolutions (

  5. Simulation Study of Real Time 3-D Synthetic Aperture Sequential Beamforming for Ultrasound Imaging

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Rasmussen, Morten Fischer; Stuart, Matthias Bo;

    2014-01-01

    This paper presents a new beamforming method for real-time three-dimensional (3-D) ultrasound imaging using a 2-D matrix transducer. To obtain images with sufficient resolution and contrast, several thousand elements are needed. The proposed method reduces the required channel count from...... the transducer to the main imaging system, by including electronics in the transducer handle. The reduction of element channel count is achieved using a sequential beamforming scheme. The beamforming scheme is a combination of a fixed focus beamformer in the transducer and a second dynamic focus beamformer...... in the main system. The real-time imaging capability is achieved using a synthetic aperture beamforming technique, utilizing the transmit events to generate a set of virtual elements that in combination can generate an image. The two core capabilities in combination is named Synthetic Aperture Sequential...

  6. 3D terahertz synthetic aperture imaging of objects with arbitrary boundaries

    Science.gov (United States)

    Kniffin, G. P.; Zurk, L. M.; Schecklman, S.; Henry, S. C.

    2013-09-01

    Terahertz (THz) imaging has shown promise for nondestructive evaluation (NDE) of a wide variety of manufactured products including integrated circuits and pharmaceutical tablets. Its ability to penetrate many non-polar dielectrics allows tomographic imaging of an object's 3D structure. In NDE applications, the material properties of the target(s) and background media are often well-known a priori and the objective is to identify the presence and/or 3D location of structures or defects within. The authors' earlier work demonstrated the ability to produce accurate 3D images of conductive targets embedded within a high-density polyethylene (HDPE) background. That work assumed a priori knowledge of the refractive index of the HDPE as well as the physical location of the planar air-HDPE boundary. However, many objects of interest exhibit non-planar interfaces, such as varying degrees of curvature over the extent of the surface. Such irregular boundaries introduce refraction effects and other artifacts that distort 3D tomographic images. In this work, two reconstruction techniques are applied to THz synthetic aperture tomography; a holographic reconstruction method that accurately detects the 3D location of an object's irregular boundaries, and a split­-step Fourier algorithm that corrects the artifacts introduced by the surface irregularities. The methods are demonstrated with measurements from a THz time-domain imaging system.

  7. 3D synthetic aperture imaging using a virtual source element in the elevation plane

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2000-01-01

    The conventional scanning techniques are not directly extendable for 3D real-time imaging because of the time necessary to acquire one volume. Using a linear array and synthetic transmit aperture, the volume can be scanned plane by plane. Up to 1000 planes per second can be scanned for a typical...... dynamic focusing in the elevation plane. A 0.1 mm point scatterer was mounted in an agar block and scanned in a water bath. The transducer is a 64 elements linear array with a pitch of 209 μm. The transducer height is 4 mm in the elevation plane and it is focused at 20 mm giving a F-number of 5. The point...

  8. 3D synthetic aperture PIV measurements from artificial vibrating vocal folds

    CERN Document Server

    Daily, Jesse; Belden, Jesse; Thomson, Scott; Truscott, Tadd

    2011-01-01

    During speech, air from the lungs is forced past the vocal folds which vibrate, producing sound. A pulsatile jet of air is formed downstream of the vibrating folds which interacts with the various structures in the airway. Currently, it is postulated that the way this jet interacts with the downstream structures in the airway directly affects the quality of human speech. In order to better understand this jet, it is desirable to visualize the jet in three dimensions. We present the results of a method that reconstructs the three dimensional velocity field using Synthetic aperture PIV (SAPIV) \\cite{Belden:2010}. SAPIV uses an array of high-speed cameras to artificially create a single camera with a variable focal length. This is accomplished by overlapping the images from the array to create a "focal stack". As the images are increasingly overlapped, more distant image planes come into focus. 3D PIV is then performed on the "refocused" focal stack to reconstruct the flow field in three dimensions. SAPIV has th...

  9. Machine learning and synthetic aperture refocusing approach for more accurate masking of fish bodies in 3D PIV data

    Science.gov (United States)

    Ford, Logan; Bajpayee, Abhishek; Techet, Alexandra

    2015-11-01

    3D particle image velocimetry (PIV) is becoming a popular technique to study biological flows. PIV images that contain fish or other animals around which flow is being studied, need to be appropriately masked in order to remove the animal body from the 3D reconstructed volumes prior to calculating particle displacement vectors. Presented here is a machine learning and synthetic aperture (SA) refocusing based approach for more accurate masking of fish from reconstructed intensity fields for 3D PIV purposes. Using prior knowledge about the 3D shape and appearance of the fish along with SA refocused images at arbitrarily oriented focal planes, the location and orientation of a fish in a reconstructed volume can be accurately determined. Once the location and orientation of a fish in a volume is determined, it can be masked out.

  10. Acquiring multi-viewpoint image of 3D object for integral imaging using synthetic aperture phase-shifting digital holography

    Science.gov (United States)

    Jeong, Min-Ok; Kim, Nam; Park, Jae-Hyeung; Jeon, Seok-Hee; Gil, Sang-Keun

    2009-02-01

    We propose a method generating elemental images for the auto-stereoscopic three-dimensional display technique, integral imaging, using phase-shifting digital holography. Phase shifting digital holography is a way recording the digital hologram by changing phase of the reference beam and extracting the complex field of the object beam. Since all 3D information is captured by the phase-shifting digital holography, the elemental images for any specifications of the lens array can be generated from single phase-shifting digital holography. We expanded the viewing angle of the generated elemental image by using the synthetic aperture phase-shifting digital hologram. The principle of the proposed method is verified experimentally.

  11. Three-dimensional subsurface imaging synthetic aperture radar (3D SISAR). Final report, September 22, 1993--September 22, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The concept developed under this applied research and development contract is a novel Ground Penetrating Radar system capable of remotely detecting, analyzing, and mapping buried waste containers from a mobile platform. From the testing and analysis performed to date, the 3-D SISAR has achieved the detection, accurate location, and three-dimensional imaging of buried test objects from a stand-off geometry. Tests have demonstrated that underground objects have been located to within 0.1 meter of their actual position. This work validates that the key elements of the approach are performing as anticipated. The stand-off synthetic aperture radar (SAR) methodology has been demonstrated to be a feasible approach as a remote sensing technique. The radar sensor constructed under this project is providing adequate quality data for imaging, and the matched filters have been demonstrated to provide enhanced target detection. Additional work is on-going in the area of underground propagation and scattering phenomena to provide enhanced depth performance, as the current imaging results have been limited to a few feet of depth underground.

  12. Digital Beamforming Synthetic Aperture Radar (DBSAR): Performance Analysis During the Eco-3D 2011 and Summer 2012 Flight Campaigns

    Science.gov (United States)

    Rincon, Rafael F.; Fatoyinbo, Temilola; Carter, Lynn; Ranson, K. Jon; Vega, Manuel; Osmanoglu, Batuhan; Lee, SeungKuk; Sun, Guoqing

    2014-01-01

    The Digital Beamforming Synthetic Aperture radar (DBSAR) is a state-of-the-art airborne radar developed at NASA/Goddard for the implementation, and testing of digital beamforming techniques applicable to Earth and planetary sciences. The DBSAR measurements have been employed to study: The estimation of vegetation biomass and structure - critical parameters in the study of the carbon cycle; The measurement of geological features - to explore its applicability to planetary science by measuring planetary analogue targets. The instrument flew two test campaigns over the East coast of the United States in 2011, and 2012. During the campaigns the instrument operated in full polarimetric mode collecting data from vegetation and topography features.

  13. Advanced 3-D Ultrasound Imaging: 3-D Synthetic Aperture Imaging using Fully Addressed and Row-Column Addressed 2-D Transducer Arrays

    DEFF Research Database (Denmark)

    Bouzari, Hamed

    companies have produced ultrasound scanners using 2-D transducer arrays with enough transducer elements to produce high quality 3-D images. Because of the large matrix transducers with integrated custom electronics, these systems are extremely expensive. The relatively low price of ultrasound scanners......Compared with conventional 2-D ultrasound imaging, real-time 3-D (or 4-D) ultrasound imaging has several advantages, resulting in a significant progress in the ultrasound imaging instrumentation over the past decade. Viewing the patient’s anatomy as a volume helps physicians to comprehend...... the important diagnostic information in a noninvasive manner. Diagnostic and therapeutic decisions often require accurate estimates of e.g., organ, cyst, or tumor volumes. 3-D ultrasound imaging can provide these measurements without relying on the geometrical assumptions and operator-dependent skills involved...

  14. Synthetic Aperture Radar Interferometry

    Science.gov (United States)

    Rosen, P. A.; Hensley, S.; Joughin, I. R.; Li, F.; Madsen, S. N.; Rodriguez, E.; Goldstein, R. M.

    1998-01-01

    Synthetic aperture radar interferometry is an imaging technique for measuring the topography of a surface, its changes over time, and other changes in the detailed characteristics of the surface. This paper reviews the techniques of interferometry, systems and limitations, and applications in a rapidly growing area of science and engineering.

  15. Tissue Harmonic Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Joachim

    The main purpose of this PhD project is to develop an ultrasonic method for tissue harmonic synthetic aperture imaging. The motivation is to advance the field of synthetic aperture imaging in ultrasound, which has shown great potentials in the clinic. Suggestions for synthetic aperture tissue...... system complexity compared to conventional synthetic aperture techniques. In this project, SASB is sought combined with a pulse inversion technique for 2nd harmonic tissue harmonic imaging. The advantages in tissue harmonic imaging (THI) are expected to further improve the image quality of SASB...

  16. Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav; Gammelmark, Kim Løkke

    2006-01-01

    The paper describes the use of synthetic aperture (SA) imaging in medical ultrasound. SA imaging is a radical break with today's commercial systems, where the image is acquired sequentially one image line at a time. This puts a strict limit on the frame rate and the possibility of acquiring...... of SA imaging. Due to the complete data set, it is possible to have both dynamic transmit and receive focusing to improve contrast and resolution. It is also possible to improve penetration depth by employing codes during ultrasound transmission. Data sets for vector flow imaging can be acquired using...... short imaging sequences, whereby both the correct velocity magnitude and angle can be estimated. A number of examples of both phantom and in-vivo SA images will be presented measured by the experimental ultrasound scanner RASMUS to demonstrate the many benefits of SA imaging....

  17. Synthetic Aperture Compound Imaging

    DEFF Research Database (Denmark)

    Hansen, Jens Munk

    Medical ultrasound imaging is used for many purposes, e.g. for localizing and classifying cysts, lesions, and other processes. Almost any mass is first observed using B-mode imaging and later classified using e.g. color flow, strain, or attenuation imaging. It is therefore important that the B....... The method is investigated using simulations and through measurements using both phased array and convex array transducers. The images all show an improved contrast compared to images without compounding, and by construction, imaging using an improved frame rate is possible. Using a phased array transducer...... and the limiting factor is the amount of memory IO resources available. An equally high demand for memory throughput is found in the computer gaming industry, where a large part of the processing takes place on the graphics processing unit (GPU). Using the GPU, a framework for synthetic aperture imaging...

  18. Holographically Correcting Synthetic Aperture Aberrations.

    Science.gov (United States)

    1987-12-01

    Malacara (20:105-148). The synthetic aperture was aligned in accordance with the synthetic-aperture alignment technique of Gill (8:61-64). The...1987. 20. Malacara , Daniel, ed. Optical Shop Testing. New York: John Wiley & Sons, 1978. 21. Marciniak, Capt Michael. Tutorial Presentation of mV

  19. 3D velocity field time series using synthetic aperture radar: application to tidal-timescale ice-flow variability in Rutford Ice Stream, West Antarctica

    Science.gov (United States)

    Milillo, Pietro; Minchew, Brent; Agram, Piyush; Riel, Bryan; Simons, Mark

    2016-10-01

    We present a general method for retrieving time-series of three component surface velocity field vector given a set of continuous synthetic aperture radar (SAR) acquisitions collected from multiple geometries. Our algorithm extends the single-line-of-sight mathematical framework developed for time-series analysis using interferometric SAR (InSAR) to three spatial dimensions. The inversion is driven by a design matrix corresponding to a dictionary of displacement functions parameterized in time. The resulting model minimizes a cost function using a non-regularized least-squares method. We applied our method to Rutford ice stream (RIS), West Antarctica, using a set of 101 multi-track multi-angle COSMO-SkyMed displacement maps generating azimuth and range pixel offsets.

  20. Imaging with Synthetic Aperture Radar

    CERN Document Server

    Massonnet, Didier

    2008-01-01

    Describing a field that has been transformed by the recent availability of data from a new generation of space and airborne systems, the authors offer a synthetic geometrical approach to the description of synthetic aperture radar, one that addresses physicists, radar specialists, as well as experts in image processing.  

  1. SARUS: A Synthetic Aperture Real-Time Ultrasound System

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Holten-Lund, Hans; Nilsson, Ronnie Thorup

    2013-01-01

    The Synthetic Aperture Real-time Ultrasound System (SARUS) for acquiring and processing synthetic aperture (SA) data for research purposes is described. The specifications and design of the system are detailed, along with its performance for SA, nonlinear, and 3-D flow estimation imaging. SARUS...

  2. Sequential Beamforming Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Kortbek, Jacob; Jensen, Jørgen Arendt; Gammelmark, Kim Løkke

    2013-01-01

    Synthetic aperture sequential beamforming (SASB) is a novel technique which allows to implement synthetic aperture beamforming on a system with a restricted complexity, and without storing RF-data. The objective is to improve lateral resolution and obtain a more depth independent resolution...... and a range independent lateral resolution is obtained. The SASB method has been investigated using simulations in Field II and by off-line processing of data acquired with a commercial scanner. The lateral resolution increases with a decreasing F#. Grating lobes appear if F# 6 2 for a linear array with k-pitch...

  3. Depth estimation from multiple coded apertures for 3D interaction

    Science.gov (United States)

    Suh, Sungjoo; Choi, Changkyu; Park, Dusik

    2013-09-01

    In this paper, we propose a novel depth estimation method from multiple coded apertures for 3D interaction. A flat panel display is transformed into lens-less multi-view cameras which consist of multiple coded apertures. The sensor panel behind the display captures the scene in front of the display through the imaging pattern of the modified uniformly redundant arrays (MURA) on the display panel. To estimate the depth of an object in the scene, we first generate a stack of synthetically refocused images at various distances by using the shifting and averaging approach for the captured coded images. And then, an initial depth map is obtained by applying a focus operator to a stack of the refocused images for each pixel. Finally, the depth is refined by fitting a parametric focus model to the response curves near the initial depth estimates. To demonstrate the effectiveness of the proposed algorithm, we construct an imaging system to capture the scene in front of the display. The system consists of a display screen and an x-ray detector without a scintillator layer so as to act as a visible sensor panel. Experimental results confirm that the proposed method accurately determines the depth of an object including a human hand in front of the display by capturing multiple MURA coded images, generating refocused images at different depth levels, and refining the initial depth estimates.

  4. Optimizing Synthetic Aperture Compound Imaging

    DEFF Research Database (Denmark)

    Hansen, Jens Munk; Jensen, Jørgen Arendt

    2012-01-01

    Spatial compound images are constructed from synthetic aperture data acquired using a linear phased-array transducer. Compound images of wires, tissue, and cysts are created using a method, which allows both transmit and receive compounding without any loss in temporal resolution. Similarly to co...

  5. Synthetic Aperture Radar - Hardware Development

    Directory of Open Access Journals (Sweden)

    V. Rosner

    2009-06-01

    Full Text Available Experimental real and synthetic aperture radar are developed from the base-band digital unit to the analogue RF parts, based on solid state units, using pulse compression for radar imaging. Proper QPSK code is found for matched filter.

  6. Parametric Beamformer for Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Tomov, Borislav Gueorguiev; Jensen, Jørgen Arendt

    2006-01-01

    . The beamformer consists of a number of identical beamforming blocks, each processing data from several channels and producing part of the image. A number of these blocks can be accommodated in a modern field-programmable gate array device (FPGA), and a whole synthetic aperture system can be implemented using......In this paper a parametric beamformer, which can handle all imaging modalities including synthetic aperture imaging, is presented. The image lines and apodization coefficients are specified parametrically, and the lines can have arbitrary orientation and starting point in 3D coordinates...... several FPGAs. For the current implementation, the input data is sampled at 4 times the center frequency of the excitation pulse and is match-filtered in the frequency domain. In-phase and quadrature data are beamformed with a sub-sample precision of the focusing delays of 1/16th of the sampling period...

  7. Coherence Studies for Synthetic Aperture Sonar

    Science.gov (United States)

    2014-09-30

    TITLE AND SUBTITLE Coherence Studies for Synthetic Aperture Sonar 5a. CONTRACT NUMBER 5b. GRANT NUMBER N00014-13-1-0020 5c. PROGRAM...systematic look at, coherence. 15. SUBJECT TERMS Synthetic; Aperture Sonar , Coherence, Seafloor Scatter, Propagation Variability 16. SECURITY...reconstruction of the document. Coherence Studies for Synthetic Aperture Sonar Anthony P. Lyons The Pennsylvania State University Applied Research

  8. Synthetic Aperture Imaging in Medical Ultrasound

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Gammelmark, Kim; Pedersen, Morten

    2004-01-01

    with high precision, and the imaging is easily extended to real-time 3D scanning. This paper presents the work done at the Center for Fast Ultrasound Imaging in the area of SA imaging. Three areas that benefit from SA imaging are described. Firstly a preliminary in-vivo evaluation comparing conventional B......Synthetic Aperture (SA) ultrasound imaging is a relatively new and unexploited imaging technique. The images are perfectly focused both in transmit and receive, and have a better resolution and higher dynamic range than conventional ultrasound images. The blood flow can be estimated from SA images...

  9. Broadband synthetic aperture geoacoustic inversion.

    Science.gov (United States)

    Tan, Bien Aik; Gerstoft, Peter; Yardim, Caglar; Hodgkiss, William S

    2013-07-01

    A typical geoacoustic inversion procedure involves powerful source transmissions received on a large-aperture receiver array. A more practical approach is to use a single moving source and/or receiver in a low signal to noise ratio (SNR) setting. This paper uses single-receiver, broadband, frequency coherent matched-field inversion and exploits coherently repeated transmissions to improve estimation of the geoacoustic parameters. The long observation time creates a synthetic aperture due to relative source-receiver motion. This approach is illustrated by studying the transmission of multiple linear frequency modulated (LFM) pulses which results in a multi-tonal comb spectrum that is Doppler sensitive. To correlate well with the measured field across a receiver trajectory and to incorporate transmission from a source trajectory, waveguide Doppler and normal mode theory is applied. The method is demonstrated with low SNR, 100-900 Hz LFM pulse data from the Shallow Water 2006 experiment.

  10. Space noise synthetic aperture radar

    Science.gov (United States)

    Kulpa, Krzysztof S.

    2006-03-01

    The paper presents limitations of space borne synthetic aperture radars, caused by range and Doppler velocity ambiguities, and the concept of usage of the noise radar technology for creation of high-resolution space SAR images. The noise SAR is free from limitation caused by the periodicity of pulse waveform ambiguity function, and therefore this technology can be used in the future space missions. The basic concept of noise SAR image formation is also presented. The image formation algorithm has been verified using the simulated data produced by Raw Radar Data Simulator.

  11. Directional synthetic aperture flow imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav

    2004-01-01

    A method for flow estimation using synthetic aperture imaging and focusing along the flow direction is presented. The method can find the correct velocity magnitude for any flow angle and full color flow images can be measured using only 32 to 128 pulse emissions. The approach uses spherical wave...... artery and jugular vein of a healthy 29 years old volunteer was acquired. A full color flow image using only 128 emissions could be made with a high velocity precision.......A method for flow estimation using synthetic aperture imaging and focusing along the flow direction is presented. The method can find the correct velocity magnitude for any flow angle and full color flow images can be measured using only 32 to 128 pulse emissions. The approach uses spherical wave...... angle is manually determined from the B-mode image. The approach can be used for both tissue and blood velocity determination. The approach was investigated using both simulations and a flow system with a laminar flow. The flow profile was measured with a commercial 7.5 MHz linear array transducer...

  12. Synthetic Aperture Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando

    The main objective of this project was to continue the development of a synthetic aperture vector flow estimator. This type of estimator is capable of overcoming two of the major limitations in conventional ultrasound systems: 1) the inability to scan large region of interest with high temporal...... resolutions; 2) the lack of capability in detecting flow other than the one along the direction of the beam. Addressing these technical limitations would translate in the clinic as a gain in valuable clinical information and a removal of operator-dependant sources of error, which would improve the diagnosis....... The main contribution of this work was the development of an angle estimator which features high accuracy and low standard deviation over the full 360◦ range. The estimator demonstrated its capability of operating at high frame rates (> 1000 Hz), and simultaneously detecting a large range of flow...

  13. Fast Parametric Beamformer for Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt; Tomov, Borislav Gueorguiev

    2008-01-01

    . The implementation of the beamformer is optimized with respect to the architecture of a novel synthetic aperture real-time ultrasound scanner (SARUS), in which 4 channels are processed by the same set of field-programmable gate arrays (FPGA). In synthetic transmit aperture imaging, low-resolution images are formed...

  14. Sparse synthetic aperture radar imaging with optimized azimuthal aperture

    Institute of Scientific and Technical Information of China (English)

    ZENG Cao; WANG MinHang; LIAO GuiSheng; ZHU ShengQi

    2012-01-01

    To counter the problem of acquiring and processing huge amounts of data for synthetic aperture radar (SAR) using traditional sampling techniques,a method for sparse SAR imaging with an optimized azimuthal aperture is presented.The equivalence of an azimuthal match filter and synthetic array beamforming is shown so that optimization of the azimuthal sparse aperture can be converted to optimization of synthetic array beamforming.The azimuthal sparse aperture,which is composed of a middle aperture and symmetrical bilateral apertures,can be obtained by optimization algorithms (density weighting and simulated annealing algorithms,respectively).Furthermore,sparse imaging of spectrum analysis SAR based on the optimized sparse aperture is achieved by padding zeros at null samplings and using a non-uniform Taylor window. Compared with traditional sampling,this method has the advantages of reducing the amount of sampling and alleviating the computational burden with acceptable image quality.Unlike periodic sparse sampling,the proposed method exhibits no image ghosts.The results obtained from airborne measurements demonstrate the effectiveness and superiority of the proposed method.

  15. Practical Applications of Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav Ivanov; Kortbek, Jacob; Jensen, Jørgen Arendt

    2010-01-01

    Synthetic aperture imaging has been a focus of research for almost 3 decades. The research carried out at the Center for Fast Ultrasound Imaging has demonstrated that synthetic aperture focusing not only can be used in-vivo, but that it also yields superior B-mode and blood flow images. In the last......, and multiple angle flash imaging are just a few of the names used to describe the commercial implementations of synthetic aperture focusing. Although they sound like different algorithms, they are the same in their core, as revealed in this paper....

  16. Advanced methods in synthetic aperture radar imaging

    Science.gov (United States)

    Kragh, Thomas

    2012-02-01

    For over 50 years our world has been mapped and measured with synthetic aperture radar (SAR). A SAR system operates by transmitting a series of wideband radio-frequency pulses towards the ground and recording the resulting backscattered electromagnetic waves as the system travels along some one-dimensional trajectory. By coherently processing the recorded backscatter over this extended aperture, one can form a high-resolution 2D intensity map of the ground reflectivity, which we call a SAR image. The trajectory, or synthetic aperture, is achieved by mounting the radar on an aircraft, spacecraft, or even on the roof of a car traveling down the road, and allows for a diverse set of applications and measurement techniques for remote sensing applications. It is quite remarkable that the sub-centimeter positioning precision and sub-nanosecond timing precision required to make this work properly can in fact be achieved under such real-world, often turbulent, vibrationally intensive conditions. Although the basic principles behind SAR imaging and interferometry have been known for decades, in recent years an explosion of data exploitation techniques enabled by ever-faster computational horsepower have enabled some remarkable advances. Although SAR images are often viewed as simple intensity maps of ground reflectivity, SAR is also an exquisitely sensitive coherent imaging modality with a wealth of information buried within the phase information in the image. Some of the examples featured in this presentation will include: (1) Interferometric SAR, where by comparing the difference in phase between two SAR images one can measure subtle changes in ground topography at the wavelength scale. (2) Change detection, in which carefully geolocated images formed from two different passes are compared. (3) Multi-pass 3D SAR tomography, where multiple trajectories can be used to form 3D images. (4) Moving Target Indication (MTI), in which Doppler effects allow one to detect and

  17. Synthetic Aperture Radar Missions Study Report

    Science.gov (United States)

    Bard, S.

    2000-01-01

    This report reviews the history of the LightSAR project and summarizes actions the agency can undertake to support industry-led efforts to develop an operational synthetic aperture radar (SAR) capability in the United States.

  18. High frame rate synthetic aperture duplex imaging

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Tomov, Borislav Gueorguiev; Pihl, Michael Johannes

    2013-01-01

    aperture flow imaging as demonstrated in this paper. Synthetic aperture, directional beamforming, and cross-correlation are used to produce B-mode and vector velocity images at high frame rates. The frame rate equals the effective pulse repetition frequency of each imaging mode. Emissions for making the B...

  19. Motion Measurement for Synthetic Aperture Radar.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W.

    2015-01-01

    Synthetic Aperture Radar (SAR) measures radar soundings from a set of locations typically along the flight path of a radar platform vehicle. Optimal focusing requires precise knowledge of the sounding source locations in 3 - D space with respect to the target scene. Even data driven focusing techniques (i.e. autofocus) requires some degree of initial fidelity in the measurements of the motion of the radar. These requirements may be quite stringent especially for fine resolution, long ranges, and low velocities. The principal instrument for measuring motion is typically an Inertial Measurement Unit (IMU), but these instruments have inherent limi ted precision and accuracy. The question is %22How good does an IMU need to be for a SAR across its performance space?%22 This report analytically relates IMU specifications to parametric requirements for SAR. - 4 - Acknowledgements Th e preparation of this report is the result of a n unfunded research and development activity . Although this report is an independent effort, it draws heavily from limited - release documentation generated under a CRADA with General Atomics - Aeronautical System, Inc. (GA - ASI), and under the Joint DoD/DOE Munitions Program Memorandum of Understanding. Sandia National Laboratories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of En ergy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000.

  20. Motion measurement for synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Synthetic Aperture Radar (SAR) measures radar soundings from a set of locations typically along the flight path of a radar platform vehicle. Optimal focusing requires precise knowledge of the sounding source locations in 3-D space with respect to the target scene. Even data driven focusing techniques (i.e. autofocus) requires some degree of initial fidelity in the measurements of the motion of the radar. These requirements may be quite stringent especially for fine resolution, long ranges, and low velocities. The principal instrument for measuring motion is typically an Inertial Measurement Unit (IMU), but these instruments have inherent limi ted precision and accuracy. The question is %22How good does an IMU need to be for a SAR across its performance space?%22 This report analytically relates IMU specifications to parametric requirements for SAR. - 4 - Acknowledgements Th e preparation of this report is the result of a n unfunded research and development activity . Although this report is an independent effort, it draws heavily from limited - release documentation generated under a CRADA with General Atomics - Aeronautical System, Inc. (GA - ASI), and under the Joint DoD/DOE Munitions Program Memorandum of Understanding. Sandia National Laboratories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of En ergy's National Nuclear Security Administration under contract AC04-94AL85000.

  1. Synthetic aperture tissue and flow ultrasound imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav

    imaging applied to medical ultrasound. It is divided into two major parts: tissue and blood flow imaging. Tissue imaging using synthetic aperture algorithms has been investigated for about two decades, but has not been implemented in medical scanners yet. Among the other reasons, the conventional scanning...... and beamformation methods are adequate for the imaging modalities in clinical use - the B-mode imaging of tissue structures, and the color mapping of blood flow. The acquisition time, however, is too long, and these methods fail to perform real-time three-dimensional scans. The synthetic transmit aperture......, on the other hand, can create a Bmode image with as little as 2 emissions, thus significantly speeding-up the scan procedure. The first part of the dissertation describes the synthetic aperture tissue imaging. It starts with an overview of the efforts previously made by other research groups. A classification...

  2. Synthetic aperture radar capabilities in development

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The Imaging and Detection Program (IDP) within the Laser Program is currently developing an X-band Synthetic Aperture Radar (SAR) to support the Joint US/UK Radar Ocean Imaging Program. The radar system will be mounted in the program`s Airborne Experimental Test-Bed (AETB), where the initial mission is to image ocean surfaces and better understand the physics of low grazing angle backscatter. The Synthetic Aperture Radar presentation will discuss its overall functionality and a brief discussion on the AETB`s capabilities. Vital subsystems including radar, computer, navigation, antenna stabilization, and SAR focusing algorithms will be examined in more detail.

  3. Multi-antenna synthetic aperture radar

    CERN Document Server

    Wang, Wen-Qin

    2013-01-01

    Synthetic aperture radar (SAR) is a well-known remote sensing technique, but conventional single-antenna SAR is inherently limited by the minimum antenna area constraint. Although there are still technical issues to overcome, multi-antenna SAR offers many benefits, from improved system gain to increased degrees-of-freedom and system flexibility. Multi-Antenna Synthetic Aperture Radar explores the potential and challenges of using multi-antenna SAR in microwave remote sensing applications. These applications include high-resolution imaging, wide-swath remote sensing, ground moving target indica

  4. Generation of 3D synthetic breast tissue

    Science.gov (United States)

    Elangovan, Premkumar; Dance, David R.; Young, Kenneth C.; Wells, Kevin

    2016-03-01

    Virtual clinical trials are an emergent approach for the rapid evaluation and comparison of various breast imaging technologies and techniques using computer-based modeling tools. A fundamental requirement of this approach for mammography is the use of realistic looking breast anatomy in the studies to produce clinically relevant results. In this work, a biologically inspired approach has been used to simulate realistic synthetic breast phantom blocks for use in virtual clinical trials. A variety of high and low frequency features (including Cooper's ligaments, blood vessels and glandular tissue) have been extracted from clinical digital breast tomosynthesis images and used to simulate synthetic breast blocks. The appearance of the phantom blocks was validated by presenting a selection of simulated 2D and DBT images interleaved with real images to a team of experienced readers for rating using an ROC paradigm. The average areas under the curve for 2D and DBT images were 0.53+/-.04 and 0.55+/-.07 respectively; errors are the standard errors of the mean. The values indicate that the observers had difficulty in differentiating the real images from simulated images. The statistical properties of simulated images of the phantom blocks were evaluated by means of power spectrum analysis. The power spectrum curves for real and simulated images closely match and overlap indicating good agreement.

  5. Data Collection via Synthetic Aperture Radiometry towards Global System

    Directory of Open Access Journals (Sweden)

    Ali. A. J.Al-Sabbagh

    2015-10-01

    Full Text Available Nowadays it is widely accepted that remote sensing is an efficient way of large data management philosophy. In this paper, we present a future view of the big data collection by synthetic aperture radiometry as a passive microwave remote sensing towards building a global monitoring system. Since the collected data may not have any value, it is mandatory to analyses these data in order to get valuable and beneficial information with respect to their base data. The collected data by synthetic aperture radiometry is one of the high resolution earth observation, these data will be an intensive problems, Meanwhile, Synthetic Aperture Radar able to work in several bands, X, C, S, L and P-band. The important role of synthetic aperture radiometry is how to collect data from areas with inadequate network infrastructures where the ground network facilities were destroyed. The future concern is to establish a new global data management system, which is supported by the groups of international teams working to develop technology based on international regulations. There is no doubt that the existing techniques are so limited to solve big data problems totally. There is a lot of work towards improving 2- D and 3-D SAR to get better resolution.

  6. Synthetic Aperture Beamformation using the GPU

    DEFF Research Database (Denmark)

    Hansen, Jens Munk; Schaa, Dana; Jensen, Jørgen Arendt

    2011-01-01

    A synthetic aperture ultrasound beamformer is implemented for a GPU using the OpenCL framework. The implementation supports beamformation of either RF signals or complex baseband signals. Transmit and receive apodization can be either parametric or dynamic using a fixed F-number, a reference, and...... workstation with 2 quad-core Xeon-processors....

  7. Optimization of Synthetic Aperture Image Quality

    DEFF Research Database (Denmark)

    Moshavegh, Ramin; Jensen, Jonas; Villagómez Hoyos, Carlos Armando;

    2016-01-01

    Synthetic Aperture (SA) imaging produces high-quality images and velocity estimates of both slow and fast flow at high frame rates. However, grating lobe artifacts can appear both in transmission and reception. These affect the image quality and the frame rate. Therefore optimization of parameter...

  8. 3D Geometry and Motion Estimations of Maneuvering Targets for Interferometric ISAR With Sparse Aperture.

    Science.gov (United States)

    Xu, Gang; Xing, Mengdao; Xia, Xiang-Gen; Zhang, Lei; Chen, Qianqian; Bao, Zheng

    2016-05-01

    In the current scenario of high-resolution inverse synthetic aperture radar (ISAR) imaging, the non-cooperative targets may have strong maneuverability, which tends to cause time-variant Doppler modulation and imaging plane in the echoed data. Furthermore, it is still a challenge to realize ISAR imaging of maneuvering targets from sparse aperture (SA) data. In this paper, we focus on the problem of 3D geometry and motion estimations of maneuvering targets for interferometric ISAR (InISAR) with SA. For a target of uniformly accelerated rotation, the rotational modulation in echo is formulated as chirp sensing code under a chirp-Fourier dictionary to represent the maneuverability. In particular, a joint multi-channel imaging approach is developed to incorporate the multi-channel data and treat the multi-channel ISAR image formation as a joint-sparsity constraint optimization. Then, a modified orthogonal matching pursuit (OMP) algorithm is employed to solve the optimization problem to produce high-resolution range-Doppler (RD) images and chirp parameter estimation. The 3D target geometry and the motion estimations are followed by using the acquired RD images and chirp parameters. Herein, a joint estimation approach of 3D geometry and rotation motion is presented to realize outlier removing and error reduction. In comparison with independent single-channel processing, the proposed joint multi-channel imaging approach performs better in 2D imaging, 3D imaging, and motion estimation. Finally, experiments using both simulated and measured data are performed to confirm the effectiveness of the proposed algorithm.

  9. Flame Reconstruction Using Synthetic Aperture Imaging

    CERN Document Server

    Murray, Preston; Tree, Dale; Truscott, Tadd

    2011-01-01

    Flames can be formed by burning methane (CH4). When oxygen is scarce, carbon particles nucleate into solid particles called soot. These particles emit photons, making the flame yellow. Later, methane is pre-mixed with air forming a blue flame; burning more efficiently, providing less soot and light. Imaging flames and knowing their temperature are vital to maximizing efficiency and validating numerical models. Most temperature probes disrupt the flame and create differences leading to an inaccurate measurement of the flame temperature. We seek to image the flame in three dimensions using synthetic aperture imaging. This technique has already successfully measured velocity fields of a vortex ring [1]. Synthetic aperture imaging is a technique that views one scene from multiple cameras set at different angles, allowing some cameras to view objects that are obscured by others. As the resulting images are overlapped different depths of the scene come into and out of focus, known as focal planes, similar to tomogr...

  10. 3-D Synthetic Microstructure Generation with Ellipsoid Particles

    Science.gov (United States)

    2016-09-27

    MATLAB Image Processing toolbox imagesc(I); colormap(gray); axis off; axis equal; 24 Approved for public release; distribution is unlimited...distribution is unlimited. January 2016–June 2016 US Army Research Laboratory ATTN: RDRL-WMM-F Aberdeen Proving Ground, MD 21005-5069 Synthetic 2- phase ...Functions 23 Distribution List 26 iii Approved for public release; distribution is unlimited. List of Figures Fig. 1 2-D images of 3-D synthetic

  11. Synthetic aperture radar autofocus via semidefinite relaxation.

    Science.gov (United States)

    Liu, Kuang-Hung; Wiesel, Ami; Munson, David C

    2013-06-01

    The autofocus problem in synthetic aperture radar imaging amounts to estimating unknown phase errors caused by unknown platform or target motion. At the heart of three state-of-the-art autofocus algorithms, namely, phase gradient autofocus, multichannel autofocus (MCA), and Fourier-domain multichannel autofocus (FMCA), is the solution of a constant modulus quadratic program (CMQP). Currently, these algorithms solve a CMQP by using an eigenvalue relaxation approach. We propose an alternative relaxation approach based on semidefinite programming, which has recently attracted considerable attention in other signal processing problems. Experimental results show that our proposed methods provide promising performance improvements for MCA and FMCA through an increase in computational complexity.

  12. Tissue Harmonic Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Rasmussen, Joachim; Jensen, Jørgen Arendt

    2014-01-01

    Synthetic aperture sequential beamforming (SASB) and tissue har- monic imaging (THI) are combined to improve the image quality of medical ultrasound imaging. The technique is evaluated in a compar- ative study against dynamic receive focusing (DRF). The objective is to investigate if SASB combined......, and data were recorded with and without pulse inversion for tissue harmonic imaging. Data were acquired using a Sound Technol- ogy 192 element convex array transducer from both a wire phantom and a tissue mimicking phantom to investigate spatial resolution and pen- etration. In-vivo scans were also...

  13. Combined synthetic aperture radar/Landsat imagery

    Science.gov (United States)

    Marque, R. E.; Maurer, H. E.

    1978-01-01

    This paper presents the results of investigations into merging synthetic aperture radar (SAR) and Landsat multispectral scanner (MSS) images using optical and digital merging techniques. The unique characteristics of airborne and orbital SAR and Landsat MSS imagery are discussed. The case for merging the imagery is presented and tradeoffs between optical and digital merging techniques explored. Examples of Landsat and airborne SAR imagery are used to illustrate optical and digital merging. Analysis of the merged digital imagery illustrates the improved interpretability resulting from combining the outputs from the two sensor systems.

  14. Multi-mission, autonomous, synthetic aperture radar

    Science.gov (United States)

    Walls, Thomas J.; Wilson, Michael L.; Madsen, David; Jensen, Mark; Sullivan, Stephanie; Addario, Michael; Hally, Iain

    2014-05-01

    Unmanned aerial systems (UASs) have become a critical asset in current battlespaces and continue to play an increasing role for intelligence, surveillance and reconnaissance (ISR) missions. With the development of medium-to-low altitude, rapidly deployable aircraft platforms, the ISR community has seen an increasing push to develop ISR sensors and systems with real-time mission support capabilities. This paper describes recent flight demonstrations and test results of the RASAR (Real-time, Autonomous, Synthetic Aperture Radar) sensor system. RASAR is a modular, multi-band (L and X) synthetic aperture radar (SAR) imaging sensor designed for self-contained, autonomous, real-time operation with mission flexibility to support a wide range of ISR needs within the size, weight and power constraints of Group III UASs. The sensor command and control and real-time image formation processing are designed to allow integration of RASAR into a larger, multi-intelligence system of systems. The multi-intelligence architecture and a demonstration of real-time autonomous cross-cueing of a separate optical sensor will be presented.

  15. Optical Phase Imaging Using Synthetic Aperture Illumination and Phase Retrieval

    CERN Document Server

    Lee, Dennis J

    2016-01-01

    We perform quantitative phase imaging using phase retrieval to implement synthetic aperture imaging. Compared to digital holography, the developed technique is simpler, less expensive, and more stable.

  16. Mathematical Problems in Synthetic Aperture Radar

    CERN Document Server

    Klein, Jens

    2010-01-01

    This thesis is concerned with problems related to Synthetic Aperture Radar (SAR). The thesis is structured as follows: The first chapter explains what SAR is, and the physical and mathematical background is illuminated. The following chapter points out a problem with a divergent integral in a common approach and proposes an improvement. Numerical comparisons are shown that indicate that the improvements allow for a superior image quality. Thereafter the problem of limited data is analyzed. In a realistic SAR-measurement the data gathered from the electromagnetic waves reflected from the surface can only be collected from a limited area. However the reconstruction formula requires data from an infinite distance. The chapter gives an analysis of the artifacts which can obscure the reconstructed images due to this problem. Additionally, some numerical examples are shown that point to the severity of the problem. In chapter 4 the fact that data is available only from a limited area is used to propose a new invers...

  17. Bistatic synthetic aperture radar using two satellites

    Science.gov (United States)

    Tomiyasu, K.

    1978-01-01

    The paper demonstrates the feasibility of a bistatic synthetic aperture radar (BISAR) utilizing two satellites. The proposed BISAR assumes that the direction of the two narrow antenna beams are programmed to coincide over the desired area to be imaged. Functionally, the transmitter and receiver portions can be interchanged between the two satellites. The two satellites may be in one orbit plane or two different orbits such as geosynchronous and low-earth orbits. The pulse repetition frequency and imaging geometry are constrained by contours of isodops and isodels. With two images of the same area viewed from different angles, it is possible in principle to derive three-dimensional stereo images. Applications of BISAR include topography, water resource management, and soil moisture determination.. Advantages of BISAR over a monostatic SAR are mentioned, including lower transmitter power and greater ranges in incidence angle and coverage.

  18. Wind energy applications of synthetic aperture radar

    DEFF Research Database (Denmark)

    Badger, Merete

    planning as a supplement to on site measurements, which are costly and sparse, and model wind fields, which are not fully validated. Two applications of SAR measurements in offshore wind energy planning areaddressed here: the study of wind farm wake effects and the potential of using SAR winds in offshore......Synthetic aperture radars (SAR), mounted on satellites or aircraft, have proven useful for ocean wind mapping. Wind speeds at the height 10 m may be retrieved from measurements of radar backscatter using empirical model functions. The resulting windfields are valuable in offshore wind energy...... in offshore wind resource assessment isinvestigated. The resource assessment is made through Weibull fitting to frequency observations of wind speed and requires at least 100 satellite observations per year for a given site of interest. Predictions of the energy density are very sensitive tothe wind speed...

  19. Research of aluminium alloy aerospace structure aperture measurement based on 3D digital speckle correlation method

    Science.gov (United States)

    Bai, Lu; Wang, Hongbo; Zhou, Jiangfan; Yang, Rong; Zhang, Hui

    2014-11-01

    In this paper, the aperture change of the aluminium alloy aerospace structure under real load is researched. Static experiments are carried on which is simulated the load environment of flight course. Compared with the traditional methods, through experiments results, it's proved that 3D digital speckle correlation method has good adaptability and precision on testing aperture change, and it can satisfy measurement on non-contact,real-time 3D deformation or stress concentration. The test results of new method is compared with the traditional method.

  20. Synthetic Aperture Sequential Beamformation applied to medical imaging

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Hansen, Jens Munk; Jensen, Jørgen Arendt

    2012-01-01

    Synthetic Aperture Sequential Beamforming (SASB) is applied to medical ultrasound imaging using a multi element convex array transducer. The main motivation for SASB is to apply synthetic aperture techniques without the need for storing RF-data for a number of elements and hereby devise a system...

  1. Shadow Enhancement in Synthetic Aperture Sonar Using Fixed Focusing

    NARCIS (Netherlands)

    Groen, J.; Hansen, R.E.; Callow, H.J.; Sabel, J.C.; Sæbø, T.O.

    2009-01-01

    Abstract—A shadow cast by an object on the seafloor is important information for target recognition in synthetic aperture sonar (SAS) images. Synthetic aperture imaging causes a fundamental limitation to shadow clarity because the illuminator is moved during the data collection. This leads to a blen

  2. Research on 3D marine electromagnetic interferometry with synthetic sources for suppressing the airwave interference

    Institute of Scientific and Technical Information of China (English)

    Zhang Jian-Guo; Wu Xin; Qi You-Zheng; Huang Ling; Fang Guang-You

    2013-01-01

    In order to suppress the airwave noise in marine controlled-source electromagnetic (CSEM) data, we propose a 3D deconvolution (3DD) interferometry method with a synthetic aperture source and obtain the relative anomaly coefficient (RAC) of the EM field reflection responses to show the degree for suppressing the airwave. We analyze the potential of the proposed method for suppressing the airwave, and compare the proposed method with traditional methods in their effectiveness. A method to select synthetic source length is derived and the effect of the water depth on RAC is examined via numerical simulations. The results suggest that 3DD interferometry method with a synthetic source can effectively suppress the airwave and enhance the potential of marine CSEM to hydrocarbon exploration.

  3. Materials Manufactured from 3D Printed Synthetic Biology Arrays

    Science.gov (United States)

    Gentry, Diana; Micks, Ashley

    2013-01-01

    Many complex, biologically-derived materials have extremely useful properties (think wood or silk), but are unsuitable for space-related applications due to production, manufacturing, or processing limitations. Large-scale ecosystem-based production, such as raising and harvesting trees for wood, is impractical in a self-contained habitat such as a space station or potential Mars colony. Manufacturing requirements, such as the specialized equipment needed to harvest and process cotton, add too much upmass for current launch technology. Cells in nature are already highly specialized for making complex biological materials on a micro scale. We envision combining these strengths with the recently emergent technologies of synthetic biology and 3D printing to create 3D-structured arrays of cells that are bioengineered to secrete different materials in a specified three-dimensional pattern.

  4. Real-time synthetic aperture imaging: opportunities and challenges

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Tomov, Borislav Gueorguiev; Jensen, Jørgen Arendt

    2006-01-01

    in the region of interest it is possible to beamform the signals along a desired path, thus, improving the estimation of blood flow. The transmission of coded excitations makes it possible to achieve higher contrast and larger penetration depth compared to "conventional" scanners. This paper presents......Synthetic aperture (SA) ultrasound imaging has not been introduced in commercial scanners mainly due to the computational cost associated with the hardware implementation of this imaging modality. SA imaging redefines the term beamformed line. Since the acquired information comes from all points...... in 3D. This parametric description makes it possible to quickly change the image geometry during scanning, thus enabling adaptive imaging and precise flow estimation. The paper addresses problems such as large bandwidth and computational load and gives the solutions that have been adopted...

  5. Multistatic synthetic aperture radar image formation.

    Science.gov (United States)

    Krishnan, V; Swoboda, J; Yarman, C E; Yazici, B

    2010-05-01

    In this paper, we consider a multistatic synthetic aperture radar (SAR) imaging scenario where a swarm of airborne antennas, some of which are transmitting, receiving or both, are traversing arbitrary flight trajectories and transmitting arbitrary waveforms without any form of multiplexing. The received signal at each receiving antenna may be interfered by the scattered signal due to multiple transmitters and additive thermal noise at the receiver. In this scenario, standard bistatic SAR image reconstruction algorithms result in artifacts in reconstructed images due to these interferences. In this paper, we use microlocal analysis in a statistical setting to develop a filtered-backprojection (FBP) type analytic image formation method that suppresses artifacts due to interference while preserving the location and orientation of edges of the scene in the reconstructed image. Our FBP-type algorithm exploits the second-order statistics of the target and noise to suppress the artifacts due to interference in a mean-square sense. We present numerical simulations to demonstrate the performance of our multistatic SAR image formation algorithm with the FBP-type bistatic SAR image reconstruction algorithm. While we mainly focus on radar applications, our image formation method is also applicable to other problems arising in fields such as acoustic, geophysical and medical imaging.

  6. A synthetic aperture acoustic prototype system

    Science.gov (United States)

    Luke, Robert H.; Bishop, Steven S.; Chan, Aaron M.; Gugino, Peter M.; Donzelli, Thomas P.; Soumekh, Mehrdad

    2015-05-01

    A novel quasi-monostatic system operating in a side-scan synthetic aperture acoustic (SAA) imaging mode is presented. This research project's objectives are to explore the military utility of outdoor continuous sound imaging of roadside foliage and target detection. The acoustic imaging method has several military relevant advantages such as being immune to RF jamming, superior spatial resolution as compared to 0.8-2.4 GHz ground penetrating radar (GPR), capable of standoff side and forward-looking scanning, and relatively low cost, weight and size when compared to GPR technologies. The prototype system's broadband 2-17 kHz LFM chirp transceiver is mounted on a manned all-terrain vehicle. Targets are positioned within the acoustic main beam at slant ranges of two to seven meters and on surfaces such as dirt, grass, gravel and weathered asphalt and with an intervening metallic chain link fence. Acoustic image reconstructions and signature plots result in means for literal interpretation and quantifiable analyses.

  7. Oceanic eddies in synthetic aperture radar images

    Indian Academy of Sciences (India)

    Andrei Yu Ivanov; Anna I Ginzburg

    2002-09-01

    Continuous observations since 1991 by using synthetic aperture radar (SAR) on board the Almaz-1, ERS-1/2, JERS-1, and RADARSAT satellites support the well-known fact that oceanic eddies are distributed worldwide in the ocean. The paper is devoted to an evaluation of the potential of SAR for detection of eddies and vortical motions in the ocean. The classification of typical vortical features in the ocean detected in remote sensing images (visible, infrared, and SAR) is presented as well as available information on their spatial and temporal scales. Examples of the Almaz-1 and ERS-1/2 SAR images showing different eddy types, such as rings, spiral eddies of the open ocean, eddies behind islands and in bays, spin-off eddies and mushroom-like structures (vortex dipoles) are given and discussed. It is shown that a common feature for most of the eddies detected in the SAR images is a broad spectrum of spatial scales, spiral shape and shear nature. It is concluded that the spaceborne SARs give valuable information on ocean eddies, especially in combination with visible and infrared satellite data.

  8. Synthetic-Aperture Silhouette Imaging (SASI)

    Science.gov (United States)

    Paxman, R.

    2016-09-01

    The problem of ground-based fine-resolution imaging of geosynchronous satellites continues to be an important unsolved space-surveillance problem. We are investigating a passive-illumination approach that is radically different from amplitude, intensity, or heterodyne interferometry approaches. The approach, called Synthetic-Aperture Silhouette Imaging (SASI), produces a fine-resolution image of the satellite silhouette. When plane-wave radiation emanating from a bright star is occluded by a GEO satellite, then the light is diffracted and a moving diffraction pattern (shadow) is cast on the surface of the earth. With prior knowledge of the satellite orbit and star location, the track of the moving shadow can be predicted with high precision. A linear array of inexpensive hobby telescopes can be deployed roughly perpendicular to the shadow track to collect a time history of the star intensity as the shadow passes by. A phase-retrieval algorithm, using the strong constraint that the occlusion of the satellite is a binary-valued silhouette, allows us to retrieve the missing phase and reconstruct a fine-resolution image of the silhouette. Silhouettes are highly informative, providing diagnostic information about deployment of antennas and solar panels, enabling satellite pose estimation, and revealing the presence and orientation of neighboring satellites in rendezvous and proximity operations.

  9. Triangulation using synthetic aperture radar images

    Science.gov (United States)

    Wu, Sherman S. C.; Howington-Kraus, Annie E.

    1991-01-01

    For the extraction of topographic information about Venus from stereoradar images obtained from the Magellan Mission, a Synthetic Aperture Radar (SAR) compilation system was developed on analytical stereoplotters. The system software was extensively tested by using stereoradar images from various spacecraft and airborne radar systems, including Seasat, SIR-B, ERIM XCL, and STAR-1. Stereomodeling from radar images was proven feasible, and development is on a correct approach. During testing, the software was enhanced and modified to obtain more flexibility and better precision. Triangulation software for establishing control points by using SAR images was also developed through a joint effort with the Defense Mapping Agency. The SAR triangulation system comprises four main programs, TRIDATA, MODDATA, TRISAR, and SHEAR. The first two programs are used to sort and update the data; the third program, the main one, performs iterative statistical adjustment; and the fourth program analyzes the results. Also, input are flight data and data from the Global Positioning System and Inertial System (navigation information). The SAR triangulation system was tested with six strips of STAR-1 radar images on a VAX-750 computer. Each strip contains images of 10 minutes flight time (equivalent to a ground distance of 73.5 km); the images cover a ground width of 22.5 km. All images were collected from the same side. With an input of 44 primary control points, 441 ground control points were produced. The adjustment process converged after eight iterations. With a 6-m/pixel resolution of the radar images, the triangulation adjustment has an average standard elevation error of 81 m. Development of Magellan radargrammetry will be continued to convert both SAR compilation and triangulation systems into digital form.

  10. Quantitative statistical assessment of conditional models for synthetic aperture radar.

    Science.gov (United States)

    DeVore, Michael D; O'Sullivan, Joseph A

    2004-02-01

    Many applications of object recognition in the presence of pose uncertainty rely on statistical models-conditioned on pose-for observations. The image statistics of three-dimensional (3-D) objects are often assumed to belong to a family of distributions with unknown model parameters that vary with one or more continuous-valued pose parameters. Many methods for statistical model assessment, for example the tests of Kolmogorov-Smirnov and K. Pearson, require that all model parameters be fully specified or that sample sizes be large. Assessing pose-dependent models from a finite number of observations over a variety of poses can violate these requirements. However, a large number of small samples, corresponding to unique combinations of object, pose, and pixel location, are often available. We develop methods for model testing which assume a large number of small samples and apply them to the comparison of three models for synthetic aperture radar images of 3-D objects with varying pose. Each model is directly related to the Gaussian distribution and is assessed both in terms of goodness-of-fit and underlying model assumptions, such as independence, known mean, and homoscedasticity. Test results are presented in terms of the functional relationship between a given significance level and the percentage of samples that wold fail a test at that level.

  11. Stellwagen Bank National Marine Sanctuary - Synthetic Aperture Radar (SAR) Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This geodatabase contains Synthetic Aperture Radar images (SAR), which consist of a fine resolution (12.5-50m), two-dimensional radar backscatter map of the...

  12. Detection of small, slow ground targets using Synthetic Aperture Radar

    Science.gov (United States)

    Chen, Curtis; Chapin, Elaine; Rosen, Paul

    2005-01-01

    Synthetic aperture radar (SAR) along-track interferometry (ATI) is a technique for sensing Earth-surface motion. The technique involves interferometrically combining data from two radar images acquired from phase centers separated along the platform flight track.

  13. Wind energy applications of synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Bruun Christiansen, M.

    2006-11-15

    Synthetic aperture radars (SAR), mounted on satellites or aircraft, have proven useful for ocean wind mapping. Wind speeds at the height 10 m may be retrieved from measurements of radar backscatter using empirical model functions. The resulting wind fields are valuable in offshore wind energy planning as a supplement to on site measurements, which are costly and sparse, and model wind fields, which are not fully validated. Two applications of SAR measurements in offshore wind energy planning are addressed here: the study of wind farm wake effects and the potential of using SAR winds in offshore wind resource assessment. Firstly, wind wakes behind two large offshore wind farms in Denmark Horns Rev and Nysted are identified. A region of reduced wind speed is found downstream of both wind farms from the SAR wind fields. The wake extent and magnitude depends on the wind speed, the atmospheric stability, and the fraction of turbines operating. Wind farm wake effects are detected up to 20 km downwind of the last turbine. This distance is longer than predicted by state-of-the art wake models. Wake losses are typically 10-20% near the wind farms. Secondly, the potential of using SAR wind maps in offshore wind resource assessment is investigated. The resource assessment is made through Weibull fitting to frequency observations of wind speed and requires at least 100 satellite observations per year for a given site of interest. Predictions of the energy density are very sensitive to the wind speed and the highest possible accuracy on SAR wind retrievals is therefore sought. A 1.1 m s{sup -1} deviation on the mean wind speed is found through comparison with mast measurements at Horns Rev. The accuracy on mean wind speeds and energy densities found from satellite measurements varies with different empirical model functions. Additional uncertainties are introduced by the infrequent satellite sampling at fixed times of the day. The accuracy on satellite based wind resource

  14. Oil Slick Characterization Using Synthetic Aperture Radar

    Science.gov (United States)

    Jones, C. E.; Breivik, O.; Brekke, C.; Skrunes, S.; Holt, B.

    2015-12-01

    Oil spills are a hazard worldwide with potential of causing high impact disasters, and require an active oil spill response capability to protect personnel, the ecosystem, and the energy supply. As the amount of oil in traditionally accessible reserves decline, there will be increasing oil extraction from the Arctic and deep-water wells, both new sources with high risk and high cost for monitoring and response. Although radar has long been used for mapping the spatial extent of oil slicks, it is only since the Deepwater Horizon spill that synthetic aperture radar (SAR) has been shown capable of characterizing oil properties within a slick, and therefore useful for directing response to the recoverable thicker slicks or emulsions. Here we discuss a 2015 Norwegian oil-on-water spill experiment in which emulsions of known quantity and water-to-oil ratio along with a look-alike slick of plant oil were released in the North Sea and imaged with polarimetric SAR (PolSAR) by NASA's UAVSAR instrument for several hours following release. During the experiment, extensive in situ measurements were made from ship or aircraft with meteorological instruments, released drift buoys, and optical/IR imagers. The experiment was designed to provide validation data for development of a physical model relating polarization-dependent electromagnetic scattering to the dielectric properties of oil mixed with ocean water, which is the basis for oil characterization with SAR. Data were acquired with X-, C-, and L-band satellite-based SARs to enable multi-frequency comparison of characterization capabilities. In addition, the data are used to develop methods to differentiate mineral slicks from biogenic look-alikes, and to better understand slick weathering and dispersion. The results will provide a basis for modeling oil-in-ice spills, currently a high priority for nations involved in Arctic oil exploration. Here we discuss the Norwegian experiment, the validation data, and the results of

  15. Synthetic aperture radar tomography sampling criteria and three-dimensional range migration algorithm with elevation digital spotlighting

    Institute of Scientific and Technical Information of China (English)

    TAN WeiXian; HONG Wen; WANG YanPing; LIN Yun; WU YiRong

    2009-01-01

    Based on the general geometric model of multi-baseline Synthetic Aperture Radar Tomography (TomoSAR), the three-dimensional (3-D) sampling criteria, the analytic expression of the 3-D Point Spread Function (PSF) and the 3-D resolution are derived in the 3-D wavenumber domain in this paper. Considering the relationship between the observation geometry and the size of illuminated scenario, a 3-D Range Migration Algorithm with Elevation Digital Spotlighting (RMA-EDS) is proposed. With this algorithm 3-D images of the area of interest can be directly and accurately reconstructed in the 3-D space avoiding the complex operations of 3-D geometric correction. Finally, theoretical analyses and simulation results are presented to demonstrate the shift-varying property of the 3-D PSF and the spatialvarying property of the 3-D resolution and to demonstrate the validity of the 3-D RMA-EDS.

  16. Apertures

    CERN Document Server

    Hansen, R C

    2014-01-01

    Microwave Scanning Antennas, Volume I: Apertures is a comprehensive account of phased arrays, multiple beam arrays, time domain and synthetic apertures, and adaptive antennas. Advances in continuous apertures and near field theory are discussed. Low noise and monopulse apertures, optical scanners, and large radomes are also covered, along with radio astronomy instruments and associated theory.Comprised of five chapters, this volume begins with an overview of aperture theory as well as aperture distributions and near field theory. The second and third chapters deal with mechanically steered and

  17. Analysis of Features for Synthetic Aperture Radar Target Classification

    Science.gov (United States)

    2015-03-26

    aperture radar SPLIT spectrum parted linked image test SVM support vector machine xiii ANALYSIS OF FEATURES FOR SYNTHETIC APERTURE RADAR TARGET...vectors. Section 2.3 introduces the spectrum parted linked image test (SPLIT) algorithm for attribute extraction from SAR images. Section 2.4 introduces...Networks, vol. 12, no. 2, pp. 181–201, 2001. 64 [27] T. Hastie, R. Tibshirani, and J. Friedman, The elements of Statistical Learning, Springer , New

  18. Passive Synthetic Aperture Radar Imaging Using Commercial OFDM Communication Networks

    Science.gov (United States)

    2012-09-13

    PASSIVE SYNTHETIC APERTURE RADAR IMAGING USING COMMERCIAL OFDM COMMUNICATION NETWORKS DISSERTATION José R. Gutiérrez del Arroyo, Major, USAF AFIT...IMAGING USING COMMERCIAL OFDM COMMUNICATION NETWORKS DISSERTATION Presented to the Faculty Graduate School of Engineering and Management Air Force...DISTRIBUTION IS UNLIMITED. AFIT/ DEE/ E G/12-10 PASSIVE SY THETIC APERTURE RADAR IMAGING USI G COMMERCIAL OFDM COMMUNICATIO r ETWORKS Jose R. Gutierrez

  19. Motion compensated beamforming in synthetic aperture vector flow imaging

    DEFF Research Database (Denmark)

    Oddershede, Niels; Jensen, Jørgen Arendt

    2006-01-01

    . Here the SNR is -10 dB compared to the stationary scatterer. A 2D motion compensation method for synthetic aperture vector flow imaging is proposed, where the former vector velocity estimate is used for compensating the beamforming of new data. This method is tested on data from an experimental flow......In synthetic aperture imaging the beamformed data from a number of emissions are summed to create dynamic focusing in transmit. This makes the method susceptible to motion, which is especially the case for the synthetic aperture flow estimation method, where large movements are expected......) of the beamformed response from the scatterer at all velocities is compared to that of a stationary scatterer. For lateral movement, the SNR drops almost linearly with velocity to -4 dB at I m/s, while for axial movement the SNR drop is largest, when the scatterer moves a quarter of a wavelength between emissions...

  20. A new method of aperture synthetizing in digital holography

    Institute of Scientific and Technical Information of China (English)

    Zhang Qing-Sheng; Lü Xiao-Xu; Yu Qing-Ting; Liu Gan-Yong

    2009-01-01

    This paper proposes a new method of aperture synthetizing in digital holography based on the principle of holography. In the new method aperture synthetizing is achieved by reconstructing each sub-hologram respectively, firstly,moving each reconstructed wave field referred to the benchmark reconstructed wave field according to the relationship between spacial motion and frequency shift, and finally splicing them by using superposition. Two different recording ways, using plane wave to record and using spherical wave to record, are analyzed, and their moving formula is deduced,too. Simulation and experiment are done. The results show that in comparison with the traditional method of aperture synthetizing in digital holography, the new method can decrease calculation and save reconstructed time obviously which has better applicability.

  1. In-vivo examples of synthetic aperture vector flow imaging

    DEFF Research Database (Denmark)

    Oddershede, Niels; Hansen, Kristoffer Lindskov; Nielsen, Michael Bachmann;

    2007-01-01

    would be needed. Synthetic aperture vector flow imaging could potentially provide this. The purpose of this paper is to test the synthetic aperture vector flow imaging method on challenging in-vivo data. Two synthetic aperture in-vivo data sets are acquired using a commercial linear array transducer...... and our RASMUS experimental ultrasound scanner. The first data set covers the femoral artery and the confluence of the femoral and saphenous vein of a healthy 26-year-old male volunteer. The second shows the carotid bifurcation of a healthy 32-year-old male volunteer. Both 2 second long data sets...... are processed, and movies of full vector flow images are generated. This paper presents still frames from different time instances of these movies. The movie from the femoral data tracks the accelerating velocity in the femoral artery during systole and a backwards flow at the end of the systole. A complex flow...

  2. A fast autofocus algorithm for synthetic aperture radar processing

    DEFF Research Database (Denmark)

    Dall, Jørgen

    1992-01-01

    High-resolution synthetic aperture radar (SAR) imaging requires the motion of the radar platform to be known very accurately. Otherwise, phase errors are induced in the processing of the raw SAR data, and bad focusing results. In particular, a constant error in the measured along-track velocity...... or the cross-track acceleration leads to a phase error that varies quadratically over the synthetic aperture. The process of estimating this quadratic phase error directly from the radar data is termed autofocus. A novel autofocus algorithm with a computational complexity which is at least an order...

  3. Synthetic aperture integration (SAI) algorithm for SAR imaging

    Science.gov (United States)

    Chambers, David H; Mast, Jeffrey E; Paglieroni, David W; Beer, N. Reginald

    2013-07-09

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  4. A Digital Data Processor for Synthetic Aperture Radar

    NARCIS (Netherlands)

    Vlothuizen, W.J.; Medenblik, H.J.W.

    2007-01-01

    This paper presents a Digital Data Processor (DDP) for Synthetic Aperture Radar (SAR). The DDP captures SAR data at a 1 GHz sample rate and processes data at 350 MB/s. Data reduction is performed by a digital down converter, programmable decimating filter and a fully programmable presummer. The tota

  5. Offshore Wind Potential in South India from Synthetic Aperture Radar

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Bingöl, Ferhat; Badger, Merete;

    The offshore wind energy potential for pre-feasibility in South India in the area from 77° to 80° Eastern longitude and 7° to 10° Northern latitude is observed from a total of 164 ENVISAT Advanced Synthetic Aperture Radar (ASAR) satellite images during the years 2002 to 2011. All satellite scenes...

  6. In Vivo Evaluation of Synthetic Aperture Sequential Beamforming

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Hansen, Peter Møller; Lange, Theis

    2012-01-01

    Ultrasound in vivo imaging using synthetic aperture sequential beamformation (SASB) is compared with conventional imaging in a double blinded study using side-by-side comparisons. The objective is to evaluate if the image quality in terms of penetration depth, spatial resolution, contrast and unw...

  7. Fourier beamformation of multistatic synthetic aperture ultrasound imaging

    DEFF Research Database (Denmark)

    Moghimirad, Elahe; Villagómez Hoyos, Carlos Armando; Mahloojifar, Ali

    2015-01-01

    A new Fourier beamformation (FB) algorithm is presented for multistatic synthetic aperture ultrasound imaging. It can reduce the number of computations by a factor of 20 compared to conventional Delay-and-Sum (DAS) beamformers. The concept is based on the wavenumber algorithm from radar and sonar...

  8. In-vivo synthetic aperture flow imaging in medical ultrasound

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2003-01-01

    A new method for acquiring flow images using synthetic aperture techniques in medical ultrasound is presented. The new approach makes it possible to have a continuous acquisition of flow data throughout the whole image simultaneously, and this can significantly improve blood velocity estimation...

  9. Imaging blood’s velocity using synthetic aperture ultrasound

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Li, Ye

    2012-01-01

    The blood velocity vector can be estimated using synthetic aperture techniques in medical ultrasound by using short emission sequences. The whole image region is insonified and the flow can be tracked in all directions continuously. This is a major advantage compared to commercial systems, since...

  10. In Vivo Real Time Volumetric Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Rasmussen, Morten Fischer; Brandt, Andreas Hjelm;

    2015-01-01

    Synthetic aperture (SA) imaging can be used to achieve real-time volumetric ultrasound imaging using 2-D array transducers. The sensitivity of SA imaging is improved by maximizing the acoustic output, but one must consider the limitations of an ultrasound system, both technical and biological...

  11. Wind retrieval from synthetic aperture radar - an overview

    DEFF Research Database (Denmark)

    Dagestad, Knut-Frode; Horstmann, Jochen; Mouche, Alexis

    2013-01-01

    This paper represents a consensus on the state-of-the-art in wind retrieval using synthetic aperture radar (SAR), after the SEASAR 2012 workshop “Advances in SAR Oceanography” hosted by the European Space Agency (ESA) and the Norwegian Space Centre in Tromsø, Norway 18–22 June 2012. We document...

  12. Synthetic aperture ultrasound Fourier beamformation using virtual sources

    DEFF Research Database (Denmark)

    Moghimirad, Elahe; Villagómez Hoyos, Carlos Armando; Mahloojifar, Ali

    2016-01-01

    An efficient Fourier beamformation algorithm is presented for multistatic synthetic aperture ultrasound imaging using virtual sources (FBV). The concept is based on the frequency domain wavenumber algorithm from radar and sonar and is extended to a multi-element transmit/receive configuration using...

  13. IMPROVED SYNTHETIC APERTURE SONAR MOTION COMPENSATION COMBINED DPCA WITH SUB-APERTURE IMAGE CORRELATION

    Institute of Scientific and Technical Information of China (English)

    Liu Wei; Zhang Chunhua; Liu Jiyuan

    2009-01-01

    Estimation precision of Displaced Phase Center Algorithm (DPCA) is affected by the number of displaced phase center pairs, the bandwidth of transmitting signal and many other factors. Detailed analysis is made on DPCA's estimation precision. Analysis results show that the directional vector estimation precision of DPCA is low, which will produce accumulating errors when phase centers' track is estimated. Because of this reason, DPCA suffers from accumulating errors seriously. To overcome this problem, a method combining DPCA with Sub Aperture Image Correlation (SAIC) is presented. Large synthetic aperture is divided into sub-apertures. Micro errors in sub-aperture are estimated by DPCA and compensated to raw echo data. Bulk errors between sub-apertures are estimated by SAIC and compensated directly to sub-aperture images. After that, sub-aperture images are directly used to generate ultimate SAS image. The method is applied to the lake-trial dataset of a 20 kHz SAS prototype system. Results show the method can successfully remove the accumulating error and produce a better SAS image.

  14. Atmospheric turbulence induced synthetic aperture lidar phase error compensation

    Science.gov (United States)

    Lu, Tian-an; Li, Hong-ping

    2016-12-01

    The resolution of a conventional optical imaging radar system is constrained by the diffraction limit of the telescope's aperture. The combination of lidar and synthetic aperture processing techniques can overcome the diffraction limit and provide a higher resolution air borne remote sensor. Atmospheric turbulence is an important factor affecting lidar imaging, and the phase screen simulation method is an effective method to simulate the degradation of laser signal propagating through turbulent atmosphere. By using Monte-Carlo random factor, the randomness of phase screens can be improved. The lidar imaging with different turbulence intensity is also calculated in this paper, then the improved rank one phase estimation autofocus method is used to compensate the imaging phase errors. The results show that the method of generating phase screen is consistent with the statistics of atmospheric turbulence, which can well simulate the effect of atmospheric turbulence on synthetic aperture lidar, and the influence on synthetic aperture lidar azimuth resolution is greater when atmospheric turbulence is stronger. Improved rank one phase estimation algorithm has good autofocus effect, which can effectively compensate the phase errors and enhance the image quality degraded by turbulence.

  15. Adaptive Receive and Transmit Apodization for Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Holfort, Iben Kraglund; Austeng, Andreas; Synnevåg, Johan-Fredrik

    2009-01-01

    This paper suggests a framework for utilizing adaptive, data-dependent apodization weights on both the receiving and transmitting aperture for Synthetic Aperture (SA) ultrasound imaging. The suggested approach is based on the Minimum Variance (MV) beamformer and consists of two steps. A set...... emission images before summation. The method is investigated using simulated SA ultrasound data obtained using Field II. Data of 13 point targets distributed at depths from 40 mm to 70 mm, and a 5.5 MHz, 64-element linear array transducer have been used. The investigation has shown that the introduction...

  16. Performance Evaluation of a Synthetic Aperture Real-Time Ultrasound System

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Tomov, Borislav Gueorguiev; Jensen, Jørgen Arendt

    2011-01-01

    This paper evaluates the signal-to-noise ratio, the time stability, and the phase difference of the sampling in the experimental ultrasound scanner SARUS: A synthetic aperture, real-time ultrasound system. SARUS has 1024 independent transmit and receive channels and is capable of handling 2D probes...... for 3D ultrasound imaging. It samples at 12 bits per sample and has a sampling rate of 70 MHz with the possibility of decimating the sampling frequency at the input. SARUS is capable of advanced real-time computations such as synthetic aperture imaging. The system is built using fieldprogrammable gate...... arrays (FPGAs) making it very flexible and allowing implementation of other real-time ultrasound processing methods in the future. For conventional B-mode imaging, a penetration depth around 7 cm for a 7 MHz transducer is obtained (signal-tonoise ratio of 0 dB), which is comparable to commercial...

  17. Optimum synthetic-aperture imaging of extended astronomical objects.

    Science.gov (United States)

    van der Avoort, Casper; Pereira, Silvania F; Braat, Joseph J M; den Herder, Jan-Willem

    2007-04-01

    In optical aperture-synthesis imaging of stellar objects, different beam combination strategies are used and proposed. Coaxial Michelson interferometers are very common and a homothetic multiaxial interferometer is recently realized in the Large Binocular Telescope. Laboratory experiments have demonstrated the working principles of two new approaches: densified pupil imaging and wide field-of-view (FOV) coaxial imaging using a staircase-shaped mirror. We develop a common mathematical formulation for direct comparison of the resolution and noise sensitivity of these four telescope configurations for combining beams from multiple apertures for interferometric synthetic aperture, wide-FOV imaging. Singular value decomposition techniques are used to compare the techniques and observe their distinct signal-to-noise ratio behaviors. We conclude that for a certain chosen stellar object, clear differences in performance of the imagers are identifiable.

  18. Smart antennas for space-borne synthetic aperture radars

    Science.gov (United States)

    Qin, F.; Gao, S.; Mao, C.; Wang, Z.; Patyuchenko, A.; Younis, M.; Krieger, G.

    2015-11-01

    This paper discusses smart antennas for space-borne synthetic aperture radar (SAR). First, some recent development in smart antennas for space-borne SAR is reviewed. Then, the paper presents a low-cost space-borne SAR system using digital beam forming on receive. The smart antenna system is also discussed, and some results are shown. The antenna system, consisting of a parabolic reflector and multi-feed array, is designed and optimized for dual-band dual-polarized digital beam-forming performance. The operating frequencies are at X and Ka bands with the center frequency of 9.6 and 35.75 GHz, respectively. The stacked dipoles and square patches with parasitic elements are employed as the feed elements at X and Ka bands. Dual-band antenna arrays are combined in the same aperture, which not only reduce the aperture of the feed array, but also coincide the center of dual-band feed arrays.

  19. Improved Dictionary Formation and Search for Synthetic Aperture Radar Canonical Shape Feature Extraction

    Science.gov (United States)

    2014-03-27

    IMPROVED DICTIONARY FORMATION AND SEARCH FOR SYNTHETIC APERTURE RADAR CANONICAL SHAPE FEATURE EXTRACTION THESIS Matthew P. Crosser, Captain, USAF... SYNTHETIC APERTURE RADAR CANONICAL SHAPE FEATURE EXTRACTION THESIS Presented to the Faculty Department of Electrical and Computer Engineering Graduate School...APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT-ENG-14-M-21 IMPROVED DICTIONARY FORMATION AND SEARCH FOR SYNTHETIC APERTURE RADAR CANONICAL

  20. Linear Frequency Modulated Signals VS Orthogonal Frequency Division Multiplexing Signals for Synthetic Aperture Radar Systems

    Science.gov (United States)

    2014-06-01

    FREQUENCY MODULATED SIGNALS VS ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING SIGNALS FOR SYNTHETIC APERTURE RADAR SYSTEMS by Sade A. Holder June...SIGNALS VS ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING SIGNALS FOR SYNTHETIC APERTURE RADAR SYSTEMS 5. FUNDING NUMBERS 6. AUTHOR(S) Sade A. Holder 7...OFDM) signal versus a linear frequency modulated or chirp signal on simulated synthetic aperture radar (SAR) imagery. Various parameters of the

  1. Polarimetric synthetic aperture radar data and the complex Wishart distribution

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Skriver, Henning

    2003-01-01

    When working with multi-look fully polarimetric synthetic aperture radar (SAR) data an appropriate way of representing the backscattered signal consists of the so-called covariance matrix. For each pixel this is a 3 by 3 Hermitian, positive definite matrix which follows a complex Wishart distribu......When working with multi-look fully polarimetric synthetic aperture radar (SAR) data an appropriate way of representing the backscattered signal consists of the so-called covariance matrix. For each pixel this is a 3 by 3 Hermitian, positive definite matrix which follows a complex Wishart...... distribution. Based on this distribution a test statistic for equality of two such matrices and an associated asymptotic probability for obtaining a smaller value of the test statistic are given and applied to segmentation, change detection and edge detection in polarimetric SAR data. In a case study EMISAR L...

  2. Digital Beamforming Synthetic Aperture Radar (DBSAR) Polarimetric Upgrade

    Science.gov (United States)

    Rincon, Rafael F.; Perrine, Martin; McLinden, Matthew; Valett, Susan

    2011-01-01

    The Digital Beamforming Synthetic Aperture Radar (DBSAR) is a state-of-the-art radar system developed at NASA/Goddard Space Flight Center for the development and implementation of digital beamforming radar techniques. DBSAR was recently upgraded to polarimetric operation in order to enhance its capability as a science instrument. Two polarimetric approaches were carried out which will be demonstrated in upcoming flight campaigns.

  3. Inverse synthetic aperture radar imaging principles, algorithms and applications

    CERN Document Server

    Chen , Victor C

    2014-01-01

    Inverse Synthetic Aperture Radar Imaging: Principles, Algorithms and Applications is based on the latest research on ISAR imaging of moving targets and non-cooperative target recognition (NCTR). With a focus on the advances and applications, this book will provide readers with a working knowledge on various algorithms of ISAR imaging of targets and implementation with MATLAB. These MATLAB algorithms will prove useful in order to visualize and manipulate some simulated ISAR images.

  4. New Algorithms and Sparse Regularization for Synthetic Aperture Radar Imaging

    Science.gov (United States)

    2015-10-26

    AFRL-AFOSR-VA-TR-2015-0343 New Algorithms and Sparse Regularization for Synthetic Aperture Radar Imaging Laurent Demanet MASSACHUSETTS INSTITUTE OF...26-10-2015 2. REPORT TYPE Final Performance 3. DATES COVERED (From - To) 14-06-2014 to 14-06-2015 4. TITLE AND SUBTITLE New Algorithms and Sparse...method must fail -- at the target detection task. The analysis identifies the algorithms that perform well, and those that don’t, even in the case of

  5. About Phase: Synthetic Aperture Radar and the Phase Retrieval

    Science.gov (United States)

    2014-03-01

    apply certain ideas from phase retrieval to resolve phase errors in SAR . Specifically, we use bistatic techniques to measure relative phases, and then we...imaging a scene of interest (left) using bistatic SAR techniques at three different times. As in Example 5.5, at the first time instant the aircraft are...Synthetic aperture radar ( SAR ) uses relative motion to produce fine resolution images from microwave frequencies and is a useful tool for regular

  6. Implementation of real-time duplex synthetic aperture ultrasonography

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Larsen, Lee; Kjeldsen, Thomas;

    2015-01-01

    This paper presents a real-time duplex synthetic aperture imaging system, implemented on a commercially available tablet. This includes real-time wireless reception of ultrasound signals and GPU processing for B-mode and Color Flow Imaging (CFM). The objective of the work is to investigate the im...... and that the required bandwidth between the probe and processing unit is within the current Wi-Fi standards....

  7. Range-instantaneous Doppler imaging of inverse synthetic aperture sonar

    Institute of Scientific and Technical Information of China (English)

    XU Jia; JIANG Xingzhou; TANG Jingsong

    2003-01-01

    Because the existing range-Doppler algorithm in inverse synthetic aperture sonar (ISAS) is based on target model of uniform motion, it may be invalidated for maneuvering targets due to the time-varying changes of both individual scatter′s Doppler and imaging projection plane. To resolve the problem, a new range-instantaneous Doppler imaging method is proposed for imaging maneuvering targets based on time-frequency analysis. The proposed approach is verified using real underwater acoustic data.

  8. Synthetic Aperture Sonar Imaging via One-Way Wave Equations

    CERN Document Server

    Huynh, Quyen

    2009-01-01

    We develop an efficient algorithm for Synthetic Aperture Sonar imaging based on the one-way wave equations. The algorithm utilizes the operator-splitting method to integrate the one-way wave equations. The well-posedness of the one-way wave equations and the proposed algorithm is shown. A computational result against real field data is reported and the resulting image is enhanced by the BV-like regularization.

  9. Modeling and Simulation of Synthetic Aperture Radars in Matlab

    Science.gov (United States)

    2013-06-01

    was white Gaussian noise . The noise was generated via the MATLAB function randn.m, which produces pseudo -randomly generated independent numbers...white Gaussian noise . The noise was again generated via the MATLAB function randn.m, which produces the pseudo -randomly generated independent numbers...the Synthetic Aperture Radar section. SAR Simulation clear all; close all global NOISE ; NOISE =randn(1,100000); c=3e8; pi2=2*pi; f0=200e6

  10. Multiregion level-set partitioning of synthetic aperture radar images.

    Science.gov (United States)

    Ben Ayed, Ismail; Mitiche, Amar; Belhadj, Ziad

    2005-05-01

    The purpose of this study is to investigate Synthetic Aperture Radar (SAR) image segmentation into a given but arbitrary number of gamma homogeneous regions via active contours and level sets. The segmentation of SAR images is a difficult problem due to the presence of speckle which can be modeled as strong, multiplicative noise. The proposed algorithm consists of evolving simple closed planar curves within an explicit correspondence between the interiors of curves and regions of segmentation to minimize a criterion containing a term of conformity of data to a speckle model of noise and a term of regularization. Results are shown on both synthetic and real images.

  11. Ultrasound Research Scanner for Real-time Synthetic Aperture Data Acquisition

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Holm, Ole; Jensen, Lars Joost

    2005-01-01

    Conventional ultrasound systems acquire ultrasound data sequentially one image line at a time. The architecture of these systems is therefore also sequential in nature and processes most of the data in a sequential pipeline. This often makes it difficult to implement radically different imaging...... evaluation of synthetic aperture and 3D imaging. This paper describes a real-time system specifically designed for research purposes. The system can acquire multi-channel data in real-time from multi-element ultrasound transducers, and can perform some real-time processing on the acquired data. The system...

  12. Three-Dimensional Synthetic Aperture Focusing Using a Rocking Convex Array Transducer

    DEFF Research Database (Denmark)

    Andresen, Henrik; Nikolov, Svetoslav; Pedersen, Mads Møller;

    2010-01-01

    Volumetric imaging can be performed using 1-D arrays in combination with mechanical motion. Outside the elevation focus of the array, the resolution and contrast quickly degrade compared with the lateral plane, because of the fixed transducer focus. This paper shows the feasibility of using...... synthetic aperture focusing for enhancing the elevation focus for a convex rocking array. The method uses a virtual source (VS) for defocused multi-element transmit, and another VS in the elevation focus point. This allows a direct time-of-flight to be calculated for a given 3-D point. To avoid artifacts...

  13. Single Lens Dual-Aperture 3D Imaging System: Color Modeling

    Science.gov (United States)

    Bae, Sam Y.; Korniski, Ronald; Ream, Allen; Fritz, Eric; Shearn, Michael

    2012-01-01

    In an effort to miniaturize a 3D imaging system, we created two viewpoints in a single objective lens camera. This was accomplished by placing a pair of Complementary Multi-band Bandpass Filters (CMBFs) in the aperture area. Two key characteristics about the CMBFs are that the passbands are staggered so only one viewpoint is opened at a time when a light band matched to that passband is illuminated, and the passbands are positioned throughout the visible spectrum, so each viewpoint can render color by taking RGB spectral images. Each viewpoint takes a different spectral image from the other viewpoint hence yielding a different color image relative to the other. This color mismatch in the two viewpoints could lead to color rivalry, where the human vision system fails to resolve two different colors. The difference will be closer if the number of passbands in a CMBF increases. (However, the number of passbands is constrained by cost and fabrication technique.) In this paper, simulation predicting the color mismatch is reported.

  14. Asynchronous rotation scan for synthetic aperture interferometric radiometer

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Synthetic aperture interferometric technique has wide applications in optics,radio astronomy and mi-crowave remote sensing areas.With the increasing demands of high resolution imaging observation,a new time-sharing sampling scheme of asynchronous rotation scan is proposed to meet the technical challenge of achieving a large equivalent aperture and overcome the operating barriers of space borne application.This configuration is basically composed by two asynchronously and concentrically ro-tating antenna groups,whose revolving radii and speeds are different.The synthetic aperture system with asynchronous rotation scanning scheme can effectively solve the trade-off problem of system complexity,and greatly simplify the system hardware at the cost of sacrificing a certain time resolution.The basic rules and design methods of asynchronous rotation scan are investigated The Gridding method is introduced to inverse the spiral sampling data for image reconstruction.The potential ap-plications of geostationary orbit(GEO)earth observation and solar polar orbit(SPO)plasma cloud observation are explored with numerical simulations to validate the significance and feasibility of this new imaging configuration.

  15. Asynchronous rotation scan for synthetic aperture interferometric radiometer

    Institute of Scientific and Technical Information of China (English)

    WU Ji; ZHANG Cheng; LIU Hao; SUN WeiYing

    2009-01-01

    Synthetic aperture interferometric technique has wide applications in optics, radio astronomy and mi-crowave remote sensing areas. With the increasing demands of high resolution imaging observation, a new time-sharing sampling scheme of asynchronous rotation scan is proposed to meet the technical challenge of achieving a large equivalent aperture and overcome the operating barriers of space borne application. This configuration is basically composed by two asynchronously and concentrically ro-tating antenna groups, whose revolving radii and speeds are different. The synthetic aperture system with asynchronous rotation scanning scheme can effectively solve the trade-off problem of system complexity, and greatly simplify the system hardware at the cost of sacrificing a certain time resolution. The basic rules and design methods of asynchronous rotation scan are investigated The Gridding method is introduced to inverse the spiral sampling data for image reconstruction. The potential ap-plications of geostationary orbit (GEO) earth observation and solar polar orbit (SPO) plasma cloud observation are explored with numerical simulations to validate the significance and feasibility of this new imaging configuration.

  16. Mathematical analysis of the accordion grating illusion: a differential geometry approach to introduce the 3D aperture problem.

    Science.gov (United States)

    Yazdanbakhsh, Arash; Gori, Simone

    2011-12-01

    When an observer moves towards a square-wave grating display, a non-rigid distortion of the pattern occurs in which the stripes bulge and expand perpendicularly to their orientation; these effects reverse when the observer moves away. Such distortions present a new problem beyond the classical aperture problem faced by visual motion detectors, one we describe as a 3D aperture problem as it incorporates depth signals. We applied differential geometry to obtain a closed form solution to characterize the fluid distortion of the stripes. Our solution replicates the perceptual distortions and enabled us to design a nulling experiment to distinguish our 3D aperture solution from other candidate mechanisms (see Gori et al. (in this issue)). We suggest that our approach may generalize to other motion illusions visible in 2D displays.

  17. Frequency division transmission imaging and synthetic aperture reconstruction.

    Science.gov (United States)

    Gran, Fredrik; Jensen, Jørgen Arendt

    2006-05-01

    In synthetic transmit aperture imaging only a few transducer elements are used in every transmission, which limits the signal-to-noise ratio (SNR). The penetration depth can be increased by using all transmitters in every transmission. In this paper, a method for exciting all transmitters in every transmission and separating them at the receiver is proposed. The coding is done by designing narrow-band linearly frequency modulated signals, which are approximately disjointed in the frequency domain and assigning one waveform to each transmitter. By designing a filterbank consisting of the matched filters corresponding to the excitation waveforms, the different transmitters can be decoded at the receiver. The matched filter of a specific waveform will allow information only from this waveform to pass through, thereby separating it from the other waveforms. This means that all transmitters can be used in every transmission, and the information from the different transmitters can be separated instantaneously. Compared to traditional synthetic transmit aperture (STA) imaging, in which the different transmitters are excited sequentially, more energy is transmitted in every transmission, and a better signal-to-noise-ratio is attained. The method has been tested in simulation, in which the resolution and contrast was compared to a standard synthetic transmit aperture system with a single sinusoid excitation. The resolution and contrast was comparable for the two systems. The method also has been tested using the experimental ultrasound scanner RASMUS. The resolution was evaluated using a string phantom. The method was compared to a conventional STA using both sinusoidal excitation and linear frequency modulated (FM) signals as excitation. The system using the FM signals and the frequency division approach yielded the same performance concerning both axial (of approximately equal to 3 wavelengths) and lateral resolution (of approximately equal to 4.5 wavelengths). A SNR

  18. Forward imaging for obstacle avoidance using ultrawideband synthetic aperture radar

    Science.gov (United States)

    Nguyen, Lam H.; Wong, David C.; Stanton, Brian; Smith, Gregory

    2003-09-01

    In support of the Army vision for increased mobility, survivability, and lethality, we are investigating the use of ultra-wideband (UWB) synthetic aperture radar (SAR) technology to enhance unmanned ground vehicle missions. The ability of UWB radar technology to detect objects concealed by foilage could provide an important obstacle avoidance capability for robotic vehicles. This would improve the speed and maneuverability of these vehicles and consequently increase the probability of survivability of U.S. forces. This technology would address the particular challenges that confront robotic vehicles such as large rocks hidden in tall grass and voids such as ditches and bodies of water. ARL has designed and constructed an instrumentation-grade low frequency, UWB synthetic aperture radar for evaluation of the target signatures and underlying phenomenology of stationary tactical targets concealed by foilage and objects buried in the ground. The radar (named BoomSAR) is installed in teh basekt of a 30-ton boom lift and can be operated while the entire boom lift is driven forward slowly, with the boom arm extended as high as 45 m to generate a synthetic aperture. In this paper, we investigate the potential use of the UWB radar in the forward imaging configuration. The paper describes the forward imaging radar and test setup at Aberdeen Proving Ground, Maryland. We present imagery of "positive" obstacles such as trees, fences, wires, mines, etc., as well as "negative" obstacles such as ditches. Imagery of small targets such as plastic mines is also included. We provide eletromagnetic simulations of forward SAR imagery of plastic mines and compare that to the measurement data.

  19. Synthetic aperture ladar based on a MOPAW laser

    Science.gov (United States)

    Turbide, Simon; Marchese, Linda; Bergeron, Alain; Desbiens, Louis; Paradis, Patrick

    2016-10-01

    Long range land surveillance is a critical need in numerous military and civilian security applications, such as threat detection, terrain mapping and disaster prevention. A key technology for land surveillance, synthetic aperture radar (SAR) continues to provide high resolution radar images in all weather conditions from remote distances. State of the art SAR systems based on dual-use satellites are capable of providing ground resolutions of one meter; while their airborne counterparts obtain resolutions of 10 cm. Certain land surveillance applications such as subsidence monitoring, landslide hazard prediction and tactical target tracking could benefit from improved resolution. The ultimate limitation to the achievable resolution of any imaging system is its wavelength. State-of-the-art SAR systems are approaching this limit. The natural extension to improve resolution is to thus decrease the wavelength, i.e. design a synthetic aperture system in a different wavelength regime. One such system offering the potential for vastly improved resolution is Synthetic Aperture Ladar (SAL). This system operates at infrared wavelengths, ten thousand times smaller radar wavelengths. This paper presents a SAL platform based on the INO Master Oscillator with Programmable Amplitude Waveform (MOPAW) laser that has a wavelength sweep of Δλ=1.22 nm, a pulse repetition rate up to 1 kHz and up to 200 μJ per pulse. The results for SAL 2D imagery at a range of 10 m are presented, indicating a reflectance sensibility of 8 %, ground-range and azimuth resolution of 1.7 mm and 0.84 mm respectively.

  20. Investigation of synthetic aperture methods in ultrasound surface imaging using elementary surface types.

    Science.gov (United States)

    Kerr, W; Pierce, S G; Rowe, P

    2016-12-01

    Synthetic aperture imaging methods have been employed widely in recent research in non-destructive testing (NDT), but uptake has been more limited in medical ultrasound imaging. Typically offering superior focussing power over more traditional phased array methods, these techniques have been employed in NDT applications to locate and characterise small defects within large samples, but have rarely been used to image surfaces. A desire to ultimately employ ultrasonic surface imaging for bone surface geometry measurement prior to surgical intervention motivates this research, and results are presented for initial laboratory trials of a surface reconstruction technique based on global thresholding of ultrasonic 3D point cloud data. In this study, representative geometry artefacts were imaged in the laboratory using two synthetic aperture techniques; the Total Focusing Method (TFM) and the Synthetic Aperture Focusing Technique (SAFT) employing full and narrow synthetic apertures, respectively. Three high precision metallic samples of known geometries (cuboid, sphere and cylinder) which featured a range of elementary surface primitives were imaged using a 5MHz, 128 element 1D phased array employing both SAFT and TFM approaches. The array was manipulated around the samples using a precision robotic positioning system, allowing for repeatable ultrasound derived 3D surface point clouds to be created. A global thresholding technique was then developed that allowed the extraction of the surface profiles, and these were compared with the known geometry samples to provide a quantitative measure of error of 3D surface reconstruction. The mean errors achieved with optimised SAFT imaging for the cuboidal, spherical and cylindrical samples were 1.3mm, 2.9mm and 2.0mm respectively, while those for TFM imaging were 3.7mm, 3.0mm and 3.1mm, respectively. These results were contrary to expectations given the higher information content associated with the TFM images. However, it was

  1. Probing the Martian Subsurface with Synthetic Aperture Radar

    Science.gov (United States)

    Campbell, B. A.; Maxwell, T. A.; Freeman, A.

    2005-01-01

    Many regions of the martian surface are covered by fine-grained materials emplaced by volcanic, fluvial, or aeolian processes. These mantling deposits likely hide ancient channel systems (particularly at smaller scale lengths) and volcanic, impact, glacial, or shoreline features. Synthetic aperture radar (SAR) offers the capability to probe meters below the surface, with imaging resolution in the 10 s of m range, to reveal the buried terrain and enhance our understanding of Mars geologic and climate history. This presentation focuses on the practical applications of a Mars orbital SAR, methods for polarimetric and interferometric radar studies, and examples of such techniques for Mars-analog sites on the Moon and Earth.

  2. Microlocal aspects of bistatic synthetic aperture radar imaging

    CERN Document Server

    Krishnan, Venky P

    2010-01-01

    In this article, we analyze the microlocal properties of the linearized forward scattering operator $F$ and the reconstruction operator $F^{*}F$ appearing in bistatic synthetic aperture radar imaging. In our model, the radar source and detector travel along a line a fixed distance apart. We show that $F$ is a Fourier integral operator, and we give the mapping properties of the projections from the canonical relation of $F$, showing that the right projection is a blow-down and the left projection is a fold. We then show that $F^{*}F$ is a singular FIO belonging to the class $I^{3,0}$.

  3. Synthetic aperture radar images with composite azimuth resolution

    Energy Technology Data Exchange (ETDEWEB)

    Bielek, Timothy P; Bickel, Douglas L

    2015-03-31

    A synthetic aperture radar (SAR) image is produced by using all phase histories of a set of phase histories to produce a first pixel array having a first azimuth resolution, and using less than all phase histories of the set to produce a second pixel array having a second azimuth resolution that is coarser than the first azimuth resolution. The first and second pixel arrays are combined to produce a third pixel array defining a desired SAR image that shows distinct shadows of moving objects while preserving detail in stationary background clutter.

  4. Interpolated spatially variant apodization in synthetic aperture radar imagery.

    Science.gov (United States)

    Yocky, D A; Jakowatz, C V; Eichel, P H

    2000-05-10

    The original formulation of spatially variant apodization for complex synthetic aperture radar imagery concentrated on integer-oversampled data. Noninteger-oversampled data presented previously [IEEE Trans. Aerosp. Electron. Syst. 31, 267 (1995)] suggested use of different weightings in the algorithm. An alternative noninteger-oversampled approach that employs the same apodization concept but uses local spatial interpolation is presented. With this approach the combined image formation, apodization, and detection of 1.3x-versus-2.0x oversampled data can be performed in half the time without loss of image quality.

  5. Monitoring coastal inundation with Synthetic Aperture Radar satellite data

    Science.gov (United States)

    Suzuoki, Yukihiro; Rangoonwala, Amina; Ramsey, Elijah W.

    2011-01-01

    Maps representing the presence and absence of surface inundation in the Louisiana coastal zone were created from available satellite scenes acquired by the Japanese Aerospace Exploration Agency's Advanced Land Observing Satellite and by the European Space Agency's Envisat from late 2006 through summer 2009. Detection of aboveground surface flooding relied on the well-documented and distinct signature of decreased backscatter in Synthetic Aperture Radar (SAR), which is indicative of inundated marsh in the Gulf of Mexico. Even though decreases in backscatter were distinctive, the multiplicity of possible interactions between changing flood depths and canopy height yielded complex SAR-based representations of the marshes.

  6. Synthetic-aperture radar autofocus by maximizing sharpness.

    Science.gov (United States)

    Fienup, J R

    2000-02-15

    To focus a synthetic-aperture radar image that is suffering from phase errors, a phase-error estimate is found that, when it is applied, maximizes the sharpness of the image. Closed-form expressions are derived for the gradients of a sharpness metric with respect to phase-error parameters, including both a point-by-point (nonparametric) phase function and coefficients of a polynomial expansion. Use of these expressions allows for a highly efficient gradient-search algorithm for high-order phase errors. The effectiveness of the algorithm is demonstrated with an example.

  7. Limitations of synthetic aperture laser optical feedback imaging

    CERN Document Server

    Glastre, Wilfried; Hugon, Olivier; De Chatellus, Hugues Guillet; Lacot, Eric

    2012-01-01

    In this paper we present the origin and the effect of amplitude and phase noise on Laser Optical Feedback Imaging (LOFI) associated with Synthetic Aperture (SA) imaging system. Amplitude noise corresponds to photon noise and acts as an additive noise, it can be reduced by increasing the global measurement time. Phase noise can be divided in three families: random, sinusoidal and drift phase noise; we show that it acts as a multiplicative noise. We explain how we can reduce it by making oversampling or multiple measurements depending on its type. This work can easily be extended to all SA systems (Radar, Laser or Terahertz), especially when raw holograms are acquired point by point.

  8. Multi element synthetic aperture transmission using a frequency division approach

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jensen, Jørgen Arendt

    2003-01-01

    can therefore be used for flow imaging, unlike with Hadamard and Golay coding. The frequency division approach increases the SNR by a factor of N2 compared to conventional pulsed synthetic aperture imaging, provided that N transmission centers are used. Simulations and phantom measurements....... The transmitting elements are excited so that N virtual sources are formed. All sources are excited using one subset at a time. The signals can be separated by matched filtration, and the corresponding information is extracted. The individual source information is hence available in every emission and the method...

  9. Estimation of velocity vectors in synthetic aperture ultrasound imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Oddershede, Niels

    2006-01-01

    A method for determining both velocity magnitude and angle in a synthetic aperture ultrasound system is described. The approach uses directional beamforming along the flow direction and cross-correlation to determine velocity magnitude. The angle of the flow is determined from the maximum......). The method is also investigated using data measured by an experimental ultrasound scanner from a flow rig. A commercial 128 element 7 MHz linear array transducer is used, and data are measured for flow angles of 60 deg and 90 deg. Data are acquired using the RASMUS experimental ultrasound scanner, which...

  10. Cardiac In-vivo Measurements Using Synthetic Transmit Aperture Ultrasound

    DEFF Research Database (Denmark)

    Andresen, Henrik; Nikolov, Svetoslav; Hassager, Christian

    2006-01-01

    This paper investigates the feasibility of acquiring cardiac images using synthetic transmit aperture (STA) ultrasound. Focusing in STA is done by beamforming all points in the image for every emission, creating a low-resolution image. The low-resolution images for each emission are summed......, together with the RASMUS experimental ultrasound scanner. Both transducers have a pitch of half a wavelength. To ensure an adequate signal-to-noise ratio, a 20 mus non-linear frequency modulated chirp and a 7-element de-focused virtual source were used for transmission. The number of virtual sources used...

  11. Implementation of Synthetic Aperture Imaging in Medical Ultrasound

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Kortbek, Jacob; Nikolov, Svetoslav

    2010-01-01

    The main advantage of medical ultrasound imaging is its real time capability, which makes it possible to visualize dynamic structures in the human body. Real time synthetic aperture imaging puts very high demands on the hardware, which currently cannot be met. A method for reducing the number...... of calculations and still retain the many advantages of SA imaging is described. It consists of a dual stage beamformer, where the first can be a simple fixed focus analog beamformer and the second an ordinary digital ultrasound beamformer. The performance and constrictions of the approach is described....

  12. Convolutional neural networks for synthetic aperture radar classification

    Science.gov (United States)

    Profeta, Andrew; Rodriguez, Andres; Clouse, H. Scott

    2016-05-01

    For electro-optical object recognition, convolutional neural networks (CNNs) are the state-of-the-art. For large datasets, CNNs are able to learn meaningful features used for classification. However, their application to synthetic aperture radar (SAR) has been limited. In this work we experimented with various CNN architectures on the MSTAR SAR dataset. As the input to the CNN we used the magnitude and phase (2 channels) of the SAR imagery. We used the deep learning toolboxes CAFFE and Torch7. Our results show that we can achieve 93% accuracy on the MSTAR dataset using CNNs.

  13. Duplex synthetic aperture imaging with tissue motion compensation

    DEFF Research Database (Denmark)

    Gammelmark, Kim; Jensen, Jørgen Arendt

    2003-01-01

    This paper investigates a method for tissue motion estimation and compensation in synthetic transmits aperture imaging. The approach finds the tissue velocity and the direction of the motion at very tissue region by cross-correlating high resolution lines beamformed along multiple directions...... at each image points. Compensation is applied in the beamformer by tracking the image points using the velocity and angle estimates from the closest estimation point. Simulation results using Field II show nearly perfect motion compensation with no appreciable difference in contrast resolution after...

  14. Synthetic Aperture Radar Raw Signals Simulation of Extended Scenes

    Institute of Scientific and Technical Information of China (English)

    Sun Jin-yao; Sun Hong

    2004-01-01

    A synthetic aperture radar (SAR) raw signal simulation algorithm for extended scenes is presented. This algorithm is based on the SAR two-dimensional system transform function (STF). To cope with range-variant nature of SAR STF and increase the speed of this algorithm, new formulas for range-variant phase corrections in range Doppler (RD) domain are developed. In this way, many azimuth lines can be simulated with the same SAR STF. It only needs twodimensional fast Fourier transform code and complex multiplications. Comparing with time-domain simulation algorithm, it is very simple and thus efficient. Simulation results have shown that this algorithm is accurate and efficient.

  15. Multielement Synthetic Transmit Aperture Imaging Using Temporal Encoding

    DEFF Research Database (Denmark)

    Gammelmark, Kim; Jensen, Jørgen Arendt

    2003-01-01

    A new method to increase the signal-to-noise ratio (SNR) of synthetic transmit aperture imaging is investigated. The approach utilizes multiple elements to emulate a spherical wave, and the conventional short excitation pulse is replaced by a linear frequency-modulated (FM) signal. The approach...... is evaluated in terms of image quality parameters in comparison to linear array imaging. Field II simulations using an 8.5-MHz linear array transducer with 128 elements show an improvement in lateral resolution of up to 30% and up to 10.75% improvement in contrast resolution for the new approach. Measurements...

  16. Transverse flow imaging using synthetic aperture directional beamforming

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav

    2002-01-01

    Current ultrasound scanners only determine the velocity along the ultrasound beam, since data is only focused along the emitted beam. Synthetic aperture ultrasound systems have the capability of focusing simultaneously in all directions. This is used here to focus along the flow direction and the....... of 1.2 % (2.1 mm/s). An in-vivo image of the carotid artery and jugular vein of a healthy 29 years old volunteer. A full color flow image using only 128 emissions could be made with a high velocity precision....

  17. Modifications to the synthetic aperture microwave imaging diagnostic

    Science.gov (United States)

    Brunner, K. J.; Chorley, J. C.; Dipper, N. A.; Naylor, G.; Sharples, R. M.; Taylor, G.; Thomas, D. A.; Vann, R. G. L.

    2016-11-01

    The synthetic aperture microwave imaging diagnostic has been operating on the MAST experiment since 2011. It has provided the first 2D images of B-X-O mode conversion windows and showed the feasibility of conducting 2D Doppler back-scattering experiments. The diagnostic heavily relies on field programmable gate arrays to conduct its work. Recent successes and newly gained experience with the diagnostic have led us to modify it. The enhancements will enable pitch angle profile measurements, O and X mode separation, and the continuous acquisition of 2D DBS data. The diagnostic has also been installed on the NSTX-U and is acquiring data since May 2016.

  18. Apodized RFI filtering of synthetic aperture radar images

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2014-02-01

    Fine resolution Synthetic Aperture Radar (SAR) systems necessarily require wide bandwidths that often overlap spectrum utilized by other wireless services. These other emitters pose a source of Radio Frequency Interference (RFI) to the SAR echo signals that degrades SAR image quality. Filtering, or excising, the offending spectral contaminants will mitigate the interference, but at a cost of often degrading the SAR image in other ways, notably by raising offensive sidelobe levels. This report proposes borrowing an idea from nonlinear sidelobe apodization techniques to suppress interference without the attendant increase in sidelobe levels. The simple post-processing technique is termed Apodized RFI Filtering (ARF).

  19. Adaptive-neighborhood speckle removal in multitemporal synthetic aperture radar images.

    Science.gov (United States)

    Ciuc, M; Bolon, P; Trouve, E; Buzuloiu, V; Rudant, J P

    2001-11-10

    We present a new method for multitemporal synthetic aperture radar image filtering using three-dimensional (3D) adaptive neighborhoods. The method takes both spatial and temporal information into account to derive the speckle-free value of a pixel. For each pixel individually, a 3D adaptive neighborhood is determined that contains only pixels belonging to the same distribution as the current pixel. Then statistics computed inside the established neighborhood are used to derive the filter output. It is shown that the method provides good results by drastically reducing speckle over homogeneous areas while retaining edges and thin structures. The performances of the proposed method are compared in terms of subjective and objective measures with those given by several classical speckle-filtering methods.

  20. Three-dimensional coastal geomorphology deformation modelling using differential synthetic aperture interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Marghany, Maged [Universiti Teknologi Malaysia, Skudai, Johor Bahru (Malaysia). Inst. for Science and Technology Geospatial (INSTeG)

    2012-06-15

    This work presents a new approach for three-dimensional (3D) coastal deformation simulation using differential synthetic aperture interferometry (DInSAR). In doing so, conventional InSAR procedures are implemented to three repeat passes of RADARSAT-1 SAR fine mode data (F1). Further, the DInSAR method is implemented with the phase unwrapping technique. Consequently, DInSAR is used to eliminate the phase decorrelation impact from the interferograms. The study shows the accurate performance of DInSAR with a root mean square error of 0.02 {+-} 0.21 m and 90% confidence intervals. In conclusion, the DInSAR technique produces an accurate 3D coastal geomorphology reconstruction. (orig.)

  1. Minimum description length synthetic aperture radar image segmentation.

    Science.gov (United States)

    Galland, Frédéric; Bertaux, Nicolas; Réfrégier, Philippe

    2003-01-01

    We present a new minimum description length (MDL) approach based on a deformable partition--a polygonal grid--for automatic segmentation of a speckled image composed of several homogeneous regions. The image segmentation thus consists in the estimation of the polygonal grid, or, more precisely, its number of regions, its number of nodes and the location of its nodes. These estimations are performed by minimizing a unique MDL criterion which takes into account the probabilistic properties of speckle fluctuations and a measure of the stochastic complexity of the polygonal grid. This approach then leads to a global MDL criterion without an undetermined parameter since no other regularization term than the stochastic complexity of the polygonal grid is necessary and noise parameters can be estimated with maximum likelihood-like approaches. The performance of this technique is illustrated on synthetic and real synthetic aperture radar images of agricultural regions and the influence of different terms of the model is analyzed.

  2. Three-dimensional imaging using differential synthetic aperture interferometry

    Science.gov (United States)

    Zhang, Ning; Zhou, Yu; Sun, Jianfeng; Zhi, Ya'nan; Lu, Zhiyong; Xu, Qian; Sun, Zhiwei; Liu, Liren

    2014-09-01

    Synthetic aperture radar interferometry (InSAR) can gain three-dimensional topography with high spatial resolution and height accuracy using across track interferometry[1]. Conventional InSAR produce three-dimensional images from SAR data. But when the working wavelength transit from microwave to optical wave, the transmission antenna and receive antenna become very sensitive to platform vibration and beam quality[2]. Through differential receive antenna formation, we can relax the requirement of platform and laser using synthetic aperture imaging ladar (SAIL) concept[3]. Line-of-sight motion constraints are reduced by several orders of magnitude. We introduce two distinctive forms of antenna formation according to the position of interferogram. The first architecture can simplify the interferogram processing and phase extraction algorithm under time-division multiplex operation. The second architecture can process the 2D coordinate and height coordinate at the same time. Using optical diffraction theory, a systematic theory of side-looking SAIL is mathematically formulated and the necessary conditions for assuring a correct phase history are established[4]. Based on optical transformation and regulation of wavefront, a side-looking SAIL of two distinctive architectures is invented and the basic principle, systematic theory, design equations and necessary conditions are presented. It is shown that high height accuracy can be reached and the influences from atmospheric turbulence and unmodeled line-of-sight motion can be automatically compensated.

  3. Passive synthetic aperture imaging with limited noise sources

    Science.gov (United States)

    Garnier, Josselin

    2016-09-01

    We consider a passive synthetic aperture imaging problem. A single moving receiver antenna records random signals generated by one or several distant noise sources and backscattered by one or several reflectors. The sources emit noise signals modeled by stationary random processes. The reflectors can be imaged by summing the autocorrelation functions of the received signals computed over successive time windows, corrected for Doppler factors and migrated by appropriate travel times. In particular, the Doppler effect plays an important role and it can be used for resolution enhancement. When the noise source positions are not known, the reflector can be localized with an accuracy proportional to the reciprocal of the noise bandwidth, even when only a very small number of sources are available. When the noise source positions are known, the reflector can be localized with a cross range resolution proportional to the carrier wavelength and inversely proportional to the length of the receiver trajectory (i.e. the synthetic aperture), and with a range resolution proportional to the reciprocal of the bandwidth, even with only one noise source.

  4. Interferometric synthetic aperture radar imagery of the Gulf Stream

    Science.gov (United States)

    Ainsworth, T. L.; Cannella, M. E.; Jansen, R. W.; Chubb, S. R.; Carande, R. E.; Foley, E. W.; Goldstein, R. M.; Valenzuela, G. R.

    1993-01-01

    The advent of interferometric synthetic aperture radar (INSAR) imagery brought to the ocean remote sensing field techniques used in radio astronomy. Whilst details of the interferometry differ between the two fields, the basic idea is the same: Use the phase information arising from positional differences of the radar receivers and/or transmitters to probe remote structures. The interferometric image is formed from two complex synthetic aperture radar (SAR) images. These two images are of the same area but separated in time. Typically the time between these images is very short -- approximately 50 msec for the L-band AIRSAR (Airborne SAR). During this short period the radar scatterers on the ocean surface do not have time to significantly decorrelate. Hence the two SAR images will have the same amplitude, since both obtain the radar backscatter from essentially the same object. Although the ocean surface structure does not significantly decorrelate in 50 msec, surface features do have time to move. It is precisely the translation of scattering features across the ocean surface which gives rise to phase differences between the two SAR images. This phase difference is directly proportional to the range velocity of surface scatterers. The constant of proportionality is dependent upon the interferometric mode of operation.

  5. Interferometric Synthetic Aperture Microscopy: Computed Imaging for Scanned Coherent Microscopy

    Directory of Open Access Journals (Sweden)

    Stephen A. Boppart

    2008-06-01

    Full Text Available Three-dimensional image formation in microscopy is greatly enhanced by the use of computed imaging techniques. In particular, Interferometric Synthetic Aperture Microscopy (ISAM allows the removal of out-of-focus blur in broadband, coherent microscopy. Earlier methods, such as optical coherence tomography (OCT, utilize interferometric ranging, but do not apply computed imaging methods and therefore must scan the focal depth to acquire extended volumetric images. ISAM removes the need to scan the focus by allowing volumetric image reconstruction from data collected at a single focal depth. ISAM signal processing techniques are similar to the Fourier migration methods of seismology and the Fourier reconstruction methods of Synthetic Aperture Radar (SAR. In this article ISAM is described and the close ties between ISAM and SAR are explored. ISAM and a simple strip-map SAR system are placed in a common mathematical framework and compared to OCT and radar respectively. This article is intended to serve as a review of ISAM, and will be especially useful to readers with a background in SAR.

  6. Experiments on a Ground-Based Tomographic Synthetic Aperture Radar

    Directory of Open Access Journals (Sweden)

    Hoonyol Lee

    2016-08-01

    Full Text Available This paper presents the development and experiment of three-dimensional image formation by using a ground-based tomographic synthetic aperture radar (GB-TomoSAR system. GB-TomoSAR formulates two-dimensional synthetic aperture by the motion of antennae, both in azimuth and vertical directions. After range compression, three-dimensional image focusing is performed by applying Deramp-FFT (Fast Fourier Transform algorithms, both in azimuth and vertical directions. Geometric and radiometric calibrations were applied to make an image cube, which is then projected into range-azimuth and range-vertical cross-sections for visualization. An experiment with a C-band GB-TomoSAR system with a scan length of 2.49 m and 1.86 m in azimuth and vertical-direction, respectively, shows distinctive three-dimensional radar backscattering of stable buildings and roads with resolutions similar to the theoretical values. Unstable objects such as trees and moving cars generate severe noise due to decorrelation during the eight-hour image-acquisition time.

  7. Performance of Synthetic Aperture Compounding for in-vivo imaging

    DEFF Research Database (Denmark)

    Hansen, Jens Munk; Jensen, Jørgen Arendt

    2011-01-01

    A method for synthetic aperture compounding (SAC) is applied to data from water tank measurements, data from a tissue-mimicking phantom, and clinical data from the abdomen of a healthy 27 year old male. Further, using this method compounding can be obtained without any loss in temporal resolution......, contrast ratios (CR) are computed between regions in the portal and hepatic veins and the surrounding tissue. An average improvement of 15% is obtained when comparing SAC images to SA images without compounding........ The water tank measurements reveal an improved detail resolution of 45% when comparing SAC to conventional compounding and an improvement of 22%, when comparing to synthetic aperture (SA) imaging. The cystic resolution at 12 dB is improved by 50% and 12% when comparing SAC to conventional compounding and SA...... imaging respectively. The tissue phantom measurements show a 3.2 dB improvement of the normalized information density (NID) when comparing images formed using SAC to conventional compound images and an improvement of 2 dB for a comparison between SAC imaging and SA imaging. For the clinical images...

  8. Far field 3D localization of radioactive hot spots using a coded aperture camera.

    Science.gov (United States)

    Shifeng, Sun; Zhiming, Zhang; Lei, Shuai; Daowu, Li; Yingjie, Wang; Yantao, Liu; Xianchao, Huang; Haohui, Tang; Ting, Li; Pei, Chai; Yiwen, Zhang; Wei, Zhou; Mingjie, Yang; Cunfeng, Wei; Chuangxin, Ma; Long, Wei

    2016-01-01

    This paper presents a coded aperture method to remotely estimate the radioactivity of a source. The activity is estimated from the detected counts and the estimated source location, which is extracted by factoring the effect of aperture magnification. A 6mm thick tungsten-copper alloy coded aperture mask is used to modulate the incoming gamma-rays. The location of point and line sources in all three dimensions was estimated with an accuracy of less than 10% when the source-camera distance was about 4 m. The estimated activities were 17.6% smaller and 50.4% larger than the actual activities for the point and line sources, respectively.

  9. Enhanced Gas Sensitivity and Selectivity on Aperture-Controllable 3D Interconnected Macro-Mesoporous ZnO Nanostructures.

    Science.gov (United States)

    Liu, Jing; Huang, Huawen; Zhao, Heng; Yan, Xiaoting; Wu, Sijia; Li, Yu; Wu, Min; Chen, Lihua; Yang, Xiaoyu; Su, Bao-Lian

    2016-04-06

    Three-dimensional (3D) macro-mesoporous structures demonstrate effective performance for gas sensing. In this work, we have designed and successfully prepared aperture-controllable three-dimensional interconnected macro-mesoporous ZnO (3D-IMM-ZnO) nanostructures by template-based layer-by-layer filtration deposition. XRD, SEM, and TEM have been used to characterize the obtained hexagonal wurzite 3D-IMM-ZnO nanostructures. Owing to its special 3D interconnected hierarchically porous structure, the 3D-IMM-ZnO nanostructures exhibit excellent gas sensing performances toward acetone and methanol. The 3D-IMM-ZnO nanostructure with the largest macropore demonstrates the best gas sensitivity owing to its largest cavity providing enough space for gas diffusion. On the basis of the results and analyses, we propose that the synergistic effect of electron liberation and electron density of acetone and the special structure make the 3D-IMM-ZnO nanostructures demonstrate better gas sensing properties than many other porous ZnO nanostructures and preferred selectivity to acetone.

  10. Use of Synthetic Aperture Radar in Cold Climate Flood Response

    Science.gov (United States)

    Yarbrough, L. D.

    2009-12-01

    The purpose of this study was to investigate the usefulness of Synthetic Aperture Radar (SAR) satellite images during a cold climate disaster response event. There were 15 European Space Agency (ESA) Advanced Synthetic Aperture Radar ASAR scenes, five Japan Aerospace Exploration Agency (JAXA) Phased Array type L-band Synthetic Aperture Radar (PALSAR) scenes, one RADARSAT2 scene, and numerous optical sensor data. These data were primarily used to indentify floodwater inundation polygons and flow vectors. However, in cold climate flooding, there are complicating factors such as frazil ice, ice jams, and snow-covered, frozen flood waters that are not present during warmer flooding events. The imagery was obtained through the International Charter "Space and Major Disasters.” The Charter aims at providing a unified system of space data acquisition and delivery to those affected by natural or man-made disasters through Authorized Users. Each member agency has committed resources to support the provisions of the Charter, and thus is helping to mitigate the effects of disasters on human life and property. On 25 March 2009, the Charter was activated in response to the flooding along the Red River of the North in the states of North Dakota and Minnesota of the United States. The delivery time of a single SAR scene from a Charter participant was less than 12 hours from the time of acquisition. This expedited service allowed additional time for creating image-based derivations, field checking and delivery to a decision maker or emergency responder. SAR-derived data sets include identification of river ice and saturated ground conditions. This data could be provided to experts in river ice engineering for use in the development of plans to reduce ice jamming, its effect on water levels and additional stresses on river infrastructure. During disaster response applications, SAR data was found to very useful in indentifying open water and the front of ice jams. Using a river

  11. Logarithmic Laplacian Prior Based Bayesian Inverse Synthetic Aperture Radar Imaging.

    Science.gov (United States)

    Zhang, Shuanghui; Liu, Yongxiang; Li, Xiang; Bi, Guoan

    2016-04-28

    This paper presents a novel Inverse Synthetic Aperture Radar Imaging (ISAR) algorithm based on a new sparse prior, known as the logarithmic Laplacian prior. The newly proposed logarithmic Laplacian prior has a narrower main lobe with higher tail values than the Laplacian prior, which helps to achieve performance improvement on sparse representation. The logarithmic Laplacian prior is used for ISAR imaging within the Bayesian framework to achieve better focused radar image. In the proposed method of ISAR imaging, the phase errors are jointly estimated based on the minimum entropy criterion to accomplish autofocusing. The maximum a posterior (MAP) estimation and the maximum likelihood estimation (MLE) are utilized to estimate the model parameters to avoid manually tuning process. Additionally, the fast Fourier Transform (FFT) and Hadamard product are used to minimize the required computational efficiency. Experimental results based on both simulated and measured data validate that the proposed algorithm outperforms the traditional sparse ISAR imaging algorithms in terms of resolution improvement and noise suppression.

  12. Spatially variant apodization for squinted synthetic aperture radar images.

    Science.gov (United States)

    Castillo-Rubio, Carlos F; Llorente-Romano, Sergio; Burgos-García, Mateo

    2007-08-01

    Spatially variant apodization (SVA) is a nonlinear sidelobe reduction technique that improves sidelobe level and preserves resolution at the same time. This method implements a bidimensional finite impulse response filter with adaptive taps depending on image information. Some papers that have been previously published analyze SVA at the Nyquist rate or at higher rates focused on strip synthetic aperture radar (SAR). This paper shows that traditional SVA techniques are useless when the sensor operates with a squint angle. The reasons for this behaviour are analyzed, and a new implementation that largely improves the results is presented. The algorithm is applied to simulated SAR images in order to demonstrate the good quality achieved along with efficient computation.

  13. Bistatic synthetic aperture radar imaging for arbitrary flight trajectories.

    Science.gov (United States)

    Yarman, Can Evren; Yazici, Birsen; Cheney, Margaret

    2008-01-01

    In this paper, we present an analytic, filtered backprojection (FBP) type inversion method for bistatic synthetic aperture radar (BISAR). We consider a BISAR system where a scene of interest is illuminated by electromagnetic waves that are transmitted, at known times, from positions along an arbitrary, but known, flight trajectory and the scattered waves are measured from positions along a different flight trajectory which is also arbitrary, but known. We assume a single-scattering model for the radar data, and we assume that the ground topography is known but not necessarily flat. We use microlocal analysis to develop the FBP-type reconstruction method. We analyze the computational complexity of the numerical implementation of the method and present numerical simulations to demonstrate its performance.

  14. Time-frequency analysis of synthetic aperture radar signals

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Brooks [Univ. of California, Davis, CA (United States)

    1996-08-01

    Synthetic aperture radar (SAR) has become an important tool for remote sensing of the environment. SAR is a set of digital signal processing algorithms that are used to focus the signal returned to the radar because radar systems in themselves cannot produce the high resolution images required in remote sensing applications. To reconstruct an image, several parameters must be estimated and the quality of output image depends on the degree of accuracy of these parameters. In this thesis, we derive the fundamental SAR algorithms and concentrate on the estimation of one of its critical parameters. We show that the common technique for estimating this particular parameter can sometimes lead to erroneous results and reduced quality images. We also employ time-frequency analysis techniques to examine variations in the radar signals caused by platform motion and show how these results can be used to improve output image quality.

  15. INTERFEROMETRIC SYNTHETIC APERTURE RADAR (INSAR TECHNOLOGY AND GEOMORPHOLOGY INTERPRETATION

    Directory of Open Access Journals (Sweden)

    M. Maghsoudi

    2013-09-01

    Full Text Available Geomorphology is briefly the study of landforms and their formative processes on the surface of the planet earth as human habitat. The landforms evolution and the formative processes can best be studied by technologies with main application in study of elevation. Interferometric Synthetic Aperture Radar (InSAR is the appropriate technology for this application. With phase differences calculations in radar waves, the results of this technology can extensively be interpreted for geomorphologic researches. The purpose of the study is to review the geomorphologic studies using InSAR and also the technical studies about InSAR with geomorphologic interpretations. This study states that the InSAR technology can be recommended to be employed as a fundamental for geomorphology researches.

  16. Frequency division transmission imaging and synthetic aperture reconstruction

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jensen, Jørgen Arendt

    2006-01-01

    -to-noise-ratio is attained. The method has been tested in simulation, in which the resolution arid contrast was compared to a standard synthetic transmit aperture system with a single sinusoid excitation. The resolution and contrast was comparable for the two systems. The method also has been tested using the experimental...... ultrasound scanner RASMUS. The resolution was evaluated using a string phantom. The method was compared to a conventional STA using both sinusoidal excitation and linear frequency modulated (FM) signals as excitation. The system using the FM signals and the frequency division approach yielded the same...... performance concerning both axial (of ap 3 lambda) and lateral resolution (of ap 4.5 lambda). A SNR measurement showed an increase in SNR of 6.5 dB compar- - ed to the system using the conventional STA method and FM signal excitation....

  17. In Vivo Real Time Volumetric Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Rasmussen, Morten Fischer; Brandt, Andreas Hjelm

    2015-01-01

    . This paper investigates the in vivo applicability and sensitivity of volumetric SA imaging. Utilizing the transmit events to generate a set of virtual point sources, a frame rate of 25 Hz for a 90° x 90° field-of-view was achieved. Data were obtained using a 3.5 MHz 32 x 32 elements 2-D phased array......Synthetic aperture (SA) imaging can be used to achieve real-time volumetric ultrasound imaging using 2-D array transducers. The sensitivity of SA imaging is improved by maximizing the acoustic output, but one must consider the limitations of an ultrasound system, both technical and biological...... transducer connected to the experimental scanner (SARUS). Proper scaling is applied to the excitation signal such that intensity levels are in compliance with the U.S. Food and Drug Administration regulations for in vivo ultrasound imaging. The measured Mechanical Index and spatial-peak- temporal...

  18. Passive synthetic aperture radar imaging of ground moving targets

    Science.gov (United States)

    Wacks, Steven; Yazici, Birsen

    2012-05-01

    In this paper we present a method for imaging ground moving targets using passive synthetic aperture radar. A passive radar imaging system uses small, mobile receivers that do not radiate any energy. For these reasons, passive imaging systems result in signicant cost, manufacturing, and stealth advantages. The received signals are obtained by multiple airborne receivers collecting scattered waves due to illuminating sources of opportunity such as commercial television, radio, and cell phone towers. We describe a novel forward model and a corresponding ltered-backprojection type image reconstruction method combined with entropy optimization. Our method determines the location and velocity of multiple targets moving at dierent velocities. Furthermore, it can accommodate arbitrary imaging geometries. we present numerical simulations to verify the imaging method.

  19. Offshore wind potential in South India from synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Hasager, C.B.; Bingoel, F.; Badger, M.; Karagali, I.; Sreevalsan, E.

    2011-10-15

    The offshore wind energy potential for pre-feasibility in South India in the area from 77 deg. to 80 deg. Eastern longitude and 7 deg. to 10 deg. Northern latitude is observed from a total of 164 ENVISAT Advanced Synthetic Aperture Radar (ASAR) satellite images during the years 2002 to 2011. All satellite scenes are from Wide Swath Mode and each cover approximately 400 km by 400 km. The ocean wind speed maps are retrieved and processed at Risoe DTU. The results show wind energy density from 200 W/m2 to 500 W/m2 at 10 m height above sea level. QuikSCAT ocean winds are included as background information on the 10-year mean and a general description of the winds and climate with monsoons in India is presented. (Author)

  20. Performance limits for maritime Inverse Synthetic Aperture Radar (ISAR).

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2013-11-01

    The performance of an Inverse Synthetic Aperture Radar (ISAR) system depends on a variety of factors, many which are interdependent in some manner. In this report we specifically examine ISAR as applied to maritime targets (e.g. ships). It is often difficult to get your arms around the problem of ascertaining achievable performance limits, and yet those limits exist and are dictated by physics. This report identifies and explores those limits, and how they depend on hardware system parameters and environmental conditions. Ultimately, this leads to a characterization of parameters that offer optimum performance for the overall ISAR system. While the information herein is not new to the literature, its collection into a single report hopes to offer some value in reducing the seek time.

  1. Synthetic Aperture Ultrasound Fourier Beamformation Using Virtual Sources.

    Science.gov (United States)

    Moghimirad, Elahe; Villagomez Hoyos, Carlos A; Mahloojifar, Ali; Mohammadzadeh Asl, Babak; Jensen, Jorgen Arendt

    2016-12-01

    An efficient Fourier beamformation algorithm is presented for multistatic synthetic aperture ultrasound imaging using virtual sources. The concept is based on the frequency domain wavenumber algorithm from radar and sonar and is extended to a multielement transmit/receive configuration using virtual sources. Window functions are used to extract the azimuth processing bandwidths and weight the data to reduce side lobes in the final image. Field II simulated data and SARUS (Synthetic Aperture Real-time Ultrasound System) measured data are used to evaluate the results in terms of point spread function, resolution, contrast, signal-to-noise ratio, and processing time. Lateral resolutions of 0.53 and 0.66 mm are obtained for Fourier Beamformation Using Virtual Sources (FBV) and delay and sum (DAS) on point target simulated data. Corresponding axial resolutions are 0.21 mm for FBV and 0.20 mm for DAS. The results are also consistent over different depths evaluated using a simulated phantom containing several point targets at different depths. FBV shows a better lateral resolution at all depths, and the axial and cystic resolutions of -6, -12, and -20 dB are almost the same for FBV and DAS. To evaluate the cyst phantom metrics, three different criteria of power ratio, contrast ratio, and contrast-to-noise ratio have been used. Results show that the algorithms have a different performance in the cyst center and near the boundary. FBV has a better performance near the boundary; however, DAS is better in the more central area of the cyst. Measured data from phantoms are also used for evaluation. The results confirm applicability of FBV in ultrasound, and 20 times less processing time is attained in comparison with DAS. Evaluating the results over a wide variety of parameters and having almost the same results for simulated and measured data demonstrates the ability of FBV in preserving the quality of image as DAS, while providing a more efficient algorithm with 20 times less

  2. A One-Dimensional Synthetic-Aperture Microwave Radiometer

    Science.gov (United States)

    Doiron, Terence; Piepmeier, Jeffrey

    2010-01-01

    A proposed one-dimensional synthetic- aperture microwave radiometer could serve as an alternative to either the two-dimensional synthetic-aperture radiometer described in the immediately preceding article or to a prior one-dimensional one, denoted the Electrically Scanned Thinned Array Radiometer (ESTAR), mentioned in that article. The proposed radiometer would operate in a pushbroom imaging mode, utilizing (1) interferometric cross-track scanning to obtain cross-track resolution and (2) the focusing property of a reflector for along-track resolution. The most novel aspect of the proposed system would be the antenna (see figure), which would include a cylindrical reflector of offset parabolic cross section. The reflector could be made of a lightweight, flexible material amenable to stowage and deployment. Other than a stowage/deployment mechanism, the antenna would not include moving parts, and cross-track scanning would not entail mechanical rotation of the antenna. During operation, the focal line, parallel to the cylindrical axis, would be oriented in the cross-track direction, so that placement of receiving/radiating elements at the focal line would afford the desired along-track resolution. The elements would be microwave feed horns sparsely arrayed along the focal line. The feed horns would be oriented with their short and long cross-sectional dimensions parallel and perpendicular, respectively, to the cylindrical axis to obtain fan-shaped beams having their broad and narrow cross-sectional dimensions parallel and perpendicular, respectively, to the cylindrical axis. The interference among the beams would be controlled in the same manner as in the ESTAR to obtain along-cylindrical- axis (cross-track) resolution and cross-track scanning.

  3. Inverse-synthetic-aperture imaging of trees over a ground plane

    Energy Technology Data Exchange (ETDEWEB)

    Zittel, D.H.; Brock, B.C.; Littlejohn, J.H.; Patitz, W.E.

    1995-11-01

    Recent data collections with the Sandia VHF-UHF synthetic-aperture radar have yielded surprising results; trees appear brighter in the images than expected! In an effort to understand this phenomenon, various small trees have been measured on the Sandia folded compact range with the inverse-synthetic-aperture imaging system. A compilation of these measurements is contained in this report.

  4. Increasing the sensitivity of controlled-source electromagnetics with synthetic aperture

    NARCIS (Netherlands)

    Fan, Y.; Snieder, R.; Slob, E.C.; Hunziker, J.W.; Singer, J.; Sheiman, J.; Rosenquist, M.

    2012-01-01

    Controlled-source electromagnetics (CSEM) has been used as a derisking tool in the hydrocarbon exploration industry. We apply the concept of synthetic aperture to the lowfrequency electromagnetic field in CSEM. Synthetic aperture sources have been used in radar imaging for many years. Using the synt

  5. High-resolution imaging with a real-time synthetic aperture ultrasound system: a phantom study

    Science.gov (United States)

    Huang, Lianjie; Labyed, Yassin; Simonetti, Francesco; Williamson, Michael; Rosenberg, Robert; Heintz, Philip; Sandoval, Daniel

    2011-03-01

    It is difficult for ultrasound to image small targets such as breast microcalcifications. Synthetic aperture ultrasound imaging has recently developed as a promising tool to improve the capabilities of medical ultrasound. We use two different tissueequivalent phantoms to study the imaging capabilities of a real-time synthetic aperture ultrasound system for imaging small targets. The InnerVision ultrasound system DAS009 is an investigational system for real-time synthetic aperture ultrasound imaging. We use the system to image the two phantoms, and compare the images with those obtained from clinical scanners Acuson Sequoia 512 and Siemens S2000. Our results show that synthetic aperture ultrasound imaging produces images with higher resolution and less image artifacts than Acuson Sequoia 512 and Siemens S2000. In addition, we study the effects of sound speed on synthetic aperture ultrasound imaging and demonstrate that an accurate sound speed is very important for imaging small targets.

  6. Full-color autostereoscopic 3D display system using color-dispersion-compensated synthetic phase holograms.

    Science.gov (United States)

    Choi, Kyongsik; Kim, Hwi; Lee, Byoungho

    2004-10-18

    A novel full-color autostereoscopic three-dimensional (3D) display system has been developed using color-dispersion-compensated (CDC) synthetic phase holograms (SPHs) on a phase-type spatial light modulator. To design the CDC phase holograms, we used a modified iterative Fourier transform algorithm with scaling constants and phase quantization level constraints. We obtained a high diffraction efficiency (~90.04%), a large signal-to-noise ratio (~9.57dB), and a low reconstruction error (~0.0011) from our simulation results. Each optimized phase hologram was synthesized with each CDC directional hologram for red, green, and blue wavelengths for full-color autostereoscopic 3D display. The CDC SPHs were composed and modulated by only one phase-type spatial light modulator. We have demonstrated experimentally that the designed CDC SPHs are able to generate full-color autostereoscopic 3D images and video frames very well, without any use of glasses.

  7. Experiment in Onboard Synthetic Aperture Radar Data Processing

    Science.gov (United States)

    Holland, Matthew

    2011-01-01

    Single event upsets (SEUs) are a threat to any computing system running on hardware that has not been physically radiation hardened. In addition to mandating the use of performance-limited, hardened heritage equipment, prior techniques for dealing with the SEU problem often involved hardware-based error detection and correction (EDAC). With limited computing resources, software- based EDAC, or any more elaborate recovery methods, were often not feasible. Synthetic aperture radars (SARs), when operated in the space environment, are interesting due to their relevance to NASAs objectives, but problematic in the sense of producing prodigious amounts of raw data. Prior implementations of the SAR data processing algorithm have been too slow, too computationally intensive, and require too much application memory for onboard execution to be a realistic option when using the type of heritage processing technology described above. This standard C-language implementation of SAR data processing is distributed over many cores of a Tilera Multicore Processor, and employs novel Radiation Hardening by Software (RHBS) techniques designed to protect the component processes (one per core) and their shared application memory from the sort of SEUs expected in the space environment. The source code includes calls to Tilera APIs, and a specialized Tilera compiler is required to produce a Tilera executable. The compiled application reads input data describing the position and orientation of a radar platform, as well as its radar-burst data, over time and writes out processed data in a form that is useful for analysis of the radar observations.

  8. UHF Microstrip Antenna Array for Synthetic- Aperture Radar

    Science.gov (United States)

    Thomas, Robert F.; Huang, John

    2003-01-01

    An ultra-high-frequency microstrippatch antenna has been built for use in airborne synthetic-aperture radar (SAR). The antenna design satisfies requirements specific to the GeoSAR program, which is dedicated to the development of a terrain-mapping SAR system that can provide information on geology, seismicity, vegetation, and other terrain-related topics. One of the requirements is for ultra-wide-band performance: the antenna must be capable of operating with dual linear polarization in the frequency range of 350 plus or minus 80 MHz, with a peak gain of 10 dB at the middle frequency of 350 MHz and a gain of at least 8 dB at the upper and lower ends (270 and 430 MHz) of the band. Another requirement is compactness: the antenna must fit in the wingtip pod of a Gulfstream II airplane. The antenna includes a linear array of microstrip-patch radiating elements supported over square cavities. Each patch is square (except for small corner cuts) and has a small square hole at its center.

  9. Synthetic aperture radar autofocus based on a bilinear model.

    Science.gov (United States)

    Liu, Kuang-Hung; Wiesel, Ami; Munson, David C

    2012-05-01

    Autofocus algorithms are used to restore images in nonideal synthetic aperture radar imaging systems. In this paper, we propose a bilinear parametric model for the unknown image and the nuisance phase parameters and derive an efficient maximum-likelihood autofocus (MLA) algorithm. In the special case of a simple image model and a narrow range of look angles, MLA coincides with the successful multichannel autofocus (MCA). MLA can be interpreted as a generalization of MCA to a larger class of models with a larger range of look angles. We analyze its advantages over previous extensions of MCA in terms of identifiability conditions and noise sensitivity. As a byproduct, we also propose numerical approximations to the difficult constant modulus quadratic program that lies at the core of these algorithms. We demonstrate the superior performance of our proposed methods using computer simulations in both the correct and mismatched system models. MLA performs better than other methods, both in terms of the mean squared error and visual quality of the restored image.

  10. Fourier-domain multichannel autofocus for synthetic aperture radar.

    Science.gov (United States)

    Liu, Kuang-Hung; Munson, David C

    2011-12-01

    Synthetic aperture radar (SAR) imaging suffers from image focus degradation in the presence of phase errors in the received signal due to unknown platform motion or signal propagation delays. We present a new autofocus algorithm, termed Fourier-domain multichannel autofocus (FMCA), that is derived under a linear algebraic framework, allowing the SAR image to be focused in a noniterative fashion. Motivated by the mutichannel autofocus (MCA) approach, the proposed autofocus algorithm invokes the assumption of a low-return region, which generally is provided within the antenna sidelobes. Unlike MCA, FMCA works with the collected polar Fourier data directly and is capable of accommodating wide-angle monostatic SAR and bistatic SAR scenarios. Most previous SAR autofocus algorithms rely on the prior assumption that radar's range of look angles is small so that the phase errors can be modeled as varying along only one dimension in the collected Fourier data. And, in some cases, implicit assumptions are made regarding the SAR scene. Performance of such autofocus algorithms degrades if the assumptions are not satisfied. The proposed algorithm has the advantage that it does not require prior assumptions about the range of look angles, nor characteristics of the scene.

  11. Imaging of contact acoustic nonlinearity using synthetic aperture technique.

    Science.gov (United States)

    Yun, Dongseok; Kim, Jongbeom; Jhang, Kyung-Young

    2013-09-01

    The angle beam incidence and reflection technique for the evaluation of contact acoustic nonlinearity (CAN) at solid-solid contact interfaces (e.g., closed cracks) has recently been developed to overcome the disadvantage of accessing both the inner and outer surfaces of structures for attaching pulsing and receiving transducers in the through-transmission of normal incidence technique. This paper proposes a technique for B-mode imaging of CAN based on the above reflection technique, which uses the synthetic aperture focusing technique (SAFT) and short-time Fourier transform (STFT) to visualize the distribution of the CAN-induced second harmonic magnitude as well as the nonlinear parameter. In order to verify the usefulness of the proposed method, a solid-solid contact interface was tested and the change of the contact acoustic nonlinearity according to the increasing contact pressure was visualized in images of the second harmonic magnitude and the relative nonlinear parameter. The experimental results showed good agreement with the previously developed theory identifying the dependence of the scattered second harmonics on the contact pressure. This technique can be used for the detection and improvement of the sizing accuracy of closed cracks that are difficult to detect using the conventional linear ultrasonic technique.

  12. Feasibility of Using Synthetic Aperture Radar to Aid UAV Navigation

    Directory of Open Access Journals (Sweden)

    Davide O. Nitti

    2015-07-01

    Full Text Available This study explores the potential of Synthetic Aperture Radar (SAR to aid Unmanned Aerial Vehicle (UAV navigation when Inertial Navigation System (INS measurements are not accurate enough to eliminate drifts from a planned trajectory. This problem can affect medium-altitude long-endurance (MALE UAV class, which permits heavy and wide payloads (as required by SAR and flights for thousands of kilometres accumulating large drifts. The basic idea is to infer position and attitude of an aerial platform by inspecting both amplitude and phase of SAR images acquired onboard. For the amplitude-based approach, the system navigation corrections are obtained by matching the actual coordinates of ground landmarks with those automatically extracted from the SAR image. When the use of SAR amplitude is unfeasible, the phase content can be exploited through SAR interferometry by using a reference Digital Terrain Model (DTM. A feasibility analysis was carried out to derive system requirements by exploring both radiometric and geometric parameters of the acquisition setting. We showed that MALE UAV, specific commercial navigation sensors and SAR systems, typical landmark position accuracy and classes, and available DTMs lead to estimated UAV coordinates with errors bounded within ±12 m, thus making feasible the proposed SAR-based backup system.

  13. Synthetic aperture radar and interferometry development at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-04-01

    Environmental monitoring, earth-resource mapping, and military systems require broad-area imaging at high resolutions. Many times the imagery must be acquired in inclement weather or during night as well as day. Synthetic aperture radar (SAR) provides such a capability. SAR systems take advantage of the long-range propagation characteristics of radar signals and the complex information processing capability of modern digital electronics to provide high resolution imagery. SAR complements photographic and other optical imaging capabilities because of the minimum constrains on time-of-day and atmospheric conditions and because of the unique responses of terrain and cultural targets to radar frequencies. Interferometry is a method for generating a three-dimensional image of terrain. The height projection is obtained by acquiring two SAR images from two slightly differing locations. It is different from the common method of stereoscopic imaging for topography. The latter relies on differing geometric projections for triangulation to define the surface geometry whereas interferometry relies on differences in radar propagation times between the two SAR locations. This paper presents the capabilities of SAR, explains how SAR works, describes a few SAR applications, provides an overview of SAR development at Sandia, and briefly describes the motion compensation subsystem.

  14. Polarimetric Synthetic Aperture Radar Image Classification by a Hybrid Method

    Institute of Scientific and Technical Information of China (English)

    Kamran Ullah Khan; YANG Jian

    2007-01-01

    Different methods proposed so far for accurate classification of land cover types in polarimetric synthetic aperture radar (SAR) image are data specific and no general method is available. A novel hybrid framework for this classification was developed in this work. A set of effective features derived from the coherence matrix of polarimetric SARdata was proposed.Constituents of the feature set are wavelet,texture,and nonlinear features.The proposed feature set has a strong discrimination power. A neural network was used as the classification engine in a unique way. By exploiting the speed of the conjugate gradient method and the convergence rate of the Levenberg-Marquardt method (near the optimal point), an overall speed up of the classification procedure was achieved. Principal component analysis(PCA)was used to shrink the dimension of the feature vector without sacrificing much of the classification accuracy. The proposed approach is compared with the maximum likelihood estimator (MLE)based on the complex Wishart distribution and the results show the superiority of the proposed method,with the average classification accuracy by the proposed method(95.4%)higher than that of the MLE(93.77%). Use of PCA to reduce the dimensionality of the feature vector helps reduce the memory requirements and computational cost, thereby enhancing the speed of the process.

  15. Explosive hazard detection using synthetic aperture acoustic sensing

    Science.gov (United States)

    Brewster, E.; Keller, J. M.; Stone, K.; Popescu, M.

    2016-05-01

    In this paper, we develop an approach to detect explosive hazards designed to attack vehicles from the side of a road, using a side looking synthetic aperture acoustic (SAA) sensor. This is done by first processing the raw data using a back-projection algorithm to form images. Next, an RX prescreener creates a list of possible targets, each with a designated confidence. Initial experiments are performed on libraries of the highest confidence hits for both target and false alarm classes generated by the prescreener. Image chips are extracted using pixel locations derived from the target's easting and northing. Several feature types are calculated from each image chip, including: histogram of oriented gradients (HOG), and generalized column projection features where the column aggregator takes the form of the minimum, maximum, mean, median, mode, standard deviation, variance, and the one-dimensional fast Fourier transform (FFT). A support vector machine (SVM) classifier is then utilized to evaluate feature type performance during training and testing in order to determine whether the two classes are separable. This will be used to build an online detection system for road-side explosive hazards.

  16. Statistically normalized coherent change detection for synthetic aperture sonar imagery

    Science.gov (United States)

    G-Michael, Tesfaye; Tucker, J. D.; Roberts, Rodney G.

    2016-05-01

    Coherent Change Detection (CCD) is a process of highlighting an area of activity in scenes (seafloor) under survey and generated from pairs of synthetic aperture sonar (SAS) images of approximately the same location observed at two different time instances. The problem of CCD and subsequent anomaly feature extraction/detection is complicated due to several factors such as the presence of random speckle pattern in the images, changing environmental conditions, and platform instabilities. These complications make the detection of weak target activities even more difficult. Typically, the degree of similarity between two images measured at each pixel locations is the coherence between the complex pixel values in the two images. Higher coherence indicates little change in the scene represented by the pixel and lower coherence indicates change activity in the scene. Such coherence estimation scheme based on the pixel intensity correlation is an ad-hoc procedure where the effectiveness of the change detection is determined by the choice of threshold which can lead to high false alarm rates. In this paper, we propose a novel approach for anomalous change pattern detection using the statistical normalized coherence and multi-pass coherent processing. This method may be used to mitigate shadows by reducing the false alarms resulting in the coherent map due to speckles and shadows. Test results of the proposed methods on a data set of SAS images will be presented, illustrating the effectiveness of the normalized coherence in terms statistics from multi-pass survey of the same scene.

  17. In-vivo synthetic aperture flow imaging in medical ultrasound.

    Science.gov (United States)

    Nikolov, Svetoslav Ivanov; Jensen, Jørgen Arendt

    2003-07-01

    A new method for acquiring flow images using synthetic aperture techniques in medical ultrasound is presented. The new approach makes it possible to have a continuous acquisition of flow data throughout the whole image simultaneously, and this can significantly improve blood velocity estimation. Any type of filter can be used for discrimination between tissue and blood flow without initialization, and the number of lines used for velocity estimation is limited only by the nonstationarity of the flow. The new approach is investigated through both simulations and measurements. A flow rig is used for generating a parabolic laminar flow, and a research scanner is used for acquiring RF data from individual transducer elements. A reference profile is calculated from a mass flow meter. The parabolic velocity profile is estimated using the new approach with a relative standard deviation of 2.2% and a mean relative bias of 3.4% using 24 pulse emissions at a flow angle of 45 degrees. The 24 emissions can be used for making a full-color flow map image. An in-vivo image of flow in the carotid artery for a 29-year-old male also is presented. The full image is acquired using 24 emissions.

  18. Moving target imaging using ultrawideband synthetic aperture radar

    Science.gov (United States)

    Guo, Hanwei; Liang, Diannong; Wan, Yan; Huang, Xiaotao; Dong, Zhen

    2003-09-01

    Moving Target High Resolution Imaging of Foliage Penetrate Ultra-Wide Band Synthetic Aperture Radar (FOPEN UWB SAR) is of great significance for battlefield awareness of concealed target. Great range migration and strong clutter make moving target detection and imaging difficult, especially the Signal to Clutter Ration(SCR) some times is so low that the moving targets is invisible in FOPEN UWB SAR imagery. To improve SCR, the clean technique is used in range compressed data domain. The clean technique and data reconstruction help single channel of FOPEN UWB SAR suppress strong tree clutter and stationary target signal from region of interest. A new definition called General Key-Stone Transform is given, which can correct any order of range migration. FOPEN UWB SAR has long integrated time. The plane and target moving in long time lead to complex range migration. To obtain high resolution imagery of moving target, General Key-Stone transform are applied to remove the range migration and realize multiple moving target data segment. Both General Key-Stone Transform and Clean Technique are applied in real data processing of FOPEN UWB SAR. The result shows that multiple moving targets in the trees are clearly detected and high resolution imagery is formed.

  19. Feasibility of Using Synthetic Aperture Radar to Aid UAV Navigation.

    Science.gov (United States)

    Nitti, Davide O; Bovenga, Fabio; Chiaradia, Maria T; Greco, Mario; Pinelli, Gianpaolo

    2015-07-28

    This study explores the potential of Synthetic Aperture Radar (SAR) to aid Unmanned Aerial Vehicle (UAV) navigation when Inertial Navigation System (INS) measurements are not accurate enough to eliminate drifts from a planned trajectory. This problem can affect medium-altitude long-endurance (MALE) UAV class, which permits heavy and wide payloads (as required by SAR) and flights for thousands of kilometres accumulating large drifts. The basic idea is to infer position and attitude of an aerial platform by inspecting both amplitude and phase of SAR images acquired onboard. For the amplitude-based approach, the system navigation corrections are obtained by matching the actual coordinates of ground landmarks with those automatically extracted from the SAR image. When the use of SAR amplitude is unfeasible, the phase content can be exploited through SAR interferometry by using a reference Digital Terrain Model (DTM). A feasibility analysis was carried out to derive system requirements by exploring both radiometric and geometric parameters of the acquisition setting. We showed that MALE UAV, specific commercial navigation sensors and SAR systems, typical landmark position accuracy and classes, and available DTMs lead to estimated UAV coordinates with errors bounded within ±12 m, thus making feasible the proposed SAR-based backup system.

  20. Logarithmic Laplacian Prior Based Bayesian Inverse Synthetic Aperture Radar Imaging

    Directory of Open Access Journals (Sweden)

    Shuanghui Zhang

    2016-04-01

    Full Text Available This paper presents a novel Inverse Synthetic Aperture Radar Imaging (ISAR algorithm based on a new sparse prior, known as the logarithmic Laplacian prior. The newly proposed logarithmic Laplacian prior has a narrower main lobe with higher tail values than the Laplacian prior, which helps to achieve performance improvement on sparse representation. The logarithmic Laplacian prior is used for ISAR imaging within the Bayesian framework to achieve better focused radar image. In the proposed method of ISAR imaging, the phase errors are jointly estimated based on the minimum entropy criterion to accomplish autofocusing. The maximum a posterior (MAP estimation and the maximum likelihood estimation (MLE are utilized to estimate the model parameters to avoid manually tuning process. Additionally, the fast Fourier Transform (FFT and Hadamard product are used to minimize the required computational efficiency. Experimental results based on both simulated and measured data validate that the proposed algorithm outperforms the traditional sparse ISAR imaging algorithms in terms of resolution improvement and noise suppression.

  1. Network Support for Social 3-D Immersive Tele-Presence with Highly Realistic Natural and Synthetic Avatar Users

    NARCIS (Netherlands)

    Mekuria, R.N.; Frisiello, A.; Pasin, M; Cesar Garcia, P.S.

    2015-01-01

    The next generation in 3D tele-presence is based on modular systems that combine live captured object based 3D video and synthetically authored 3D graphics content. This paper presents the design, implementation and evaluation of a network solution for multi-party real-time communication of these ty

  2. Salient Feature Identification and Analysis using Kernel-Based Classification Techniques for Synthetic Aperture Radar Automatic Target Recognition

    Science.gov (United States)

    2014-03-27

    SALIENT FEATURE IDENTIFICATION AND ANALYSIS USING KERNEL-BASED CLASSIFICATION TECHNIQUES FOR SYNTHETIC APERTURE RADAR AUTOMATIC TARGET RECOGNITION...FEATURE IDENTIFICATION AND ANALYSIS USING KERNEL-BASED CLASSIFICATION TECHNIQUES FOR SYNTHETIC APERTURE RADAR AUTOMATIC TARGET RECOGNITION THESIS Presented...SALIENT FEATURE IDENTIFICATION AND ANALYSIS USING KERNEL-BASED CLASSIFICATION TECHNIQUES FOR SYNTHETIC APERTURE RADAR AUTOMATIC TARGET RECOGNITION

  3. Use of VAP3D software for production and manipulation of synthetic radiographies of anthropomorphic models

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Lindeval Fernandes de, E-mail: lindeval@dmat.ufrr.b [Universidade Federal de Roraima (DMAT/UFRR), Boa Vista, RR (Brazil). Dept. de Matematica; Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Vieira, Jose W. [Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco (IFPE), Recife, PE (Brazil); Universidade de Pernambuco (EPP/UPE), Recife, PE (Brazil). Escola Politecnica de Pernambuco; Lima, Fernando R.A., E-mail: falima@cnen.gov.b [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Leal Neto, Viriato [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2011-07-01

    The Grupo de Dosimetria Numerica has developed exposure computational models (ECM) involving a Monte Carlo code and voxel phantoms to simulate various situations of internal and external exposure to ionizing radiation. Most analyses of the produced results are presented in tables and graphics formats. An alternative to this traditional way of analyzing results is to save voxels of Regions of Interest (ROI) of the phantom irradiated with information like the location of the voxel and the energy deposited in it during the simulation. Such information can be saved to a text file and later turned into 3D objects. In this paper the VAP3D software has been used to read text files produced in simulations using the ECM of DEN (Nuclear Energy Dept. - UFPE), converting them into binary files of the type RAW, and visualize them. In order to reflect the radiosensitivity of the organs and tissues suggested by ICRP-60, for conversion of text file to binary, of the energy deposited values are multiplied by the weighting factor of the tissue to which the voxel belongs. The result of the multiplication is normalized to the interval [0, 255]. The files transformed are referred herein as synthetic radiographies. In VAP3D software, it is possible to generate stacks from theses radiographies in transverse, sagittal and coronal directions. In order to illustrate the production of synthetic radiographies, some images are presented in this paper, and dosimetric results are obtained from a variety of ROIs of the phantoms of DEN for radiological exams. (author)

  4. Rotation Elastogram Estimation Using Synthetic Transmit Aperture Technique.

    Science.gov (United States)

    B, Lokesh; Chintada, Bhaskara Rao; Thittai, Arun Kumar

    2017-01-01

    It is well-documented in literature that benign breast lesions, such as fibroadenomas, are loosely bonded to their surrounding tissue and tend to slip under a small quasi-static compression, whereas malignant lesions being firmly bonded to their surrounding tissue do not slip. Recent developments in quasi-static ultrasound elastography have shown that an image of the axial-shear strain distribution can provide information about the bonding condition at the lesion-surrounding tissue boundary. Further studies analyzing the axial-shear strain elastograms revealed that nonzero axial-shear strain values appear inside the lesion, referred to as fill-in, only when a lesion is loosely bonded and asymmetrically oriented to the axis of compression. It was argued that the fill-in observed in axial-shear strain elastogram is a surrogate of the actual rigid-body rotation undergone by such a benign lesion due to slip boundary condition. However, it may be useful and perhaps easy to interpret, if the actual rigid-body rotation of the lesion can itself be visualized directly. To estimate this rotation tensor and its spatial distribution map (called a Rotation Elastogram [RE]), it would be necessary to improve the quality of lateral displacement estimates. Recently, it has been shown in the context of Non-Invasive Vascular Elastography (NIVE) that the Synthetic Transmit Aperture (STA) technique can be adapted for elastography to improve the lateral displacement estimates. Therefore, the focus of this work was to investigate the feasibility of employing the STA technique to improve the lateral displacement estimation and assess the resulting improvement in the RE quality. This investigation was done using both simulation and experimental studies. The image quality metric of contrast-to-noise ratio (CNR) was used to evaluate the quality of rotation elastograms. The results demonstrate that the contrast appeared in RE only in the case of loosely bonded inclusion, and the quality of RE

  5. NASA-ISRO synthetic aperture radar: science and applications

    Science.gov (United States)

    Kumar, Raj; Rosen, Paul; Misra, Tapan

    2016-05-01

    NASA-ISRO Synthetic Aperture Radar (NISAR), a novel SAR concept will be utilized to image wide swath at high resolution of stripmap SAR. It will have observations in L- and S-bands to understand highly spatial and temporally complex processes such as ecosystem disturbances, ice sheet changes, and natural hazards including earthquakes, tsunamis, volcanoes, and landslides. NISAR with several advanced features such as 12 days interferometric orbit, achievement of high resolution and wide swath images through SweepSAR technology and simultaneous data acquisition in dual frequency would support a host of applications. The primary objectives of NISAR are to monitor ecosystems including monitoring changes in ecosystem structure and biomass estimation, carbon flux monitoring; mangroves and wetlands characterization; alpine forest characterization and delineation of tree-line ecotone, land surface deformation including measurement of deformation due to co-seismic and inter-seismic activities; landslides; land subsidence and volcanic deformation, cryosphere studies including measurements of dynamics of polar ice sheet, ice discharge to the ocean, Himalayan snow and glacier dynamics, deep and coastal ocean studies including retrieval of ocean parameters, mapping of coastal erosion and shore-line change; demarcation of high tide line (HTL) and low tide line (LTL) for coastal regulation zones (CRZ) mapping, geological studies including mapping of structural and lithological features; lineaments and paleo-channels; geo-morphological mapping, natural disaster response including mapping and monitoring of floods, forest fires, oil spills, earthquake damage and monitoring of extreme weather events such as cyclones. In addition to the above, NISAR would support various other applications such as enhanced crop monitoring, soil moisture estimation, urban area development, weather and hydrological forecasting.

  6. Unexploded ordnance detection experiments using ultrawideband synthetic aperture radar

    Science.gov (United States)

    DeLuca, Clyde C.; Marinelli, Vincent R.; Ressler, Marc A.; Ton, Tuan T.

    1998-09-01

    The Army Research Laboratory (ARL) has several technology development programs that are evaluating the use of ultra- wideband synthetic aperture radar (UWB SAR) to detect and locate targets that are subsurface or concealed by foliage. Under these programs, a 1-GHz-bandwidth, low-frequency, fully polarimetric UWB SAR instrumentation system was developed to collect the data needed to support foliage and ground- penetrating radar studies. The radar was integrated onto a 150-ft-high mobile boomlift platform in 1995 and was thus named the BoomSAR. In 1997, under the sponsorship of the Strategic Environmental Research and Development Program (SERDP), ARL began a project focused on enhancing the detection and discrimination of unexploded ordnance (UXO). The program's technical approach is to collect high-quality, precision data to support phenomenological investigations of electromagnetic wave propagation through varying dielectric media, which in turn supports the development of algorithms for automatic target detection. For this project, a UXO test site was set up at the Steel Crater Test Area -- an existing test site that already contained subsurface mines, tactical vehicles, 55-gallon drums, storage containers, wires, pipes, and arms caches located at Yuma Proving Ground (YPG), Arizona. More than 600 additional pieces of inert UXO were added to the Steel Crater Test Area, including bombs (250, 500, 750, 1000, and 2000 lb), mortars (60 and 81 mm), artillery shells (105 and 155 mm), 2.75-in. rockets, submunitions (M42, BLU-63, M68, BLU-97, and M118), and mines (Gator, VS1.6, M12, PMN, and POM- Z). In the selection of UXO to be included at YPG, an emphasis was placed on the types of munitions that may be present at CONUS test and training ranges.

  7. Dual frequency Synthetic Aperture Radar (SAR) mission for monitoring our dynamic planet

    Science.gov (United States)

    Hilland, J.; Bard, S.; Key, R.; Kim, Y.; Vaze, P.; Huneycutt, B.

    2000-01-01

    Advances in spaceborne Synthetic Aperture Radar (SAR) remote sensing technology make it possible to acquire global-scale data sets that provide unique information about the Earth's continually changing surface characteristics.

  8. Integrated High-Speed Digital Optical True-Time-Delay Modules for Synthetic Aperture Radars Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Crystal Research, Inc. proposes an integrated high-speed digital optical true-time-delay module for advanced synthetic aperture radars. The unique feature of this...

  9. A comparison of synthetic aperture radars applied for satellite remote sensing of the ocean surface

    Digital Repository Service at National Institute of Oceanography (India)

    Tilley, D.G.; Sarma, Y.V.B.

    Doppler imaging radars have orbited the earth aboard several spacecraft for the purpose of monitoring the ocean. Oceanographic applications of synthetic aperture radar (SAR) include measuring ocean wave fields, monitoring current fronts and sensing...

  10. 3D-QSAR Investigation of Synthetic Antioxidant Chromone Derivatives by Molecular Field Analysis

    Directory of Open Access Journals (Sweden)

    Jiraporn Ungwitayatorn

    2008-02-01

    Full Text Available A series of 7-hydroxy, 8-hydroxy and 7,8-dihydroxy synthetic chromone derivatives was evaluated for their DPPH free radical scavenging activities. A training set of 30 synthetic chromone derivatives was subject to three-dimensional quantitative structure-activity relationship (3D-QSAR studies using molecular field analysis (MFA. The substitutional requirements for favorable antioxidant activity were investigated and a predictive model that could be used for the design of novel antioxidants was derived. Regression analysis was carried out using genetic partial least squares (G/PLS method. A highly predictive and statistically significant model was generated. The predictive ability of the developed model was assessed using a test set of 5 compounds (r2pred = 0.924. The analyzed MFA model demonstrated a good fit, having r2 value of 0.868 and crossvalidated coefficient r2cv value of 0.771.

  11. Techniques for Mapping Synthetic Aperture Radar Processing Algorithms to Multi-GPU Clusters

    Science.gov (United States)

    2012-12-01

    are suited for threaded (parallel) execution, by labeling them as kernels using syntax specified by the GPU programming language (e.g., CUDA for an...Techniques for Mapping Synthetic Aperture Radar Processing Algorithms to Multi- GPU Clusters Eric Hayden, Mark Schmalz, William Chapman, Sanjay...Abstract - This paper presents a design for parallel processing of synthetic aperture radar (SAR) data using multiple Graphics Processing Units ( GPUs ). Our

  12. Model-Based Radar Power Calculations for Ultra-Wideband (UWB) Synthetic Aperture Radar (SAR)

    Science.gov (United States)

    2013-06-01

    performance in complex scenarios. Among these scenarios are ground penetrating radar and forward-looking radar for landmine and improvised explosive...Model-Based Radar Power Calculations for Ultra-Wideband (UWB) Synthetic Aperture Radar (SAR) by Traian Dogaru ARL-TN-0548 June 2013...2013 Model-Based Radar Power Calculations for Ultra-Wideband (UWB) Synthetic Aperture Radar (SAR) Traian Dogaru Sensors and Electron

  13. Coastal wind field retrieval from polarimetric synthetic aperture radar

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yi; JIANG Xingwei; SONG Qingtao; LIN Mingsen; XIE Xuetong

    2014-01-01

    Coastal winds are strongly influenced by topology and discontinuity between land and sea surfaces. Wind assessment from remote sensing in such a complex area remains a challenge. Space-borne scatterometer does not provide any information about the coastal wind field, as the coarse spatial resolution hampers the radar backscattering. Synthetic aperture radar (SAR) with a high spatial resolution and all-weather observa-tion abilities has become one of the most important tools for ocean wind retrieval, especially in the coastal area. Conventional methods of wind field retrieval from SAR, however, require wind direction as initial infor-mation, such as the wind direction from numerical weather prediction models (NWP), which may not match the time of SAR image acquiring. Fortunately, the polarimetric observations of SAR enable independent wind retrieval from SAR images alone. In order to accurately measure coastal wind fields, this paper propos-es a new method of using co-polarization backscattering coefficients from polarimetric SAR observations up to polarimetric correlation backscattering coefficients, which are acquired from the conjugate product of co-polarization backscatter and cross-polarization backscatter. Co-polarization backscattering coefficients and polarimetric correlation backscattering coefficients are obtained form Radarsat-2 single-look complex (SLC) data.The maximum likelihood estimation is used to gain the initial results followed by the coarse spa-tial filtering and fine spatial filtering. Wind direction accuracy of the final inversion results is 10.67 with a wind speed accuracy of 0.32 m/s. Unlike previous methods, the methods described in this article utilize the SAR data itself to obtain the wind vectors and do not need external wind directional information. High spatial resolution and high accuracy are the most important features of the method described herein since the use of full polarimetric observations contains more information about the

  14. Optimum synthetic-aperture imaging of extended astronomical objects

    NARCIS (Netherlands)

    Van der Avoort, C.; Pereira, S.F.; Braat, J.J.M.; Den Herder, J.W.

    2007-01-01

    In optical aperture-synthesis imaging of stellar objects, different beam combination strategies are used and proposed. Coaxial Michelson interferometers are very common and a homothetic multiaxial interferometer is recently realized in the Large Binocular Telescope. Laboratory experiments have demon

  15. Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing.

    Science.gov (United States)

    Beck, Steven M; Buck, Joseph R; Buell, Walter F; Dickinson, Richard P; Kozlowski, David A; Marechal, Nicholas J; Wright, Timothy J

    2005-12-10

    The spatial resolution of a conventional imaging laser radar system is constrained by the diffraction limit of the telescope's aperture. We investigate a technique known as synthetic-aperture imaging laser radar (SAIL), which employs aperture synthesis with coherent laser radar to overcome the diffraction limit and achieve fine-resolution, long-range, two-dimensional imaging with modest aperture diameters. We detail our laboratory-scale SAIL testbed, digital signal-processing techniques, and image results. In particular, we report what we believe to be the first optical synthetic-aperture image of a fixed, diffusely scattering target with a moving aperture. A number of fine-resolution, well-focused SAIL images are shown, including both retroreflecting and diffuse scattering targets, with a comparison of resolution between real-aperture imaging and synthetic-aperture imaging. A general digital signal-processing solution to the laser waveform instability problem is described and demonstrated, involving both new algorithms and hardware elements. These algorithms are primarily data driven, without a priori knowledge of waveform and sensor position, representing a crucial step in developing a robust imaging system.

  16. Parameterization experiments performed via synthetic mass movements prototypes generated by 3D slope stability simulator

    Science.gov (United States)

    Colangelo, Antonio C.

    2010-05-01

    each cell in synthetic slope systems performed by relief unity emulator. The central methodological strategy is to locate the potential rupture surfaces (prs), main material discontinuities, like soil-regolith or regolith-rock transitions. Inner these "prs", we would to outline the effective potential rupture surfaces (eprs). This surface is a sub-set of the "prs" that presents safety factor less than unity (fequilibrium be attained at residual shear strength. These devices generate graphic 3D cinematic sequences of experiments in synthetic slope systems and numerical results about physical and morphological data about scars and deposits. Thus, we have a detailed geotechnical, morphological, topographic and morphometric description of these mass movements prototypes, for deal with effective mass movements found in the real environments.

  17. High Resolution Ionospheric Mapping Using Spaceborne Synthetic Aperture Radars

    Science.gov (United States)

    Meyer, F. J.; Chotoo, K.; Roth, A. P.

    2012-12-01

    Spaceborne Synthetic Aperture Radars (SARs) are imaging radar systems that utilize the Doppler history of signals acquired during satellite flyby to produce high resolution images of the Earth. With modern sensors, operating at frequencies between about 1 GHz (L-band) and 10 GHz (X-band), radar images with resolutions in the meter to sub-meter range can be produced. The presence of the ionosphere is significantly affecting the propagation properties of the microwave signals transmitted by these systems, causing distortions of signal polarization and phase. These distortions can lead to a wide range of imaging artifacts including image range shifts, interferometric phase biases, loss of image focus, change of image geometry, and Faraday rotation. While these artifacts are particularly pronounced at L-band, they are still observable in data acquired at C- or even X-band. In recent years, a wealth of methods for measuring and correcting ionospheric influence were developed. These methods are self-calibration procedures that measure ionosphere-induced distortions to infer the two-dimensional TEC maps that affected the data. These TEC maps are then removed from the data to produce high performance SAR images. Besides being effective in correcting SAR observations, these self-calibration methods are producing high quality TEC information with sub-TECU sensitivity and sub-kilometer spatial resolution. The intent of this paper is to utilize SAR-derived ionospheric information and make the case for SAR as a data source for ionospheric research. After a short summary of ionosphere-induced distortions, the concept of TEC estimation from SAR is introduced. Here, the current state-of-the-art of ionospheric TEC estimation is presented, including Faraday rotation-based, interferometric, correlation-based, and autofocus-based techniques. For every approach, performance numbers are given that quantify the achievable TEC estimation accuracy as a function of system parameters, scene

  18. Optical slicing of large scenes by synthetic aperture integral imaging

    Science.gov (United States)

    Navarro, Héctor; Saavedra, Genaro; Molina, Ainhoa; Martínez-Corral, Manuel; Martínez-Cuenca, Raúl; Javidi, Bahram

    2010-04-01

    Integral imaging (InI) technology was created with the aim of providing the binocular observers of monitors, or matrix display devices, with auto-stereoscopic images of 3D scenes. However, along the last few years the inventiveness of researches has allowed to find many other interesting applications of integral imaging. Examples of this are the application of InI in object recognition, the mapping of 3D polarization distributions, or the elimination of occluding signals. One of the most interesting applications of integral imaging is the production of views focused at different depths of the 3D scene. This application is the natural result of the ability of InI to create focal stacks from a single input image. In this contribution we present new algorithm for this optical slicing application, and show that it is possible the 3D reconstruction with improved lateral resolution.

  19. Feasibility analysis of high resolution tissue image registration using 3-D synthetic data

    Directory of Open Access Journals (Sweden)

    Yachna Sharma

    2011-01-01

    Full Text Available Background: Registration of high-resolution tissue images is a critical step in the 3D analysis of protein expression. Because the distance between images (~4-5μm thickness of a tissue section is nearly the size of the objects of interest (~10-20μm cancer cell nucleus, a given object is often not present in both of two adjacent images. Without consistent correspondence of objects between images, registration becomes a difficult task. This work assesses the feasibility of current registration techniques for such images. Methods: We generated high resolution synthetic 3-D image data sets emulating the constraints in real data. We applied multiple registration methods to the synthetic image data sets and assessed the registration performance of three techniques (i.e., mutual information (MI, kernel density estimate (KDE method [1], and principal component analysis (PCA at various slice thicknesses (with increments of 1μm in order to quantify the limitations of each method. Results: Our analysis shows that PCA, when combined with the KDE method based on nuclei centers, aligns images corresponding to 5μm thick sections with acceptable accuracy. We also note that registration error increases rapidly with increasing distance between images, and that the choice of feature points which are conserved between slices improves performance. Conclusions: We used simulation to help select appropriate features and methods for image registration by estimating best-case-scenario errors for given data constraints in histological images. The results of this study suggest that much of the difficulty of stained tissue registration can be reduced to the problem of accurately identifying feature points, such as the center of nuclei.

  20. Electromagnetic 3D subsurface imaging with source sparsity for a synthetic object

    CERN Document Server

    Pursiainen, Sampsa

    2016-01-01

    This paper concerns electromagnetic 3D subsurface imaging in connection with sparsity of signal sources. We explored an imaging approach that can be implemented in situations that allow obtaining a large amount of data over a surface or a set of orbits but at the same time require sparsity of the signal sources. Characteristic to such a tomography scenario is that it necessitates the inversion technique to be genuinely three-dimensional: For example, slicing is not possible due to the low number of sources. Here, we primarily focused on astrophysical subsurface exploration purposes. As an example target of our numerical experiments we used a synthetic small planetary object containing three inclusions, e.g. voids, of the size of the wavelength. A tetrahedral arrangement of source positions was used, it being the simplest symmetric point configuration in 3D. Our results suggest that somewhat reliable inversion results can be produced within the present a priori assumptions, if the data can be recorded at a spe...

  1. Development of a unique 3D interaction model of endogenous and synthetic peripheral benzodiazepine receptor ligands

    Science.gov (United States)

    Cinone, Nunzia; Höltje, Hans-Dieter; Carotti, Angelo

    2000-11-01

    Different classes of Peripheral-type Benzodiazepine Receptor (PBR) ligands were examined and common structural elements were detected and used to develop a rational binding model based on energetically allowed ligand conformations. Two lipophilic regions and one electrostatic interaction site are essential features for high affinity ligand binding, while a further lipophilic region plays an important modulator role. A comparative molecular field analysis, performed over 130 PBR ligands by means of the GRID/GOLPE methodology, led to a PLS model with both high fitting and predictive values (r2 = 0.898, Q2 = 0.761). The outcome from the 3D QSAR model and the GRID interaction fields computed on the putative endogenous PBR ligands DBI (Diazepam Binding Inhibitor) and TTN (Tetracontatetraneuropeptide) was used to identify the amino acids most probably involved in PBR binding. Three amino acids, bearing lipophilic side chains, were detected in DBI (Phe49, Leu47 and Met46) and in TTN (Phe33, Leu31 and Met30) as likely residues underlying receptor binding. Moreover, a qualitative comparison of the molecular electrostatic potentials of DBI, TTN and selected synthetic ligands indicated also similar electronic properties. Convergent results from the modeling studies of synthetic and endogenous ligands suggest a common binding mode to PBRs. This may help the rational design of new high affinity PBR ligands.

  2. Preliminary study of synthetic aperture tissue harmonic imaging on in-vivo data

    DEFF Research Database (Denmark)

    Rasmussen, Joachim Hee; Hemmsen, Martin Christian; Sloth Madsen, Signe

    2013-01-01

    that was implemented on the UltraView system acquires both SASB-THI and DRF-THI simultaneously. Twenty-four simultaneously acquired video sequences of in-vivo abdominal SASB-THI and DRF-THI scans on 3 volunteers of 4 different sections of liver and kidney tissues were created. Videos of the in-vivo scans were......A method for synthetic aperture tissue harmonic imaging is investigated. It combines synthetic aperture sequential beamforming (SASB) with tissue harmonic imaging (THI) to produce an increased and more uniform spatial resolution and improved side lobe reduction compared to conventional B......-mode imaging. Synthetic aperture sequential beamforming tissue harmonic imaging (SASB-THI) was implemented on a commercially available BK 2202 Pro Focus UltraView ultrasound system and compared to dynamic receive focused tissue harmonic imaging (DRF-THI) in clinical scans. The scan sequence...

  3. Three-dimensional subsurface imaging Synthetic Aperture Radar

    Energy Technology Data Exchange (ETDEWEB)

    Wuenschel, E. [Mirage Systems, Inc., Sunnyvale, CA (United States)

    1995-10-01

    This report describes the development of a system known as 3-D SISAR. This system consists of a ground penetrating radar with software algorithms designed for the detection, location, and identification of buried objects in the underground hazardous waste environments at DOE storage sites.

  4. 3D printing in X-ray and gamma-ray imaging: A novel method for fabricating high-density imaging apertures

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Brian W., E-mail: molinero@email.arizona.edu [Center for Gamma-Ray Imaging, University of Arizona, Tucson, Arizona 85719 (United States); Moore, Jared W.; Barrett, Harrison H. [Center for Gamma-Ray Imaging, University of Arizona, Tucson, Arizona 85719 (United States); Frye, Teresa [TechForm Advanced Casting Technology, LLC, Portland, Oregon 97222 (United States); Adler, Steven [A3DM, Portland, Oregon 97222 (United States); Sery, Joe [Tungsten Heavy Powder, San Diego, California 92121 (United States); Furenlid, Lars R. [Center for Gamma-Ray Imaging, University of Arizona, Tucson, Arizona 85719 (United States)

    2011-12-11

    Advances in 3D rapid-prototyping printers, 3D modeling software, and casting techniques allow for cost-effective fabrication of custom components in gamma-ray and X-ray imaging systems. Applications extend to new fabrication methods for custom collimators, pinholes, calibration and resolution phantoms, mounting and shielding components, and imaging apertures. Details of the fabrication process for these components, specifically the 3D printing process, cold casting with a tungsten epoxy, and lost-wax casting in platinum are presented.

  5. Overview of independent component analysis technique with an application to synthetic aperture radar (SAR) imagery processing.

    Science.gov (United States)

    Fiori, Simone

    2003-01-01

    We present an overview of independent component analysis, an emerging signal processing technique based on neural networks, with the aim to provide an up-to-date survey of the theoretical streams in this discipline and of the current applications in the engineering area. We also focus on a particular application, dealing with a remote sensing technique based on synthetic aperture radar imagery processing: we briefly review the features and main applications of synthetic aperture radar and show how blind signal processing by neural networks may be advantageously employed to enhance the quality of remote sensing data.

  6. Three-dimensional reconstruction of far and large objects using synthetic aperture integral imaging

    Science.gov (United States)

    Piao, Yongri; Xing, Luyan; Zhang, Miao; Lee, Byung-Gook

    2017-01-01

    In this paper, we present a three-dimensional reconstruction of far and large objects in a synthetic aperture integral imaging system. In the proposed method, the far and large size objects are recorded as a set of elemental images by using an additional Plano-concave lens in the synthetic aperture integral imaging system. Due to the use of the Plano-concave lens, the reconstruction distance can be significantly reduced. This enables us to computationally reconstruct the objects in the far-field region. Experimental results are carried out, and the feasibility of the proposed method is verified.

  7. In vivo color flow mapping using synthetic aperture dual stage beamforming

    DEFF Research Database (Denmark)

    Li, Ye; Hemmsen, Martin Christian; Nielsen, Michael Bachmann;

    2012-01-01

    An in vivo investigation of synthetic aperture flow imaging using a dual stage beamformer is presented in this paper. In the previous work, simulations and Doppler flow phantom experiments showed promising results, which indicated the methods capability of producing fast color flow mapping...... deviation is 14.3% and relative bias is 6.4% for the phantom measurements. The blood flow in a common carotid artery of a 35-year-old healthy male is scanned by a medical doctor (PMH). The in vivo data is processed off-line. Fast synthetic aperture color flow mapping with frame rate of 85 Hz is produced...

  8. Retrieval of Wind Speed Using an L-band Synthetic Aperture Radar

    DEFF Research Database (Denmark)

    Monaldo, Frank M.; Thompson, Donald R.; Badger, Merete

    2007-01-01

    Retrieval of wind speed using L-band synthetic aperture radar (SAR) is both an old and new endeavor. Although the Seasat L-band SAR in 1978 was not well calibrated, early results indicated a strong relationship between observed SAR image intensity and wind speed. The JERS-1 L-band SAR had limited...... usefulness over the ocean. Most recent wind retrievals from spaceborne SARs have been at C-band for ERS-1/2, Radarsat, and Envisat. With the launch of the sophisticated multi- polarization Phased Array L-band Synthetic Aperture Radar (PALSAR) on the Advanced Land Observing Satellite (ALOS), we renew...

  9. Comparison of 3-D Synthetic Aperture Phased-Array Ultrasound Imaging and Parallel Beamforming

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer; Jensen, Jørgen Arendt

    2014-01-01

    simulations and measurements with anultrasound research scanner and a commercially available 3.5-MHz 1024-element 2-D transducer array. To limit the probecable thickness, 256 active elements are used in transmit andreceive for both techniques. The two imaging techniques weredesigned for cardiac imaging, which......B cystic resolutionby up to 62%. The FWHM of the measured line spread func-tion (LSF) at 80mm depth showed a difference of 20% in favorof SAI. SAI reduced the cyst radius at 60mm depth by 39%in measurements. SAI improved the contrast-to-noise ratiomeasured on anechoic cysts embedded in a tissue...

  10. Through-Wall Synthetic Aperture Radar (TWSAR) 3D Imaging: Algorithm Design

    Science.gov (United States)

    2004-11-01

    finies est toutefois conçu pour améliorer le réalisme physique en tenant compte du diagramme d’antenne réel. Les résultats initiaux montrent que...réseau d’éléments d’antennes. La configuration la plus simple serait un réseau linéaire orienté verticalement, dont le mouvement transversal produit...le site, est obtenue à partir de l’étendue du réseau physique suivant la verticale. Pour cette application, la méthode de rétroprojection dans le

  11. Parameter study of 3D synthetic aperture post-beamforming procedure

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Santén, Peter; Bjuvsten, Ola;

    2006-01-01

    of interest to scan a full volume. The same beamformation procedure is applied both in the azimuth and the elevation planes. This paper presents a study of the influence of the position of the transmit focus on the image resolution, the signal-to-noise ratio and penetration depth. The investigation is based...... depths. 100 different positions of the transmit focus are investigated. For every transmit focus the image is beamformed and evaluated. Finally the gain in signal-to-noise ratio and penetration depth are investigated experimentally for the setup, with which the best resolution is achieved. Simulations...... to 100 mm. The method can be applied in applications, where the image quality is of prime importance, such as in the classification of atherosclerotic lesions in the carotid artery....

  12. Precise Time-of-Flight Calculation For 3D Synthetic Aperture Focusing

    DEFF Research Database (Denmark)

    Andresen, Henrik; Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2007-01-01

    measurements using the RASMUS experimental scanner. For the simulation, scatterers were placed from 20 to 120 mm of depth. A point and a cyst phantom were scanned by translating a 7 MHz linear array in the elevation direction. For a point placed at (25,8, 75) mm relative to the transducer, the mean error...... between the calculated and estimated ToF is 0.0129 mus (0.09A), and the standard deviation of the ToF error is 0.0049A. SA focusing improves both contrast and resolution. For simulated scatterers at depths of 40 and 70 mm the FWHM is 83.6% and 46.8% of the FWHM without elevation SA focusing. The main...

  13. Autofocusing circular synthetic aperture sonar imagery using phase corrections modeled as generalized cones.

    Science.gov (United States)

    Marston, Timothy M; Kennedy, Jermaine L; Marston, Philip L

    2014-08-01

    Circular synthetic aperture sonar (CSAS) is a coherent aperture synthesis technique that utilizes backscattered acoustic information from an encircled scene to generate information rich, high-resolution imagery. The aperture length required for image synthesis is much longer than in its linear synthetic aperture sonar counterpart and can result in challenging phase delay and navigation estimation constraints. Residual uncorrected phase errors manifest as focus aberrations in reconstructed CSAS imagery. This paper demonstrates that phase error in image patches can be approximated as an aspect variant linear phase shift representable as a generalized cone in wave-number space. If the geometry of the generalized cone is known, it can be applied as the spectral phase of an inverse filter for aberration correction. A method is derived for reconstructing the error cone geometry from independent estimates of its local curvatures, which are found via a series of one-dimensional line searches that maximize the focus of CSAS sub-aperture images. This approach is applied to real and simulated CSAS data containing aperture distortions, and the results successfully demonstrate estimation and correction of the underlying focus aberrations.

  14. A Code Division Technique for Multiple Element Synthetic Aperture Transmission

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jensen, Jørgen Arendt; Jakobsson, Andreas

    2004-01-01

    a method in which all transmitting centers can be excited at the same time and separated at the receiver. Hereby the benefits from traditional STA can be utilized and a high fframe rate can be maintained and the images are not influenced by motion artifacts. The different centers are excited using mutually....... The method was verified using Field II. A 7 MHz transducer was simulated with 128 receiving elements and 64 transmitting elements divided into subapertures so that 4 virtual transmission centers were formed. The point spread function was measured and the axial resolution was 0.2312 mm (-3dB) and 0.3083 mm...

  15. Synthetic Aperture Beamforming in Ultrasound using Moving Arrays

    DEFF Research Database (Denmark)

    Andresen, Henrik

    Medical ultrasound (US) is widely used because it allows cheap real-time imaging of soft tissue with no known side-effects or hazards to either patients or operating personnel. US has existed since the 1960s and was originally adapted from the concept of radar and sonar. The development in ultras......Medical ultrasound (US) is widely used because it allows cheap real-time imaging of soft tissue with no known side-effects or hazards to either patients or operating personnel. US has existed since the 1960s and was originally adapted from the concept of radar and sonar. The development...... in ultrasound has allowed the technology to evolve from a showing a simple echo along a line to fully visualize entire organs. The image changes significantly depending on the orientation of the transducer, making it more difficult to see exact features. This poses challenges since anatomy is three...... was missed and allows a more precise measurement of organ dimensions [2, 3, 4]. Conventional 3D ultrasound imaging is basically faced with two limitations. It is only able to have a single transmit focus point and each line in a 3D volume has to be created independently. This reduces image quality outside...

  16. Modified Range-Doppler Processing for FM-CW Synthetic Aperture Radar

    NARCIS (Netherlands)

    Wit, J.J.M. de; Meta, A.; Hoogeboom, P.

    2006-01-01

    The combination of compact frequency-modulated continuous-wave (FM-CW) technology and high-resolution synthetic aperture radar (SAR) processing techniques should pave the way for the development of a lightweight, cost-effective, high-resolution, airborne imaging radar. Regarding FM-CW SAR signal pro

  17. AMBER: An X-band FMCW digital beam forming synthetic aperture radar for a tactical UAV

    NARCIS (Netherlands)

    Graaf, M.W. van der; Otten, M.P.G.; Huizing, A.G.; Tan, R.G.; Caro Cuenca, M.; Ruizenaar, M.G.A.

    2013-01-01

    An X-band Digital Array Synthetic Aperture Radar for a Short Range Tactical UAV is presented. This system is demonstrated on a manned helicopter and motor glider. The Frequency Modulated Continuous Wave radar principle in combination with digital beam forming over 24 receive channels is used to meet

  18. Effectiveness of WRF wind direction for retrieving coastal sea surface wind from synthetic aperture radar

    DEFF Research Database (Denmark)

    Takeyama, Yuko; Ohsawa, Teruo; Kozai, Katsutoshi;

    2013-01-01

    Wind direction is required as input to the geophysical model function (GMF) for the retrieval of sea surface wind speed from a synthetic aperture radar (SAR) images. The present study verifies the effectiveness of using the wind direction obtained from the weather research and forecasting model...

  19. Improved Beamforming for Lateral Oscillations in Elastography Using Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Liebgott, Hervé; Basarab, Adrian; Loizeau, Damien;

    2007-01-01

    In this paper we present a beamforming technique based on synthetic aperture imaging that enables to improve the radio-frequency (RF) ultrasound images with lateral oscillations for lateral displacement estimation. As described in previous work, in order to increase the accuracy of the lateral di...

  20. Preliminary Experimental Verification of Synthetic Aperture Flow Imaging Using a Dual Stage Beamformer Approach

    DEFF Research Database (Denmark)

    Li, Ye; Jensen, Jørgen Arendt

    2011-01-01

    A dual stage beamformer method for synthetic aperture flow imaging has been developed. The motivation is to increase the frame rate and still maintain a beamforming quality sufficient for flow estimation that is possible to implement in a commercial scanner. With the new method high resolution im...

  1. Optimization of Soil Hydraulic Model Parameters Using Synthetic Aperture Radar Data: An Integrated Multidisciplinary Approach

    DEFF Research Database (Denmark)

    Pauwels, Valentijn; Balenzano, Anna; Satalino, Giuseppe;

    2009-01-01

    It is widely recognized that Synthetic Aperture Radar (SAR) data are a very valuable source of information for the modeling of the interactions between the land surface and the atmosphere. During the last couple of decades, most of the research on the use of SAR data in hydrologic applications has...

  2. Basics of Polar-Format algorithm for processing Synthetic Aperture Radar images.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2012-05-01

    The purpose of this report is to provide a background to Synthetic Aperture Radar (SAR) image formation using the Polar Format (PFA) processing algorithm. This is meant to be an aid to those tasked to implement real-time image formation using the Polar Format processing algorithm.

  3. Wavefront curvature limitations and compensation to polar format processing for synthetic aperture radar images.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2006-01-01

    Limitations on focused scene size for the Polar Format Algorithm (PFA) for Synthetic Aperture Radar (SAR) image formation are derived. A post processing filtering technique for compensating the spatially variant blurring in the image is examined. Modifications to this technique to enhance its robustness are proposed.

  4. Registration of images from a hull mounted, low frequency synthetic aperture sonar

    NARCIS (Netherlands)

    Bonnett, B.; Hayes, M.; Hunter, A.

    2013-01-01

    Coherent change detection between multiple synthetic aperture sonar (SAS) images is reliant on the images being co-registered with sub-pixel accuracy. In this paper we suggest a technique using available navigation data to reconstruct the images onto a common grid. Data obtained using the MUD SAS sy

  5. Choice for the signal processing kernel in synthetic aperture sonar : considerations and implications

    NARCIS (Netherlands)

    Groen, J.; Sabel, J.C.

    2002-01-01

    Synthetic Aperture Sonar uses coherent integration of successive pings to enhance the resolution of side looking sonar. In this paper three diffelent SAS methods are applied to obtain high-resolution images. The first method is applied ping by ping in the frequency domain, whereas the second and thi

  6. Mapping Offshore Winds Around Iceland Using Satellite Synthetic Aperture Radar and Mesoscale Model Simulations

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Nawri, Nikolai

    2015-01-01

    The offshore wind climate in Iceland is examined based on satellite synthetic aperture radar (SAR), coastal meteorological station measurements, and results from two atmospheric model data sets, HARMONIE and NORA10. The offshore winds in Iceland are highly influenced by the rugged coastline. Lee...

  7. Credible Set Estimation, Analysis, and Applications in Synthetic Aperture Radar Canonical Feature Extraction

    Science.gov (United States)

    2015-03-26

    image space are orthogonal in phase history. However, the likelihood and CLEAN assumptions contradict each other, therefore we must accept the...of credible solutions. Determination of a credible region becomes especially important in Synthetic Aperture Radar (SAR) Automated Target Recognition ...fine zoom. . . . . . . . . . . . . . . . 79 4.16 SAR image for multiple shape test scene. . . . . . . . . . . . . . . . . . . . . 81 4.17 Marginal PMFs

  8. Preliminary In-vivo Results For Spatially Coded Synthetic Transmit Aperture Ultrasound Based On Frequency Division

    DEFF Research Database (Denmark)

    Gran, Fredrik; Hansen, Kristoffer Lindskov; Jensen, Jørgen Arendt;

    2006-01-01

    This paper investigates the possibility of using spatial coding based on frequency division for in-vivo synthetic transmit aperture (STA) ultrasound imaging. When using spatial encoding for STA, it is possible to use several transmitters simultaneously and separate the signals at the receiver. Th...

  9. In vivo visualization of robotically implemented synthetic tracked aperture ultrasound (STRATUS) imaging system using curvilinear array

    Science.gov (United States)

    Zhang, Haichong K.; Aalamifar, Fereshteh; Boctor, Emad M.

    2016-04-01

    Synthetic aperture for ultrasound is a technique utilizing a wide aperture in both transmit and receive to enhance the ultrasound image quality. The limitation of synthetic aperture is the maximum available aperture size limit determined by the physical size of ultrasound probe. We propose Synthetic-Tracked Aperture Ultrasound (STRATUS) imaging system to overcome the limitation by extending the beamforming aperture size through ultrasound probe tracking. With a setup involving a robotic arm, the ultrasound probe is moved using the robotic arm, while the positions on a scanning trajectory are tracked in real-time. Data from each pose are synthesized to construct a high resolution image. In previous studies, we have demonstrated the feasibility through phantom experiments. However, various additional factors such as real-time data collection or motion artifacts should be taken into account when the in vivo target becomes the subject. In this work, we build a robot-based STRATUS imaging system with continuous data collection capability considering the practical implementation. A curvilinear array is used instead of a linear array to benefit from its wider capture angle. We scanned human forearms under two scenarios: one submerged the arm in the water tank under 10 cm depth, and the other directly scanned the arm from the surface. The image contrast improved 5.51 dB, and 9.96 dB for the underwater scan and the direct scan, respectively. The result indicates the practical feasibility of STRATUS imaging system, and the technique can be potentially applied to the wide range of human body.

  10. A Dual-polarized Microstrip Subarray Antenna for an Inflatable L-band Synthetic Aperture Radar

    Science.gov (United States)

    Zawadzki, Mark; Huang, John

    1999-01-01

    Inflatable technology has been identified as a potential solution to the problem of achieving small mass, high packaging efficiency, and reliable deployment for future NASA spaceborne synthetic aperture radar (SAR) antennas. Presently, there exists a requirement for a dual-polarized L-band SAR antenna with an aperture size of 10m x 3m, a center frequency of 1.25GHz, a bandwidth of 80MHz, electronic beam scanning, and a mass of less than 100kg. The work presented below is part of the ongoing effort to develop such an inflatable antenna array.

  11. A spaceborne synthetic aperture radiometer simulated by the TUD demonstration model

    DEFF Research Database (Denmark)

    Laursen, Brian; Skou, Niels

    1994-01-01

    The TUD synthetic aperture radiometer demonstration model consists of a 2-channel X-band correlation radiometer with two horn antennas and an antenna mounting structure enabling the horns to be mounted in relevant positions within a certain aperture. The cross correlation of the signals from the ...... samples of the visibility function followed by an image reconstruction procedure which is based on the inverse Fourier transform. The system has been used to simulate a spaceborne instrument (MIRAS) in order to validate the image reconstruction processing...

  12. FPGA architectures for electronically scanned wide-band RF beams using 3-D FIR/IIR digital filters for rectangular array aperture receivers

    Science.gov (United States)

    Wijayaratna, Sewwandi; Madanayake, Arjuna; Beall, Brandon D.; Bruton, Len T.

    2014-05-01

    Real-time digital implementation of three-dimensional (3-D) infinite impulse response (IIR) beam filters are discussed. The 3-D IIR filter building blocks have filter coefficients, which are defined using algebraic closed-form expressions that are functions of desired beam personalities, such as the look-direction of the aperture, the bandwidth and sampling frequency of interest, inter antenna spacing, and 3dB beam size. Real-time steering of such 3-D beam filters are obtained by proposed calculation of filter coefficients. Application specific computing units for rapidly calculating the 3-D IIR filter coefficients at nanosecond speed potentially allows fast real-time tracking of low radar cross section (RCS) objects at close range. Proposed design consists of 3-D IIR beam filter with 4 4 antenna grid and the filter coefficient generation block in separate FPGAs. The hardware is designed and co-simulated using a Xilinx Virtex-6 XC6VLX240T FPGA. The 3-D filter operates over 90 MHz and filter coefficient computing structure can operate at up to 145 MHz.

  13. Feasibility study of synthetic aperture infrared laser radar techniques for imaging of static and moving objects.

    Science.gov (United States)

    Yoshikado, S; Aruga, T

    1998-08-20

    Techniques for two types of 10-mum band synthetic aperture infrared laser radar using a hypothetical reference point target (RPT) are presented. One is for imaging static objects with a single two-dimensional scanning aperture. Through the simple manipulation of a reference wave phase, a desired image can be obtained merely by the two-dimensional Fourier transformation of the correlator output between the intermediate frequency signals of the reference and object waves. The other, with a one-dimensional aperture array, is for moving objects that pass across the array direction without attitude change. We performed imaging by using a two-dimensional RPT correlation method. We demonstrate the capability of these methods for imaging and evaluate the necessary conditions for signal-to-noise ratio and random phase errors in signal reception through numerical simulations in terms of feasibility.

  14. Flight-appropriate 3D Terrain-rendering Toolkit for Synthetic Vision Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The TerraBlocksTM 3D terrain data format and terrain-block-rendering methodology provides an enabling basis for successful commercial deployment of...

  15. Flight-appropriate 3D Terrain-rendering Toolkit for Synthetic Vision Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TerraMetrics proposes an SBIR Phase I R/R&D effort to develop a key 3D terrain-rendering technology that provides the basis for successful commercial deployment...

  16. System Architecture of an Experimental Synthetic Aperture Real-Time Ultrasound System

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Hansen, Martin; Tomov, Borislav Gueorguiev

    2007-01-01

    Synthetic Aperture (SA) ultrasound imaging has many advantages in terms of flexibility and accuracy. One of the major drawbacks is, however, that no system exists, which can implement SA imaging in real time due to the very high number of calculations amounting to roughly 1 billion complex focused...... samples per second per receive channel. Real time imaging is a key aspect in ultrasound, and to truly demonstrate the many advantages of SA imaging, a system usable in the clinic should be made. The paper describes a system capable of real time SA B-mode and vector flow imaging. The Synthetic Aperture...... Real-time Ultrasound System (SARUS) has been developed through the last 2 years and can perform real time SA imaging and storage of RF channel data for multiple seconds. SARUS consists of a 1024 channel analog front-end and 64 identical digital boards. Each has 16 transmit channels and 16 receive...

  17. Optical imaging process based on two-dimensional Fourier transform for synthetic aperture imaging ladar

    Science.gov (United States)

    Sun, Zhiwei; Zhi, Ya'nan; Liu, Liren; Sun, Jianfeng; Zhou, Yu; Hou, Peipei

    2013-09-01

    The synthetic aperture imaging ladar (SAIL) systems typically generate large amounts of data difficult to compress with digital method. This paper presents an optical SAIL processor based on compensation of quadratic phase of echo in azimuth direction and two dimensional Fourier transform. The optical processor mainly consists of one phase-only liquid crystal spatial modulator(LCSLM) to load the phase data of target echo and one cylindrical lens to compensate the quadratic phase and one spherical lens to fulfill the task of two dimensional Fourier transform. We show the imaging processing result of practical target echo obtained by a synthetic aperture imaging ladar demonstrator. The optical processor is compact and lightweight and could provide inherent parallel and the speed-of-light computing capability, it has a promising application future especially in onboard and satellite borne SAIL systems.

  18. A Synthetic Aperture System Based on Backscattering Signals of Compass Navigation Satellite: Concept and Feasibility

    Directory of Open Access Journals (Sweden)

    Wang Hai-yang

    2012-06-01

    Full Text Available A concept of a bi-static geosynchronous synthetic aperture system, which is formed by reusing backscattered signals of Compass Navigation Satellite System (CNSS, is proposed. The geometric relations of a geostationary satellite of CNSS, located on a geosynchronous satellite receiver, which is illuminated by the backscattered energy of a satellite of CNSS, and a ground station is built up, and following the relations as well as principle of synthetic aperture radar, we expatiate the feasibility of the system by considering parameters such as imaging resolution, ratio of signal to noise and link budget, etc.. Besides, the potential remote sensing applications for measurement of terrain humidity, characteristics of space-time dynamics of changing of terrain surface and atmospheric characteristic, etc..

  19. The optical synthetic aperture image restoration based on the improved maximum-likelihood algorithm

    Science.gov (United States)

    Geng, Zexun; Xu, Qing; Zhang, Baoming; Gong, Zhihui

    2012-09-01

    Optical synthetic aperture imaging (OSAI) can be envisaged in the future for improving the image resolution from high altitude orbits. Several future projects are based on optical synthetic aperture for science or earth observation. Comparing with equivalent monolithic telescopes, however, the partly filled aperture of OSAI induces the attenuation of the modulation transfer function of the system. Consequently, images acquired by OSAI instrument have to be post-processed to restore ones equivalent in resolution to that of a single filled aperture. The maximum-likelihood (ML) algorithm proposed by Benvenuto performed better than traditional Wiener filter did, but it didn't work stably and the point spread function (PSF), was assumed to be known and unchanged in iterative restoration. In fact, the PSF is unknown in most cases, and its estimation was expected to be updated alternatively in optimization. Facing these limitations of this method, an improved ML (IML) reconstruction algorithm was proposed in this paper, which incorporated PSF estimation by means of parameter identification into ML, and updated the PSF successively during iteration. Accordingly, the IML algorithm converged stably and reached better results. Experiment results showed that the proposed algorithm performed much better than ML did in peak signal to noise ratio, mean square error and the average contrast evaluation indexes.

  20. Terahertz inverse synthetic aperture radar imaging using self-mixing interferometry with a quantum cascade laser.

    Science.gov (United States)

    Lui, H S; Taimre, T; Bertling, K; Lim, Y L; Dean, P; Khanna, S P; Lachab, M; Valavanis, A; Indjin, D; Linfield, E H; Davies, A G; Rakić, A D

    2014-05-01

    We propose a terahertz (THz)-frequency synthetic aperture radar imaging technique based on self-mixing (SM) interferometry, using a quantum cascade laser. A signal processing method is employed which extracts and exploits the radar-related information contained in the SM signals, enabling the creation of THz images with improved spatial resolution. We demonstrate this by imaging a standard resolution test target, achieving resolution beyond the diffraction limit.

  1. Mapping Ocean Surface Topography with a Synthetic-Aperture Interferometry Radar

    Science.gov (United States)

    Fu, Lee-Lueng; Rodriguez, Ernesto

    2006-01-01

    We propose to apply the technique of synthetic aperture radar interferometry to the measurement of ocean surface topography at spatial resolution approaching 1 km. The measurement will have wide ranging applications in oceanography, hydrology. and marine geophysics. The oceanographic and related societal applications are briefly discussed in the paper. To meet the requirements for oceanographic applications, the instrument must be flown in an orbit with proper sampling of ocean tides.

  2. Computational Complexity Reduction of Synthetic-aperture Focus in Ultrasound Imaging Using Frequency-domain Reconstruction.

    Science.gov (United States)

    Moghimirad, Elahe; Mahloojifar, Ali; Mohammadzadeh Asl, Babak

    2016-05-01

    A new frequency-domain implementation of a synthetic aperture focusing technique is presented in the paper. The concept is based on synthetic aperture radar (SAR) and sonar that is a developed version of the convolution model in the frequency domain. Compared with conventional line-by-line imaging, synthetic aperture imaging has a better resolution and contrast at the cost of more computational load. To overcome this problem, point-by-point reconstruction methods have been replaced by block-processing algorithms in radar and sonar; however, these techniques are relatively unknown in medical imaging. In this paper, we extended one of these methods called wavenumber to medical ultrasound imaging using a simple model of synthetic aperture focus. The model, derived here for monostatic mode, can be generalized to multistatic as well. The method consists of 4 steps: a 2D fast Fourier transform of the data, frequency shift of the data to baseband, interpolation to convert polar coordinates to rectangular ones, and returning the data to the spatial-domain using a 2D inverse Fourier transform. We have also used chirp pulse excitation followed by matched filtering and spotlighting algorithm to compensate the effect of differences in parameters between radar and medical imaging. Computational complexities of the two methods, wavenumber and delay-and-sum (DAS), have been calculated. Field II simulated point data have been used to evaluate the results in terms of resolution and contrast. Evaluations with simulated data show that for typical phantoms, reconstruction by the wavenumber algorithm is almost 20 times faster than classical DAS while retaining the resolution.

  3. Synthetic aperture sonar movement compensation algorithm based on time-delay and phase estimation

    Institute of Scientific and Technical Information of China (English)

    JIANG Nan; SUN Dajun; TIAN Tan

    2003-01-01

    The effects of movement errors on imaging results of synthetic aperture sonar andthe necessity of movement compensation are discussed. Based on analyzing so-called displacedphase center algorithm, an improved algorithm is proposed. In this method, the time delayis estimated firstly, then the phase is estimated for the residual error, so that the range ofmovement error suited to the algorithm is extended to some extent. Some simulation resultson computer and experimental results in the test tank using the proposed algorithm are givenas well.

  4. Correct self-assembling of spatial frequencies in super-resolution synthetic aperture digital holography.

    Science.gov (United States)

    Paturzo, Melania; Ferraro, Pietro

    2009-12-01

    Synthetic aperture enlargement is obtained, in lensless digital holography, by introducing a diffraction grating between the object and the CCD camera with the aim of getting super-resolution. We demonstrate here that the spatial frequencies are naturally self-assembled in the reconstructed image plane when the NA is increased synthetically at its maximum extent of three times. By this approach it possible to avoid the use of the grating transmission formula in the numerical reconstruction process, thus reducing significantly the noise in the final super-resolved image. Demonstrations are reported in 1D and 2D with an optical target and a biological sample, respectively.

  5. Coherent Performance Analysis of the HJ-1-C Synthetic Aperture Radar

    Directory of Open Access Journals (Sweden)

    Li Hai-ying

    2014-06-01

    Full Text Available Synthetic Aperture Radar (SAR is a coherent imaging radar. Hence, coherence is critical in SAR imaging. In a coherent system, several sources can degrade performance. Based on the HJ-1-C SAR system implementation and sensor characteristics, this study evaluates the effect of frequency stability and pulse-to-pulse timing jitter on the SAR coherent performance. A stable crystal oscillator with short-term stability of 10×1.0−10 / 5 ms is used to generate the reference frequency by using a direct multiplier and divider. Azimuth ISLR degradation owing to the crystal oscillator phase noise is negligible. The standard deviation of the pulse-to-pulse timing jitter of HJ-1-C SAR is lower than 2ns (rms and the azimuth random phase error in the synthetic aperture time slightly degrades the side lobe of the azimuth impulse response. The mathematical expressions and simulation results are presented and suggest that the coherent performance of the HJ-1-C SAR system meets the requirements of synthetic aperture radar imaging.

  6. Synthetic-aperture based photoacoustic re-beamforming (SPARE) approach using beamformed ultrasound data

    Science.gov (United States)

    Zhang, Haichong K.; Bell, Muyinatu A. Lediju; Guo, Xiaoyu; Kang, Hyun Jae; Boctor, Emad M.

    2016-01-01

    Photoacoustic (PA) imaging has been developed for various clinical and pre-clinical applications, and acquiring pre-beamformed channel data is necessary to reconstruct these images. However, accessing these pre-beamformed channel data requires custom hardware to enable parallel beamforming, and is available for a limited number of research ultrasound platforms. To broaden the impact of clinical PA imaging, our goal is to devise a new PA reconstruction approach that uses ultrasound post-beamformed radio frequency (RF) data rather than raw channel data, because this type of data is readily available in both clinical and research ultrasound systems. In our proposed Synthetic-aperture based photoacoustic re-beamforming (SPARE) approach, post-beamformed RF data from a clinical ultrasound scanner are considered as input data for an adaptive synthetic aperture beamforming algorithm. When receive focusing is applied prior to obtaining these data, the focal point is considered as a virtual element, and synthetic aperture beamforming is implemented assuming that the photoacoustic signals are received at the virtual element. The resolution and SNR obtained with the proposed method were compared to that obtained with conventional delay-and-sum beamforming with 99.87% and 91.56% agreement, respectively. In addition, we experimentally demonstrated feasibility with a pulsed laser diode setup. Results indicate that the post-beamformed RF data from any commercially available ultrasound platform can potentially be used to create PA images. PMID:27570697

  7. TOMO3D: 3-D joint refraction and reflection traveltime tomography parallel code for active-source seismic data—synthetic test

    Science.gov (United States)

    Meléndez, A.; Korenaga, J.; Sallarès, V.; Miniussi, A.; Ranero, C. R.

    2015-10-01

    We present a new 3-D traveltime tomography code (TOMO3D) for the modelling of active-source seismic data that uses the arrival times of both refracted and reflected seismic phases to derive the velocity distribution and the geometry of reflecting boundaries in the subsurface. This code is based on its popular 2-D version TOMO2D from which it inherited the methods to solve the forward and inverse problems. The traveltime calculations are done using a hybrid ray-tracing technique combining the graph and bending methods. The LSQR algorithm is used to perform the iterative regularized inversion to improve the initial velocity and depth models. In order to cope with an increased computational demand due to the incorporation of the third dimension, the forward problem solver, which takes most of the run time (˜90 per cent in the test presented here), has been parallelized with a combination of multi-processing and message passing interface standards. This parallelization distributes the ray-tracing and traveltime calculations among available computational resources. The code's performance is illustrated with a realistic synthetic example, including a checkerboard anomaly and two reflectors, which simulates the geometry of a subduction zone. The code is designed to invert for a single reflector at a time. A data-driven layer-stripping strategy is proposed for cases involving multiple reflectors, and it is tested for the successive inversion of the two reflectors. Layers are bound by consecutive reflectors, and an initial velocity model for each inversion step incorporates the results from previous steps. This strategy poses simpler inversion problems at each step, allowing the recovery of strong velocity discontinuities that would otherwise be smoothened.

  8. NOAA high resolution sea surface winds data from Synthetic Aperture Radar (SAR) on the RADARSAT-2 satellite

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Synthetic Aperture Radar (SAR)-derived high resolution wind products are calculated from high resolution SAR images of normalized radar cross section (NRCS) of the...

  9. Increasing the effective aperture of a detector and enlarging the receiving field of view in a 3D imaging lidar system through hexagonal prism beam splitting.

    Science.gov (United States)

    Lee, Xiaobao; Wang, Xiaoyi; Cui, Tianxiang; Wang, Chunhui; Li, Yunxi; Li, Hailong; Wang, Qi

    2016-07-11

    The detector in a highly accurate and high-definition scanning 3D imaging lidar system requires high frequency bandwidth and sufficient photosensitive area. To solve the problem of small photosensitive area of an existing indium gallium arsenide detector with a certain frequency bandwidth, this study proposes a method for increasing the receiving field of view (FOV) and enlarging the effective photosensitive aperture of such detector through hexagonal prism beam splitting. The principle and construction of hexagonal prism beam splitting is also discussed in this research. Accordingly, a receiving optical system with two hexagonal prisms is provided and the splitting beam effect of the simulation experiment is analyzed. Using this novel method, the receiving optical system's FOV can be improved effectively up to ±5°, and the effective photosensitive aperture of the detector is increased from 0.5 mm to 1.5 mm.

  10. Enhanced reconstruction of partially occluded objects with occlusion removal in synthetic aperture integral imaging

    Institute of Scientific and Technical Information of China (English)

    Zhiliang Zhou; Yan Yuan; Xiangli Bin; Qian Wang

    2011-01-01

    @@ Synthetic aperture integral imaging provides the ability to reconstruct partially occluded objects from multi-view images.However, the reconstructed images suffer from degraded contrast due to the super-imposition of foreground defocus blur.We propose an algorithm to remove foreground occlusions before reconstructing backgrounds.Occlusions are identified by estimating the color variance on elemental im-ages and then deleting it in the final synthetic image.We demonstrate the superiority of our method by presenting experimental results as well as comparing our method with other approaches.%Synthetic aperture integral imaging provides the ability to reconstruct partially occluded objects from multi-view images. However, the reconstructed images suffer from degraded contrast due to the superimposition of foreground defocus blur. We propose an algorithm to remove foreground occlusions before reconstructing backgrounds. Occlusions are identified by estimating the color variance on elemental images and then deleting it in the final synthetic image. We demonstrate the superiority of our method by presenting experimental results as well as comparing our method with other approaches.

  11. Depth-encoded synthetic aperture optical coherence tomography of biological tissues with extended focal depth.

    Science.gov (United States)

    Mo, Jianhua; de Groot, Mattijs; de Boer, Johannes F

    2015-02-23

    Optical coherence tomography (OCT) has proven to be able to provide three-dimensional (3D) volumetric images of scattering biological tissues for in vivo medical diagnostics. Unlike conventional optical microscopy, its depth-resolving ability (axial resolution) is exclusively determined by the laser source and therefore invariant over the full imaging depth. In contrast, its transverse resolution is determined by the objective's numerical aperture and the wavelength which is only approximately maintained over twice the Rayleigh range. However, the prevailing laser sources for OCT allow image depths of more than 5 mm which is considerably longer than the Rayleigh range. This limits high transverse resolution imaging with OCT. Previously, we reported a novel method to extend the depth-of-focus (DOF) of OCT imaging in Mo et al.Opt. Express 21, 10048 (2013)]. The approach is to create three different optical apertures via pupil segmentation with an annular phase plate. These three optical apertures produce three OCT images from the same sample, which are encoded to different depth positions in a single OCT B-scan. This allows for correcting the defocus-induced curvature of wave front in the pupil so as to improve the focus. As a consequence, the three images originating from those three optical apertures can be used to reconstruct a new image with an extended DOF. In this study, we successfully applied this method for the first time to both an artificial phantom and biological tissues over a four times larger depth range. The results demonstrate a significant DOF improvement, paving the way for 3D high resolution OCT imaging beyond the conventional Rayleigh range.

  12. A passive synthetic aperture phase correction algorithm for the asymmetric twin-line array sonar

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A passive synthetic aperture based on phase correction algorithm for solving the port-starboard discrimination problem in the non-aligned towed twin-line array sonar, is described. This method creates a virtual array through applying the estimated phase correction into one array of twin-line arrays. Because the synthetic virtual array is aligned with the other array in twin-line arrays, the right port-starboard discriminated results can be obtained by array processing based on the new synthetic twin-line array. The effect of proposed method has been shown by simulated and sea-trials results in towed twin-line array sonar. With low extra computational loads, the proposed method is easy to apply to the practice.

  13. Synthetic utility of 5-amino-6-cyano-2-phenylthieno[2,3-d] oxazole

    Directory of Open Access Journals (Sweden)

    V. R. KANETKAR

    2005-11-01

    Full Text Available This paper describes the synthesis of 5-amino-6-cyano-2-phenylthieno[2,3-d]oxazole and its utilization for the preparation of a range of azo disperse dyes. These aryl azo disperse dyes were applied on polyester fabric and their fastness properties were evaluated. The dyes were characterized by NMR and IR spectroscopy. The visible absorption spectra of these dyes were recorded.

  14. ARAKNIPRINT: 3D Printing of Synthetic Spider Silk to Produce Biocompatible and Resorbable Biomaterials

    OpenAIRE

    Ruben, Ashley; Bell, Brianne; Spencer, Chase; Soelberg, Craig; Gil, Dan; Harris, Thomas; Decker, Richard; Taylor, Timothy A.; Lewis, Randolph V.

    2016-01-01

    At $3.07 billion in 2013, the 3D printing industry was projected to reach $12.8 billion in 2018 and exceed $21 billion by 2020 (Wohlers and Caffrey, 2013). A lucrative part of this expanding industry includes printing biocompatible medical implants, devices, and tissue scaffolds. A common problem encountered with traditional devices, implants, and tissue scaffolds is that they are not unique to the patient and lack the necessary strength and biocompatibility. To answer these demands, customiz...

  15. Multibeam single frequency synthetic aperture radar processor for imaging separate range swaths

    Science.gov (United States)

    Jain, A. (Inventor)

    1982-01-01

    A single-frequency multibeam synthetic aperture radar for large swath imaging is disclosed. Each beam illuminates a separate ""footprint'' (i.e., range and azimuth interval). The distinct azimuth intervals for the separate beams produce a distinct Doppler frequency spectrum for each beam. After range correlation of raw data, an optical processor develops image data for the different beams by spatially separating the beams to place each beam of different Doppler frequency spectrum in a different location in the frequency plane as well as the imaging plane of the optical processor. Selection of a beam for imaging may be made in the frequency plane by adjusting the position of an aperture, or in the image plane by adjusting the position of a slit. The raw data may also be processed in digital form in an analogous manner.

  16. Effects of truncated Gaussian beam on the performance of fiber optical synthetic aperture system

    Institute of Scientific and Technical Information of China (English)

    LIU Li; WANG Chang-wei; JIANG Yue-song

    2012-01-01

    In the fiber optical synthetic aperture (FOSA) system,the diffraction of the Gaussian beam limited by the aperture in exit pupil plane of fiber collimator is studied theoretically,and the axial and transverse irradiance distributions are obtained.The point spread function (PSF) and modulation transfer function (MTF) of the truncated Gaussian beam array are computed numerically with different truncation factors.The results show that the diffraction of the truncated Gaussian beam array agrees with the uniform-beam Rayleigh diffraction when the truncation factor is less than 0.5,but little power is transmitted.The PSF and MTF are degraded,but more power can be contained when the truncation factor is larger.The selection of the truncation factor is a trade-off between the loss of transmission and the qualities of PSF and MTF in practical application.

  17. The co-phasing detection method for sparse optical synthetic aperture systems

    Institute of Scientific and Technical Information of China (English)

    Liu Zheng; Wang Sheng-Qian; Rao Chang-Hui

    2012-01-01

    Co-phasing between different sub-apertures is important for sparse optical synthetic aperture telescope systems to achieve high-resolution imaging.For co-phasing detection in such a system,a new aspect of the system's far-field interferometry is analysed and used to construct a novel method to detect piston errors.An optical setup is built to demonstrate the efficacy of this method.Experimental results show that the relative differences between measurements by this method and the criterion are less than 4%,and their residual detecting errors are about 0.01 λ for different piston errors,which makes the use of co-phasing detection within such a system promising.

  18. Noise and speckle reduction in synthetic aperture radar imagery by nonparametric Wiener filtering.

    Science.gov (United States)

    Caprari, R S; Goh, A S; Moffatt, E K

    2000-12-10

    We present a Wiener filter that is especially suitable for speckle and noise reduction in multilook synthetic aperture radar (SAR) imagery. The proposed filter is nonparametric, not being based on parametrized analytical models of signal statistics. Instead, the Wiener-Hopf equation is expressed entirely in terms of observed signal statistics, with no reference to the possibly unobservable pure signal and noise. This Wiener filter is simple in concept and implementation, exactly minimum mean-square error, and directly applicable to signal-dependent and multiplicative noise. We demonstrate the filtering of a genuine two-look SAR image and show how a nonnegatively constrained version of the filter substantially reduces ringing.

  19. A class of singular Fourier integral operators in synthetic aperture radar imaging

    CERN Document Server

    Ambartsoumian, G; Krishnan, V P; Nolan, C; Quinto, E T

    2011-01-01

    In this article, we analyze the microlocal properties of the linearized forward scattering operator $F$ and the normal operator $F^{*}F$ (where $F^{*}$ is the $L^{2}$ adjoint of $F$) which arises in Synthetic Aperture Radar imaging for the common midpoint acquisition geometry. When $F^{*}$ is applied to the scattered data, artifacts appear. We show that $F^{*}F$ can be decomposed as a sum of four operators, each belonging to a class of distributions associated to two cleanly intersecting Lagrangians, $I^{p,l} (\\Lambda_0, \\Lambda_1)$, thereby explaining the latter artifacts.

  20. Synthetic impulse and aperture radar (SIAR) a novel multi-frequency MIMO radar

    CERN Document Server

    Chen, Baixiao

    2014-01-01

    Analyzes and discusses the operating principle, signal processing method, and experimental results of this advanced radar technology This book systematically discusses the operating principle, signal processing method, target measurement technology, and experimental results of a new kind of radar called synthetic impulse and aperture radar (SIAR). The purpose is to help readers acquire an insight into the concept and principle of the SIAR, to know its operation mode, signal processing method, the difference between the traditional radar and itself, the designing ideals, and the developing me

  1. Survey of Study on Internal Waves Detection in Synthetic Aperture Radar Image

    Directory of Open Access Journals (Sweden)

    Chong Jin-song

    2013-12-01

    Full Text Available In recent years, Internal Waves (IWs detection in Synthetic Aperture Radar (SAR image has received considerable attentions in the area of marine remote sensing and has already become one of the most important marine applications of SAR. Typical research results at home and abroad are reviewed. Three areas of researches are introduced and summarized, including parameter inversion method of IWs, the effect of different SAR parameter and wind field conditions on IWs imaging, the 2-dimentional SAR imaging simulation of IWs.

  2. The DESDynI Synthetic Aperture Radar Array-Fed Reflector Antenna

    Science.gov (United States)

    Chamberlain, Neil; Ghaemi, Hirad; Giersch, Louis; Harcke, Leif; Hodges, Richard; Hoffman, James; Johnson, William; Jordan, Rolando; Khayatian, Behrouz; Rosen, Paul; Sadowy, Gregory; Shaffer, Scott; Shen, Yuhsyen; Veilleux, Louise; Wu, Patrick

    2010-01-01

    DESDynI is a mission being developed by NASA with radar and lidar instruments for Earth-orbit remote sensing. This paper focuses on the design of a largeaperture antenna for the radar instrument. The antenna comprises a deployable reflector antenna and an active switched array of patch elements fed by transmit/ receive modules. The antenna and radar architecture facilitates a new mode of synthetic aperture radar imaging called 'SweepSAR'. A system-level description of the antenna is provided, along with predictions of antenna performance.

  3. Clinical evaluation of Synthetic Aperture Sequential Beamforming and Tissue Harmonic Imaging

    DEFF Research Database (Denmark)

    Brandt, Andreas Hjelm; Hemmsen, Martin Christian; Hansen, Peter Møller

    2014-01-01

    This study determines if the data reduction achieved by the combination Synthetic Aperture Sequential Beamforming (SASB) and Tissue Harmonic Imaging (THI) affects image quality. SASB-THI was evaluated against the combination of Dynamic Received Focusing and Tissue Harmonic Imaging (DRF-THI). A BK...... liver pathology were scanned to set a clinical condition, where ultrasonography is often performed. A total of 114 sequences were recorded and evaluated by five radiologists. The evaluators were blinded to the imaging technique, and each sequence was shown twice with different left-right positioning...

  4. IFP V4.0:a polar-reformatting image formation processor for synthetic aperture radar.

    Energy Technology Data Exchange (ETDEWEB)

    Eichel, Paul H.

    2005-09-01

    IFP V4.0 is the fourth generation of an extraordinarily powerful and flexible image formation processor for spotlight mode synthetic aperture radar. It has been successfully utilized in processing phase histories from numerous radars and has been instrumental in the development of many new capabilities for spotlight mode SAR. This document provides a brief history of the development of IFP, a full exposition of the signal processing steps involved, and a short user's manual for the software implementing this latest iteration.

  5. Efficient one-stationary bistatic synthetic aperture radar raw data generation based on Fourier analysis

    Science.gov (United States)

    Huang, Yulin; Wu, Junjie; Li, Zhongyu; Yang, Haiguang; Yang, Jianyu

    2016-01-01

    Raw data generation for synthetic aperture radar (SAR) is very powerful for designing systems and testing imaging algorithms. In this paper, a raw data generation method based on Fourier analysis for one-stationary bistatic SAR is presented. In this mode, two-dimensional (2-D) spatial variation is the major problem faced by the fast Fourier transform-based raw data generation. To deal with this problem, a 2-D linearization followed by a 2-D frequency transformation is employed in this method. This frequency transformation can reflect the 2-D spatial variation. Residual phase compensation is also discussed. Numerical simulation verifies the method.

  6. A parametric study of rate of advance and area coverage rate performance of synthetic aperture radar.

    Energy Technology Data Exchange (ETDEWEB)

    Raynal, Ann Marie [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hensley, Jr., William H. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Burns, Bryan L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Doerry, Armin Walter [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2014-11-01

    The linear ground distance per unit time and ground area covered per unit time of producing synthetic aperture radar (SAR) imagery, termed rate of advance (ROA) and area coverage rate (ACR), are important metrics for platform and radar performance in surveillance applications. These metrics depend on many parameters of a SAR system such as wavelength, aircraft velocity, resolution, antenna beamwidth, imaging mode, and geometry. Often the effects of these parameters on rate of advance and area coverage rate are non-linear. This report addresses the impact of different parameter spaces as they relate to rate of advance and area coverage rate performance.

  7. A novel synthetic aperture technique for breast tomography with toroidal arrays

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lianjie [Los Alamos National Laboratory; Simonetti, Francesco [IMPERIAL COLLEGE

    2009-01-01

    Ultrasound is commonly used as an adjunct to mammography for diagnostic evaluation of suspicions arising from breast cancer screening. As an alternative to conventional sonography that uses hand-held transducers, toroidal array probes that encircle the breast immersed in a water bath have been investigated for ultrasound tomography. This paper introduces a new method for three-dimensional synthetic aperture diffraction tomography that maximizes the resolution in the scanning direction and provides quantitative reconstructions of the acoustic properties of the object. The method is validated by means of numerical simulations.

  8. Correction of motion measurement errors beyond the range resolution of a synthetic aperture radar

    Science.gov (United States)

    Doerry, Armin W.; Heard, Freddie E.; Cordaro, J. Thomas

    2008-06-24

    Motion measurement errors that extend beyond the range resolution of a synthetic aperture radar (SAR) can be corrected by effectively decreasing the range resolution of the SAR in order to permit measurement of the error. Range profiles can be compared across the slow-time dimension of the input data in order to estimate the error. Once the error has been determined, appropriate frequency and phase correction can be applied to the uncompressed input data, after which range and azimuth compression can be performed to produce a desired SAR image.

  9. Segmentation of synthetic aperture radar image using multiscale information measure-based spectral clustering

    Institute of Scientific and Technical Information of China (English)

    Haixia Xu; Zheng Tian; Mingtao Ding

    2008-01-01

    @@ A multiscale information measure (MIM), calculable from per-pixel wavelet coefficients, but relying on global statistics of synthetic aperture radar (SAR) image, is proposed. It fully exploits the variations in speckle pattern when the image resolution varies from course to fine, thus it can capture the intrinsic texture of the scene backscatter and the texture due to speckle simultaneously. Graph spectral segmentation methods based on MIM and the usual similarity measure are carried out on two real SAR images.Experimental results show that MIM can characterize texture information of SAR image more effectively than the commonly used similarity measure.

  10. In-Vivo Synthetic Aperture and Plane Wave High Frame Rate Cardiac Imaging

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Jensen, Jonas; Brandt, Andreas Hjelm;

    2014-01-01

    A comparison of synthetic aperture imaging using spherical and plane waves with low number of emission events is presented. For both wave types, a 90 degree sector is insonified using 15 emission events giving a frame rate of 200 frames per second. Field II simulations of point targets show simil.......43 for spherical and 0.70 for plane waves. All measures are well within FDA limits for cardiac imaging. In-vivo images of the heart of a healthy 28-year old volunteer are shown....

  11. Complex Wishart distribution based analysis of polarimetric synthetic aperture radar data

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Skriver, Henning; Conradsen, Knut

    2007-01-01

    Multi-look, polarimetric synthetic aperture radar (SAR) data are often worked with in the so-called covariance matrix representation. For each pixel this representation gives a 3x3 Hermitian, positive definite matrix which follows a complex Wishart distribution. Based on this distribution a test...... statistic for equality of two such matrices and an associated asymptotic probability for obtaining a smaller value of the test statistic are given and applied to change detection, edge detection and segmentation in polarimetric SAR data. In a case study EMISAR L-band data from 17 April 1998 and 20 May 1998...

  12. Discussion on Application of Polarimetric Synthetic Aperture Radar in Marine Surveillance

    Directory of Open Access Journals (Sweden)

    Zhang Jie

    2016-12-01

    Full Text Available Synthetic Aperture Radar (SAR, an important earth observation sensor, has been used in a wide range of applications for land and marine surveillance. Polarimetric SAR (PolSAR can obtain abundant scattering information of a target to improve the ability of target detection, classification, and quantitative inversion. In this paper, the important role of PolSAR in ocean monitoring is discussed with factors such as sea ice, ships, oil spill, waves, internal waves, and seabed topography. Moreover, the future development direction of PolSAR is put forward to get an inspiration for further research of PolSAR in marine surveillance applications.

  13. SIMULATION STUDY OF IMAGING OF UNDERWATER BOTTOM TOPOGRAPHY BY SYNTHETIC APERTURE RADAR

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Interaction between current and underwater bottom topography modulates roughness of the sea surface, which in turn yields variation of the radar scattering echo. By using the mechanism, this paper presents a simulation model for Synthetic Aperture Radar (SAR) imaging of underwater bottom topography. The numerical simulations experiments were made using the Princeton Ocean Model (POM) and analytical expression theory of SAR Image in Mischief sea area. It is concluded that the SAR image is better visual when water depth of underwater bottom topography is shallow or gradient of underwater bottom topography is high.

  14. Study on the Algorithm to Retrieve Precipitation with X-Band Synthetic Aperture Radar

    Institute of Scientific and Technical Information of China (English)

    XIE Yanan; HUAN Jianping; TAO Yang

    2010-01-01

    In order to obtain the global precipitation distribution data,this paper investigates the precipitation distribution model,the normalized radar cross-section model,and the retrieval algorithm with X-band synthetic aperture radar(X-SAR).A new retrieval algorithm based on the surface-scattering reference attenuation is developed to retrieve the rain rate above the ground surface.This new algorithm needs no statistical work load and has more extensive applications.Calculations using the new algorithm for three cases verify that the rainfall is retrieved with high precision,which proves the capability of the algorithm.

  15. Global mapping strategies for a synthetic aperture radar system in orbit about Venus

    Science.gov (United States)

    Kerridge, S. J.

    1980-01-01

    An analysis of the global mapping of Venus using a synthetic aperture radar (SAR) is presented. The geometry of the side-looking radar, the narrow swath width, and the slow rotation of Venus combine to constrain the methods required to produce such a map within the primary mapping mission of 121.5 days. Parametric studies indicate that multiple strategies can satisfy the requirements of the mission with reasonable assumptions for the total recording capacity, the downlink data rate, and the operating time of the SAR on each revolution.

  16. Coherent Performance Analysis of the HJ-1-C Synthetic Aperture Radar

    OpenAIRE

    Li Hai-ying; Zhang Shan-shan; Li Shi-qiang; Zhang Hua-chun

    2014-01-01

    Synthetic Aperture Radar (SAR) is a coherent imaging radar. Hence, coherence is critical in SAR imaging. In a coherent system, several sources can degrade performance. Based on the HJ-1-C SAR system implementation and sensor characteristics, this study evaluates the effect of frequency stability and pulse-to-pulse timing jitter on the SAR coherent performance. A stable crystal oscillator with short-term stability of 10×1.0−10 / 5 ms is used to generate the reference frequency by using a direc...

  17. Non-linear Imaging using an Experimental Synthetic Aperture Real Time Ultrasound Scanner

    DEFF Research Database (Denmark)

    Rasmussen, Joachim; Du, Yigang; Jensen, Jørgen Arendt

    2011-01-01

    This paper presents the first non-linear B-mode image of a wire phantom using pulse inversion attained via an experimental synthetic aperture real-time ultrasound scanner (SARUS). The purpose of this study is to implement and validate non-linear imaging on SARUS for the further development of new...... non-linear techniques. This study presents non-linear and linear B-mode images attained via SARUS and an existing ultrasound system as well as a Field II simulation. The non-linear image shows an improved spatial resolution and lower full width half max and -20 dB resolution values compared to linear...

  18. A spectral domain approach to modelling of EM scattering for Synthetic Aperture Radar target recognition

    Science.gov (United States)

    Sabry, R.; Vachon, P. W.

    2005-08-01

    A Fourier-based technique for electromagnetic (EM) wave reconstruction with application to polarimetric airborne and spaceborne radar data exploitation is presented. The method is different from conventional modelling techniques for Synthetic Aperture Radar (SAR) applications as a result of the full electromagnetic treatment of field interactions with the scatterer, the possibility of introducing new and controllable feature classes for target classification, and accurate decomposition of the source impulse response function that avoids potential errors (e.g. loss of coherent information) associated with the spherical phase approximations. The capability of extracting scatterer information such as the coherent radar cross section (RCS) is explored.

  19. Towards a Semantic Interpretation of Urban Areas with Airborne Synthetic Aperture Radar Tomography

    Science.gov (United States)

    D'Hondt, O.; Guillaso, S.; Hellwich, O.

    2016-06-01

    In this paper, we introduce a method to detect and reconstruct building parts from tomographic Synthetic Aperture Radar (SAR) airborne data. Our approach extends recent works in two ways: first, the radiometric information is used to guide the extraction of geometric primitives. Second, building facades and roofs are extracted thanks to geometric classification rules. We demonstrate our method on a 3 image L-Band airborne dataset over the city of Dresden, Germany. Experiments show how our technique allows to use the complementarity between the radiometric image and the tomographic point cloud to extract buildings parts in challenging situations.

  20. Research into a Single-aperture Light Field Camera System to Obtain Passive Ground-based 3D Imagery of LEO Objects

    Science.gov (United States)

    Bechis, K.; Pitruzzello, A.

    2014-09-01

    This presentation describes our ongoing research into using a ground-based light field camera to obtain passive, single-aperture 3D imagery of LEO objects. Light field cameras are an emerging and rapidly evolving technology for passive 3D imaging with a single optical sensor. The cameras use an array of lenslets placed in front of the camera focal plane, which provides angle of arrival information for light rays originating from across the target, allowing range to target and 3D image to be obtained from a single image using monocular optics. The technology, which has been commercially available for less than four years, has the potential to replace dual-sensor systems such as stereo cameras, dual radar-optical systems, and optical-LIDAR fused systems, thus reducing size, weight, cost, and complexity. We have developed a prototype system for passive ranging and 3D imaging using a commercial light field camera and custom light field image processing algorithms. Our light field camera system has been demonstrated for ground-target surveillance and threat detection applications, and this paper presents results of our research thus far into applying this technology to the 3D imaging of LEO objects. The prototype 3D imaging camera system developed by Northrop Grumman uses a Raytrix R5 C2GigE light field camera connected to a Windows computer with an nVidia graphics processing unit (GPU). The system has a frame rate of 30 Hz, and a software control interface allows for automated camera triggering and light field image acquisition to disk. Custom image processing software then performs the following steps: (1) image refocusing, (2) change detection, (3) range finding, and (4) 3D reconstruction. In Step (1), a series of 2D images are generated from each light field image; the 2D images can be refocused at up to 100 different depths. Currently, steps (1) through (3) are automated, while step (4) requires some user interaction. A key requirement for light field camera

  1. Structural optimization of 3D-printed synthetic spider webs for high strength

    Science.gov (United States)

    Qin, Zhao; Compton, Brett G.; Lewis, Jennifer A.; Buehler, Markus J.

    2015-05-01

    Spiders spin intricate webs that serve as sophisticated prey-trapping architectures that simultaneously exhibit high strength, elasticity and graceful failure. To determine how web mechanics are controlled by their topological design and material distribution, here we create spider-web mimics composed of elastomeric filaments. Specifically, computational modelling and microscale 3D printing are combined to investigate the mechanical response of elastomeric webs under multiple loading conditions. We find the existence of an asymptotic prey size that leads to a saturated web strength. We identify pathways to design elastomeric material structures with maximum strength, low density and adaptability. We show that the loading type dictates the optimal material distribution, that is, a homogeneous distribution is better for localized loading, while stronger radial threads with weaker spiral threads is better for distributed loading. Our observations reveal that the material distribution within spider webs is dictated by the loading condition, shedding light on their observed architectural variations.

  2. Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization.

    Science.gov (United States)

    Cetin, M; Karl, W C

    2001-01-01

    We develop a method for the formation of spotlight-mode synthetic aperture radar (SAR) images with enhanced features. The approach is based on a regularized reconstruction of the scattering field which combines a tomographic model of the SAR observation process with prior information regarding the nature of the features of interest. Compared to conventional SAR techniques, the method we propose produces images with increased resolution, reduced sidelobes, reduced speckle and easier-to-segment regions. Our technique effectively deals with the complex-valued, random-phase nature of the underlying SAR reflectivities. An efficient and robust numerical solution is achieved through extensions of half-quadratic regularization methods to the complex-valued SAR problem. We demonstrate the performance of the method on synthetic and real SAR scenes.

  3. A large dataset of synthetic SEM images of powder materials and their ground truth 3D structures.

    Science.gov (United States)

    DeCost, Brian L; Holm, Elizabeth A

    2016-12-01

    This data article presents a data set comprised of 2048 synthetic scanning electron microscope (SEM) images of powder materials and descriptions of the corresponding 3D structures that they represent. These images were created using open source rendering software, and the generating scripts are included with the data set. Eight particle size distributions are represented with 256 independent images from each. The particle size distributions are relatively similar to each other, so that the dataset offers a useful benchmark to assess the fidelity of image analysis techniques. The characteristics of the PSDs and the resulting images are described and analyzed in more detail in the research article "Characterizing powder materials using keypoint-based computer vision methods" (B.L. DeCost, E.A. Holm, 2016) [1]. These data are freely available in a Mendeley Data archive "A large dataset of synthetic SEM images of powder materials and their ground truth 3D structures" (B.L. DeCost, E.A. Holm, 2016) located at http://dx.doi.org/10.17632/tj4syyj9mr.1[2] for any academic, educational, or research purposes.

  4. A large dataset of synthetic SEM images of powder materials and their ground truth 3D structures

    Directory of Open Access Journals (Sweden)

    Brian L. DeCost

    2016-12-01

    Full Text Available This data article presents a data set comprised of 2048 synthetic scanning electron microscope (SEM images of powder materials and descriptions of the corresponding 3D structures that they represent. These images were created using open source rendering software, and the generating scripts are included with the data set. Eight particle size distributions are represented with 256 independent images from each. The particle size distributions are relatively similar to each other, so that the dataset offers a useful benchmark to assess the fidelity of image analysis techniques. The characteristics of the PSDs and the resulting images are described and analyzed in more detail in the research article “Characterizing powder materials using keypoint-based computer vision methods” (B.L. DeCost, E.A. Holm, 2016 [1]. These data are freely available in a Mendeley Data archive “A large dataset of synthetic SEM images of powder materials and their ground truth 3D structures” (B.L. DeCost, E.A. Holm, 2016 located at http://dx.doi.org/10.17632/tj4syyj9mr.1 [2] for any academic, educational, or research purposes.

  5. Temporal Stability of Soil Moisture and Radar Backscatter Observed by the Advanced Synthetic Aperture Radar (ASAR).

    Science.gov (United States)

    Wagner, Wolfgang; Pathe, Carsten; Doubkova, Marcela; Sabel, Daniel; Bartsch, Annett; Hasenauer, Stefan; Blöschl, Günter; Scipal, Klaus; Martínez-Fernández, José; Löw, Alexander

    2008-02-21

    The high spatio-temporal variability of soil moisture is the result of atmosphericforcing and redistribution processes related to terrain, soil, and vegetation characteristics.Despite this high variability, many field studies have shown that in the temporal domainsoil moisture measured at specific locations is correlated to the mean soil moisture contentover an area. Since the measurements taken by Synthetic Aperture Radar (SAR)instruments are very sensitive to soil moisture it is hypothesized that the temporally stablesoil moisture patterns are reflected in the radar backscatter measurements. To verify this hypothesis 73 Wide Swath (WS) images have been acquired by the ENVISAT AdvancedSynthetic Aperture Radar (ASAR) over the REMEDHUS soil moisture network located inthe Duero basin, Spain. It is found that a time-invariant linear relationship is well suited forrelating local scale (pixel) and regional scale (50 km) backscatter. The observed linearmodel coefficients can be estimated by considering the scattering properties of the terrainand vegetation and the soil moisture scaling properties. For both linear model coefficients,the relative error between observed and modelled values is less than 5 % and thecoefficient of determination (R²) is 86 %. The results are of relevance for interpreting anddownscaling coarse resolution soil moisture data retrieved from active (METOP ASCAT)and passive (SMOS, AMSR-E) instruments.

  6. Bistatic synthetic aperture radar imaging using ultraNarrowband continuous waveforms.

    Science.gov (United States)

    Wang, Ling; Yazici, Birsen

    2012-08-01

    We consider synthetic aperture radar (SAR) imaging using ultra-narrowband continuous waveforms (CW). Due to the high Doppler resolution of CW signals, we refer to this imaging modality as Doppler Synthetic Aperture Radar (DSAR). We present a novel model and an image formation method for the bistatic DSAR for arbitrary imaging geometries. Our bistatic DSAR model is formed by correlating the translated version of the received signal with a scaled or frequencyshifted version of the transmitted CW signal over a finite time window. High frequency analysis of the resulting model shows that the correlated signal is the projections of the scene reflectivity onto the bistatic iso-Doppler curves. We next use microlocal techniques to develop a filtered-backprojection (FBP) type image reconstruction method. The FBP inversion results in backprojection of the correlated signal onto the bistatic iso- Doppler curves as opposed to the bistatic iso-range curves, performed in the traditional wideband SAR imaging. We show that our method takes advantage of the velocity, as well as the acceleration of the antennas in certain directions to form a high resolution SAR image. Our bistatic DSAR imaging method is applicable for arbitrary flight trajectories, nonflat topography, and can accommodate system related parameters. We present resolution analysis and extensive numerical experiments to demonstrate the performance of our imaging method.

  7. Bistatic Synthetic Aperture Radar Imaging of Moving Targets using Ultra-Narrowband Continuous Waveforms

    CERN Document Server

    Wang, Ling

    2013-01-01

    We consider a synthetic aperture radar (SAR) system that uses ultra-narrowband continuous waveforms (CW) as an illumination source. Such a system has many practical advantages, such as the use of relatively simple, low-cost and low-power transmitters, and in some cases, using the transmitters of opportunity, such as TV, radio stations. Additionally, ultra-narrowband CW signals are suitable for motion estimation due to their ability to acquire high resolution Doppler information. In this paper, we present a novel synthetic aperture imaging method for moving targets using a bi-static SAR system transmitting ultra-narrowband continuous waveforms. Our method exploits the high Doppler resolution provided by ultra-narrowband CW signals to image both the scene reflectivity and to determine the velocity of multiple moving targets. Starting from the first principle, we develop a novel forward model based on the temporal Doppler induced by the movement of antennas and moving targets. We form the reflectivity image of t...

  8. Change Detection in Synthetic Aperture Radar Images Based on Deep Neural Networks.

    Science.gov (United States)

    Gong, Maoguo; Zhao, Jiaojiao; Liu, Jia; Miao, Qiguang; Jiao, Licheng

    2016-01-01

    This paper presents a novel change detection approach for synthetic aperture radar images based on deep learning. The approach accomplishes the detection of the changed and unchanged areas by designing a deep neural network. The main guideline is to produce a change detection map directly from two images with the trained deep neural network. The method can omit the process of generating a difference image (DI) that shows difference degrees between multitemporal synthetic aperture radar images. Thus, it can avoid the effect of the DI on the change detection results. The learning algorithm for deep architectures includes unsupervised feature learning and supervised fine-tuning to complete classification. The unsupervised feature learning aims at learning the representation of the relationships between the two images. In addition, the supervised fine-tuning aims at learning the concepts of the changed and unchanged pixels. Experiments on real data sets and theoretical analysis indicate the advantages, feasibility, and potential of the proposed method. Moreover, based on the results achieved by various traditional algorithms, respectively, deep learning can further improve the detection performance.

  9. Onboard Data Compression of Synthetic Aperture Radar Data: Status and Prospects

    Science.gov (United States)

    Klimesh, Matthew A.; Moision, Bruce

    2008-01-01

    Synthetic aperture radar (SAR) instruments on spacecraft are capable of producing huge quantities of data. Onboard lossy data compression is commonly used to reduce the burden on the communication link. In this paper an overview is given of various SAR data compression techniques, along with an assessment of how much improvement is possible (and practical) and how to approach the problem of obtaining it. Synthetic aperture radar (SAR) instruments on spacecraft are capable of acquiring huge quantities of data. As a result, the available downlink rate and onboard storage capacity can be limiting factors in mission design for spacecraft with SAR instruments. This is true both for Earth-orbiting missions and missions to more distant targets such as Venus, Titan, and Europa. (Of course for missions beyond Earth orbit downlink rates are much lower and thus potentially much more limiting.) Typically spacecraft with SAR instruments use some form of data compression in order to reduce the storage size and/or downlink rate necessary to accommodate the SAR data. Our aim here is to give an overview of SAR data compression strategies that have been considered, and to assess the prospects for additional improvements.

  10. Rapid raw data simulation for fixed-receiver bistatic interferometric synthetic aperture radar

    Science.gov (United States)

    Yan, Feifei; Chang, Wenge; Li, Xiangyang

    2016-07-01

    Raw data simulation of synthetic aperture radar (SAR) is useful for system designing, mission planning, and testing of imaging algorithms. According to the two-dimensional (2-D) frequency spectrum of the fixed-receiver bistatic SAR system, a rapid raw data simulation approach is proposed. With the combination of 2-D inverse Stolt transform in the 2-D frequency domain and phase compensation in the range-Doppler frequency domain, our approach can significantly reduce the simulation time. Therefore, simulations of extended scenes can be performed much more easily. Moreover, the proposed algorithm offers high accuracy of phase distribution, therefore, it can be used for single-pass fixed-receiver bistatic interferometric usage. The proposal is verified by extensive simulations of point targets and extended scene, in which the results indicate the feasibility as well as the effectiveness of our approach. In the end, the accuracy of phase distribution of the proposed algorithm is further examined with simulations of synthetic aperture radar interferometry.

  11. Synthetic aperture microwave imaging with active probing for fusion plasma diagnostics

    CERN Document Server

    Shevchenko, Vladimir F; Freethy, Simon J; Huang, Billy K

    2012-01-01

    A Synthetic Aperture Microwave Imaging (SAMI) system has been designed and built to obtain 2-D images at several frequencies from fusion plasmas. SAMI uses a phased array of linearly polarised antennas. The array configuration has been optimised to achieve maximum synthetic aperture beam efficiency. The signals received by antennas are down-converted to the intermediate frequency range and then recorded in a full vector form. Full vector signals allow beam focusing and image reconstruction in both real time and a post processing mode. SAMI can scan over 16 preprogrammed frequencies in the range of 10-35GHz with a switching time of 300ns. The system operates in 2 different modes simultaneously: both a passive imaging of plasma emission and also an active imaging of the back-scattered signal of the radiation launched by one of the antennas from the same array. This second mode is similar to so-called Doppler backscattering (DBS) reflectometry with 2-D resolution of the propagation velocity of turbulent structur...

  12. Synthetic aperture microwave imaging with active probing for fusion plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Shevchenko, Vladimir F.; Freethy, Simon J.; Huang, Billy K. [EURATOM/CCFE Fusion Association, Culham, Abingdon, Oxon, 0X14 3DB (United Kingdom); Vann, Roddy G. L. [York Plasma Institute, Dept. of Physics, University of York, York YO10 5DD (United Kingdom)

    2014-08-21

    A Synthetic Aperture Microwave Imaging (SAMI) system has been designed and built to obtain 2-D images at several frequencies from fusion plasmas. SAMI uses a phased array of linearly polarised antennas. The array configuration has been optimised to achieve maximum synthetic aperture beam efficiency. The signals received by antennas are down-converted to the intermediate frequency range and then recorded in a full vector form. Full vector signals allow beam focusing and image reconstruction in both real time and a post-processing mode. SAMI can scan over 16 pre-programmed frequencies in the range of 10-35GHz with a switching time of 300ns. The system operates in 2 different modes simultaneously: both a 'passive' imaging of plasma emission and also an 'active' imaging of the back-scattered signal of the radiation launched by one of the antennas from the same array. This second mode is similar to so-called Doppler backscattering (DBS) reflectometry with 2-D resolution of the propagation velocity of turbulent structures. Both modes of operation show good performance in fusion plasma experiments on Mega Amp Spherical Tokamak (MAST). We have obtained the first ever 2-D images of BXO mode conversion windows. With active probing, first ever turbulence velocity maps have been obtained. We present an overview of the diagnostic and discuss recent results. In contrast to quasi-optical microwave imaging systems SAMI requires neither big aperture viewing ports nor large 2-D detector arrays to achieve the desired imaging resolution. The number of effective 'pixels' of the synthesized image is proportional to the number of receiving antennas squared. Thus only a small number of optimised antennas is sufficient for the majority of applications. Possible implementation of SAMI on ITERand DEMO is discussed.

  13. Synthetic aperture microwave imaging with active probing for fusion plasma diagnostics

    Science.gov (United States)

    Shevchenko, Vladimir F.; Freethy, Simon J.; Huang, Billy K.; Vann, Roddy G. L.

    2014-08-01

    A Synthetic Aperture Microwave Imaging (SAMI) system has been designed and built to obtain 2-D images at several frequencies from fusion plasmas. SAMI uses a phased array of linearly polarised antennas. The array configuration has been optimised to achieve maximum synthetic aperture beam efficiency. The signals received by antennas are down-converted to the intermediate frequency range and then recorded in a full vector form. Full vector signals allow beam focusing and image reconstruction in both real time and a post-processing mode. SAMI can scan over 16 pre-programmed frequencies in the range of 10-35GHz with a switching time of 300ns. The system operates in 2 different modes simultaneously: both a 'passive' imaging of plasma emission and also an 'active' imaging of the back-scattered signal of the radiation launched by one of the antennas from the same array. This second mode is similar to so-called Doppler backscattering (DBS) reflectometry with 2-D resolution of the propagation velocity of turbulent structures. Both modes of operation show good performance in fusion plasma experiments on Mega Amp Spherical Tokamak (MAST). We have obtained the first ever 2-D images of BXO mode conversion windows. With active probing, first ever turbulence velocity maps have been obtained. We present an overview of the diagnostic and discuss recent results. In contrast to quasi-optical microwave imaging systems SAMI requires neither big aperture viewing ports nor large 2-D detector arrays to achieve the desired imaging resolution. The number of effective 'pixels' of the synthesized image is proportional to the number of receiving antennas squared. Thus only a small number of optimised antennas is sufficient for the majority of applications. Possible implementation of SAMI on ITERand DEMO is discussed.

  14. Advanced 3-D Ultrasound Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer

    The main purpose of the PhD project was to develop methods that increase the 3-D ultrasound imaging quality available for the medical personnel in the clinic. Acquiring a 3-D volume gives the medical doctor the freedom to investigate the measured anatomy in any slice desirable after the scan has...... been completed. This allows for precise measurements of organs dimensions and makes the scan more operator independent. Real-time 3-D ultrasound imaging is still not as widespread in use in the clinics as 2-D imaging. A limiting factor has traditionally been the low image quality achievable using...... Field II simulations and measurements with the ultrasound research scanner SARUS and a 3.5MHz 1024 element 2-D transducer array. In all investigations, 3-D synthetic aperture imaging achieved a smaller main-lobe, lower sidelobes, higher contrast, and better signal to noise ratio than parallel...

  15. Application of synthetic aperture radar interferometry for mine subsidence monitoring in the western United States

    Science.gov (United States)

    Wempen, Jessica Michelle

    Differential Interferometric Synthetic Aperture Radar (DInSAR), a satellite-based remote sensing technique, is a practical method for measuring deformation of the earth's surface. In this investigation, the application of DInSAR for monitoring mine subsidence was evaluated for active underground mining regions in the Green River Basin in southwest Wyoming and the Wasatch Plateau in central Utah. Interferograms were generated using X-band (3-cm wavelength) Synthetic Aperture Radar data from the TerraSAR-X mission and L-band (24-cm wavelength) Synthetic Aperture Radar data from the Advanced Land Observing Satellite. In general, the DInSAR data have high spatial and temporal resolutions and show gradual, progressive subsidence. In the Green River Basin, displacements were estimated using both L-band and X-band data. In the Wasatch Plateau, displacements were only estimated using L-band data; areas affected by subsidence are identifiable in the X-band data, but precisely quantifying subsidence magnitudes is difficult as a result of significant phase noise. In the Green River Basin, the maximum subsidence magnitude was 150 cm over 690 days, estimated using L-band DInSAR. In the Wasatch Plateau, the maximum subsidence magnitude was 180 cm over 414 days. In both regions, as a result of low coherence in the areas with large displacements, the maximum displacements may be underestimated by tens of centimeters. Additionally, relationships between surface deformations measured by DInSAR and mining-induced seismicity (MIS) in the Green River Basin and the Wasatch Plateau were explored. Both regions exhibit large magnitude, relatively rapid subsidence, but the characteristics (rates and magnitudes) of MIS in the Wasatch Plateau study region and the Green River Basin are significantly different. In the Wasatch Plateau study region, surface displacements tend to precede seismicity, event rates tend to be high, and event magnitudes tend to be relatively low. In the Green River

  16. Exact spectrum of non-linear chirp scaling and its application in geosynchronous synthetic aperture radar imaging

    Directory of Open Access Journals (Sweden)

    Chen Qi

    2013-07-01

    Full Text Available Non-linear chirp scaling (NLCS is a feasible method to deal with time-variant frequency modulation (FM rate problem in synthetic aperture radar (SAR imaging. However, approximations in derivation of NLCS spectrum lead to performance decline in some cases. Presented is the exact spectrum of the NLCS function. Simulation with a geosynchronous synthetic aperture radar (GEO-SAR configuration is implemented. The results show that using the presented spectrum can significantly improve imaging performance, and the NLCS algorithm is suitable for GEO-SAR imaging after modification.

  17. CLASSIFIER FUSION OF HIGH-RESOLUTION OPTICAL AND SYNTHETIC APERTURE RADAR (SAR SATELLITE IMAGERY FOR CLASSIFICATION IN URBAN AREA

    Directory of Open Access Journals (Sweden)

    T. Alipour Fard

    2014-10-01

    Full Text Available This study concerned with fusion of synthetic aperture radar and optical satellite imagery. Due to the difference in the underlying sensor technology, data from synthetic aperture radar (SAR and optical sensors refer to different properties of the observed scene and it is believed that when they are fused together, they complement each other to improve the performance of a particular application. In this paper, two category of features are generate and six classifier fusion operators implemented and evaluated. Implementation results show significant improvement in the classification accuracy.

  18. Remote sensing of land scenarios with an airborne 94-GHz synthetic aperture radar

    Science.gov (United States)

    Essen, Helmut; Makaruschka, R.; Baars, E. Peter

    1996-06-01

    The scattering process of electromagnetic waves is dominated by the match between wavelength and the geometric dimensions of surface structures. With respect to the microwave radar bands millimeter-waves are better matched to small surface features of terrain. Therefore this frequency band is able to gain additional information on the terrain of interest. For high resolution imaging SAR is the favorite solution also for millimeter-wave frequencies. Compared to more classical radar bands millimeter-waves offer advantages in the SAR processing, because due to the higher primary resolution at a given antenna aperture sources of image distortions such as range migration or depth of focus can be neglected at these frequencies. Moreover the inherently short aperture time for a given resolution improves the relation to the time constant of flight instabilities and makes motion compensation a simple process. A coherent, polarimetric, high range resolution radar, operating at a nominal frequency of 94 GHz, has been installed onboard an aircraft to allow remote sensing measurements in a side looking synthetic aperture approach. The radar-raw-data were registered together with time code and inertial data of the aircraft and later on evaluated by an off-line SAR-processor. The resulting images then had to undergo an automatic recognition process to extract certain complex targets using a knowledge based production system. The paper describes the measurement system and discusses the evaluation procedures with emphasis on the applied SAR algorithm. Examples of radar images at 94 GHz are shown and samples of pattern recognition derived from the SAR images are shown.

  19. Three-dimensional interferometric inverse synthetic aperture radar imaging of maneuvering target based on the joint cross modified Wigner-Ville distribution

    Science.gov (United States)

    Lv, Qian; Su, Tao; Zheng, Jibin; Zhang, Jiancheng

    2016-01-01

    Inverse synthetic aperture radar (ISAR) can achieve high-resolution two-dimensional images of maneuvering targets. However, due to the indeterminate relative motion between radar and target, ISAR imaging does not provide the three-dimensional (3-D) position information of a target and suffers from great difficulty in target recognition. To tackle this issue, a 3-D interferometric ISAR (InISAR) imaging algorithm based on the joint cross modified Wigner-Ville distribution (MWVD) is presented to form 3-D images of maneuvering targets. First, we form two orthogonal interferometric baselines with three receiving antennas to establish an InISAR imaging system. Second, after the uniform range alignment and phase adjustment, the joint cross MWVD is used for all range cell of each antenna pair to generate the separation of the scatterer as well as preserve the phase that contains position information of the scatterer. At last, the 3-D images of the target can be directly reconstructed from the distribution. Simulation results demonstrate the validity of the proposal.

  20. Theory of Waveform-Diverse Moving-Target Spotlight Synthetic-Aperture Radar

    CERN Document Server

    Cheney, Margaret

    2011-01-01

    We develop a theory for waveform-diverse moving-target synthetic-aperture radar, in the case in which a single moving antenna is used for both transmitting and receiving. We assume that the targets (scattering objects) are moving linearly, but we allow an arbitrary, known flight path for the antenna and allow it to transmit a sequence of arbitrary, known waveforms. A formula for phase space (position and velocity) imaging is developed, and we provide a formula for the point-spread function of the corresponding imaging system. This point-spread function is expressed in terms of the ordinary radar ambiguity function. As an example, we show how the theory can be applied to the problem of estimating the errors that arise when target and antenna motion is neglected during the transit time of each pulse.

  1. Mesoscale Near-Surface Wind Speed Variability Mapping with Synthetic Aperture Radar.

    Science.gov (United States)

    Young, George; Sikora, Todd; Winstead, Nathaniel

    2008-11-05

    Operationally-significant wind speed variability is often observed within synthetic aperture radar-derived wind speed (SDWS) images of the sea surface. This paper is meant as a first step towards automated distinguishing of meteorological phenomena responsible for such variability. In doing so, the research presented in this paper tests feature extraction and pixel aggregation techniques focused on mesoscale variability of SDWS. A sample of twenty eight SDWS images possessing varying degrees of near-surface wind speed variability were selected to serve as case studies. Gaussian high- and low-pass, local entropy, and local standard deviation filters performed well for the feature extraction portion of the research while principle component analysis of the filtered data performed well for the pixel aggregation. The findings suggest recommendations for future research.

  2. Statistical-physical model for foliage clutter in ultra-wideband synthetic aperture radar images.

    Science.gov (United States)

    Banerjee, Amit; Chellappa, Rama

    2003-01-01

    Analyzing foliage-penetrating (FOPEN) ultra-wideband synthetic aperture radar (SAR) images is a challenging problem owing to the noisy and impulsive nature of foliage clutter. Indeed, many target-detection algorithms for FOPEN SAR data are characterized by high false-alarm rates. In this work, a statistical-physical model for foliage clutter is proposed that explains the presence of outliers in the data and suggests the use of symmetric alpha-stable (SalphaS) distributions for accurate clutter modeling. Furthermore, with the use of general assumptions of the noise sources and propagation conditions, the proposed model relates the parameters of the SalphaS model to physical parameters such as the attenuation coefficient and foliage density.

  3. Concepts and Technologies for Synthetic Aperture Radar from MEO and Geosynchronous orbits

    Science.gov (United States)

    Edelstein, Wendy N.; Madsen, Soren; Moussessian, Alina; Chen, Curtis

    2004-01-01

    The area accessible from a spaceborne imaging radar, e.g. a synthetic aperture radar (SAR), generally increases with the elevation of the satellite while the map coverage rate is a more complicated function of platform velocity and beam agility. The coverage of a low Earth orbit (LEO) satellite is basically given by the fast ground velocity times the relatively narrow swath width. The instantaneously accessible area will be limited to some hundreds of kilometers away from the sub-satellite point. In the other extreme, the sub-satellite point of a SAR in geosynchronous orbit will move relatively slowly, while the area which can be accessed at any given time is very large, reaching thousands of kilometers from the subsatellite point. To effective1y use the accessibility provided by a high vantage point, very large antennas with electronically steered beams are required.

  4. General adaptive-neighborhood technique for improving synthetic aperture radar interferometric coherence estimation.

    Science.gov (United States)

    Vasile, Gabriel; Trouvé, Emmanuel; Ciuc, Mihai; Buzuloiu, Vasile

    2004-08-01

    A new method for filtering the coherence map issued from synthetic aperture radar (SAR) interferometric data is presented. For each pixel of the interferogram, an adaptive neighborhood is determined by a region-growing technique driven by the information provided by the amplitude images. Then pixels in the derived adaptive neighborhood are complex averaged to yield the filtered value of the coherence, after a phase-compensation step is performed. An extension of the algorithm is proposed for polarimetric interferometric SAR images. The proposed method has been applied to both European Remote Sensing (ERS) satellite SAR images and airborne high-resolution polarimetric interferometric SAR images. Both subjective and objective performance analysis, including coherence edge detection, shows that the proposed method provides better results than the standard phase-compensated fixed multilook filter and the Lee adaptive coherence filter.

  5. Scene estimation from speckled synthetic aperture radar imagery: Markov-random-field approach.

    Science.gov (United States)

    Lankoande, Ousseini; Hayat, Majeed M; Santhanam, Balu

    2006-06-01

    A novel Markov-random-field model for speckled synthetic aperture radar (SAR) imagery is derived according to the physical, spatial statistical properties of speckle noise in coherent imaging. A convex Gibbs energy function for speckled images is derived and utilized to perform speckle-compensating image estimation. The image estimation is formed by computing the conditional expectation of the noisy image at each pixel given its neighbors, which is further expressed in terms of the derived Gibbs energy function. The efficacy of the proposed technique, in terms of reducing speckle noise while preserving spatial resolution, is studied by using both real and simulated SAR imagery. Using a number of commonly used metrics, the performance of the proposed technique is shown to surpass that of existing speckle-noise-filtering methods such as the Gamma MAP, the modified Lee, and the enhanced Frost.

  6. Physics-Based Predictions for Coherent Change Detection Using X-Band Synthetic Aperture Radar

    Directory of Open Access Journals (Sweden)

    Mark Preiss

    2005-12-01

    Full Text Available A theoretical model is developed to describe the interferometric coherency between pairs of SAR images of rough soil surfaces. The model is derived using a dyadic form for surface reflectivity in the Kirchhoff approximation. This permits the combination of Kirchhoff theory and spotlight synthetic aperture radar (SAR image formation theory. The resulting model is used to describe the interferometric coherency between pairs of SAR images of rough soil surfaces. The theoretical model is applied to SAR images formed before and after surface changes observed by a repeat-pass SAR system. The change in surface associated with a tyre track following vehicle passage is modelled and SAR coherency estimates are obtained. Predicted coherency distributions for both the change and no-change scenarios are used to estimate receiver operator curves for the detection of the changes using a high-resolution, X-band SAR system.

  7. Coherence estimation in synthetic aperture radar data based on speckle noise modeling.

    Science.gov (United States)

    López-Martínez, Carlos; Pottier, Eric

    2007-02-01

    In the past we proposed a multidimensional speckle noise model to which we now include systematic phase variation effects. This extension makes it possible to define what is believed to be a novel coherence model able to identify the different sources of bias when coherence is estimated on multidimensional synthetic radar aperture (SAR) data. On the one hand, low coherence biases are basically due to the complex additive speckle noise component of the Hermitian product of two SAR images. On the other hand, the availability of the coherence model permits us to quantify the bias due to topography when multilook filtering is considered, permitting us to establish the conditions upon which information may be estimated independently of topography. Based on the coherence model, two coherence estimation approaches, aiming to reduce the different biases, are proposed. Results with simulated and experimental polarimetric and interferometric SAR data illustrate and validate both, the coherence model and the coherence estimation algorithms.

  8. Target-adaptive polarimetric synthetic aperture radar target discrimination using maximum average correlation height filters.

    Science.gov (United States)

    Sadjadi, Firooz A; Mahalanobis, Abhijit

    2006-05-01

    We report the development of a technique for adaptive selection of polarization ellipse tilt and ellipticity angles such that the target separation from clutter is maximized. From the radar scattering matrix [S] and its complex components, in phase and quadrature phase, the elements of the Mueller matrix are obtained. Then, by means of polarization synthesis, the radar cross section of the radar scatters are obtained at different transmitting and receiving polarization states. By designing a maximum average correlation height filter, we derive a target versus clutter distance measure as a function of four transmit and receive polarization state angles. The results of applying this method on real synthetic aperture radar imagery indicate a set of four transmit and receive angles that lead to maximum target versus clutter discrimination. These optimum angles are different for different targets. Hence, by adaptive control of the state of polarization of polarimetric radar, one can noticeably improve the discrimination of targets from clutter.

  9. Efficient Terahertz Wide-Angle NUFFT-Based Inverse Synthetic Aperture Imaging Considering Spherical Wavefront.

    Science.gov (United States)

    Gao, Jingkun; Deng, Bin; Qin, Yuliang; Wang, Hongqiang; Li, Xiang

    2016-12-14

    An efficient wide-angle inverse synthetic aperture imaging method considering the spherical wavefront effects and suitable for the terahertz band is presented. Firstly, the echo signal model under spherical wave assumption is established, and the detailed wavefront curvature compensation method accelerated by 1D fast Fourier transform (FFT) is discussed. Then, to speed up the reconstruction procedure, the fast Gaussian gridding (FGG)-based nonuniform FFT (NUFFT) is employed to focus the image. Finally, proof-of-principle experiments are carried out and the results are compared with the ones obtained by the convolution back-projection (CBP) algorithm. The results demonstrate the effectiveness and the efficiency of the presented method. This imaging method can be directly used in the field of nondestructive detection and can also be used to provide a solution for the calculation of the far-field RCSs (Radar Cross Section) of targets in the terahertz regime.

  10. On the importance of path for phase unwrapping in synthetic aperture radar interferometry.

    Science.gov (United States)

    Osmanoglu, Batuhan; Dixon, Timothy H; Wdowinski, Shimon; Cabral-Cano, Enrique

    2011-07-01

    Phase unwrapping is a key procedure in interferometric synthetic aperture radar studies, translating ambiguous phase observations to topography, and surface deformation estimates. Some unwrapping algorithms are conducted along specific paths based on different selection criteria. In this study, we analyze six unwrapping paths: line scan, maximum coherence, phase derivative variance, phase derivative variance with branch-cut, second-derivative reliability, and the Fisher distance. The latter is a new path algorithm based on Fisher information theory, which combines the phase derivative with the expected variance to get a more robust path, potentially performing better than others in the case of low image quality. In order to compare only the performance of the paths, the same unwrapping function (phase derivative integral) is used. Results indicate that the Fisher distance algorithm gives better results in most cases.

  11. Synthetic aperture radar image correlation by use of preprocessing for enhancement of scattering centers.

    Science.gov (United States)

    Khoury, J; Gianino, P D; Woods, C L

    2000-10-15

    We demonstrate that a significant improvement can be obtained in the recognition of complicated synthetic aperture radar images taken from the Moving and Stationary Target Acquisitions and Recognition database. These images typically have a low number of scattering centers and high noise. We first preprocess the images and the templates formed from them so that their scattering centers are enhanced. Our technique can produce high-quality performance in several correlation criteria. For realistic automatic target recognition systems, our approach should make it easy to implement optical recognition systems with binarized data for many different types of correlation filter and should have a great effect on feeding data-compressed (binarized) information into either digital or optical processors.

  12. Digital Beamforming Synthetic Aperture Radar Developments at NASA Goddard Space Flight Center

    Science.gov (United States)

    Rincon, Rafael; Fatoyinbo, Temilola; Osmanoglu, Batuhan; Lee, Seung Kuk; Du Toit, Cornelis F.; Perrine, Martin; Ranson, K. Jon; Sun, Guoqing; Deshpande, Manohar; Beck, Jaclyn; Lu, Daniel; Bollian, Tobias

    2016-01-01

    Advanced Digital Beamforming (DBF) Synthetic Aperture Radar (SAR) technology is an area of research and development pursued at the NASA Goddard Space Flight Center (GSFC). Advanced SAR architectures enhances radar performance and opens a new set of capabilities in radar remote sensing. DBSAR-2 and EcoSAR are two state-of-the-art radar systems recently developed and tested. These new instruments employ multiple input-multiple output (MIMO) architectures characterized by multi-mode operation, software defined waveform generation, digital beamforming, and configurable radar parameters. The instruments have been developed to support several disciplines in Earth and Planetary sciences. This paper describes the radars advanced features and report on the latest SAR processing and calibration efforts.

  13. Focusing Azimuth-Invariant Bistatic Synthetic Aperture Radar Data Based on a Polynomial Model

    Institute of Scientific and Technical Information of China (English)

    ZHONG Hua; LIU Xing-zhao; WANG Jun-feng

    2009-01-01

    In this paper, a focusing approach is presented to widen the use of efficient monostatic imaging algorithms for azimuth-invariant bistatic synthetic aperture radar (SAR) data. The bistatic range history is modeled by a polynomial of azimuth time. Using this model, an analytic form of the signal spectrum in the 2D frequency domain is derived, and a simple single-valued relation between the transmitter and receive ranges is established. In this way, a lot of monostatic image formation algorithms can be extended for the bistatic SAR data, and a bistatic chirp scaling algorithm is developed as an application of the new approach. This algorithm can be used to process the azimuth-invariant bistatic configuration where the transmitter and receiver platforms are moving on parallel tracks with the same velocity. In addition, some simulation results are given to demonstrate the validity of the proposed approach.

  14. Moving target detection in foliage using along track monopulse synthetic aperture radar imaging.

    Science.gov (United States)

    Soumekh, M

    1997-01-01

    This paper presents a method for detecting moving targets embedded in foliage from the monostatic and bistatic synthetic aperture radar (SAR) data obtained via two airborne radars. The two radars, which are mounted on the same aircraft, have different coordinates in the along track (cross-range) domain. However, unlike the interferometric SAR systems used for topographic mapping, the two radars possess a common range and altitude (i.e., slant range). The resultant monopulse SAR images are used to construct difference and interferometric images for moving target detection. It is shown that the signatures of the stationary targets are weakened in these images. Methods for estimating a moving target's motion parameters are discussed. Results for an ultrawideband UHF SAR system are presented.

  15. Synthetic Aperture Radar Interferometry for Digital Elevation Model of Kuwait Desert - Analysis of Errors

    Science.gov (United States)

    Jassar, H. K. Al; Rao, K. S.

    2012-07-01

    Using different combinations of 29 Advanced Synthetic Aperture Radar (ASAR) images, 43 Digital Elevations Models (DEM) were generated adopting SAR Interferometry (InSAR) technique. Due to sand movement in desert terrain, there is a poor phase correlation between different SAR images. Therefore, suitable methodology for generating DEMs of Kuwait desert terrain using InSAR technique were worked out. Time series analysis was adopted to derive the best DEM out of 43 DEMs. The problems related to phase de-correlation over desert terrain are discussed. Various errors associated with the DEM generation are discussed which include atmospheric effects, penetration into soil medium, sand movement. The DEM of Shuttle Radar Topography Mission (SRTM) is used as a reference. The noise levels of DEM of SRTM are presented.

  16. Feature Understanding and Target Detection for Sparse Microwave Synthetic Aperture Radar Images

    Directory of Open Access Journals (Sweden)

    Zhang Zenghui

    2016-02-01

    Full Text Available Sparse microwave imaging using sparse priors of observed scenes in space, time, frequency, or polarization domain and echo data with sampling rate smaller than the traditional Nyquist rate as well as optimization algorithms for reconstructing the microwave images of observed scenes has many advantages over traditional microwave imaging systems. In sparse microwave imaging, image acquisition and representation vary; therefore, new feature analysis and cognitive interpretation theories and methods should be developed based on current research results. In this study, we analyze the statistical properties of sparse Synthetic Aperture Radar (SAR images and changes in point, line and regional features induced by sparse reconstruction. For SAR images recovered by the spatial sparse model, the statistical distribution degrades, whereas points and lines can be accurately extracted by low sampling rates. Furthermore, the target detection method based on sparse SAR images is studied. Owing to a weak background noise, target detection is easier using sparse SAR images than traditional ones.

  17. Object Hierarchy-based Supervised Characterisation ofSynthetic Aperture Radar Sensor Images

    Directory of Open Access Journals (Sweden)

    Ish Rishabh

    2008-01-01

    Full Text Available A method of supervised characterisation of synthetic aperture radar (SAR satellite imageshas been discussed in which simple object shape features of satellite images have been usedto classify and describe the terrain types. This scheme is based on a multilevel approach inwhich objects of interest are first segmented out from the image and subsequently characterisedbased on their shape features. Once all objects have been characterised, the entire image canbe characterised. Emphasis has been laid on the hierarchical information extraction from theimage which enables greater flexibility in characterising the image and is not restricted to mereclassification. The paper also describes a method for giving relative importance among features,i.e., to give more weights to those features that are better than others in distinguishing betweencompeting classes. A method of comparing two SAR sensor images based on terrain elementspresent in the images has also been described here.

  18. CROSS-RANGE RESOLUTION OF SYNTHETIC APERTURE RADAR BASED ON DIVING MODEL

    Institute of Scientific and Technical Information of China (English)

    Sun Bing; Zhou Yinqing; Chen Jie

    2011-01-01

    This paper concentrates on the cross-range resolution of Synthetic Aperture Radar (SAR) based on diving model.In comparison to the azimuth resolution,the cross-range resolution can manifest the two-dimensional resolution ability of the imaging sensor SAR correctly.The diving model of SAR is an extended model from the conventional stripmap model,and the cross-range resolution expression is deduced from the equivalent linear frequency modulation pulses' compression.This expression points out that only the cross-range velocity component of the horizontal velocity contributes to the cross-range resolution.Also the cross-range resolution expressions and the performance of the conventional stripmap operation,squint side-look operation and beam circular-scanning operation are discussed.The cross-range resolution expression based on diving model will provide more general and more accurate reference.

  19. Filtering and segmentation of the Cassini synthetic aperture radar images on Titan

    Science.gov (United States)

    Bratsolis, E.; Bampasidis, G.; Solomonidou, A.; Coustenis, A.; Hirtzig, M.

    2011-10-01

    A filtering technique is applied to obtain the restored synthetic aperture radar (SAR) images. One of the major problems hampering the derivation of meaningful texture information from SAR imagery is the speckle noise. It overlays "real" structures and causes gray value variations even in homogeneous parts of the image. Our method, the TSPR (total sum preserving regularization) filter, is based on probabilistic methods and regards an image as a random element drawn from a prespecified set of possible images optimized by a synchronous local iterative method. The despeckle filter can be used as intermediate stage for the extraction of meaningful regions that correspond to structural units in the scene or distinguish objects of interest like lakes, drainage networks, equatorial dunes or impact craters, where different textures appear.

  20. High frame rate synthetic aperture vector flow imaging for transthoracic echocardiography

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Stuart, Matthias Bo; Bechsgaard, Thor

    2016-01-01

    This work presents the first in vivo results of 2-D high frame rate vector velocity imaging for transthoracic cardiac imaging. Measurements are made on a healthy volunteer using the SARUS experimental ultrasound scanner connected to an intercostal phased-array probe. Two parasternal long-axis view...... (PLAX) are obtained, one centred at the aortic valve and another centred at the left ventricle. The acquisition sequence was composed of 3 diverging waves for high frame rate synthetic aperture flow imaging. For verification a phantom measurement is performed on a transverse straight 5 mm diameter....... In-vivo acquisitions show complex flow patterns in the heart. In the aortic valve view, blood is seen exiting the left ventricle cavity through the aortic valve into the aorta during the systolic phase of the cardiac cycle. In the left ventricle view, blood flow is seen entering the left ventricle...

  1. Waveform Retracking and Emulation Experiment Analysis of Synthetic Aperture Radar Altimeter

    Directory of Open Access Journals (Sweden)

    ZHAI Zhenhe

    2017-02-01

    Full Text Available Based on the synthetic aperture radar(SAR convolution model, the convolution computation formula about the derivative of three parameters of time migration, rise time and amplitude are deduced. The SAR waveform retracking is completed using numerical integration and Fourier transform. Besides, the echo waveform under SAR model is generated using the simulation orbit, troposphere, ionosphere and tide model. The comparison shows that the shape of echo waveform under SAR model is the same as that of CryoSat-2 1 Hz SAR. The experiments show that the accuracy of SAR altimeter retracking is about 5 cm under the 20 Hz data(about 350 m resolution, which are improved compared with that of the traditional model.

  2. Modeling and Sensitivity Analysis of Navigation Parameter Errors for Airborne Synthetic Aperture Radar Stereo Geolocation

    Institute of Scientific and Technical Information of China (English)

    PANG Lei; ZHANG Jixian; YAN Qin

    2010-01-01

    For the high-resolution airborne synthetic aperture radar (SAR) stereo geolocation application, the final geolocation accuracy is influenced by various error parameter sources. In this paper, an airborne SAR stereo geolocation parameter error model,involving the parameter errors derived from the navigation system on the flight platform, has been put forward. Moreover, a kind of near-direct method for modeling and sensitivity analysis of navigation parameter errors is also given. This method directly uses the ground reference to calculate the covariance matrix relationship between the parameter errors and the eventual geolocation errors for ground target points. In addition, utilizing true flight track parameters' errors, this paper gave a verification of the method and a corresponding sensitivity analysis for airborne SAR stereo geolocation model and proved its efficiency.

  3. Applicability of Synthetic Aperture Radar Wind Retrievals on Offshore Wind Resources Assessment in Hangzhou Bay, China

    DEFF Research Database (Denmark)

    Chang, Rui; Zhu, Rong; Badger, Merete

    2014-01-01

    In view of the high cost and sparse spatial resolution of offshore meteorological observations, ocean winds retrieved from satellites are valuable in offshore wind resource assessment as a supplement to in situ measurements. This study examines satellite synthetic aperture radar (SAR) images from...... ENVISAT advanced SAR (ASAR) for mapping wind resources with high spatial resolution. Around 181 collected pairs of wind data from SAR wind maps and from 13 meteorological stations in Hangzhou Bay are compared. The statistical results comparing in situ wind speed and SAR-based wind speed show a standard...... density functions are compared at one meteorological station. The SAR-based results appear not to estimate the mean wind speed, Weibull scale and shape parameters and wind power density from the full in situ data set so well due to the lower number of satellite samples. Distributions calculated from...

  4. Offshore wind resource mapping for Europe by Synthetic Aperture Radar (SAR) satellite data

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete

    2015-01-01

    For the New European Wind Atlas (NEWA) project with 8 participating countries during5 years (March 2015 – March 2020) we will develop a new wind atlas covering most of the European countries as well as most of the offshore areas in Europe. For the offshore atlas we will rely on a combination...... of satellite remote sensing observations and atmospheric modelling. The satellite data include Synthetic Aperture Radar (SAR) from the European Space Agency from Envisat and the Copernicus mission Sentinel-1. SAR has the advantage of high spatial resolution such that we can cover near-coastal areas where many...... wind farms are planned. In the Danish RUNE project near-shore offshore winds are investigate from SAR, atmospheric modelling and ground-based remote sensing lidar. In the European Space Agency project ResGrow SAR wind resource maps at various locations in the European Seas are used to estimate the wind...

  5. Mine detection with a forward-looking ground-penetrating synthetic aperture radar

    Science.gov (United States)

    Bradley, Marshall R.; Witten, Thomas R.; Duncan, Michael; McCummins, Robert

    2003-09-01

    In order to detect buried land mines in clutter, Planning Systems Incorporated has adapted its Ground Penetrating Synthetic Aperture Radar (GPSAR) technology for forward-looking applications. The Forward Looking GPSAR (FLGPSAR), is a wide-band stepped-frequency radar operating over frequencies from 400 MHz to 4 GHz. The FLGPSAR system is based on a modified John Deere E-Gator turf vehicle that is capable of remote control. Custom Archimedean spiral antennas are used to populate the GPSAR array. These antennas are designed and built by PSI and have exceptional broad-band radiation characteristics. The FLGSPAR system has been used to detect plastic and metallic landmines at U.S. Army test facilities and at PSI's engineering center in Long Beach Mississippi. Multi-look SAR processing has been shown to significantly improve the quality of FLGPSAR imagery.

  6. Hybrid Synthetic/Real Aperture Antenna for High Resolution Microwave Imaging

    Science.gov (United States)

    Doiron, Terence A.; Piepmeier, Jeffrey R.

    2003-01-01

    Observations of key hydrological parameters at the spatial and temporal scales required in the post-2002 era face significant technological challenges. These measurements are based on relatively low frequency thermal microwave emission (at 1.4 GHz for soil moisture and salinity, 10 GHz and up for precipitation, and 19 and 37 GHz for snow). The long wavelengths at these frequencies coupled with the high spatial and radiometric resolutions required by the various global hydrology missions necessitate the use of very large apertures. Two-dimensional Synthetic Thinned Array Radiometry (2-D STAR), though promising in the long term, has many technical challenges in the areas of power, and sensitivity for very large apertures (i.e. greater than 300 wavelengths). This paper will discuss an alternative approach to the pure 2-D STAR, which uses an offset parabolic cylinder reflector fed by multiple elements to form a 1-D STAR. In essence a single STAR element is composed of a feedhorn and parabolic cylinder reflector. The elements are sparsely arrayed and thus can share a single reflector. This antenna would have no moving parts once deployed, have much higher sensitivity than a Y-shaped 2-D STAR of equivalent size, many fewer receivers than that 2-D STAR, and the reflector could be made of a thin film and lightweight deployment system for high packing density. The instrument using this approach would be a cross track push broom imager. An overview of the design parameters, potential deployment mechanisms and applications will be presented.

  7. On the convergence of the phase gradient autofocus algorithm for synthetic aperture radar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, M.J.

    1996-01-01

    Synthetic Aperture Radar (SAR) imaging is a class of coherent range and Doppler signal processing techniques applied to remote sensing. The aperture is synthesized by recording and processing coherent signals at known positions along the flight path. Demands for greater image resolution put an extreme burden on requirements for inertial measurement units that are used to maintain accurate pulse-to-pulse position information. The recently developed Phase Gradient Autofocus algorithm relieves this burden by taking a data-driven digital signal processing approach to estimating the range-invariant phase aberrations due to either uncompensated motions of the SAR platform or to atmospheric turbulence. Although the performance of this four-step algorithm has been demonstrated, its convergence has not been modeled mathematically. A new sensitivity study of algorithm performance is a necessary step towards this model. Insights that are significant to the application of this algorithm to both SAR and to other coherent imaging applications are developed. New details on algorithm implementation identify an easily avoided biased phase estimate. A new algorithm for defining support of the point spread function is proposed, which promises to reduce the number of iterations required even for rural scenes with low signal-to-clutter ratios.

  8. Oil detection in a coastal marsh with polarimetric Synthetic Aperture Radar (SAR)

    Science.gov (United States)

    Ramsey, Elijah W.; Rangoonwala, Amina; Suzuoki, Yukihiro; Jones, Cathleen E.

    2011-01-01

    The National Aeronautics and Space Administration's airborne Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) was deployed in June 2010 in response to the Deepwater Horizon oil spill in the Gulf of Mexico. UAVSAR is a fully polarimetric L-band Synthetic Aperture Radar (SAR) sensor for obtaining data at high spatial resolutions. Starting a month prior to the UAVSAR collections, visual observations confirmed oil impacts along shorelines within northeastern Barataria Bay waters in eastern coastal Louisiana. UAVSAR data along several flight lines over Barataria Bay were collected on 23 June 2010, including the repeat flight line for which data were collected in June 2009. Our analysis of calibrated single-look complex data for these flight lines shows that structural damage of shoreline marsh accompanied by oil occurrence manifested as anomalous features not evident in pre-spill data. Freeman-Durden (FD) and Cloude-Pottier (CP) decompositions of the polarimetric data and Wishart classifications seeded with the FD and CP classes also highlighted these nearshore features as a change in dominant scattering mechanism. All decompositions and classifications also identify a class of interior marshes that reproduce the spatially extensive changes in backscatter indicated by the pre- and post-spill comparison of multi-polarization radar backscatter data. FD and CP decompositions reveal that those changes indicate a transform of dominant scatter from primarily surface or volumetric to double or even bounce. Given supportive evidence that oil-polluted waters penetrated into the interior marshes, it is reasonable that these backscatter changes correspond with oil exposure; however, multiple factors prevent unambiguous determination of whether UAVSAR detected oil in interior marshes.

  9. A synthetic aperture radio telescope for ICME observations as a potential payload of SPORT

    Science.gov (United States)

    Zhang, C.; Sun, W.; Liu, H.; Xiong, M.; Liu, Y. D.; Wu, J.

    2013-12-01

    We introduce a potential payload for the Solar Polar ORbit Telescope (SPORT), a space weather mission proposed by the National Space Science Center, Chinese Academy of Sciences. This is a synthetic aperture radio imager designed to detect radio emissions from interplanetary coronal mass ejections (ICMEs), which is expected to be an important instrument to monitor the propagation and evolution of ICMEs. The radio telescope applies a synthetic aperture interferometric technique to measure the brightness temperature of ICMEs. Theoretical calculations of the brightness temperature utilizing statistical properties of ICMEs and the background solar wind indicate that ICMEs within 0.35 AU from the Sun are detectable by a radio telescope at a frequency <= 150 MHz with a sensitivity of <=1 K. The telescope employs a time shared double rotation scan (also called a clock scan), where two coplanar antennas revolve around a fixed axis at different radius and speed, to fulfill sampling of the brightness temperature. An array of 4+4 elements with opposite scanning directions are developed for the radio telescope to achieve the required sensitivity (<=1K) within the imaging refreshing time (~30 minutes). This scan scheme is appropriate for a three-axis stabilized spacecraft platform while keeping a good sampling pattern. We also discuss how we select the operating frequency, which involves a trade-off between the engineering feasibility and the scientific goal. Our preliminary results indicate that the central frequency of 150 MHz with a bandwidth of 20 MHz, which requires arm lengths of the two groups of 14m and 16m, respectively, gives an angular resolution of 2°, a field of view of ×25° around the Sun, and a time resolution of 30 minutes.

  10. Oil Detection in a Coastal Marsh with Polarimetric Synthetic Aperture Radar (SAR

    Directory of Open Access Journals (Sweden)

    Cathleen E. Jones

    2011-12-01

    Full Text Available The National Aeronautics and Space Administration’s airborne Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR was deployed in June 2010 in response to the Deepwater Horizon oil spill in the Gulf of Mexico. UAVSAR is a fully polarimetric L-band Synthetic Aperture Radar (SAR sensor for obtaining data at high spatial resolutions. Starting a month prior to the UAVSAR collections, visual observations confirmed oil impacts along shorelines within northeastern Barataria Bay waters in eastern coastal Louisiana. UAVSAR data along several flight lines over Barataria Bay were collected on 23 June 2010, including the repeat flight line for which data were collected in June 2009. Our analysis of calibrated single-look complex data for these flight lines shows that structural damage of shoreline marsh accompanied by oil occurrence manifested as anomalous features not evident in pre-spill data. Freeman-Durden (FD and Cloude-Pottier (CP decompositions of the polarimetric data and Wishart classifications seeded with the FD and CP classes also highlighted these nearshore features as a change in dominant scattering mechanism. All decompositions and classifications also identify a class of interior marshes that reproduce the spatially extensive changes in backscatter indicated by the pre- and post-spill comparison of multi-polarization radar backscatter data. FD and CP decompositions reveal that those changes indicate a transform of dominant scatter from primarily surface or volumetric to double or even bounce. Given supportive evidence that oil-polluted waters penetrated into the interior marshes, it is reasonable that these backscatter changes correspond with oil exposure; however, multiple factors prevent unambiguous determination of whether UAVSAR detected oil in interior marshes.

  11. Change Detection in Synthetic Aperture Radar Images Using a Multiscale-Driven Approach

    Directory of Open Access Journals (Sweden)

    Olaniyi A. Ajadi

    2016-06-01

    Full Text Available Despite the significant progress that was achieved throughout the recent years, to this day, automatic change detection and classification from synthetic aperture radar (SAR images remains a difficult task. This is, in large part, due to (a the high level of speckle noise that is inherent to SAR data; (b the complex scattering response of SAR even for rather homogeneous targets; (c the low temporal sampling that is often achieved with SAR systems, since sequential images do not always have the same radar geometry (incident angle, orbit path, etc.; and (d the typically limited performance of SAR in delineating the exact boundary of changed regions. With this paper we present a promising change detection method that utilizes SAR images and provides solutions for these previously mentioned difficulties. We will show that the presented approach enables automatic and high-performance change detection across a wide range of spatial scales (resolution levels. The developed method follows a three-step approach of (i initial pre-processing; (ii data enhancement/filtering; and (iii wavelet-based, multi-scale change detection. The stand-alone property of our approach is the high flexibility in applying the change detection approach to a wide range of change detection problems. The performance of the developed approach is demonstrated using synthetic data as well as a real-data application to wildfire progression near Fairbanks, Alaska.

  12. On the soil roughness parameterization problem in soil moisture retrieval of bare surfaces from Synthetic Aperture Radar 1959

    Science.gov (United States)

    Synthetic Aperture Radar has shown its large potential for retrieving soil moisture maps at regional scales. However, since the backscattered signal is determined by several surface characteristics, the retrieval of soil moisture is an ill-posed problem when using single configuration imagery. Unles...

  13. Sea Ice Deformation State From Synthetic Aperture Radar Imagery - Part II: Effects of Spatial Resolution and Noise Level

    DEFF Research Database (Denmark)

    Dierking, Wolfgang; Dall, Jørgen

    2008-01-01

    C- and L-band airborne synthetic aperture radar (SAR) imagery acquired at like- and cross-polarization over sea ice under winter conditions is examined with the objective to study the discrimination between level ice and ice deformation features. High-resolution low-noise data were analysed...

  14. Synthetic aperture acoustic imaging of canonical targets with a 2-15 kHz linear FM chirp

    Science.gov (United States)

    Vignola, Joseph F.; Judge, John A.; Good, Chelsea E.; Bishop, Steven S.; Gugino, Peter M.; Soumekh, Mehrdad

    2011-06-01

    Synthetic aperture image reconstruction applied to outdoor acoustic recordings is presented. Acoustic imaging is an alternate method having several military relevant advantages such as being immune to RF jamming, superior spatial resolution, capable of standoff side and forward-looking scanning, and relatively low cost, weight and size when compared to 0.5 - 3 GHz ground penetrating radar technologies. Synthetic aperture acoustic imaging is similar to synthetic aperture radar, but more akin to synthetic aperture sonar technologies owing to the nature of longitudinal or compressive wave propagation in the surrounding acoustic medium. The system's transceiver is a quasi mono-static microphone and audio speaker pair mounted on a rail 5meters in length. Received data sampling rate is 80 kHz with a 2- 15 kHz Linear Frequency Modulated (LFM) chirp, with a pulse repetition frequency (PRF) of 10 Hz and an inter-pulse period (IPP) of 50 milliseconds. Targets are positioned within the acoustic scene at slant range of two to ten meters on grass, dirt or gravel surfaces, and with and without intervening metallic chain link fencing. Acoustic image reconstruction results in means for literal interpretation and quantifiable analyses. A rudimentary technique characterizes acoustic scatter at the ground surfaces. Targets within the acoustic scene are first digitally spotlighted and further processed, providing frequency and aspect angle dependent signature information.

  15. Direction synthesis in DOA estimation for monostatic multiple input multiple output(MIMO) radar based on synthetic impulse and aperture radar (SIAR) and its performance analysis

    Institute of Scientific and Technical Information of China (English)

    ZHAO GuangHui; CHEN BaiXiao; ZHU ShouPing

    2008-01-01

    A new direction synthetic method for monostatic multiple input multiple output (MIMO) radar is presented based on synthetic impulse and aperture radar (SIAR) system. Concerned with the monostatic MIMO radar which simultaneously emits orthogonal signals with multi-carrier-frequency and possesses sparsely distributed transmitting and receiving arrays with respective location, as well as the situation for the presence of multipath propagation in the low flying target's echo, the method integrates the aperture of the transmitting arrays with the receiving arrays to form the digital beam-forming (DBF) in azimuth and elevation dimensions. And a study has been made of planar general MUSIC algorithm based on decorrelating the multipath signals of multi-carrier-frequency MIMO radar. Through compensat-ing the phase delay of both the transmitting and the receiving arrays and synthe-sizing the transmitting beam in two dimensions at the receiver, the angular resolu-tion and measurement accuracy are improved and the computational complexity is reduced after transforming the three-dimensional (3D) parameter estimation prob-lem into a two-dimensional (2D) one. Finally, the Cramer-Rao Bounds (CRBs) of DOA estimation for azimuth and elevation is put forward with the exsitJng multipath propagation. Results of computer simulation demonstrate the validity of the new method.

  16. Direction synthesis in DOA estimation for monostatic multiple input multiple output (MIMO) radar based on synthetic impulse and aperture radar (SIAR) and its performance analysis

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A new direction synthetic method for monostatic multiple input multiple output (MIMO) radar is presented based on synthetic impulse and aperture radar (SIAR) system. Concerned with the monostatic MIMO radar which simultaneously emits orthogonal signals with multi-carrier-frequency and possesses sparsely distributed transmitting and receiving arrays with respective location, as well as the situation for the presence of multipath propagation in the low flying target’s echo, the method integrates the aperture of the transmitting arrays with the receiving arrays to form the digital beam-forming (DBF) in azimuth and elevation dimensions. And a study has been made of planar general MUSIC algorithm based on decorrelating the multipath signals of multi-carrier-frequency MIMO radar. Through compensat-ing the phase delay of both the transmitting and the receiving arrays and synthe-sizing the transmitting beam in two dimensions at the receiver, the angular resolu-tion and measurement accuracy are improved and the computational complexity is reduced after transforming the three-dimensional (3D) parameter estimation prob-lem into a two-dimensional (2D) one. Finally, the Cramer-Rao Bounds (CRBs) of DOA estimation for azimuth and elevation is put forward with the exsiting multipath propagation. Results of computer simulation demonstrate the validity of the new method.

  17. Feature Extraction in the North Sinai Desert Using Spaceborne Synthetic Aperture Radar: Potential Archaeological Applications

    Directory of Open Access Journals (Sweden)

    Christopher Stewart

    2016-10-01

    Full Text Available Techniques were implemented to extract anthropogenic features in the desert region of North Sinai using data from the first- and second-generation Phased Array type L-band Synthetic Aperture Radar (PALSAR-1 and 2. To obtain a synoptic view over the study area, a mosaic of average, multitemporal (De Grandi filtered PALSAR-1 σ° backscatter of North Sinai was produced. Two subset regions were selected for further analysis. The first included an area of abundant linear features of high relative backscatter in a strategic, but sparsely developed area between the Wadi Tumilat and Gebel Maghara. The second included an area of low backscatter anomaly features in a coastal sabkha around the archaeological sites of Tell el-Farama, Tell el-Mahzan, and Tell el-Kanais. Over the subset region between the Wadi Tumilat and Gebel Maghara, algorithms were developed to extract linear features and convert them to vector format to facilitate interpretation. The algorithms were based on mathematical morphology, but to distinguish apparent man-made features from sand dune ridges, several techniques were applied. The first technique took as input the average σ° backscatter and used a Digital Elevation Model (DEM derived Local Incidence Angle (LAI mask to exclude sand dune ridges. The second technique, which proved more effective, used the average interferometric coherence as input. Extracted features were compared with other available information layers and in some cases revealed partially buried roads. Over the coastal subset region a time series of PALSAR-2 spotlight data were processed. The coefficient of variation (CoV of De Grandi filtered imagery clearly revealed anomaly features of low CoV. These were compared with the results of an archaeological field walking survey carried out previously. The features generally correspond with isolated areas identified in the field survey as having a higher density of archaeological finds, and interpreted as possible

  18. In-situ data collection for oil palm tree height determination using synthetic aperture radar

    Science.gov (United States)

    Pohl, C.; Loong, C. K.

    2016-04-01

    The oil palm is recognized as the “golden crop,” producing the highest oil yield among oil seed crops. Malaysia, the world's second largest producer of palm oil, has 16 per cent of its territory planted with oil palms. To cope with the increasing global demand on edible oil, additional areas of oil palm are forecast to increase globally by 12 to 19 million hectares by 2050. Due to the limited land bank in Malaysia, new strategies have to be developed to avoid unauthorized clearing of primary forest for the use of oil palm cultivation. Microwave remote sensing could play a part by providing relevant, timely and accurate information for a plantation monitoring system. The use of synthetic aperture radar (SAR) has the advantage of daylight- and weather-independence, a criterion that is very relevant in constantly cloud-covered tropical regions, such as Malaysia. Using interferometric SAR, (InSAR) topographical and tree height profiles of oil palm plantations can be created; such information is useful for mapping oil palm age profiles of the plantations in the country. This paper reports on the use of SAR and InSAR in a multisensory context to provide up-to-date information at plantation level. Remote sensing and in-situ data collection for tree height determination are described. Further research to be carried out over the next two years is outlined.

  19. Synthetic Aperture Radar Target Recognition with Feature Fusion Based on a Stacked Autoencoder.

    Science.gov (United States)

    Kang, Miao; Ji, Kefeng; Leng, Xiangguang; Xing, Xiangwei; Zou, Huanxin

    2017-01-20

    Feature extraction is a crucial step for any automatic target recognition process, especially in the interpretation of synthetic aperture radar (SAR) imagery. In order to obtain distinctive features, this paper proposes a feature fusion algorithm for SAR target recognition based on a stacked autoencoder (SAE). The detailed procedure presented in this paper can be summarized as follows: firstly, 23 baseline features and Three-Patch Local Binary Pattern (TPLBP) features are extracted. These features can describe the global and local aspects of the image with less redundancy and more complementarity, providing richer information for feature fusion. Secondly, an effective feature fusion network is designed. Baseline and TPLBP features are cascaded and fed into a SAE. Then, with an unsupervised learning algorithm, the SAE is pre-trained by greedy layer-wise training method. Capable of feature expression, SAE makes the fused features more distinguishable. Finally, the model is fine-tuned by a softmax classifier and applied to the classification of targets. 10-class SAR targets based on Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset got a classification accuracy up to 95.43%, which verifies the effectiveness of the presented algorithm.

  20. A neural network for enhancing boundaries and surfaces in synthetic aperture radar images.

    Science.gov (United States)

    Mingolla, Ennio; Ross, William; Grossberg, Stephen

    1999-04-01

    A neural network system for boundary segmentation and surface representation, inspired by a new local-circuit model of visual processing in the cerebral cortex, is used to enhance images of range data gathered by a synthetic aperture radar (SAR) sensor. Boundary segmentation is accomplished by an improved Boundary Contour System (BCS) model which completes coherent boundaries that retain their sensitivity to image contrasts and locations. A Feature Contour System (FCS) model compensates for local contrast variations and uses the compensated signals to diffusively fill-in surface regions within the BCS boundaries. Image noise pixels that are not supported by BCS boundaries are hereby eliminated. More generally, BCS/FCS processing normalizes input dynamic range, reduces noise, and enhances contrasts between surface regions. BCS/FCS processing hereby makes structures such as motor vehicles, roads, and buildings more salient to human observers than in original imagery. The new BCS model improves image enhancement with significant reductions in processing time and complexity over previous BCS applications. The new system also outperforms several established techniques for image enhancement.

  1. A fast level set method for synthetic aperture radar ocean image segmentation.

    Science.gov (United States)

    Huang, Xiaoxia; Huang, Bo; Li, Hongga

    2009-01-01

    Segmentation of high noise imagery like Synthetic Aperture Radar (SAR) images is still one of the most challenging tasks in image processing. While level set, a novel approach based on the analysis of the motion of an interface, can be used to address this challenge, the cell-based iterations may make the process of image segmentation remarkably slow, especially for large-size images. For this reason fast level set algorithms such as narrow band and fast marching have been attempted. Built upon these, this paper presents an improved fast level set method for SAR ocean image segmentation. This competent method is dependent on both the intensity driven speed and curvature flow that result in a stable and smooth boundary. Notably, it is optimized to track moving interfaces for keeping up with the point-wise boundary propagation using a single list and a method of fast up-wind scheme iteration. The list facilitates efficient insertion and deletion of pixels on the propagation front. Meanwhile, the local up-wind scheme is used to update the motion of the curvature front instead of solving partial differential equations. Experiments have been carried out on extraction of surface slick features from ERS-2 SAR images to substantiate the efficacy of the proposed fast level set method.

  2. Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering.

    Science.gov (United States)

    Gong, Maoguo; Zhou, Zhiqiang; Ma, Jingjing

    2012-04-01

    This paper presents an unsupervised distribution-free change detection approach for synthetic aperture radar (SAR) images based on an image fusion strategy and a novel fuzzy clustering algorithm. The image fusion technique is introduced to generate a difference image by using complementary information from a mean-ratio image and a log-ratio image. In order to restrain the background information and enhance the information of changed regions in the fused difference image, wavelet fusion rules based on an average operator and minimum local area energy are chosen to fuse the wavelet coefficients for a low-frequency band and a high-frequency band, respectively. A reformulated fuzzy local-information C-means clustering algorithm is proposed for classifying changed and unchanged regions in the fused difference image. It incorporates the information about spatial context in a novel fuzzy way for the purpose of enhancing the changed information and of reducing the effect of speckle noise. Experiments on real SAR images show that the image fusion strategy integrates the advantages of the log-ratio operator and the mean-ratio operator and gains a better performance. The change detection results obtained by the improved fuzzy clustering algorithm exhibited lower error than its preexistences.

  3. Power versus performance tradeoffs of GPU-accelerated backprojection-based synthetic aperture radar image formation

    Science.gov (United States)

    Portillo, Ricardo; Arunagiri, Sarala; Teller, Patricia J.; Park, Song J.; Nguyen, Lam H.; Deroba, Joseph C.; Shires, Dale

    2011-06-01

    The continuing miniaturization and parallelization of computer hardware has facilitated the development of mobile and field-deployable systems that can accommodate terascale processing within once prohibitively small size and weight constraints. General-purpose Graphics Processing Units (GPUs) are prominent examples of such terascale devices. Unfortunately, the added computational capability of these devices often comes at the cost of larger demands on power, an already strained resource in these systems. This study explores power versus performance issues for a workload that can take advantage of GPU capability and is targeted to run in field-deployable environments, i.e., Synthetic Aperture Radar (SAR). Specifically, we focus on the Image Formation (IF) computational phase of SAR, often the most compute intensive, and evaluate two different state-of-the-art GPU implementations of this IF method. Using real and simulated data sets, we evaluate performance tradeoffs for single- and double-precision versions of these implementations in terms of time-to-solution, image output quality, and total energy consumption. We employ fine-grain direct-measurement techniques to capture isolated power utilization and energy consumption of the GPU device, and use general and radarspecific metrics to evaluate image output quality. We show that double-precision IF can provide slight image improvement to low-reflective areas of SAR images, but note that the added quality may not be worth the higher power and energy costs associated with higher precision operations.

  4. Synthetic aperture acoustic measurements of stationary suspended cinderblock and surrogate substitutes

    Science.gov (United States)

    Bishop, Steven; Woods, Teresa; Vignola, Joe; Judge, John; Soumekh, Mehrdad

    2009-05-01

    A synthetic aperture acoustic approach is used as a standoff method to assess material properties of a typical cinder block, referred to as a concrete masonry unit (CMU), and a variety of CMU surrogates. The objective is to identify anomalies in CMU wall surfaces. The acoustic specular return and phase change across the blocks are the fundamental measurements of interest. The CMU surrogates are created from commercially available closed cell expanding foam. Results from three test articles are presented that show potentially exploitable differences in terms of acoustic magnitude and acoustic phase response between the surrogates and typical CMUs. The test articles are; a typical CMU, a foam block, and a foam block with an embedded steel object. All test articles are similar in size and shape, and both foam blocks are covered in grout so that surface appearance closely matches that of a CMU. The results show that each of the test articles has characteristics that may be used for discrimination and anomaly detection.

  5. Parameter estimation and imaging of moving targets in bistatic synthetic aperture radar

    Science.gov (United States)

    Li, Yu; Huang, Puming; Yang, Zhimei; Lin, Chenchen

    2016-01-01

    In high-resolution bistatic synthetic aperture radar (SAR) systems, parameter estimation is essential to moving target imaging quality. However, precise parameters are difficult to obtain without priori information due to the relative along-track and across-track velocities between the moving target and platforms that change with time. A parameter estimation and imaging approach for moving targets is proposed. First, slant range and relative velocities expression are deduced based on the geometry of bistatic SAR model with one stationary configuration. Then, range curvature term are compensated skillfully by fitting the range-compressed curve in two-dimensional time domain, meanwhile, the initial estimated range walk slope can be achieved. Finally, precise Doppler centroid is estimated through searching for the maximum contrast with folding search algorithm, which is giving consideration to both searching precision and computational complexity. Thus, the proposed algorithm provides an effective way for parameter estimation and imaging of moving target without prior information and interpolation operation. Experimental results show the effectiveness of the proposed method.

  6. Waveform analysis of airborne synthetic aperture radar altimeter over Arctic sea ice

    Directory of Open Access Journals (Sweden)

    M. Zygmuntowska

    2013-03-01

    Full Text Available Sea ice thickness is one of the most sensitive variables in the Arctic climate system. In order to quantify changes in sea ice thickness, CryoSat was launched in 2010 carrying a Ku-band Radar Altimeter (SIRAL designed to measure sea ice freeboard with a few centimeters accuracy. The instrument uses the synthetic aperture radar technique providing signals with a resolution of about 300 m along track. In this study, airborne Ku-band radar altimeter data over different sea ice types has been analyzed. A set of parameters has been defined to characterize the difference in strength and width of the returned power waveforms. With a Bayesian based method it is possible to classify about 80% of the waveforms by three parameters: maximum of the returned power echo, the trailing edge width and pulse peakiness. Furthermore, the radar power echo maximum can be used to minimize the rate of false detection of leads compared to the widely used Pulse Peakiness parameter. The possibility to distinguish between different ice types and open water allows to improve the freeboard retrieval and the conversion into sea ice thickness where surface type dependent values for the sea ice density and snow load can be used.

  7. Wavefront alignment research of segmented mirror synthetic aperture optical (SAO) system

    Science.gov (United States)

    Deng, Jian; An, Xiaoqiang; Tian, Hao

    2010-05-01

    Wavefront control technology and imaging experiment are introduced for a segmented mirror SAO system with deformable sub-mirrors. This system is a RC style with 300mm aperture, 4.5 F#, +/-0.4°FOV, 0.45~0.75μm wave band, and diffraction-limit design MTF. The primary mirror is composed by three sub-mirrors, with parabolic shape, and each deformable sub-mirror has 19 actuators to control and keep the surface shape, and 5 actuators to align sub-mirrors location in 5 degree of freedom. Interferometer is used to feed back and control exit wavefront error, and base on measurement and finite element analysis, location and quanitity of actuators are optimized, making the surface shape and misadjustment errors interact and compensate each other, and the synthetic system exit pupil wavefront error is controlled. The integrated exit pupil wavefront errors are gotten by ZYGO interferometer, and central FOV is 0.077λRMS, and edge FOV is 0.093λRMS. At the end, an imaging experiment is executed, and good results are obtained, which proves, the deformable sub-mirrors have the ability to meliorate alignment and the latter can retroact the former, and this relationship iterate make system exit pupil wavefront error convergence and improve segmented mirror SAO system imaging ability.

  8. A method for automated snow avalanche debris detection through use of synthetic aperture radar (SAR) imaging

    Science.gov (United States)

    Vickers, H.; Eckerstorfer, M.; Malnes, E.; Larsen, Y.; Hindberg, H.

    2016-11-01

    Avalanches are a natural hazard that occur in mountainous regions of Troms County in northern Norway during winter and can cause loss of human life and damage to infrastructure. Knowledge of when and where they occur especially in remote, high mountain areas is often lacking due to difficult access. However, complete, spatiotemporal avalanche activity data sets are important for accurate avalanche forecasting, as well as for deeper understanding of the link between avalanche occurrences and the triggering snowpack and meteorological factors. It is therefore desirable to develop a technique that enables active mapping and monitoring of avalanches over an entire winter. Avalanche debris can be observed remotely over large spatial areas, under all weather and light conditions by synthetic aperture radar (SAR) satellites. The recently launched Sentinel-1A satellite acquires SAR images covering the entire Troms County with frequent updates. By focusing on a case study from New Year 2015 we use Sentinel-1A images to develop an automated avalanche debris detection algorithm that utilizes change detection and unsupervised object classification methods. We compare our results with manually identified avalanche debris and field-based images to quantify the algorithm accuracy. Our results indicate that a correct detection rate of over 60% can be achieved, which is sensitive to several algorithm parameters that may need revising. With further development and refinement of the algorithm, we believe that this method could play an effective role in future operational monitoring of avalanches within Troms and has potential application in avalanche forecasting areas worldwide.

  9. A Fast Synthetic Aperture Radar Raw Data Simulation Using Cloud Computing.

    Science.gov (United States)

    Li, Zhixin; Su, Dandan; Zhu, Haijiang; Li, Wei; Zhang, Fan; Li, Ruirui

    2017-01-08

    Synthetic Aperture Radar (SAR) raw data simulation is a fundamental problem in radar system design and imaging algorithm research. The growth of surveying swath and resolution results in a significant increase in data volume and simulation period, which can be considered to be a comprehensive data intensive and computing intensive issue. Although several high performance computing (HPC) methods have demonstrated their potential for accelerating simulation, the input/output (I/O) bottleneck of huge raw data has not been eased. In this paper, we propose a cloud computing based SAR raw data simulation algorithm, which employs the MapReduce model to accelerate the raw data computing and the Hadoop distributed file system (HDFS) for fast I/O access. The MapReduce model is designed for the irregular parallel accumulation of raw data simulation, which greatly reduces the parallel efficiency of graphics processing unit (GPU) based simulation methods. In addition, three kinds of optimization strategies are put forward from the aspects of programming model, HDFS configuration and scheduling. The experimental results show that the cloud computing based algorithm achieves 4_ speedup over the baseline serial approach in an 8-node cloud environment, and each optimization strategy can improve about 20%. This work proves that the proposed cloud algorithm is capable of solving the computing intensive and data intensive issues in SAR raw data simulation, and is easily extended to large scale computing to achieve higher acceleration.

  10. Research on synthetic aperture radar imaging technology of one-dimensional layered rough surfaces

    Institute of Scientific and Technical Information of China (English)

    Ji Wei-Jie; Tong Chuang-Ming

    2013-01-01

    A quick and exact imaging method for one-dimensional layered rough surfaces is proposed in this paper to study the scattering characteristics of a layered medium that exists widely in nature.The boundary integral equations of layered rough surfaces are solved by using the propagation-inside-layer expansion combined with the forward and backward spectral acceleration method (PILE+FB-SA),and the back scattering data are obtained.Then,a conventional synthetic aperture radar (SAR) imaging procedure called back projection method is used to generate a two-dimensional (2D) image of the layered rough surfaces.Combined with the relative dielectric permittivity of realistic soil,the random rough surfaces with Gauss spectrum are used to simulate the layered medium with rough interfaces.Since the back scattering data are computed by using the fast numerical method,this method can be used to study layered rough surfaces with any parameter,which has a great application value in the detection and remote sensing areas.

  11. Detecting Emergence, Growth, and Senescence of Wetland Vegetation with Polarimetric Synthetic Aperture Radar (SAR Data

    Directory of Open Access Journals (Sweden)

    Alisa L. Gallant

    2014-03-01

    Full Text Available Wetlands provide ecosystem goods and services vitally important to humans. Land managers and policymakers working to conserve wetlands require regularly updated information on the statuses of wetlands across the landscape. However, wetlands are challenging to map remotely with high accuracy and consistency. We investigated the use of multitemporal polarimetric synthetic aperture radar (SAR data acquired with Canada’s Radarsat-2 system to track within-season changes in wetland vegetation and surface water. We speculated, a priori, how temporal and morphological traits of different types of wetland vegetation should respond over a growing season with respect to four energy-scattering mechanisms. We used ground-based monitoring data and other ancillary information to assess the limits and consistency of the SAR data for tracking seasonal changes in wetlands. We found the traits of different types of vertical emergent wetland vegetation were detected well with the SAR data and corresponded with our anticipated backscatter responses. We also found using data from Landsat’s optical/infrared sensors in conjunction with SAR data helped remove confusion of wetland features with upland grasslands. These results suggest SAR data can provide useful monitoring information on the statuses of wetlands over time.

  12. Optimal waveform-based clutter suppression algorithm for recursive synthetic aperture radar imaging systems

    Science.gov (United States)

    Zhu, Binqi; Gao, Yesheng; Wang, Kaizhi; Liu, Xingzhao

    2016-04-01

    A computational method for suppressing clutter and generating clear microwave images of targets is proposed in this paper, which combines synthetic aperture radar (SAR) principles with recursive method and waveform design theory, and it is suitable for SAR for special applications. The nonlinear recursive model is introduced into the SAR operation principle, and the cubature Kalman filter algorithm is used to estimate target and clutter responses in each azimuth position based on their previous states, which are both assumed to be Gaussian distributions. NP criteria-based optimal waveforms are designed repeatedly as the sensor flies along its azimuth path and are used as the transmitting signals. A clutter suppression filter is then designed and added to suppress the clutter response while maintaining most of the target response. Thus, with fewer disturbances from the clutter response, we can generate the SAR image with traditional azimuth matched filters. Our simulations show that the clutter suppression filter significantly reduces the clutter response, and our algorithm greatly improves the SINR of the SAR image based on different clutter suppression filter parameters. As such, this algorithm may be preferable for special target imaging when prior information on the target is available.

  13. Method and apparatus for reducing range ambiguity in synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Kare, Jordin T. (San Ramon, CA)

    1999-10-26

    A modified Synthetic Aperture Radar (SAR) system with reduced sensitivity to range ambiguities, and which uses secondary receiver channels to detect the range ambiguous signals and subtract them from the signal received by the main channel. Both desired and range ambiguous signals are detected by a main receiver and by one or more identical secondary receivers. All receivers are connected to a common antenna with two or more feed systems offset in elevation (e.g., a reflector antenna with multiple feed horns or a phased array with multiple phase shift networks. The secondary receiver output(s) is (are) then subtracted from the main receiver output in such a way as to cancel the ambiguous signals while only slightly attenuating the desired signal and slightly increasing the noise in the main channel, and thus does not significantly affect the desired signal. This subtraction may be done in real time, or the outputs of the receivers may be recorded separately and combined during signal processing.

  14. Method and apparatus for reducing range ambiguity in synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Kare, J.T.

    1999-10-26

    A modified Synthetic Aperture Radar (SAR) system is disclosed with reduced sensitivity to range ambiguities, and which uses secondary receiver channels to detect the range ambiguous signals and subtract them from the signal received by the main channel. Both desired and range ambiguous signals are detected by a main receiver and by one or more identical secondary receivers. All receivers are connected to a common antenna with two or more feed systems offset in elevation e.g., a reflector antenna with multiple feed horns or a phased array with multiple phase shift networks. The secondary receiver output(s) is (are) then subtracted from the main receiver output in such a way as to cancel the ambiguous signals while only slightly attenuating the desired signal and slightly increasing the noise in the main channel, and thus does not significantly affect the desired signal. This subtraction may be done in real time, or the outputs of the receivers may be recorded separately and combined during signal processing.

  15. A Fast Synthetic Aperture Radar Raw Data Simulation Using Cloud Computing

    Directory of Open Access Journals (Sweden)

    Zhixin Li

    2017-01-01

    Full Text Available Synthetic Aperture Radar (SAR raw data simulation is a fundamental problem in radar system design and imaging algorithm research. The growth of surveying swath and resolution results in a significant increase in data volume and simulation period, which can be considered to be a comprehensive data intensive and computing intensive issue. Although several high performance computing (HPC methods have demonstrated their potential for accelerating simulation, the input/output (I/O bottleneck of huge raw data has not been eased. In this paper, we propose a cloud computing based SAR raw data simulation algorithm, which employs the MapReduce model to accelerate the raw data computing and the Hadoop distributed file system (HDFS for fast I/O access. The MapReduce model is designed for the irregular parallel accumulation of raw data simulation, which greatly reduces the parallel efficiency of graphics processing unit (GPU based simulation methods. In addition, three kinds of optimization strategies are put forward from the aspects of programming model, HDFS configuration and scheduling. The experimental results show that the cloud computing based algorithm achieves 4_ speedup over the baseline serial approach in an 8-node cloud environment, and each optimization strategy can improve about 20%. This work proves that the proposed cloud algorithm is capable of solving the computing intensive and data intensive issues in SAR raw data simulation, and is easily extended to large scale computing to achieve higher acceleration.

  16. Multifrequency and Multistatic Inverse Synthetic Aperture Radar, with Application to FM Passive Radar

    Directory of Open Access Journals (Sweden)

    Ginolhac Guillaume

    2010-01-01

    Full Text Available This paper deals with the imaging of a moving target using a multifrequency and multistatic radar consisting in one receiver and several narrowband transmitters. Considering two hypotheses about the studied target, we derive two multistatic inverse synthetic aperture radar processors: the first one, which models the target as a set of isotropic points, performs a coherent sum of bistatic images; the second one, which models the target as a set of nonisotropic points, performs an incoherent sum of bistatic images. Numerical simulations are done, which demonstrate the efficiency of the second processor. We also apply both processors to a multistatic passive radar scenario for which the transmitters are FM stations located in a realistic configuration. We study the system performance in terms of resolution and sidelobe levels as a function of the number of transmitters and of the integration time. Both processors are applied to similar complex targets for which the scattered fields are simulated by a numerical electromagnetic code. The resulting multistatic radar images show interesting characteristics that might be used by classification algorithms in future work.

  17. Synthetic Aperture Radar Target Recognition with Feature Fusion Based on a Stacked Autoencoder

    Directory of Open Access Journals (Sweden)

    Miao Kang

    2017-01-01

    Full Text Available Feature extraction is a crucial step for any automatic target recognition process, especially in the interpretation of synthetic aperture radar (SAR imagery. In order to obtain distinctive features, this paper proposes a feature fusion algorithm for SAR target recognition based on a stacked autoencoder (SAE. The detailed procedure presented in this paper can be summarized as follows: firstly, 23 baseline features and Three-Patch Local Binary Pattern (TPLBP features are extracted. These features can describe the global and local aspects of the image with less redundancy and more complementarity, providing richer information for feature fusion. Secondly, an effective feature fusion network is designed. Baseline and TPLBP features are cascaded and fed into a SAE. Then, with an unsupervised learning algorithm, the SAE is pre-trained by greedy layer-wise training method. Capable of feature expression, SAE makes the fused features more distinguishable. Finally, the model is fine-tuned by a softmax classifier and applied to the classification of targets. 10-class SAR targets based on Moving and Stationary Target Acquisition and Recognition (MSTAR dataset got a classification accuracy up to 95.43%, which verifies the effectiveness of the presented algorithm.

  18. A NOVEL SVM FOR GROUND PENETRATING SYNTHETIC APERTURE RADAR LANDMINE DETECTION

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The use of vehicle- or air-borne Ground Penetrating Synthetic Aperture Radar (GPSAR) to quickly detect landmines over large areas is becoming a trend. However, producing too many false alarms in GPSAR landmine detection is a major challenge in practical applications of GPSAR. Support Vector Machine (SVM), employing structural risk minimization theory, does not need large amounts of training data, which makes it suitable for solving the landmine detection problem. In this paper, a novel SVM with a hypersphere instead of a hyperplane classification boundary is proposed for landmine detection in GPSAR. The HyperSphere-SVM (HS-SVM) can be trained with both landmine and clutter data, or with landmine data only, which are called the two-class HS-SVM and the one-class HS-SVM, respectively. The HS-SVM has better generalization capability than the traditional HyperPlane-SVM (HP-SVM) with respect to varying operating conditions. Quantitative comparisons have been made using real data collected with the rail-GPSAR landmine detection system, which show that both the two-class and the one-class HS-SVMs have better detection performance than the HP-SVM.

  19. Volumetric synthetic aperture imaging with a piezoelectric 2D row-column probe

    Science.gov (United States)

    Bouzari, Hamed; Engholm, Mathias; Christiansen, Thomas Lehrmann; Beers, Christopher; Lei, Anders; Stuart, Matthias Bo; Nikolov, Svetoslav Ivanov; Thomsen, Erik Vilain; Jensen, Jørgen Arendt

    2016-04-01

    The synthetic aperture (SA) technique can be used for achieving real-time volumetric ultrasound imaging using 2-D row-column addressed transducers. This paper investigates SA volumetric imaging performance of an in-house prototyped 3 MHz λ/2-pitch 62+62 element piezoelectric 2-D row-column addressed transducer array. Utilizing single element transmit events, a volume rate of 90 Hz down to 14 cm deep is achieved. Data are obtained using the experimental ultrasound scanner SARUS with a 70 MHz sampling frequency and beamformed using a delay-and-sum (DAS) approach. A signal-to-noise ratio of up to 32 dB is measured on the beamformed images of a tissue mimicking phantom with attenuation of 0.5 dB cm-1 MHz-1, from the surface of the probe to the penetration depth of 300λ. Measured lateral resolution as Full-Width-at-Half-Maximum (FWHM) is between 4λ and 10λ for 18% to 65% of the penetration depth from the surface of the probe. The averaged contrast is 13 dB for the same range. The imaging performance assessment results may represent a reference guide for possible applications of such an array in different medical fields.

  20. Detection and suppression of narrow band RFI for synthetic aperture radar imaging

    Directory of Open Access Journals (Sweden)

    Yang Lin

    2015-08-01

    Full Text Available Radio frequency interference (RFI is becoming more and more frequently, which makes it an important issue in SAR imaging. RFI presented in synthetic aperture radar either on purpose or inadvertent will distort the useful SAR echoes, thus degrade the SAR image quality. To resolve this issue, a long time study was carried out to study the characteristic of the RFI through the RFI-affected spaceborne and airborne SAR data. Based on the narrow band nature of RFI, this paper proposes a new process which contains both RFI detection and RFI suppression. A useful subband spectral kurtosis detector is first used to detect RFI, and then its results are used for RFI suppression. The proposed process has two advantages: one is the economization on the compute time for unnecessary interference suppression when no RFI existed; the other is improving the performance of the suppression method with knowing the exact position where RFI is. Moreover, the previous RFI suppression method—subband spectral cancelation (SSC is supplemented and perfected. The subband division step is also elaborated detail in this paper. The experiment results show that the subband spectral kurtosis detector exhibits good performance in recognizing both weak and narrow-band RFI. In addition, the validity of the SSC method with subband spectral kurtosis detector is also validated on the real SAR echoes.

  1. Mangrove vegetation structure in Southeast Brazil from phased array L-band synthetic aperture radar data

    Science.gov (United States)

    de Souza Pereira, Francisca Rocha; Kampel, Milton; Cunha-Lignon, Marilia

    2016-07-01

    The potential use of phased array type L-band synthetic aperture radar (PALSAR) data for discriminating distinct physiographic mangrove types with different forest structure developments in a subtropical mangrove forest located in Cananéia on the Southern coast of São Paulo, Brazil, is investigated. The basin and fringe physiographic types and the structural development of mangrove vegetation were identified with the application of the Kruskal-Wallis statistical test to the SAR backscatter values of 10 incoherent attributes. The best results to separate basin to fringe types were obtained using copolarized HH, cross-polarized HV, and the biomass index (BMI). Mangrove structural parameters were also estimated using multiple linear regressions. BMI and canopy structure index were used as explanatory variables for canopy height, mean height, and mean diameter at breast height regression models, with significant R2=0.69, 0.73, and 0.67, respectively. The current study indicates that SAR L-band images can be used as a tool to discriminate physiographic types and to characterize mangrove forests. The results are relevant considering the crescent availability of freely distributed SAR images that can be more utilized for analysis, monitoring, and conservation of the mangrove ecosystem.

  2. Speckle-reducing scale-invariant feature transform match for synthetic aperture radar image registration

    Science.gov (United States)

    Wang, Xianmin; Li, Bo; Xu, Qizhi

    2016-07-01

    The anisotropic scale space (ASS) is often used to enhance the performance of a scale-invariant feature transform (SIFT) algorithm in the registration of synthetic aperture radar (SAR) images. The existing ASS-based methods usually suffer from unstable keypoints and false matches, since the anisotropic diffusion filtering has limitations in reducing the speckle noise from SAR images while building the ASS image representation. We proposed a speckle reducing SIFT match method to obtain stable keypoints and acquire precise matches for the SAR image registration. First, the keypoints are detected in a speckle reducing anisotropic scale space constructed by the speckle reducing anisotropic diffusion, so that speckle noise is greatly reduced and prominent structures of the images are preserved, consequently the stable keypoints can be derived. Next, the probabilistic relaxation labeling approach is employed to establish the matches of the keypoints then the correct match rate of the keypoints is significantly increased. Experiments conducted on simulated speckled images and real SAR images demonstrate the effectiveness of the proposed method.

  3. Synthetic Aperture Computation as the Head is Turned in Binaural Direction Finding

    Directory of Open Access Journals (Sweden)

    Duncan Tamsett

    2017-03-01

    Full Text Available Binaural systems measure instantaneous time/level differences between acoustic signals received at the ears to determine angles λ between the auditory axis and directions to acoustic sources. An angle λ locates a source on a small circle of colatitude (a lamda circle on a sphere symmetric about the auditory axis. As the head is turned while listening to a sound, acoustic energy over successive instantaneous lamda circles is integrated in a virtual/subconscious field of audition. The directions in azimuth and elevation to maxima in integrated acoustic energy, or to points of intersection of lamda circles, are the directions to acoustic sources. This process in a robotic system, or in nature in a neural implementation equivalent to it, delivers its solutions to the aurally informed worldview. The process is analogous to migration applied to seismic profiler data, and to that in synthetic aperture radar/sonar systems. A slanting auditory axis, e.g., possessed by species of owl, leads to the auditory axis sweeping the surface of a cone as the head is turned about a single axis. Thus, the plane in which the auditory axis turns continuously changes, enabling robustly unambiguous directions to acoustic sources to be determined.

  4. Research of inverse synthetic aperture imaging lidar based on filtered back-projection tomography technique

    Science.gov (United States)

    Liu, Zhi-chao; Yang, Jin-hua

    2014-07-01

    In order to obtain clear two-dimensional image under the conditions without using heterodyne interferometry by inverse synthetic aperture lidar(ISAL), designed imaging algorithms based on filtered back projection tomography technique, and the target "A" was reconstructed with simulation algorithm by the system in the turntable model. Analyzed the working process of ISAL, and the function of the reconstructed image was given. Detail analysis of the physical meaning of the various parameters in the process of echo data, and its parameters affect the reconstructed image. The image in test area was reconstructed by the one-dimensional distance information with filtered back projection tomography technique. When the measured target rotated, the sum of the echo light intensity at the same distance was constituted by the different position of the measured target. When the total amount collected is large enough, multiple equations can be solved change. Filtered back-projection image of the ideal image is obtained through MATLAB simulation, and analyzed that the angle intervals affected the reconstruction of image. The ratio of the intensity of echo light and loss light affected the reconstruction of image was analyzed. Simulation results show that, when the sampling angle is smaller, the resolution of the reconstructed image of measured target is higher. And the ratio of the intensity of echo light and loss light is greater, the resolution of the reconstructed image of measured target is higher. In conclusion after some data processing, the reconstructed image basically meets be effective identification requirements.

  5. Detection of landmines and UXO using advanced synthetic aperture radar technology

    Science.gov (United States)

    Schreiber, Eric; Peichl, Markus; Dill, Stephan; Heinzel, Andreas; Bischeltsrieder, Florian

    2016-05-01

    A main problem of effective landmine and UXO decontamination is efficient and reliable detection and localization of suspicious objects in reasonable time. This requirement demands for fast sensors investigating large areas with sufficient spatial resolution and sensitivity. Ground penetrating radar (GPR) is a suitable tool and is considered as a complementing sensor since nearly two decades. However, most GPRs operate in very close distance to ground in a rather punctual method of operation. In contrast, synthetic aperture radar (SAR) is a technique allowing fast and laminar stand-off investigation of an area. TIRAMI-SAR is imaging radar at lower microwaves for fast close-in detection of buried and unburied objects on a larger area. This allows efficient confirmation of a threat by investigating such regions of detection by other sensors. For proper object detection sufficient spatial resolution is required. Hence the SAR principle is applied. SAR for landmine/UXO detection can be applied by side-looking radar moved on safe ground along the area of interest, being typically the un-safe ground. Additionally, reliable detection of buried and unburied objects requires sufficient suppression of background clutter. For that purpose TIRAMI-SAR is using several antennas in multi-static configuration and wave polarization together with advanced SAR processing. The advantages and necessity of a multi-static antenna configuration for this kind of GPR approach is illustrated in the paper.

  6. High-performance synthetic aperture radar image formation on commodity multicore architectures

    Science.gov (United States)

    McFarlin, Daniel S.; Franchetti, Franz; Püschel, Markus; Moura, José M. F.

    2009-05-01

    Synthetic Aperture Radar (SAR) image processing platforms have to process increasingly large datasets under and hard real-time deadlines. Upgrading these platforms is expensive. An attractive solution to this problem is to couple high performance, general-purpose Commercial-Off-The-Shelf (COTS) architectures such as IBM's Cell BE and Intel's Core with software implementations of SAR algorithms. While this approach provides great flexibility, achieving the requisite performance is difficult and time-consuming. The reason is the highly parallel nature and general complexity of modern COTS microarchitectures. To achieve the best performance, developers have to interweave of various complex optimizations including multithreading, the use of SIMD vector extensions, and careful tuning to the memory hierarchy. In this paper, we demonstrate the computer generation of high performance code for SAR implementations on Intel's multicore platforms based on the Spiral framework and system. The key is to express SAR and its building blocks in Spiral's formal domain-specific language to enable automatic vectorization, parallelization, and memory hierarchy tuning through rewriting at a high abstraction level and automatic exploration of choices. We show that Spiral produces code for the latest Intel quadcore platforms that surpasses competing hand-tuned implementations on the Cell Blade, an architecture with twice as many cores and three times the memory bandwidth. Specifically, we show an average performance of 39 Gigaflops/sec for 16-Megapixel and 100-Megapixel SAR images with runtimes of 0.56 and 3.76 seconds respectively.

  7. Stereo-synthetic aperture radar technique without using control points to estimate terrain height

    Science.gov (United States)

    Chou, Hsi-Tseng; Lu, Kung-Yu; Liu, Chung-Chih

    2015-01-01

    A stereo-synthetic aperture radar (stereo-SAR)-based technique is proposed to estimate the unknown terrain profile of a target area. This technique first mathematically builds up a virtual reference profile. An algorithm is afterward developed to estimate the relative height difference between the desired and reference profiles by using the trigonometric relationship between their relative SAR range distances, which allows for building up the height of the desired profile from the reference profile. This technique is advantageous and is simple in implementation because the virtual reference profile is constructed by using the same SAR range information as that used for the terrain profile under estimation, which is established by considering the measurement difference between two SAR receivers. It does not require the use of an existing known profile as the reference. Furthermore, we present a technique for calibrating the measured SAR range information, which significantly improves the estimation accuracy. Three practical examples are presented to demonstrate the feasibility of the developed technique.

  8. A parameter inversion for sea bridge based on high-resolution polarimetric synthetic aperture radar

    Institute of Scientific and Technical Information of China (English)

    LIU Genwang; ZHANG Jie; ZHANG Xi; MENG Junmin; WANG Guoyu

    2016-01-01

    Each reflection return of a bridge over water is displayed as wide stripe in a high-resolution synthetic aperture radar (SAR) image, which lead to difficulties in a parameter inversion. Therefore, a method of bridge parameter inversion is proposed for high-resolution full polarimetric SAR (PolSAR). First, the single, double and triple-bounce returns from each component of the bridge are distinguished by the polarization scattering features. Then the reasons which lead to the backscatter echoes of the bridge over water being displayed as stripes are analyzed, using a principle of microwave reflection, as well as an extraction method for each reflection return, and a parameter retrieval method is obtained. Finally, the parameters of the bridge, including the height (top and bottom surfaces of the sea bridge), width, thickness, span, and height of the bridge tower, are retrieved using full polarimetric AIRSAR data. When a comparison of the measured data is completed, the results indicate that the proposed method can invert the parameters with a high accuracy, and that the inversion error of the bridge height (bottom surface) is only 1.3%. Moreover, the results also show that for the high-resolution SAR, the C and L-band images have the same ability in regards to parameter retrieval.

  9. Volumetric localization of epileptic activities in tuberous sclerosis using synthetic aperture magnetometry

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Zheng [Hospital for Sick Children, Research Institute, Toronto (Canada); Hospital for Sick Children, Department of Diagnostic Imaging, Toronto (Canada); Xiang, Jing [Hospital for Sick Children, Research Institute, Toronto (Canada); Hospital for Sick Children, Department of Diagnostic Imaging, Toronto (Canada); Holowka, Stephanie; Chuang, Sylvester [Hospital for Sick Children, Department of Diagnostic Imaging, Toronto (Canada); Hunjan, Amrita; Sharma, Rohit; Otsubo, Hiroshi [Hospital for Sick Children, Division of Neurology, Toronto (Canada)

    2006-01-01

    Magnetoencephalography (MEG) is a novel noninvasive technique for localizing epileptic zones. Tuberous sclerosis complex (TSC) is often associated with medically refractory epilepsy with multiple epileptic zones. Surgical treatment of TSC requires accurate localization of epileptogenic tubers. The objective of this study was to introduce a new MEG technique, synthetic aperture magnetometry (SAM), to volumetrically localize irritable zones and clarify the correlations between SAM, dipole modeling and anatomical tubers. Eight pediatric patients with TSC confirmed by clinical and neuroimaging findings were retrospectively studied. MEG data were recorded using a whole-cortex CTF OMEGA system. Sleep deprivation was employed to provoke epileptiform activity. Irritable zones were localized using both dipole modeling and SAM. MRI detected 42 tubers in the eight patients. Dipole modeling localized 28 irritable zones, and 19 out of the 28 zones were near tubers (19/42, 45%). SAM found 51 irritable zones, and 31 out of the 51 zones were near tubers (31/42, 74%). Among the 51 irritable zones determined by SAM, thirty-five zones were in 1-35 Hz, nine zones were in 35-60 Hz, and seven zones were in 60-120 Hz. The new method, SAM, yielded very plausible equivalent sources for patients who showed anatomical tubers on MRI. Compared to conventional dipole modeling, SAM appeared to offer increased detection of irritable zones and beneficial volumetric and frequency descriptions. (orig.)

  10. Signal processing techniques for forward imaging using ultrawideband synthetic aperture radar

    Science.gov (United States)

    Nguyen, Lam H.; Ton, Tuan T.; Wong, David C.; Ressler, Marc A.

    2003-09-01

    The U.S. Army Research Laboratory (ARL), as part of a customer and mission-funded exploratory development program, has been developing a prototype of low-frequency, ultra-wideband (UWB) forward-imaging synthetic aperture radar (SAR) to support the U.S. Army's vision for increased mobility and survivability of unmanned ground vehicle missions. The ability of the UWB radar technology to detect objects under foilage could provide an important obstacle-avoidance capability for robotic vehicles, which could improve the speed and maneuverability of these vehicles and consequently increase the survivability of the U.S. forces. In a recent experiment at Aberdeen Proving Ground (APG), we exercised the UWB SAR radar in forward-looking mode and collected data to support the investigation. This paper discusses the signal processing algorithms and techniques that we developed and applied to the recent UWB SAR forward-looking data. The algorithms include motion data processing, self-interference signal (SIR) removal, radio frequency interference (RFI) signal removal, forward-looking image formation, and visualization techniques. We present forward-loking SAR imagery and also volumetric imagery of some targets.

  11. Synthetic aperture radar data visualization on the iPod Touch

    Science.gov (United States)

    Fouts, Aaron; Vickery, Rhonda; Majumder, Uttam; Burchett, Tracy; Klein, Troy; Minardi, Michael

    2010-04-01

    A major area of focus for the Air Force is sensor performance in urban environments. Aircraft with multiple sensor modalities, such as Synthetic Aperture RADAR (SAR), Infrared (IR), and Electro-Optics (EO), are essential for intelligence, surveillance, and reconnaissance (ISR) of current and future urban battlefields. Although applications exist for visualization of these types of imagery, they usually require at least a laptop computer and internet connection. Field operatives need to be able to access georeferenced information about imagery as part of a Geographic Information System (GIS) on mobile devices. The iPod/iPhone has a 640x480 resolution multi-touch display, making it an excellent device for interacting with georeferenced imagery. We created an iPhone application that loads SAR imagery and allows the user to interact with it. The user multi-touch interface provides pan and zoom capabilities as well as options to change parameters relating to the query. We describe how operatives in the field can use this application to investigate SAR and GIS related problems on the iPhone mobile device, which otherwise would require a computer and Internet connection.

  12. A despeckle filter for the Cassini synthetic aperture radar images of Titan's surface

    Science.gov (United States)

    Bratsolis, Emmanuel; Bampasidis, Georgios; Solomonidou, Anezina; Coustenis, Athena

    2012-02-01

    Cassini synthetic aperture radar (SAR) images of Titan, the largest satellite of Saturn, reveal surface features with shapes ranging from quasi-circular to more complex ones, interpreted as liquid hydrocarbon deposits assembled in the form of lakes or seas. One of the major problems hampering the derivation of meaningful texture information from SAR imagery is the speckle noise. It overlays real structures and causes gray value variations even in homogeneous parts of the image. We propose a filtering technique which can be applied to obtain restored SAR images. Our technique is based on probabilistic methods and regards an image as a random element drawn from a prespecified set of possible images. The despeckle filter can be used as an intermediate step for the extraction of regions of interest, corresponding to structured units in a given area or distinct objects of interest, such as lake-like features on Titan. This tool can therefore be used, among other, to study seasonal surficial changes of Titan's polar regions. In this study we also present a segmentation technique that allows us to separate the lakes from the local background.

  13. Volumetric localization of somatosensory cortex in children using synthetic aperture magnetometry

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Jing [Department of Diagnostic Imaging, The Hospital for Sick Children, 555 University Avenue, Toronto, ON (Canada); Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, ON (Canada); Holowka, Stephanie; Chuang, Sylvester [Department of Diagnostic Imaging, The Hospital for Sick Children, 555 University Avenue, Toronto, ON (Canada); Sharma, Rohit; Hunjan, Amrita; Otsubo, Hiroshi [Department of Neurology, Hospital for Sick Children, 555 University Avenue, Toronto, ON (Canada)

    2003-05-01

    Magnetic signal from the human brain can be measured noninvasively by using magnetoencephalography (MEG). This study was designed to localize and reconstruct the neuromagnetic activity in the somatosensory cortex in children Twenty children were studied using a 151-channel MEG system with electrical stimulation applied to median nerves. Data were analyzed using synthetic aperture magnetometry (SAM). A clear deflection (M1) was clearly identified in 18 children (90%, 18/20). Two frequency bands, 30-60 Hz and 60-120 Hz, were found to be related to somatosensory cortex. Magnetic activity was localized in the posterior bank of the central sulcus in 16 children. The extent of the reconstructed neuromagnetic activity of the left hemisphere was significantly larger than that of the right hemisphere (P<0.01). Somatosensory cortex was accurately localized by using SAM. The extent of the reconstructed neuromagnetic activity suggested that the left hemisphere was the dominant side in the somatosensory system in children. We postulate that the volumetric characteristics of the reconstructed neuromagnetic activity are able to indicate the functionality of the brain. (orig.)

  14. Applicability of Synthetic Aperture Radar Wind Retrievals on Offshore Wind Resources Assessment in Hangzhou Bay, China

    Directory of Open Access Journals (Sweden)

    Rui Chang

    2014-05-01

    Full Text Available In view of the high cost and sparse spatial resolution of offshore meteorological observations, ocean winds retrieved from satellites are valuable in offshore wind resource assessment as a supplement to in situ measurements. This study examines satellite synthetic aperture radar (SAR images from ENVISAT advanced SAR (ASAR for mapping wind resources with high spatial resolution. Around 181 collected pairs of wind data from SAR wind maps and from 13 meteorological stations in Hangzhou Bay are compared. The statistical results comparing in situ wind speed and SAR-based wind speed show a standard deviation (SD of 1.99 m/s and correlation coefficient of R = 0.67. The model wind directions, which are used as input for the SAR wind speed retrieval, show a high correlation coefficient (R = 0.89 but a large standard deviation (SD = 42.3° compared to in situ observations. The Weibull probability density functions are compared at one meteorological station. The SAR-based results appear not to estimate the mean wind speed, Weibull scale and shape parameters and wind power density from the full in situ data set so well due to the lower number of satellite samples. Distributions calculated from the concurrent 81 SAR and in situ samples agree well.

  15. Synthetic aperture radar (SAR-based mapping of volcanic flows: Manam Island, Papua New Guinea

    Directory of Open Access Journals (Sweden)

    J. K. Weissel

    2004-01-01

    Full Text Available We present new radar-based techniques for efficient identification of surface changes generated by lava and pyroclastic flows, and apply these to the 1996 eruption of Manam Volcano, Papua New Guinea. Polarimetric L- and P-band airborne synthetic aperture radar (SAR data, along with a C-band DEM, were acquired over the volcano on 17 November 1996 during a major eruption sequence. The L-band data are analyzed for dominant scattering mechanisms on a per pixel basis using radar target decomposition techniques. A classification method is presented, and when applied to the L-band polarimetry, it readily distinguishes bare surfaces from forest cover over Manam volcano. In particular, the classification scheme identifies a post-1992 lava flow in NE Valley of Manam Island as a mainly bare surface and the underlying 1992 flow units as mainly vegetated surfaces. The Smithsonian's Global Volcanism Network reports allow us to speculate whether the bare surface is a flow dating from October or November in the early part of the late-1996 eruption sequence. This work shows that fully polarimetric SAR is sensitive to scattering mechanism changes caused by volcanic resurfacing processes such as lava and pyroclastic flows. By extension, this technique should also prove useful in mapping debris flows, ash deposits and volcanic landslides associated with major eruptions.

  16. On the detection of crevasses in glacial ice with synthetic-aperture radar.

    Energy Technology Data Exchange (ETDEWEB)

    Brock, Billy C.

    2010-02-01

    The intent of this study is to provide an analysis of the scattering from a crevasse in Antarctic ice, utilizing a physics-based model for the scattering process. Of primary interest is a crevasse covered with a snow bridge, which makes the crevasse undetectable in visible-light images. It is demonstrated that a crevasse covered with a snow bridge can be visible in synthetic-aperture-radar (SAR) images. The model of the crevasse and snow bridge incorporates a complex dielectric permittivity model for dry snow and ice that takes into account the density profile of the glacier. The surface structure is based on a fractal model that can produce sastrugi-like features found on the surface of Antarctic glaciers. Simulated phase histories, computed with the Shooting and Bouncing Ray (SBR) method, are processed into SAR images. The viability of the SBR method for predicting scattering from a crevasse covered with a snow bridge is demonstrated. Some suggestions for improving the model are given.

  17. Persistent scatterers detection on synthetic aperture radar images acquired by Sentinel-1 satellite

    Science.gov (United States)

    Dǎnişor, Cosmin; Popescu, Anca; Datcu, Mihai

    2016-12-01

    Persistent Scatterers Interferometry (PS-InSAR) has become a popular method in remote sensing because of its capability to measure terrain deformations with very high accuracy. It relies on multiple Synthetic Aperture Radar (SAR) acquisitions, to monitor points with stable proprieties over time, called Persistent Scatterers (PS)[1]. These points are unaffected by temporal decorrelation, therefore by analyzing their interferometric phase variation we can estimate the scene's deformation rates within a given time interval. In this work, we apply two incoherent detection algorithms to identify Persistent Scatterers candidates in the city of Focșani, Romania. The first method studies the variation of targets' intensities along the SAR acquisitions and the second method analyzes the spectral proprieties of the scatterers. The algorithms were implemented on a dataset containing 11 complex images of the region covering Buzău, Brăila and Focșani cities. Images were acquired by Sentinel-1 satellite in a time span of 5 months, from October 2014 to February 2015. The processing chain follows the requirements imposed by the new C-band SAR images delivered by the Sentinel-1 satellite (launched in April 2014) imaging in Interferometric Wide (IW) mode. Considering the particularities of the TOPS (Terrain Observation with Progressive Scans in Azimuth) imaging mode[2], special requirements had to be considered for pre-processing steps. The PS detection algorithms were implemented in Gamma RS program, a software which contains various function packages dedicated to SAR images focalization, analysis and processing.

  18. Interferometric synthetic aperture microscopy implementation on a floating point multi-core digital signal processer

    Science.gov (United States)

    Ahmad, Adeel; Ali, Murtaza; South, Fredrick; Monroy, Guillermo L.; Adie, Steven G.; Shemonski, Nathan; Carney, P. Scott; Boppart, Stephen A.

    2013-03-01

    The transition of optical coherence tomography (OCT) technology from the lab environment towards the more challenging clinical and point-of-care settings is continuing at a rapid pace. On one hand this translation opens new opportunities and avenues for growth, while on the other hand it also presents a new set of challenges and constraints under which OCT systems have to operate. OCT systems in the clinical environment are not only required to be user friendly and easy to operate, but should also be portable, have a smaller form factor coupled with low cost and reduced power consumption. Digital signal processors (DSP) are in a unique position to satisfy the computational requirements for OCT at a much lower cost and power consumption compared to the existing platforms such as CPU and graphics processing units (GPUs). In this work, we describe the implementation of optical coherence tomography (OCT) and interferometric synthetic aperture microscopy (ISAM) processing on a floating point multi-core DSP (C6678, Texas Instruments). ISAM is a computationally intensive data processing technique that is based on the re-sampling of the Fourier space of the data to yield spatially invariant transverse resolution in OCT. Preliminary results indicate that 2DISAM processing at 70,000 A-lines/sec and OCT at 180,000 A-lines/sec can be achieved with the current implementation using available DSP hardware.

  19. Improving synthetic aperture focusing technique for thick concrete specimens via frequency banding

    Science.gov (United States)

    Clayton, Dwight A.

    2016-04-01

    A multitude of concrete-based structures are typically part of a light water reactor (LWR) plant to provide the foundation, support, shielding, and containment functions. This use has made its long-term performance crucial for the safe operation of commercial nuclear power plants (NPPs). Extending reactor life to 60 years and beyond will likely increase susceptibility and severity of known forms of degradation. While standard Synthetic Aperture Focusing Technique (SAFT) is adequate for many defects with shallow concrete cover, some defects located under deep concrete cover are not easily identified using the standard SAFT. For many defects, particularly defects under deep cover, the use of frequency banded SAFT improves the detectability over standard SAFT. In addition to the improved detectability, the frequency banded SAFT also provides improved scan depth resolution that can be important in determining the suitability of a particular structure to perform its designed safety function. Specially designed and fabricated test specimens can provide realistic flaws that are similar to actual flaws in terms of how they interact with a particular NDE technique. Because conditions in the laboratory are controlled, the number of unknown variables can be decreased, making it possible to focus on specific aspects, investigate them in detail, and gain further information on the capabilities and limitations of each method. To validate the advantages of frequency banded SAFT on thick concrete, a 2.134 m x 2.134 m x 1.016 m concrete test specimen with twenty deliberately embedded defects was fabricated.

  20. Synthetic aperture radar imaging based on attributed scatter model using sparse recovery techniques

    Institute of Scientific and Technical Information of China (English)

    苏伍各; 王宏强; 阳召成

    2014-01-01

    The sparse recovery algorithms formulate synthetic aperture radar (SAR) imaging problem in terms of sparse representation (SR) of a small number of strong scatters’ positions among a much large number of potential scatters’ positions, and provide an effective approach to improve the SAR image resolution. Based on the attributed scatter center model, several experiments were performed with different practical considerations to evaluate the performance of five representative SR techniques, namely, sparse Bayesian learning (SBL), fast Bayesian matching pursuit (FBMP), smoothed l0 norm method (SL0), sparse reconstruction by separable approximation (SpaRSA), fast iterative shrinkage-thresholding algorithm (FISTA), and the parameter settings in five SR algorithms were discussed. In different situations, the performances of these algorithms were also discussed. Through the comparison of MSE and failure rate in each algorithm simulation, FBMP and SpaRSA are found suitable for dealing with problems in the SAR imaging based on attributed scattering center model. Although the SBL is time-consuming, it always get better performance when related to failure rate and high SNR.

  1. An extended chirp scaling algorithm for spaceborne sliding spotlight synthetic aperture radar imaging

    Directory of Open Access Journals (Sweden)

    Guo Jiao

    2014-08-01

    Full Text Available A system impulse response with low sidelobes is critical in synthetic aperture radar (SAR images because sidelobes contribute to noise and interfere with nearby scatterers. However, the conventional tricks of sidelobe suppression are unable to be exactly applied to the case of spaceborne sliding spotlight SAR due to great azimuth shifts in both time and frequency domains. In this paper, an extended chirp scaling algorithm is presented for spaceborne sliding spotlight SAR data imaging. The proposed algorithm firstly uses the spectral analysis (SPECAN technique to avoid the azimuth spectrum folding effect and then employs the chirp scaling (CS algorithm to achieve data focusing, i.e., the so-called two-step approach. To suppress the sidelobe level, an efficient strategy for the azimuth spectral weighting which only involves matrix multiplications and short fast Fourier transformations (FFTs is proposed, which is a post-process executed on the focused SAR image and particularly simple to be implemented. The SAR image processed by the proposed extended CS algorithm is very precise and perfectly phase-preserving. In the end, computer simulation results verify the analysis and confirm the validity of the proposed algorithm.

  2. An extended chirp scaling algorithm for spaceborne sliding spotlight synthetic aperture radar imaging

    Institute of Scientific and Technical Information of China (English)

    Guo Jiao; Xu Youshuan; Fu Longsheng

    2014-01-01

    A system impulse response with low sidelobes is critical in synthetic aperture radar (SAR) images because sidelobes contribute to noise and interfere with nearby scatterers. However, the conventional tricks of sidelobe suppression are unable to be exactly applied to the case of space-borne sliding spotlight SAR due to great azimuth shifts in both time and frequency domains. In this paper, an extended chirp scaling algorithm is presented for spaceborne sliding spotlight SAR data imaging. The proposed algorithm firstly uses the spectral analysis (SPECAN) technique to avoid the azimuth spectrum folding effect and then employs the chirp scaling (CS) algorithm to achieve data focusing, i.e., the so-called two-step approach. To suppress the sidelobe level, an efficient strategy for the azimuth spectral weighting which only involves matrix multiplications and short fast Fourier transformations (FFTs) is proposed, which is a post-process executed on the focused SAR image and particularly simple to be implemented. The SAR image processed by the proposed extended CS algorithm is very precise and perfectly phase-preserving. In the end, computer simulation results verify the analysis and confirm the validity of the proposed algorithm.

  3. Digital processing considerations for extraction of ocean wave image spectra from raw synthetic aperture radar data

    Science.gov (United States)

    Lahaie, I. J.; Dias, A. R.; Darling, G. D.

    1984-01-01

    The digital processing requirements of several algorithms for extracting the spectrum of a detected synthetic aperture radar (SAR) image from the raw SAR data are described and compared. The most efficient algorithms for image spectrum extraction from raw SAR data appear to be those containing an intermediate image formation step. It is shown that a recently developed compact formulation of the image spectrum in terms of the raw data is computationally inefficient when evaluated directly, in comparison with the classical method where matched-filter image formation is an intermediate result. It is also shown that a proposed indirect procedure for digitally implementing the same compact formulation is somewhat more efficient than the classical matched-filtering approach. However, this indirect procedure includes the image formation process as part of the total algorithm. Indeed, the computational savings afforded by the indirect implementation are identical to those obtained in SAR image formation processing when the matched-filtering algorithm is replaced by the well-known 'dechirp-Fourier transform' technique. Furthermore, corrections to account for slant-to-ground range conversion, spherical earth, etc., are often best implemented in the image domain, making intermediate image formation a valuable processing feature.

  4. Remotely Sensed Active Layer Thickness (ReSALT at Barrow, Alaska Using Interferometric Synthetic Aperture Radar

    Directory of Open Access Journals (Sweden)

    Kevin Schaefer

    2015-03-01

    Full Text Available Active layer thickness (ALT is a critical parameter for monitoring the status of permafrost that is typically measured at specific locations using probing, in situ temperature sensors, or other ground-based observations. Here we evaluated the Remotely Sensed Active Layer Thickness (ReSALT product that uses the Interferometric Synthetic Aperture Radar technique to measure seasonal surface subsidence and infer ALT around Barrow, Alaska. We compared ReSALT with ground-based ALT obtained using probing and calibrated, 500 MHz Ground Penetrating Radar at multiple sites around Barrow. ReSALT accurately reproduced observed ALT within uncertainty of the GPR and probing data in ~76% of the study area. However, ReSALT was less than observed ALT in ~22% of the study area with well-drained soils and in ~1% of the area where soils contained gravel. ReSALT was greater than observed ALT in some drained thermokarst lake basins representing ~1% of the area. These results indicate remote sensing techniques based on InSAR could be an effective way to measure and monitor ALT over large areas on the Arctic coastal plain.

  5. Measurement of turbulence in the oceanic mixed layer using Synthetic Aperture Radar (SAR

    Directory of Open Access Journals (Sweden)

    S. G. George

    2012-09-01

    Full Text Available Turbulence in the surface layer of the ocean contributes to the transfer of heat, gas and momentum across the air-sea boundary. As such, study of turbulence in the ocean surface layer is becoming increasingly important for understanding its effects on climate change. Direct Numerical Simulation (DNS techniques were implemented to examine the interaction of small-scale wake turbulence in the upper ocean layer with incident electromagnetic radar waves. Hydrodynamic-electromagnetic wave interaction models were invoked to demonstrate the ability of Synthetic Aperture Radar (SAR to observe and characterise surface turbulent wake flows. A range of simulated radar images are presented for a turbulent surface current field behind a moving surface vessel, and compared with the surface flow fields to investigate the impact of turbulent currents on simulated radar backscatter. This has yielded insights into the feasibility of resolving small-scale turbulence with remote-sensing radar and highlights the potential for extracting details of the flow structure and characteristics of turbulence using SAR.

  6. Efficient Backprojection-Based Synthetic Aperture Radar Computation with Many-Core Processors

    Directory of Open Access Journals (Sweden)

    Jongsoo Park

    2013-01-01

    Full Text Available Tackling computationally challenging problems with high efficiency often requires the combination of algorithmic innovation, advanced architecture, and thorough exploitation of parallelism. We demonstrate this synergy through synthetic aperture radar (SAR via backprojection, an image reconstruction method that can require hundreds of TFLOPS. Computation cost is significantly reduced by our new algorithm of approximate strength reduction; data movement cost is economized by software locality optimizations facilitated by advanced architecture support; parallelism is fully harnessed in various patterns and granularities. We deliver over 35 billion backprojections per second throughput per compute node on an Intel® Xeon® processor E5-2670-based cluster, equipped with Intel® Xeon Phi™ coprocessors. This corresponds to processing a 3K×3K image within a second using a single node. Our study can be extended to other settings: backprojection is applicable elsewhere including medical imaging, approximate strength reduction is a general code transformation technique, and many-core processors are emerging as a solution to energy-efficient computing.

  7. Synthetic Aperture Microwave Imaging (SAMI) of the plasma edge on NSTX-U

    Science.gov (United States)

    Vann, Roddy; Taylor, Gary; Brunner, Jakob; Ellis, Bob; Thomas, David

    2016-10-01

    The Synthetic Aperture Microwave Imaging (SAMI) system is a unique phased-array microwave camera with a +/-40° field of view in both directions. It can image cut-off surfaces corresponding to frequencies in the range 10-34.5GHz; these surfaces are typically in the plasma edge. SAMI operates in two modes: either imaging thermal emission from the plasma (often modified by its interaction with the plasma edge e.g. via BXO mode conversion) or ``active probing'' i.e. injecting a broad beam at the plasma surface and imaging the reflected/back-scattered signal. SAMI was successfully pioneered on the Mega-Amp Spherical Tokamak (MAST) at Culham Centre for Fusion Energy. SAMI has now been installed and commissioned on the National Spherical Torus Experiment Upgrade (NSTX-U) at Princeton Plasma Physics Laboratory. The firmware has been upgraded to include real-time digital filtering, which enables continuous acquisition of the Doppler back-scattered active probing data. In this poster we shall present SAMI's analysis of the plasma edge on NSTX-U including measurements of the edge pitch angle on NSTX-U using SAMI's unique 2-D Doppler-backscattering capability.

  8. Multiple-input multiple-output synthetic aperture ladar system for wide-range swath with high azimuth resolution.

    Science.gov (United States)

    Tang, Yu; Qin, Bao; Yan, Yun; Xing, Mengdao

    2016-02-20

    For the trade-off between the high azimuth resolution and the wide-range swath in the single-input single-output synthetic aperture ladar (SAL) system, the range swath of the SAL system is restricted to a narrow range, this paper proposes a multiple-input multiple-output (MIMO) synthetic aperture ladar system. The MIMO system adopts a low pulse repetition frequency (PRF) to avoid a range ambiguity for the wide-range swath and in azimuth adopts the multi-channel method to achieve azimuth high resolution from the unambiguous azimuth wide-spectrum signal, processed through adaptive digital beam-forming technology. Simulations and analytical results are presented.

  9. Real-time implementation of frequency-modulated continuous-wave synthetic aperture radar imaging using field programmable gate array.

    Science.gov (United States)

    Quan, Yinghui; Li, Yachao; Hu, Guibin; Xing, Mengdao

    2015-06-01

    A new miniature linear frequency-modulated continuous-wave radar which mounted on an unmanned aerial vehicle is presented. It allows the accomplishment of high resolution synthetic aperture radar imaging in real-time. Only a Kintex-7 field programmable gate array from Xilinx is utilized for whole signal processing of sophisticated radar imaging algorithms. The proposed hardware architecture achieves remarkable improvement in integration, power consumption, volume, and computing performance over its predecessor designs. The realized design is verified by flight campaigns.

  10. Extra Wideband Polarimetry, Interferometry and Polarimetric Interferometry in Synthetic Aperture Remote Sensing(Special Issue on Advances in Radar Systems)

    OpenAIRE

    Boerner, Wolfgang-Martin; Yamaguchi, Yoshio

    2000-01-01

    The development of Radar Polarimetry and Radar Interferometry is advancing rapidly. Whereas with radar polarimetry, the textural fine-structure, target orientation, symmetries and material constituents can be recovered with considerable improvement above that of standard amplitude-only radar; with radar interferometry the spatial(in depth)structure can be explored. In Polarimetric Interferometric Synthetic Aperture Radar(POL-IN-SAR)Imaging, it is possible to recover such co-registered textura...

  11. Fault Creep along the Southern San Andreas from Interferometric Synthetic Aperture Radar, Permanent Scatterers, and Stacking

    Science.gov (United States)

    Lyons, Suzanne; Sandwell, David

    2003-01-01

    Interferometric synthetic aperture radar (InSAR) provides a practical means of mapping creep along major strike-slip faults. The small amplitude of the creep signal (less than 10 mm/yr), combined with its short wavelength, makes it difficult to extract from long time span interferograms, especially in agricultural or heavily vegetated areas. We utilize two approaches to extract the fault creep signal from 37 ERS SAR images along the southem San Andreas Fault. First, amplitude stacking is utilized to identify permanent scatterers, which are then used to weight the interferogram prior to spatial filtering. This weighting improves correlation and also provides a mask for poorly correlated areas. Second, the unwrapped phase is stacked to reduce tropospheric and other short-wavelength noise. This combined processing enables us to recover the near-field (approximately 200 m) slip signal across the fault due to shallow creep. Displacement maps fiom 60 interferograms reveal a diffuse secular strain buildup, punctuated by localized interseismic creep of 4-6 mm/yr line of sight (LOS, 12-18 mm/yr horizontal). With the exception of Durmid Hill, this entire segment of the southern San Andreas experienced right-lateral triggered slip of up to 10 cm during the 3.5-year period spanning the 1992 Landers earthquake. The deformation change following the 1999 Hector Mine earthquake was much smaller (4 cm) and broader than for the Landers event. Profiles across the fault during the interseismic phase show peak-to-trough amplitude ranging from 15 to 25 mm/yr (horizontal component) and the minimum misfit models show a range of creeping/locking depth values that fit the data.

  12. Operational Mapping of Soil Moisture Using Synthetic Aperture Radar Data: Application to the Touch Basin (France

    Directory of Open Access Journals (Sweden)

    Jean François Desprats

    2007-10-01

    Full Text Available Soil moisture is a key parameter in different environmental applications, suchas hydrology and natural risk assessment. In this paper, surface soil moisture mappingwas carried out over a basin in France using satellite synthetic aperture radar (SARimages acquired in 2006 and 2007 by C-band (5.3 GHz sensors. The comparisonbetween soil moisture estimated from SAR data and in situ measurements shows goodagreement, with a mapping accuracy better than 3%. This result shows that themonitoring of soil moisture from SAR images is possible in operational phase. Moreover,moistures simulated by the operational Météo-France ISBA soil-vegetation-atmospheretransfer model in the SIM-Safran-ISBA-Modcou chain were compared to radar moistureestimates to validate its pertinence. The difference between ISBA simulations and radarestimates fluctuates between 0.4 and 10% (RMSE. The comparison between ISBA andgravimetric measurements of the 12 March 2007 shows a RMSE of about 6%. Generally,these results are very encouraging. Results show also that the soil moisture estimatedfrom SAR images is not correlated with the textural units defined in the European Soil Geographical Database (SGDBE at 1:1000000 scale. However, dependence was observed between texture maps and ISBA moisture. This dependence is induced by the use of the texture map as an input parameter in the ISBA model. Even if this parameter is very important for soil moisture estimations, radar results shown that the textural map scale at 1:1000000 is not appropriate to differentiate moistures zones.

  13. Application of equalization notch to improve synthetic aperture radar coherent data products

    Science.gov (United States)

    Musgrove, Cameron; West, James C.

    2015-05-01

    Interference and interference mitigation techniques degrade synthetic aperture radar (SAR) coherent data products. Radars utilizing stretch processing present a unique challenge for many mitigation techniques because the interference signal itself is modified through stretch processing from its original signal characteristics. Many sources of interference, including constant tones, are only present within the fast-time sample data for a limited number of samples, depending on the radar and interference bandwidth. Adaptive filtering algorithms to estimate and remove the interference signal that rely upon assuming stationary interference signal characteristics can be ineffective. An effective mitigation method, called notching, forces the value of the data samples containing interference to zero. However, as the number of data samples set to zero increases, image distortion and loss of resolution degrade both the image product and any second order image products. Techniques to repair image distortions,1 are effective for point-like targets. However, these techniques are not designed to model and repair distortions in SAR image terrain. Good terrain coherence is important for SAR second order image products because terrain occupies the majority of many scenes. For the case of coherent change detection it is the terrain coherence itself that determines the quality of the change detection image. This paper proposes an unique equalization technique that improves coherence over existing notching techniques. First, the proposed algorithm limits mitigation to only the samples containing interference, unlike adaptive filtering algorithms, so the remaining samples are not modified. Additionally, the mitigation adapts to changing interference power such that the resulting correction equalizes the power across the data samples. The result is reduced distortion and improved coherence for the terrain. SAR data demonstrates improved coherence from the proposed equalization

  14. Current Measurements in Rivers by Spaceborne Along-Track Interferometric Synthetic Aperture Radar

    Science.gov (United States)

    Romeiser, R.; Gruenler, S.; Stammer, D.

    2007-12-01

    The along-track interferometric synthetic aperture radar (along-track InSAR) technique permits a high-resolution imaging of ocean surface current fields all over the world from satellites. Results of the Shuttle Radar Topography Mission (SRTM) in early 2000 and theoretical findings indicate that spaceborne along-track InSARs are also suitable for current retrievals in rivers if the water surface is at least 200-300 m wide and sufficiently rough for microwave backscattering at slanting incidence. Accordingly, the technique is quite attractive for global river runoff monitoring, where it can complement water level and surface slope measurements by advanced radar altimeters and other efforts. The German satellite TerraSAR-X, which was launched in June 2007, will permit along-track interferometry in an experimental mode of operation. This will be the first opportunity for repeated current measurements from space at selected test sites during a period of several years. In this presentation we give an overview of basic principles and theoretical limits of current measurements by along-track InSAR, example results from SRTM, and predicted along-track InSAR capabilities of TerraSAR-X. An SRTM-derived surface current field in the lower Elbe river (Germany) agrees well with numerical hydrodynamic model results; characteristic lateral current variations around a pronounced main flow channel in the 1500 m wide river are resolved. Despite clearly suboptimal instrument parameters, TerraSAR-X simulations indicate an even better data quality. Depending on width, surface roughness, and relative flow direction of a river, current estimates with an accuracy better than 0.1 m/s will be possible with an effective spatial resolution of a few hundred meters to kilometers.

  15. Exploiting synthetic aperture radar imagery for retrieving vibration signatures of concealed machinery

    Science.gov (United States)

    Pérez, Francisco; Campbell, Justin B.; Jaramillo, Monica; Dunkel, Ralf; Atwood, Thomas; Doerry, Armin; Gerstle, Walter H.; Santhanam, Balu; Hayat, Majeed M.

    2016-05-01

    It has been demonstrated that the instantaneous acceleration associated with vibrating objects that are directly imaged by synthetic aperture radar (SAR) can be estimated through the application of the discrete fractional Fourier transform (DFrFT) using the information contained in the complex SAR image. In general, vibration signatures may include, for example, the number of chirped sinusoids as well as their respective base frequencies and chirp rates. By further processing the DFrFT-processed data for clutter-noise rejection by means of pseudo- subspace methods, has been shown that the SAR-vibrometry method can be reliable as long as the signal-to-noise ratio (SNR) and the signal-to-clutter ratio (SCR) of the slow-time SAR signal at the range-line of interest exceeds 15dB. Meanwhile, the Nyquist theorem dictates that the maximum measurable vibration frequency is limited by half of the pulse-repetition frequency. This paper focuses on the detection and estimation of vibrations generated by machinery concealed within buildings and other structures. This is a challenging task in general because the vibration signatures of the source are typically altered by their housing structure; moreover, the SNR at the surface of the housing structure tends to be reduced. Here, experimental results for three different vibrating targets, including one concealed target, are reported using complex SAR images acquired by the General Atomics Lynx radar at resolutions of 1-ft and 4-in. The concealed vibrating target is actuated by a gear motor with an off-balance weight attached to it, which is enclosed by a wooden housing. The vibrations of the motor are transmitted to a chimney that extends above the housing structure. Using the SAR vibrometry approach, it is shown that it is possible to distinguish among the three vibrating objects based upon their vibration signatures.

  16. Maritime surveillance with synthetic aperture radar (SAR) and automatic identification system (AIS) onboard a microsatellite constellation

    Science.gov (United States)

    Peterson, E. H.; Zee, R. E.; Fotopoulos, G.

    2012-11-01

    New developments in small spacecraft capabilities will soon enable formation-flying constellations of small satellites, performing cooperative distributed remote sensing at a fraction of the cost of traditional large spacecraft missions. As part of ongoing research into applications of formation-flight technology, recent work has developed a mission concept based on combining synthetic aperture radar (SAR) with automatic identification system (AIS) data. Two or more microsatellites would trail a large SAR transmitter in orbit, each carrying a SAR receiver antenna and one carrying an AIS antenna. Spaceborne AIS can receive and decode AIS data from a large area, but accurate decoding is limited in high traffic areas, and the technology relies on voluntary vessel compliance. Furthermore, vessel detection amidst speckle in SAR imagery can be challenging. In this constellation, AIS broadcasts of position and velocity are received and decoded, and used in combination with SAR observations to form a more complete picture of maritime traffic and identify potentially non-cooperative vessels. Due to the limited transmit power and ground station downlink time of the microsatellite platform, data will be processed onboard the spacecraft. Herein we present the onboard data processing portion of the mission concept, including methods for automated SAR image registration, vessel detection, and fusion with AIS data. Georeferencing in combination with a spatial frequency domain method is used for image registration. Wavelet-based speckle reduction facilitates vessel detection using a standard CFAR algorithm, while leaving sufficient detail for registration of the filtered and compressed imagery. Moving targets appear displaced from their actual position in SAR imagery, depending on their velocity and the image acquisition geometry; multiple SAR images acquired from different locations are used to determine the actual positions of these targets. Finally, a probabilistic inference

  17. Indoor experimental facility for airborne synthetic aperture radar (SAR) configurations - rail-SAR

    Science.gov (United States)

    Kirose, Getachew; Phelan, Brian R.; Sherbondy, Kelly D.; Ranney, Kenneth I.; Koenig, Francois; Narayanan, Ram M.

    2014-05-01

    The Army Research Laboratory (ARL) is developing an indoor experimental facility to evaluate and assess airborne synthetic-aperture-radar-(SAR)-based detection capabilities. The rail-SAR is located in a multi-use facility that also provides a base for research and development in the area of autonomous robotic navigation. Radar explosive hazard detection is one key sensordevelopment area to be investigated at this indoor facility. In particular, the mostly wooden, multi-story building houses a two (2) story housing structure and an open area built over a large sandbox. The housing structure includes reconfigurable indoor walls which enable the realization of multiple See-Through-The-Wall (STTW) scenarios. The open sandbox, on the other hand, allows for surface and buried explosive hazard scenarios. The indoor facility is not rated for true explosive hazard materials so all targets will need to be inert and contain surrogate explosive fills. In this paper we discuss the current system status and describe data collection exercises conducted using canonical targets and frequencies that may be of interest to designers of ultra-wideband (UWB) airborne, ground penetrating SAR systems. A bi-static antenna configuration will be used to investigate the effects of varying airborne SAR parameters such as depression angle, bandwidth, and integration angle, for various target types and deployment scenarios. Canonical targets data were used to evaluate overall facility capabilities and limitations. These data is analyzed and summarized for future evaluations. Finally, processing techniques for dealing with RF multi-path and RFI due to operating inside the indoor facility are described in detail. Discussion of this facility and its capabilities and limitations will provide the explosive hazard community with a great airborne platform asset for sensor to target assessment.

  18. Sequential Ensembles Tolerant to Synthetic Aperture Radar (SAR Soil Moisture Retrieval Errors

    Directory of Open Access Journals (Sweden)

    Ju Hyoung Lee

    2016-04-01

    Full Text Available Due to complicated and undefined systematic errors in satellite observation, data assimilation integrating model states with satellite observations is more complicated than field measurements-based data assimilation at a local scale. In the case of Synthetic Aperture Radar (SAR soil moisture, the systematic errors arising from uncertainties in roughness conditions are significant and unavoidable, but current satellite bias correction methods do not resolve the problems very well. Thus, apart from the bias correction process of satellite observation, it is important to assess the inherent capability of satellite data assimilation in such sub-optimal but more realistic observational error conditions. To this end, time-evolving sequential ensembles of the Ensemble Kalman Filter (EnKF is compared with stationary ensemble of the Ensemble Optimal Interpolation (EnOI scheme that does not evolve the ensembles over time. As the sensitivity analysis demonstrated that the surface roughness is more sensitive to the SAR retrievals than measurement errors, it is a scope of this study to monitor how data assimilation alters the effects of roughness on SAR soil moisture retrievals. In results, two data assimilation schemes all provided intermediate values between SAR overestimation, and model underestimation. However, under the same SAR observational error conditions, the sequential ensembles approached a calibrated model showing the lowest Root Mean Square Error (RMSE, while the stationary ensemble converged towards the SAR observations exhibiting the highest RMSE. As compared to stationary ensembles, sequential ensembles have a better tolerance to SAR retrieval errors. Such inherent nature of EnKF suggests an operational merit as a satellite data assimilation system, due to the limitation of bias correction methods currently available.

  19. Detection and quantification of precipitations signatures on synthetic aperture radar imagery at X band

    Science.gov (United States)

    Mori, Saverio; Montopoli, Mario; Pulvirenti, Luca; Marzano, Frank S.; Pierdicca, Nazzareno

    2016-10-01

    Nowadays a well-established tool for Earth remote sensing is represented by Spaceborne synthetic aperture radars (SARs) operating at L-band and above that offers a microwave perspective at very high spatial resolution in almost all-weather conditions. Nevertheless, atmospheric precipitating clouds can significantly affect the signal backscattered from the ground surface on both amplitude and phase, as assessed by numerous recent works analyzing data collected by COSMO-SkyMed (CSK) and TerraSAR-X (TSX) missions. On the other hand, such sensitivity could allow detecting and quantifying precipitations through SARs. In this work, we propose an innovative processing framework aiming at producing X-SARs precipitation maps and cloud masks. While clouds masks allow the user to detect areas interested by precipitations, precipitation maps offer the unique opportunity to ingest within flood forecasting model precipitation data at the catchment scale. Indeed, several issues still need to be fully addressed. The proposed approach allows distinguishing flooded areas, precipitating clouds together with permanent water bodies. The detection procedure uses image segmentation techniques, fuzzy logic and ancillary data such as local incident angle map and land cover; an improved regression empirical algorithm gives the precipitation estimation. We have applied the proposed methodology to 16 study cases, acquired within TSX and CSK missions over Italy and United States. This choice allows analysing different typologies of events, and verifying the proposed methodology through the available local weather radar networks. In this work, we will discuss the results obtained until now in terms of improved rain cell localization and precipitation quantification.

  20. Precise reconstruction of fast moving cardiac valve in high frame rate synthetic transmit aperture ultrasound imaging

    Science.gov (United States)

    Suzuki, Mayumi; Ikeda, Teiichiro; Ishihara, Chizue; Takano, Shinta; Masuzawa, Hiroshi

    2016-04-01

    To diagnose heart valve incompetence, i.e., one of the most serious cardiac dysfunctions, it is essential to obtain images of fast-moving valves at high spatial and temporal resolution. Ultrasound synthetic transmit aperture (STA) imaging has the potential to achieve high spatial resolution by synthesizing multiple pre-beamformed images obtained with corresponding multiple transmissions. However, applying STA to fast-moving targets is difficult due to serious target deformation. We propose a high-frame-rate STA (fast STA) imaging method that uses a reduced number of transmission events needed for each image. Fast STA is expected to suppress deformation of moving targets; however, it may result in deteriorated spatial resolution. In this study, we conducted a simulation study to evaluate fast STA. We quantitatively evaluated the reduction in deformation and deterioration of spatial resolution with a model involving a radially moving valve at the maximum speed of 0.5 m/s. The simulated raw channel data of the valve phantom was processed with offline beamforming programs. We compared B-mode images obtained through single received-line in a transmission (SRT) method, STA, and fast STA. The results show that fast STA with four-times-reduced events is superior in reconstructing the original shape of the moving valve to other methods. The accuracy of valve location is 97 and 100% better than those with SRT and STA, respectively. The resolution deterioration was found to be below the annoyance threshold considering the improved performance of the shape reconstruction. The obtained results are promising for providing more precise diagnostic information on cardiovascular diseases.

  1. Flexible end-to-end system design for synthetic aperture radar applications

    Science.gov (United States)

    Zaugg, Evan C.; Edwards, Matthew C.; Bradley, Joshua P.

    2012-06-01

    This paper presents ARTEMIS, Inc.'s approach to development of end-to-end synthetic aperture radar systems for multiple applications and platforms. The flexible design of the radar and the image processing tools facilitates their inclusion in a variety of application-specific end-to-end systems. Any given application comes with certain requirements that must be met in order to achieve success. A concept of operation is defined which states how the technology is used to meet the requirements of the application. This drives the design decisions. Key to adapting our system to multiple applications is the flexible SlimSAR radar system, which is programmable on-the-fly to meet the imaging requirements of a wide range of altitudes, swath-widths, and platform velocities. The processing software can be used for real-time imagery production or post-flight processing. The ground station is adaptable, and the radar controls can be run by an operator on the ground, on-board the aircraft, or even automated as part of the aircraft autopilot controls. System integration takes the whole operation into account, seeking to flawlessly work with data links and on-board data storage, aircraft and payload control systems, mission planning, and image processing and exploitation. Examples of applications are presented including using a small unmanned aircraft at low altitude with a line of sight data link, a long-endurance UAV maritime surveillance mission with on-board processing, and a manned ground moving target indicator application with the radar using multiple receive channels.

  2. Investigation of measureable parameters that correlate with automatic target recognition performance in synthetic aperture sonar

    Science.gov (United States)

    Gazagnaire, Julia; Cobb, J. T.; Isaacs, Jason

    2015-05-01

    There is a desire in the Mine Counter Measure community to develop a systematic method to predict and/or estimate the performance of Automatic Target Recognition (ATR) algorithms that are detecting and classifying mine-like objects within sonar data. Ideally, parameters exist that can be measured directly from the sonar data that correlate with ATR performance. In this effort, two metrics were analyzed for their predictive potential using high frequency synthetic aperture sonar (SAS) images. The first parameter is a measure of contrast. It is essentially the variance in pixel intensity over a fixed partition of relatively small size. An analysis was performed to determine the optimum block size for this contrast calculation. These blocks were then overlapped in the horizontal and vertical direction over the entire image. The second parameter is the one-dimensional K-shape parameter. The K-distribution is commonly used to describe sonar backscatter return from range cells that contain a finite number of scatterers. An Ada-Boosted Decision Tree classifier was used to calculate the probability of classification (Pc) and false alarm rate (FAR) for several types of targets in SAS images from three different data sets. ROC curves as a function of the measured parameters were generated and the correlation between the measured parameters in the vicinity of each of the contacts and the ATR performance was investigated. The contrast and K-shape parameters were considered separately. Additionally, the contrast and K-shape parameter were associated with background texture types using previously labeled high frequency SAS images.

  3. Measuring Deformation in Jakarta through Long Term Synthetic Aperture Radar (SAR) Data Analysis

    Science.gov (United States)

    Agustan; Sulaiman, Albertus; Ito, Takeo

    2016-11-01

    Jakarta as a home for more than 10 millions habitant facing complex environmental problems due to physical development that cause physical deformation. Physical deformation issues such as decreasing environmental carrying capacity, land cover changes and land subsidence have occurred. Recent studies shows that the long of shoreline changes in a span of 13 years from 2002 to 2015 around 14 km due to land reclamation in Jakarta bay. Previous studies also concluded that Jakarta suffer a sinking phenomena due to its rapid subsidence rate, approximately 260 mm/year in northern part of Jakarta. During the 2007 to 2011, the land subsidence phenomena in Jakarta was observed by InSAR based on ALOS-PALSAR data and found that the subsided areas only occurred in certain areas, mainly in Pluit and Cengkareng regions, with a subsidence of approximately 70 cm for 4 years. Land subsidence is generally related to geological subsidence i.e. sediment consolidation due to its own weight and tectonic movements; or related to human activities such as withdrawal of ground water and geothermal fluid, oil and gas extraction from underground reservoirs, and collapse of underground mines. The amount of subsidence or uplift can be estimated from the number of concentric fringes that appear in the interferogram. This research utilizes Synthetic Aperture Radar (SAR) data observed from ALOS-2 (L-band) and Sentinel-1 (C-band) satellites. By interfering two single look complex (SLC) images from different observation epoch, it is found that the subsided area that has been identified before continues to subside. This occurs especially in Pluit region and has been revealed by interfering ALOS-2 data up to year 2016. The deformation in this area is approximately 12 cm from November 2015 to September 2016. The process of land reclamation also clearly identified by Sentinel-1 image by series data processing in Sentinels Application Platform (SNAP) software.

  4. Software-based high-level synthesis design of FPGA beamformers for synthetic aperture imaging.

    Science.gov (United States)

    Amaro, Joao; Yiu, Billy Y S; Falcao, Gabriel; Gomes, Marco A C; Yu, Alfred C H

    2015-05-01

    Field-programmable gate arrays (FPGAs) can potentially be configured as beamforming platforms for ultrasound imaging, but a long design time and skilled expertise in hardware programming are typically required. In this article, we present a novel approach to the efficient design of FPGA beamformers for synthetic aperture (SA) imaging via the use of software-based high-level synthesis techniques. Software kernels (coded in OpenCL) were first developed to stage-wise handle SA beamforming operations, and their corresponding FPGA logic circuitry was emulated through a high-level synthesis framework. After design space analysis, the fine-tuned OpenCL kernels were compiled into register transfer level descriptions to configure an FPGA as a beamformer module. The processing performance of this beamformer was assessed through a series of offline emulation experiments that sought to derive beamformed images from SA channel-domain raw data (40-MHz sampling rate, 12 bit resolution). With 128 channels, our FPGA-based SA beamformer can achieve 41 frames per second (fps) processing throughput (3.44 × 10(8) pixels per second for frame size of 256 × 256 pixels) at 31.5 W power consumption (1.30 fps/W power efficiency). It utilized 86.9% of the FPGA fabric and operated at a 196.5 MHz clock frequency (after optimization). Based on these findings, we anticipate that FPGA and high-level synthesis can together foster rapid prototyping of real-time ultrasound processor modules at low power consumption budgets.

  5. Observation of melt onset on multiyear Arctic sea ice using the ERS 1 synthetic aperture radar

    Science.gov (United States)

    Winebrenner, D. P.; Nelson, E. D.; Colony, R.; West, R. D.

    1994-01-01

    We present nearly coincident observations of backscattering from the Earth Remote-Sensing Satellite (ERS) 1 synthetic aperture radar (SAR) and of near-surface temperature from six drifting buoys in the Beaufort Sea, showing that the onset of melting in snow on multiyear sea ice is clearly detectable in the SAR data. Melt onset is marked by a clean, steep decrease in the backscattering cross section of multiyear ice at 5.3 GHz and VV polarization. We investigate the scattering physics responsible for the signature change and find that the cross section decrease is due solely to the appearance of liquid water in the snow cover overlying the ice. A thin layer of moist snow is sufficient to cause the observed decrease. We present a prototype algorithm to estimate the date of melt onset using the ERS 1 SAR and apply the algorithm first to the SAR data for which we have corresponding buoy temperatures. The melt onset dates estimated by the SAR algorithm agree with those obtained independently from the temperature data to within 4 days or less, with the exception of one case in which temperatures oscillated about 0 C for several weeks. Lastly, we apply the algorithm to the entire ERS 1 SAR data record acquired by the Alaska SAR Facility for the Beaufort Sea north of 73 deg N during the spring of 1992, to produce a map of the dates of melt onset over an area roughly 1000 km on a side. The progression of melt onset is primarily poleward but shows a weak meridional dependence at latitudes of approximately 76 deg-77 deg N. Melting begins in the southern part of the study region on June 13 and by June 20 has progressed to the northermost part of the region.

  6. Lagrangian modelling of ocean surface waves and synthetic aperture radar wave measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fouques, Sebastien

    2005-07-01

    The present thesis is concerned with the estimation of the ocean wave spectrum from synthetic aperture radar imaging and the modelling of ocean surface waves using the Lagrangian formalism. The first part gives a short overview of the theories of ocean surface waves and synthetic aperture radar (SAR) whereas the second part consists of five independent publications. The first two articles investigate the influence of the radar backscatter model on the SAR imaging of ocean waves. In Article I, Monte Carlo simulations of SAR images of the ocean surface are carried out using a nonlinear backscatter model that include both specular reflection and Bragg scattering and the results are compared to simulations from the classical Hasselmann integral transform (Hasselmann and Hasselmann, 1991). It is shown that nonlinearities in the backscatter model strongly influence the imaging of range-travelling waves and that the former can suppress the range-splitting effect (Bruning et al., 1988). Furthermore, in Article II a database of Envisat-ASAR Wave Mode products co-located with directional wave spectra from the numerical model WAM and which contains range-travelling wave cases only, is set up. The WAM spectra are used as input to several ocean-to-SAR integral transforms, with various real aperture radar (RAR) models and the obtained SAR image cross-spectra are compared to the Envisat-ASAR observations. A first result is that the use of a linear backscatter model leads to a high proportion of non-physical negative backscatter values in the RAR image, as suggested by Schulz-Stellenfleth (2001). Then, a comparison between the observed SAR cross-spectra and the ones simulated through Hasselmann's integral transform reveals that only twenty percents of the observations show a range-splitting effect as strong as in the simulations. A much better agreement is obtained when using the integral transform by Schulz-Stellenfleth (2003), which is based on a nonlinear hackscatter model

  7. Lagrangian modelling of ocean surface waves and synthetic aperture radar wave measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fouques, Sebastien

    2005-07-01

    The present thesis is concerned with the estimation of the ocean wave spectrum from synthetic aperture radar imaging and the modelling of ocean surface waves using the Lagrangian formalism. The first part gives a short overview of the theories of ocean surface waves and synthetic aperture radar (SAR) whereas the second part consists of five independent publications. The first two articles investigate the influence of the radar backscatter model on the SAR imaging of ocean waves. In Article I, Monte Carlo simulations of SAR images of the ocean surface are carried out using a nonlinear backscatter model that include both specular reflection and Bragg scattering and the results are compared to simulations from the classical Hasselmann integral transform (Hasselmann and Hasselmann, 1991). It is shown that nonlinearities in the backscatter model strongly influence the imaging of range-travelling waves and that the former can suppress the range-splitting effect (Bruning et al., 1988). Furthermore, in Article II a database of Envisat-ASAR Wave Mode products co-located with directional wave spectra from the numerical model WAM and which contains range-travelling wave cases only, is set up. The WAM spectra are used as input to several ocean-to-SAR integral transforms, with various real aperture radar (RAR) models and the obtained SAR image cross-spectra are compared to the Envisat-ASAR observations. A first result is that the use of a linear backscatter model leads to a high proportion of non-physical negative backscatter values in the RAR image, as suggested by Schulz-Stellenfleth (2001). Then, a comparison between the observed SAR cross-spectra and the ones simulated through Hasselmann's integral transform reveals that only twenty percents of the observations show a range-splitting effect as strong as in the simulations. A much better agreement is obtained when using the integral transform by Schulz-Stellenfleth (2003), which is based on a nonlinear hackscatter model

  8. Ascorbic acid decomposition into oxalate ions: a simple synthetic route towards oxalato-bridged heterometallic 3d-4f clusters.

    Science.gov (United States)

    Dinca, Alina S; Shova, Sergiu; Ion, Adrian E; Maxim, Catalin; Lloret, Francesc; Julve, Miguel; Andruh, Marius

    2015-04-28

    Two types of oxalato-bridged heterometallic 3d-4f dodeca- and hexanuclear compounds have been obtained by connecting six bi- and, respectively, trinuclear moieties through oxalato bridges arising from the slow decomposition of the L-ascorbic acid.

  9. Study of Effects of Flat Surface Assumption to Synthetic Aperture Radar Time-domain Algorithms Imaging Quality

    Directory of Open Access Journals (Sweden)

    Lin Shi-bin

    2012-08-01

    Full Text Available Time-domain algorithms have great application prospect in Ultra Wide Band Synthetic Aperture Radar (UWB SAR imaging for its advantages such as perfect focusing and perfect motion compensation. We could adopt the flat surface assumption to simplify the imaging geometric model, when undulating terrain is imaged using time-domain algorithms. Nevertheless, the flat surface assumption leads to geometric errors, thereby affecting the imaging results. This paper studies the effects of this assumption on time-domain imaging algorithms, points out that it leads to position offset problem in the case of linear aperture, and it even leads to target defocusing problem in the case of non-linear aperture. The expression of position offset is given in this paper, as well as the restriction of the maximal offset of the non-linear aperture and the maximum elevation of the area in order to focus the targets. The conclusions are validated by simulated data, which is processed by one kind of time-domain algorithms, namely Back Projection (BP algorithm.

  10. Routine Ocean Monitoring With Synthetic Aperture Radar Imagery Obtained From the Alaska Satellite Facility

    Science.gov (United States)

    Pichel, W. G.; Clemente-Colon, P.; Li, X.; Friedman, K.; Monaldo, F.; Thompson, D.; Wackerman, C.; Scott, C.; Jackson, C.; Beal, R.; McGuire, J.; Nicoll, J.

    2006-12-01

    The Alaska Satellite Facility (ASF) has been processing synthetic aperture radar (SAR) data for research and for near-real-time applications demonstrations since shortly after the launch of the European Space Agency's ERS-1 satellite in 1991. The long coastline of Alaska, the vast extent of ocean adjacent to Alaska, a scarcity of in-situ observations, and the persistence of cloud cover all contribute to the need for all-weather ocean observations in the Alaska region. Extensive experience with SAR product processing algorithms and SAR data analysis techniques, and a growing sophistication on the part of SAR data and product users have amply demonstrated the value of SAR instruments in providing this all-weather ocean observation capability. The National Oceanic and Atmospheric Administration (NOAA) has been conducting a near-real-time applications demonstration of SAR ocean and hydrologic products in Alaska since September 1999. This Alaska SAR Demonstration (AKDEMO) has shown the value of SAR-derived, high-resolution (sub kilometer) ocean surface winds to coastal weather forecasting and the understanding of coastal wind phenomena such as gap winds, barrier jets, vortex streets, and lee waves. Vessel positions and ice information derived from SAR imagery have been used for management of fisheries, protection of the fishing fleet, enforcement of fisheries regulations, and protection of endangered marine mammals. Other ocean measurements, with potentially valuable applications, include measurement of wave state (significant wave height, dominant wave direction and wavelength, and wave spectra), mapping of oil spills, and detection of shallow-water bathymetric features. In addition to the AKDEMO, ASF-processed SAR imagery is being used: (1) in the Gulf of Mexico for hurricane wind studies, and post-hurricane oil-spill and oil-platform analyses (the latter employing ship-detection algorithms for detection of changes in oil-platform locations); (2) in the North Pacific

  11. An Autonomous Cryobot Synthetic Aperture Radar for Subsurface Exploration of Europa

    Science.gov (United States)

    Pradhan, O.; Gasiewski, A. J.

    2015-12-01

    We present the design and field testing of a forward-looking end-fire synthetic aperture radar (SAR) for the 'Very deep Autonomous Laser-powered Kilowatt-class Yo-yoing Robotic Ice Explorer' (VALKYRIE) ice-penetrating cryobot. This design demonstrates critical technologies that will support an eventual landing and ice penetrating mission to Jupiter's icy moon, Europa. Results proving the feasibility of an end-fire SAR system for vehicle guidance and obstacle avoidance in a sub-surface ice environment will be presented. Data collected by the SAR will also be used for constructing sub-surface images of the glacier which can be used for: (i) mapping of englacial features such as crevasses, moulins, and embedded liquid water and (ii) ice-depth and glacier bed analysis to construct digital elevation models (DEM) that can help in the selection of crybot trajectories and future drill sites for extracting long-term climate records. The project consists of three parts, (i) design of an array of four conformal cavity-backed log-periodic folded slot dipole array (LPFSA) antennas that form agile radiating elements, (ii) design of a radar system that includes RF signal generation, 4x4 transmit-receive antenna switching and isolation and digital SAR data processing and (iii) field testing of the SAR in melt holes. The antennas have been designed, fabricated, and lab tested at the Center for Environmental Technology (CET) at CU-Boulder. The radar system was also designed and integrated at CET utilizing rugged RF components and FPGA based digital processing. Field testing was performed in conjunction with VALKYRIE tests by Stone Aerospace in June, 2015 on Matanuska Glacier, Alaska. The antennas are designed to operate inside ice while being immersed in a thin layer of surrounding low-conductivity melt water. Small holes in the corners of the cavities allow flooding of these cavities with the same melt-water thus allowing for quarter-wavelength cavity-backed reflection. Testing of

  12. The Synthetic Aperture Radar Science Data Processing Foundry Concept for Earth Science

    Science.gov (United States)

    Rosen, P. A.; Hua, H.; Norton, C. D.; Little, M. M.

    2015-12-01

    Since 2008, NASA's Earth Science Technology Office and the Advanced Information Systems Technology Program have invested in two technology evolutions to meet the needs of the community of scientists exploiting the rapidly growing database of international synthetic aperture radar (SAR) data. JPL, working with the science community, has developed the InSAR Scientific Computing Environment (ISCE), a next-generation interferometric SAR processing system that is designed to be flexible and extensible. ISCE currently supports many international space borne data sets but has been primarily focused on geodetic science and applications. A second evolutionary path, the Advanced Rapid Imaging and Analysis (ARIA) science data system, uses ISCE as its core science data processing engine and produces automated science and response products, quality assessments and metadata. The success of this two-front effort has been demonstrated in NASA's ability to respond to recent events with useful disaster support. JPL has enabled high-volume and low latency data production by the re-use of the hybrid cloud computing science data system (HySDS) that runs ARIA, leveraging on-premise cloud computing assets that are able to burst onto the Amazon Web Services (AWS) services as needed. Beyond geodetic applications, needs have emerged to process large volumes of time-series SAR data collected for estimation of biomass and its change, in such campaigns as the upcoming AfriSAR field campaign. ESTO is funding JPL to extend the ISCE-ARIA model to a "SAR Science Data Processing Foundry" to on-ramp new data sources and to produce new science data products to meet the needs of science teams and, in general, science community members. An extension of the ISCE-ARIA model to support on-demand processing will permit PIs to leverage this Foundry to produce data products from accepted data sources when they need them. This paper will describe each of the elements of the SAR SDP Foundry and describe their

  13. Mapping Surface Soil Moisture With Synthetic Aperture Radar Data and Basin Indexes

    Science.gov (United States)

    Yilmaz, M.; Sorman, A.; Sorman, U.

    2008-12-01

    The soil moisture condition of a watershed plays a significant role in separation of infiltration and surface runoff, and hence is a key parameter for the majority of physical hydrological models. Due to the large difference in dielectric constants of dry soil and water, microwave remote sensing (particularly the commonly available synthetic aperture radar) is a potential tool for such studies. The main aim of this study is to compute a distributed soil moisture map of a catchment, which can be input to a hydrological model. For this purpose, nine field trips are performed and point surface soil moisture values are collected with a Time Domain Reflectometer. The field studies, which are carried out on a small catchment in western Anatolia, are planned to match radar image acquisitions and accomplished over a water year. First, the Dubois Model, a physical backscatter model is utilized in the reverse order to compute soil surface roughness values. This is accomplished for the field study dates which have two radar image acquisitions and with sparse vegetation cover. Then the first relationship of this study, between observed radar backscatter values and computed roughness values, is established with a correlation coefficient of 0.78. For bare soil surfaces, local incidence angle, soil moisture and roughness are the most dominant parameters effecting radar backscatter. After computing the incidence angle map of the study area, the second relationship, between observed radar backscatter values and the three governing parameters, is determined with a correlation coefficient of 0.87. The third and the last relationship of the study is estimated between the measured point soil moisture values and two basin indexes; topographic and solar radiation. In the last part of the study, the established three relationships, which are derived for point moisture measurements, are used to compute the soil moisture map of the whole catchment. This process is handled separately for the

  14. Integrating gravimetric and interferometric synthetic aperture radar data for enhancing reservoir history matching of carbonate gas and volatile oil reservoirs

    KAUST Repository

    Katterbauer, Klemens

    2016-08-25

    Reservoir history matching is assuming a critical role in understanding reservoir characteristics, tracking water fronts, and forecasting production. While production data have been incorporated for matching reservoir production levels and estimating critical reservoir parameters, the sparse spatial nature of this dataset limits the efficiency of the history matching process. Recently, gravimetry techniques have significantly advanced to the point of providing measurement accuracy in the microgal range and consequently can be used for the tracking of gas displacement caused by water influx. While gravity measurements provide information on subsurface density changes, i.e., the composition of the reservoir, these data do only yield marginal information about temporal displacements of oil and inflowing water. We propose to complement gravimetric data with interferometric synthetic aperture radar surface deformation data to exploit the strong pressure deformation relationship for enhancing fluid flow direction forecasts. We have developed an ensemble Kalman-filter-based history matching framework for gas, gas condensate, and volatile oil reservoirs, which synergizes time-lapse gravity and interferometric synthetic aperture radar data for improved reservoir management and reservoir forecasts. Based on a dual state-parameter estimation algorithm separating the estimation of static reservoir parameters from the dynamic reservoir parameters, our numerical experiments demonstrate that history matching gravity measurements allow monitoring the density changes caused by oil-gas phase transition and water influx to determine the saturation levels, whereas the interferometric synthetic aperture radar measurements help to improve the forecasts of hydrocarbon production and water displacement directions. The reservoir estimates resulting from the dual filtering scheme are on average 20%-40% better than those from the joint estimation scheme, but require about a 30% increase in

  15. Surface Ruptures and Building Damage of the 2003 Bam, Iran, Earthquake Mapped by Satellite Synthetic Aperture Radar Interferometric Correlation

    Science.gov (United States)

    Fielding, Eric J.; Talebian, M.; Rosen, P. A.; Nazari, H.; Jackson, J. A.; Ghorashi, M.; Walker, R.

    2005-01-01

    We use the interferometric correlation from Envisat synthetic aperture radar (SAR) images to map the details of the surface ruptures related to the 26 December 2003 earthquake that devastated Bam, Iran. The main strike-slip fault rupture south of the city of Bam has a series of four segments with left steps shown by a narrow line of low correlation in the coseismic interferogram. This also has a clear expression in the field because of the net extension across the fault. Just south of the city limits, the surface strain becomes distributed over a width of about 500 m, probably because of a thicker layer of soft sedimentary material.

  16. Detection of linear features in synthetic-aperture radar images by use of the localized Radon transform and prior information.

    Science.gov (United States)

    Onana, Vincent-de-Paul; Trouvé, Emmanuel; Mauris, Gilles; Rudant, Jean-Paul; Tonyé, Emmanuel

    2004-01-10

    A new linear-features detection method is proposed for extracting straight edges and lines in synthetic-aperture radar images. This method is based on the localized Radon transform, which produces geometrical integrals along straight lines. In the transformed domain, linear features have a specific signature: They appear as strongly contrasted structures, which are easier to extract with the conventional ratio edge detector. The proposed method is dedicated to applications such as geographical map updating for which prior information (approximate length and orientation of features) is available. Experimental results show the method's robustness with respect to poor radiometric contrast and hidden parts and its complementarity to conventional pixel-by-pixel approaches.

  17. Review of Ship Surveillance Technologies Based on High-Resolution Wide-Swath Synthetic Aperture Radar Imaging

    Directory of Open Access Journals (Sweden)

    Xing Xiang-wei

    2015-02-01

    Full Text Available Synthetic Aperture Radar (SAR is widely used in ship surveillance. High-Resolution Wide-Swath (HRWS SAR data are simultaneously collected, which introduces challenges and offers new research opportunities. SAR-based ship-surveillance technologies and the performance requirements of SAR systems are reviewed and summarized. Furthermore, the characteristics of HRWS SAR imaging and ship surveillance technologies are considered in tandem, and preliminary research results on ship detection, feature extraction, and classification are discussed. Finally, we point out issues to be addressed in future work.

  18. Rapid, Repeat-sample Monitoring of Crustal Deformations and Environmental Phenomena with the Uninhabited Aerial Vehicle Synthetic Aperture Radar

    Science.gov (United States)

    Smith, Robert C.

    2006-01-01

    The Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) is a precision repeat-pass Interferometric Synthetic Aperture Radar (InSAR) mission being developed by the Jet Propulsion Laboratory and the Dryden Flight Research Center in support of NASA s Science Mission Directorate. UAVSAR's unique ability to fly a repeatable flight path, along with an electronically steerable array, allows interferometric data to be obtained with accuracies measured in millimeters. Deploying the radar on an airborne platform will also allow for radar images to be collected and compared with images from the same area taken hours or even years later - providing for long-term trending and near real-time notification of changes and deformations. UAVSAR s data processing algorithms will provide for near-real time data reduction providing disaster planning and response teams with highly accurate data to aid in the prediction of, and response to, natural phenomena. UAVSAR data can be applied to increasing our understanding of the processes behind solid earth, cryosphere, carbon cycle and other areas of interest in earth science. Technologies developed for UAVSAR may also be applicable to a future earth-orbiting InSAR mission and possibly for missions to the Moon or Mars. The UAVSAR is expected to fly on a Gulfstream III aircraft this winter, followed by a flight test program lasting until the second half of 2007. Following radar calibration and data reduction activities, the platform will be ready for science users in the summer of 2008.

  19. A-Differential Synthetic Aperture Radar Interferometry analysis of a Deep Seated Gravitational Slope Deformation occurring at Bisaccia (Italy).

    Science.gov (United States)

    Di Martire, Diego; Novellino, Alessandro; Ramondini, Massimo; Calcaterra, Domenico

    2016-04-15

    This paper presents the results of an investigation on a Deep Seated Gravitational Slope Deformation (DSGSD), previously only hypothesized by some authors, affecting Bisaccia, a small town located in Campania region, Italy. The study was conducted through the integration of conventional methods (geological-geomorphological field survey, air-photo interpretation) and an Advanced-Differential Interferometry Synthetic Aperture Radar (A-DInSAR) technique. The DSGSD involves a brittle lithotype (conglomerates of the Ariano Irpino Supersynthem) resting over a Structurally Complex Formation (Varycoloured Clays of Calaggio Formation). At Bisaccia, probably as a consequence of post-cyclic recompression phenomena triggered by reiterated seismic actions, the rigid plate made up of conglomeratic sediments resulted to be split in five portions, showing different rates of displacements, whose deformations are in the order of some centimeter/year, thus inducing severe damage to the urban settlement. A-DInSAR techniques confirmed to be a reliable tool in monitoring slow-moving landslides. In this case 96 ENVIronmental SATellite-Advanced Synthetic Aperture Radar (ENVISAT-ASAR) images, in ascending and descending orbits, have been processed using SUBSOFT software, developed by the Remote Sensing Laboratory (RSLab) group from the Universitat Politècnica de Catalunya (UPC). The DInSAR results, coupled with field survey, supported the analysis of the instability mechanism and confirmed the historical record of the movements already available for the town.

  20. Characterization and discrimination of evolving mineral and plant oil slicks based on L-band synthetic aperture radar (SAR)

    Science.gov (United States)

    Jones, Cathleen E.; Espeseth, Martine M.; Holt, Benjamin; Brekke, Camilla; Skrunes, Stine

    2016-10-01

    Evolution of the damping ratio for Bragg wavenumbers in the range 32-43 rad/m is evaluated for oil slicks of different composition released in the open ocean and allowed to develop naturally. The study uses quad-polarimetric L-band airborne synthetic aperture radar data acquired over three mineral oil emulsion releases of different, known oil-to-water ratio, and a near-coincident release of 2-ethylhexyl oleate that served as a biogenic look-alike. The experiment occurred during the 2015 Norwegian oil-on-water exercise in the North Sea during a period of relatively high winds ( 12 m/s). NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) was used to repeatedly image the slicks over a period of eight hours, capturing the slicks' early development and providing a time series from which to track the evolution of the slicks' size, position, and radiometric characteristics. Particular emphasis is given in this analysis to identification of zones of higher damping ratio within the slicks (zoning) as potential indicators of thicker oil, and to comparison of the evolution of emulsion and plant oil damping ratios. It was found that all mineral oil slicks initially exhibited zoning apparent in VV, HH, and HV intensities, and that the areas of higher damping ratio persisted the longest for the highest oil content emulsion (80% oil by volume). In contrast, zoning was not unambiguously evident for plant oil at any time from 44 minutes to 8.5 hours after release.

  1. Manmade target extraction based on multistage decision and its application for change detection in polarimetric synthetic aperture radar image

    Science.gov (United States)

    Cong, Runmin; Han, Ping; Li, Chongyi; He, Jiaji; Zhang, Zaiji

    2016-09-01

    Targets of interest are different in various applications in which manmade targets, such as aircraft, ships, and buildings, are given more attention. Manmade target extraction methods using synthetic aperture radar (SAR) images are designed in response to various demands, which include civil uses, business purposes, and military industries. This plays an increasingly vital role in monitoring, military reconnaissance, and precision strikes. Achieving accurate and complete results through traditional methods is becoming more challenging because of the scattered complexity of polarization in polarimetric synthetic aperture radar (PolSAR) image. A multistage decision-based method is proposed composed of power decision, dominant scattering mechanism decision, and reflection symmetry decision. In addition, the theories of polarimetric contrast enhancement, generalized Y decomposition, and maximum eigenvalue ratio are applied to assist the decision. Fully PolSAR data are adopted to evaluate and verify the approach. Experimental results show that the method can achieve an effective result with a lower false alarm rate and clear contours. Finally, on this basis, a universal framework of change detection for manmade targets is presented as an application of our method. Two sets of measured data are also used to evaluate and verify the effectiveness of the change-detection algorithm.

  2. Investigating Cardiac Motion Patterns Using Synthetic High-Resolution 3D Cardiovascular Magnetic Resonance Images and Statistical Shape Analysis

    Science.gov (United States)

    Biffi, Benedetta; Bruse, Jan L.; Zuluaga, Maria A.; Ntsinjana, Hopewell N.; Taylor, Andrew M.; Schievano, Silvia

    2017-01-01

    Diagnosis of ventricular dysfunction in congenital heart disease is more and more based on medical imaging, which allows investigation of abnormal cardiac morphology and correlated abnormal function. Although analysis of 2D images represents the clinical standard, novel tools performing automatic processing of 3D images are becoming available, providing more detailed and comprehensive information than simple 2D morphometry. Among these, statistical shape analysis (SSA) allows a consistent and quantitative description of a population of complex shapes, as a way to detect novel biomarkers, ultimately improving diagnosis and pathology understanding. The aim of this study is to describe the implementation of a SSA method for the investigation of 3D left ventricular shape and motion patterns and to test it on a small sample of 4 congenital repaired aortic stenosis patients and 4 age-matched healthy volunteers to demonstrate its potential. The advantage of this method is the capability of analyzing subject-specific motion patterns separately from the individual morphology, visually and quantitatively, as a way to identify functional abnormalities related to both dynamics and shape. Specifically, we combined 3D, high-resolution whole heart data with 2D, temporal information provided by cine cardiovascular magnetic resonance images, and we used an SSA approach to analyze 3D motion per se. Preliminary results of this pilot study showed that using this method, some differences in end-diastolic and end-systolic ventricular shapes could be captured, but it was not possible to clearly separate the two cohorts based on shape information alone. However, further analyses on ventricular motion allowed to qualitatively identify differences between the two populations. Moreover, by describing shape and motion with a small number of principal components, this method offers a fully automated process to obtain visually intuitive and numerical information on cardiac shape and motion

  3. Synthetic-aperture experiment in the visible with on-axis digital heterodyne holography

    CERN Document Server

    Clerc, Frédérique Le; Collot, Laurent

    2011-01-01

    We have developed a new on-axis digital holographic technique, heterodyne holography. The resolution of this technique is limited mainly by the amount of data recorded on two-dimensional photodetectors, i.e., the number of pixels and their size. We demonstrate that it is possible to increase the resolution linearly with the amount of recorded data by aperture synthesis as done in the radar technique but with an optical holographic field.

  4. The advantages of complementing MT profiles in 3-D environments with geomagnetic transfer function and interstation horizontal magnetic transfer function data: results from a synthetic case study

    Science.gov (United States)

    Campanyà, Joan; Ogaya, Xènia; Jones, Alan G.; Rath, Volker; Vozar, Jan; Meqbel, Naser

    2016-12-01

    As a consequence of measuring time variations of the electric and the magnetic field, which are related to current flow and charge distribution, magnetotelluric (MT) data in 2-D and 3-D environments are not only sensitive to the geoelectrical structures below the measuring points but also to any lateral anomalies surrounding the acquisition site. This behaviour complicates the characterization of the electrical resistivity distribution of the subsurface, particularly in complex areas. In this manuscript we assess the main advantages of complementing the standard MT impedance tensor (Z) data with interstation horizontal magnetic tensor (H) and geomagnetic transfer function (T) data in constraining the subsurface in a 3-D environment beneath a MT profile. Our analysis was performed using synthetic responses with added normally distributed and scattered random noise. The sensitivity of each type of data to different resistivity anomalies was evaluated, showing that the degree to which each site and each period is affected by the same anomaly depends on the type of data. A dimensionality analysis, using Z, H and T data, identified the presence of the 3-D anomalies close to the profile, suggesting a 3-D approach for recovering the electrical resistivity values of the subsurface. Finally, the capacity for recovering the geoelectrical structures of the subsurface was evaluated by performing joint inversion using different data combinations, quantifying the differences between the true synthetic model and the models from inversion process. Four main improvements were observed when performing joint inversion of Z, H and T data: (1) superior precision and accuracy at characterizing the electrical resistivity values of the anomalies below and outside the profile; (2) the potential to recover high electrical resistivity anomalies that are poorly recovered using Z data alone; (3) improvement in the characterization of the bottom and lateral boundaries of the anomalies with low

  5. Two-beam-coupling correlator for synthetic aperture radar image recognition with power-law scattering centers preenhancement.

    Science.gov (United States)

    Haji-Saeed, Bahareh; Woods, Charles L; Kierstead, John; Khoury, Jed

    2008-06-01

    Synthetic radar image recognition is an area of interest for military applications including automatic target recognition, air traffic control, and remote sensing. Here a dynamic range compression two-beam-coupling joint transform correlator for detecting synthetic aperture radar targets is utilized. The joint input image consists of a prepower-law, enhanced scattering center of the input image and a linearly synthesized power-law-enhanced scattering center template. Enhancing the scattering center of both the synthetic template and the input image furnishes the conditions for achieving dynamic range compression correlation in two-beam coupling. Dynamic range compression (a) enhances the signal-to-noise ratio, (b) enhances the high frequencies relative to low frequencies, and (c) converts the noise to high frequency components. This improves the correlation-peak intensity to the mean of the surrounding noise significantly. Dynamic range compression correlation has already been demonstrated to outperform many optimal correlation filters in detecting signals in severe noise environments. The performance is evaluated via established metrics such as peak-to-correlation energy, Horner efficiency, and correlation-peak intensity. The results showed significant improvement as the power increased.

  6. Phase noise from aircraft motion: Compensation and effect on synthetic aperture radar images

    Science.gov (United States)

    Gabriel, Andrew K.; Goldstein, Richard M.

    1986-01-01

    Image degradation of airborne SAR imagery caused by phase errors introduced in the received signal by aircraft motion is discussed. Mechanical motion has a small bandwidth and does not affect the range signal, where the total echo time is typically 60 microsec. However, since the aperture length can be several seconds, the synthesized azimuth signal can have significant errors of which phase noise is the most important. An inertial navigation system can be used to compensate for these errors when processing the images. Calculations to evaluate how much improvement results from compensation are outlined.

  7. Implementation of synthetic aperture imaging on a hand-held device

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Kjeldsen, Thomas; Larsen, Lee;

    2014-01-01

    This paper presents several implementations of Syn- thetic Aperture Sequential Beamforming (SASB) on commer- cially available hand-held devices. The implementations include real-time wireless reception of ultrasound radio frequency sig- nals and GPU processing for B-mode imaging. The proposed...... implementation demonstrates that SASB can be executed in-time for real-time ultrasound imaging. The wireless communication between probe and processing device satisfies the required bandwidth for real-time data transfer with current 802.11ac technology. The implementation is evaluated using four different hand-held...

  8. Fine resolution topographic mapping of the Jovian moons: a Ka-band high resolution topographic mapping interferometric synthetic aperture radar

    Science.gov (United States)

    Madsen, Soren N.; Carsey, Frank D.; Turtle, Elizabeth P.

    2003-01-01

    The topographic data set obtained by MOLA has provided an unprecedented level of information about Mars' geologic features. The proposed flight of JIMO provides an opportunity to accomplish a similar mapping of and comparable scientific discovery for the Jovian moons through us of an interferometric imaging radar analogous to the Shuttle radar that recently generated a new topographic map of Earth. A Ka-band single pass across-track synthetic aperture radar (SAR) interferometer can provide very high resolution surface elevation maps. The concept would use two antennas mounted at the ends of a deployable boom (similar to the Shuttle Radar Topographic Mapper) extended orthogonal to the direction of flight. Assuming an orbit altitude of approximately 100 km and a ground velocity of approximately 1.5 km/sec, horizontal resolutions at the 10 meter level and vertical resolutions at the sub-meter level are possible.

  9. Linear dispersion relation and depth sensitivity to swell parameters: application to synthetic aperture radar imaging and bathymetry.

    Science.gov (United States)

    Boccia, Valentina; Renga, Alfredo; Rufino, Giancarlo; D'Errico, Marco; Moccia, Antonio; Aragno, Cesare; Zoffoli, Simona

    2015-01-01

    Long gravity waves or swell dominating the sea surface is known to be very useful to estimate seabed morphology in coastal areas. The paper reviews the main phenomena related to swell waves propagation that allow seabed morphology to be sensed. The linear dispersion is analysed and an error budget model is developed to assess the achievable depth accuracy when Synthetic Aperture Radar (SAR) data are used. The relevant issues and potentials of swell-based bathymetry by SAR are identified and discussed. This technique is of particular interest for characteristic regions of the Mediterranean Sea, such as in gulfs and relatively close areas, where traditional SAR-based bathymetric techniques, relying on strong tidal currents, are of limited practical utility.

  10. On the Soil Roughness Parameterization Problem in Soil Moisture Retrieval of Bare Surfaces from Synthetic Aperture Radar.

    Science.gov (United States)

    Verhoest, Niko E C; Lievens, Hans; Wagner, Wolfgang; Álvarez-Mozos, Jesús; Moran, M Susan; Mattia, Francesco

    2008-07-15

    Synthetic Aperture Radar has shown its large potential for retrieving soil moisture maps at regional scales. However, since the backscattered signal is determined by several surface characteristics, the retrieval of soil moisture is an ill-posed problem when using single configuration imagery. Unless accurate surface roughness parameter values are available, retrieving soil moisture from radar backscatter usually provides inaccurate estimates. The characterization of soil roughness is not fully understood, and a large range of roughness parameter values can be obtained for the same surface when different measurement methodologies are used. In this paper, a literature review is made that summarizes the problems encountered when parameterizing soil roughness as well as the reported impact of the errors made on the retrieved soil moisture. A number of suggestions were made for resolving issues in roughness parameterization and studying the impact of these roughness problems on the soil moisture retrieval accuracy and scale.

  11. Automatic Synthetic Aperture Radar based oil spill detection and performance estimation via a semi-automatic operational service benchmark.

    Science.gov (United States)

    Singha, Suman; Vespe, Michele; Trieschmann, Olaf

    2013-08-15

    Today the health of ocean is in danger as it was never before mainly due to man-made pollutions. Operational activities show regular occurrence of accidental and deliberate oil spill in European waters. Since the areas covered by oil spills are usually large, satellite remote sensing particularly Synthetic Aperture Radar represents an effective option for operational oil spill detection. This paper describes the development of a fully automated approach for oil spill detection from SAR. Total of 41 feature parameters extracted from each segmented dark spot for oil spill and 'look-alike' classification and ranked according to their importance. The classification algorithm is based on a two-stage processing that combines classification tree analysis and fuzzy logic. An initial evaluation of this methodology on a large dataset has been carried out and degree of agreement between results from proposed algorithm and human analyst was estimated between 85% and 93% respectively for ENVISAT and RADARSAT.

  12. Automatic target classification of man-made objects in synthetic aperture radar images using Gabor wavelet and neural network

    Science.gov (United States)

    Vasuki, Perumal; Roomi, S. Mohamed Mansoor

    2013-01-01

    Processing of synthetic aperture radar (SAR) images has led to the development of automatic target classification approaches. These approaches help to classify individual and mass military ground vehicles. This work aims to develop an automatic target classification technique to classify military targets like truck/tank/armored car/cannon/bulldozer. The proposed method consists of three stages via preprocessing, feature extraction, and neural network (NN). The first stage removes speckle noise in a SAR image by the identified frost filter and enhances the image by histogram equalization. The second stage uses a Gabor wavelet to extract the image features. The third stage classifies the target by an NN classifier using image features. The proposed work performs better than its counterparts, like K-nearest neighbor (KNN). The proposed work performs better on databases like moving and stationary target acquisition and recognition against the earlier methods by KNN.

  13. Directional velocity estimation using a spatio-temporal encoding technique based on frequency division for synthetic transmit aperture ultrasound

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jensen, Jørgen Arendt

    2006-01-01

    This paper investigates the possibility of flow estimation using spatio-temporal encoding of the transmissions in synthetic transmit aperture imaging (STA). The spatial encoding is based on a frequency division approach. In STA, a major disadvantage is that only a single transmitter (denoting...... be increased. However, to focus the data properly, the signals originating from the different transmitters must be separated. To do so, the pass band of the transducer is divided into a number of subbands with disjoint spectral support. At every transmission, each transmitter is assigned one of the subbands...... in the flow direction, directional data were extracted and correlated. Hereby, the velocity of the blood was estimated. The pulse repetition frequency was 16 kHz. Three different setups were investigated with flow angles of 45, 60, and 75 degrees with respect to the acoustic axis. Four different velocities...

  14. Reservoir monitoring and characterization using satellite geodetic data: Interferometric Synthetic Aperture Radar observations from the Krechba field, Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Vasco, D.W.; Ferretti, Alessandro; Novali, Fabrizio

    2008-05-01

    Deformation in the material overlying an active reservoir is used to monitor pressure change at depth. A sequence of pressure field estimates, eleven in all, allow us to construct a measure of diffusive travel time throughout the reservoir. The dense distribution of travel time values means that we can construct an exactly linear inverse problem for reservoir flow properties. Application to Interferometric Synthetic Aperture Radar (InSAR) data gathered over a CO{sub 2} injection in Algeria reveals pressure propagation along two northwest trending corridors. An inversion of the travel times indicates the existence of two northwest-trending high permeability zones. The high permeability features trend in the same direction as the regional fault and fracture zones. Model parameter resolution estimates indicate that the features are well resolved.

  15. A FUZZY LOGIC-BASED APPROACH FOR THE DETECTION OF FLOODED VEGETATION BY MEANS OF SYNTHETIC APERTURE RADAR DATA

    Directory of Open Access Journals (Sweden)

    V. Tsyganskaya

    2016-06-01

    Full Text Available In this paper an algorithm designed to map flooded vegetation from synthetic aperture radar (SAR imagery is introduced. The approach is based on fuzzy logic which enables to deal with the ambiguity of SAR data and to integrate multiple ancillary data containing topographical information, simple hydraulic considerations and land cover information. This allows the exclusion of image elements with a backscatter value similar to flooded vegetation, to significantly reduce misclassification errors. The flooded vegetation mapping procedure is tested on a flood event that occurred in Germany over parts of the Saale catchment on January 2011 using a time series of high resolution TerraSAR-X data covering the time interval from 2009 to 2015. The results show that the analysis of multi-temporal X-band data combined with ancillary data using a fuzzy logic-based approach permits the detection of flooded vegetation areas.

  16. Application of Multifractal Analysis to Segmentation of Water Bodies in Optical and Synthetic Aperture Radar Satellite Images

    CERN Document Server

    Martin, Victor Manuel San

    2016-01-01

    A method for segmenting water bodies in optical and synthetic aperture radar (SAR) satellite images is proposed. It makes use of the textural features of the different regions in the image for segmentation. The method consists in a multiscale analysis of the images, which allows us to study the images regularity both, locally and globally. As results of the analysis, coarse multifractal spectra of studied images and a group of images that associates each position (pixel) with its corresponding value of local regularity (or singularity) spectrum are obtained. Thresholds are then applied to the multifractal spectra of the images for the classification. These thresholds are selected after studying the characteristics of the spectra under the assumption that water bodies have larger local regularity than other soil types. Classifications obtained by the multifractal method are compared quantitatively with those obtained by neural networks trained to classify the pixels of the images in covered against uncovered b...

  17. Linear Dispersion Relation and Depth Sensitivity to Swell Parameters: Application to Synthetic Aperture Radar Imaging and Bathymetry

    Directory of Open Access Journals (Sweden)

    Valentina Boccia

    2015-01-01

    Full Text Available Long gravity waves or swell dominating the sea surface is known to be very useful to estimate seabed morphology in coastal areas. The paper reviews the main phenomena related to swell waves propagation that allow seabed morphology to be sensed. The linear dispersion is analysed and an error budget model is developed to assess the achievable depth accuracy when Synthetic Aperture Radar (SAR data are used. The relevant issues and potentials of swell-based bathymetry by SAR are identified and discussed. This technique is of particular interest for characteristic regions of the Mediterranean Sea, such as in gulfs and relatively close areas, where traditional SAR-based bathymetric techniques, relying on strong tidal currents, are of limited practical utility.

  18. Inversion of synthetic aperture radar interferograms for sourcesof production-related subsidence at the Dixie Valley geothermalfield

    Energy Technology Data Exchange (ETDEWEB)

    Foxall, B.; Vasco, D.W.

    2006-07-01

    We used synthetic aperture radar interferograms to imageground subsidence that occurred over the Dixie Valley geothermal fieldduring different time intervals between 1992 and 1997. Linear elasticinversion of the subsidence that occurred between April, 1996 and March,1997 revealed that the dominant sources of deformation during this timeperiod were large changes in fluid volumes at shallow depths within thevalley fill above the reservoir. The distributions of subsidence andsubsurface volume change support a model in which reduction in pressureand volume of hot water discharging into the valley fill from localizedupflow along the Stillwater range frontal fault is caused by drawdownwithin the upflow zone resulting from geothermal production. Our resultsalso suggest that an additional source of fluid volume reduction in theshallow valley fill might be similar drawdown within piedmont faultzones. Shallow groundwater flow in the vicinity of the field appears tobe controlled on the NW by a mapped fault and to the SW by a lineament ofas yet unknown origin.

  19. Study on an onboard data storage system for frequency-modulated continuous-wave synthetic aperture radar

    Science.gov (United States)

    Tian, Haishan; Chang, Wenge; Li, Xiangyang; Gu, Chengfei; Liu, Zhaohe

    2016-07-01

    The airborne frequency-modulated continuous-wave synthetic aperture radar presents an enormous technical challenge on the design of data storage system due to its characteristics of high-data rate, small size, light weight, and low-power consumption. There are two main problems for the high-speed storage under the miniature requirement. One is the unpredictable response time of the flash translation layer in the CompactFlash card. The other is the relatively long response time of the file system. This paper designs a data storage system in a real-time signal processor. Two techniques called configurable buffer structure and FPFQA (FAT pre- and FDT quasiallocation) are presented to overcome these two problems. The evaluated performance indicates that the size, power consumption, and weight meet the miniature requirement, while the function of the high-speed data storage with approximately 121 MB/s storage speed and real-time file management are realized.

  20. An Empirical Assessment of Temporal Decorrelation Using the Uninhabited Aerial Vehicle Synthetic Aperture Radar over Forested Landscapes

    Directory of Open Access Journals (Sweden)

    Michelle Hofton

    2012-04-01

    Full Text Available We present an empirical assessment of the impact of temporal decorrelation on interferometric coherence measured over a forested landscape. A series of repeat-pass interferometric radar images with a zero spatial baseline were collected with UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar, a fully polarimetric airborne L-band radar system. The dataset provided temporal separations of 45 minutes, 2, 7 and 9 days. Coincident airborne lidar and weather data were collected. We theoretically demonstrate that UAVSAR measurement accuracy enables accurate quantification of temporal decorrelation. Data analysis revealed precipitation events to be the main driver of temporal decorrelation over the acquisition period. The experiment also shows temporal decorrelation increases with canopy height, and this pattern was found consistent across forest types and polarization.

  1. Ground settlement of Chek Lap Kok Airport, Hong Kong,detected by satellite synthetic aperture radar interferometry

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Satellite synthetic aperture radar (SAR) interferometry is used to investigate the slowly accumulating ground settlement at the new Chek Lap Kok Airport in Hong Kong. Most of the land occupied by the airport was reclaimed from the sea and therefore certain ground settlement in the area has been expected. A pair of ERS-2 SAR images spanning nearly a year is used in the study. The high spatial resolution (20 m× 20 m) ground settlement map derived indicates that the settlement that occurred in the area over the time period is as large as 50 mm. The SAR measurement results agree with the levelling measurements at some benchmarks in the area to well within 1 cm(rms error),and the overall correlation between the two types of results is 0.89. The paper presents some brief background of interferometric SAR, and outlines the data processing methods and results.

  2. a Fuzzy Logic-Based Approach for the Detection of Flooded Vegetation by Means of Synthetic Aperture Radar Data

    Science.gov (United States)

    Tsyganskaya, V.; Martinis, S.; Twele, A.; Cao, W.; Schmitt, A.; Marzahn, P.; Ludwig, R.

    2016-06-01

    In this paper an algorithm designed to map flooded vegetation from synthetic aperture radar (SAR) imagery is introduced. The approach is based on fuzzy logic which enables to deal with the ambiguity of SAR data and to integrate multiple ancillary data containing topographical information, simple hydraulic considerations and land cover information. This allows the exclusion of image elements with a backscatter value similar to flooded vegetation, to significantly reduce misclassification errors. The flooded vegetation mapping procedure is tested on a flood event that occurred in Germany over parts of the Saale catchment on January 2011 using a time series of high resolution TerraSAR-X data covering the time interval from 2009 to 2015. The results show that the analysis of multi-temporal X-band data combined with ancillary data using a fuzzy logic-based approach permits the detection of flooded vegetation areas.

  3. A-Differential Synthetic Aperture Radar Interferometry analysis of a Deep Seated Gravitational Slope Deformation occurring at Bisaccia (Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Di Martire, Diego, E-mail: diego.dimartire@unina.it [Department of Earth Sciences, Environment and Resources, Federico II University of Naples, Largo San Marcellino 10, 80138 Naples (Italy); Novellino, Alessandro, E-mail: alessandro.novellino@unina.it [Department of Earth Sciences, Environment and Resources, Federico II University of Naples, Largo San Marcellino 10, 80138 Naples (Italy); Ramondini, Massimo, E-mail: ramondin@unina.it [Department of Civil, Architectural and Environmental Engineering, Federico II University of Naples, via Claudio 21, 80125 Naples (Italy); Calcaterra, Domenico, E-mail: domenico.calcaterra@unina.it [Department of Earth Sciences, Environment and Resources, Federico II University of Naples, Largo San Marcellino 10, 80138 Naples (Italy)

    2016-04-15

    This paper presents the results of an investigation on a Deep Seated Gravitational Slope Deformation (DSGSD), previously only hypothesized by some authors, affecting Bisaccia, a small town located in Campania region, Italy. The study was conducted through the integration of conventional methods (geological-geomorphological field survey, air-photo interpretation) and an Advanced-Differential Interferometry Synthetic Aperture Radar (A-DInSAR) technique. The DSGSD involves a brittle lithotype (conglomerates of the Ariano Irpino Supersynthem) resting over a Structurally Complex Formation (Varycoloured Clays of Calaggio Formation). At Bisaccia, probably as a consequence of post-cyclic recompression phenomena triggered by reiterated seismic actions, the rigid plate made up of conglomeratic sediments resulted to be split in five portions, showing different rates of displacements, whose deformations are in the order of some centimeter/year, thus inducing severe damage to the urban settlement. A-DInSAR techniques confirmed to be a reliable tool in monitoring slow-moving landslides. In this case 96 ENVIronmental SATellite-Advanced Synthetic Aperture Radar (ENVISAT-ASAR) images, in ascending and descending orbits, have been processed using SUBSOFT software, developed by the Remote Sensing Laboratory (RSLab) group from the Universitat Politècnica de Catalunya (UPC). The DInSAR results, coupled with field survey, supported the analysis of the instability mechanism and confirmed the historical record of the movements already available for the town. - Highlights: • DInSAR confirmed to be a reliable tool in monitoring slow-moving landslides. • Integration with traditional monitoring systems is crucial for DInSAR application. • DInSAR data can be used for the natural risk mitigation related to landslides.

  4. Noise Filtering in the Synthetic Transmit Aperture Imaging by Decomposition of the Time Reversal Operator: Application to Flaw Detection in Coarse-grained Stainless Steels

    Science.gov (United States)

    Villaverde, Eduardo Rigoberto Lopez; Robert, Sebastien; Prada, Claire

    In the present work, the Synthetic Transmit Aperture (STA) imaging is applied on coarse grained steels using a contact phased-array probe. In order to reduce the noise introduced by the heterogeneous structure, as well as artifacts due to surface guided waves, the Decomposition of the Time Reversal Operator method is performed before calculating STA images.

  5. Detecting Faults in Southern California using Computer-Vision Techniques and Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) Interferometry

    Science.gov (United States)

    Barba, M.; Rains, C.; von Dassow, W.; Parker, J. W.; Glasscoe, M. T.

    2013-12-01

    Knowing the location and behavior of active faults is essential for earthquake hazard assessment and disaster response. In Interferometric Synthetic Aperture Radar (InSAR) images, faults are revealed as linear discontinuities. Currently, interferograms are manually inspected to locate faults. During the summer of 2013, the NASA-JPL DEVELOP California Disasters team contributed to the development of a method to expedite fault detection in California using remote-sensing technology. The team utilized InSAR images created from polarimetric L-band data from NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) project. A computer-vision technique known as 'edge-detection' was used to automate the fault-identification process. We tested and refined an edge-detection algorithm under development through NASA's Earthquake Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response (E-DECIDER) project. To optimize the algorithm we used both UAVSAR interferograms and synthetic interferograms generated through Disloc, a web-based modeling program available through NASA's QuakeSim project. The edge-detection algorithm detected seismic, aseismic, and co-seismic slip along faults that were identified and compared with databases of known fault systems. Our optimization process was the first step toward integration of the edge-detection code into E-DECIDER to provide decision support for earthquake preparation and disaster management. E-DECIDER partners that will use the edge-detection code include the California Earthquake Clearinghouse and the US Department of Homeland Security through delivery of products using the Unified Incident Command and Decision Support (UICDS) service. Through these partnerships, researchers, earthquake disaster response teams, and policy-makers will be able to use this new methodology to examine the details of ground and fault motions for moderate to large earthquakes. Following an earthquake, the newly discovered faults can

  6. Osseointegration of dental implants in 3D-printed synthetic onlay grafts customized according to bone metabolic activity in recipient site.

    Science.gov (United States)

    Tamimi, Faleh; Torres, Jesus; Al-Abedalla, Khadijeh; Lopez-Cabarcos, Enrique; Alkhraisat, Mohammad H; Bassett, David C; Gbureck, Uwe; Barralet, Jake E

    2014-07-01

    Onlay grafts made of monolithic microporous monetite bioresorbable bioceramics have the capacity to conduct bone augmentation. However, there is heterogeneity in the graft behaviour in vivo that seems to correlate with the host anatomy. In this study, we sought to investigate the metabolic activity of the regenerated bone in monolithic monetite onlays by using positron emission tomography-computed tomography (PET-CT) in rats. This information was used to optimize the design of monetite onlays with different macroporous architecture that were then fabricated using a 3D-printing technique. In vivo, bone augmentation was attempted with these customized onlays in rabbits. PET-CT findings demonstrated that bone metabolism in the calvarial bone showed higher activity in the inferior and lateral areas of the onlays. Histological observations revealed higher bone volume (up to 47%), less heterogeneity and more implant osseointegration (up to 38%) in the augmented bone with the customized monetite onlays. Our results demonstrated for the first time that it is possible to achieve osseointegration of dental implants in bone augmented with 3D-printed synthetic onlays. It was also observed that designing the macropore geometry according to the bone metabolic activity was a key parameter in increasing the volume of bone augmented within monetite onlays.

  7. The SAFT-UT (synthetic aperture focusing technique for ultrasonic testing) real-time inspection system: Operational principles and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Hall, T. E.; Reid, L. D.; Doctor, S. R.

    1988-06-01

    This document provides a technical description of the real-time imaging system developed for rapid flaw detection and characterization utilizing the synthetic aperture focusing technique for ultrasonic testing (SAFT-UT). The complete fieldable system has been designed to perform inservice inspection of light-water reactor components. Software was written on a DEC LSI 11/23 computer system to control data collection. The unprocessed data is transferred to a VAX 11/730 host computer to perform data processing and image display tasks. A parallel architecture peripheral to the host computer, referred to as the Real-Time SAFT Processor, rapidly performs the SAFT processing function. From the host's point of view, this device operates on the SAFT data in such a way that one may consider it to be a specialized or SAFT array processor. A guide to SAFT-UT theory and conventions is included, along with a detailed description of the operation of the software, how to install the software, and a detailed hardware description.

  8. On the retrieval of significant wave heights from spaceborne Synthetic Aperture Radar using the Max-Planck Institut algorithm.

    Science.gov (United States)

    Violante-Carvalho, Nelson

    2005-12-01

    Synthetic Aperture Radar (SAR) onboard satellites is the only source of directional wave spectra with continuous and global coverage. Millions of SAR Wave Mode (SWM) imagettes have been acquired since the launch in the early 1990's of the first European Remote Sensing Satellite ERS-1 and its successors ERS-2 and ENVISAT, which has opened up many possibilities specially for wave data assimilation purposes. The main aim of data assimilation is to improve the forecasting introducing available observations into the modeling procedures in order to minimize the differences between model estimates and measurements. However there are limitations in the retrieval of the directional spectrum from SAR images due to nonlinearities in the mapping mechanism. The Max-Planck Institut (MPI) scheme, the first proposed and most widely used algorithm to retrieve directional wave spectra from SAR images, is employed to compare significant wave heights retrieved from ERS-1 SAR against buoy measurements and against the WAM wave model. It is shown that for periods shorter than 12 seconds the WAM model performs better than the MPI, despite the fact that the model is used as first guess to the MPI method, that is the retrieval is deteriorating the first guess. For periods longer than 12 seconds, the part of the spectrum that is directly measured by SAR, the performance of the MPI scheme is at least as good as the WAM model.

  9. Coastal flood inundation monitoring with Satellite C-band and L-band Synthetic Aperture Radar data

    Science.gov (United States)

    Ramsey, Elijah W.; Rangoonwala, Amina; Bannister, Terri

    2013-01-01

    Satellite Synthetic Aperture Radar (SAR) was evaluated as a method to operationally monitor the occurrence and distribution of storm- and tidal-related flooding of spatially extensive coastal marshes within the north-central Gulf of Mexico. Maps representing the occurrence of marsh surface inundation were created from available Advanced Land Observation Satellite (ALOS) Phased Array type L-Band SAR (PALSAR) (L-band) (21 scenes with HH polarizations in Wide Beam [100 m]) data and Environmental Satellite (ENVISAT) Advanced SAR (ASAR) (C-band) data (24 scenes with VV and HH polarizations in Wide Swath [150 m]) during 2006-2009 covering 500 km of the Louisiana coastal zone. Mapping was primarily based on a decrease in backscatter between reference and target scenes, and as an extension of previous studies, the flood inundation mapping performance was assessed by the degree of correspondence between inundation mapping and inland water levels. Both PALSAR- and ASAR-based mapping at times were based on suboptimal reference scenes; however, ASAR performance seemed more sensitive to reference-scene quality and other types of scene variability. Related to water depth, PALSAR and ASAR mapping accuracies tended to be lower when water depths were shallow and increased as water levels decreased below or increased above the ground surface, but this pattern was more pronounced with ASAR. Overall, PALSAR-based inundation accuracies averaged 84% (n = 160), while ASAR-based mapping accuracies averaged 62% (n = 245).

  10. Patterns of irrigated rice growth and malaria vector breeding in Mali using multi-temporal ERS-2 synthetic aperture radar.

    Science.gov (United States)

    Diuk-Wasser, M A; Dolo, G; Bagayoko, M; Sogoba, N; Toure, M B; Moghaddam, M; Manoukis, N; Rian, S; Traore, S F; Taylor, C E

    2006-02-01

    We explored the use of the European Remote Sensing Satellite 2 Synthetic Aperture Radar (ERS-2 SAR) to trace the development of rice plants in an irrigated area near Niono, Mali and relate that to the density of anopheline mosquitoes, especially An. gambiae. This is important because such mosquitoes are the major vectors of malaria in sub-Saharan Africa, and their development is often coupled to the cycle of rice development. We collected larval samples, mapped rice fields using GPS and recorded rice growth stages simultaneously with eight ERS-2 SAR acquisitions. We were able to discriminate among rice growth stages using ERS-2 SAR backscatter data, especially among the early stages of rice growth, which produce the largest numbers of larvae. We could also distinguish between basins that produced high and low numbers of anophelines within the stage of peak production. After the peak, larval numbers dropped as rice plants grew taller and thicker, reducing the amount of light reaching the water surface. ERS-2 SAR backscatter increased concomitantly. Our data support the belief that ERS-2 SAR data may be helpful for mapping the spatial patterns of rice growth, distinguishing different agricultural practices, and monitoring the abundance of vectors in nearby villages.

  11. Road-Aided Ground Slowly Moving Target 2D Motion Estimation for Single-Channel Synthetic Aperture Radar.

    Science.gov (United States)

    Wang, Zhirui; Xu, Jia; Huang, Zuzhen; Zhang, Xudong; Xia, Xiang-Gen; Long, Teng; Bao, Qian

    2016-03-16

    To detect and estimate ground slowly moving targets in airborne single-channel synthetic aperture radar (SAR), a road-aided ground moving target indication (GMTI) algorithm is proposed in this paper. First, the road area is extracted from a focused SAR image based on radar vision. Second, after stationary clutter suppression in the range-Doppler domain, a moving target is detected and located in the image domain via the watershed method. The target's position on the road as well as its radial velocity can be determined according to the target's offset distance and traffic rules. Furthermore, the target's azimuth velocity is estimated based on the road slope obtained via polynomial fitting. Compared with the traditional algorithms, the proposed method can effectively cope with slowly moving targets partly submerged in a stationary clutter spectrum. In addition, the proposed method can be easily extended to a multi-channel system to further improve the performance of clutter suppression and motion estimation. Finally, the results of numerical experiments are provided to demonstrate the effectiveness of the proposed algorithm.

  12. Road-Aided Ground Slowly Moving Target 2D Motion Estimation for Single-Channel Synthetic Aperture Radar

    Directory of Open Access Journals (Sweden)

    Zhirui Wang

    2016-03-01

    Full Text Available To detect and estimate ground slowly moving targets in airborne single-channel synthetic aperture radar (SAR, a road-aided ground moving target indication (GMTI algorithm is proposed in this paper. First, the road area is extracted from a focused SAR image based on radar vision. Second, after stationary clutter suppression in the range-Doppler domain, a moving target is detected and located in the image domain via the watershed method. The target’s position on the road as well as its radial velocity can be determined according to the target’s offset distance and traffic rules. Furthermore, the target’s azimuth velocity is estimated based on the road slope obtained via polynomial fitting. Compared with the traditional algorithms, the proposed method can effectively cope with slowly moving targets partly submerged in a stationary clutter spectrum. In addition, the proposed method can be easily extended to a multi-channel system to further improve the performance of clutter suppression and motion estimation. Finally, the results of numerical experiments are provided to demonstrate the effectiveness of the proposed algorithm.

  13. Estimation of surface roughness in a semiarid region from C-band ERS-1 synthetic aperture radar data

    Directory of Open Access Journals (Sweden)

    E. E. Sano

    1999-12-01

    Full Text Available In this study, we investigated the feasibility of using the C-band European Remote Sensing Satellite (ERS-1 synthetic aperture radar (SAR data to estimate surface soil roughness in a semiarid rangeland. Radar backscattering coefficients were extracted from a dry and a wet season SAR image and were compared with 47 in situ soil roughness measurements obtained in the rocky soils of the Walnut Gulch Experimental Watershed, southeastern Arizona, USA. Both the dry and the wet season SAR data showed exponential relationships with root mean square (RMS height measurements. The dry C-band ERS-1 SAR data were strongly correlated (R² = 0.80, while the wet season SAR data have somewhat higher secondary variation (R² = 0.59. This lower correlation was probably provoked by the stronger influence of soil moisture, which may not be negligible in the wet season SAR data. We concluded that the single configuration C-band SAR data is useful to estimate surface roughness of rocky soils in a semiarid rangeland.

  14. Modified reconstruction algorithm based on space-time adaptive processing for multichannel synthetic aperture radar systems in azimuth

    Science.gov (United States)

    Guo, Xiaojiang; Gao, Yesheng; Wang, Kaizhi; Liu, Xingzhao

    2016-07-01

    A spectrum reconstruction algorithm based on space-time adaptive processing (STAP) can effectively suppress azimuth ambiguity for multichannel synthetic aperture radar (SAR) systems in azimuth. However, the traditional STAP-based reconstruction approach has to estimate the covariance matrix and calculate matrix inversion (MI) for each Doppler frequency bin, which will result in a very large computational load. In addition, the traditional STAP-based approach has to know the exact platform velocity, pulse repetition frequency, and array configuration. Errors involving these parameters will significantly degrade the performance of ambiguity suppression. A modified STAP-based approach to solve these problems is presented. The traditional array steering vectors and corresponding covariance matrices are Doppler-variant in the range-Doppler domain. After preprocessing by a proposed phase compensation method, they would be independent of Doppler bins. Therefore, the modified STAP-based approach needs to estimate the covariance matrix and calculate MI only once. The computation load could be greatly reduced. Moreover, by combining the reconstruction method and a proposed adaptive parameter estimation method, the modified method is able to successfully achieve multichannel SAR signal reconstruction and suppress azimuth ambiguity without knowing the above parameters. Theoretical analysis and experiments showed the simplicity and efficiency of the proposed methods.

  15. Numerical simulation and validation of ocean waves measured by an Along-Track Interferometric Synthetic Aperture Radar

    Institute of Scientific and Technical Information of China (English)

    ZHANG Biao; HE Yijun; Paris W.VACHON

    2008-01-01

    A new nonlinear integral transform of ocean wave spectra into Along-Track Interferometric Synthetic Aperture Radar (ATI-SAR )image spectra is described.ATI-SAR phase image spectra are calculated for various sea states and radar configurations based on the nonlinear integral transform.The numerical simulations show that the slant range to velocity ratio(R/V),significant wave height to ocean wavelength ratio(Hs/λ),the baseline (2B) and incident angle(θ)affect ATI-SAR imaging.The ATI-SAR imaging theory is validated by means of Two X-band,HH-polarized ATI-SAR phase images of ocean waves and eight C-band,HH-polarized ATI-SAR phase image spectra of ocean waves.It is shown that ATI-SAR phase image spectra are in agreement with those calculated by forward mapping in situ directional wave soectra collected simultaneously with available ATI-SAR observations.ATI-SAR spectral correlation coefficients between observed and simulated are greater than 0.6 and ale not sensitive to the degree of nonlinearity.However,the ATI-SAR phase image spectral turns towards the range direction.even if the real ocean wave direction is 30°.It is also shown that the ATI-SAR imaging mechanism is significantly affected by the degree of velocity bunching nonlinearity,especially for high values of R/V and Hs/λ.

  16. Seven Years of Advanced Synthetic Aperture Radar (ASAR Global Monitoring (GM of Surface Soil Moisture over Africa

    Directory of Open Access Journals (Sweden)

    Alena Dostálová

    2014-08-01

    Full Text Available A surface soil moisture (SSM product at a 1-km spatial resolution derived from the Envisat Advanced Synthetic Aperture Radar (ASAR Global Monitoring (GM mode data was evaluated over the entire African continent using coarse spatial resolution SSM acquisitions from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E and the Noah land surface model from the Global Land Data Assimilation System (GLDAS-NOAH. The evaluation was performed in terms of relative soil moisture values (%, as well as anomalies from the seasonal cycle. Considering the high radiometric noise of the ASAR GM data, the SSM product exhibits a good ability (Pearson correlation coefficient (R = ~0.6 for relative soil moisture values and root mean square difference (RMSD = 11% when averaged to 5-km resolution to monitor temporal soil moisture variability in regions with low to medium density vegetation and yearly rainfall >250 mm. The findings agree with previous evaluation studies performed over Australia and further strengthen the understanding of the quality of the ASAR GM SSM product and its potential for data assimilation. Problems identified in the ASAR GM algorithm over arid regions were explained by azimuthal effects. Diverse backscatter behavior over different soil types was identified. The insights gained about the quality of the data were used to establish a reliable masking of the existing ASAR GM SSM product and the identification of areas where further research is needed for the future Sentinel-1-derived SSM products.

  17. Continuous monitoring of biophysical Eucalyptus sp. parameters using interferometric synthetic aperture radar data in P and X bands

    Science.gov (United States)

    Gama, Fábio Furlan; dos Santos, João Roberto; Mura, José Claudio

    2016-04-01

    This work aims to verify the applicability of models obtained using interferometric synthetic aperture radar (SAR) data for estimation of biophysical Eucalyptus saligna parameters [diameter of breast height (DBH), total height and volume], as a method of continuous forest inventory. In order to obtain different digital elevation models, and the interferometric height (Hint) to retrieve the tree heights, SAR surveying was carried out by an airborne interferometric SAR in two frequencies X and P bands. The study area, located in the Brazilian southeast region (S 22°53‧22″/W 45°26‧16″ and S 22°53‧22″/W 45°26‧16″), comprises 128.64 hectares of Eucalyptus saligna stands. The methodological procedures encompassed: forest inventory, topographic surveying, radar mapping, radar processing, and multivariable regression techniques to build Eucalyptus volume, DBH, and height models. The statistical regression pointed out Hint and interferometric coherence as the most important variables for the total height and DBH estimation; for the volume model, however, only the Hint variable was selected. The performance of the biophysical models from the second campaign, two years later (2006), were consistent and its results are very promising for updating annual inventories needed for managing Eucalyptus plantations.

  18. Extended nonlinear chirp scaling algorithm for highly squinted missile-borne synthetic aperture radar with diving acceleration

    Science.gov (United States)

    Liu, Rengli; Wang, Yanfei

    2016-04-01

    An extended nonlinear chirp scaling (NLCS) algorithm is proposed to process data of highly squinted, high-resolution, missile-borne synthetic aperture radar (SAR) diving with a constant acceleration. Due to the complex diving movement, the traditional signal model and focusing algorithm are no longer suited for missile-borne SAR signal processing. Therefore, an accurate range equation is presented, named as the equivalent hyperbolic range model (EHRM), which is more accurate and concise compared with the conventional fourth-order polynomial range equation. Based on the EHRM, a two-dimensional point target reference spectrum is derived, and an extended NLCS algorithm for missile-borne SAR image formation is developed. In the algorithm, a linear range walk correction is used to significantly remove the range-azimuth cross coupling, and an azimuth NLCS processing is adopted to solve the azimuth space variant focusing problem. Moreover, the operations of the proposed algorithm are carried out without any interpolation, thus having small computational loads. Finally, the simulation results and real-data processing results validate the proposed focusing algorithm.

  19. Analysis of ERS 1 synthetic aperture radar data of frozen lakes in northern Montana and implications for climate studies

    Science.gov (United States)

    Hall, Dorothy K.; Fagre, Daniel B.; Klasner, Fritz; Linebaugh, Gregg; Liston, Glen E.

    1994-01-01

    Lakes that freeze each winter are good indicators of regional climate change if key parameters, such as freeze-up and breakup date and maximum ice thickness, are measured over a decade-scale time frame. Synthetic aperture radar (SAR) satellite data have proven to be especially useful for measurement of climatologically significant parameters characteristic of frozen lakes. In this paper, five lakes in Glacier National Park, Montana, have been studied both in the field and using Earth Remote-Sensing Satellite (ERS) 1 SAR data during the 1992-1993 winter. The lakes are characterized by clear ice, sometimes with tubular or rounded bubbles, and often with a layer of snow ice on top of the clear ice. They are also often snow covered. Freeze-up is detected quite easily using ERS 1 SAR data as soon as a thin layer of ice forms. The effect of snow ice on the backscatter is thought to be significant but is, as yet, undetermined. On the five lakes studied, relative backscatter was found to increase with ice thickness until a maximum was reached in February. Breakup, an often ill-defined occurrence, is difficult to detect because surface water causes the SAR signal to be absorbed, thus masking the ice below. Comparison of the bubble structure of thaw lakes in northern Alaska with lakes in northern Montana has shown that the ice structure is quite different, and this difference may contribute to differential SAR signature evolution in the lakes of the two areas.

  20. Terahertz Wide-Angle Imaging and Analysis on Plane-wave Criteria Based on Inverse Synthetic Aperture Techniques

    Science.gov (United States)

    Gao, Jing Kun; Qin, Yu Liang; Deng, Bin; Wang, Hong Qiang; Li, Jin; Li, Xiang

    2016-04-01

    This paper presents two parts of work around terahertz imaging applications. The first part aims at solving the problems occurred with the increasing of the rotation angle. To compensate for the nonlinearity of terahertz radar systems, a calibration signal acquired from a bright target is always used. Generally, this compensation inserts an extra linear phase term in the intermediate frequency (IF) echo signal which is not expected in large-rotation angle imaging applications. We carried out a detailed theoretical analysis on this problem, and a minimum entropy criterion was employed to estimate and compensate for the linear-phase errors. In the second part, the effects of spherical wave on terahertz inverse synthetic aperture imaging are analyzed. Analytic criteria of plane-wave approximation were derived in the cases of different rotation angles. Experimental results of corner reflectors and an aircraft model based on a 330-GHz linear frequency-modulated continuous wave (LFMCW) radar system validated the necessity and effectiveness of the proposed compensation. By comparing the experimental images obtained under plane-wave assumption and spherical-wave correction, it also showed to be highly consistent with the analytic criteria we derived.

  1. Inversion of Synthetic Aperture Radar Interferograms for Sources of Production-Related Subsidence at the Dixie Valley Geothermal Field

    Energy Technology Data Exchange (ETDEWEB)

    Foxall, W; Vasco, D

    2003-02-07

    We used synthetic aperture radar interferograms to image ground subsidence that occurred over the Dixie Valley geothermal field during different time intervals between 1992 and 1997. Linear elastic inversion of the subsidence that occurred between April, 1996 and March, 1997 revealed that the dominant sources of deformation during this time period were large changes in fluid volumes at shallow depths within the valley fill above the reservoir. The distributions of subsidence and subsurface volume change support a model in which reduction in pressure and volume of hot water discharging into the valley fill from localized upflow along the Stillwater range frontal fault is caused by drawdown within the upflow zone resulting from geothermal production. Our results also suggest that an additional source of fluid volume reduction in the shallow valley fill might be similar drawdown within piedmont fault zones. Shallow groundwater flow in the vicinity of the field appears to be controlled on the NW by a mapped fault and to the SW by a lineament of as yet unknown origin.

  2. Time-series analysis of surface deformation at Brady Hot Springs geothermal field (Nevada) using interferometric synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Ali, S. T. [Univ. of Wisconsin, Madison, WI (United States); Akerley, J. [Ormat Technologies Inc., Reno, NV (United States); Baluyut, E. C. [Univ. of Wisconsin, Madison, WI (United States); Cardiff, M. [Univ. of Wisconsin, Madison, WI (United States); Davatzes, N. C. [Temple Univ., Philadelphia, PA (United States). Dept. of Earth and Environmental Science; Feigl, K. L. [Univ. of Wisconsin, Madison, WI (United States); Foxall, W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fratta, D. [Univ. of Wisconsin, Madison, WI (United States); Mellors, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spielman, P. [Ormat Technologies Inc., Reno, NV (United States); Wang, H. F. [Univ. of Wisconsin, Madison, WI (United States); Zemach, E. [Ormat Technologies Inc., Reno, NV (United States)

    2016-05-01

    We analyze interferometric synthetic aperture radar (InSAR) data acquired between 2004 and 2014, by the ERS-2, Envisat, ALOS and TerraSAR-X/TanDEM-X satellite missions to measure and characterize time-dependent deformation at the Brady Hot Springs geothermal field in western Nevada due to extraction of fluids. The long axis of the ~4 km by ~1.5 km elliptical subsiding area coincides with the strike of the dominant normal fault system at Brady. Within this bowl of subsidence, the interference pattern shows several smaller features with length scales of the order of ~1 km. This signature occurs consistently in all of the well-correlated interferometric pairs spanning several months. Results from inverse modeling suggest that the deformation is a result of volumetric contraction in shallow units, no deeper than 600 m, likely associated with damaged regions where fault segments mechanically interact. Such damaged zones are expected to extend downward along steeply dipping fault planes, providing a high permeability conduit to the production wells. Using time series analysis, we test the hypothesis that geothermal production drives the observed deformation. We find a good correlation between the observed deformation rate and the rate of production in the shallow wells. We also explore mechanisms that could potentially cause the observed deformation, including thermal contraction of rock, decline in pore pressure and dissolution of minerals over time.

  3. Comparison of spatial frequency domain features for the detection of side attack explosive ballistics in synthetic aperture acoustics

    Science.gov (United States)

    Dowdy, Josh; Anderson, Derek T.; Luke, Robert H.; Ball, John E.; Keller, James M.; Havens, Timothy C.

    2016-05-01

    Explosive hazards in current and former conflict zones are a threat to both military and civilian personnel. As a result, much effort has been dedicated to identifying automated algorithms and systems to detect these threats. However, robust detection is complicated due to factors like the varied composition and anatomy of such hazards. In order to solve this challenge, a number of platforms (vehicle-based, handheld, etc.) and sensors (infrared, ground penetrating radar, acoustics, etc.) are being explored. In this article, we investigate the detection of side attack explosive ballistics via a vehicle-mounted acoustic sensor. In particular, we explore three acoustic features, one in the time domain and two on synthetic aperture acoustic (SAA) beamformed imagery. The idea is to exploit the varying acoustic frequency profile of a target due to its unique geometry and material composition with respect to different viewing angles. The first two features build their angle specific frequency information using a highly constrained subset of the signal data and the last feature builds its frequency profile using all available signal data for a given region of interest (centered on the candidate target location). Performance is assessed in the context of receiver operating characteristic (ROC) curves on cross-validation experiments for data collected at a U.S. Army test site on different days with multiple target types and clutter. Our preliminary results are encouraging and indicate that the top performing feature is the unrolled two dimensional discrete Fourier transform (DFT) of SAA beamformed imagery.

  4. Polarimetric analysis of radar backscatter from ground-based scatterometers and wheat biomass monitoring with advanced synthetic aperture radar images

    Science.gov (United States)

    He, Lei; Tong, Ling; Li, Yuxia; Chen, Yan; Tan, Longfei; Guo, Caizheng

    2016-04-01

    This article presents an analysis of the scattering measurements for an entire wheat growth cycle by ground-based scatterometers at a frequency of 5.3 GHz. Since wheat ears are related to wheat growth and yield, the radar backscatter of wheat was analyzed at two different periods, i.e., with and without wheat ears. Simultaneously, parameters such as wheat and soil characteristics as well as volume scattering and soil scattering were analyzed for the two periods during the entire growth cycle. Wheat ears have been demonstrated to have a great influence on radar backscatter; therefore, a modified version of water-cloud model used for retrieving biomass should consider the effect of wheat ears. This work presents two retrieval models based on the water-cloud model and adopts the advanced integral equation model to simulate the soil backscatter before the heading stage and the backscatter from the layer under wheat ears after the heading stage. The research results showed that the biomass retrieved from the advanced synthetic aperture radar (ASAR) images to agree well with the data measured in situ after setting the modified water-cloud model for the growth stages with ears. Furthermore, it was concluded that wheat ears should form an essential component of theoretical modeling as they influence the final yield.

  5. Synthetic Aperture Radar (SAR Interferometry for Assessing Wenchuan Earthquake (2008 Deforestation in the Sichuan Giant Panda Site

    Directory of Open Access Journals (Sweden)

    Fulong Chen

    2014-07-01

    Full Text Available Synthetic aperture radar (SAR has been an unparalleled tool in cloudy and rainy regions as it allows observations throughout the year because of its all-weather, all-day operation capability. In this paper, the influence of Wenchuan Earthquake on the Sichuan Giant Panda habitats was evaluated for the first time using SAR interferometry and combining data from C-band Envisat ASAR and L-band ALOS PALSAR data. Coherence analysis based on the zero-point shifting indicated that the deforestation process was significant, particularly in habitats along the Min River approaching the epicenter after the natural disaster, and as interpreted by the vegetation deterioration from landslides, avalanches and debris flows. Experiments demonstrated that C-band Envisat ASAR data were sensitive to vegetation, resulting in an underestimation of deforestation; in contrast, L-band PALSAR data were capable of evaluating the deforestation process owing to a better penetration and the significant coherence gain on damaged forest areas. The percentage of damaged forest estimated by PALSAR decreased from 20.66% to 17.34% during 2009–2010, implying an approximate 3% recovery rate of forests in the earthquake impacted areas. This study proves that long-wavelength SAR interferometry is promising for rapid assessment of disaster-induced deforestation, particularly in regions where the optical acquisition is constrained.

  6. Soil Moisture Estimation in South-Eastern New Mexico Using High Resolution Synthetic Aperture Radar (SAR Data

    Directory of Open Access Journals (Sweden)

    A.K.M. Azad Hossain

    2016-01-01

    Full Text Available Soil moisture monitoring and characterization of the spatial and temporal variability of this hydrologic parameter at scales from small catchments to large river basins continues to receive much attention, reflecting its critical role in subsurface-land surface-atmospheric interactions and its importance to drought analysis, irrigation planning, crop yield forecasting, flood protection, and forest fire prevention. Synthetic Aperture Radar (SAR data acquired at different spatial resolutions have been successfully used to estimate soil moisture in different semi-arid areas of the world for many years. This research investigated the potential of linear multiple regressions and Artificial Neural Networks (ANN based models that incorporate different geophysical variables with Radarsat 1 SAR fine imagery and concurrently measured soil moisture measurements to estimate surface soil moisture in Nash Draw, NM. An artificial neural network based model with vegetation density, soil type, and elevation data as input in addition to radar backscatter values was found suitable to estimate surface soil moisture in this area with reasonable accuracy. This model was applied to a time series of SAR data acquired in 2006 to produce soil moisture data covering a normal wet season in the study site.

  7. Atmospheric corrections in interferometric synthetic aperture radar surface deformation - a case study of the city of Mendoza, Argentina

    Science.gov (United States)

    Balbarani, S.; Euillades, P. A.; Euillades, L. D.; Casu, F.; Riveros, N. C.

    2013-09-01

    Differential interferometry is a remote sensing technique that allows studying crustal deformation produced by several phenomena like earthquakes, landslides, land subsidence and volcanic eruptions. Advanced techniques, like small baseline subsets (SBAS), exploit series of images acquired by synthetic aperture radar (SAR) sensors during a given time span. Phase propagation delay in the atmosphere is the main systematic error of interferometric SAR measurements. It affects differently images acquired at different days or even at different hours of the same day. So, datasets acquired during the same time span from different sensors (or sensor configuration) often give diverging results. Here we processed two datasets acquired from June 2010 to December 2011 by COSMO-SkyMed satellites. One of them is HH-polarized, and the other one is VV-polarized and acquired on different days. As expected, time series computed from these datasets show differences. We attributed them to non-compensated atmospheric artifacts and tried to correct them by using ERA-Interim global atmospheric model (GAM) data. With this method, we were able to correct less than 50% of the scenes, considering an area where no phase unwrapping errors were detected. We conclude that GAM-based corrections are not enough for explaining differences in computed time series, at least in the processed area of interest. We remark that no direct meteorological data for the GAM-based corrections were employed. Further research is needed in order to understand under what conditions this kind of data can be used.

  8. Passive synthetic aperture hitchhiker imaging of ground moving targets--Part 1: image formation and velocity estimation.

    Science.gov (United States)

    Wacks, Steven; Yazici, Birsen

    2014-06-01

    In the Part 1 of this two-part study, we present a method of imaging and velocity estimation of ground moving targets using passive synthetic aperture radar. Such a system uses a network of small, mobile receivers that collect scattered waves due to transmitters of opportunity, such as commercial television, radio, and cell phone towers. Therefore, passive imaging systems have significant cost, manufacturing, and stealth advantages over active systems. We describe a novel generalized Radon transform-type forward model and a corresponding filtered-backprojection-type image formation and velocity estimation method. We form a stack of position images over a range of hypothesized velocities, and show that the targets can be reconstructed at the correct position whenever the hypothesized velocity is equal to the true velocity of targets. We then use entropy to determine the most accurate velocity and image pair for each moving target. We present extensive numerical simulations to verify the reconstruction method. Our method does not require a priori knowledge of transmitter locations and transmitted waveforms. It can determine the location and velocity of multiple targets moving at different velocities. Furthermore, it can accommodate arbitrary imaging geometries. In Part 2, we present the resolution analysis and analysis of positioning errors in passive SAR images due to erroneous velocity estimation.

  9. Integration of speckle de-noising and image segmentation using Synthetic Aperture Radar image for flood extent extraction

    Indian Academy of Sciences (India)

    J Senthilnath; H Vikram Shenoy; Ritwik Rajendra; S N Omkar; V Mani; P G Diwakar

    2013-06-01

    Flood is one of the detrimental hydro-meteorological threats to mankind. This compels very efficient flood assessment models. In this paper, we propose remote sensing based flood assessment using Synthetic Aperture Radar (SAR) image because of its imperviousness to unfavourable weather conditions. However, they suffer from the speckle noise. Hence, the processing of SAR image is applied in two stages: speckle removal filters and image segmentation methods for flood mapping. The speckle noise has been reduced with the help of Lee, Frost and Gamma MAP filters. A performance comparison of these speckle removal filters is presented. From the results obtained, we deduce that the Gamma MAP is reliable. The selected Gamma MAP filtered image is segmented using Gray Level Co-occurrence Matrix (GLCM) and Mean Shift Segmentation (MSS). The GLCM is a texture analysis method that separates the image pixels into water and non-water groups based on their spectral feature whereas MSS is a gradient ascent method, here segmentation is carried out using spectral and spatial information. As test case, Kosi river flood is considered in our study. From the segmentation result of both these methods are comprehensively analysed and concluded that the MSS is efficient for flood mapping.

  10. Tracking lava flow emplacement on the east rift zone of Kilauea, Hawai’i with synthetic aperture radar (SAR) coherence

    Science.gov (United States)

    Dietterich, Hannah R.; Poland, Michael P.; Schmidt, David; Cashman, Katharine V.; Sherrod, David R.; Espinosa, Arkin Tapia

    2012-01-01

    Lava flow mapping is both an essential component of volcano monitoring and a valuable tool for investigating lava flow behavior. Although maps are traditionally created through field surveys, remote sensing allows an extraordinary view of active lava flows while avoiding the difficulties of mapping on location. Synthetic aperture radar (SAR) imagery, in particular, can detect changes in a flow field by comparing two images collected at different times with SAR coherence. New lava flows radically alter the scattering properties of the surface, making the radar signal decorrelated in SAR coherence images. We describe a new technique, SAR Coherence Mapping (SCM), to map lava flows automatically from coherence images independent of look angle or satellite path. We use this approach to map lava flow emplacement during the Pu‘u ‘Ō‘ō-Kupaianaha eruption at Kīlauea, Hawai‘i. The resulting flow maps correspond well with field mapping and better resolve the internal structure of surface flows, as well as the locations of active flow paths. However, the SCM technique is only moderately successful at mapping flows that enter vegetation, which is also often decorrelated between successive SAR images. Along with measurements of planform morphology, we are able to show that the length of time a flow stays decorrelated after initial emplacement is linearly related to the flow thickness. Finally, we use interferograms obtained after flow surfaces become correlated to show that persistent decorrelation is caused by post-emplacement flow subsidence.

  11. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Nonlinear acoustics, synthetic aperture imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lingvall, Fredrik; Ping Wu; Stepinski, Tadeusz [Uppsala Univ., (Sweden). Dept. of Materials Science

    2003-03-01

    This report contains results concerning inspection of copper canisters for spent nuclear fuel by means of ultrasound obtained at Signals and Systems, Uppsala University in year 2001/2002. The first chapter presents results of an investigation of a new method for synthetic aperture imaging. The new method presented here takes the form of a 2D filter based on minimum mean squared error (MMSE) criteria. The filter, which varies with the target position in two dimensions includes information about spatial impulse response (SIR) of the imaging system. Spatial resolution of the MMSE method is investigated and compared experimentally to that of the classical SAFT and phased array imaging. It is shown that the resolution of the MMSE algorithm, evaluated for imaging immersed copper specimen is superior to that observed for the two above-mentioned methods. Extended experimental and theoretical research concerning the potential of nonlinear waves and material harmonic imaging is presented in the second chapter. An experimental work is presented that was conducted using the RITEC RAM-5000 ultrasonic system capable of providing a high power tone-burst output. A new method for simulation of nonlinear acoustic waves that is a combination of the angular spectrum approach and the Burger's equation is also presented. This method was used for simulating nonlinear elastic waves radiated by the annular transducer that was used in the experiments.

  12. Monitoring cyanobacteria-dominant algal blooms in eutrophicated Taihu Lake in China with synthetic aperture radar images

    Science.gov (United States)

    Wang, Ganlin; Li, Junsheng; Zhang, Bing; Shen, Qian; Zhang, Fangfang

    2015-01-01

    Monitoring algal blooms by optical remote sensing is limited by cloud cover. In this study, synthetic aperture radar (SAR) was deployed with the aim of monitoring cyanobacteria-dominant algal blooms in Taihu Lake in cloudy weather. The study shows that dark regions in the SAR images caused by cyanobacterial blooms damped the microwave backscatter of the lake surface and were consistent with the regions of algal blooms in quasi-synchronous optical images, confirming the applicability of SAR for detection of surface blooms. Low backscatter may also be associated with other factors such as low wind speeds, resulting in interference when monitoring algal blooms using SAR data alone. After feature extraction and selection, the dark regions were classified by the support vector machine method with an overall accuracy of 67.74%. SAR can provide a reference point for monitoring cyanobacterial blooms in the lake, particularly when weather is not suitable for optical remote sensing. Multi-polarization and multi-band SAR can be considered for use in the future to obtain more accurate information regarding algal blooms from SAR data.

  13. Focusing vibrating targets in frequency-modulation continuous-wave-synthetic aperture radar with Doppler keystone transform

    Science.gov (United States)

    Hu, Yuxin; Zhang, Yuan; Sun, Jinping; Lei, Peng

    2016-04-01

    Vibrating targets generally induce sinusoidal micro-Doppler modulation in high resolution synthetic aperture radar (SAR). They could cause defocused and ghost results by conventional imaging algorithms. This paper proposes a method on vibrating target imaging in frequency-modulation continuous-wave (FMCW) SAR systems. The continuous motion of sensor platform during pulse time is considered in the signal model. Based on Bessel series expansion of the signal in the azimuth direction, the influence of platform motion on the azimuth frequency is eliminated after dechirp and deskew. In addition, the range walk is compensated in the two-dimensional frequency domain by Doppler keystone transform. Next, using range cell migration correction, the azimuth quadratic phase compensation and the range curvature correction are made in range-Doppler domain for the focus of paired echoes. The residual video phase of paired echoes is eliminated, and vibration parameters are estimated to compensate in the sinusoidal modulation phase. Then the deghosted image of vibrating targets can be obtained. The proposed method is applicable to multiple targets with various vibrating states due to no need of a priori knowledge of targets. Finally, simulations are carried out to validate the effectiveness of the method in FMCW-SAR imaging of vibrating targets.

  14. Forest height estimation from mountain forest areas using general model-based decomposition for polarimetric interferometric synthetic aperture radar images

    Science.gov (United States)

    Minh, Nghia Pham; Zou, Bin; Cai, Hongjun; Wang, Chengyi

    2014-01-01

    The estimation of forest parameters over mountain forest areas using polarimetric interferometric synthetic aperture radar (PolInSAR) images is one of the greatest interests in remote sensing applications. For mountain forest areas, scattering mechanisms are strongly affected by the ground topography variations. Most of the previous studies in modeling microwave backscattering signatures of forest area have been carried out over relatively flat areas. Therefore, a new algorithm for the forest height estimation from mountain forest areas using the general model-based decomposition (GMBD) for PolInSAR image is proposed. This algorithm enables the retrieval of not only the forest parameters, but also the magnitude associated with each mechanism. In addition, general double- and single-bounce scattering models are proposed to fit for the cross-polarization and off-diagonal term by separating their independent orientation angle, which remains unachieved in the previous model-based decompositions. The efficiency of the proposed approach is demonstrated with simulated data from PolSARProSim software and ALOS-PALSAR spaceborne PolInSAR datasets over the Kalimantan areas, Indonesia. Experimental results indicate that forest height could be effectively estimated by GMBD.

  15. Advanced Land Observing Satellite (ALOS) Phased Array Type L-Band Synthetic Aperture Radar (PALSAR) mosaic for the Kahiltna terrane, Alaska, 2007-2010

    Science.gov (United States)

    Cole, Christopher J.; Johnson, Michaela R.; Graham, Garth E.

    2015-01-01

    The U.S. Geological Survey (USGS) has initiated a multi-disciplinary study investigating the applicability of remote sensing technologies for geologic mapping and identification of prospective areas for base and precious metal deposits in remote parts of Alaska. The Kahiltna terrane in southwestern Alaska was selected for investigation because of its known mineral deposits and potential for additional mineral resources. An assortment of technologies is being investigated to aid in remote analysis of terrain, and includes imaging spectroscopy (hyperspectral remote sensing), high spatial resolution electro-optical imagery, and Synthetic Aperture Radar (SAR). However, there are significant challenges to applying imaging spectroscopy and electro-optical imagery technologies in this area because of the low solar angle for parts of the year, seasonal periods of darkness and snow cover, and the frequently cloudy weather that characterizes Alaska. Synthetic Aperture Radar (SAR) was selected because this technology does not rely on solar illumination and has all-weather capability.

  16. Ship Detection with Spectral Analysis of Synthetic Aperture Radar: A Comparison of New and Well-Known Algorithms

    Directory of Open Access Journals (Sweden)

    Armando Marino

    2015-04-01

    Full Text Available The surveillance of maritime areas with remote sensing is vital for security reasons, as well as for the protection of the environment. Satellite-borne synthetic aperture radar (SAR offers large-scale surveillance, which is not reliant on solar illumination and is rather independent of weather conditions. The main feature of vessels in SAR images is a higher backscattering compared to the sea background. This peculiarity has led to the development of several ship detectors focused on identifying anomalies in the intensity of SAR images. More recently, different approaches relying on the information kept in the spectrum of a single-look complex (SLC SAR image were proposed. This paper is focused on two main issues. Firstly, two recently developed sub-look detectors are applied for the first time to ship detection. Secondly, new and well-known ship detection algorithms are compared in order to understand which has the best performance under certain circumstances and if the sub-look analysis improves ship detection. The comparison is done on real SAR data exploiting diversity in frequency and polarization. Specifically, the employed data consist of six RADARSAT-2 fine quad-polacquisitions over the North Sea, five TerraSAR-X HH/VV dual-polarimetric data-takes, also over the North Sea, and one ALOS-PALSAR quad-polarimetric dataset over Tokyo Bay. Simultaneously to the SAR images, validation data were collected, which include the automatic identification system (AIS position of ships and wind speeds. The results of the analysis show that the performance of the different sub-look algorithms considered here is strongly dependent on polarization, frequency and resolution. Interestingly, these sub-look detectors are able to outperform the classical SAR intensity detector when the sea state is particularly high, leading to a strong clutter contribution. It was also observed that there are situations where the performance improvement thanks to the sub

  17. Climate Change Indicator for Hazard Identification of Indian North West Coast Marine Environment Using Synthetic Aperture Radar (sar)

    Science.gov (United States)

    Gambheer, Phani Raj

    2012-07-01

    Stormwater runoff, Petroleum Hydrocarbon plumes are found abundantly near coastal cities, coastal population settlements especially in developing nations as more than half the world's human population. Ever increasing coastal populations and development in coastal areas have led to increased loading of toxic substances, nutrients and pathogens. These hazards cause deleterious effects on the population in many ways directly or indirectly which lead to algal blooms, hypoxia, beach closures, and damage to coastal fisheries. Hence these pollution hazards are important and the coastal administrations and people need to be aware of such a danger lurking very close to them. These hazards due to their small size, dynamic and episodic in nature are difficult to be visualized or to sample using in-situ traditional scientific methods. Natural obstructions like cloud cover and complex coastal circulations can hinder to detect and monitor such occurrences in the selected areas chosen for observations. This study takes recourse to Synthetic Aperture Radar (SAR) imagery because the pollution hazards are easily detectable as surfactants are deposited on the sea surface, along with nutrients and pathogens, smoothing capillary and small gravity waves to produce areas of reduced backscatter compared with surrounding ocean. These black spots can be termed as `Ecologic Indicator' and formed probably due to stronger thermal stratification, a deepening event of thermocline. SAR imagery that delivers useful data better than others regardless of darkness or cloud cover, should be made as an important observational tool for assessment and monitoring marine pollution hazards in the areas close to coastal regions. Till now the effects of climate change, sea level rise and global warming seems to have not affected the coastal populace of India in intrusions of sea water but it takes significance to the human health as the tides dominate these latitudes with bringing these polluted waters. KEY

  18. Detecting land subsidence near metro lines in the Baoshan district of Shanghai with multi-temporal interferometric synthetic aperture radar

    Institute of Scientific and Technical Information of China (English)

    Tao Li; Guoxiang Liu; Hui Lin; Rui Zhang; Hongguo Jia; Bing Yu

    2014-01-01

    Land subsidence is a major factor that affects metro line (ML) stability. In this study, an improved multi-temporal interferometric synthetic aperture radar (InSAR) (MTI) method to detect land subsidence near MLs is pre-sented. In particular, our multi-temporal InSAR method provides surface subsidence measurements with high observation density. The MTI method tracks both point-like targets and distributed targets with temporal radar back-scattering steadiness. First, subsidence rates at the point targets with low-amplitude dispersion index (ADI) values are extracted by applying a least-squared estimator on an optimized freely connected network. Second, to reduce error propagation, the pixels with high-ADI values are classified into several groups according to ADI intervals and processed using a Pearson correlation coefficient and hierarchical analysis strategy to obtain the distributed targets. Then, nonlinear subsidence components at all point-like and dis-tributed targets are estimated using phase unwrapping and spatiotemporal filtering on the phase residuals. The proposed MTI method was applied to detect land subsidence near MLs of No. 1 and 3 in the Baoshan district of Shanghai using 18 TerraSAR-X images acquired between April 21, 2008 and October 30, 2010. The results show that the mean subsidence rates of the stations distributed along the two MLs are -12.9 and -14.0 mm/year. Furthermore, three subsidence funnels near the MLs are discovered through the hierarchical analysis. The testing results demonstrate the satisfactory capacity of the proposed MTI method in pro-viding detailed subsidence information near MLs.

  19. Imaging synthetic aperture radar

    Science.gov (United States)

    Burns, Bryan L.; Cordaro, J. Thomas

    1997-01-01

    A linear-FM SAR imaging radar method and apparatus to produce a real-time image by first arranging the returned signals into a plurality of subaperture arrays, the columns of each subaperture array having samples of dechirped baseband pulses, and further including a processing of each subaperture array to obtain coarse-resolution in azimuth, then fine-resolution in range, and lastly, to combine the processed subapertures to obtain the final fine-resolution in azimuth. Greater efficiency is achieved because both the transmitted signal and a local oscillator signal mixed with the returned signal can be varied on a pulse-to-pulse basis as a function of radar motion. Moreover, a novel circuit can adjust the sampling location and the A/D sample rate of the combined dechirped baseband signal which greatly reduces processing time and hardware. The processing steps include implementing a window function, stabilizing either a central reference point and/or all other points of a subaperture with respect to doppler frequency and/or range as a function of radar motion, sorting and compressing the signals using a standard fourier transforms. The stabilization of each processing part is accomplished with vector multiplication using waveforms generated as a function of radar motion wherein these waveforms may be synthesized in integrated circuits. Stabilization of range migration as a function of doppler frequency by simple vector multiplication is a particularly useful feature of the invention; as is stabilization of azimuth migration by correcting for spatially varying phase errors prior to the application of an autofocus process.

  20. Final Report: Detection and Characterization of Underground Facilities by Stochastic Inversion and Modeling of Data from the New Generation of Synthetic Aperture Satellites

    Energy Technology Data Exchange (ETDEWEB)

    Foxall, W; Cunningham, C; Mellors, R; Templeton, D; Dyer, K; White, J

    2012-02-27

    Many clandestine development and production activities can be conducted underground to evade surveillance. The purpose of the study reported here was to develop a technique to detect underground facilities by broad-area search and then to characterize the facilities by inversion of the collected data. This would enable constraints to be placed on the types of activities that would be feasible at each underground site, providing a basis the design of targeted surveillance and analysis for more complete characterization. Excavation of underground cavities causes deformation in the host material and overburden that produces displacements at the ground surface. Such displacements are often measurable by a variety of surveying or geodetic techniques. One measurement technique, Interferometric Synthetic Aperture Radar (InSAR), uses data from satellite-borne (or airborne) synthetic aperture radars (SARs) and so is ideal for detecting and measuring surface displacements in denied access regions. Depending on the radar frequency and the acquisition mode and the surface conditions, displacement maps derived from SAR interferograms can provide millimeter- to centimeter-level measurement accuracy on regional and local scales at spatial resolution of {approx}1-10 m. Relatively low-resolution ({approx}20 m, say) maps covering large regions can be used for broad-area detection, while finer resolutions ({approx}1 m) can be used to image details of displacement fields over targeted small areas. Surface displacements are generally expected to be largest during or a relatively short time after active excavation, but, depending on the material properties, measurable displacement may continue at a decreasing rate for a considerable time after completion. For a given excavated volume in a given geological setting, the amplitude of the surface displacements decreases as the depth of excavation increases, while the area of the discernable displacement pattern increases. Therefore, the

  1. 3D imaging by fast deconvolution algorithm in short-range UWB radar for concealed weapon detection

    NARCIS (Netherlands)

    Savelyev, T.; Yarovoy, A.

    2013-01-01

    A fast imaging algorithm for real-time use in short-range (ultra-wideband) radar with synthetic or real-array aperture is proposed. The reflected field is presented here as a convolution of the target reflectivity and point spread function (PSF) of the imaging system. To obtain a focused 3D image, t

  2. 3D Marine CSEM Interferometry by Multidimensional Deconvolution in the Wavenumber Domain for a Sparse Receiver Grid

    NARCIS (Netherlands)

    Hunziker, J.W.; Slob, E.C.; Fan, Y.; Snieder, R.; Wapenaar, C.P.A.

    2013-01-01

    We use interferometry by multidimensional deconvolution in combination with synthetic aperture sources in 3D to suppress the airwave and the direct field, and to decrease source uncertainty in marine Controlled-Source electromagnetics. We show with this numerical study that the method works for very

  3. A Study of Current Interseismic Deformation of San Andreas Fault, San Bernardino Mountain section, using Interferometric Synthetic Aperture Radar

    Science.gov (United States)

    Nee, P.; Funning, G. J.

    2010-12-01

    The San Andreas fault (SAF) system accommodates a significant fraction of the relative movement between the Pacific and North American plates. In the past 250 years, no significant earthquake was recorded on the southernmost section of the SAF, and thus there exists a substantial ongoing earthquake hazard. Estimates of its slip deficit rate, made with various geologic and geodetic observations typically fall in the range 15-25 mm/yr, in the vicinity of the San Bernadino Mountains. Assuming the fault system slips at a constant rate of 20mm/yr, a slip deficit of 5 m would have accumulated since the last event, equivalent to a potential Mw 7.5 or larger earthquake. To understand how much strain is accumulating on the southern SAF system during the current interseismic period, we investigate the surface deformation using radar interferometry. We use the entire catalog of ERS and Envisat Synthetic Aperture Radar (SAR) data from a descending track well oriented for the SAF (track 399). 53 images from ERS spanning 1992 to late 2000, and 50 images from Envisat spanning 2003 to 2010 are used. We perform ratemap inversion (Biggs et al. 2007, GJI) to obtain an estimate of interseismic slip deficit rate, and Persistent Scatterer InSAR (PSI) analysis to investigate the tectonic and non-tectonic surface displacements across the region. The ratemap inversion algorithm involves simultaneous estimation of long wavelength orbital errors, construction of a ratemap by finding the best fitting rate of each pixel, and estimation of slip deficit rate using a half-space elastic dislocation model (Okada 1985, BSSA) calculated from a representative fault model. We constructed and tested different conceptual models based on the SCEC rectangular community fault model (CFM-R). We find that our ERS data are strongly affected by the postseismic deformation of the 1992 Mw 7.3 Landers Earthquake. We therefore estimate the slip rate using the Envisat dataset, which is much less affected by the

  4. Coastal Monitoring Using L-band Synthetic Aperture Radar (SAR) Image Data - Some Case Studies in Asian Delta Areas

    Science.gov (United States)

    Tanaka, A.

    2014-12-01

    Coastal geomorphology is highly variable as it is affected by sea-level changes and other naturally- and human-induced fluctuations. To effectively assess and monitor geomorphological changes in various time scales is thus critical for coastal management. Asian mega deltas are vulnerable to a sea-level rise due to its low-lying delta plain, and are dynamic region given a large amount of sediment supply. However, limited data availability and accessibility in the deltas have prevented establishment of systematic coastal monitoring. A variety of remote sensing systems can be used to monitor geomorphological changes in coastal areas as it has wide spatial coverage and high temporal repeatability. Especially, analysis using SAR (Synthetic Aperture Radar) data not affected by the cloud conditions offer potential for monitoring in the monsoon Asia region. We will present some case studies of Asian coastal regions using L-band SAR data, ALOS (Advanced Land Observing Satellite) PALSAR (Phased Array type L-band SAR) and JERS-1 (Japanese Earth Resource Satellite-1) SAR data. One example is that time-series of radar amplitude images can be used to delineate changes quantitatively of the areal extent of river-mouth bars in distributaries of the Mekong River delta. It shows that the estimated areas of river mouthbars gradually increase on an annual time scale, and seasonal variations of areas were also recognized. Another example is that differential SAR interferometry is applied to the coast of the Yellow River delta in China. It shows very high subsidence rates, likely due to groundwater pumping. A further example is that we apply a SAR interferometry time series analysis to monitor ground deformations in the lower Chao Phraya delta plain, Thailand. A single reference time series interferogram from the stacking of unwrapped phases were applied. The subsidence and uplift pattern observed using the SAR interferometry time series analysis highlights the spatial complexity

  5. L-band synthetic aperture radar (SAR) response to the tropical forest stands for carbon stock assessment

    Science.gov (United States)

    Omar, Hamdan; Che Mat, Nur Laila; Hamzah, Khali Aziz; Ismail, Mohd Hasmadi

    2013-05-01

    Several attempts have been made to obtain forest stand parameters such as stand volume, stand density, basal area, biomass, and carbon stock from synthetic aperture radar (SAR) data. However the relationship between these parameters and radar backscatter has been a challenging issue since the last few years. In this study, L-band ALOS PALSAR satellite image with a spatial resolution of 12.5 m was utilized to identify the most ideal relationship between radar backscatter and aboveground carbon stock (ACS) atdifferent strata of tropical forest stands. The Forest Research Institute Malaysia (FRIM) campus which has about 420 ha of forest area was selected as the study area. Field survey was conducted in which ten (10) test plots (50 × 50 m, 0.25 ha) were established and all trees with the diameter at breast height (dbh) of 5 cm and above were inventoried. The calculated plot-based ACS was divided into six diameter classes - which is defined as strata - ofthe trees within the plot, which are i) 5 cm and above, ii) 10 cm and above, iii) 15 cm and above, iv) 20 cm and above, v) 25 cm and above, and vi) 30 cm and above. The total ACS of each class was correlated to the pixels of SAR backscatter corresponding to the plot location on the ground. Results showed that the forest was sensitive to the backscatter on horizontal-vertical polarized (HV) image as compared with horizontal-horizontal polarized (HH) image and a combination of both HH and HV polarizations. However, only ACS that was calculated based on diameter class of 15 cm and above gave the strongest correlation to the SAR signal. The signals also tend to saturate when carbon stock starts to increase from 180 t ha-1 at around -8 dB. The experiment from the study suggested that only mature trees (i.e. of diameter more than 15 cm) with sufficient canopy height can be included in inventory to obtain accurate carbon stock estimation when using satellite based L-band SAR data.

  6. Validation and Sensitivity Analysis of 3D Synthetic Aperture Radar (SAR) Imaging of the Interior of Primitive Solar System Bodies: Comets and Asteroids Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To probe the interior of a comet, we are going to employ Radar Reflection Imager (RRI) Instrument on an orbiting platform. While orbiting around the comet at a safe...

  7. Comparing range data across the slow-time dimension to correct motion measurement errors beyond the range resolution of a synthetic aperture radar

    Science.gov (United States)

    Doerry, Armin W.; Heard, Freddie E.; Cordaro, J. Thomas

    2010-08-17

    Motion measurement errors that extend beyond the range resolution of a synthetic aperture radar (SAR) can be corrected by effectively decreasing the range resolution of the SAR in order to permit measurement of the error. Range profiles can be compared across the slow-time dimension of the input data in order to estimate the error. Once the error has been determined, appropriate frequency and phase correction can be applied to the uncompressed input data, after which range and azimuth compression can be performed to produce a desired SAR image.

  8. 双基地合成孔径雷达技术%Bistatic Synthetic Aperture Radar Technology

    Institute of Scientific and Technical Information of China (English)

    杨建宇

    2016-01-01

    双基地合成孔径雷达(SAR)系统的发射和接收装置承载于不同的平台,系统配置灵活多样,接收装置适装性强,电磁隐蔽性好,不仅能实现对地侧视成像,还能够实现前视成像,是SAR技术新的发展方向之一。由于双基SAR在几何构型、工作模式、分辨特性和应用领域等方面与传统单基SAR存在明显差异,在成像理论、系统组成、收发同步、参数估计、运动补偿、成像处理和试验验证等方面,双基地SAR也存在一系列新的理论、方法和技术问题。近年来,国际雷达界对这些问题开展了广泛深入的研究工作,获得了一些新的认识。该文拟从空间关系和物理概念角度,论述双基SAR成像原理、构型分类、应用特点、系统组成、性能参数、研究现状和发展趋势,简要分析双基SAR与单基SAR的异同,并对双基SAR未来的发展趋势做简要的展望。%Bistatic synthetic aperture radar (SAR) is one of the recent developments of SAR technology. Its transmitting and receiving devices are mounted on different platforms, which brings flexibility for system configuration. In addition, the receiver is suitable for various platforms and electromagneticly concealing. Besides, it is capable of side-looking and forward-looking imaging. Due to the significant distinctions between bistatic SAR and monostatic SAR in observation configuration, working mode, resolution and application fields, new problems exist in the theory, methods and techniques of bistatic SAR, such as imaging theory, system configuration, bistatic synchronization, parameter estimation, motion compensation, imaging processing and experimental validation. In recent years, the radar communities have done extensive and profound researches toward these problems and new insights have been explored. In this review paper, the current research status and development perspective of the imaging theory, configuration

  9. Analysis of polarimetric synthetic aperture radar and passive visible light polarimetric imaging data fusion for remote sensing applications

    Science.gov (United States)

    Maitra, Sanjit

    The recent launch of spaceborne (TerraSAR-X, RADARSAT-2, ALOS-PALSAR, RISAT) and airborne (SIRC, AIRSAR, UAVSAR, PISAR) polarimetric radar sensors, with capability of imaging through day and night in almost all weather conditions, has made polarimetric synthetic aperture radar (PolSAR) image interpretation and analysis an active area of research. PolSAR image classification is sensitive to object orientation and scattering properties. In recent years, significant work has been done in many areas including agriculture, forestry, oceanography, geology, terrain analysis. Visible light passive polarimetric imaging has also emerged as a powerful tool in remote sensing for enhanced information extraction. The intensity image provides information on materials in the scene while polarization measurements capture surface features, roughness, and shading, often uncorrelated with the intensity image. Advantages of visible light polarimetric imaging include high dynamic range of polarimetric signatures and being comparatively straightforward to build and calibrate. This research is about characterization and analysis of the basic scattering mechanisms for information fusion between PolSAR and passive visible light polarimetric imaging. Relationships between these two modes of imaging are established using laboratory measurements and image simulations using the Digital Image and Remote Sensing Image Generation (DIRSIG) tool. A novel low cost laboratory based S-band (2.4GHz) PolSAR instrument is developed that is capable of capturing 4 channel fully polarimetric SAR image data. Simple radar targets are formed and system calibration is performed in terms of radar cross-section. Experimental measurements are done using combination of the PolSAR instrument with visible light polarimetric imager for scenes capturing basic scattering mechanisms for phenomenology studies. The three major scattering mechanisms studied in this research include single, double and multiple bounce. Single

  10. Savannah woody structure modelling and mapping using multi-frequency (X-, C- and L-band) Synthetic Aperture Radar data

    Science.gov (United States)

    Naidoo, Laven; Mathieu, Renaud; Main, Russell; Kleynhans, Waldo; Wessels, Konrad; Asner, Gregory; Leblon, Brigitte

    2015-07-01

    Structural parameters of the woody component in African savannahs provide estimates of carbon stocks that are vital to the understanding of fuelwood reserves, which is the primary source of energy for 90% of households in South Africa (80% in Sub-Saharan Africa) and are at risk of over utilisation. The woody component can be characterised by various quantifiable woody structural parameters, such as tree cover, tree height, above ground biomass (AGB) or canopy volume, each been useful for different purposes. In contrast to the limited spatial coverage of ground-based approaches, remote sensing has the ability to sense the high spatio-temporal variability of e.g. woody canopy height, cover and biomass, as well as species diversity and phenological status - a defining but challenging set of characteristics typical of African savannahs. Active remote sensing systems (e.g. Light Detection and Ranging - LiDAR; Synthetic Aperture Radar - SAR), on the other hand, may be more effective in quantifying the savannah woody component because of their ability to sense within-canopy properties of the vegetation and its insensitivity to atmosphere and clouds and shadows. Additionally, the various components of a particular target's structure can be sensed differently with SAR depending on the frequency or wavelength of the sensor being utilised. This study sought to test and compare the accuracy of modelling, in a Random Forest machine learning environment, woody above ground biomass (AGB), canopy cover (CC) and total canopy volume (TCV) in South African savannahs using a combination of X-band (TerraSAR-X), C-band (RADARSAT-2) and L-band (ALOS PALSAR) radar datasets. Training and validation data were derived from airborne LiDAR data to evaluate the SAR modelling accuracies. It was concluded that the L-band SAR frequency was more effective in the modelling of the CC (coefficient of determination or R2 of 0.77), TCV (R2 of 0.79) and AGB (R2 of 0.78) metrics in Southern African

  11. Calibration of a High Resolution Airborne 3-D SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Grinder-Pedersen, Jan; Madsen, S.N.

    1997-01-01

    (EMI). In order to achieve a high geodetic fidelity when using such systems operationally, calibration procedures must be applied. Inaccurate navigation data and system parameters as well as system imperfections must be accounted for. This paper presents theoretical models describing the impact of key......The potential of across-track interferometric (XTI) synthetic aperture radar (SAR) for producing high resolution 3D imagery has been demonstrated by several airborne systems including EMISAR, the dual frequency, polarimetric, and interferometric SAR developed at the Dept. of Electromagnetic Systems...

  12. A 3-D Contextual Classifier

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    1997-01-01

    . This includes the specification of a Gaussian distribution for the pixel values as well as a prior distribution for the configuration of class variables within the cross that is m ade of a pixel and its four nearest neighbours. We will extend this algorithm to 3-D, i.e. we will specify a simultaneous Gaussian...... distr ibution for a pixel and its 6 nearest 3-D neighbours, and generalise the class variable configuration distribution within the 3-D cross. The algorithm is tested on a synthetic 3-D multivariate dataset....

  13. A MoLC+MoM-based G0distribution parameter estimation method with application to synthetic aperture radar target detection

    Institute of Scientific and Technical Information of China (English)

    朱正为; 周建江; 郭玉英

    2015-01-01

    The accuracy of background clutter model is a key factor which determines the performance of a constant false alarm rate (CFAR) target detection method. G0 distribution is one of the optimal statistic models in the synthetic aperture radar (SAR) image background clutter modeling and can accurately model various complex background clutters in the SAR images. But the application of the distribution is greatly limited by its disadvantages that the parameter estimation is complex and the local detection threshold is difficult to be obtained. In order to solve the above-mentioned problems, an synthetic aperture radar CFAR target detection method using the logarithmic cumulant (MoLC) + method of moment (MoM)-based G0distribution clutter model is proposed. In the method, G0 distribution is used for modeling the background clutters, a new MoLC+MoM-based parameter estimation method coupled with a fast iterative algorithm is used for estimating the parameters of G0 distribution and an exquisite dichotomy method is used for obtaining the local detection threshold of CFAR detection, which greatly improves the computational efficiency, detection performance and environmental adaptability of CFAR detection. Experimental results show that the proposed SAR CFAR target detection method has good target detection performance in various complex background clutter environments.

  14. Motion estimation in wide band synthetic aperture sonar based on the raw echo data using the method of displaced phase center antenna

    Institute of Scientific and Technical Information of China (English)

    JIANG Xiaokui; SUN Chao; FANG Jie

    2003-01-01

    Phase errors in synthetic aperture sonar (SAS) imaging must be reduced to less than one eighth of a wavelength so as to avoid image destruction. Most of the phase errors occur as a result of platform motion errors, for example, sway yaw and surge that are the most important error sources. The phase error of a wide band synthetic aperture sonar is modeled and solutions to sway yaw and surge motion estimation based on the raw sonar echo data with a Displaced Phase Center Antenna (DPCA) method are proposed and their implementations are detailed in this paper. It is shown that the sway estimates can be obtained from the correlation lag and phase difference between the returns at coincident phase centers. An estimate of yaw is also possible if such a technique is applied to more than one overlapping phase center positions. Surge estimates can be obtained by identifying pairs of phase centers with a maximum correlation coefficient. The method works only if the platform velocity is low enough such that a number of phase centers from adjacent pings overlap.

  15. Glasses for 3D ultrasound computer tomography: phase compensation

    Science.gov (United States)

    Zapf, M.; Hopp, T.; Ruiter, N. V.

    2016-03-01

    Ultrasound Computer Tomography (USCT), developed at KIT, is a promising new imaging system for breast cancer diagnosis, and was successfully tested in a pilot study. The 3D USCT II prototype consists of several hundreds of ultrasound (US) transducers on a semi-ellipsoidal aperture. Spherical waves are sequentially emitted by individual transducers and received in parallel by many transducers. Reflectivity volumes are reconstructed by synthetic aperture focusing (SAFT). However, straight forward SAFT imaging leads to blurred images due to system imperfections. We present an extension of a previously proposed approach to enhance the images. This approach includes additional a priori information and system characteristics. Now spatial phase compensation was included. The approach was evaluated with a simulation and clinical data sets. An increase in the image quality was observed and quantitatively measured by SNR and other metrics.

  16. New Synthetic and Assembly Methodology for Guiding Nanomaterial Assembly with High Fidelity into 1D Clusters and 3D Crystals Using Biomimetic Interactions

    Science.gov (United States)

    2015-03-26

    completed a study that investigated ways to manipulate the 3D assembly of DNA-capped gold nanoparticles by using smart pH sensitive co-polymers, and...Dabrowiak* "Multifunctional DNA- Gold Nanoparticles for Targeted Doxorubicin Delivery" Bioconjugate Chem. 2014, 25, 1261-1271. (5) S. Majumder, I.T...34Multifunctional DNA- Gold Nanoparticles for Targeted Doxorubicin Delivery" Bioconjugate Chem. 2014, 25, 1261-1271. 8. S. Majumder, I.T. Bae, M.M. Maye

  17. Workflow for the integration of a realistic 3D geomodel in process simulations using different cell types and advanced scientific visualization: Variations on a synthetic salt diapir

    Science.gov (United States)

    Görz, Ines; Herbst, Martin; Börner, Jana H.; Zehner, Björn

    2017-03-01

    The purpose of this study is to use one complex geological 3D model for numerical simulations of various physical processes in process-specific simulation software. To do this, the 3D model has to be discretized according to different cell types, depending on the requirements of the simulation method. We used a salt structure with a diapir and its deformed host rock to produce two 3D models describing the boundary surfaces of the structure: one very simplified model consisting of cuboid surfaces and a realistic model consisting of irregular boundary surfaces. We provide a workflow for how to generate hexahedral, tetrahedral and spherical volume representations of these two geometries. We utilized the volume representations to simulate temperature, displacement and transient electromagnetic fields. We can show that the simulation results closely reflect the input geometry and that it is worth the effort to produce geometric models that are as realistic as possible. Additionally, we provide a workflow for simultaneous visualization and analysis of the simulation results. Scientific visualization is an important tool for deriving knowledge from complex investigations.

  18. 一种相移合成孔径数字全息图高精度合成方法%A High Precision Synthetic Method of Sub-Holograms in Phase-Shifting Synthetic Aperture Digital Hologram

    Institute of Scientific and Technical Information of China (English)

    李红燕; 马志俭; 钟丽云; 吕晓旭

    2011-01-01

    进行了相移合成孔L径数字全息的分析与实验研究,分别给出了合成孔L径数字全息和相移合成孔径数字全息图的数学表述方法,提出一种用物光场强度图像与多步相移子全息图结合进行相移子孔径数字全息图的合成方法.先以物光场强度图像之间重叠区域的相关运算精确地确定子全息图之间的空间对接位置,在此基础上,再通过相移子全息图之间的重叠区域的相关运算进行相移同步匹配,实现了空间对接匹配与相移同步匹配的分离实施.以2#分辨率板为物体进行了相应的实验研究,子全息图的空间对接匹配的相关系数和相移同步匹配的相关系数均超过了0.99,获得了高质量的再现像,证明了方法的可行性和优点.%The mathematical expressions of synthetic aperture digital holography and phase-shifting synthetic aperture digital holography are presented. Based on the cross-correlation algorithm of both the object waves and the phase-shifting sub-holograms, a high precision synthetic method of the sub-holograms in phase-shifting synthetic aperture digital holography is proposed. Firstly, the position relation of the sub-holograms is determined by the crosscorrelation algorithm of the adjacent object waves, then phase-shifting synchronization matching is implemented by the cross-correlation algorithm of the phase-shifting sub-holograms, thus it is convenient to reach the separation of the spatial connection matching of the sub-holograms and phase-shifting synchronization matching of the phaseshifting holograms. By use of the Chinese standard resolution test chart 2# as the experimental sample, the results show that the correlation coefficient of both the sub-holograms connection matching and phase-shifting synchronization are more than 0.99, and the reconstructed image with high quality is obtained.

  19. 3-D reconstruction of coastal bathymetry from AIRSAR/POLSAR data

    Institute of Scientific and Technical Information of China (English)

    Maged MARGHANY; Mazlan HASHIM; Arthur P. CRACKNELL

    2009-01-01

    This paper introduces a new method for reconstructing three-dimensional (3D) coastal bathymetry changes from Airborne AIRSAR/POLSAR synthetic aperture data. The new method is based on integration between fuzzy B-spline and Volterra algorithm. Volterra algorithm is used to simulate the ocean surface current from AIRSAR/POLSAR data. Then, the ocean surface current information used as input for continuity equation to estimate the water depths from AIRSAR/POLSAR data. This study shows that 3D ocean bathymetry can be reconstructed from AIRSAR/POLSAR data with root mean square error of ±0.03 m.

  20. Quantitative Morphological and Biochemical Studies on Human Downy Hairs using 3-D Quantitative Phase Imaging

    CERN Document Server

    Lee, SangYun; Lee, Yuhyun; Park, Sungjin; Shin, Heejae; Yang, Jongwon; Ko, Kwanhong; Park, HyunJoo; Park, YongKeun

    2015-01-01

    This study presents the morphological and biochemical findings on human downy arm hairs using 3-D quantitative phase imaging techniques. 3-D refractive index tomograms and high-resolution 2-D synthetic aperture images of individual downy arm hairs were measured using a Mach-Zehnder laser interferometric microscopy equipped with a two-axis galvanometer mirror. From the measured quantitative images, the biochemical and morphological parameters of downy hairs were non-invasively quantified including the mean refractive index, volume, cylinder, and effective radius of individual hairs. In addition, the effects of hydrogen peroxide on individual downy hairs were investigated.