WorldWideScience

Sample records for 3d reconstructed tomosynthesis

  1. Parallelizable 3D statistical reconstruction for C-arm tomosynthesis system

    Science.gov (United States)

    Wang, Beilei; Barner, Kenneth; Lee, Denny

    2005-04-01

    Clinical diagnosis and security detection tasks increasingly require 3D information which is difficult or impossible to obtain from 2D (two dimensional) radiographs. As a 3D (three dimensional) radiographic and non-destructive imaging technique, digital tomosynthesis is especially fit for cases where 3D information is required while a complete projection data is not available. Nowadays, FBP (filtered back projection) is extensively used in industry for its fast speed and simplicity. However, it is hard to deal with situations where only a limited number of projections from constrained directions are available, or the SNR (signal to noises ratio) of the projections is low. In order to deal with noise and take into account a priori information of the object, a statistical image reconstruction method is described based on the acquisition model of X-ray projections. We formulate a ML (maximum likelihood) function for this model and develop an ordered-subsets iterative algorithm to estimate the unknown attenuation of the object. Simulations show that satisfied results can be obtained after 1 to 2 iterations, and after that there is no significant improvement of the image quality. An adaptive wiener filter is also applied to the reconstructed image to remove its noise. Some approximations to speed up the reconstruction computation are also considered. Applying this method to computer generated projections of a revised Shepp phantom and true projections from diagnostic radiographs of a patient"s hand and mammography images yields reconstructions with impressive quality. Parallel programming is also implemented and tested. The quality of the reconstructed object is conserved, while the computation time is considerably reduced by almost the number of threads used.

  2. An Object-Oriented Simulator for 3D Digital Breast Tomosynthesis Imaging System

    Directory of Open Access Journals (Sweden)

    Saeed Seyyedi

    2013-01-01

    Full Text Available Digital breast tomosynthesis (DBT is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART and total variation regularized reconstruction techniques (ART+TV are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM values.

  3. Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU

    Directory of Open Access Journals (Sweden)

    Arefan D

    2015-06-01

    Full Text Available Digital Breast Tomosynthesis (DBT is a technology that creates three dimensional (3D images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study ultra-fast image reconstruction technique for Tomosynthesis Mammography systems using Graphics Processing Unit (GPU. At first, projections of Tomosynthesis mammography have been simulated. In order to produce Tomosynthesis projections, it has been designed a 3D breast phantom from empirical data. It is based on MRI data in its natural form. Then, projections have been created from 3D breast phantom. The image reconstruction algorithm based on FBP was programmed with C++ language in two methods using central processing unit (CPU card and the Graphics Processing Unit (GPU. It calculated the time of image reconstruction in two kinds of programming (using CPU and GPU.

  4. Limited angle C-arm tomosynthesis reconstruction algorithms

    Science.gov (United States)

    Malalla, Nuhad A. Y.; Xu, Shiyu; Chen, Ying

    2015-03-01

    In this paper, C-arm tomosynthesis with digital detector was investigated as a novel three dimensional (3D) imaging technique. Digital tomosythses is an imaging technique to provide 3D information of the object by reconstructing slices passing through the object, based on a series of angular projection views with respect to the object. C-arm tomosynthesis provides two dimensional (2D) X-ray projection images with rotation (-/+20 angular range) of both X-ray source and detector. In this paper, four representative reconstruction algorithms including point by point back projection (BP), filtered back projection (FBP), simultaneous algebraic reconstruction technique (SART) and maximum likelihood expectation maximization (MLEM) were investigated. Dataset of 25 projection views of 3D spherical object that located at center of C-arm imaging space was simulated from 25 angular locations over a total view angle of 40 degrees. With reconstructed images, 3D mesh plot and 2D line profile of normalized pixel intensities on focus reconstruction plane crossing the center of the object were studied with each reconstruction algorithm. Results demonstrated the capability to generate 3D information from limited angle C-arm tomosynthesis. Since C-arm tomosynthesis is relatively compact, portable and can avoid moving patients, it has been investigated for different clinical applications ranging from tumor surgery to interventional radiology. It is very important to evaluate C-arm tomosynthesis for valuable applications.

  5. Virtual 3-D Facial Reconstruction

    Directory of Open Access Journals (Sweden)

    Martin Paul Evison

    2000-06-01

    Full Text Available Facial reconstructions in archaeology allow empathy with people who lived in the past and enjoy considerable popularity with the public. It is a common misconception that facial reconstruction will produce an exact likeness; a resemblance is the best that can be hoped for. Research at Sheffield University is aimed at the development of a computer system for facial reconstruction that will be accurate, rapid, repeatable, accessible and flexible. This research is described and prototypical 3-D facial reconstructions are presented. Interpolation models simulating obesity, ageing and ethnic affiliation are also described. Some strengths and weaknesses in the models, and their potential for application in archaeology are discussed.

  6. Ray tracing reconstruction investigation for C-arm tomosynthesis

    Science.gov (United States)

    Malalla, Nuhad A. Y.; Chen, Ying

    2016-04-01

    C-arm tomosynthesis is a three dimensional imaging technique. Both x-ray source and the detector are mounted on a C-arm wheeled structure to provide wide variety of movement around the object. In this paper, C-arm tomosynthesis was introduced to provide three dimensional information over a limited view angle (less than 180o) to reduce radiation exposure and examination time. Reconstruction algorithms based on ray tracing method such as ray tracing back projection (BP), simultaneous algebraic reconstruction technique (SART) and maximum likelihood expectation maximization (MLEM) were developed for C-arm tomosynthesis. C-arm tomosynthesis projection images of simulated spherical object were simulated with a virtual geometric configuration with a total view angle of 40 degrees. This study demonstrated the sharpness of in-plane reconstructed structure and effectiveness of removing out-of-plane blur for each reconstruction algorithms. Results showed the ability of ray tracing based reconstruction algorithms to provide three dimensional information with limited angle C-arm tomosynthesis.

  7. Stereotactic vacuum-assisted biopsies on a digital breast 3D-tomosynthesis system.

    Science.gov (United States)

    Viala, Juliette; Gignier, Pierre; Perret, Baudouin; Hovasse, Claudie; Hovasse, Denis; Chancelier-Galan, Marie-Dominique; Bornet, Gregoire; Hamrouni, Adel; Lasry, Jean-Louis; Convard, Jean-Paul

    2013-01-01

    The purpose of this study was to describe our operating process and to report results of 118 stereotactic vacuum-assisted biopsies performed on a digital breast 3D-tomosynthesis system. From October 2009 to December 2010, 118 stereotactic vacuum assisted biopsies have been performed on a digital breast 3D-tomosynthesis system. Informed consent was obtained for all patients. A total of 106 patients had a lesion, six had two lesions. Sixty-one lesions were clusters of micro-calcifications, 54 were masses and three were architectural distortions. Patients were in lateral decubitus position to allow shortest skin-target approach (or sitting). Specific compression paddle, adapted on the system, performed, and graduated, allowing localization in X-Y. Tomosynthesis views define the depth of lesion. Graduated Coaxial localization kit determines the beginning of the biopsy window. Biopsies were performed with an ATEC-Suros, 9 Gauge handpiece. All biopsies, except one, have reached the lesions. Five hemorrhages were incurred in the process, but no interruption was needed. Eight breast hematomas, were all spontaneously resolved. One was an infection. About 40% of patients had a skin ecchymosis. Processing is fast, easy, and requires lower irradiation dose than with classical stereotactic biopsies. Histology analysis reported 45 benign clusters of micro-calcifications, 16 malignant clusters of micro-calcifications, 24 benign masses, and 33 malignant masses. Of 13 malignant lesions, digital 2D-mammography failed to detect eight lesions and underestimated the classification of five lesions. Digital breast 3D-tomosynthesis depicts malignant lesions not visualized on digital 2D-mammography. Development of tomosynthesis biopsy unit integrated to stereotactic system will permit histology analysis for suspicious lesions.

  8. 3D Reconstruction Technique for Tomographic PIV

    Institute of Scientific and Technical Information of China (English)

    姜楠; 包全; 杨绍琼

    2015-01-01

    Tomographic particle image velocimetry(Tomo-PIV) is a state-of-the-art experimental technique based on a method of optical tomography to achieve the three-dimensional(3D) reconstruction for three-dimensional three-component(3D-3C) flow velocity measurements. 3D reconstruction for Tomo-PIV is carried out herein. Meanwhile, a 3D simplified tomographic reconstruction model reduced from a 3D volume light inten-sity field with 2D projection images into a 2D Tomo-slice plane with 1D projecting lines, i.e., simplifying this 3D reconstruction into a problem of 2D Tomo-slice plane reconstruction, is applied thereafter. Two kinds of the most well-known algebraic reconstruction techniques, algebraic reconstruction technique(ART) and multiple algebraic reconstruction technique(MART), are compared as well. The principles of the two reconstruction algorithms are discussed in detail, which has been performed by a series of simulation images, yielding the corresponding recon-struction images that show different features between the ART and MART algorithm, and then their advantages and disadvantages are discussed. Further discussions are made for the standard particle image reconstruction when the background noise of the pre-initial particle image has been removed. Results show that the particle image recon-struction has been greatly improved. The MART algorithm is much better than the ART. Furthermore, the computa-tional analyses of two parameters(the particle density and the number of cameras), are performed to study their effects on the reconstruction. Lastly, the 3D volume particle field is reconstructed by using the improved algorithm based on the simplified 3D tomographic reconstruction model, which proves that the algorithm simplification is feasible and it can be applied to the reconstruction of 3D volume particle field in a Tomo-PIV system.

  9. A task-based comparison of two reconstruction algorithms for digital breast tomosynthesis

    Science.gov (United States)

    Mahadevan, Ravi; Ikejimba, Lynda C.; Lin, Yuan; Samei, Ehsan; Lo, Joseph Y.

    2014-03-01

    Digital breast tomosynthesis (DBT) generates 3-D reconstructions of the breast by taking X-Ray projections at various angles around the breast. DBT improves cancer detection as it minimizes tissue overlap that is present in traditional 2-D mammography. In this work, two methods of reconstruction, filtered backprojection (FBP) and the Newton-Raphson iterative reconstruction were used to create 3-D reconstructions from phantom images acquired on a breast tomosynthesis system. The task based image analysis method was used to compare the performance of each reconstruction technique. The task simulated a 10mm lesion within the breast containing iodine concentrations between 0.0mg/ml and 8.6mg/ml. The TTF was calculated using the reconstruction of an edge phantom, and the NPS was measured with a structured breast phantom (CIRS 020) over different exposure levels. The detectability index d' was calculated to assess image quality of the reconstructed phantom images. Image quality was assessed for both conventional, single energy and dual energy subtracted reconstructions. Dose allocation between the high and low energy scans was also examined. Over the full range of dose allocations, the iterative reconstruction yielded a higher detectability index than the FBP for single energy reconstructions. For dual energy subtraction, detectability index was maximized when most of the dose was allocated to the high energy image. With that dose allocation, the performance trend for reconstruction algorithms reversed; FBP performed better than the corresponding iterative reconstruction. However, FBP performance varied very erratically with changing dose allocation. Therefore, iterative reconstruction is preferred for both imaging modalities despite underperforming dual energy FBP, as it provides stable results.

  10. Forensic 3D Scene Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.

    1999-10-12

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  11. Quantification of resolution in multiplanar reconstructions for digital breast tomosynthesis

    Science.gov (United States)

    Vent, Trevor L.; Acciavatti, Raymond J.; Kwon, Young Joon; Maidment, Andrew D. A.

    2016-03-01

    Multiplanar reconstruction (MPR) in digital breast tomosynthesis (DBT) allows tomographic images to be portrayed in various orientations. We have conducted research to determine the resolution of tomosynthesis MPR. We built a phantom that houses a star test pattern to measure resolution. This phantom provides three rotational degrees of freedom. The design consists of two hemispheres with longitudinal and latitudinal grooves that reference angular increments. When joined together, the hemispheres form a dome that sits inside a cylindrical encasement. The cylindrical encasement contains reference notches to match the longitudinal and latitudinal grooves that guide the phantom's rotations. With this design, any orientation of the star-pattern can be analyzed. Images of the star-pattern were acquired using a DBT mammography system at the Hospital of the University of Pennsylvania. Images taken were reconstructed and analyzed by two different methods. First, the maximum visible frequency (in line pairs per millimeter) of the star test pattern was measured. Then, the contrast was calculated at a fixed spatial frequency. These analyses confirm that resolution decreases with tilt relative to the breast support. They also confirm that resolution in tomosynthesis MPR is dependent on object orientation. Current results verify that the existence of super-resolution depends on the orientation of the frequency; the direction parallel to x-ray tube motion shows super-resolution. In conclusion, this study demonstrates that the direction of the spatial frequency relative to the motion of the x-ray tube is a determinant of resolution in MPR for DBT.

  12. 3D Reconstruction of NMR Images

    Directory of Open Access Journals (Sweden)

    Peter Izak

    2007-01-01

    Full Text Available This paper introduces experiment of 3D reconstruction NMR images scanned from magnetic resonance device. There are described methods which can be used for 3D reconstruction magnetic resonance images in biomedical application. The main idea is based on marching cubes algorithm. For this task was chosen sophistication method by program Vision Assistant, which is a part of program LabVIEW.

  13. Numerical Methods for Coupled Reconstruction and Registration in Digital Breast Tomosynthesis

    CERN Document Server

    Yang, Guang; Hawkes, David J; Arridge, Simon R

    2013-01-01

    Digital Breast Tomosynthesis (DBT) provides an insight into the fine details of normal fibroglandular tissues and abnormal lesions by reconstructing a pseudo-3D image of the breast. In this respect, DBT overcomes a major limitation of conventional X-ray mammography by reducing the confounding effects caused by the superposition of breast tissue. In a breast cancer screening or diagnostic context, a radiologist is interested in detecting change, which might be indicative of malignant disease. To help automate this task image registration is required to establish spatial correspondence between time points. Typically, images, such as MRI or CT, are first reconstructed and then registered. This approach can be effective if reconstructing using a complete set of data. However, for ill-posed, limited-angle problems such as DBT, estimating the deformation is complicated by the significant artefacts associated with the reconstruction, leading to severe inaccuracies in the registration. This paper presents a mathemati...

  14. Rapid review: Estimates of incremental breast cancer detection from tomosynthesis (3D-mammography) screening in women with dense breasts.

    Science.gov (United States)

    Houssami, Nehmat; Turner, Robin M

    2016-12-01

    High breast tissue density increases breast cancer (BC) risk, and the risk of an interval BC in mammography screening. Density-tailored screening has mostly used adjunct imaging to screen women with dense breasts, however, the emergence of tomosynthesis (3D-mammography) provides an opportunity to steer density-tailored screening in new directions potentially obviating the need for adjunct imaging. A rapid review (a streamlined evidence synthesis) was performed to summarise data on tomosynthesis screening in women with heterogeneously dense or extremely dense breasts, with the aim of estimating incremental (additional) BC detection attributed to tomosynthesis in comparison with standard 2D-mammography. Meta-analysed data from prospective trials comparing these mammography modalities in the same women (N = 10,188) in predominantly biennial screening showed significant incremental BC detection of 3.9/1000 screens attributable to tomosynthesis (P mammography (N = 177,814) yielded a pooled difference in BC detection of 1.4/1000 screens representing significantly higher BC detection in tomosynthesis-screened women (P mammography. These estimates can inform planning of future trials of density-tailored screening and may guide discussion of screening women with dense breasts.

  15. Two Accelerating Techniques for 3D Reconstruction

    Institute of Scientific and Technical Information of China (English)

    刘世霞; 胡事民; 孙家广

    2002-01-01

    Automatic reconstruction of 3D objects from 2D orthographic views has been a major research issue in CAD/CAM. In this paper, two accelerating techniques to improve the efficiency of reconstruction are presented. First, some pseudo elements are removed by depth and topology information as soon as the wire-frame is constructed, which reduces the searching space. Second, the proposed algorithm does not establish all possible surfaces in the process of generating 3D faces. The surfaces and edge loops are generated by using the relationship between the boundaries of 3D faces and their projections. This avoids the growth in combinational complexity of previous methods that have to check all possible pairs of 3D candidate edges.

  16. Neural Network Based 3D Surface Reconstruction

    Directory of Open Access Journals (Sweden)

    Vincy Joseph

    2009-11-01

    Full Text Available This paper proposes a novel neural-network-based adaptive hybrid-reflectance three-dimensional (3-D surface reconstruction model. The neural network combines the diffuse and specular components into a hybrid model. The proposed model considers the characteristics of each point and the variant albedo to prevent the reconstructed surface from being distorted. The neural network inputs are the pixel values of the two-dimensional images to be reconstructed. The normal vectors of the surface can then be obtained from the output of the neural network after supervised learning, where the illuminant direction does not have to be known in advance. Finally, the obtained normal vectors can be applied to integration method when reconstructing 3-D objects. Facial images were used for training in the proposed approach

  17. The PRISM3D paleoenvironmental reconstruction

    Science.gov (United States)

    Dowsett, H.; Robinson, M.; Haywood, A.M.; Salzmann, U.; Hill, Daniel; Sohl, L.E.; Chandler, M.; Williams, Mark; Foley, K.; Stoll, D.K.

    2010-01-01

    The Pliocene Research, Interpretation and Synoptic Mapping (PRISM) paleoenvironmental reconstruction is an internally consistent and comprehensive global synthesis of a past interval of relatively warm and stable climate. It is regularly used in model studies that aim to better understand Pliocene climate, to improve model performance in future climate scenarios, and to distinguish model-dependent climate effects. The PRISM reconstruction is constantly evolving in order to incorporate additional geographic sites and environmental parameters, and is continuously refined by independent research findings. The new PRISM three dimensional (3D) reconstruction differs from previous PRISM reconstructions in that it includes a subsurface ocean temperature reconstruction, integrates geochemical sea surface temperature proxies to supplement the faunal-based temperature estimates, and uses numerical models for the first time to augment fossil data. Here we describe the components of PRISM3D and describe new findings specific to the new reconstruction. Highlights of the new PRISM3D reconstruction include removal of Hudson Bay and the Great Lakes and creation of open waterways in locations where the current bedrock elevation is less than 25m above modern sea level, due to the removal of the West Antarctic Ice Sheet and the reduction of the East Antarctic Ice Sheet. The mid-Piacenzian oceans were characterized by a reduced east-west temperature gradient in the equatorial Pacific, but PRISM3D data do not imply permanent El Niño conditions. The reduced equator-to-pole temperature gradient that characterized previous PRISM reconstructions is supported by significant displacement of vegetation belts toward the poles, is extended into the Arctic Ocean, and is confirmed by multiple proxies in PRISM3D. Arctic warmth coupled with increased dryness suggests the formation of warm and salty paleo North Atlantic Deep Water (NADW) and a more vigorous thermohaline circulation system that may

  18. Fully 3D GPU PET reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Herraiz, J.L., E-mail: joaquin@nuclear.fis.ucm.es [Grupo de Fisica Nuclear, Departmento Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Espana, S. [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Cal-Gonzalez, J. [Grupo de Fisica Nuclear, Departmento Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Vaquero, J.J. [Departmento de Bioingenieria e Ingenieria Espacial, Universidad Carlos III, Madrid (Spain); Desco, M. [Departmento de Bioingenieria e Ingenieria Espacial, Universidad Carlos III, Madrid (Spain); Unidad de Medicina y Cirugia Experimental, Hospital General Universitario Gregorio Maranon, Madrid (Spain); Udias, J.M. [Grupo de Fisica Nuclear, Departmento Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain)

    2011-08-21

    Fully 3D iterative tomographic image reconstruction is computationally very demanding. Graphics Processing Unit (GPU) has been proposed for many years as potential accelerators in complex scientific problems, but it has not been used until the recent advances in the programmability of GPUs that the best available reconstruction codes have started to be implemented to be run on GPUs. This work presents a GPU-based fully 3D PET iterative reconstruction software. This new code may reconstruct sinogram data from several commercially available PET scanners. The most important and time-consuming parts of the code, the forward and backward projection operations, are based on an accurate model of the scanner obtained with the Monte Carlo code PeneloPET and they have been massively parallelized on the GPU. For the PET scanners considered, the GPU-based code is more than 70 times faster than a similar code running on a single core of a fast CPU, obtaining in both cases the same images. The code has been designed to be easily adapted to reconstruct sinograms from any other PET scanner, including scanner prototypes.

  19. 3D VIRTUAL RECONSTRUCTION OF ARCHAEOLOGICAL MONUMENTS

    OpenAIRE

    2014-01-01

    3D Virtual Models are the future of the representation of the existing and destroyed architectural heritage. The term reconstruction defines the re-building of a monument to its state at the time of its history chosen for that particular representation. In recent years the evolution of the technology, has contributed significantly in many aspects of the field of cultural heritage preservation and recording. Techniques like digital image processing, digital orthophoto production, terrestrial l...

  20. 3-D Reconstruction From Satellite Images

    DEFF Research Database (Denmark)

    Denver, Troelz

    1999-01-01

    The aim of this project has been to implement a software system, that is able to create a 3-D reconstruction from two or more 2-D photographic images made from different positions. The height is determined from the disparity difference of the images. The general purpose of the system is mapping...... of planetary surfaces, but other purposes is considered as well. The system performance is measured with respect to the precision and the time consumption.The reconstruction process is divided into four major areas: Acquisition, calibration, matching/reconstruction and presentation. Each of these areas...... are treated individually. A detailed treatment of various lens distortions is required, in order to correct for these problems. This subject is included in the acquisition part. In the calibration part, the perspective distortion is removed from the images. Most attention has been paid to the matching problem...

  1. Automated Serial Sectioning for 3D Reconstruction

    Science.gov (United States)

    Alkemper, Jen; Voorhees, Peter W.

    2003-01-01

    Some aspects of an apparatus and method for automated serial sectioning of a specimen of a solder, aluminum, or other relatively soft opaque material are discussed. The apparatus includes a small milling machine (micromiller) that takes precise, shallow cuts (increments of depth as small as 1 micron) to expose successive sections. A microscope equipped with an electronic camera, mounted in a fixed position on the micromiller, takes pictures of the newly exposed specimen surface at each increment of depth. The images are digitized, and the resulting data are subsequently processed to reconstruct three-dimensional (3D) features of the specimen.

  2. Development of a prototype chest digital tomosynthesis (CDT) R/F system with fast image reconstruction using graphics processing unit (GPU) programming

    Science.gov (United States)

    Choi, Sunghoon; Lee, Seungwan; Lee, Haenghwa; Lee, Donghoon; Choi, Seungyeon; Shin, Jungwook; Seo, Chang-Woo; Kim, Hee-Joung

    2017-03-01

    Digital tomosynthesis offers the advantage of low radiation doses compared to conventional computed tomography (CT) by utilizing small numbers of projections ( 80) acquired over a limited angular range. It produces 3D volumetric data, although there are artifacts due to incomplete sampling. Based upon these characteristics, we developed a prototype digital tomosynthesis R/F system for applications in chest imaging. Our prototype chest digital tomosynthesis (CDT) R/F system contains an X-ray tube with high power R/F pulse generator, flat-panel detector, R/F table, electromechanical radiographic subsystems including a precise motor controller, and a reconstruction server. For image reconstruction, users select between analytic and iterative reconstruction methods. Our reconstructed images of Catphan700 and LUNGMAN phantoms clearly and rapidly described the internal structures of phantoms using graphics processing unit (GPU) programming. Contrast-to-noise ratio (CNR) values of the CTP682 module of Catphan700 were higher in images using a simultaneous algebraic reconstruction technique (SART) than in those using filtered back-projection (FBP) for all materials by factors of 2.60, 3.78, 5.50, 2.30, 3.70, and 2.52 for air, lung foam, low density polyethylene (LDPE), Delrin® (acetal homopolymer resin), bone 50% (hydroxyapatite), and Teflon, respectively. Total elapsed times for producing 3D volume were 2.92 s and 86.29 s on average for FBP and SART (20 iterations), respectively. The times required for reconstruction were clinically feasible. Moreover, the total radiation dose from our system (5.68 mGy) was lower than that of conventional chest CT scan. Consequently, our prototype tomosynthesis R/F system represents an important advance in digital tomosynthesis applications.

  3. 3D reconstruction of tensors and vectors

    Energy Technology Data Exchange (ETDEWEB)

    Defrise, Michel; Gullberg, Grant T.

    2005-02-17

    Here we have developed formulations for the reconstruction of 3D tensor fields from planar (Radon) and line-integral (X-ray) projections of 3D vector and tensor fields. Much of the motivation for this work is the potential application of MRI to perform diffusion tensor tomography. The goal is to develop a theory for the reconstruction of both Radon planar and X-ray or line-integral projections because of the flexibility of MRI to obtain both of these type of projections in 3D. The development presented here for the linear tensor tomography problem provides insight into the structure of the nonlinear MRI diffusion tensor inverse problem. A particular application of tensor imaging in MRI is the potential application of cardiac diffusion tensor tomography for determining in vivo cardiac fiber structure. One difficulty in the cardiac application is the motion of the heart. This presents a need for developing future theory for tensor tomography in a motion field. This means developing a better understanding of the MRI signal for diffusion processes in a deforming media. The techniques developed may allow the application of MRI tensor tomography for the study of structure of fiber tracts in the brain, atherosclerotic plaque, and spine in addition to fiber structure in the heart. However, the relations presented are also applicable to other fields in medical imaging such as diffraction tomography using ultrasound. The mathematics presented can also be extended to exponential Radon transform of tensor fields and to other geometric acquisitions such as cone beam tomography of tensor fields.

  4. A dynamic 3D foot reconstruction system.

    Science.gov (United States)

    Thabet, Ali K; Trucco, Emanuele; Salvi, Joaquim; Wang, Weijie; Abboud, Rami J

    2011-01-01

    Foot problems are varied and range from simple disorders through to complex diseases and joint deformities. Wherever possible, the use of insoles, or orthoses, is preferred over surgery. Current insole design techniques are based on static measurements of the foot, despite the fact that orthoses are prevalently used in dynamic conditions while walking or running. This paper presents the design and implementation of a structured-light prototype system providing dense three dimensional (3D) measurements of the foot in motion, and its use to show that foot measurements in dynamic conditions differ significantly from their static counterparts. The input to the system is a video sequence of a foot during a single step; the output is a 3D reconstruction of the plantar surface of the foot for each frame of the input. Engineering and clinical tests were carried out for the validation of the system. The accuracy of the system was found to be 0.34 mm with planar test objects. In tests with real feet, the system proved repeatable, with reconstruction differences between trials one week apart averaging 2.44 mm (static case) and 2.81 mm (dynamic case). Furthermore, a study was performed to compare the effective length of the foot between static and dynamic reconstructions using the 4D system. Results showed an average increase of 9 mm for the dynamic case. This increase is substantial for orthotics design, cannot be captured by a static system, and its subject-specific measurement is crucial for the design of effective foot orthoses.

  5. Photogrammetric 3D reconstruction using mobile imaging

    Science.gov (United States)

    Fritsch, Dieter; Syll, Miguel

    2015-03-01

    In our paper we demonstrate the development of an Android Application (AndroidSfM) for photogrammetric 3D reconstruction that works on smartphones and tablets likewise. The photos are taken with mobile devices, and can thereafter directly be calibrated using standard calibration algorithms of photogrammetry and computer vision, on that device. Due to still limited computing resources on mobile devices, a client-server handshake using Dropbox transfers the photos to the sever to run AndroidSfM for the pose estimation of all photos by Structure-from-Motion and, thereafter, uses the oriented bunch of photos for dense point cloud estimation by dense image matching algorithms. The result is transferred back to the mobile device for visualization and ad-hoc on-screen measurements.

  6. Multiscale regularized reconstruction for enhancing microcalcification in digital breast tomosynthesis

    Science.gov (United States)

    Lu, Yao; Chan, Heang-Ping; Wei, Jun; Hadjiiski, Lubomir; Zhou, Chuan

    2012-03-01

    Digital breast tomosynthesis (DBT) holds strong promise for improving the sensitivity of detecting subtle mass lesions. Detection of microcalcifications is more difficult because of high noise and subtle signals in the large DBT volume. It is important to enhance the contrast-to-noise ratio (CNR) of microcalcifications in DBT reconstruction. A major challenge of implementing microcalcification enhancement or noise regularization in DBT reconstruction is to preserve the image quality of masses, especially those with ill-defined margins and subtle spiculations. We are developing a new multiscale regularization (MSR) method for the simultaneous algebraic reconstruction technique (SART) to improve the CNR of microcalcifications without compromising the quality of masses. Each DBT slice is stratified into different frequency bands via wavelet decomposition and the regularization method applies different degrees of regularization to different frequency bands to preserve features of interest and suppress noise. Regularization is constrained by a characteristic map to avoid smoothing subtle microcalcifications. The characteristic map is generated via image feature analysis to identify potential microcalcification locations in the DBT volume. The MSR method was compared to the non-convex total pvariation (TpV) method and SART with no regularization (NR) in terms of the CNR and the full width at half maximum of the line profiles intersecting calcifications and mass spiculations in DBT of human subjects. The results demonstrated that SART regularized by the MSR method was superior to the TpV method for subtle microcalcifications in terms of CNR enhancement. The MSR method preserved the quality of subtle spiculations better than the TpV method in comparison to NR.

  7. 3D Surface Reconstruction and Automatic Camera Calibration

    Science.gov (United States)

    Jalobeanu, Andre

    2004-01-01

    Illustrations in this view-graph presentation are presented on a Bayesian approach to 3D surface reconstruction and camera calibration.Existing methods, surface analysis and modeling,preliminary surface reconstruction results, and potential applications are addressed.

  8. Calibration and optimization of 3D digital breast tomosynthesis guided near infrared spectral tomography.

    Science.gov (United States)

    Michaelsen, Kelly E; Krishnaswamy, Venkataramanan; Shi, Linxi; Vedantham, Srinivasan; Poplack, Steven P; Karellas, Andrew; Pogue, Brian W; Paulsen, Keith D

    2015-12-01

    Calibration of a three-dimensional multimodal digital breast tomosynthesis (DBT) x-ray and non-fiber based near infrared spectral tomography (NIRST) system is challenging but essential for clinical studies. Phantom imaging results yielded linear contrast recovery of total hemoglobin (HbT) concentration for cylindrical inclusions of 15 mm, 10 mm and 7 mm with a 3.5% decrease in the HbT estimate for each 1 cm increase in inclusion depth. A clinical exam of a patient's breast containing both benign and malignant lesions was successfully imaged, with greater HbT was found in the malignancy relative to the benign abnormality and fibroglandular regions (11 μM vs. 9.5 μM). Tools developed improved imaging system characterization and optimization of signal quality, which will ultimately improve patient selection and subsequent clinical trial results.

  9. [Potentials of 3D-modeling in reconstructive orbital surgery].

    Science.gov (United States)

    Butsan, S B; Khokhlachev, S B; Ĭigitaliev, Sh N; Zaiakin, Ia A

    2012-01-01

    A technique of bone reconstructive surgery of orbitofrontonasomalar region using 3D-modeling based on multispiral computer tomography data is presented. The efficacy of intraoperative templates created using 3D-modeling was showed for harvesting and modeling of bone calvarial autografts. The steps of reconstructive procedure are explained in details for repair of medial and inferior orbital fractures.

  10. 3D Reconstruction by Kinect Sensor:A Brief Review

    Institute of Scientific and Technical Information of China (English)

    LI Shi-rui; TAO Ke-lu; WANG Si-yuan; LI Hai-yang; CAO Wei-guo; LI Hua

    2014-01-01

    While Kinect was originally designed as a motion sensing input device of the gaming console Microsoft Xbox 360 for gaming purposes, it’s easy-to-use, low-cost, reliability, speed of the depth measurement and relatively high quality of depth measurement make it can be used for 3D reconstruction. It could make 3D scanning technology more accessible to everyday users and turn 3D reconstruction models into much widely used asset for many applications. In this paper, we focus on Kinect 3D reconstruction.

  11. Reconstruction and analysis of shapes from 3D scans

    NARCIS (Netherlands)

    ter Haar, F.B.

    2009-01-01

    In this thesis we use 3D laser range scans for the acquisition, reconstruction, and analysis of 3D shapes. 3D laser range scanning has proven to be a fast and effective way to capture the surface of an object in a computer. Thousands of depth measurements represent a part of the surface geometry as

  12. Reconstruction and Analysis of Shapes from 3D Scans

    NARCIS (Netherlands)

    Haar, F.B. ter

    2009-01-01

    In this thesis, we measure 3D shapes with the use of 3D laser technology, a recent technology that combines physics, mathematics, and computer science to acquire the surface geometry of 3D shapes in the computer. We use this surface geometry to fully reconstruct real world shapes as computer models,

  13. 3D scene reconstruction based on 3D laser point cloud combining UAV images

    Science.gov (United States)

    Liu, Huiyun; Yan, Yangyang; Zhang, Xitong; Wu, Zhenzhen

    2016-03-01

    It is a big challenge capturing and modeling 3D information of the built environment. A number of techniques and technologies are now in use. These include GPS, and photogrammetric application and also remote sensing applications. The experiment uses multi-source data fusion technology for 3D scene reconstruction based on the principle of 3D laser scanning technology, which uses the laser point cloud data as the basis and Digital Ortho-photo Map as an auxiliary, uses 3DsMAX software as a basic tool for building three-dimensional scene reconstruction. The article includes data acquisition, data preprocessing, 3D scene construction. The results show that the 3D scene has better truthfulness, and the accuracy of the scene meet the need of 3D scene construction.

  14. The PRISM3D paleoenvironmental reconstruction

    OpenAIRE

    H. Dowsett; M. Robinson; Haywood, A. M.; Salzmann, U.; Hill, Daniel; L. E. Sohl; Chandler, M.; Williams, Mark; Foley, K; D. K. Stoll

    2010-01-01

    The Pliocene Research, Interpretation and Synoptic Mapping (PRISM) paleoenvironmental reconstruction is an internally consistent and comprehensive global synthesis of a past interval of relatively warm and stable climate. It is regularly used in model studies that aim to better understand Pliocene climate, to improve model performance in future climate scenarios, and to distinguish model-dependent climate effects. The PRISM reconstruction is constantly evolving in order to incorporate additio...

  15. Array antenna diagnostics with the 3D reconstruction algorithm

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Meincke, Peter; Pivnenko, Sergey;

    2012-01-01

    The 3D reconstruction algorithm is applied to a slotted waveguide array measured at the DTU-ESA Spherical Near-Field Antenna Test Facility. One slot of the array is covered by conductive tape and an error is present in the array excitation. Results show the accuracy obtainable by the 3D...... reconstruction algorithm. Considerations on the measurement sampling, the obtainable spatial resolution, and the possibility of taking full advantage of the reconstruction geometry are provided....

  16. 3D Equilibrium Reconstructions in DIII-D

    Science.gov (United States)

    Lao, L. L.; Ferraro, N. W.; Strait, E. J.; Turnbull, A. D.; King, J. D.; Hirshman, H. P.; Lazarus, E. A.; Sontag, A. C.; Hanson, J.; Trevisan, G.

    2013-10-01

    Accurate and efficient 3D equilibrium reconstruction is needed in tokamaks for study of 3D magnetic field effects on experimentally reconstructed equilibrium and for analysis of MHD stability experiments with externally imposed magnetic perturbations. A large number of new magnetic probes have been recently installed in DIII-D to improve 3D equilibrium measurements and to facilitate 3D reconstructions. The V3FIT code has been in use in DIII-D to support 3D reconstruction and the new magnetic diagnostic design. V3FIT is based on the 3D equilibrium code VMEC that assumes nested magnetic surfaces. V3FIT uses a pseudo-Newton least-square algorithm to search for the solution vector. In parallel, the EFIT equilibrium reconstruction code is being extended to allow for 3D effects using a perturbation approach based on an expansion of the MHD equations. EFIT uses the cylindrical coordinate system and can include the magnetic island and stochastic effects. Algorithms are being developed to allow EFIT to reconstruct 3D perturbed equilibria directly making use of plasma response to 3D perturbations from the GATO, MARS-F, or M3D-C1 MHD codes. DIII-D 3D reconstruction examples using EFIT and V3FIT and the new 3D magnetic data will be presented. Work supported in part by US DOE under DE-FC02-04ER54698, DE-FG02-95ER54309 and DE-AC05-06OR23100.

  17. Optimization and Comparison of Different Digital Mammographic Tomosynthesis Reconstruction Methods

    Science.gov (United States)

    2008-04-01

    isocentric motion in breast tomosynthesis. We have published our results in Medical Physics , the premiere peer-reviewed journal in the field of... Medical Physics ; please see Appendix #1 for the reprinted publication. 1.2. Characterize the effect of three acquisition parameters including total...working on a Medical Physics journal manuscript preparation for GFB algorithm. We have used impulse response and MTF analysis method to compare BP and

  18. 3D Building Reconstruction Using Dense Photogrammetric Point Cloud

    Science.gov (United States)

    Malihi, S.; Valadan Zoej, M. J.; Hahn, M.; Mokhtarzade, M.; Arefi, H.

    2016-06-01

    Three dimensional models of urban areas play an important role in city planning, disaster management, city navigation and other applications. Reconstruction of 3D building models is still a challenging issue in 3D city modelling. Point clouds generated from multi view images of UAV is a novel source of spatial data, which is used in this research for building reconstruction. The process starts with the segmentation of point clouds of roofs and walls into planar groups. By generating related surfaces and using geometrical constraints plus considering symmetry, a 3d model of building is reconstructed. In a refinement step, dormers are extracted, and their models are reconstructed. The details of the 3d reconstructed model are in LoD3 level, with respect to modelling eaves, fractions of roof and dormers.

  19. Fully Automatic 3D Reconstruction of Histological Images

    CERN Document Server

    Bagci, Ulas

    2009-01-01

    In this paper, we propose a computational framework for 3D volume reconstruction from 2D histological slices using registration algorithms in feature space. To improve the quality of reconstructed 3D volume, first, intensity variations in images are corrected by an intensity standardization process which maps image intensity scale to a standard scale where similar intensities correspond to similar tissues. Second, a subvolume approach is proposed for 3D reconstruction by dividing standardized slices into groups. Third, in order to improve the quality of the reconstruction process, an automatic best reference slice selection algorithm is developed based on an iterative assessment of image entropy and mean square error of the registration process. Finally, we demonstrate that the choice of the reference slice has a significant impact on registration quality and subsequent 3D reconstruction.

  20. 3D Objects Reconstruction from Image Data

    OpenAIRE

    Cír, Filip

    2008-01-01

    Tato práce se zabývá 3D rekonstrukcí z obrazových dat. Jsou popsány možnosti a přístupy k optickému skenování. Ruční optický 3D skener se skládá z kamery a zdroje čárového laseru, který je vzhledem ke kameře upevněn pod určitým úhlem. Je navržena vhodná podložka se značkami a je popsán algoritmus pro jejich real-time detekci. Po detekci značek lze vypočítat pozici a orientaci kamery. Na závěr je popsána detekce laseru a postup při výpočtu bodů na povrchu objektu pomocí triangulace. This pa...

  1. Reconstruction of 3-D digital cores using a hybrid method

    Institute of Scientific and Technical Information of China (English)

    Liu Xuefeng; Sun Jianmeng; Wang Haitao

    2009-01-01

    A 3-D digital core describes the pore space microstructure of rocks. An X-ray micro CT scan is the most accurate and direct but costly method to obtain a 3-D digital core. In this study, we propose a hybrid method which combines sedimentation simulation and simulated annealing (SA) method to generate 3-D digital cores based on 2-D images of rocks. The method starts with the sedimentation simulation to build a 3-D digital core, which is the initial configuration for the SA method. We update the initial digital core using the SA method to match the auto-correlation function of the 2-D rock image and eventually build the final 3-D digital core. Compared with the typical SA method, the hybrid method has significantly reduced the computation time. Local porosity theory is applied to quantitatively compare the reconstructed 3-D digital cores with the X-ray micro CT 3-D images. The results indicate that the 3-D digital cores reconstructed by the hybrid method have homogeneity and geometric connectivity similar to those of the X-ray micro CT image. The formation factors and permeabilities of the reconstructed 3-D digital cores are estimated using the finite element method (FEM) and lattice Boltzmann method (LBM), respectively. The simulated results are in good agreement with the experimental measurements. Comparison of the simulation results suggests that the digital cores reconstructed by the hybrid method more closely reflect the true transport properties than the typical SA method alone.

  2. Interior Reconstruction Using the 3d Hough Transform

    Science.gov (United States)

    Dumitru, R.-C.; Borrmann, D.; Nüchter, A.

    2013-02-01

    Laser scanners are often used to create accurate 3D models of buildings for civil engineering purposes, but the process of manually vectorizing a 3D point cloud is time consuming and error-prone (Adan and Huber, 2011). Therefore, the need to characterize and quantify complex environments in an automatic fashion arises, posing challenges for data analysis. This paper presents a system for 3D modeling by detecting planes in 3D point clouds, based on which the scene is reconstructed at a high architectural level through removing automatically clutter and foreground data. The implemented software detects openings, such as windows and doors and completes the 3D model by inpainting.

  3. Application of CT 3D reconstruction in diagnosing atlantoaxial subluxation

    Institute of Scientific and Technical Information of China (English)

    段少银; 林清池; 庞瑞麟

    2004-01-01

    Objective:To evaluate and compare the diagnostic value in atlantoaxial subluxation by CT three-dimensional (3D) reconstruction.Methods:3D reconstruction fimdings of 41 patients with atlantoaxiai subluxation were retrospectively analyzed, and comparisons were made among images of transverse section, multiplanar reformorting (MPR), surface shade display (SSD), maximum intensity project (MIP), and volume rendering (VR). Results:Of 41 patients with atlantoaxial subluxation, 31 belonged to rotary dislocation, 5 antedislocation, and 5 hind dislocation. All the cases showed the dislocated joint panel of atlantoaxial articulation.Fifteen cases showed deviation of the odontoid process and 8 cases widened distance between the dens and anterior arch of the atlas. The dislocated joint panel of atlantoaxial articulation was more clearly seen with SSD-3D imaging than any other methods. Conclusions:Atlantoaxial subluxation can well be diagnosed by CT 3D reconstruction, in which SSD-3D imaging is optimal.

  4. A Pipeline of 3D Scene Reconstruction from Point Clouds

    OpenAIRE

    Zhu, Lingli

    2015-01-01

    3D technologies are becoming increasingly popular as their applications in industrial, consumer, entertainment, healthcare, education, and governmental increase in number. According to market predictions, the total 3D modeling and mapping market is expected to grow from $1.1 billion in 2013 to $7.7 billion by 2018. Thus, 3D modeling techniques for different data sources are urgently needed. This thesis addresses techniques for automated point cloud classification and the reconstruction of ...

  5. Dimensionality Reduction of Laplacian Embedding for 3D Mesh Reconstruction

    Science.gov (United States)

    Mardhiyah, I.; Madenda, S.; Salim, R. A.; Wiryana, I. M.

    2016-06-01

    Laplacian eigenbases are the important thing that we have to process from 3D mesh information. The information of geometric 3D mesh are include vertices locations and the connectivity of graph. Due to spectral analysis, geometric 3D mesh for large and sparse graphs with thousands of vertices is not practical to compute all the eigenvalues and eigenvector. Because of that, in this paper we discuss how to build 3D mesh reconstruction by reducing dimensionality on null eigenvalue but retain the corresponding eigenvector of Laplacian Embedding to simplify mesh processing. The result of reducing information should have to retained the connectivity of graph. The advantages of dimensionality reduction is for computational eficiency and problem simplification. Laplacian eigenbases is the point of dimensionality reduction for 3D mesh reconstruction. In this paper, we show how to reconstruct geometric 3D mesh after approximation step of 3D mesh by dimensionality reduction. Dimensionality reduction shown by Laplacian Embedding matrix. Furthermore, the effectiveness of 3D mesh reconstruction method will evaluated by geometric error, differential error, and final error. Numerical approximation error of our result are small and low complexity of computational.

  6. Filtering of measurement noise with the 3D reconstruction algorithm

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Pivnenko, Sergey

    2014-01-01

    Two different antenna models are set up in GRASP and CHAMP, and noise is added to the radiated field. The noisy field is then given as input to the 3D reconstruction of DIATOOL and the SWE coefficients and the far-field radiated by the reconstructed currents are compared with the noise-free results...

  7. APPLICATION OF 3D MODELING IN 3D PRINTING FOR THE LOWER JAW RECONSTRUCTION

    Directory of Open Access Journals (Sweden)

    Yu. Yu. Dikov

    2015-01-01

    Full Text Available Aim of study: improvement of functional and aesthetic results of microsurgery reconstructions of the lower jaw due to the use of the methodology of 3D modeling and 3D printing. Application of this methodology has been demonstrated on the example of treatment of 4 patients with locally distributed tumors of the mouth cavity, who underwent excision of the tumor with simultaneous reconstruction of the lower jaw with revascularized fibular graft.Before, one patient has already undergo segmental resection of the lower jaw with the defect replacement with the avascular ileac graft and a reconstruction plate. Then, a relapse of the disease and lysis of the graft has developed with him. Modeling of the graft according to the shape of the lower jaw was performed by making osteotomies of the bone part of the graft using three-dimensional virtual models created by computed tomography data. Then these 3D models were printed with a 3D printer of plastic with the scale of 1:1 with the fused deposition modeling (FDM technology and were used during the surgery in the course of modeling of the graft. Sterilizing of the plastic model was performed in the formalin chamber.This methodology allowed more specific reconstruction of the resected fragment of the lower jaw and get better functional and aesthetic results and prepare patients to further dental rehabilitation. Advantages of this methodology are the possibility of simultaneous performance of stages of reconstruction and resection and shortening of the time of surgery.

  8. Reconstruction of High Resolution 3D Objects from Incomplete Images and 3D Information

    Directory of Open Access Journals (Sweden)

    Alexander Pacheco

    2014-05-01

    Full Text Available To this day, digital object reconstruction is a quite complex area that requires many techniques and novel approaches, in which high-resolution 3D objects present one of the biggest challenges. There are mainly two different methods that can be used to reconstruct high resolution objects and images: passive methods and active methods. This methods depend on the type of information available as input for modeling 3D objects. The passive methods use information contained in the images and the active methods make use of controlled light sources, such as lasers. The reconstruction of 3D objects is quite complex and there is no unique solution- The use of specific methodologies for the reconstruction of certain objects it’s also very common, such as human faces, molecular structures, etc. This paper proposes a novel hybrid methodology, composed by 10 phases that combine active and passive methods, using images and a laser in order to supplement the missing information and obtain better results in the 3D object reconstruction. Finally, the proposed methodology proved its efficiency in two complex topological complex objects.

  9. DCT and DST Based Image Compression for 3D Reconstruction

    Science.gov (United States)

    Siddeq, Mohammed M.; Rodrigues, Marcos A.

    2017-03-01

    This paper introduces a new method for 2D image compression whose quality is demonstrated through accurate 3D reconstruction using structured light techniques and 3D reconstruction from multiple viewpoints. The method is based on two discrete transforms: (1) A one-dimensional Discrete Cosine Transform (DCT) is applied to each row of the image. (2) The output from the previous step is transformed again by a one-dimensional Discrete Sine Transform (DST), which is applied to each column of data generating new sets of high-frequency components followed by quantization of the higher frequencies. The output is then divided into two parts where the low-frequency components are compressed by arithmetic coding and the high frequency ones by an efficient minimization encoding algorithm. At decompression stage, a binary search algorithm is used to recover the original high frequency components. The technique is demonstrated by compressing 2D images up to 99% compression ratio. The decompressed images, which include images with structured light patterns for 3D reconstruction and from multiple viewpoints, are of high perceptual quality yielding accurate 3D reconstruction. Perceptual assessment and objective quality of compression are compared with JPEG and JPEG2000 through 2D and 3D RMSE. Results show that the proposed compression method is superior to both JPEG and JPEG2000 concerning 3D reconstruction, and with equivalent perceptual quality to JPEG2000.

  10. A new algorithm for 3D reconstruction from support functions

    OpenAIRE

    2009-01-01

    We introduce a new algorithm for reconstructing an unknown shape from a finite number of noisy measurements of its support function. The algorithm, based on a least squares procedure, is very easy to program in standard software such as Matlab and allows, for the first time, good 3D reconstructions to be performed on an ordinary PC. Under mild conditions, theory guarantees that outputs of the algorithm will converge to the input shape as the number of measurements increases. Reconstructions ...

  11. Rebinning and reconstruction techniques for 3D TOF-PET

    Energy Technology Data Exchange (ETDEWEB)

    Vandenberghe, Stefaan [Philips Research USA, Briarcliff NY (United States)]. E-mail: stefaan.vandenberghe@ugent.be; Karp, Joel [PET instrumentation group, University of Pennsylvania, Philadelphia, PA (United States)

    2006-12-20

    The measured time difference in 3D Time-of-Flight (TOF) positron emission tomography (PET) makes it possible to improve the signal-to-noise ratio of reconstructed images. The improvement in signal-to-noise ratio will probably be used to reduce imaging time. To keep up with workflow there will be a need for faster reconstruction methods. A variety of reconstruction and rebinning methods have been developed in the past for 2D and 3D TOF-PET data. The TOF information makes very simple reconstruction methods possible. These allow real time reconstruction but the obtained image quality is lower. Relative fast reconstructions can be obtained using rebinning techniques. Fully 3D iterative listmode reconstruction makes no approximations but comes at the expense of long reconstruction times. Data from Monte Carlo simulations of 3D TOF-PET scanners are used to quantify differences in noise and contrast between the different methods. Real time methods are useful for direct display after or even during acquisition, but do not generate useful data for reviewing. Rebinning methods can be used to reduce the reconstruction time with a small loss in image quality and the image quality loss is quite small if good timing resolution can be achieved. Fully 3D iterative listmode reconstruction maximizes the obtained image quality and should be used if not even a small loss in image quality is acceptable. When timing resolution is improved the difference between the different methods become clearly smaller and in the limit where timing resolution is equal to spatial resolution, the methods are equivalent.

  12. Light field display and 3D image reconstruction

    Science.gov (United States)

    Iwane, Toru

    2016-06-01

    Light field optics and its applications become rather popular in these days. With light field optics or light field thesis, real 3D space can be described in 2D plane as 4D data, which we call as light field data. This process can be divided in two procedures. First, real3D scene is optically reduced with imaging lens. Second, this optically reduced 3D image is encoded into light field data. In later procedure we can say that 3D information is encoded onto a plane as 2D data by lens array plate. This transformation is reversible and acquired light field data can be decoded again into 3D image with the arrayed lens plate. "Refocusing" (focusing image on your favorite point after taking a picture), light-field camera's most popular function, is some kind of sectioning process from encoded 3D data (light field data) to 2D image. In this paper at first I show our actual light field camera and our 3D display using acquired and computer-simulated light field data, on which real 3D image is reconstructed. In second I explain our data processing method whose arithmetic operation is performed not in Fourier domain but in real domain. Then our 3D display system is characterized by a few features; reconstructed image is of finer resolutions than density of arrayed lenses and it is not necessary to adjust lens array plate to flat display on which light field data is displayed.

  13. Rapidly 3D Texture Reconstruction Based on Oblique Photography

    Directory of Open Access Journals (Sweden)

    ZHANG Chunsen

    2015-07-01

    Full Text Available This paper proposes a city texture fast reconstruction method based on aerial tilt image for reconstruction of three-dimensional city model. Based on the photogrammetry and computer vision theory and using the city building digital surface model obtained by prior treatment, through collinear equation calculation geometric projection of object and image space, to obtain the three-dimensional information and texture information of the structure and through certain the optimal algorithm selecting the optimal texture on the surface of the object, realize automatic extraction of the building side texture and occlusion handling of the dense building texture. The real image texture reconstruction results show that: the method to the 3D city model texture reconstruction has the characteristics of high degree of automation, vivid effect and low cost and provides a means of effective implementation for rapid and widespread real texture rapid reconstruction of city 3D model.

  14. Streaming Surface Reconstruction from Real Time 3D Measurements

    OpenAIRE

    Bodenmüller, Tim

    2009-01-01

    In this thesis, a robust method for fast surface reconstruction from real time 3D point streams is presented. It is designed for the integration in a fast visual feedback system that supports a user while manually 3D scanning objects. The method iteratively generates a dense and homogeneous triangular mesh by inserting sample points from the real time data stream and refining the surface model locally. A spatial data structure ensures a fast access to growing point sets and continuously updat...

  15. 3D surface reconstruction multi-scale hierarchical approaches

    CERN Document Server

    Bellocchio, Francesco; Ferrari, Stefano; Piuri, Vincenzo

    2012-01-01

    3D Surface Reconstruction: Multi-Scale Hierarchical Approaches presents methods to model 3D objects in an incremental way so as to capture more finer details at each step. The configuration of the model parameters, the rationale and solutions are described and discussed in detail so the reader has a strong understanding of the methodology. Modeling starts from data captured by 3D digitizers and makes the process even more clear and engaging. Innovative approaches, based on two popular machine learning paradigms, namely Radial Basis Functions and the Support Vector Machines, are also introduced

  16. 3D reconstruction based on spatial vanishing information

    Institute of Scientific and Technical Information of China (English)

    Yuan Shu; Zheng Tan

    2005-01-01

    An approach for the three-dimensional (3D) reconstruction of architectural scenes from two un-calibrated images is described in this paper. From two views of one architectural structure, three pairs of corresponding vanishing points of three major mutual orthogonal directions can be extracted. The simple but powerful constraints of parallelism and orthogonal lines in architectural scenes can be used to calibrate the cameras and to recover the 3D information of the structure. This approach is applied to the real images of architectural scenes, and a 3D model of a building in virtual reality modelling language (VRML) format is presented which illustrates the method with successful performance.

  17. Breast cancers detected in only one of two arms of a tomosynthesis (3D-mammography) population screening trial (STORM-2).

    Science.gov (United States)

    Bernardi, Daniela; Houssami, Nehmat

    2017-04-01

    The prospective 'screening with tomosynthesis or standard mammography-2 (STORM-2)' trial compared mammography screen-reading strategies and showed that each of integrated 2D/3D-mammography or 2Dsynthetic/3D-mammography detected significantly more breast cancers than 2D-mammography alone. This short report describes 13 (from 90) cancers detected in only one of two parallel double-reading arms implemented in STORM-2. Amongst this subset of cases, the majority was invasive cancer ≤16 mm, mostly depicted as irregular masses or distortions. Furthermore, most were detected at 3D-mammography only and predominantly by one reader from double-reading pairs, highlighting that 3D-mammography may enable detection of cancers that are challenging to perceive at routine screening.

  18. NeuralNetwork Based 3D Surface Reconstruction

    CERN Document Server

    Joseph, Vincy

    2009-01-01

    This paper proposes a novel neural-network-based adaptive hybrid-reflectance three-dimensional (3-D) surface reconstruction model. The neural network combines the diffuse and specular components into a hybrid model. The proposed model considers the characteristics of each point and the variant albedo to prevent the reconstructed surface from being distorted. The neural network inputs are the pixel values of the two-dimensional images to be reconstructed. The normal vectors of the surface can then be obtained from the output of the neural network after supervised learning, where the illuminant direction does not have to be known in advance. Finally, the obtained normal vectors can be applied to integration method when reconstructing 3-D objects. Facial images were used for training in the proposed approach

  19. 3D Reconstruction of Human Motion from Monocular Image Sequences.

    Science.gov (United States)

    Wandt, Bastian; Ackermann, Hanno; Rosenhahn, Bodo

    2016-08-01

    This article tackles the problem of estimating non-rigid human 3D shape and motion from image sequences taken by uncalibrated cameras. Similar to other state-of-the-art solutions we factorize 2D observations in camera parameters, base poses and mixing coefficients. Existing methods require sufficient camera motion during the sequence to achieve a correct 3D reconstruction. To obtain convincing 3D reconstructions from arbitrary camera motion, our method is based on a-priorly trained base poses. We show that strong periodic assumptions on the coefficients can be used to define an efficient and accurate algorithm for estimating periodic motion such as walking patterns. For the extension to non-periodic motion we propose a novel regularization term based on temporal bone length constancy. In contrast to other works, the proposed method does not use a predefined skeleton or anthropometric constraints and can handle arbitrary camera motion. We achieve convincing 3D reconstructions, even under the influence of noise and occlusions. Multiple experiments based on a 3D error metric demonstrate the stability of the proposed method. Compared to other state-of-the-art methods our algorithm shows a significant improvement.

  20. Automating 3D reconstruction using a probabilistic grammar

    Science.gov (United States)

    Xiong, Hanwei; Xu, Jun; Xu, Chenxi; Pan, Ming

    2015-10-01

    3D reconstruction of objects from point clouds with a laser scanner is still a laborious task in many applications. Automating 3D process is an ongoing research topic and suffers from the complex structure of the data. The main difficulty is due to lack of knowledge of real world objects structure. In this paper, we accumulate such structure knowledge by a probabilistic grammar learned from examples in the same category. The rules of the grammar capture compositional structures at different levels, and a feature dependent probability function is attached for every rule. The learned grammar can be used to parse new 3D point clouds, organize segment patches in a hierarchal way, and assign them meaningful labels. The parsed semantics can be used to guide the reconstruction algorithms automatically. Some examples are given to explain the method.

  1. 3-D flame temperature field reconstruction with multiobjective neural network

    Institute of Scientific and Technical Information of China (English)

    Xiong Wan(万雄); Yiqing Gao(高益庆); Yuanmei Wang(汪元美)

    2003-01-01

    A novel 3-D temperature field reconstruction method is proposed in this paper, which is based on multi-wavelength thermometry and Hopfield neural network computed tomography. A mathematical modelof multi-wavelength thermometry is founded, and a neural network algorithm based on multiobjectiveoptimization is developed. Through computer simulation and comparison with the algebraic reconstructiontechnique (ART) and the filter back-projection algorithm (FBP), the reconstruction result of the newmethod is discussed in detail. The study shows that the new method always gives the best reconstructionresults. At last, temperature distribution of a section of four peaks candle flame is reconstructed with thisnovel method.

  2. A new algorithm for 3D reconstruction from support functions

    DEFF Research Database (Denmark)

    Gardner, Richard; Kiderlen, Markus

    2009-01-01

    We introduce a new algorithm for reconstructing an unknown shape from a finite number of noisy measurements of its support function. The algorithm, based on a least squares procedure, is very easy to program in standard software such as Matlab and allows, for the first time, good 3D reconstructions...... to be performed on an ordinary PC. Under mild conditions, theory guarantees that outputs of the algorithm will converge to the input shape as the number of measurements increases. Reconstructions may be obtained without any pre- or post-processing steps and with no restriction on the sets of measurement...

  3. Improvement of geometrical measurements from 3D-SEM reconstructions

    DEFF Research Database (Denmark)

    Carli, Lorenzo; De Chiffre, Leonardo; Horsewell, Andy;

    2009-01-01

    an external diameter of 0.26mm. A series of measurements were performed to determine the accuracy of 3D reconstructions obtained using stereo-photogrammetry methods, finding a procedure to determine the optimum number of rotations of the object for an acceptable measuring uncertainty. It was determined......The quantification of 3D geometry at the nanometric scale is a major metrological challenge. In this work geometrical measurements on cylindrical items obtained with a 3D-SEM were investigated. Two items were measured: a wire gauge having a 0.25 mm nominal diameter and a hypodermic needle having...... that the diameter estimation performed using the 3D-SEM leads to an overestimation of approx. 7% compared to the reference values obtained using a 1-D length measuring machine. Standard deviation of SEM measurements performed on the wire gauge is approx. 1.5 times lower than the one performed on the hypodermic...

  4. Automatic Texture Optimization for 3D Urban Reconstruction

    Directory of Open Access Journals (Sweden)

    LI Ming

    2017-03-01

    Full Text Available In order to solve the problem of texture optimization in 3D city reconstruction by using multi-lens oblique images, the paper presents a method of seamless texture model reconstruction. At first, it corrects the radiation information of images by camera response functions and image dark channel. Then, according to the corresponding relevance between terrain triangular mesh surface model to image, implements occlusion detection by sparse triangulation method, and establishes the triangles' texture list of visible. Finally, combines with triangles' topology relationship in 3D triangular mesh surface model and means and variances of image, constructs a graph-cuts-based texture optimization algorithm under the framework of MRF(Markov random filed, to solve the discrete label problem of texture optimization selection and clustering, ensures the consistency of the adjacent triangles in texture mapping, achieves the seamless texture reconstruction of city. The experimental results verify the validity and superiority of our proposed method.

  5. [Customized 3D radiographic reconstruction of the human pelvis].

    Science.gov (United States)

    Gauvin, C; Dansereau, J; Petit, Y; De Guise, J A; Labelle, H

    1998-01-01

    The pelvis is an essential element in the study of scoliosis since it constitutes the base of the spine and its orientation may affects postural balance. In order to study the role of the pelvis in the evolution and treatment of this disease, a new technique for the 3D personalised reconstruction of the pelvis was developed. It consists in identifying and digitizing 19 pelvic anatomical landmarks on postero-anterior and lateral x-rays and to reconstruct them in 3D with two techniques: the DLT algorithm developed by Marzan (1976) and, for 6 of the 19 landmarks, an adaptation of it called DLT with confidence coefficients. The latter takes into account the confidence given to the identification of the landmarks on each x-rays. Two methods were used to validate the reconstruction of the pelvis. The first one, used for 11 scoliotic patients and 2 dry pelvis specimens, consists in applying the reconstruction algorithm in an inverse way on the 3D coordinates of the reconstructed landmarks to obtain their 2D retroprojection on the x-ray planes, and thus comparing the retroprojected coordinates with the 2D digitized coordinates. The second method consists in measuring a dry pelvis specimen and comparing the 3D measured landmarks with the ones reconstructed with the x-rays of this specimen. For the first validation, results have shown that the lowest retroprojection errors (less than 2.5 +/- 2.6 mm) for the scoliotic patient group are located on the superior base of the sacrum, on the sacral curve and on the acetabula, while the highest (6.4 +/- 7.2 mm) were on the iliac crests. For the dry specimens, the retroprojection errors were below the millimeter. The second validation method showed 3D differences of 2.4 +/- 1.2 mm between measured and reconstructed landmarks of a dry specimen, which is of the same order of magnitude as what is reported in the literature for vertebrae. The reconstruction of the pelvis is thus considered adequate and its graphical wireframe

  6. Reconstruction and 3D visualisation based on objective real 3D based documentation.

    Science.gov (United States)

    Bolliger, Michael J; Buck, Ursula; Thali, Michael J; Bolliger, Stephan A

    2012-09-01

    Reconstructions based directly upon forensic evidence alone are called primary information. Historically this consists of documentation of findings by verbal protocols, photographs and other visual means. Currently modern imaging techniques such as 3D surface scanning and radiological methods (computer tomography, magnetic resonance imaging) are also applied. Secondary interpretation is based on facts and the examiner's experience. Usually such reconstructive expertises are given in written form, and are often enhanced by sketches. However, narrative interpretations can, especially in complex courses of action, be difficult to present and can be misunderstood. In this report we demonstrate the use of graphic reconstruction of secondary interpretation with supporting pictorial evidence, applying digital visualisation (using 'Poser') or scientific animation (using '3D Studio Max', 'Maya') and present methods of clearly distinguishing between factual documentation and examiners' interpretation based on three cases. The first case involved a pedestrian who was initially struck by a car on a motorway and was then run over by a second car. The second case involved a suicidal gunshot to the head with a rifle, in which the trigger was pushed with a rod. The third case dealt with a collision between two motorcycles. Pictorial reconstruction of the secondary interpretation of these cases has several advantages. The images enable an immediate overview, give rise to enhanced clarity, and compel the examiner to look at all details if he or she is to create a complete image.

  7. Recent advances in 3D SEM surface reconstruction.

    Science.gov (United States)

    Tafti, Ahmad P; Kirkpatrick, Andrew B; Alavi, Zahrasadat; Owen, Heather A; Yu, Zeyun

    2015-11-01

    The scanning electron microscope (SEM), as one of the most commonly used instruments in biology and material sciences, employs electrons instead of light to determine the surface properties of specimens. However, the SEM micrographs still remain 2D images. To effectively measure and visualize the surface attributes, we need to restore the 3D shape model from the SEM images. 3D surface reconstruction is a longstanding topic in microscopy vision as it offers quantitative and visual information for a variety of applications consisting medicine, pharmacology, chemistry, and mechanics. In this paper, we attempt to explain the expanding body of the work in this area, including a discussion of recent techniques and algorithms. With the present work, we also enhance the reliability, accuracy, and speed of 3D SEM surface reconstruction by designing and developing an optimized multi-view framework. We then consider several real-world experiments as well as synthetic data to examine the qualitative and quantitative attributes of our proposed framework. Furthermore, we present a taxonomy of 3D SEM surface reconstruction approaches and address several challenging issues as part of our future work.

  8. 3D reconstruction of multiple stained histology images

    Directory of Open Access Journals (Sweden)

    Yi Song

    2013-01-01

    Full Text Available Context: Three dimensional (3D tissue reconstructions from the histology images with different stains allows the spatial alignment of structural and functional elements highlighted by different stains for quantitative study of many physiological and pathological phenomena. This has significant potential to improve the understanding of the growth patterns and the spatial arrangement of diseased cells, and enhance the study of biomechanical behavior of the tissue structures towards better treatments (e.g. tissue-engineering applications. Methods: This paper evaluates three strategies for 3D reconstruction from sets of two dimensional (2D histological sections with different stains, by combining methods of 2D multi-stain registration and 3D volumetric reconstruction from same stain sections. Setting and Design: The different strategies have been evaluated on two liver specimens (80 sections in total stained with Hematoxylin and Eosin (H and E, Sirius Red, and Cytokeratin (CK 7. Results and Conclusion: A strategy of using multi-stain registration to align images of a second stain to a volume reconstructed by same-stain registration results in the lowest overall error, although an interlaced image registration approach may be more robust to poor section quality.

  9. 3D/3D registration of coronary CTA and biplane XA reconstructions for improved image guidance

    Energy Technology Data Exchange (ETDEWEB)

    Dibildox, Gerardo, E-mail: g.dibildox@erasmusmc.nl; Baka, Nora; Walsum, Theo van [Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus Medical Center, 3015 GE Rotterdam (Netherlands); Punt, Mark; Aben, Jean-Paul [Pie Medical Imaging, 6227 AJ Maastricht (Netherlands); Schultz, Carl [Department of Cardiology, Erasmus Medical Center, 3015 GE Rotterdam (Netherlands); Niessen, Wiro [Quantitative Imaging Group, Faculty of Applied Sciences, Delft University of Technology, 2628 CJ Delft, The Netherlands and Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus Medical Center, 3015 GE Rotterdam (Netherlands)

    2014-09-15

    Purpose: The authors aim to improve image guidance during percutaneous coronary interventions of chronic total occlusions (CTO) by providing information obtained from computed tomography angiography (CTA) to the cardiac interventionist. To this end, the authors investigate a method to register a 3D CTA model to biplane reconstructions. Methods: The authors developed a method for registering preoperative coronary CTA with intraoperative biplane x-ray angiography (XA) images via 3D models of the coronary arteries. The models are extracted from the CTA and biplane XA images, and are temporally aligned based on CTA reconstruction phase and XA ECG signals. Rigid spatial alignment is achieved with a robust probabilistic point set registration approach using Gaussian mixture models (GMMs). This approach is extended by including orientation in the Gaussian mixtures and by weighting bifurcation points. The method is evaluated on retrospectively acquired coronary CTA datasets of 23 CTO patients for which biplane XA images are available. Results: The Gaussian mixture model approach achieved a median registration accuracy of 1.7 mm. The extended GMM approach including orientation was not significantly different (P > 0.1) but did improve robustness with regards to the initialization of the 3D models. Conclusions: The authors demonstrated that the GMM approach can effectively be applied to register CTA to biplane XA images for the purpose of improving image guidance in percutaneous coronary interventions.

  10. Deformable Surface 3D Reconstruction from Monocular Images

    CERN Document Server

    Salzmann, Matthieu

    2010-01-01

    Being able to recover the shape of 3D deformable surfaces from a single video stream would make it possible to field reconstruction systems that run on widely available hardware without requiring specialized devices. However, because many different 3D shapes can have virtually the same projection, such monocular shape recovery is inherently ambiguous. In this survey, we will review the two main classes of techniques that have proved most effective so far: The template-based methods that rely on establishing correspondences with a reference image in which the shape is already known, and non-rig

  11. Semi-automated segmentation and classification of digital breast tomosynthesis reconstructed images.

    Science.gov (United States)

    Vedantham, Srinivasan; Shi, Linxi; Karellas, Andrew; Michaelsen, Kelly E; Krishnaswamy, Venkataramanan; Pogue, Brian W; Paulsen, Keith D

    2011-01-01

    Digital breast tomosynthesis (DBT) is a limited-angle tomographic x-ray imaging technique that reduces the effect of tissue superposition observed in planar mammography. An integrated imaging platform that combines DBT with near infrared spectroscopy (NIRS) to provide co-registered anatomical and functional imaging is under development. Incorporation of anatomic priors can benefit NIRS reconstruction. In this work, we provide a segmentation and classification method to extract potential lesions, as well as adipose, fibroglandular, muscle and skin tissue in reconstructed DBT images that serve as anatomic priors during NIRS reconstruction. The method may also be adaptable for estimating tumor volume, breast glandular content, and for extracting lesion features for potential application to computer aided detection and diagnosis.

  12. 3-D Equilibrium Reconstruction in the HSX Stellarator

    Science.gov (United States)

    Schmitt, J. C.

    2011-10-01

    Axisymmetric toroidal devices reconstruct the MHD equilibrium properties from measured pressure, magnetic field components, external field coil currents, and other diagnostics, by solving the Grad-Shafranov equation. For modern toroidal systems including advanced stellarators and tokamaks with asymmetric fields, such as those that arise from finite toroidal ripple or ferromagnetic blanket materials, a 3-D equilibrium reconstruction is required to account for non-axisymmetric effects and accurately determine the plasma profiles. The 3-D equilibrium reconstruction of plasma current and pressure profiles in the quasi-helically symmetric stellarator HSX is presented. The equilibrium currents in the HSX stellarator are measured with a set of magnetic diagnostics, which includes Rogowski coils, diamagnetic loops, two poloidal `belts' that are separated by 1/3 of a field period, and internal coils. Each belt consists of 16 3-axis magnetic pick-up coils to measure the local magnetic field, and 15 internal coils measure the poloidal field. V3FIT, a 3-D equilibrium reconstruction code, is used to reconstruct the pressure and current profile from the measured fields and fluxes. Reconstructions based on the external diagnostics confirm that the Pfirsch-Schlüter current is helical due to the lack of toroidal curvature in HSX. The reconstruction of the pressure profile and stored energy based on the internal poloidal array agrees well with that measured by Thomson scattering and the flux loop. Later in time, the measurements are dominated by the bootstrap current which rises on a timescale comparable to the length of the discharge. The reconstruction of the current profile is consistent with the neoclassical bootstrap current when the effects of momentum conservation between plasma species and the 3-D inductive response of the plasma column are considered. The magnitude of the Pfirsch-Schlüter and bootstrap currents are reduced by the high effective transform (~3), which is

  13. Investigating 3d Reconstruction Methods for Small Artifacts

    Science.gov (United States)

    Evgenikou, V.; Georgopoulos, A.

    2015-02-01

    Small artifacts have always been a real challenge when it comes to 3D modelling. They usually present severe difficulties for their 3D reconstruction. Lately, the demand for the production of 3D models of small artifacts, especially in the cultural heritage domain, has dramatically increased. As with many cases, there are no specifications and standards for this task. This paper investigates the efficiency of several mainly low cost methods for 3D model production of such small artifacts. Moreover, the material, the color and the surface complexity of these objects id also investigated. Both image based and laser scanning methods have been considered as alternative data acquisition methods. The evaluation has been confined to the 3D meshes, as texture depends on the imaging properties, which are not investigated in this project. The resulting meshes have been compared to each other for their completeness, and accuracy. It is hoped that the outcomes of this investigation will be useful to researchers who are planning to embark into mass production of 3D models of small artifacts.

  14. INVESTIGATING 3D RECONSTRUCTION METHODS FOR SMALL ARTIFACTS

    Directory of Open Access Journals (Sweden)

    V. Evgenikou

    2015-02-01

    Full Text Available Small artifacts have always been a real challenge when it comes to 3D modelling. They usually present severe difficulties for their 3D reconstruction. Lately, the demand for the production of 3D models of small artifacts, especially in the cultural heritage domain, has dramatically increased. As with many cases, there are no specifications and standards for this task. This paper investigates the efficiency of several mainly low cost methods for 3D model production of such small artifacts. Moreover, the material, the color and the surface complexity of these objects id also investigated. Both image based and laser scanning methods have been considered as alternative data acquisition methods. The evaluation has been confined to the 3D meshes, as texture depends on the imaging properties, which are not investigated in this project. The resulting meshes have been compared to each other for their completeness, and accuracy. It is hoped that the outcomes of this investigation will be useful to researchers who are planning to embark into mass production of 3D models of small artifacts.

  15. On detailed 3D reconstruction of large indoor environments

    Science.gov (United States)

    Bondarev, Egor

    2015-03-01

    In this paper we present techniques for highly detailed 3D reconstruction of extra large indoor environments. We discuss the benefits and drawbacks of low-range, far-range and hybrid sensing and reconstruction approaches. The proposed techniques for low-range and hybrid reconstruction, enabling the reconstruction density of 125 points/cm3 on large 100.000 m3 models, are presented in detail. The techniques tackle the core challenges for the above requirements, such as a multi-modal data fusion (fusion of a LIDAR data with a Kinect data), accurate sensor pose estimation, high-density scanning and depth data noise filtering. Other important aspects for extra large 3D indoor reconstruction are the point cloud decimation and real-time rendering. In this paper, we present a method for planar-based point cloud decimation, allowing for reduction of a point cloud size by 80-95%. Besides this, we introduce a method for online rendering of extra large point clouds enabling real-time visualization of huge cloud spaces in conventional web browsers.

  16. 3D reconstruction methods of coronal structures by radio observations

    Science.gov (United States)

    Aschwanden, Markus J.; Bastian, T. S.; White, Stephen M.

    1992-01-01

    The ability to carry out the three dimensional (3D) reconstruction of structures in the solar corona would represent a major advance in the study of the physical properties in active regions and in flares. Methods which allow a geometric reconstruction of quasistationary coronal structures (for example active region loops) or dynamic structures (for example flaring loops) are described: stereoscopy of multi-day imaging observations by the VLA (Very Large Array); tomography of optically thin emission (in radio or soft x-rays); multifrequency band imaging by the VLA; and tracing of magnetic field lines by propagating electron beams.

  17. Low contrast 3D reconstruction from C-arm data

    Science.gov (United States)

    Zellerhoff, M.; Scholz, B.; Ruehrnschopf, E.-P.; Brunner, T.

    2005-04-01

    The integration of 3D-imaging functionality into C-arm systems combines advantages of interventional X-ray systems, e.g. good patient access and live fluoroscopy, with 3D imaging capabilities similar to those of a CT-scanner. To date 3D-imaging with a C-arm system has been mainly used to visualize high contrast objects. However, the advent of high quality flat panel detectors improves the low contrast imaging capabilities. We discuss the influence of scattered radiation, beam hardening, truncated projections, quantization and detector recording levels on the image quality. Subsequently, we present algorithms and methods to correct these effects in order to achieve low contrast resolution. The performance of our pre- and post-reconstructive correction procedures is demonstrated by first clinical cases.

  18. Structured Light-Based 3D Reconstruction System for Plants.

    Science.gov (United States)

    Nguyen, Thuy Tuong; Slaughter, David C; Max, Nelson; Maloof, Julin N; Sinha, Neelima

    2015-07-29

    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance.

  19. Structured Light-Based 3D Reconstruction System for Plants

    Directory of Open Access Journals (Sweden)

    Thuy Tuong Nguyen

    2015-07-01

    Full Text Available Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces and software algorithms (including the proposed 3D point cloud registration and plant feature measurement. This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance.

  20. 3DSEM++: Adaptive and intelligent 3D SEM surface reconstruction.

    Science.gov (United States)

    Tafti, Ahmad P; Holz, Jessica D; Baghaie, Ahmadreza; Owen, Heather A; He, Max M; Yu, Zeyun

    2016-08-01

    Structural analysis of microscopic objects is a longstanding topic in several scientific disciplines, such as biological, mechanical, and materials sciences. The scanning electron microscope (SEM), as a promising imaging equipment has been around for decades to determine the surface properties (e.g., compositions or geometries) of specimens by achieving increased magnification, contrast, and resolution greater than one nanometer. Whereas SEM micrographs still remain two-dimensional (2D), many research and educational questions truly require knowledge and facts about their three-dimensional (3D) structures. 3D surface reconstruction from SEM images leads to remarkable understanding of microscopic surfaces, allowing informative and qualitative visualization of the samples being investigated. In this contribution, we integrate several computational technologies including machine learning, contrario methodology, and epipolar geometry to design and develop a novel and efficient method called 3DSEM++ for multi-view 3D SEM surface reconstruction in an adaptive and intelligent fashion. The experiments which have been performed on real and synthetic data assert the approach is able to reach a significant precision to both SEM extrinsic calibration and its 3D surface modeling.

  1. 3D scene reconstruction: why, when, and how?

    Science.gov (United States)

    McBride, Jonah C.; Snorrason, Magnus S.; Goodsell, Thomas R.; Eaton, Ross S.; Stevens, Mark R.

    2004-09-01

    Mobile robot designers frequently look to computer vision to solve navigation, obstacle avoidance, and object detection problems. Potential solutions using low-cost video cameras are particularly alluring. Recent results in 3D scene reconstruction from a single moving camera seem particularly relevant, but robot designers who attempt to use such 3D techniques have uncovered a variety of practical concerns. We present lessons-learned from developing a single-camera 3D scene reconstruction system that provides both a real-time camera motion estimate and a rough model of major 3D structures in the robot"s vicinity. Our objective is to use the motion estimate to supplement GPS (indoors in particular) and to use the model to provide guidance for further vision processing (look for signs on walls, obstacles on the ground, etc.). The computational geometry involved is closely related to traditional two-camera stereo, however a number of degenerate cases exist. We also demonstrate how SFM can use used to improve the performance of two specific robot navigation tasks.

  2. Comparing 3D virtual methods for hemimandibular body reconstruction.

    Science.gov (United States)

    Benazzi, Stefano; Fiorenza, Luca; Kozakowski, Stephanie; Kullmer, Ottmar

    2011-07-01

    Reconstruction of fractured, distorted, or missing parts in human skeleton presents an equal challenge in the fields of paleoanthropology, bioarcheology, forensics, and medicine. This is particularly important within the disciplines such as orthodontics and surgery, when dealing with mandibular defects due to tumors, developmental abnormalities, or trauma. In such cases, proper restorations of both form (for esthetic purposes) and function (restoration of articulation, occlusion, and mastication) are required. Several digital approaches based on three-dimensional (3D) digital modeling, computer-aided design (CAD)/computer-aided manufacturing techniques, and more recently geometric morphometric methods have been used to solve this problem. Nevertheless, comparisons among their outcomes are rarely provided. In this contribution, three methods for hemimandibular body reconstruction have been tested. Two bone defects were virtually simulated in a 3D digital model of a human hemimandible. Accordingly, 3D digital scaffolds were obtained using the mirror copy of the unaffected hemimandible (Method 1), the thin plate spline (TPS) interpolation (Method 2), and the combination between TPS and CAD techniques (Method 3). The mirror copy of the unaffected hemimandible does not provide a suitable solution for bone restoration. The combination between TPS interpolation and CAD techniques (Method 3) produces an almost perfect-fitting 3D digital model that can be used for biocompatible custom-made scaffolds generated by rapid prototyping technologies.

  3. Projective 3D-reconstruction of Uncalibrated Endoscopic Images

    Directory of Open Access Journals (Sweden)

    P. Faltin

    2010-01-01

    Full Text Available The most common medical diagnostic method for urinary bladder cancer is cystoscopy. This inspection of the bladder is performed by a rigid endoscope, which is usually guided close to the bladder wall. This causes a very limited field of view; difficulty of navigation is aggravated by the usage of angled endoscopes. These factors cause difficulties in orientation and visual control. To overcome this problem, the paper presents a method for extracting 3D information from uncalibrated endoscopic image sequences and for reconstructing the scene content. The method uses the SURF-algorithm to extract features from the images and relates the images by advanced matching. To stabilize the matching, the epipolar geometry is extracted for each image pair using a modified RANSAC-algorithm. Afterwards these matched point pairs are used to generate point triplets over three images and to describe the trifocal geometry. The 3D scene points are determined by applying triangulation to the matched image points. Thus, these points are used to generate a projective 3D reconstruction of the scene, and provide the first step for further metric reconstructions.

  4. Digital tomosynthesis of hands using simultaneous algebraic reconstruction technique with distance driven projector

    Energy Technology Data Exchange (ETDEWEB)

    Levakhina, Y.M. [Luebeck Univ. (Germany). Graduate School for Computing in Medicine and Life Sciences; Luebeck Univ. (Germany). Inst. of Medical Engineering; Duschka, R.L.; Barkhausen, J. [Universitaetsklinikum Schleswig-Holstein, Luebeck (Germany). Klinik fuer Radiologie und Nuklearmedizin; Buzug, T.M. [Luebeck Univ. (Germany). Inst. of Medical Engineering

    2011-07-01

    Digital tomosynthesis (DT) is an X-ray tomographic technique for producing a three-dimensional stack of crosssectional images, based on a limited number of low-dose two-dimensional projections, acquired over a limited angular range. Currently, DT has mainly been investigated for the breast and chest imaging. Another application of DT may be an orthopaedic imaging of hands. A three-dimensional reconstruction with a high in-plane resolution, a low dose and potentially low costs make DT attractive for hand imaging comparing with the planar radiography or computed tomography. However, it should be noted that an accurate image reconstruction in DT is a challenging task due to the high degree of data incompleteness. Images are affected by the residual blur of structures that are located above and below the plane of interest. A human hand consists of 27 bones and therefore the artifact problem becomes even more acute in this case, since the magnitude of artifacts is related not only to the chosen reconstruction type but also to the size and contrast of the artifact-generating object. The study presented in the current work has been performed to show a capability of Simultaneous Algebraic Reconstruction Technique (SART) for hand visualization in tomosynthesis. A distance-driven type for the projector and backprojector operator has been used to make the calculation fast and accurate. Studies have been carried out on a phantom with an uniform background and millimeter-sized balls, a dried finger bone and an in toto hand phantom. A Siemens Mammomat Inspiration device has been used to acquire the projection data. Experimental results show that SART is able to reduce out-of-plane artifacts caused by bone tissue. It provides reconstruction with acceptable quality in only one iteration with the recovered visibility of the obscured trabecular structures as well as the joint spaces and the margins. (orig.)

  5. Optimization of digital breast tomosynthesis (DBT) acquisition parameters for human observers: effect of reconstruction algorithms

    Science.gov (United States)

    Zeng, Rongping; Badano, Aldo; Myers, Kyle J.

    2017-04-01

    We showed in our earlier work that the choice of reconstruction methods does not affect the optimization of DBT acquisition parameters (angular span and number of views) using simulated breast phantom images in detecting lesions with a channelized Hotelling observer (CHO). In this work we investigate whether the model-observer based conclusion is valid when using humans to interpret images. We used previously generated DBT breast phantom images and recruited human readers to find the optimal geometry settings associated with two reconstruction algorithms, filtered back projection (FBP) and simultaneous algebraic reconstruction technique (SART). The human reader results show that image quality trends as a function of the acquisition parameters are consistent between FBP and SART reconstructions. The consistent trends confirm that the optimization of DBT system geometry is insensitive to the choice of reconstruction algorithm. The results also show that humans perform better in SART reconstructed images than in FBP reconstructed images. In addition, we applied CHOs with three commonly used channel models, Laguerre–Gauss (LG) channels, square (SQR) channels and sparse difference-of-Gaussian (sDOG) channels. We found that LG channels predict human performance trends better than SQR and sDOG channel models for the task of detecting lesions in tomosynthesis backgrounds. Overall, this work confirms that the choice of reconstruction algorithm is not critical for optimizing DBT system acquisition parameters.

  6. 3D Reconstruction of Coronary Artery Vascular Smooth Muscle Cells.

    Directory of Open Access Journals (Sweden)

    Tong Luo

    Full Text Available The 3D geometry of individual vascular smooth muscle cells (VSMCs, which are essential for understanding the mechanical function of blood vessels, are currently not available. This paper introduces a new 3D segmentation algorithm to determine VSMC morphology and orientation.A total of 112 VSMCs from six porcine coronary arteries were used in the analysis. A 3D semi-automatic segmentation method was developed to reconstruct individual VSMCs from cell clumps as well as to extract the 3D geometry of VSMCs. A new edge blocking model was introduced to recognize cell boundary while an edge growing was developed for optimal interpolation and edge verification. The proposed methods were designed based on Region of Interest (ROI selected by user and interactive responses of limited key edges. Enhanced cell boundary features were used to construct the cell's initial boundary for further edge growing. A unified framework of morphological parameters (dimensions and orientations was proposed for the 3D volume data. Virtual phantom was designed to validate the tilt angle measurements, while other parameters extracted from 3D segmentations were compared with manual measurements to assess the accuracy of the algorithm. The length, width and thickness of VSMCs were 62.9±14.9 μm, 4.6±0.6 μm and 6.2±1.8 μm (mean±SD. In longitudinal-circumferential plane of blood vessel, VSMCs align off the circumferential direction with two mean angles of -19.4±9.3° and 10.9±4.7°, while an out-of-plane angle (i.e., radial tilt angle was found to be 8±7.6° with median as 5.7°.A 3D segmentation algorithm was developed to reconstruct individual VSMCs of blood vessel walls based on optical image stacks. The results were validated by a virtual phantom and manual measurement. The obtained 3D geometries can be utilized in mathematical models and leads a better understanding of vascular mechanical properties and function.

  7. Dose fractionation theorem in 3-D reconstruction (tomography)

    Energy Technology Data Exchange (ETDEWEB)

    Glaeser, R.M. [Lawrence Berkeley National Lab., CA (United States)

    1997-02-01

    It is commonly assumed that the large number of projections for single-axis tomography precludes its application to most beam-labile specimens. However, Hegerl and Hoppe have pointed out that the total dose required to achieve statistical significance for each voxel of a computed 3-D reconstruction is the same as that required to obtain a single 2-D image of that isolated voxel, at the same level of statistical significance. Thus a statistically significant 3-D image can be computed from statistically insignificant projections, as along as the total dosage that is distributed among these projections is high enough that it would have resulted in a statistically significant projection, if applied to only one image. We have tested this critical theorem by simulating the tomographic reconstruction of a realistic 3-D model created from an electron micrograph. The simulations verify the basic conclusions of high absorption, signal-dependent noise, varying specimen contrast and missing angular range. Furthermore, the simulations demonstrate that individual projections in the series of fractionated-dose images can be aligned by cross-correlation because they contain significant information derived from the summation of features from different depths in the structure. This latter information is generally not useful for structural interpretation prior to 3-D reconstruction, owing to the complexity of most specimens investigated by single-axis tomography. These results, in combination with dose estimates for imaging single voxels and measurements of radiation damage in the electron microscope, demonstrate that it is feasible to use single-axis tomography with soft X-ray microscopy of frozen-hydrated specimens.

  8. 3D temperature field reconstruction using ultrasound sensing system

    Science.gov (United States)

    Liu, Yuqian; Ma, Tong; Cao, Chengyu; Wang, Xingwei

    2016-04-01

    3D temperature field reconstruction is of practical interest to the power, transportation and aviation industries and it also opens up opportunities for real time control or optimization of high temperature fluid or combustion process. In our paper, a new distributed optical fiber sensing system consisting of a series of elements will be used to generate and receive acoustic signals. This system is the first active temperature field sensing system that features the advantages of the optical fiber sensors (distributed sensing capability) and the acoustic sensors (non-contact measurement). Signals along multiple paths will be measured simultaneously enabled by a code division multiple access (CDMA) technique. Then a proposed Gaussian Radial Basis Functions (GRBF)-based approach can approximate the temperature field as a finite summation of space-dependent basis functions and time-dependent coefficients. The travel time of the acoustic signals depends on the temperature of the media. On this basis, the Gaussian functions are integrated along a number of paths which are determined by the number and distribution of sensors. The inversion problem to estimate the unknown parameters of the Gaussian functions can be solved with the measured times-of-flight (ToF) of acoustic waves and the length of propagation paths using the recursive least square method (RLS). The simulation results show an approximation error less than 2% in 2D and 5% in 3D respectively. It demonstrates the availability and efficiency of our proposed 3D temperature field reconstruction mechanism.

  9. 3D reconstruction of concave surfaces using polarisation imaging

    Science.gov (United States)

    Sohaib, A.; Farooq, A. R.; Ahmed, J.; Smith, L. N.; Smith, M. L.

    2015-06-01

    This paper presents a novel algorithm for improved shape recovery using polarisation-based photometric stereo. The majority of previous research using photometric stereo involves 3D reconstruction using both the diffuse and specular components of light; however, this paper suggests the use of the specular component only as it is the only form of light that comes directly off the surface without subsurface scattering or interreflections. Experiments were carried out on both real and synthetic surfaces. Real images were obtained using a polarisation-based photometric stereo device while synthetic images were generated using PovRay® software. The results clearly demonstrate that the proposed method can extract three-dimensional (3D) surface information effectively even for concave surfaces with complex texture and surface reflectance.

  10. 3D Reconstruction in Spiral Multislice CT Scans

    Directory of Open Access Journals (Sweden)

    M. Ghafouri

    2005-08-01

    Full Text Available Introduction & Background: The rapid development of spiral (helical computed tomography (CT has resulted in exciting new applications for CT. One of these applications, three-dimensional (3D CT with volume ren-dering, is now a major area of clinical and academic interest. One of the greatest advantages of spiral CT with 3D volume rendering is that it provides all the necessary information in a single radiologic study (and there-fore at the lowest possible price in cases that previously required two or more studies. Three-dimensional vol-ume rendering generates clinically accurate and immediately available images from the full CT data set with-out extensive editing. It allows the radiologist and clinician to address specific questions concerning patient care by interactively exploring different aspects of the data set. Three-dimensional images integrate a series of axial CT sections into a form that is often easier to interpret than the sections themselves and can be made to appear similar to other more familiar images such as catheter angiograms. The data are organized into a 3D matrix of volume elements (voxels. The screen of the computer monitor is a 2D-surface composed of discrete picture elements (pixels. Presenting what is stored in memory (ie, floating within the monitor on a 2D-screen is a challenge, but it is the very problem that 3D reconstruc-tion software has creatively solved. Voxel selection is usually accomplished by projecting lines (rays through the data set that correspond to the pixel matrix of the desired 2D image. Differences in the images produced with various 3D rendering techniques are the result of variations in how voxels are selected and weighted. In this article, I compare 3D volume rendering of spiral CT data with other rendering techniques (shaded surface display, maximum intensity projection and present a brief history of 3D volume rendering and discuss the im-plementation of this promising technology in terms of

  11. Facial-paralysis diagnostic system based on 3D reconstruction

    Science.gov (United States)

    Khairunnisaa, Aida; Basah, Shafriza Nisha; Yazid, Haniza; Basri, Hassrizal Hassan; Yaacob, Sazali; Chin, Lim Chee

    2015-05-01

    The diagnostic process of facial paralysis requires qualitative assessment for the classification and treatment planning. This result is inconsistent assessment that potential affect treatment planning. We developed a facial-paralysis diagnostic system based on 3D reconstruction of RGB and depth data using a standard structured-light camera - Kinect 360 - and implementation of Active Appearance Models (AAM). We also proposed a quantitative assessment for facial paralysis based on triangular model. In this paper, we report on the design and development process, including preliminary experimental results. Our preliminary experimental results demonstrate the feasibility of our quantitative assessment system to diagnose facial paralysis.

  12. GLIMPSE: Accurate 3D weak lensing reconstructions using sparsity

    CERN Document Server

    Leonard, Adrienne; Starck, Jean-Luc

    2013-01-01

    We present GLIMPSE - Gravitational Lensing Inversion and MaPping with Sparse Estimators - a new algorithm to generate density reconstructions in three dimensions from photometric weak lensing measurements. This is an extension of earlier work in one dimension aimed at applying compressive sensing theory to the inversion of gravitational lensing measurements to recover 3D density maps. Using the assumption that the density can be represented sparsely in our chosen basis - 2D transverse wavelets and 1D line of sight dirac functions - we show that clusters of galaxies can be identified and accurately localised and characterised using this method. Throughout, we use simulated data consistent with the quality currently attainable in large surveys. We present a thorough statistical analysis of the errors and biases in both the redshifts of detected structures and their amplitudes. The GLIMPSE method is able to produce reconstructions at significantly higher resolution than the input data; in this paper we show reco...

  13. Comparison study of reconstruction algorithms for prototype digital breast tomosynthesis using various breast phantoms.

    Science.gov (United States)

    Kim, Ye-seul; Park, Hye-suk; Lee, Haeng-Hwa; Choi, Young-Wook; Choi, Jae-Gu; Kim, Hak Hee; Kim, Hee-Joung

    2016-02-01

    Digital breast tomosynthesis (DBT) is a recently developed system for three-dimensional imaging that offers the potential to reduce the false positives of mammography by preventing tissue overlap. Many qualitative evaluations of digital breast tomosynthesis were previously performed by using a phantom with an unrealistic model and with heterogeneous background and noise, which is not representative of real breasts. The purpose of the present work was to compare reconstruction algorithms for DBT by using various breast phantoms; validation was also performed by using patient images. DBT was performed by using a prototype unit that was optimized for very low exposures and rapid readout. Three algorithms were compared: a back-projection (BP) algorithm, a filtered BP (FBP) algorithm, and an iterative expectation maximization (EM) algorithm. To compare the algorithms, three types of breast phantoms (homogeneous background phantom, heterogeneous background phantom, and anthropomorphic breast phantom) were evaluated, and clinical images were also reconstructed by using the different reconstruction algorithms. The in-plane image quality was evaluated based on the line profile and the contrast-to-noise ratio (CNR), and out-of-plane artifacts were evaluated by means of the artifact spread function (ASF). Parenchymal texture features of contrast and homogeneity were computed based on reconstructed images of an anthropomorphic breast phantom. The clinical images were studied to validate the effect of reconstruction algorithms. The results showed that the CNRs of masses reconstructed by using the EM algorithm were slightly higher than those obtained by using the BP algorithm, whereas the FBP algorithm yielded much lower CNR due to its high fluctuations of background noise. The FBP algorithm provides the best conspicuity for larger calcifications by enhancing their contrast and sharpness more than the other algorithms; however, in the case of small-size and low

  14. Fast vision-based catheter 3D reconstruction

    Science.gov (United States)

    Moradi Dalvand, Mohsen; Nahavandi, Saeid; Howe, Robert D.

    2016-07-01

    Continuum robots offer better maneuverability and inherent compliance and are well-suited for surgical applications as catheters, where gentle interaction with the environment is desired. However, sensing their shape and tip position is a challenge as traditional sensors can not be employed in the way they are in rigid robotic manipulators. In this paper, a high speed vision-based shape sensing algorithm for real-time 3D reconstruction of continuum robots based on the views of two arbitrary positioned cameras is presented. The algorithm is based on the closed-form analytical solution of the reconstruction of quadratic curves in 3D space from two arbitrary perspective projections. High-speed image processing algorithms are developed for the segmentation and feature extraction from the images. The proposed algorithms are experimentally validated for accuracy by measuring the tip position, length and bending and orientation angles for known circular and elliptical catheter shaped tubes. Sensitivity analysis is also carried out to evaluate the robustness of the algorithm. Experimental results demonstrate good accuracy (maximum errors of  ±0.6 mm and  ±0.5 deg), performance (200 Hz), and robustness (maximum absolute error of 1.74 mm, 3.64 deg for the added noises) of the proposed high speed algorithms.

  15. 3D Reconstruction of Irregular Buildings and Buddha Statues

    Science.gov (United States)

    Zhang, K.; Li, M.-j.

    2014-04-01

    Three-dimensional laser scanning could acquire object's surface data quickly and accurately. However, the post-processing of point cloud is not perfect and could be improved. Based on the study of 3D laser scanning technology, this paper describes the details of solutions to modelling irregular ancient buildings and Buddha statues in Jinshan Temple, which aiming at data acquisition, modelling and texture mapping, etc. In order to modelling irregular ancient buildings effectively, the structure of each building is extracted manually by point cloud and the textures are mapped by the software of 3ds Max. The methods clearly combine 3D laser scanning technology with traditional modelling methods, and greatly improves the efficiency and accuracy of the ancient buildings restored. On the other hand, the main idea of modelling statues is regarded as modelling objects in reverse engineering. The digital model of statues obtained is not just vivid, but also accurate in the field of surveying and mapping. On this basis, a 3D scene of Jinshan Temple is reconstructed, which proves the validity of the solutions.

  16. Colored 3D surface reconstruction using Kinect sensor

    Science.gov (United States)

    Guo, Lian-peng; Chen, Xiang-ning; Chen, Ying; Liu, Bin

    2015-03-01

    A colored 3D surface reconstruction method which effectively fuses the information of both depth and color image using Microsoft Kinect is proposed and demonstrated by experiment. Kinect depth images are processed with the improved joint-bilateral filter based on region segmentation which efficiently combines the depth and color data to improve its quality. The registered depth data are integrated to achieve a surface reconstruction through the colored truncated signed distance fields presented in this paper. Finally, the improved ray casting for rendering full colored surface is implemented to estimate color texture of the reconstruction object. Capturing the depth and color images of a toy car, the improved joint-bilateral filter based on region segmentation is used to improve the quality of depth images and the peak signal-to-noise ratio (PSNR) is approximately 4.57 dB, which is better than 1.16 dB of the joint-bilateral filter. The colored construction results of toy car demonstrate the suitability and ability of the proposed method.

  17. The interactive presentation of 3D information obtained from reconstructed datasets and 3D placement of single histological sections with the 3D portable document format

    NARCIS (Netherlands)

    B.A. de Boer; A.T. Soufan; J. Hagoort; T.J. Mohun; M.J.B. van den Hoff; A. Hasman; F.P.J.M. Voorbraak; A.F.M. Moorman; J.M. Ruijter

    2011-01-01

    Interpretation of the results of anatomical and embryological studies relies heavily on proper visualization of complex morphogenetic processes and patterns of gene expression in a three-dimensional (3D) context. However, reconstruction of complete 3D datasets is time consuming and often researchers

  18. Robust 3D reconstruction with an RGB-D camera.

    Science.gov (United States)

    Wang, Kangkan; Zhang, Guofeng; Bao, Hujun

    2014-11-01

    We present a novel 3D reconstruction approach using a low-cost RGB-D camera such as Microsoft Kinect. Compared with previous methods, our scanning system can work well in challenging cases where there are large repeated textures and significant depth missing problems. For robust registration, we propose to utilize both visual and geometry features and combine SFM technique to enhance the robustness of feature matching and camera pose estimation. In addition, a novel prior-based multicandidates RANSAC is introduced to efficiently estimate the model parameters and significantly speed up the camera pose estimation under multiple correspondence candidates. Even when serious depth missing occurs, our method still can successfully register all frames together. Loop closure also can be robustly detected and handled to eliminate the drift problem. The missing geometry can be completed by combining multiview stereo and mesh deformation techniques. A variety of challenging examples demonstrate the effectiveness of the proposed approach.

  19. 3D Lunar Terrain Reconstruction from Apollo Images

    Science.gov (United States)

    Broxton, Michael J.; Nefian, Ara V.; Moratto, Zachary; Kim, Taemin; Lundy, Michael; Segal, Alkeksandr V.

    2009-01-01

    Generating accurate three dimensional planetary models is becoming increasingly important as NASA plans manned missions to return to the Moon in the next decade. This paper describes a 3D surface reconstruction system called the Ames Stereo Pipeline that is designed to produce such models automatically by processing orbital stereo imagery. We discuss two important core aspects of this system: (1) refinement of satellite station positions and pose estimates through least squares bundle adjustment; and (2) a stochastic plane fitting algorithm that generalizes the Lucas-Kanade method for optimal matching between stereo pair images.. These techniques allow us to automatically produce seamless, highly accurate digital elevation models from multiple stereo image pairs while significantly reducing the influence of image noise. Our technique is demonstrated on a set of 71 high resolution scanned images from the Apollo 15 mission

  20. Adaptive diffusion regularization for enhancement of microcalcifications in digital breast tomosynthesis (DBT) reconstruction

    Science.gov (United States)

    Lu, Yao; Chan, Heang-Ping; Fessler, Jeffrey A.; Hadjiiski, Lubomir; Wei, Jun; Goodsitt, Mitchell M.

    2011-03-01

    Digital breast tomosynthesis (DBT) has been shown to increase mass detection. Detection of microcalcifications in DBT is challenging because of the small, subtle signals to be searched in the large breast volume and the noise in the reconstructed volume. We developed an adaptive diffusion (AD) regularization method that can differentially regularize noise and potential signal regions during reconstruction based on local contrast-to-noise ratio (CNR) information. This method adaptively applies different degrees of regularity to signal and noise regions, as guided by a CNR map for each DBT slice within the image volume, such that potential signals will be preserved while noise is suppressed. DBT scans of an American College of Radiology phantom and the breast of a subject with biopsy-proven calcifications were acquired with a GE prototype DBT system at 21 angles in 3° increments over a +/-30° range. Simultaneous algebraic reconstruction technique (SART) was used for DBT reconstruction. The AD regularization method was compared to the non-convex total p-variation (TpV) method and SART with no regularization (NR) in terms of the CNR and the full width at half maximum (FWHM) of the central gray-level line profile in the focal plane of a calcification. The results demonstrated that the SART regularized by the AD method enhanced the CNR and preserved the sharpness of microcalcifications compared to reconstruction without regularization. The AD regularization was superior to the TpV method for subtle microcalcifications in terms of the CNR while the FWHM was comparable. The AD regularized reconstruction has the potential to improve the CNR of microcalcifications in DBT for human or machine detection.

  1. 3D-MSCT imaging of bullet trajectory in 3D crime scene reconstruction: two case reports.

    Science.gov (United States)

    Colard, T; Delannoy, Y; Bresson, F; Marechal, C; Raul, J S; Hedouin, V

    2013-11-01

    Postmortem investigations are increasingly assisted by three-dimensional multi-slice computed tomography (3D-MSCT) and have become more available to forensic pathologists over the past 20years. In cases of ballistic wounds, 3D-MSCT can provide an accurate description of the bullet location, bone fractures and, more interestingly, a clear visual of the intracorporeal trajectory (bullet track). These forensic medical examinations can be combined with tridimensional bullet trajectory reconstructions created by forensic ballistic experts. These case reports present the implementation of tridimensional methods and the results of 3D crime scene reconstruction in two cases. The authors highlight the value of collaborations between police forensic experts and forensic medicine institutes through the incorporation of 3D-MSCT data in a crime scene reconstruction, which is of great interest in forensic science as a clear visual communication tool between experts and the court.

  2. Image artifacts in digital breast tomosynthesis: Investigation of the effects of system geometry and reconstruction parameters using a linear system approach

    Science.gov (United States)

    Hu, Yue-Houng; Zhao, Bo; Zhao, Wei

    2008-01-01

    Digital breast tomosynthesis (DBT) is a three-dimensional (3D) x-ray imaging modality that reconstructs image slices parallel to the detector plane. Image acquisition is performed using a limited angular range (less than 50 degrees) and a limited number of projection views (less than 50 views). Due to incomplete data sampling, image artifacts are unavoidable in DBT. In this preliminary study, the image artifacts in DBT were investigated systematically using a linear system approximation. A cascaded linear system model of DBT was developed to calculate the 3D presampling modulation transfer function (MTF) with different image acquisition geometries and reconstruction filters using a filtered backprojection (FBP) algorithm. A thin, slanted tungsten (W) wire was used to measure the presampling MTF of the DBT system in the cross-sectional plane defined by the thickness (z-) and tube travel (x-) directions. The measurement was in excellent agreement with the calculation using the model. A small steel bead was used to calculate the artifact spread function (ASF) of the DBT system. The ASF was correlated with the convolution of the two-dimensional (2D) point spread function (PSF) of the system and the object function of the bead. The results showed that the cascaded linear system model can be used to predict the magnitude of image artifacts of small, high-contrast objects with different image acquisition geometry and reconstruction filters. PMID:19175083

  3. FIT3D toolbox: multiple view geometry and 3D reconstruction for Matlab

    NARCIS (Netherlands)

    Esteban, I.; Dijk, J.; Groen, F.

    2010-01-01

    FIT3D is a Toolbox built for Matlab that aims at unifying and distributing a set of tools that will allow the researcher to obtain a complete 3D model from a set of calibrated images. In this paper we motivate and present the structure of the toolbox in a tutorial and example based approach. Given i

  4. FIT3D Toolbox : multiple view geometry and 3D reconstruction for MATLAB

    NARCIS (Netherlands)

    Esteban, I.; Dijk, J.; Groen, F.

    2010-01-01

    FIT3D is a Toolbox built for Matlab that aims at unifying and distributing a set of tools that will allow the researcher to obtain a complete 3D model from a set of calibrated images. In this paper we motivate and present the structure of the toolbox in a tutorial and example based approach. Given i

  5. On 3D reconstruction of bubbles in volcanic ash particles

    Science.gov (United States)

    Proussevitch, A.; Sahagian, D.; Mulukutla, G.; Kiely, C.

    2007-12-01

    Bubbles in volcanic ash particles are primarily represented by the remnants of films and plateau borders from disrupting foam. Without preservation of complete bubbles, measuring bubble size distributions a challenging task, but one for which we have taken a novel approach. Concavities in ash particles retain a record of bubble sizes in the curvature of their concave surfaces that resulted from bubble fragmentation and quenching during energetic magma eruptions. We have used two methods to measure bubble fragment curvature on the basis of 3D reconstruction of ash particle surfaces. One is based on High Resolution X-Ray Tomography (HRXRT) and the second one is based on stereo images from tilting Scattered Electron Microscopy (SEM). Both methods allow the creation of Digital Elevation Model (DEM) datasets of the ash particle surfaces which in turn are used to identify and measure vertical cross-sectional profiles of the individual bubble fragments ("craters"). Function fit analysis for circular or elliptical functions are applied to each bubble cross sectional profile in two orthogonal directions to reconstruct sizes of the original, complete bubbles. The method allows measurement of submicron (SEM; XUM), micron or larger (HRXRT) bubbles in ash particles. The bubble size distributions so obtained can provide valuable insights regarding magma dynamics and vesiculation that lead to explosive eruptions, as well as the processes of fragmentation in eruption columns. There are no previous systematic information/databases of vesiculation metrics for explosive silicic eruptions, but this new method can be used to produce these and thus provide better insights into prehistoric eruption styles for volcanic hazard assessment.

  6. Multiframe image point matching and 3-d surface reconstruction.

    Science.gov (United States)

    Tsai, R Y

    1983-02-01

    This paper presents two new methods, the Joint Moment Method (JMM) and the Window Variance Method (WVM), for image matching and 3-D object surface reconstruction using multiple perspective views. The viewing positions and orientations for these perspective views are known a priori, as is usually the case for such applications as robotics and industrial vision as well as close range photogrammetry. Like the conventional two-frame correlation method, the JMM and WVM require finding the extrema of 1-D curves, which are proved to theoretically approach a delta function exponentially as the number of frames increases for the JMM and are much sharper than the two-frame correlation function for both the JMM and the WVM, even when the image point to be matched cannot be easily distinguished from some of the other points. The theoretical findings have been supported by simulations. It is also proved that JMM and WVM are not sensitive to certain radiometric effects. If the same window size is used, the computational complexity for the proposed methods is about n - 1 times that for the two-frame method where n is the number of frames. Simulation results show that the JMM and WVM require smaller windows than the two-frame correlation method with better accuracy, and therefore may even be more computationally feasible than the latter since the computational complexity increases quadratically as a function of the window size.

  7. Reconstruction of 3-D Temperature Field in Holographic Interferometry

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The tomography technique is commonly used for the reconstruction of holographic interferometry. However, the current reconstruction method doesn't consider the measurement errors which are non-avoidable in the measurement and will degrade the reconstruction quality. The factors affecting the reconstruction quality are analyzed and the distribution law of the reconstruction error with experimental errors is discussed. Finally, a method to improve the reconstruction quality—the Kalman filter method is presented.

  8. Optical geometry calibration method for free-form digital tomosynthesis

    Science.gov (United States)

    Chtcheprov, Pavel; Hartman, Allison; Shan, Jing; Lee, Yueh Z.; Zhou, Otto; Lu, Jianping

    2016-03-01

    Digital tomosynthesis is a type of limited angle tomography that allows 3D information to be reconstructed from a set of x-ray projection images taken at various angles using an x-ray tube, a mechanical arm to rotate the tube about the object, and a digital detector. Tomosynthesis reconstruction requires the precise location of the detector with respect to each x-ray source, forcing all current clinical tomosynthesis systems to use a physically coupled source and detector so the geometry is always known and is always the same. This limits the imaging geometries and its large size is impractical for mobile or field operations. To counter this, we have developed a free form tomosynthesis with a decoupled, free-moving source and detector that uses a novel optical method for accurate and real-time geometry calibration to allow for manual, hand-held tomosynthesis and even CT imaging. We accomplish this by using a camera, attached to the source, to track the motion of the source relative to the detector. Attached to the detector is an optical pattern and the image captured by the camera is then used to determine the relative camera/pattern position and orientation by analyzing the pattern distortion and calculating the source positions for each projection, necessary for 3D reconstruction. This allows for portable imaging in the field and also as an inexpensive upgrade to existing 2D systems, such as in developing countries, to provide 3D image data. Here we report the first feasibility demonstrations of free form digital tomosynthesis systems using the method.

  9. Three-dimensional linear system analysis for breast tomosynthesis

    Science.gov (United States)

    Zhao, Bo; Zhao, Wei

    2008-01-01

    The optimization of digital breast tomosynthesis (DBT) geometry and reconstruction is crucial for the clinical translation of this exciting new imaging technique. In the present work, the authors developed a three-dimensional (3D) cascaded linear system model for DBT to investigate the effects of detector performance, imaging geometry, and image reconstruction algorithm on the reconstructed image quality. The characteristics of a prototype DBT system equipped with an amorphous selenium flat-panel detector and filtered backprojection reconstruction were used as an example in the implementation of the linear system model. The propagation of signal and noise in the frequency domain was divided into six cascaded stages incorporating the detector performance, imaging geometry, and reconstruction filters. The reconstructed tomosynthesis imaging quality was characterized by spatial frequency dependent presampling modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) in 3D. The results showed that both MTF and NPS were affected by the angular range of the tomosynthesis scan and the reconstruction filters. For image planes parallel to the detector (in-plane), MTF at low frequencies was improved with increase in angular range. The shape of the NPS was affected by the reconstruction filters. Noise aliasing in 3D could be introduced by insufficient voxel sampling, especially in the z (slice-thickness) direction where the sampling distance (slice thickness) could be more than ten times that for in-plane images. Aliasing increases the noise at high frequencies, which causes degradation in DQE. Application of a reconstruction filter that limits the frequency components beyond the Nyquist frequency in the z direction, referred to as the slice thickness filter, eliminates noise aliasing and improves 3D DQE. The focal spot blur, which arises from continuous tube travel during tomosynthesis acquisition, could degrade DQE significantly

  10. TU-CD-207-04: Radiation Exposure Comparisons of CESM with 2D FFDM and 3D Tomosynthesis Mammography

    Energy Technology Data Exchange (ETDEWEB)

    James, J; Boltz, T; Pavlicek, W [Mayo Clinic Arizona, Scottsdale, AZ (United States)

    2015-06-15

    Purpose: While mammography is considered the standard for front-line breast cancer screening, image sensitivity and specificity can be affected by factors like dense breast tissue. Contrast-enhanced spectral mammography (CESM) shows promising initial results for dense breasts but comes at the cost of increased dose compared with full-field-digital-mammography (FFDM). The goal of this study is to quantitatively assess the dose increase of CESM in comparison with 2D-FFDM and 3D-Tomo at varying breast thickness. Methods: The experiments were conducted on a Hologic-Selenia-Dimensions system that performed 2D-FFDM, 3D-Tomo and CESM (high and low energies) on regular (50/50) and dense (70/30) breast tissue-mimicking phantoms. Both the phantoms had 6, 1-cm thick slabs (total thickness 6cm), compressed at 20-lbs using an 18×24 paddle. A single exposure was performed for each of the 3 mammo techniques with the following settings: AEC-Auto; Focal Spot-Large; kVp-Auto; mAs- Auto, Target/Filter combination-Auto; AEC Sensor/Exposure compensation Step-2/0. Average glandular dose (AGD) in mGy was obtained and compared as a function of breast thickness (1 – 6 cm) for both the phantom types. Results: The study shows that dose from the total CESM from 50/50 phantom at a breast thickness of a) 4.5 cm was 37.5% higher than 2D-FFDM and 30% higher than 3D-Tomo, b) 6 cm was 36.2% higher than 2D-FFDM and 41% higher than 3D-Tomo. For a dense breast tissue of 70/30 phantom, it was found that CESM dose at a breast thickness of: a) 4.5 cm was 33.3% higher than 2D-FFDM and 28.8% higher than 3D-Tomo, b) 6 cm was 35.4% higher than 2D-FFDM and 48.0% higher than 3D-Tomo. The overall CESM dose for the dense breast phantom was 12.5% higher at 4.5cm and 35% higher at 6 cm compared to the 50/50 phantom. Conclusion: This quantitative comparison study showed that CESM technique has an increased radiation dose compared to conventional 2D-FFDM and 3D-Tomo.

  11. Two complementary model observers to evaluate reconstructions of simulated micro-calcifications in digital breast tomosynthesis

    Science.gov (United States)

    Michielsen, Koen; Zanca, Federica; Marshall, Nicholas; Bosmans, Hilde; Nuyts, Johan

    2013-03-01

    New imaging modalities need to be properly evaluated before being introduced in clinical practice. The gold standard is to perform clinical trials or dedicated clinical performance related observer experiments with experienced readers. Unfortunately this is not feasible during development or optimization of new reconstruction algorithms due to their many degrees of freedom. Our goal is to design a set of model observers to evaluate the performance of newly developed reconstruction methods on the assessment of micro-calcifications in digital breast tomosynthesis. In order to do so, the model observers need to evaluate both detection and classification of micro-calcifications. A channelized Hotelling observer was created for the detection task and a Hotelling observer working on an extracted feature vector was implemented for the classification task. These observers were evaluated on their ability to predict the results of human observers. Results from a previous observer study were used as reference to compare performance between human and model observers. This study evaluated detection of small micro-calcifications (100 { 200 _m) by a free search task in a power law filtered noise background and classification of two types of larger micro-calcifications (200 {600 _m) in the same background. Scores from the free search study were evaluated using the weighted JAFROC method and the classification scores were analyzed using the DBM MRMC method. The same analysis methods were applied to the model observer scores. Results of the detection model observer were related linearly with the human observer results with a correlation coefficient of 0.962. The correlation coefficient for the classification task was 0.959 with a power law non-linear regression.

  12. Reconstruction of quadratic curves in 3-D from two or more perspective views

    Directory of Open Access Journals (Sweden)

    Balasubramanian R.

    2002-01-01

    Full Text Available The issues involved in the reconstruction of a quadratic curve in 3-D space from arbitrary perspective projections are described in this paper. Correspondence between the projections of the curve on the image planes is assumed to be established. Equations for reconstruction of the 3-D curve, which give the parameters of the 3-D quadratic curve are determined. Uniqueness of the solution in the process of reconstruction is addressed and solved using additional constraints. As practical examples, reconstruction of circles, parabolas and pair of straight lines in 3-D space are demonstrated.

  13. Advanced system for 3D dental anatomy reconstruction and 3D tooth movement simulation during orthodontic treatment

    Science.gov (United States)

    Monserrat, Carlos; Alcaniz-Raya, Mariano L.; Juan, M. Carmen; Grau Colomer, Vincente; Albalat, Salvador E.

    1997-05-01

    This paper describes a new method for 3D orthodontics treatment simulation developed for an orthodontics planning system (MAGALLANES). We develop an original system for 3D capturing and reconstruction of dental anatomy that avoid use of dental casts in orthodontic treatments. Two original techniques are presented, one direct in which data are acquired directly form patient's mouth by mean of low cost 3D digitizers, and one mixed in which data are obtained by 3D digitizing of hydrocollids molds. FOr this purpose we have designed and manufactured an optimized optical measuring system based on laser structured light. We apply these 3D dental models to simulate 3D movement of teeth, including rotations, during orthodontic treatment. The proposed algorithms enable to quantify the effect of orthodontic appliance on tooth movement. The developed techniques has been integrated in a system named MAGALLANES. This original system present several tools for 3D simulation and planning of orthodontic treatments. The prototype system has been tested in several orthodontic clinic with very good results.

  14. Integration of real-time 3D capture, reconstruction, and light-field display

    Science.gov (United States)

    Zhang, Zhaoxing; Geng, Zheng; Li, Tuotuo; Pei, Renjing; Liu, Yongchun; Zhang, Xiao

    2015-03-01

    Effective integration of 3D acquisition, reconstruction (modeling) and display technologies into a seamless systems provides augmented experience of visualizing and analyzing real objects and scenes with realistic 3D sensation. Applications can be found in medical imaging, gaming, virtual or augmented reality and hybrid simulations. Although 3D acquisition, reconstruction, and display technologies have gained significant momentum in recent years, there seems a lack of attention on synergistically combining these components into a "end-to-end" 3D visualization system. We designed, built and tested an integrated 3D visualization system that is able to capture in real-time 3D light-field images, perform 3D reconstruction to build 3D model of the objects, and display the 3D model on a large autostereoscopic screen. In this article, we will present our system architecture and component designs, hardware/software implementations, and experimental results. We will elaborate on our recent progress on sparse camera array light-field 3D acquisition, real-time dense 3D reconstruction, and autostereoscopic multi-view 3D display. A prototype is finally presented with test results to illustrate the effectiveness of our proposed integrated 3D visualization system.

  15. 3D reconstruction of SEM images by use of optical photogrammetry software.

    Science.gov (United States)

    Eulitz, Mona; Reiss, Gebhard

    2015-08-01

    Reconstruction of the three-dimensional (3D) surface of an object to be examined is widely used for structure analysis in science and many biological questions require information about their true 3D structure. For Scanning Electron Microscopy (SEM) there has been no efficient non-destructive solution for reconstruction of the surface morphology to date. The well-known method of recording stereo pair images generates a 3D stereoscope reconstruction of a section, but not of the complete sample surface. We present a simple and non-destructive method of 3D surface reconstruction from SEM samples based on the principles of optical close range photogrammetry. In optical close range photogrammetry a series of overlapping photos is used to generate a 3D model of the surface of an object. We adapted this method to the special SEM requirements. Instead of moving a detector around the object, the object itself was rotated. A series of overlapping photos was stitched and converted into a 3D model using the software commonly used for optical photogrammetry. A rabbit kidney glomerulus was used to demonstrate the workflow of this adaption. The reconstruction produced a realistic and high-resolution 3D mesh model of the glomerular surface. The study showed that SEM micrographs are suitable for 3D reconstruction by optical photogrammetry. This new approach is a simple and useful method of 3D surface reconstruction and suitable for various applications in research and teaching.

  16. TOMOGRAPHIC MAMMOGRAPHY AND TOMOSYNTHESIS USING OPENGL

    Directory of Open Access Journals (Sweden)

    S. A. Zolotarev

    2016-01-01

    Full Text Available Computed tomography is still being intensively studied and widely used to solve a number of industrial and medical applications. The simultaneous algebraic reconstruction technique (SART and Bayesian inference reconstruction (BIR are considered as advantageous iteration methods that are most suitable for improving the quality of the reconstructed 3D-images. The paper deals with the parallel iterative algorithms to ensure the reconstruction of threedimensional images of the breast, recovered from a limited set of noisy X-ray projections. Algebraic method of reconstruction with simultaneous iterations – SART and iterative method for statistical reconstruction of BIR are deemed to be the most preferred iterative methods. We believe that these methods are particularly useful for improving the quality of breast reconstructed image. We use the graphics processor (GPU to accelerate the process of reconstruction. Preliminary results show that all investigated methods are useful in breast reconstruction layered images. However, it was found that the method of classical tomosynthesis SAA is less efficient than iterative methods SART and BIR as the worst suppress the anatomical noise. Despite the fact that the estimated ratio of the contrast / noise ratio in the presence of internal structures with low contrast is higher for classical tomosynthesis method the SAA, its effectiveness in the presence of highly structured background is low. In our opinion the best results can be achieved using statistical iterative reconstruction BIR.

  17. Local motion-compensated method for high-quality 3D coronary artery reconstruction.

    Science.gov (United States)

    Liu, Bo; Bai, Xiangzhi; Zhou, Fugen

    2016-12-01

    The 3D reconstruction of coronary artery from X-ray angiograms rotationally acquired on C-arm has great clinical value. While cardiac-gated reconstruction has shown promising results, it suffers from the problem of residual motion. This work proposed a new local motion-compensated reconstruction method to handle this issue. An initial image was firstly reconstructed using a regularized iterative reconstruction method. Then a 3D/2D registration method was proposed to estimate the residual vessel motion. Finally, the residual motion was compensated in the final reconstruction using the extended iterative reconstruction method. Through quantitative evaluation, it was found that high-quality 3D reconstruction could be obtained and the result was comparable to state-of-the-art method.

  18. Photogrammetry for rapid prototyping: development of noncontact 3D reconstruction technologies

    Science.gov (United States)

    Knyaz, Vladimir A.

    2002-04-01

    An important stage of rapid prototyping technology is generating computer 3D model of an object to be reproduced. Wide variety of techniques for 3D model generation exists beginning with manual 3D models generation and finishing with full-automated reverse engineering system. The progress in CCD sensors and computers provides the background for integration of photogrammetry as an accurate 3D data source with CAD/CAM. The paper presents the results of developing photogrammetric methods for non-contact spatial coordinates measurements and generation of computer 3D model of real objects. The technology is based on object convergent images processing for calculating its 3D coordinates and surface reconstruction. The hardware used for spatial coordinates measurements is based on PC as central processing unit and video camera as image acquisition device. The original software for Windows 9X realizes the complete technology of 3D reconstruction for rapid input of geometry data in CAD/CAM systems. Technical characteristics of developed systems are given along with the results of applying for various tasks of 3D reconstruction. The paper describes the techniques used for non-contact measurements and the methods providing metric characteristics of reconstructed 3D model. Also the results of system application for 3D reconstruction of complex industrial objects are presented.

  19. Reconstruction of ploughed soil surface with 3D fractal interpolation

    NARCIS (Netherlands)

    Liu, Y.; Lu, Z.; Hoogmoed, W.B.; Li, X.

    2014-01-01

    By using a laser profiler, the roughness of ploughed soil surface was obtained. 3D fractal interpolation method was used to interpolate several kinds of reduced measured surface data which were reduced from the original measured ploughed soil surface elevation data in different reduction rates. Also

  20. Towards 3D facial reconstruction from uncalibrated CCTV footage

    NARCIS (Netherlands)

    Dam, van Chris; Veldhuis, Raymond; Spreeuwers, Luuk

    2012-01-01

    Facial comparison in 2D is an accepted method in law enforcement and forensic investigation, but pose variations, varying light conditions and low resolution video data can reduce the evidential value of the comparison. Some of these problems might be solved by comparing 3D face models: a face model

  1. Autonomous Planetary 3-D Reconstruction From Satellite Images

    DEFF Research Database (Denmark)

    Denver, Troelz

    1999-01-01

    is discussed.Based on such features, 3-D representations may be compiled from two or more 2-D satellite images. The main purposes of such a mapping system are extraction of landing sites, objects of scientific interest and general planetary surveying. All data processing is performed autonomously onboard...

  2. Robust 3D reconstruction system for human jaw modeling

    Science.gov (United States)

    Yamany, Sameh M.; Farag, Aly A.; Tazman, David; Farman, Allan G.

    1999-03-01

    This paper presents a model-based vision system for dentistry that will replace traditional approaches used in diagnosis, treatment planning and surgical simulation. Dentistry requires accurate 3D representation of the teeth and jaws for many diagnostic and treatment purposes. For example orthodontic treatment involves the application of force systems to teeth over time to correct malocclusion. In order to evaluate tooth movement progress, the orthodontists monitors this movement by means of visual inspection, intraoral measurements, fabrication of plastic models, photographs and radiographs, a process which is both costly and time consuming. In this paper an integrate system has been developed to record the patient's occlusion using computer vision. Data is acquired with an intraoral video camera. A modified shape from shading (SFS) technique, using perspective projection and camera calibration, is used to extract accurate 3D information from a sequence of 2D images of the jaw. A new technique for 3D data registration, using a Grid Closest Point transform and genetic algorithms, is used to register the SFS output. Triangulization is then performed, and a solid 3D model is obtained via a rapid prototype machine.

  3. Online reconstruction of 3D magnetic particle imaging data

    Science.gov (United States)

    Knopp, T.; Hofmann, M.

    2016-06-01

    Magnetic particle imaging is a quantitative functional imaging technique that allows imaging of the spatial distribution of super-paramagnetic iron oxide particles at high temporal resolution. The raw data acquisition can be performed at frame rates of more than 40 volumes s-1. However, to date image reconstruction is performed in an offline step and thus no direct feedback is available during the experiment. Considering potential interventional applications such direct feedback would be mandatory. In this work, an online reconstruction framework is implemented that allows direct visualization of the particle distribution on the screen of the acquisition computer with a latency of about 2 s. The reconstruction process is adaptive and performs block-averaging in order to optimize the signal quality for a given amount of reconstruction time.

  4. Performance analysis of different surface reconstruction algorithms for 3D reconstruction of outdoor objects from their digital images.

    Science.gov (United States)

    Maiti, Abhik; Chakravarty, Debashish

    2016-01-01

    3D reconstruction of geo-objects from their digital images is a time-efficient and convenient way of studying the structural features of the object being modelled. This paper presents a 3D reconstruction methodology which can be used to generate photo-realistic 3D watertight surface of different irregular shaped objects, from digital image sequences of the objects. The 3D reconstruction approach described here is robust, simplistic and can be readily used in reconstructing watertight 3D surface of any object from its digital image sequence. Here, digital images of different objects are used to build sparse, followed by dense 3D point clouds of the objects. These image-obtained point clouds are then used for generation of photo-realistic 3D surfaces, using different surface reconstruction algorithms such as Poisson reconstruction and Ball-pivoting algorithm. Different control parameters of these algorithms are identified, which affect the quality and computation time of the reconstructed 3D surface. The effects of these control parameters in generation of 3D surface from point clouds of different density are studied. It is shown that the reconstructed surface quality of Poisson reconstruction depends on Samples per node (SN) significantly, greater SN values resulting in better quality surfaces. Also, the quality of the 3D surface generated using Ball-Pivoting algorithm is found to be highly depend upon Clustering radius and Angle threshold values. The results obtained from this study give the readers of the article a valuable insight into the effects of different control parameters on determining the reconstructed surface quality.

  5. Characterization of masses in digital breast tomosynthesis: Comparison of machine learning in projection views and reconstructed slices

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Heang-Ping; Wu Yita; Sahiner, Berkman; Wei, Jun; Helvie, Mark A.; Zhang Yiheng; Moore, Richard H.; Kopans, Daniel B.; Hadjiiski, Lubomir; Way, Ted [Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109 (United States); Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States); Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2010-07-15

    Purpose: In digital breast tomosynthesis (DBT), quasi-three-dimensional (3D) structural information is reconstructed from a small number of 2D projection view (PV) mammograms acquired over a limited angular range. The authors developed preliminary computer-aided diagnosis (CADx) methods for classification of malignant and benign masses and compared the effectiveness of analyzing lesion characteristics in the reconstructed DBT slices and in the PVs. Methods: A data set of MLO view DBT of 99 patients containing 107 masses (56 malignant and 51 benign) was collected at the Massachusetts General Hospital with IRB approval. The DBTs were obtained with a GE prototype system which acquired 11 PVs over a 50 deg. arc. The authors reconstructed the DBTs at 1 mm slice interval using a simultaneous algebraic reconstruction technique. The region of interest (ROI) containing the mass was marked by a radiologist in the DBT volume and the corresponding ROIs on the PVs were derived based on the imaging geometry. The subsequent processes were fully automated. For classification of masses using the DBT-slice approach, the mass on each slice was segmented by an active contour model initialized with adaptive k-means clustering. A spiculation likelihood map was generated by analysis of the gradient directions around the mass margin and spiculation features were extracted from the map. The rubber band straightening transform (RBST) was applied to a band of pixels around the segmented mass boundary. The RBST image was enhanced by Sobel filtering in the horizontal and vertical directions, from which run-length statistics texture features were extracted. Morphological features including those from the normalized radial length were designed to describe the mass shape. A feature space composed of the spiculation features, texture features, and morphological features extracted from the central slice alone and seven feature spaces obtained by averaging the corresponding features from three to 19

  6. 3D reconstruction of tropospheric cirrus clouds by stereovision system

    Science.gov (United States)

    Nadjib Kouahla, Mohamed; Moreels, Guy; Seridi, Hamid

    2016-07-01

    A stereo imaging method is applied to measure the altitude of cirrus clouds and provide a 3D map of the altitude of the layer centroid. They are located in the high troposphere and, sometimes in the lower stratosphere, between 6 and 10 km high. Two simultaneous images of the same scene are taken with Canon cameras (400D) in two sites distant of 37 Km. Each image processed in order to invert the perspective effect and provide a satellite-type view of the layer. Pairs of matched points that correspond to a physical emissive point in the common area are identified in calculating a correlation coefficient (ZNCC: Zero mean Normalized Cross-correlation or ZSSD: as Zero mean Sum of Squared Differences). This method is suitable for obtaining 3D representations in the case of low-contrast objects. An observational campaign was conducted in June 2014 in France. The images were taken simultaneously at Marnay (47°17'31.5" N, 5°44'58.8" E; altitude 275 m) 25 km northwest of Besancon and in Mont poupet (46°58'31.5" N, 5°52'22.7" E; altitude 600 m) southwest of Besancon at 43 km. 3D maps of the Natural cirrus clouds and artificial like "aircraft trails" are retrieved. They are compared with pseudo-relief intensity maps of the same region. The mean altitude of the cirrus barycenter is located at 8.5 ± 1km on June 11.

  7. 3-D Reconstruction From 2-D Radiographic Images and Its Application to Clinical Veterinary Medicine

    Science.gov (United States)

    Hamamoto, Kazuhiko; Sato, Motoyoshi

    3D imaging technique is very important and indispensable in diagnosis. The main stream of the technique is one in which 3D image is reconstructed from a set of slice images, such as X-ray CT and MRI. However, these systems require large space and high costs. On the other hand, a low cost and small size 3D imaging system is needed in clinical veterinary medicine, for example, in the case of diagnosis in X-ray car or pasture area. We propose a novel 3D imaging technique using 2-D X-ray radiographic images. This system can be realized by cheaper system than X-ray CT and enables to get 3D image in X-ray car or portable X-ray equipment. In this paper, a 3D visualization technique from 2-D radiographic images is proposed and several reconstructions are shown. These reconstructions are evaluated by veterinarians.

  8. 3D reconstruction of worn parts for flexible remanufacture based on robotic arc welding

    Institute of Scientific and Technical Information of China (English)

    Yin Ziqiang; Zhang Guangjun; Gao Hongming; Wu Lin

    2010-01-01

    3D reconstruction of worn parts is the foundation for remanufacturing system based on robotic arc welding,because it can provide 3D geometric information for robot task plan.In this investigation,a nocwl 3D reconstruction system based on linear structured light vision sensing is developed,This system hardware consists of a MTC368-CB CCD camera,a MLH-645laser projector and a DH-CG300 image grabbing card.This system software is developed to control the image data capture.In order to reconstruct the 3D geometric information from the captured image,a two steps rapid calibration algorithm is proposed.The 3D reconstruction experiment shows a satisfactory result.

  9. Diagnostic value of 3 D CT surface reconstruction in spinal fractures

    Energy Technology Data Exchange (ETDEWEB)

    Koesling, S. [Department of Radiology, Univ. of Leipzig (Germany); Dietrich, K. [Department of Radiology, Univ. of Leipzig (Germany); Steinecke, R. [Department of Radiology, Univ. of Leipzig (Germany); Kloeppel, R. [Department of Radiology, Univ. of Leipzig (Germany); Schulz, H.G. [Department of Radiology, Univ. of Leipzig (Germany)

    1997-02-01

    Our purpose was to evaluate the diagnostic value of three-dimensional (3 D) CT surface reconstruction in spinal fractures in comparison with axial and reformatted images. A total of 50 patients with different CT-proven spinal fractures were analysed retrospectively. Based on axial scans and reformatted images, the spinal fractures were classified according to several classifications as Magerl for the thoraco-lumbar and lower cervical spine by one radiologist. Another radiologist performed 3 D CT surface reconstructions with the aim of characterizing the different types of spinal fractures. A third radiologist classified the 3 D CT surface reconstruction according to the Magerl classification. The results of the blinded reading process were compared. It was checked to see in which type and subgroup 3 D surface reconstructions were helpful. Readers one and two obtained the same results in the classification. The 3 D surface reconstruction did not yield any additional diagnostic information concerning type A and B injuries. Indeed, the full extent of the fracture could be easier recognized with axial and reformatted images in all cases. In 10 cases of C injuries, the dislocation of parts of vertebrae could be better recognized with the help of 3 D reconstructions. A 3 D CT surface reconstruction is only useful in rotational and shear vertebral injuries (Magerl type C injury). (orig.). With 4 figs., 1 tab.

  10. 3D model tools for architecture and archaeology reconstruction

    Science.gov (United States)

    Vlad, Ioan; Herban, Ioan Sorin; Stoian, Mircea; Vilceanu, Clara-Beatrice

    2016-06-01

    The main objective of architectural and patrimonial survey is to provide a precise documentation of the status quo of the surveyed objects (monuments, buildings, archaeological object and sites) for preservation and protection, for scientific studies and restoration purposes, for the presentation to the general public. Cultural heritage documentation includes an interdisciplinary approach having as purpose an overall understanding of the object itself and an integration of the information which characterize it. The accuracy and the precision of the model are directly influenced by the quality of the measurements realized on field and by the quality of the software. The software is in the process of continuous development, which brings many improvements. On the other side, compared to aerial photogrammetry, close range photogrammetry and particularly architectural photogrammetry is not limited to vertical photographs with special cameras. The methodology of terrestrial photogrammetry has changed significantly and various photographic acquisitions are widely in use. In this context, the present paper brings forward a comparative study of TLS (Terrestrial Laser Scanner) and digital photogrammetry for 3D modeling. The authors take into account the accuracy of the 3D models obtained, the overall costs involved for each technology and method and the 4th dimension - time. The paper proves its applicability as photogrammetric technologies are nowadays used at a large scale for obtaining the 3D model of cultural heritage objects, efficacious in their assessment and monitoring, thus contributing to historic conservation. Its importance also lies in highlighting the advantages and disadvantages of each method used - very important issue for both the industrial and scientific segment when facing decisions such as in which technology to invest more research and funds.

  11. 3D Image Reconstruction from Compton camera data

    CERN Document Server

    Kuchment, Peter

    2016-01-01

    In this paper, we address analytically and numerically the inversion of the integral transform (\\emph{cone} or \\emph{Compton} transform) that maps a function on $\\mathbb{R}^3$ to its integrals over conical surfaces. It arises in a variety of imaging techniques, e.g. in astronomy, optical imaging, and homeland security imaging, especially when the so called Compton cameras are involved. Several inversion formulas are developed and implemented numerically in $3D$ (the much simpler $2D$ case was considered in a previous publication).

  12. Quantitative Reconstructions of 3D Chemical Nanostructures in Nanowires.

    Science.gov (United States)

    Rueda-Fonseca, P; Robin, E; Bellet-Amalric, E; Lopez-Haro, M; Den Hertog, M; Genuist, Y; André, R; Artioli, A; Tatarenko, S; Ferrand, D; Cibert, J

    2016-03-01

    Energy dispersive X-ray spectrometry is used to extract a quantitative 3D composition profile of heterostructured nanowires. The analysis of hypermaps recorded along a limited number of projections, with a preliminary calibration of the signal associated with each element, is compared to the intensity profiles calculated for a model structure with successive shells of circular, elliptic, or faceted cross sections. This discrete tomographic technique is applied to II-VI nanowires grown by molecular beam epitaxy, incorporating ZnTe and CdTe and their alloys with Mn and Mg, with typical size down to a few nanometers and Mn or Mg content as low as 10%.

  13. Reconstruction of 3D models of cast sculptures using close-range photogrammetry

    Directory of Open Access Journals (Sweden)

    Ž. Santoši

    2015-10-01

    Full Text Available This paper presents the possibilities of application of close-range photogrammetry, based on the Structure-from- Motion (SfM approach, in 3D model’s reconstruction of bronze cast sculptures. Special attention was dedicated to the analysis of image processing strategy, and its impact on the 3D model reconstruction quality. For the purpose of analysis a bust of Nikola Tesla, placed in front of the Faculty of Technical Sciences University of Novi Sad was used. Experimental results indicate that the strategy employing multi-group photo processing provides substantial reductions in processing time while providing satisfactory results in 3D reconstruction.

  14. 3D Reconstruction from 2D Line Drawings only with Visible Vertices and Edges

    Institute of Scientific and Technical Information of China (English)

    WANG Xuan; DONG Li-jun

    2014-01-01

    The human vision system can reconstruct a 3D object easily from single 2D line drawings even if the hidden lines of the object are invisible. Now, there are many methods have emulated this ability, but when the hidden lines of the object are invisible, these methods cannot reconstruct a complete 3D object. Therefore, we put forward a new algorithm to settle this hard problem. Our approach consists of two steps: (1) infer the invisible vertices and edges to complete the line drawing, (2) propose a vertex-based optimization method to reconstruct a 3D object.

  15. 3D reconstruction software comparison for short sequences

    Science.gov (United States)

    Strupczewski, Adam; Czupryński, BłaŻej

    2014-11-01

    Large scale multiview reconstruction is recently a very popular area of research. There are many open source tools that can be downloaded and run on a personal computer. However, there are few, if any, comparisons between all the available software in terms of accuracy on small datasets that a single user can create. The typical datasets for testing of the software are archeological sites or cities, comprising thousands of images. This paper presents a comparison of currently available open source multiview reconstruction software for small datasets. It also compares the open source solutions with a simple structure from motion pipeline developed by the authors from scratch with the use of OpenCV and Eigen libraries.

  16. Electrical Impedance Tomography: 3D Reconstructions using Scattering Transforms

    DEFF Research Database (Denmark)

    Delbary, Fabrice; Hansen, Per Christian; Knudsen, Kim

    2012-01-01

    In three dimensions the Calderon problem was addressed and solved in theory in the 1980s. The main ingredients in the solution of the problem are complex geometrical optics solutions to the conductivity equation and a (non-physical) scattering transform. The resulting reconstruction algorithm....... Convergence estimates are obtained using hyperinterpolation operators. We compare the method numerically to two other approximations by evaluation on two numerical examples. In addition a moment method for the numerical solution of the forward problem is given....

  17. Assessing 3D tunnel position in ACL reconstruction using a novel single image 3D-2D registration

    Science.gov (United States)

    Kang, X.; Yau, W. P.; Otake, Y.; Cheung, P. Y. S.; Hu, Y.; Taylor, R. H.

    2012-02-01

    The routinely used procedure for evaluating tunnel positions following anterior cruciate ligament (ACL) reconstructions based on standard X-ray images is known to pose difficulties in terms of obtaining accurate measures, especially in providing three-dimensional tunnel positions. This is largely due to the variability in individual knee joint pose relative to X-ray plates. Accurate results were reported using postoperative CT. However, its extensive usage in clinical routine is hampered by its major requirement of having CT scans of individual patients, which is not available for most ACL reconstructions. These difficulties are addressed through the proposed method, which aligns a knee model to X-ray images using our novel single-image 3D-2D registration method and then estimates the 3D tunnel position. In the proposed method, the alignment is achieved by using a novel contour-based 3D-2D registration method wherein image contours are treated as a set of oriented points. However, instead of using some form of orientation weighting function and multiplying it with a distance function, we formulate the 3D-2D registration as a probability density estimation using a mixture of von Mises-Fisher-Gaussian (vMFG) distributions and solve it through an expectation maximization (EM) algorithm. Compared with the ground-truth established from postoperative CT, our registration method in an experiment using a plastic phantom showed accurate results with errors of (-0.43°+/-1.19°, 0.45°+/-2.17°, 0.23°+/-1.05°) and (0.03+/-0.55, -0.03+/-0.54, -2.73+/-1.64) mm. As for the entry point of the ACL tunnel, one of the key measurements, it was obtained with high accuracy of 0.53+/-0.30 mm distance errors.

  18. On 3D Reconstruction of Porous Media by Using Spatial Correlation Functions

    Directory of Open Access Journals (Sweden)

    G.A. Papakostas

    2015-11-01

    Full Text Available The challenging process of 3D porous media reconstruction from a single 2D image is investigated in this paper. The reconstruction of the 3D model is based on the statistical information derived from a 2D thin image of the material, by applying a spatial correlation function. For the first time, this paper reviews the commonly used auto-correlation functions for material characterization and discusses their properties making them useful for 3D porous media reconstruction. A set of experiments is conducted in order to analyze the reconstruction capabilities of the studied correlation functions, while some useful conclusions are drawn. Finally, by taking into account the reconstruction performance of the existed correlation functions, some desirable properties that need to be satisfied by an ideal correlation function towards the improvement of the reconstruction accuracy are determined.

  19. QUALITY ANALYSIS OF 3D SURFACE RECONSTRUCTION USING MULTI-PLATFORM PHOTOGRAMMETRIC SYSTEMS

    Directory of Open Access Journals (Sweden)

    Z. Lari

    2016-06-01

    Full Text Available In recent years, the necessity of accurate 3D surface reconstruction has been more pronounced for a wide range of mapping, modelling, and monitoring applications. The 3D data for satisfying the needs of these applications can be collected using different digital imaging systems. Among them, photogrammetric systems have recently received considerable attention due to significant improvements in digital imaging sensors, emergence of new mapping platforms, and development of innovative data processing techniques. To date, a variety of techniques haven been proposed for 3D surface reconstruction using imagery collected by multi-platform photogrammetric systems. However, these approaches suffer from the lack of a well-established quality control procedure which evaluates the quality of reconstructed 3D surfaces independent of the utilized reconstruction technique. Hence, this paper aims to introduce a new quality assessment platform for the evaluation of the 3D surface reconstruction using photogrammetric data. This quality control procedure is performed while considering the quality of input data, processing procedures, and photo-realistic 3D surface modelling. The feasibility of the proposed quality control procedure is finally verified by quality assessment of the 3D surface reconstruction using images from different photogrammetric systems.

  20. 3D reconstruction with two webcams and a laser line projector

    Science.gov (United States)

    Li, Dongdong; Hui, Bingwei; Qiu, Shaohua; Wen, Gongjian

    2014-09-01

    Three-dimensional (3D) reconstruction is one of the most attractive research topics in photogrammetry and computer vision. Nowadays 3D reconstruction with simple and consumable equipment plays an important role. In this paper, a 3D reconstruction desktop system is built based on binocular stereo vision using a laser scanner. The hardware requirements are a simple commercial hand-held laser line projector and two common webcams for image acquisition. Generally, 3D reconstruction based on passive triangulation methods requires point correspondences among various viewpoints. The development of matching algorithms remains a challenging task in computer vision. In our proposal, with the help of a laser line projector, stereo correspondences are established robustly from epipolar geometry and the laser shadow on the scanned object. To establish correspondences more conveniently, epipolar rectification is employed using Bouguet's method after stereo calibration with a printed chessboard. 3D coordinates of the observed points are worked out with rayray triangulation and reconstruction outliers are removed with the planarity constraint of the laser plane. Dense 3D point clouds are derived from multiple scans under different orientations. Each point cloud is derived by sweeping the laser plane across the object requiring 3D reconstruction. The Iterative Closest Point algorithm is employed to register the derived point clouds. Rigid body transformation between neighboring scans is obtained to get the complete 3D point cloud. Finally polygon meshes are reconstructed from the derived point cloud and color images are used in texture mapping to get a lifelike 3D model. Experiments show that our reconstruction method is simple and efficient.

  1. Assist feature printability prediction by 3-D resist profile reconstruction

    Science.gov (United States)

    Zheng, Xin; Huang, Jensheng; Chin, Fook; Kazarian, Aram; Kuo, Chun-Chieh

    2012-06-01

    properties may then be used to optimize the printability vs. efficacy of an SRAF either prior to or during an Optical Proximity Correction (OPC) run. The process models that are used during OPC have never been able to reliably predict which SRAFs will print. This appears to be due to the fact that OPC process models are generally created using data that does not include printed subresolution patterns. An enhancement to compact modeling capability to predict Assist Features (AF) printability is developed and discussed. A hypsometric map representing 3-D resist profile was built by applying a first principle approximation to estimate the "energy loss" from the resist top to bottom. Such a 3-D resist profile is an extrapolation of a well calibrated traditional OPC model without any additional information. Assist features are detected at either top of resist (dark field) or bottom of resist (bright field). Such detection can be done by just extracting top or bottom resist models from our 3-D resist model. There is no measurement of assist features needed when we build AF but it can be included if interested but focusing on resist calibration to account for both exposure dosage and focus change sensitivities. This approach significantly increases resist model's capability for predicting printed SRAF accuracy. And we don't need to calibrate an SRAF model in addition to the OPC model. Without increase in computation time, this compact model can draw assist feature contour with real placement and size at any vertical plane. The result is compared and validated with 3-D rigorous modeling as well as SEM images. Since this method does not change any form of compact modeling, it can be integrated into current MBAF solutions without any additional work.

  2. Manifold Constrained Transfer of Facial Geometric Knowledge for 3D Caricature Reconstruction

    Institute of Scientific and Technical Information of China (English)

    Jun-Fa Liu; Wen-Jing He; Tao Chen; Yi-Qiang Chen

    2013-01-01

    3D caricatures are important attractive elements of the interface in virtual environment such as online game.However,very limited 3D caricatures exist in the real world.Meanwhile,creating 3D caricatures manually is rather costly,and even professional skills are needed.This paper proposes a novel and effective manifold transfer algorithm to reconstruct 3D caricatures according to their original 2D caricatures.We first manually create a small dataset with only 100 3D caricature models and use them to initialize the whole 3D dataset.After that,manifold transfer algorithm is carried out to refine the dataset.The algorithm comprises of two steps.The first is to perform manifold alignment between 2D and 3D caricatures to get a "standard" manifold map; the second is to reconstruct all the 3D caricatures based on the manifold map.The proposed approach utilizes and transfers knowledge of 2D caricatures to the target 3D caricatures well.Comparative experiments show that the approach reconstructs 3D caricatures more effectively and the results conform more to the styles of the original 2D caricatures than the Principal Components Analysis (PCA) based method.

  3. Robust Reconstruction and Generalized Dual Hahn Moments Invariants Extraction for 3D Images

    Science.gov (United States)

    Mesbah, Abderrahim; Zouhri, Amal; El Mallahi, Mostafa; Zenkouar, Khalid; Qjidaa, Hassan

    2017-03-01

    In this paper, we introduce a new set of 3D weighed dual Hahn moments which are orthogonal on a non-uniform lattice and their polynomials are numerically stable to scale, consequent, producing a set of weighted orthonormal polynomials. The dual Hahn is the general case of Tchebichef and Krawtchouk, and the orthogonality of dual Hahn moments eliminates the numerical approximations. The computational aspects and symmetry property of 3D weighed dual Hahn moments are discussed in details. To solve their inability to invariability of large 3D images, which cause to overflow issues, a generalized version of these moments noted 3D generalized weighed dual Hahn moment invariants are presented where whose as linear combination of regular geometric moments. For 3D pattern recognition, a generalized expression of 3D weighted dual Hahn moment invariants, under translation, scaling and rotation transformations, have been proposed where a new set of 3D-GWDHMIs have been provided. In experimental studies, the local and global capability of free and noisy 3D image reconstruction of the 3D-WDHMs has been compared with other orthogonal moments such as 3D Tchebichef and 3D Krawtchouk moments using Princeton Shape Benchmark database. On pattern recognition using the 3D-GWDHMIs like 3D object descriptors, the experimental results confirm that the proposed algorithm is more robust than other orthogonal moments for pattern classification of 3D images with and without noise.

  4. In-line phase-contrast breast tomosynthesis: a phantom feasibility study at a synchrotron radiation facility

    Science.gov (United States)

    Bliznakova, K.; Russo, P.; Kamarianakis, Z.; Mettivier, G.; Requardt, H.; Bravin, A.; Buliev, I.

    2016-08-01

    The major objective is to adopt, apply and test developed in-house algorithms for volumetric breast reconstructions from projection images, obtained in in-line phase-contrast mode. Four angular sets, each consisting of 17 projection images obtained from four physical phantoms, were acquired at beamline ID17, European Synchroton Radiation Facility, Grenoble, France. The tomosynthesis arc was  ±32°. The physical phantoms differed in complexity of texture and introduced features of interest. Three of the used phantoms were in-house developed, and made of epoxy resin, polymethyl-methacrylate and paraffin wax, while the fourth phantom was the CIRS BR3D. The projection images had a pixel size of 47 µm  ×  47 µm. Tomosynthesis images were reconstructed with standard shift-and-add (SAA) and filtered backprojection (FBP) algorithms. It was found that the edge enhancement observed in planar x-ray images is preserved in tomosynthesis images from both phantoms with homogeneous and highly heterogeneous backgrounds. In case of BR3D, it was found that features not visible in the planar case were well outlined in the tomosynthesis slices. In addition, the edge enhancement index calculated for features of interest was found to be much higher in tomosynthesis images reconstructed with FBP than in planar images and tomosynthesis images reconstructed with SAA. The comparison between images reconstructed by the two reconstruction algorithms shows an advantage for the FBP method in terms of better edge enhancement. Phase-contrast breast tomosynthesis realized in in-line mode benefits the detection of suspicious areas in mammography images by adding the edge enhancement effect to the reconstructed slices.

  5. Neurofunctional systems. 3D reconstructions with correlated neuroimaging

    Energy Technology Data Exchange (ETDEWEB)

    Kretschmann, H.J.; Fiekert, W.; Gerke, M.; Vogt, H.; Weirich, D.; Wesemann, M. [Medizinische Hochschule Hannover (Germany). Abt. Neuroanatomie; Weinrich, W. [Staedtisches Krankenhaus Nordstadt, Hannover (Germany). Abt. fuer Neurologie

    1998-12-31

    This book introduces, for the first time, computer-generated images of the neurofunctional systems of the human brain. These images are more accurate than drawings. The main views presented are of the medial lemniscus system, auditory system, visual system, basal ganglia, corticospinal system, and the limbic system. The arteries and sulci of the cerebral hemispheres are also illustrated by computer. These images provide a three-dimensional orientation of the intracranial space and help, for example, to assess vascular functional disturbance of the brain. Clinicians will find these images valuable for the spatial interpretation of magnetic resonance (MR), computed tomography (CT), and positron emission tomography (PET) images since many neurofunctional systems cannot be visualized as isolated structures in neuroimaging. Computer-assisted surface reconstructions of the neurofunctional systems and the cerebral arteries serve as a basis for constructing these computer-generated images. The surface reconstructions are anatomically realistic having been created from brain sections with minimal deformations. The method of computer graphics, known as ray tracing, produces digital images form these reconstructions. The computer-generated methods are explained. The computer-generated images are accompanied by illustrations and texts on neuroanatomy and clinical practice. The neurofunctional systems of the human brain are also shown in sections so that the reader can mentally reconstruct the neurofunctional systems, thus facilitating the transformation of information into textbooks and atlantes of MR and CT imaging. The aim of this book is acquaint the reader with the three-dimensional aspects of the neurofunctional systems and the cerebral arteries of the human brain using methods of computer graphics. Computer scientists and those interested in this technique are provided with basic neuroanatomic and neurofunctional information. Physicians will have a clearer understanding

  6. Indoor space 3D visual reconstruction using mobile cart with laser scanner and cameras

    Science.gov (United States)

    Gashongore, Prince Dukundane; Kawasue, Kikuhito; Yoshida, Kumiko; Aoki, Ryota

    2017-02-01

    Indoor space 3D visual reconstruction has many applications and, once done accurately, it enables people to conduct different indoor activities in an efficient manner. For example, an effective and efficient emergency rescue response can be accomplished in a fire disaster situation by using 3D visual information of a destroyed building. Therefore, an accurate Indoor Space 3D visual reconstruction system which can be operated in any given environment without GPS has been developed using a Human-Operated mobile cart equipped with a laser scanner, CCD camera, omnidirectional camera and a computer. By using the system, accurate indoor 3D Visual Data is reconstructed automatically. The obtained 3D data can be used for rescue operations, guiding blind or partially sighted persons and so forth.

  7. Bayesian 3d velocity field reconstruction with VIRBIuS

    CERN Document Server

    Lavaux, G

    2015-01-01

    I describe a new Bayesian based algorithm to infer the full three dimensional velocity field from observed distances and spectroscopic galaxy catalogues. In addition to the velocity field itself, the algorithm reconstructs true distances, some cosmological parameters and specific non-linearities in the velocity field. The algorithm takes care of selection effects, miscalibration issues and can be easily extended to handle direct fitting of, e.g., the inverse Tully-Fisher relation. I first describe the algorithm in details alongside its performances. This algorithm is implemented in the VIRBIuS (VelocIty Reconstruction using Bayesian Inference Software) software package. I then test it on different mock distance catalogues with a varying complexity of observational issues. The model proved to give robust measurement of velocities for mock catalogues of 3,000 galaxies. I expect the core of the algorithm to scale to tens of thousands galaxies. It holds the promises of giving a better handle on future large and d...

  8. Computer Aided Detection of Breast Masses in Digital Tomosynthesis

    Science.gov (United States)

    2008-06-01

    other peer-reviewed papers in Medical Physics (reportable outcomes #4 and 5) in conjunction with Duke collaborators in 2007. Task 3. Evaluate...Lo, “Automated Breast Mass Detection in 3D Reconstructed Tomosynthesis Volumes: A Featureless Approach,” Accepted in Medical Physics in June 2008...Evaluation of Information- Theoretic Similarity Measures for Content Based Retrieval and Detection of Masses in Mammograms,” Medical Physics , January 2007

  9. In-line monitoring and reverse 3D model reconstruction in additive manufacturing

    DEFF Research Database (Denmark)

    Pedersen, David Bue; Hansen, Hans Nørgaard; Nielsen, Jakob Skov

    2010-01-01

    with traditional measuring equipment such as Coordinate Measurement Machines (CMM's) can not easily be verified. This paradox is addresses by the proposal of an in-line reverse engineering and 3D reconstruction method that alows for a true to scale reconstruction of a part that is being additivelymanufactures on 3......D printing (3DP), or Selective Laser Sintering (SLS) equipment. The system will be implemented and tested on a 3DP machine with modifications developed at the author's university....

  10. Reconstruction of 3d Digital Image of Weepingforsythia Pollen

    Science.gov (United States)

    Liu, Dongwu; Chen, Zhiwei; Xu, Hongzhi; Liu, Wenqi; Wang, Lina

    Confocal microscopy, which is a major advance upon normal light microscopy, has been used in a number of scientific fields. By confocal microscopy techniques, cells and tissues can be visualized deeply, and three-dimensional images created. Compared with conventional microscopes, confocal microscope improves the resolution of images by eliminating out-of-focus light. Moreover, confocal microscope has a higher level of sensitivity due to highly sensitive light detectors and the ability to accumulate images captured over time. In present studies, a series of Weeping Forsythia pollen digital images (35 images in total) were acquired with confocal microscope, and the three-dimensional digital image of the pollen reconstructed with confocal microscope. Our results indicate that it's a very easy job to analysis threedimensional digital image of the pollen with confocal microscope and the probe Acridine orange (AO).

  11. 3D geometric reconstruction of thoracic aortic aneurysms

    Directory of Open Access Journals (Sweden)

    Mohiaddin Raad H

    2006-11-01

    Full Text Available Abstract Background The thoracic aortic aneurysm (TAA is a pathology that involves an expansion of the aortic diameter in the thoracic aorta, leading to risk of rupture. Recent studies have suggested that internal wall stress, which is affected by TAA geometry and the presence or absence of thrombus, is a more reliable predictor of rupture than the maximum diameter, the current clinical criterion. Accurate reconstruction of TAA geometry is a crucial step in patient-specific stress calculations. Methods In this work, a novel methodology was developed, which combines data from several sets of magnetic resonance (MR images with different levels of detail and different resolutions. Two sets of images were employed to create the final model, which has the highest level of detail for each component of the aneurysm (lumen, thrombus, and wall. A reference model was built by using a single set of images for comparison. This approach was applied to two patient-specific TAAs in the descending thoracic aorta. Results The results of finite element simulations showed differences in stress pattern between the coarse and fine models: higher stress values were found with the coarse model and the differences in predicted maximum wall stress were 30% for patient A and 11% for patient B. Conclusion This paper presents a new approach to the reconstruction of an aneurysm model based on the use of several sets of MR images. This enables more accurate representation of not only the lumen but also the wall surface of a TAA taking account of intraluminal thrombus.

  12. FIJI Macro 3D ART VeSElecT: 3D Automated Reconstruction Tool for Vesicle Structures of Electron Tomograms.

    Science.gov (United States)

    Kaltdorf, Kristin Verena; Schulze, Katja; Helmprobst, Frederik; Kollmannsberger, Philip; Dandekar, Thomas; Stigloher, Christian

    2017-01-01

    Automatic image reconstruction is critical to cope with steadily increasing data from advanced microscopy. We describe here the Fiji macro 3D ART VeSElecT which we developed to study synaptic vesicles in electron tomograms. We apply this tool to quantify vesicle properties (i) in embryonic Danio rerio 4 and 8 days past fertilization (dpf) and (ii) to compare Caenorhabditis elegans N2 neuromuscular junctions (NMJ) wild-type and its septin mutant (unc-59(e261)). We demonstrate development-specific and mutant-specific changes in synaptic vesicle pools in both models. We confirm the functionality of our macro by applying our 3D ART VeSElecT on zebrafish NMJ showing smaller vesicles in 8 dpf embryos then 4 dpf, which was validated by manual reconstruction of the vesicle pool. Furthermore, we analyze the impact of C. elegans septin mutant unc-59(e261) on vesicle pool formation and vesicle size. Automated vesicle registration and characterization was implemented in Fiji as two macros (registration and measurement). This flexible arrangement allows in particular reducing false positives by an optional manual revision step. Preprocessing and contrast enhancement work on image-stacks of 1nm/pixel in x and y direction. Semi-automated cell selection was integrated. 3D ART VeSElecT removes interfering components, detects vesicles by 3D segmentation and calculates vesicle volume and diameter (spherical approximation, inner/outer diameter). Results are collected in color using the RoiManager plugin including the possibility of manual removal of non-matching confounder vesicles. Detailed evaluation considered performance (detected vesicles) and specificity (true vesicles) as well as precision and recall. We furthermore show gain in segmentation and morphological filtering compared to learning based methods and a large time gain compared to manual segmentation. 3D ART VeSElecT shows small error rates and its speed gain can be up to 68 times faster in comparison to manual annotation

  13. Automatic Texture Reconstruction of 3d City Model from Oblique Images

    Science.gov (United States)

    Kang, Junhua; Deng, Fei; Li, Xinwei; Wan, Fang

    2016-06-01

    In recent years, the photorealistic 3D city models are increasingly important in various geospatial applications related to virtual city tourism, 3D GIS, urban planning, real-estate management. Besides the acquisition of high-precision 3D geometric data, texture reconstruction is also a crucial step for generating high-quality and visually realistic 3D models. However, most of the texture reconstruction approaches are probably leading to texture fragmentation and memory inefficiency. In this paper, we introduce an automatic framework of texture reconstruction to generate textures from oblique images for photorealistic visualization. Our approach include three major steps as follows: mesh parameterization, texture atlas generation and texture blending. Firstly, mesh parameterization procedure referring to mesh segmentation and mesh unfolding is performed to reduce geometric distortion in the process of mapping 2D texture to 3D model. Secondly, in the texture atlas generation step, the texture of each segmented region in texture domain is reconstructed from all visible images with exterior orientation and interior orientation parameters. Thirdly, to avoid color discontinuities at boundaries between texture regions, the final texture map is generated by blending texture maps from several corresponding images. We evaluated our texture reconstruction framework on a dataset of a city. The resulting mesh model can get textured by created texture without resampling. Experiment results show that our method can effectively mitigate the occurrence of texture fragmentation. It is demonstrated that the proposed framework is effective and useful for automatic texture reconstruction of 3D city model.

  14. Fast 3D Variable-FOV Reconstruction for Parallel Imaging with Localized Sensitivities

    CERN Document Server

    Can, Yiğit Baran; Çukur, Tolga

    2016-01-01

    Several successful iterative approaches have recently been proposed for parallel-imaging reconstructions of variable-density (VD) acquisitions, but they often induce substantial computational burden for non-Cartesian data. Here we propose a generalized variable-FOV PILS reconstruction 3D VD Cartesian and non-Cartesian data. The proposed method separates k-space into non-intersecting annuli based on sampling density, and sets the 3D reconstruction FOV for each annulus based on the respective sampling density. The variable-FOV method is compared against conventional gridding, PILS, and ESPIRiT reconstructions. Results indicate that the proposed method yields better artifact suppression compared to gridding and PILS, and improves noise conditioning relative to ESPIRiT, enabling fast and high-quality reconstructions of 3D datasets.

  15. Preoperative Planning Using 3D Reconstructions and Virtual Endoscopy for Location of the Frontal Sinus

    Directory of Open Access Journals (Sweden)

    Abreu, João Paulo Saraiva

    2011-01-01

    Full Text Available Introduction: Computed tomography (TC generated tridimensional (3D reconstructions allow the observation of cavities and anatomic structures of our body with detail. In our specialty there have been attempts to carry out virtual endoscopies and laryngoscopies. However, such application has been practically abandoned due to its complexity and need for computers with high power of graphic processing. Objective: To demonstrate the production of 3D reconstructions from CTs of patients in personal computers, with a free specific program and compare them to the surgery actual endoscopic images. Method: Prospective study in which the CTs proper files of 10 patients were reconstructed with the program Intage Realia, version 2009, 0, 0, 702 (KGT Inc., Japan. The reconstructions were carried out before the surgeries and a virtual endoscopy was made to assess the recess and frontal sinus region. After this study, the surgery was digitally performed and stored. The actual endoscopic images of the recess and frontal sinus region were compared to the virtual images. Results: The 3D reconstruction and virtual endoscopy were made in 10 patients submitted to the surgery. The virtual images had a large resemblance with the actual surgical images. Conclusion: With relatively simple tools and personal computer, we demonstrated the possibility to generate 3D reconstructions and virtual endoscopies. The preoperative knowledge of the frontal sinus natural draining path location may generate benefits during the performance of surgeries. However, more studies must be developed for the evaluation of the real roles of such 3D reconstructions and virtual endoscopies.

  16. Neural Network Based Reconstruction of a 3D Object from a 2D Wireframe

    CERN Document Server

    Johnson, Kyle; Lipson, Hod

    2010-01-01

    We propose a new approach for constructing a 3D representation from a 2D wireframe drawing. A drawing is simply a parallel projection of a 3D object onto a 2D surface; humans are able to recreate mental 3D models from 2D representations very easily, yet the process is very difficult to emulate computationally. We hypothesize that our ability to perform this construction relies on the angles in the 2D scene, among other geometric properties. Being able to reproduce this reconstruction process automatically would allow for efficient and robust 3D sketch interfaces. Our research focuses on the relationship between 2D geometry observable in the sketch and 3D geometry derived from a potential 3D construction. We present a fully automated system that constructs 3D representations from 2D wireframes using a neural network in conjunction with a genetic search algorithm.

  17. 3D Reconstruction of a Rotating Erupting Prominence

    Science.gov (United States)

    Thompson, W. T.; Kliem, B.; Toeroek, T.

    2011-01-01

    A bright prominence associated with a coronal mass ejection (CME) was seen erupting from the Sun on 9 April 2008. This prominence was tracked by both the Solar Terrestrial Relations Observatory (STEREO) EUVI and COR1 telescopes, and was seen to rotate about the line of sight a it erupted; therefore, the event has been nicknamed the "Cartwheel CME." The threads of the prominence in the core of the CME quite clearly indicate the structure of a weakly to moderately twisted flux rope throughout the field of view, up to heliocentric heights of 4 solar radii. Although the STEREO separation was 48 deg, it was possible to match some sharp features in the later part of the eruption as seen in the 304 A line in EUVI and in the H-alpha-sensitive bandpass of COR I by both STEREO Ahead and Behind. These features could then be traced out in three-dimensional space, and reprojected into a view in which the eruption is directed toward the observer. The reconstructed view shows that the alignment of the prominence to the vertical axis rotates as it rises up to a leading-edge height of approximately equal to 2.5 solar radii, and then remains approximately constant. The alignment at 2.5 solar radii differs by about 115 deg from the original filament orientation inferred from H-alpha and EUV data, and the height profile of the rotation, obtained here for the first time, shows that two thirds of the total rotation are reached within approximately equal to 0.5 solar radii above the photosphere. These features are well reproduced by numerical simulations of an unstable moderately twisted flux rope embedded in external flux with a relatively strong shear field component.

  18. Virtual surgical planning and 3D printing in repeat calvarial vault reconstruction for craniosynostosis: technical note.

    Science.gov (United States)

    LoPresti, Melissa; Daniels, Bradley; Buchanan, Edward P; Monson, Laura; Lam, Sandi

    2017-02-03

    Repeat surgery for restenosis after initial nonsyndromic craniosynostosis intervention is sometimes needed. Calvarial vault reconstruction through a healed surgical bed adds a level of intraoperative complexity and may benefit from preoperative and intraoperative definitions of biometric and aesthetic norms. Computer-assisted design and manufacturing using 3D imaging allows the precise formulation of operative plans in anticipation of surgical intervention. 3D printing turns virtual plans into anatomical replicas, templates, or customized implants by using a variety of materials. The authors present a technical note illustrating the use of this technology: a repeat calvarial vault reconstruction that was planned and executed using computer-assisted design and 3D printed intraoperative guides.

  19. Array diagnostics, spatial resolution, and filtering of undesired radiation with the 3D reconstruction algorithm

    DEFF Research Database (Denmark)

    Cappellin, C.; Pivnenko, Sergey; Jørgensen, E.

    2013-01-01

    This paper focuses on three important features of the 3D reconstruction algorithm of DIATOOL: the identification of array elements improper functioning and failure, the obtainable spatial resolution of the reconstructed fields and currents, and the filtering of undesired radiation and scattering...

  20. On the 3D reconstruction of diatom frustules : a novel method, applications, and limitations

    NARCIS (Netherlands)

    Mansilla, Catalina; Novais, Maria Helena; Faber, Enne; Martinez-Martinez, Diego; De Hosson, J. Th.

    2016-01-01

    Because of the importance of diatoms and the lack of information about their third dimension, a new method for the 3D reconstruction is explored, based on digital image correlation of several scanning electron microscope images. The accuracy of the method to reconstruct both centric and pennate (sym

  1. Application aspects of advanced antenna diagnostics with the 3D reconstruction algorithm

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Pivnenko, Sergey

    2015-01-01

    This paper focuses on two important applications of the 3D reconstruction algorithm of the commercial software DIATOOL for antenna diagnostics. The first one is the accurate and detailed identification of array malfunctioning, thanks to the available enhanced spatial resolution of the reconstructed...

  2. A simple approach for 3D reconstruction of the spine from biplanar radiography

    Science.gov (United States)

    Zhang, Junhua; Shi, Xinling; Lv, Liang; Guo, Fei; Zhang, Yufeng

    2014-04-01

    This paper proposed a simple approach for 3D spinal reconstruction from biplanar radiography. The proposed reconstruction consisted in reconstructing the 3D central curve of the spine based on the epipolar geometry and automatically aligning vertebrae under the constraint of this curve. The vertebral orientations were adjusted by matching the projections of the 3D pedicles with the 2D pedicles in biplanar radiographs. The user interaction time was within one minute for a thoracic spine. Sixteen pairs of radiographs of a thoracic spinal model were used to evaluate the precision and accuracy. The precision was within 3.1 mm for the location and 3.5° for the orientation. The accuracy was within 3.5 mm for the location and 3.9° for the orientation. These results demonstrate that this approach can be a promising tool to obtain the 3D spinal geometry with acceptable user interactions in scoliotic clinics.

  3. Application of generalized regression neural network on fast 3D reconstruction

    Institute of Scientific and Technical Information of China (English)

    Babakhani Asad; DU Zhi-jiang; SUN Li-ning; Kardan Reza; Mianji A. Fereidoun

    2007-01-01

    In robot-assisted surgery projects,researchers should be able to make fast 3 D reconstruction. Usually 2D images acquired with common diagnostic equipments such as UT, CT and MRI are not enough and complete for an accurate 3D reconstruction. There are some interpolation methods for approximating non value voxels which consume large execution time. A novel algorithm is introduced based on generalized regression neural network (GRNN) which can interpolate unknown voxles fast and reliable. The GRNN interpolation is used to produce new 2D images between each two succeeding ultrasonic images. It is shown that the composition of GRNN with image distance transformation can produce higher quality 3D shapes. The results of this method are compared with other interpolation methods practically. It shows this method can decrease overall time consumption on online 3D reconstruction.

  4. 3D reconstruction of a human heart fascicle using SurfDriver

    Science.gov (United States)

    Rader, Robert J.; Phillips, Steven J.; LaFollette, Paul S., Jr.

    2000-06-01

    The Temple University Medical School has a sequence of over 400 serial sections of adult normal ventricular human heart tissue, cut at 25 micrometer thickness. We used a Zeiss Ultraphot with a 4x planapo objective and a Pixera digital camera to make a series of 45 sequential montages to use in the 3D reconstruction of a fascicle (muscle bundle). We wrote custom software to merge 4 smaller image fields from each section into one composite image. We used SurfDriver software, developed by Scott Lozanoff of the University of Hawaii and David Moody of the University of Alberta, for registration, object boundary identification, and 3D surface reconstruction. We used an Epson Stylus Color 900 printer to get photo-quality prints. We describe the challenge and our solution to the following problems: image acquisition and digitization, image merge, alignment and registration, boundary identification, 3D surface reconstruction, 3D visualization and orientation, snapshot, and photo-quality prints.

  5. 3D Image Reconstruction from X-Ray Measurements with Overlap

    CERN Document Server

    Klodt, Maria

    2016-01-01

    3D image reconstruction from a set of X-ray projections is an important image reconstruction problem, with applications in medical imaging, industrial inspection and airport security. The innovation of X-ray emitter arrays allows for a novel type of X-ray scanners with multiple simultaneously emitting sources. However, two or more sources emitting at the same time can yield measurements from overlapping rays, imposing a new type of image reconstruction problem based on nonlinear constraints. Using traditional linear reconstruction methods, respective scanner geometries have to be implemented such that no rays overlap, which severely restricts the scanner design. We derive a new type of 3D image reconstruction model with nonlinear constraints, based on measurements with overlapping X-rays. Further, we show that the arising optimization problem is partially convex, and present an algorithm to solve it. Experiments show highly improved image reconstruction results from both simulated and real-world measurements.

  6. A fast 3D reconstruction system with a low-cost camera accessory.

    Science.gov (United States)

    Zhang, Yiwei; Gibson, Graham M; Hay, Rebecca; Bowman, Richard W; Padgett, Miles J; Edgar, Matthew P

    2015-06-09

    Photometric stereo is a three dimensional (3D) imaging technique that uses multiple 2D images, obtained from a fixed camera perspective, with different illumination directions. Compared to other 3D imaging methods such as geometry modeling and 3D-scanning, it comes with a number of advantages, such as having a simple and efficient reconstruction routine. In this work, we describe a low-cost accessory to a commercial digital single-lens reflex (DSLR) camera system allowing fast reconstruction of 3D objects using photometric stereo. The accessory consists of four white LED lights fixed to the lens of a commercial DSLR camera and a USB programmable controller board to sequentially control the illumination. 3D images are derived for different objects with varying geometric complexity and results are presented, showing a typical height error of <3 mm for a 50 mm sized object.

  7. 3D High Resolution l1-SPIRiT Reconstruction on Gadgetron based Cloud

    DEFF Research Database (Denmark)

    Xue, Hui; Kelmann, Peter; Inati, Souheil;

    Applying non-linear reconstruction to high resolution 3D MRI is challenging because of the lengthy computing time needed for those iterative algorithms. To achieve practical processing duration to enable clinical usage of non-linear reconstruction, we have extended previously published Gadgetron...... framework to support distributed computing in a cloud environment. This extension is named GT-Plus. A cloud version of 3D l1-SPIRiT was implemented on the GT-Plus framework. We demonstrate that a 3mins reconstruction could be achieved for 1mm3 isotropic resolution neuro scans with significantly improved...

  8. 3-D reconstruction of neurons from multichannel confocal laser scanning image series.

    Science.gov (United States)

    Wouterlood, Floris G

    2014-04-10

    A confocal laser scanning microscope (CLSM) collects information from a thin, focal plane and ignores out-of-focus information. Scanning of a specimen, with stepwise axial (Z-) movement of the stage in between each scan, produces Z-series of confocal images of a tissue volume, which then can be used to 3-D reconstruct structures of interest. The operator first configures separate channels (e.g., laser, filters, and detector settings) for each applied fluorochrome and then acquires Z-series of confocal images: one series per channel. Channel signal separation is extremely important. Measures to avoid bleaching are vital. Post-acquisition deconvolution of the image series is often performed to increase resolution before 3-D reconstruction takes place. In the 3-D reconstruction programs described in this unit, reconstructions can be inspected in real time from any viewing angle. By altering viewing angles and by switching channels off and on, the spatial relationships of 3-D-reconstructed structures with respect to structures visualized in other channels can be studied. Since each brand of CLSM, computer program, and 3-D reconstruction package has its own proprietary set of procedures, a general approach is provided in this protocol wherever possible.

  9. Parallel OSEM Reconstruction Algorithm for Fully 3-D SPECT on a Beowulf Cluster.

    Science.gov (United States)

    Rong, Zhou; Tianyu, Ma; Yongjie, Jin

    2005-01-01

    In order to improve the computation speed of ordered subset expectation maximization (OSEM) algorithm for fully 3-D single photon emission computed tomography (SPECT) reconstruction, an experimental beowulf-type cluster was built and several parallel reconstruction schemes were described. We implemented a single-program-multiple-data (SPMD) parallel 3-D OSEM reconstruction algorithm based on message passing interface (MPI) and tested it with combinations of different number of calculating processors and different size of voxel grid in reconstruction (64×64×64 and 128×128×128). Performance of parallelization was evaluated in terms of the speedup factor and parallel efficiency. This parallel implementation methodology is expected to be helpful to make fully 3-D OSEM algorithms more feasible in clinical SPECT studies.

  10. Evaluation of Model Recognition for Grammar-Based Automatic 3d Building Model Reconstruction

    Science.gov (United States)

    Yu, Qian; Helmholz, Petra; Belton, David

    2016-06-01

    In recent years, 3D city models are in high demand by many public and private organisations, and the steadily growing capacity in both quality and quantity are increasing demand. The quality evaluation of these 3D models is a relevant issue both from the scientific and practical points of view. In this paper, we present a method for the quality evaluation of 3D building models which are reconstructed automatically from terrestrial laser scanning (TLS) data based on an attributed building grammar. The entire evaluation process has been performed in all the three dimensions in terms of completeness and correctness of the reconstruction. Six quality measures are introduced to apply on four datasets of reconstructed building models in order to describe the quality of the automatic reconstruction, and also are assessed on their validity from the evaluation point of view.

  11. GOTHIC CHURCHES IN PARIS ST GERVAIS ET ST PROTAIS IMAGE MATCHING 3D RECONSTRUCTION TO UNDERSTAND THE VAULTS SYSTEM GEOMETRY

    Directory of Open Access Journals (Sweden)

    M. Capone

    2015-02-01

    benefits and the troubles. From a methodological point of view this is our workflow: - theoretical study about geometrical configuration of rib vault systems; - 3D model based on theoretical hypothesis about geometric definition of the vaults' form; - 3D model based on image matching 3D reconstruction methods; - comparison between 3D theoretical model and 3D model based on image matching;

  12. Data acquisition electronics and reconstruction software for real time 3D track reconstruction within the MIMAC project

    CERN Document Server

    Bourrion, O; Grignon, C; Bouly, J L; Richer, J P; Guillaudin, O; Mayet, F; Billard, J; Santos, D

    2011-01-01

    Directional detection of non-baryonic Dark Matter requires 3D reconstruction of low energy nuclear recoils tracks. A gaseous micro-TPC matrix, filled with either 3He, CF4 or C4H10 has been developed within the MIMAC project. A dedicated acquisition electronics and a real time track reconstruction software have been developed to monitor a 512 channel prototype. This autotriggered electronic uses embedded processing to reduce the data transfer to its useful part only, i.e. decoded coordinates of hit tracks and corresponding energy measurements. An acquisition software with on-line monitoring and 3D track reconstruction is also presented.

  13. Review of three-dimensional (3D) surface imaging for oncoplastic, reconstructive and aesthetic breast surgery.

    Science.gov (United States)

    O'Connell, Rachel L; Stevens, Roger J G; Harris, Paul A; Rusby, Jennifer E

    2015-08-01

    Three-dimensional surface imaging (3D-SI) is being marketed as a tool in aesthetic breast surgery. It has recently also been studied in the objective evaluation of cosmetic outcome of oncological procedures. The aim of this review is to summarise the use of 3D-SI in oncoplastic, reconstructive and aesthetic breast surgery. An extensive literature review was undertaken to identify published studies. Two reviewers independently screened all abstracts and selected relevant articles using specific inclusion criteria. Seventy two articles relating to 3D-SI for breast surgery were identified. These covered endpoints such as image acquisition, calculations and data obtainable, comparison of 3D and 2D imaging and clinical research applications of 3D-SI. The literature provides a favourable view of 3D-SI. However, evidence of its superiority over current methods of clinical decision making, surgical planning, communication and evaluation of outcome is required before it can be accepted into mainstream practice.

  14. New Algorithm for 3D Facial Model Reconstruction and Its Application in Virtual Reality

    Institute of Scientific and Technical Information of China (English)

    Rong-Hua Liang; Zhi-Geng Pan; Chun Chen

    2004-01-01

    3D human face model reconstruction is essential to the generation of facial animations that is widely used in the field of virtual reality(VR).The main issues of 3D facial model reconstruction based on images by vision technologies are in twofold: one is to select and match the corresponding features of face from two images with minimal interaction and the other is to generate the realistic-looking human face model.In this paper,a new algorithm for realistic-looking face reconstruction is presented based on stereo vision.Firstly,a pattern is printed and attached to a planar surface for camera calibration,and corners generation and corners matching between two images are performed by integrating modified image pyramid Lucas-Kanade(PLK)algorithm and local adjustment algorithm,and then 3D coordinates of corners are obtained by 3D reconstruction.Individual face model is generated by the deformation of general 3D model and interpolation of the features.Finally,realisticlooking human face model is obtained after texture mapping and eyes modeling.In addition,some application examples in the field of VR are given.Experimental result shows that the proposed algorithm is robust and the 3D model is photo-realistic.

  15. IMPACT OF LEVEL OF DETAILS IN THE 3D RECONSTRUCTION OF TREES FOR MICROCLIMATE MODELING

    Directory of Open Access Journals (Sweden)

    E. Bournez

    2016-06-01

    Full Text Available In the 21st century, urban areas undergo specific climatic conditions like urban heat islands which frequency and intensity increase over the years. Towards the understanding and the monitoring of these conditions, vegetation effects on urban climate are studied. It appears that a natural phenomenon, the evapotranspiration of trees, generates a cooling effect in urban environment. In this work, a 3D microclimate model is used to quantify the evapotranspiration of trees in relation with their architecture, their physiology and the climate. These three characteristics are determined with field measurements and data processing. Based on point clouds acquired with terrestrial laser scanner (TLS, the 3D reconstruction of the tree wood architecture is performed. Then the 3D reconstruction of leaves is carried out from the 3D skeleton of vegetative shoots and allometric statistics. With the aim of extending the simulation on several trees simultaneously, it is necessary to apply the 3D reconstruction process on each tree individually. However, as well for the acquisition as for the processing, the 3D reconstruction approach is time consuming. Mobile laser scanners could provide point clouds in a faster way than static TLS, but this implies a lower point density. Also the processing time could be shortened, but under the assumption that a coarser 3D model is sufficient for the simulation. In this context, the criterion of level of details and accuracy of the tree 3D reconstructed model must be studied. In this paper first tests to assess their impact on the determination of the evapotranspiration are presented.

  16. Impact of Level of Details in the 3d Reconstruction of Trees for Microclimate Modeling

    Science.gov (United States)

    Bournez, E.; Landes, T.; Saudreau, M.; Kastendeuch, P.; Najjar, G.

    2016-06-01

    In the 21st century, urban areas undergo specific climatic conditions like urban heat islands which frequency and intensity increase over the years. Towards the understanding and the monitoring of these conditions, vegetation effects on urban climate are studied. It appears that a natural phenomenon, the evapotranspiration of trees, generates a cooling effect in urban environment. In this work, a 3D microclimate model is used to quantify the evapotranspiration of trees in relation with their architecture, their physiology and the climate. These three characteristics are determined with field measurements and data processing. Based on point clouds acquired with terrestrial laser scanner (TLS), the 3D reconstruction of the tree wood architecture is performed. Then the 3D reconstruction of leaves is carried out from the 3D skeleton of vegetative shoots and allometric statistics. With the aim of extending the simulation on several trees simultaneously, it is necessary to apply the 3D reconstruction process on each tree individually. However, as well for the acquisition as for the processing, the 3D reconstruction approach is time consuming. Mobile laser scanners could provide point clouds in a faster way than static TLS, but this implies a lower point density. Also the processing time could be shortened, but under the assumption that a coarser 3D model is sufficient for the simulation. In this context, the criterion of level of details and accuracy of the tree 3D reconstructed model must be studied. In this paper first tests to assess their impact on the determination of the evapotranspiration are presented.

  17. 3D Volumetric Modeling and Microvascular Reconstruction of Irradiated Lumbosacral Defects After Oncologic Resection

    Directory of Open Access Journals (Sweden)

    Emilio Garcia-Tutor

    2016-12-01

    Full Text Available Background: Locoregional flaps are sufficient in most sacral reconstructions. However, large sacral defects due to malignancy necessitate a different reconstructive approach, with local flaps compromised by radiation and regional flaps inadequate for broad surface areas or substantial volume obliteration. In this report, we present our experience using free muscle transfer for volumetric reconstruction in such cases, and demonstrate 3D haptic models of the sacral defect to aid preoperative planning.Methods: Five consecutive patients with irradiated sacral defects secondary to oncologic resections were included, surface area ranging from 143-600cm2. Latissimus dorsi-based free flap sacral reconstruction was performed in each case, between 2005 and 2011. Where the superior gluteal artery was compromised, the subcostal artery was used as a recipient vessel. Microvascular technique, complications and outcomes are reported. The use of volumetric analysis and 3D printing is also demonstrated, with imaging data converted to 3D images suitable for 3D printing with Osirix software (Pixmeo, Geneva, Switzerland. An office-based, desktop 3D printer was used to print 3D models of sacral defects, used to demonstrate surface area and contour and produce a volumetric print of the dead space needed for flap obliteration. Results: The clinical series of latissimus dorsi free flap reconstructions is presented, with successful transfer in all cases, and adequate soft-tissue cover and volume obliteration achieved. The original use of the subcostal artery as a recipient vessel was successfully achieved. All wounds healed uneventfully. 3D printing is also demonstrated as a useful tool for 3D evaluation of volume and dead-space.Conclusion: Free flaps offer unique benefits in sacral reconstruction where local tissue is compromised by irradiation and tumor recurrence, and dead-space requires accurate volumetric reconstruction. We describe for the first time the use of

  18. A 3D terrain reconstruction method of stereo vision based quadruped robot navigation system

    Science.gov (United States)

    Ge, Zhuo; Zhu, Ying; Liang, Guanhao

    2017-01-01

    To provide 3D environment information for the quadruped robot autonomous navigation system during walking through rough terrain, based on the stereo vision, a novel 3D terrain reconstruction method is presented. In order to solve the problem that images collected by stereo sensors have large regions with similar grayscale and the problem that image matching is poor at real-time performance, watershed algorithm and fuzzy c-means clustering algorithm are combined for contour extraction. Aiming at the problem of error matching, duel constraint with region matching and pixel matching is established for matching optimization. Using the stereo matching edge pixel pairs, the 3D coordinate algorithm is estimated according to the binocular stereo vision imaging model. Experimental results show that the proposed method can yield high stereo matching ratio and reconstruct 3D scene quickly and efficiently.

  19. 3D reconstruction and digitalization of an archeological site, Itanos, Crete

    Directory of Open Access Journals (Sweden)

    Rudy Ercek

    2010-04-01

    Full Text Available The city of Itanos is situated in the North-East of Crete. Between 1994 and 2005, the French School of Archaeology at Athens (Efa and the Center for Mediterranean Studies in Rethymnon carried out excavation campaigns during which a necropolis and an Archaic building have been explored by a team of the CReA. A very close collaboration between archeologists, engineers and computer graphic designers allowed the 3D reconstruction of these remains. The archeologist was able to directly verify his hypotheses during the reconstruction process. In summer 2007 and 2008, a 3D digitalization of Itanos was made in order to insert the 3D reconstructions into the actual landscape.

  20. A Laser Line Auto-Scanning System for Underwater 3D Reconstruction.

    Science.gov (United States)

    Chi, Shukai; Xie, Zexiao; Chen, Wenzhu

    2016-09-20

    In this study, a laser line auto-scanning system was designed to perform underwater close-range 3D reconstructions with high accuracy and resolution. The system changes the laser plane direction with a galvanometer to perform automatic scanning and obtain continuous laser strips for underwater 3D reconstruction. The system parameters were calibrated with the homography constraints between the target plane and image plane. A cost function was defined to optimize the galvanometer's rotating axis equation. Compensation was carried out for the refraction of the incident and emitted light at the interface. The accuracy and the spatial measurement capability of the system were tested and analyzed with standard balls under laboratory underwater conditions, and the 3D surface reconstruction for a sealing cover of an underwater instrument was proved to be satisfactory.

  1. A Laser Line Auto-Scanning System for Underwater 3D Reconstruction

    Directory of Open Access Journals (Sweden)

    Shukai Chi

    2016-09-01

    Full Text Available In this study, a laser line auto-scanning system was designed to perform underwater close-range 3D reconstructions with high accuracy and resolution. The system changes the laser plane direction with a galvanometer to perform automatic scanning and obtain continuous laser strips for underwater 3D reconstruction. The system parameters were calibrated with the homography constraints between the target plane and image plane. A cost function was defined to optimize the galvanometer’s rotating axis equation. Compensation was carried out for the refraction of the incident and emitted light at the interface. The accuracy and the spatial measurement capability of the system were tested and analyzed with standard balls under laboratory underwater conditions, and the 3D surface reconstruction for a sealing cover of an underwater instrument was proved to be satisfactory.

  2. A photogrammetry-based system for 3D surface reconstruction of prosthetics and orthotics.

    Science.gov (United States)

    Li, Guang-kun; Gao, Fan; Wang, Zhi-gang

    2011-01-01

    The objective of this study is to develop an innovative close range digital photogrammetry (CRDP) system using the commercial digital SLR cameras to measure and reconstruct the 3D surface of prosthetics and orthotics. This paper describes the instrumentation, techniques and preliminary results of the proposed system. The technique works by taking pictures of the object from multiple view angles. The series of pictures were post-processed via feature point extraction, point match and 3D surface reconstruction. In comparison with the traditional method such as laser scanning, the major advantages of our instrument include the lower cost, compact and easy-to-use hardware, satisfactory measurement accuracy, and significantly less measurement time. Besides its potential applications in prosthetics and orthotics surface measurement, the simple setup and its ease of use will make it suitable for various 3D surface reconstructions.

  3. Reconstruction of Temperature Field in 3-D, Absorbing, Emitting,and Anisotropically Scattering Medium

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jing-de; LIU Ni; ZHONG Ke

    2006-01-01

    The soft measurement technology of flame temperature field is an efficient method to learn the combustion status in furnace. Generally, it reconstructs the temperature field in furnace through the image of flame, which is a process to solve radiative inverse problem. In this paper, the flame of pulverized coal is considered as 3-D, absorbing, emitting,and anisotropically scattering non-gray medium. Through the study on inverse problem of radiative heat transfer, the temperature field in this kind of medium has been reconstructed. The mechanism of 3-D radiative heat transfer in a rectangular media, which is 2 m × 3 m × 5 m and full of CO2, N2 and carbon particles, is studied with Monte Carlo method. The 3-D temperature field in this rectangular space is reconstructed and the influence of particles density profile is discussed.

  4. Reliable Gait Recognition Using 3D Reconstructions and Random Forests - An Anthropometric Approach.

    Science.gov (United States)

    Sandau, Martin; Heimbürger, Rikke V; Jensen, Karl E; Moeslund, Thomas B; Aanaes, Henrik; Alkjaer, Tine; Simonsen, Erik B

    2016-05-01

    Photogrammetric measurements of bodily dimensions and analysis of gait patterns in CCTV are important tools in forensic investigations but accurate extraction of the measurements are challenging. This study tested whether manual annotation of the joint centers on 3D reconstructions could provide reliable recognition. Sixteen participants performed normal walking where 3D reconstructions were obtained continually. Segment lengths and kinematics from the extremities were manually extracted by eight expert observers. The results showed that all the participants were recognized, assuming the same expert annotated the data. Recognition based on data annotated by different experts was less reliable achieving 72.6% correct recognitions as some parameters were heavily affected by interobserver variability. This study verified that 3D reconstructions are feasible for forensic gait analysis as an improved alternative to conventional CCTV. However, further studies are needed to account for the use of different clothing, field conditions, etc.

  5. Influence of camera calibration conditions on the accuracy of 3D reconstruction.

    Science.gov (United States)

    Poulin-Girard, Anne-Sophie; Thibault, Simon; Laurendeau, Denis

    2016-02-01

    For stereoscopic systems designed for metrology applications, the accuracy of camera calibration dictates the precision of the 3D reconstruction. In this paper, the impact of various calibration conditions on the reconstruction quality is studied using a virtual camera calibration technique and the design file of a commercially available lens. This technique enables the study of the statistical behavior of the reconstruction task in selected calibration conditions. The data show that the mean reprojection error should not always be used to evaluate the performance of the calibration process and that a low quality of feature detection does not always lead to a high mean reconstruction error.

  6. A multiscale/multiframe approach to 3D PET data reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Luis; Ferreira, Nuno [Coimbra Univ. (Portugal). Inst. de Biofisica/Biomatematica; ICNAS - Instituto de Ciencias Nucleares Aplicadas a Saude, Coimbra (Portugal); Comtat, Claude [CEA/DSV/12BM, Orsay (France). Service Hospitalier Frederic Joliot

    2011-07-01

    A multiscale/multiframe 3D reconstruction scheme for Positron Emission Tomography is presented. Usually the dimensions of the reconstructed volume or the projection space binning do not change during the image reconstruction process. In this paper we introduce the concept of time frame to the multiscale reconstruction proposed by Raheja et al. This approach can be used for the generation of images reconstructed in near real time using a suitable scale, taking full advantage of list mode reconstruction techniques. When compared with the Maximum Likelihood - Expectation Maximization algorithm (single scale ML-EM), the Multiscale/Multiframe proposed in this work improves the convergence speed in particular in cold regions, as well as performing a fast reconstruction. The generation of different image sequences at different spatial scales and times may be useful to optimize the acquisition clinical protocols on the fly. (orig.)

  7. GPU-Based 3D Cone-Beam CT Image Reconstruction for Large Data Volume

    Directory of Open Access Journals (Sweden)

    Xing Zhao

    2009-01-01

    Full Text Available Currently, 3D cone-beam CT image reconstruction speed is still a severe limitation for clinical application. The computational power of modern graphics processing units (GPUs has been harnessed to provide impressive acceleration of 3D volume image reconstruction. For extra large data volume exceeding the physical graphic memory of GPU, a straightforward compromise is to divide data volume into blocks. Different from the conventional Octree partition method, a new partition scheme is proposed in this paper. This method divides both projection data and reconstructed image volume into subsets according to geometric symmetries in circular cone-beam projection layout, and a fast reconstruction for large data volume can be implemented by packing the subsets of projection data into the RGBA channels of GPU, performing the reconstruction chunk by chunk and combining the individual results in the end. The method is evaluated by reconstructing 3D images from computer-simulation data and real micro-CT data. Our results indicate that the GPU implementation can maintain original precision and speed up the reconstruction process by 110–120 times for circular cone-beam scan, as compared to traditional CPU implementation.

  8. SU-E-J-128: 3D Surface Reconstruction of a Patient Using Epipolar Geometry

    Energy Technology Data Exchange (ETDEWEB)

    Kotoku, J; Nakabayashi, S; Kumagai, S; Ishibashi, T; Kobayashi, T [Teikyo University, Itabashi-ku, Tokyo (Japan); Haga, A; Saotome, N [University of Tokyo Hospital, Bunkyo-ku, Tokyo (Japan); Arai, N [Teikyo University Hospital, Itabashi-ku, Tokyo (Japan)

    2014-06-01

    Purpose: To obtain a 3D surface data of a patient in a non-invasive way can substantially reduce the effort for the registration of patient in radiation therapy. To achieve this goal, we introduced the multiple view stereo technique, which is known to be used in a 'photo tourism' on the internet. Methods: 70 Images were taken with a digital single-lens reflex camera from different angles and positions. The camera positions and angles were inferred later in the reconstruction step. A sparse 3D reconstruction model was locating by SIFT features, which is robust for rotation and shift variance, in each image. We then found a set of correspondences between pairs of images by computing the fundamental matrix using the eight-point algorithm with RANSAC. After the pair matching, we optimized the parameter including camera positions to minimize the reprojection error by use of bundle adjustment technique (non-linear optimization). As a final step, we performed dense reconstruction and associate a color with each point using the library of PMVS. Results: Surface data were reconstructed well by visual inspection. The human skin is reconstructed well, althogh the reconstruction was time-consuming for direct use in daily clinical practice. Conclusion: 3D reconstruction using multi view stereo geometry is a promising tool for reducing the effort of patient setup. This work was supported by JSPS KAKENHI(25861128)

  9. 3D Reconstruction and Restoration Monitoring of Sculptural Artworks by a Multi-Sensor Framework

    Directory of Open Access Journals (Sweden)

    Sandro Barone

    2012-12-01

    Full Text Available Nowadays, optical sensors are used to digitize sculptural artworks by exploiting various contactless technologies. Cultural Heritage applications may concern 3D reconstructions of sculptural shapes distinguished by small details distributed over large surfaces. These applications require robust multi-view procedures based on aligning several high resolution 3D measurements. In this paper, the integration of a 3D structured light scanner and a stereo photogrammetric sensor is proposed with the aim of reliably reconstructing large free form artworks. The structured light scanner provides high resolution range maps captured from different views. The stereo photogrammetric sensor measures the spatial location of each view by tracking a marker frame integral to the optical scanner. This procedure allows the computation of the rotation-translation matrix to transpose the range maps from local view coordinate systems to a unique global reference system defined by the stereo photogrammetric sensor. The artwork reconstructions can be further augmented by referring metadata related to restoration processes. In this paper, a methodology has been developed to map metadata to 3D models by capturing spatial references using a passive stereo-photogrammetric sensor. The multi-sensor framework has been experienced through the 3D reconstruction of a Statue of Hope located at the English Cemetery in Florence. This sculptural artwork has been a severe test due to the non-cooperative environment and the complex shape features distributed over a large surface.

  10. 3-D reconstruction of coastal bathymetry from AIRSAR/POLSAR data

    Institute of Scientific and Technical Information of China (English)

    Maged MARGHANY; Mazlan HASHIM; Arthur P. CRACKNELL

    2009-01-01

    This paper introduces a new method for reconstructing three-dimensional (3D) coastal bathymetry changes from Airborne AIRSAR/POLSAR synthetic aperture data. The new method is based on integration between fuzzy B-spline and Volterra algorithm. Volterra algorithm is used to simulate the ocean surface current from AIRSAR/POLSAR data. Then, the ocean surface current information used as input for continuity equation to estimate the water depths from AIRSAR/POLSAR data. This study shows that 3D ocean bathymetry can be reconstructed from AIRSAR/POLSAR data with root mean square error of ±0.03 m.

  11. Reliable Gait Recognition Using 3D Reconstructions and Random Forests - An Anthropometric Approach

    DEFF Research Database (Denmark)

    Sandau, Martin; Heimbürger, Rikke V.; Jensen, Karl E.

    2016-01-01

    Photogrammetric measurements of bodily dimensions and analysis of gait patterns in CCTV are important tools in forensic investigations but accurate extraction of the measurements are challenging. This study tested whether manual annotation of the joint centers on 3D reconstructions could provide...... expert annotated the data. Recognition based on data annotated by different experts was less reliable achieving 72.6% correct recognitions as some parameters were heavily affected by interobserver variability. This study verified that 3D reconstructions are feasible for forensic gait analysis...

  12. In-process 3D geometry reconstruction of objects produced by direct light projection

    DEFF Research Database (Denmark)

    Andersen, Ulrik Vølcker; Pedersen, David Bue; Hansen, Hans Nørgaard

    2013-01-01

    al. 2011), this method has shown its potential with 3D printing (3DP) and selective laser sintering additive manufacturing processes, where it is possible to directly capture the geometrical features of each individual layer during a build job using a digital camera. When considering the process...... equipment such as coordinate measuring machines cannot be verified easily. This problem is addressed by developing an in-line reverse engineering and 3D reconstruction method that allows a true-to-scale reconstruction of a part being additively manufactured. In earlier works (Pedersen et al. 2010; Hansen et...

  13. A new 3D reconstruction method of small solar system bodies

    Science.gov (United States)

    Capanna, C.; Jorda, L.; Lamy, P.; Gesquiere, G.

    2011-10-01

    The 3D reconstruction of small solar system bodies consitutes an essential step toward understanding and interpreting their physical and geological properties. We propose a new reconstruction method by photoclinometry based on the minimization of the chisquare difference between observed and synthetic images by deformation of a 3D triangular mesh. This method has been tested on images of the two asteroids (2867) Steins and (21) Lutetia observed during ESA's ROSETTA mission, and it will be applied to elaborate digital terrain models from images of the asteroid (4) Vesta, the target of NASA's DAWN spacecraft.

  14. Reconstruction of volumetric ultrasound panorama based on improved 3D SIFT.

    Science.gov (United States)

    Ni, Dong; Chui, Yim Pan; Qu, Yingge; Yang, Xuan; Qin, Jing; Wong, Tien-Tsin; Ho, Simon S H; Heng, Pheng Ann

    2009-10-01

    Registration of ultrasound volumes is a key issue for the reconstruction of volumetric ultrasound panorama. In this paper, we propose an improved three-dimensional (3D) scale invariant feature transform (SIFT) algorithm to globally register ultrasound volumes acquired from dedicated ultrasound probe, where local deformations are corrected by block-based warping algorithm. Original SIFT algorithm is extended to 3D and improved by combining the SIFT detector with Rohr3D detector to extract complementary features and applying the diffusion distance algorithm for robust feature comparison. Extensive experiments have been performed on both phantom and clinical data sets to demonstrate the effectiveness and robustness of our approach.

  15. 3D reconstruction of patient-specific femurs using Coherent Point Drift

    Directory of Open Access Journals (Sweden)

    Shaobin Sun

    2013-02-01

    Full Text Available This paper dealt with the problem that the overlapping digital radiographs couldn`t reflect the 3D space information of the patient-specific femur in the orthopaedic surgery diagnosis. A 2D-3D non-rigid registration method based on Coherent Point Drift was proposed to realize the 3D reconstruction of the patient-specific femur before the surgery, which used biplanar digital radiographs of the patient-specific femur and the CT volume data of a generic femur. With the advantages of low cost, fast imaging speed and little radiation to the patients and doctors, this method provided more effective 3D imaging information for the femur diagnosis and preoperative plans. The registration experiments showed that the proposed method recovered the 3D model and the pose of the patient-specific femur effectively with a fast, accurate and robust registration result, which had satisfied the needs of clinical application.

  16. 3D reconstruction of cortical microtubules using multi-angle total internal reflection fluorescence microscopy

    Science.gov (United States)

    Jin, Luhong; Xiu, Peng; Zhou, Xiaoxu; Fan, Jiannan; Kuang, Cuifang; Liu, Xu; Xu, Yingke

    2017-01-01

    Total internal reflection fluorescence microscopy (TIRFM) has been widely used in biomedical research to visualize cellular processes near the cell surface. In this study, a novel multi-angle ring-illuminated TIRFM system, equipped with two galvo mirrors that are on conjugate plan of a 4f optical system was developed. Multi-angle TIRFM generates images with different penetration depths through the controlled variation of the incident angle of illuminating laser. We presented a method to perform three-dimensional (3-D) reconstruction of microtubules from multi-angle TIRFM images. The performance of our method was validated in simulated microtubules with variable signal-to-noise ratios (SNR) and the axial resolution and accuracy of reconstruction were evaluated in selecting different numbers of illumination angles or in different SNR conditions. In U373 cells, we reconstructed the 3-D localization of microtubules near the cell surface with high resolution using over a hundred different illumination angles. Theoretically, the presented TIRFM setup and 3-D reconstruction method can achieve 40 nm axial resolution in experimental conditions where SNR is as low as 2, with 35 different illumination angles. Moreover, our system and reconstruction method have the potential to be used in live cells to track membrane dynamics in 3-D.

  17. Grammar-based Automatic 3D Model Reconstruction from Terrestrial Laser Scanning Data

    Science.gov (United States)

    Yu, Q.; Helmholz, P.; Belton, D.; West, G.

    2014-04-01

    The automatic reconstruction of 3D buildings has been an important research topic during the last years. In this paper, a novel method is proposed to automatically reconstruct the 3D building models from segmented data based on pre-defined formal grammar and rules. Such segmented data can be extracted e.g. from terrestrial or mobile laser scanning devices. Two steps are considered in detail. The first step is to transform the segmented data into 3D shapes, for instance using the DXF (Drawing Exchange Format) format which is a CAD data file format used for data interchange between AutoCAD and other program. Second, we develop a formal grammar to describe the building model structure and integrate the pre-defined grammars into the reconstruction process. Depending on the different segmented data, the selected grammar and rules are applied to drive the reconstruction process in an automatic manner. Compared with other existing approaches, our proposed method allows the model reconstruction directly from 3D shapes and takes the whole building into account.

  18. 3D reconstructions with pixel-based images are made possible by digitally clearing plant and animal tissue

    Science.gov (United States)

    Reconstruction of 3D images from a series of 2D images has been restricted by the limited capacity to decrease the opacity of surrounding tissue. Commercial software that allows color-keying and manipulation of 2D images in true 3D space allowed us to produce 3D reconstructions from pixel based imag...

  19. Pancreaticoduodenectomy assisted by 3-D visualization reconstruction and portal vein arterialization

    OpenAIRE

    Su, Zhao-jie; Li, Wen-Gang; Huang, Jun-li; Xiao, Lin-feng; Chen, Fu-zhen; WANG, BO-LIANG

    2016-01-01

    Abstract Background: Three-dimensional visualization reconstruction, the 3-D visualization model reconstructed by software using 2-D CT images, has been widely applied in medicine; but it has rarely been applied in pancreaticoduodenectomy. Although the hepatic artery is very important for the liver, it has to be removed when tumor invades it. Therefore, portal vein arterialization has been used in clinic as a remedial measure, but there still is professional debate on portal vein arterializat...

  20. In vivo bioluminescence tomography based on multi-view projection and 3D surface reconstruction

    Science.gov (United States)

    Zhang, Shuang; Wang, Kun; Leng, Chengcai; Deng, Kexin; Hu, Yifang; Tian, Jie

    2015-03-01

    Bioluminescence tomography (BLT) is a powerful optical molecular imaging modality, which enables non-invasive realtime in vivo imaging as well as 3D quantitative analysis in preclinical studies. In order to solve the inverse problem and reconstruct inner light sources accurately, the prior structural information is commonly necessary and obtained from computed tomography or magnetic resonance imaging. This strategy requires expensive hybrid imaging system, complicated operation protocol and possible involvement of ionizing radiation. The overall robustness highly depends on the fusion accuracy between the optical and structural information. In this study we present a pure optical bioluminescence tomographic system (POBTS) and a novel BLT method based on multi-view projection acquisition and 3D surface reconstruction. The POBTS acquired a sparse set of white light surface images and bioluminescent images of a mouse. Then the white light images were applied to an approximate surface model to generate a high quality textured 3D surface reconstruction of the mouse. After that we integrated multi-view luminescent images based on the previous reconstruction, and applied an algorithm to calibrate and quantify the surface luminescent flux in 3D.Finally, the internal bioluminescence source reconstruction was achieved with this prior information. A BALB/C mouse with breast tumor of 4T1-fLuc cells mouse model were used to evaluate the performance of the new system and technique. Compared with the conventional hybrid optical-CT approach using the same inverse reconstruction method, the reconstruction accuracy of this technique was improved. The distance error between the actual and reconstructed internal source was decreased by 0.184 mm.

  1. 3D Reconstruction from X-ray Fluoroscopy for Clinical Veterinary Medicine using Differential Volume Rendering

    Science.gov (United States)

    Khongsomboon, Khamphong; Hamamoto, Kazuhiko; Kondo, Shozo

    3D reconstruction from ordinary X-ray equipment which is not CT or MRI is required in clinical veterinary medicine. Authors have already proposed a 3D reconstruction technique from X-ray photograph to present bone structure. Although the reconstruction is useful for veterinary medicine, the thechnique has two problems. One is about exposure of X-ray and the other is about data acquisition process. An x-ray equipment which is not special one but can solve the problems is X-ray fluoroscopy. Therefore, in this paper, we propose a method for 3D-reconstruction from X-ray fluoroscopy for clinical veterinary medicine. Fluoroscopy is usually used to observe a movement of organ or to identify a position of organ for surgery by weak X-ray intensity. Since fluoroscopy can output a observed result as movie, the previous two problems which are caused by use of X-ray photograph can be solved. However, a new problem arises due to weak X-ray intensity. Although fluoroscopy can present information of not only bone structure but soft tissues, the contrast is very low and it is very difficult to recognize some soft tissues. It is very useful to be able to observe not only bone structure but soft tissues clearly by ordinary X-ray equipment in the field of clinical veterinary medicine. To solve this problem, this paper proposes a new method to determine opacity in volume rendering process. The opacity is determined according to 3D differential coefficient of 3D reconstruction. This differential volume rendering can present a 3D structure image of multiple organs volumetrically and clearly for clinical veterinary medicine. This paper shows results of simulation and experimental investigation of small dog and evaluation by veterinarians.

  2. 3D reconstruction of complex geological bodies: Examples from the Alps

    Science.gov (United States)

    Zanchi, Andrea; Francesca, Salvi; Stefano, Zanchetta; Simone, Sterlacchini; Graziano, Guerra

    2009-01-01

    Cartographic geological and structural data collected in the field and managed by Geographic Information Systems (GIS) technology can be used for 3D reconstruction of complex geological bodies. Using a link between GIS tools and gOcad, stratigraphic and tectonic surfaces can be reconstructed taking into account any geometrical constraint derived from field observations. Complex surfaces can be reconstructed using large data sets analysed by suitable geometrical techniques. Three main typologies of geometric features and related attributes are exported from a GIS-geodatabase: (1) topographic data as points from a digital elevation model; (2) stratigraphic and tectonic boundaries, and linear features as 2D polylines; (3) structural data as points. After having imported the available information into gOcad, the following steps should be performed: (1) construction of the topographic surface by interpolation of points; (2) 3D mapping of the linear geological boundaries and linear features by vertical projection on the reconstructed topographic surface; (3) definition of geometrical constraints from planar and linear outcrop data; (4) construction of a network of cross-sections based on field observations and geometrical constraints; (5) creation of 3D surfaces, closed volumes and grids from the constructed objects. Three examples of the reconstruction of complex geological bodies from the Italian Alps are presented here. The methodology demonstrates that although only outcrop data were available, 3D modelling has allows the checking of the geometrical consistency of the interpretative 2D sections and of the field geology, through a 3D visualisation of geometrical models. Application of a 3D geometrical model to the case studies can be very useful in geomechanical modelling for slope-stability or resource evaluation.

  3. Error Evaluation in a Stereovision-Based 3D Reconstruction System

    Directory of Open Access Journals (Sweden)

    Kohler Sophie

    2010-01-01

    Full Text Available The work presented in this paper deals with the performance analysis of the whole 3D reconstruction process of imaged objects, specifically of the set of geometric primitives describing their outline and extracted from a pair of images knowing their associated camera models. The proposed analysis focuses on error estimation for the edge detection process, the starting step for the whole reconstruction procedure. The fitting parameters describing the geometric features composing the workpiece to be evaluated are used as quality measures to determine error bounds and finally to estimate the edge detection errors. These error estimates are then propagated up to the final 3D reconstruction step. The suggested error analysis procedure for stereovision-based reconstruction tasks further allows evaluating the quality of the 3D reconstruction. The resulting final error estimates enable lastly to state if the reconstruction results fulfill a priori defined criteria, for example, fulfill dimensional constraints including tolerance information, for vision-based quality control applications for example.

  4. Sample based 3D face reconstruction from a single frontal image by adaptive locally linear embedding

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian; ZHUANG Yue-ting

    2007-01-01

    In this paper, we propose a highly automatic approach for 3D photorealistic face reconstruction from a single frontal image. The key point of our work is the implementation of adaptive manifold learning approach. Beforehand, an active appearance model (AAM) is trained for automatic feature extraction and adaptive locally linear embedding (ALLE) algorithm is utilized to reduce the dimensionality of the 3D database. Then, given an input frontal face image, the corresponding weights between 3D samples and the image are synthesized adaptively according to the AAM selected facial features. Finally, geometry reconstruction is achieved by linear weighted combination of adaptively selected samples. Radial basis function (RBF) is adopted to map facial texture from the frontal image to the reconstructed face geometry. The texture of invisible regions between the face and the ears is interpolated by sampling from the frontal image. This approach has several advantages: (1) Only a single frontal face image is needed for highly automatic face reconstruction; (2) Compared with former works, our reconstruction approach provides higher accuracy; (3) Constraint based RBF texture mapping provides natural appearance for reconstructed face.

  5. Digital breast tomosynthesis; Digitale Tomosynthese der Brust

    Energy Technology Data Exchange (ETDEWEB)

    Haegele, Julian; Barkhausen, Joerg [Universtiaetsklinikum Schleswig-Holstein, Luebeck (Germany). Klinik fuer Radiologie und Nuklearmedizin; Pursche, Telja [Universtiaetsklinikum Schleswig-Holstein, Luebeck (Germany). Brustzentrum; Schaefer, Fritz K.W. [Universtiaetsklinikum Schleswig-Holstein, Kiel (Germany). Bereich Mammadiagnostik und Intervention

    2015-09-15

    In digital breast tomosynthesis a digital tomographic data set with a very high spatial resolution is reconstructed from low-dose projections collected over a limited rotation angle. This allows a very detailed assessment of e. g. masses and architectural distortions. The average glandular dose is comparable to 2 D mammography. First clinical studies demonstrated that tomosynthesis is able to supply important additional information in suspicious mammographic findings. In comparison to projection mammography, tomosynthesis shows an at least comparable diagnostic accuracy. In everyday practice, tomosynthesis is currently mostly used for further evaluation of suspicious findings in mammography.

  6. Estimation of 3D reconstruction errors in a stereo-vision system

    Science.gov (United States)

    Belhaoua, A.; Kohler, S.; Hirsch, E.

    2009-06-01

    The paper presents an approach for error estimation for the various steps of an automated 3D vision-based reconstruction procedure of manufactured workpieces. The process is based on a priori planning of the task and built around a cognitive intelligent sensory system using so-called Situation Graph Trees (SGT) as a planning tool. Such an automated quality control system requires the coordination of a set of complex processes performing sequentially data acquisition, its quantitative evaluation and the comparison with a reference model (e.g., CAD object model) in order to evaluate quantitatively the object. To ensure efficient quality control, the aim is to be able to state if reconstruction results fulfill tolerance rules or not. Thus, the goal is to evaluate independently the error for each step of the stereo-vision based 3D reconstruction (e.g., for calibration, contour segmentation, matching and reconstruction) and then to estimate the error for the whole system. In this contribution, we analyze particularly the segmentation error due to localization errors for extracted edge points supposed to belong to lines and curves composing the outline of the workpiece under evaluation. The fitting parameters describing these geometric features are used as quality measure to determine confidence intervals and finally to estimate the segmentation errors. These errors are then propagated through the whole reconstruction procedure, enabling to evaluate their effect on the final 3D reconstruction result, specifically on position uncertainties. Lastly, analysis of these error estimates enables to evaluate the quality of the 3D reconstruction, as illustrated by the shown experimental results.

  7. One-shot 3d surface reconstruction from instantaneous frequencies: solutions to ambiguity problems

    NARCIS (Netherlands)

    Heijden, van der F.; Spreeuwers, L.J.; Nijmeijer, A.C.

    2009-01-01

    Phase-measuring profilometry is a well known technique for 3D surface reconstruction based on a sinusoidal pattern that is projected on a scene. If the surface is partly occluded by, for instance, other objects, then the depth shows abrupt transitions at the edges of these occlusions. This causes am

  8. Fuzzy zoning for feature matching technique in 3D reconstruction of nasal endoscopic images.

    Science.gov (United States)

    Rattanalappaiboon, Surapong; Bhongmakapat, Thongchai; Ritthipravat, Panrasee

    2015-12-01

    3D reconstruction from nasal endoscopic images greatly supports an otolaryngologist in examining nasal passages, mucosa, polyps, sinuses, and nasopharyx. In general, structure from motion is a popular technique. It consists of four main steps; (1) camera calibration, (2) feature extraction, (3) feature matching, and (4) 3D reconstruction. Scale Invariant Feature Transform (SIFT) algorithm is normally used for both feature extraction and feature matching. However, SIFT algorithm relatively consumes computational time particularly in the feature matching process because each feature in an image of interest is compared with all features in the subsequent image in order to find the best matched pair. A fuzzy zoning approach is developed for confining feature matching area. Matching between two corresponding features from different images can be efficiently performed. With this approach, it can greatly reduce the matching time. The proposed technique is tested with endoscopic images created from phantoms and compared with the original SIFT technique in terms of the matching time and average errors of the reconstructed models. Finally, original SIFT and the proposed fuzzy-based technique are applied to 3D model reconstruction of real nasal cavity based on images taken from a rigid nasal endoscope. The results showed that the fuzzy-based approach was significantly faster than traditional SIFT technique and provided similar quality of the 3D models. It could be used for creating a nasal cavity taken by a rigid nasal endoscope.

  9. Some Methods of Applied Numerical Analysis to 3d Facial Reconstruction Software

    Science.gov (United States)

    Roşu, Şerban; Ianeş, Emilia; Roşu, Doina

    2010-09-01

    This paper deals with the collective work performed by medical doctors from the University Of Medicine and Pharmacy Timisoara and engineers from the Politechnical Institute Timisoara in the effort to create the first Romanian 3d reconstruction software based on CT or MRI scans and to test the created software in clinical practice.

  10. Xenobiotic metabolism in human skin and 3D human skin reconstructs: A review

    NARCIS (Netherlands)

    Gibbs, S.; Sandt, J.J.M. van de; Merk, H.F.; Lockley, D.J.; Pendlington, R.U.; Pease, C.K.

    2007-01-01

    In this review, we discuss and compare studies of xenobiotic metabolism in both human skin and 3D human skin reconstructs. In comparison to the liver, the skin is a less studied organ in terms of characterising metabolic capability. While the skin forms the major protective barrier to environmental

  11. List-mode MLEM Image Reconstruction from 3D ML Position Estimates.

    Science.gov (United States)

    Caucci, Luca; Hunter, William C J; Furenlid, Lars R; Barrett, Harrison H

    2010-10-01

    Current thick detectors used in medical imaging allow recording many attributes, such as the 3D location of interaction within the scintillation crystal and the amount of energy deposited. An efficient way of dealing with these data is by storing them in list-mode (LM). To reconstruct the data, maximum-likelihood expectation-maximization (MLEM) is efficiently applied to the list-mode data, resulting in the list-mode maximum-likelihood expectation-maximization (LMMLEM) reconstruction algorithm.In this work, we consider a PET system consisting of two thick detectors facing each other. PMT outputs are collected for each coincidence event and are used to perform 3D maximum-likelihood (ML) position estimation of location of interaction. The mathematical properties of the ML estimation allow accurate modeling of the detector blur and provide a theoretical framework for the subsequent estimation step, namely the LMMLEM reconstruction. Indeed, a rigorous statistical model for the detector output can be obtained from calibration data and used in the calculation of the conditional probability density functions for the interaction location estimates.Our implementation of the 3D ML position estimation takes advantage of graphics processing unit (GPU) hardware and permits accurate real-time estimates of position of interaction. The LMMLEM algorithm is then applied to the list of position estimates, and the 3D radiotracer distribution is reconstructed on a voxel grid.

  12. VizieR Online Data Catalog: ADAM: 3D asteroid shape reconstruction code (Viikinkoski+, 2015)

    Science.gov (United States)

    Viikinkoski, M.; Kaasalainen, M.; Durech, J.

    2015-02-01

    About the code: ADAM is a collection of routines for 3D asteroid shape reconstruction from disk-resolved observations. Any combination of lightcurves, adaptive optics images, HST/FGS data, range-Doppler radar images and disk-resolved thermal images may be used as data sources. The routines are implemented in a combination of MATLAB and C. (2 data files).

  13. Identification of superficial defects in reconstructed 3D objects using phase-shifting fringe projection

    Science.gov (United States)

    Madrigal, Carlos A.; Restrepo, Alejandro; Branch, John W.

    2016-09-01

    3D reconstruction of small objects is used in applications of surface analysis, forensic analysis and tissue reconstruction in medicine. In this paper, we propose a strategy for the 3D reconstruction of small objects and the identification of some superficial defects. We applied a technique of projection of structured light patterns, specifically sinusoidal fringes and an algorithm of phase unwrapping. A CMOS camera was used to capture images and a DLP digital light projector for synchronous projection of the sinusoidal pattern onto the objects. We implemented a technique based on a 2D flat pattern as calibration process, so the intrinsic and extrinsic parameters of the camera and the DLP were defined. Experimental tests were performed in samples of artificial teeth, coal particles, welding defects and surfaces tested with Vickers indentation. Areas less than 5cm were studied. The objects were reconstructed in 3D with densities of about one million points per sample. In addition, the steps of 3D description, identification of primitive, training and classification were implemented to recognize defects, such as: holes, cracks, roughness textures and bumps. We found that pattern recognition strategies are useful, when quality supervision of surfaces has enough quantities of points to evaluate the defective region, because the identification of defects in small objects is a demanding activity of the visual inspection.

  14. Morphology and function of Bast's valve : additional insight in its functioning using 3D-reconstruction

    NARCIS (Netherlands)

    Hofman, R.; Segenhout, J. M.; Buytaert, J. A. N.; Dirckx, J. J. J.; Wit, H. P.

    2008-01-01

    The utriculo-endolymphatic valve was discovered by Bast in 1928. The function of Bast's valve is still unclear. By means of orthogonal-plane fluorescence optical sectioning (OPFOS) microscopy 3D-reconstructions of the valve and its surrounding region are depicted. The shape of the duct at the utricu

  15. A Hierarchical Building Segmentation in Digital Surface Models for 3D Reconstruction

    Directory of Open Access Journals (Sweden)

    Yiming Yan

    2017-01-01

    Full Text Available In this study, a hierarchical method for segmenting buildings in a digital surface model (DSM, which is used in a novel framework for 3D reconstruction, is proposed. Most 3D reconstructions of buildings are model-based. However, the limitations of these methods are overreliance on completeness of the offline-constructed models of buildings, and the completeness is not easily guaranteed since in modern cities buildings can be of a variety of types. Therefore, a model-free framework using high precision DSM and texture-images buildings was introduced. There are two key problems with this framework. The first one is how to accurately extract the buildings from the DSM. Most segmentation methods are limited by either the terrain factors or the difficult choice of parameter-settings. A level-set method are employed to roughly find the building regions in the DSM, and then a recently proposed ‘occlusions of random textures model’ are used to enhance the local segmentation of the buildings. The second problem is how to generate the facades of buildings. Synergizing with the corresponding texture-images, we propose a roof-contour guided interpolation of building facades. The 3D reconstruction results achieved by airborne-like images and satellites are compared. Experiments show that the segmentation method has good performance, and 3D reconstruction is easily performed by our framework, and better visualization results can be obtained by airborne-like images, which can be further replaced by UAV images.

  16. A Computer Vision Method for 3D Reconstruction of Curves-Marked Free-Form Surfaces

    Institute of Scientific and Technical Information of China (English)

    Xiong Hanwei; Zhang Xiangwei

    2001-01-01

    Visual method is now broadly used in reverse engineering for 3D reconstruction. Thetraditional computer vision methods are feature-based, i.e., they require that the objects must revealfeatures owing to geometry or textures. For textureless free-form surfaces, dense feature points areadded artificially. In this paper, a new method is put forward combining computer vision with CAGD.The surface is subdivided into N-side Gregory patches using marked curves, and a stereo algorithm isused to reconstruct the curves. Then, the cross boundary tangent vector is computed throughreflectance analysis. At last, the whole surface can be reconstructed by jointing these patches withG1 continuity.

  17. Evaluation of the image quality in digital breast tomosynthesis (DBT) employed with a compressed-sensing (CS)-based reconstruction algorithm by using the mammographic accreditation phantom

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yeonok; Cho, Heemoon; Je, Uikyu; Cho, Hyosung, E-mail: hscho1@yonsei.ac.kr; Park, Chulkyu; Lim, Hyunwoo; Kim, Kyuseok; Kim, Guna; Park, Soyoung; Woo, Taeho; Choi, Sungil

    2015-12-21

    In this work, we have developed a prototype digital breast tomosynthesis (DBT) system which mainly consists of an x-ray generator (28 kV{sub p}, 7 mA s), a CMOS-type flat-panel detector (70-μm pixel size, 230.5×339 mm{sup 2} active area), and a rotational arm to move the x-ray generator in an arc. We employed a compressed-sensing (CS)-based reconstruction algorithm, rather than a common filtered-backprojection (FBP) one, for more accurate DBT reconstruction. Here the CS is a state-of-the-art mathematical theory for solving the inverse problems, which exploits the sparsity of the image with substantially high accuracy. We evaluated the reconstruction quality in terms of the detectability, the contrast-to-noise ratio (CNR), and the slice-sensitive profile (SSP) by using the mammographic accreditation phantom (Model 015, CIRS Inc.) and compared it to the FBP-based quality. The CS-based algorithm yielded much better image quality, preserving superior image homogeneity, edge sharpening, and cross-plane resolution, compared to the FBP-based one. - Highlights: • A prototype digital breast tomosynthesis (DBT) system is developed. • Compressed-sensing (CS) based reconstruction framework is employed. • We reconstructed high-quality DBT images by using the proposed reconstruction framework.

  18. Weak lensing reconstructions in 2D & 3D: implications for cluster studies

    CERN Document Server

    Leonard, Adrienne; Starck, Jean-Luc

    2015-01-01

    We compare the efficiency with which 2D and 3D weak lensing mass mapping techniques are able to detect clusters of galaxies using two state-of-the-art mass reconstruction techniques: MRLens in 2D and GLIMPSE in 3D. We simulate otherwise-empty cluster fields for 96 different virial mass-redshift combinations spanning the ranges $3\\times10^{13}h^{-1}M_\\odot \\le M_{vir}\\le 10^{15}h^{-1}M_\\odot$ and $0.05 \\le z_{\\rm cl} \\le 0.75$, and for each generate 1000 realisations of noisy shear data in 2D and 3D. For each field, we then compute the cluster (false) detection rate as the mean number of cluster (false) detections per reconstruction over the sample of 1000 reconstructions. We show that both MRLens and GLIMPSE are effective tools for the detection of clusters from weak lensing measurements, and provide comparable quality reconstructions at low redshift. At high redshift, GLIMPSE reconstructions offer increased sensitivity in the detection of clusters, yielding cluster detection rates up to a factor of $\\sim 10\\...

  19. Recovery and Visualization of 3D Structure of Chromosomes from Tomographic Reconstruction Images

    Directory of Open Access Journals (Sweden)

    Tsap Leonid V

    2006-01-01

    Full Text Available The objectives of this work include automatic recovery and visualization of a 3D chromosome structure from a sequence of 2D tomographic reconstruction images taken through the nucleus of a cell. Structure is very important for biologists as it affects chromosome functions, behavior of the cell, and its state. Analysis of chromosome structure is significant in the detection of diseases, identification of chromosomal abnormalities, study of DNA structural conformation, in-depth study of chromosomal surface morphology, observation of in vivo behavior of the chromosomes over time, and in monitoring environmental gene mutations. The methodology incorporates thresholding based on a histogram analysis with a polyline splitting algorithm, contour extraction via active contours, and detection of the 3D chromosome structure by establishing corresponding regions throughout the slices. Visualization using point cloud meshing generates a 3D surface. The 3D triangular mesh of the chromosomes provides surface detail and allows a user to interactively analyze chromosomes using visualization software.

  20. Recovery and Visualization of 3D Structure of Chromosomes from Tomographic Reconstruction Images

    Energy Technology Data Exchange (ETDEWEB)

    Babu, S; Liao, P; Shin, M C; Tsap, L V

    2004-04-28

    The objectives of this work include automatic recovery and visualization of a 3D chromosome structure from a sequence of 2D tomographic reconstruction images taken through the nucleus of a cell. Structure is very important for biologists as it affects chromosome functions, behavior of the cell and its state. Chromosome analysis is significant in the detection of deceases and in monitoring environmental gene mutations. The algorithm incorporates thresholding based on a histogram analysis with a polyline splitting algorithm, contour extraction via active contours, and detection of the 3D chromosome structure by establishing corresponding regions throughout the slices. Visualization using point cloud meshing generates a 3D surface. The 3D triangular mesh of the chromosomes provides surface detail and allows a user to interactively analyze chromosomes using visualization software.

  1. Internet2-based 3D PET image reconstruction using a PC cluster.

    Science.gov (United States)

    Shattuck, D W; Rapela, J; Asma, E; Chatzioannou, A; Qi, J; Leahy, R M

    2002-08-07

    We describe an approach to fast iterative reconstruction from fully three-dimensional (3D) PET data using a network of PentiumIII PCs configured as a Beowulf cluster. To facilitate the use of this system, we have developed a browser-based interface using Java. The system compresses PET data on the user's machine, sends these data over a network, and instructs the PC cluster to reconstruct the image. The cluster implements a parallelized version of our preconditioned conjugate gradient method for fully 3D MAP image reconstruction. We report on the speed-up factors using the Beowulf approach and the impacts of communication latencies in the local cluster network and the network connection between the user's machine and our PC cluster.

  2. Real-Time Large Scale 3d Reconstruction by Fusing Kinect and Imu Data

    Science.gov (United States)

    Huai, J.; Zhang, Y.; Yilmaz, A.

    2015-08-01

    Kinect-style RGB-D cameras have been used to build large scale dense 3D maps for indoor environments. These maps can serve many purposes such as robot navigation, and augmented reality. However, to generate dense 3D maps of large scale environments is still very challenging. In this paper, we present a mapping system for 3D reconstruction that fuses measurements from a Kinect and an inertial measurement unit (IMU) to estimate motion. Our major achievements include: (i) Large scale consistent 3D reconstruction is realized by volume shifting and loop closure; (ii) The coarse-to-fine iterative closest point (ICP) algorithm, the SIFT odometry, and IMU odometry are combined to robustly and precisely estimate pose. In particular, ICP runs routinely to track the Kinect motion. If ICP fails in planar areas, the SIFT odometry provides incremental motion estimate. If both ICP and the SIFT odometry fail, e.g., upon abrupt motion or inadequate features, the incremental motion is estimated by the IMU. Additionally, the IMU also observes the roll and pitch angles which can reduce long-term drift of the sensor assembly. In experiments on a consumer laptop, our system estimates motion at 8Hz on average while integrating color images to the local map and saving volumes of meshes concurrently. Moreover, it is immune to tracking failures, and has smaller drift than the state-of-the-art systems in large scale reconstruction.

  3. External force back-projective composition and globally deformable optimization for 3-D coronary artery reconstruction.

    Science.gov (United States)

    Yang, Jian; Cong, Weijian; Chen, Yang; Fan, Jingfan; Liu, Yue; Wang, Yongtian

    2014-02-21

    The clinical value of the 3D reconstruction of a coronary artery is important for the diagnosis and intervention of cardiovascular diseases. This work proposes a method based on a deformable model for reconstructing coronary arteries from two monoplane angiographic images acquired from different angles. First, an external force back-projective composition model is developed to determine the external force, for which the force distributions in different views are back-projected to the 3D space and composited in the same coordinate system based on the perspective projection principle of x-ray imaging. The elasticity and bending forces are composited as an internal force to maintain the smoothness of the deformable curve. Second, the deformable curve evolves rapidly toward the true vascular centerlines in 3D space and angiographic images under the combination of internal and external forces. Third, densely matched correspondence among vessel centerlines is constructed using a curve alignment method. The bundle adjustment method is then utilized for the global optimization of the projection parameters and the 3D structures. The proposed method is validated on phantom data and routine angiographic images with consideration for space and re-projection image errors. Experimental results demonstrate the effectiveness and robustness of the proposed method for the reconstruction of coronary arteries from two monoplane angiographic images. The proposed method can achieve a mean space error of 0.564 mm and a mean re-projection error of 0.349 mm.

  4. Virtual 3D bladder reconstruction for augmented medical records from white light cystoscopy (Conference Presentation)

    Science.gov (United States)

    Lurie, Kristen L.; Zlatev, Dimitar V.; Angst, Roland; Liao, Joseph C.; Ellerbee, Audrey K.

    2016-02-01

    Bladder cancer has a high recurrence rate that necessitates lifelong surveillance to detect mucosal lesions. Examination with white light cystoscopy (WLC), the standard of care, is inherently subjective and data storage limited to clinical notes, diagrams, and still images. A visual history of the bladder wall can enhance clinical and surgical management. To address this clinical need, we developed a tool to transform in vivo WLC videos into virtual 3-dimensional (3D) bladder models using advanced computer vision techniques. WLC videos from rigid cystoscopies (1280 x 720 pixels) were recorded at 30 Hz followed by immediate camera calibration to control for image distortions. Video data were fed into an automated structure-from-motion algorithm that generated a 3D point cloud followed by a 3D mesh to approximate the bladder surface. The highest quality cystoscopic images were projected onto the approximated bladder surface to generate a virtual 3D bladder reconstruction. In intraoperative WLC videos from 36 patients undergoing transurethral resection of suspected bladder tumors, optimal reconstruction was achieved from frames depicting well-focused vasculature, when the bladder was maintained at constant volume with minimal debris, and when regions of the bladder wall were imaged multiple times. A significant innovation of this work is the ability to perform the reconstruction using video from a clinical procedure collected with standard equipment, thereby facilitating rapid clinical translation, application to other forms of endoscopy and new opportunities for longitudinal studies of cancer recurrence.

  5. 3D Maize Plant Reconstruction Based on Georeferenced Overlapping LiDAR Point Clouds

    Directory of Open Access Journals (Sweden)

    Miguel Garrido

    2015-12-01

    Full Text Available 3D crop reconstruction with a high temporal resolution and by the use of non-destructive measuring technologies can support the automation of plant phenotyping processes. Thereby, the availability of such 3D data can give valuable information about the plant development and the interaction of the plant genotype with the environment. This article presents a new methodology for georeferenced 3D reconstruction of maize plant structure. For this purpose a total station, an IMU, and several 2D LiDARs with different orientations were mounted on an autonomous vehicle. By the multistep methodology presented, based on the application of the ICP algorithm for point cloud fusion, it was possible to perform the georeferenced point clouds overlapping. The overlapping point cloud algorithm showed that the aerial points (corresponding mainly to plant parts were reduced to 1.5%–9% of the total registered data. The remaining were redundant or ground points. Through the inclusion of different LiDAR point of views of the scene, a more realistic representation of the surrounding is obtained by the incorporation of new useful information but also of noise. The use of georeferenced 3D maize plant reconstruction at different growth stages, combined with the total station accuracy could be highly useful when performing precision agriculture at the crop plant level.

  6. Applicability of 3D-CT facial reconstruction for forensic individual identification.

    Science.gov (United States)

    Rocha, Sara dos Santos; Ramos, Dalton Luiz; Cavalcanti, Marcelo de Gusmão Paraíso

    2003-01-01

    Computed tomography (CT) is used in several clinical dentistry applications even by axial slices and two and three-dimensional reconstructed images (2D-CT and 3D-CT). The purpose of the current study is to assess the precision of linear measurements made in 3D-CT using craniometric patterns for individual identification in Forensic Dentistry. Five cadaver heads were submitted to a spiral computed tomography using axial slices, and 3D-CT reconstructions were obtained by volume rendering technique with computer graphics tools. Ten (10) craniometric measurements were determined in 3D-CT images by two examiners independently, twice each, and the standard error of intra- and inter-examiner measurements was assessed. The results demonstrated a low standard error of those measurements, from 0.85% to 3.09%. In conclusion, the linear measurements obtained in osseous and soft tissue structures were considered to be precise in 3D-CT with high imaging quality and resolution.

  7. Applicability of 3D-CT facial reconstruction for forensic individual identification

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Sara dos Santos [Sao Paulo Univ., SP (Brazil). Odontologia Forense; Ramos, Dalton Luiz de Paula [Sao Paulo Univ., SP (Brazil). Dept. of Odontologia Social; Cavalcanti, Marcelo de Gusmao Paraiso [Sao Paulo Univ., SP (Brazil). Dept. de Radiologia

    2003-03-01

    Computed tomography (CT) is used in several clinical dentistry applications even by axial slices and two and three-dimensional reconstructed images (2D-CT and 3D-CT). The purpose of the current study is to assess the precision of linear measurements made in 3D-CT using cranio metric patterns for individual identification in Forensic Dentistry. Five cadaver heads were submitted to a spiral computed tomography using axial slices, and 3D-CT reconstructions were obtained by volume rendering technique with computer graphics tools. Ten (10) cranio metric measurements were determined in 3D-CT images by two examiners independently, twice each, and the standard error of intra- and inter-examiner measurements was assessed. The results demonstrated a low standard error of those measurements, from 0.85% to 3.09%. In conclusion, the linear measurements obtained in osseous and soft tissue structures were considered to be precise in 3D-CT with high imaging quality and resolution. (author)

  8. 3D Reconstruction of Static Human Body with a Digital Camera

    Science.gov (United States)

    Remondino, Fabio

    2003-01-01

    Nowadays the interest in 3D reconstruction and modeling of real humans is one of the most challenging problems and a topic of great interest. The human models are used for movies, video games or ergonomics applications and they are usually created with 3D scanner devices. In this paper a new method to reconstruct the shape of a static human is presented. Our approach is based on photogrammetric techniques and uses a sequence of images acquired around a standing person with a digital still video camera or with a camcorder. First the images are calibrated and orientated using a bundle adjustment. After the establishment of a stable adjusted image block, an image matching process is performed between consecutive triplets of images. Finally the 3D coordinates of the matched points are computed with a mean accuracy of ca 2 mm by forward ray intersection. The obtained point cloud can then be triangulated to generate a surface model of the body or a virtual human model can be fitted to the recovered 3D data. Results of the 3D human point cloud with pixel color information are presented.

  9. 3D-Printing Technologies for Craniofacial Rehabilitation, Reconstruction, and Regeneration.

    Science.gov (United States)

    Nyberg, Ethan L; Farris, Ashley L; Hung, Ben P; Dias, Miguel; Garcia, Juan R; Dorafshar, Amir H; Grayson, Warren L

    2017-01-01

    The treatment of craniofacial defects can present many challenges due to the variety of tissue-specific requirements and the complexity of anatomical structures in that region. 3D-printing technologies provide clinicians, engineers and scientists with the ability to create patient-specific solutions for craniofacial defects. Currently, there are three key strategies that utilize these technologies to restore both appearance and function to patients: rehabilitation, reconstruction and regeneration. In rehabilitation, 3D-printing can be used to create prostheses to replace or cover damaged tissues. Reconstruction, through plastic surgery, can also leverage 3D-printing technologies to create custom cutting guides, fixation devices, practice models and implanted medical devices to improve patient outcomes. Regeneration of tissue attempts to replace defects with biological materials. 3D-printing can be used to create either scaffolds or living, cellular constructs to signal tissue-forming cells to regenerate defect regions. By integrating these three approaches, 3D-printing technologies afford the opportunity to develop personalized treatment plans and design-driven manufacturing solutions to improve aesthetic and functional outcomes for patients with craniofacial defects.

  10. 3D weighting in cone beam image reconstruction algorithms: ray-driven vs. pixel-driven.

    Science.gov (United States)

    Tang, Xiangyang; Nilsen, Roy A; Smolin, Alex; Lifland, Ilya; Samsonov, Dmitry; Taha, Basel

    2008-01-01

    A 3D weighting scheme have been proposed previously to reconstruct images at both helical and axial scans in stat-of-the-art volumetric CT scanners for diagnostic imaging. Such a 3D weighting can be implemented in the manner of either ray-driven or pixel-drive, depending on the available computation resources. An experimental study is conducted in this paper to evaluate the difference between the ray-driven and pixel-driven implementations of the 3D weighting from the perspective of image quality, while their computational complexity is analyzed theoretically. Computer simulated data and several phantoms, such as the helical body phantom and humanoid chest phantom, are employed in the experimental study, showing that both the ray-driven and pixel-driven 3D weighting provides superior image quality for diagnostic imaging in clinical applications. With the availability of image reconstruction engine at increasing computational power, it is believed that the pixel-driven 3D weighting will be dominantly employed in state-of-the-art volumetric CT scanners over clinical applications.

  11. Reconstruction of 3-D cloud geometry using a scanning cloud radar

    Science.gov (United States)

    Ewald, F.; Winkler, C.; Zinner, T.

    2014-11-01

    Clouds are one of the main reasons of uncertainties in the forecasts of weather and climate. In part, this is due to limitations of remote sensing of cloud microphysics. Present approaches often use passive spectral measurements for the remote sensing of cloud microphysical parameters. Large uncertainties are introduced by three dimensional (3-D) radiative transfer effects and cloud inhomogeneities. Such effects are largely caused by unknown orientation of cloud sides or by shadowed areas on the cloud. Passive ground based remote sensing of cloud properties at high spatial resolution could be improved crucially with this kind of additional knowledge of cloud geometry. To this end, a method for the accurate reconstruction of 3-D cloud geometry from cloud radar measurements is developed in this work. Using a radar simulator and simulated passive measurements of static LES model clouds, the effects of different radar scan resolutions and varying interpolation methods are evaluated. In reality a trade-off between scan resolution and scan duration has to be found as clouds are changing quickly. A reasonable choice is a scan resolution of 1 to 2°. The most suitable interpolation procedure identified is the barycentric interpolation method. The 3-D reconstruction method is demonstrated using radar scans of convective cloud cases with the Munich miraMACS, a 35 GHz scanning cloud radar. As a successful proof of concept, camera imagery collected at the radar location is reproduced for the observed cloud cases via 3-D volume reconstruction and 3-D radiative transfer simulation. Data sets provided by the presented reconstruction method will aid passive spectral ground-based measurements of cloud sides to retrieve microphysical parameters.

  12. Automatic system for 3D reconstruction of the chick eye based on digital photographs.

    Science.gov (United States)

    Wong, Alexander; Genest, Reno; Chandrashekar, Naveen; Choh, Vivian; Irving, Elizabeth L

    2012-01-01

    The geometry of anatomical specimens is very complex and accurate 3D reconstruction is important for morphological studies, finite element analysis (FEA) and rapid prototyping. Although magnetic resonance imaging, computed tomography and laser scanners can be used for reconstructing biological structures, the cost of the equipment is fairly high and specialised technicians are required to operate the equipment, making such approaches limiting in terms of accessibility. In this paper, a novel automatic system for 3D surface reconstruction of the chick eye from digital photographs of a serially sectioned specimen is presented as a potential cost-effective and practical alternative. The system is designed to allow for automatic detection of the external surface of the chick eye. Automatic alignment of the photographs is performed using a combination of coloured markers and an algorithm based on complex phase order likelihood that is robust to noise and illumination variations. Automatic segmentation of the external boundaries of the eye from the aligned photographs is performed using a novel level-set segmentation approach based on a complex phase order energy functional. The extracted boundaries are sampled to construct a 3D point cloud, and a combination of Delaunay triangulation and subdivision surfaces is employed to construct the final triangular mesh. Experimental results using digital photographs of the chick eye show that the proposed system is capable of producing accurate 3D reconstructions of the external surface of the eye. The 3D model geometry is similar to a real chick eye and could be used for morphological studies and FEA.

  13. Intuitive Terrain Reconstruction Using Height Observation-Based Ground Segmentation and 3D Object Boundary Estimation

    Directory of Open Access Journals (Sweden)

    Sungdae Sim

    2012-12-01

    Full Text Available Mobile robot operators must make rapid decisions based on information about the robot’s surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot’s array of sensors, but some upper parts of objects are beyond the sensors’ measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances.

  14. Intuitive terrain reconstruction using height observation-based ground segmentation and 3D object boundary estimation.

    Science.gov (United States)

    Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae

    2012-12-12

    Mobile robot operators must make rapid decisions based on information about the robot's surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot's array of sensors, but some upper parts of objects are beyond the sensors' measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances.

  15. 3D-guided CT reconstruction using time-of-flight camera

    Science.gov (United States)

    Ismail, Mahmoud; Taguchi, Katsuyuki; Xu, Jingyan; Tsui, Benjamin M. W.; Boctor, Emad M.

    2011-03-01

    We propose the use of a time-of-flight (TOF) camera to obtain the patient's body contour in 3D guided imaging reconstruction scheme in CT and C-arm imaging systems with truncated projection. In addition to pixel intensity, a TOF camera provides the 3D coordinates of each point in the captured scene with respect to the camera coordinates. Information from the TOF camera was used to obtain a digitized surface of the patient's body. The digitization points are transformed to X-Ray detector coordinates by registering the two coordinate systems. A set of points corresponding to the slice of interest are segmented to form a 2D contour of the body surface. Radon transform is applied to the contour to generate the 'trust region' for the projection data. The generated 'trust region' is integrated as an input to augment the projection data. It is used to estimate the truncated, unmeasured projections using linear interpolation. Finally the image is reconstructed using the combination of the estimated and the measured projection data. The proposed method is evaluated using a physical phantom. Projection data for the phantom were obtained using a C-arm system. Significant improvement in the reconstructed image quality near the truncation edges was observed using the proposed method as compared to that without truncation correction. This work shows that the proposed 3D guided CT image reconstruction using a TOF camera represents a feasible solution to the projection data truncation problem.

  16. The Transformations of the Central Area of Nora: the 3D Reconstruction of the Central Baths

    Directory of Open Access Journals (Sweden)

    Daniele Capuzzo

    2013-11-01

    Full Text Available The 3D reconstruction of the Central Baths of Nora has required a long and reasoned analysis. On the basis of precise comparisons, a planimetric study of the complex has been first carried out, followed by the more difficult one of the elevations and the roofs, in order to create a model that allows to appreciate the building not only in its structural complexity, but also in the relationship with the spatial context in which it stood. This work represents only a part of a larger project that lead to the creation of a 3D model of the whole central district of Nora.

  17. A method for brain 3D surface reconstruction from MR images

    Science.gov (United States)

    Zhao, De-xin

    2014-09-01

    Due to the encephalic tissues are highly irregular, three-dimensional (3D) modeling of brain always leads to complicated computing. In this paper, we explore an efficient method for brain surface reconstruction from magnetic resonance (MR) images of head, which is helpful to surgery planning and tumor localization. A heuristic algorithm is proposed for surface triangle mesh generation with preserved features, and the diagonal length is regarded as the heuristic information to optimize the shape of triangle. The experimental results show that our approach not only reduces the computational complexity, but also completes 3D visualization with good quality.

  18. A Method for 3D Histopathology Reconstruction Supporting Mouse Microvasculature Analysis.

    Directory of Open Access Journals (Sweden)

    Yiwen Xu

    Full Text Available Structural abnormalities of the microvasculature can impair perfusion and function. Conventional histology provides good spatial resolution with which to evaluate the microvascular structure but affords no 3-dimensional information; this limitation could lead to misinterpretations of the complex microvessel network in health and disease. The objective of this study was to develop and evaluate an accurate, fully automated 3D histology reconstruction method to visualize the arterioles and venules within the mouse hind-limb. Sections of the tibialis anterior muscle from C57BL/J6 mice (both normal and subjected to femoral artery excision were reconstructed using pairwise rigid and affine registrations of 5 µm-thick, paraffin-embedded serial sections digitized at 0.25 µm/pixel. Low-resolution intensity-based rigid registration was used to initialize the nucleus landmark-based registration, and conventional high-resolution intensity-based registration method. The affine nucleus landmark-based registration was developed in this work and was compared to the conventional affine high-resolution intensity-based registration method. Target registration errors were measured between adjacent tissue sections (pairwise error, as well as with respect to a 3D reference reconstruction (accumulated error, to capture propagation of error through the stack of sections. Accumulated error measures were lower (p < 0.01 for the nucleus landmark technique and superior vasculature continuity was observed. These findings indicate that registration based on automatic extraction and correspondence of small, homologous landmarks may support accurate 3D histology reconstruction. This technique avoids the otherwise problematic "banana-into-cylinder" effect observed using conventional methods that optimize the pairwise alignment of salient structures, forcing them to be section-orthogonal. This approach will provide a valuable tool for high-accuracy 3D histology tissue

  19. Electrochemical fields within 3D reconstructed microstructures of mixed ionic and electronic conducting devices

    Science.gov (United States)

    Zhang, Yanxiang; Chen, Yu; Lin, Ye; Yan, Mufu; Harris, William M.; Chiu, Wilson K. S.; Ni, Meng; Chen, Fanglin

    2016-11-01

    The performance and stability of the mixed ionic and electronic conducting (MIEC) membrane devices, such as solid oxide cells (SOCs) and oxygen separation membranes (OSMs) interplay tightly with the transport properties and the three-dimensional (3D) microstructure of the membrane. However, development of the MIEC devices is hindered by the limited knowledge about the distribution of electrochemical fields within the 3D local microstructures, especially at surface and interface. In this work, a generic model conforming to local thermodynamic equilibrium is developed to calculate the electrochemical fields, such as electric potential and oxygen chemical potential, within the 3D microstructure of the MIEC membrane. Stability of the MIEC membrane is evaluated by the distribution of oxygen partial pressure. The cell-level performance such as polarization resistance and voltage vs. current curve can be further calculated. Case studies are performed to demonstrate the capability of the framework by using X-ray computed tomography reconstructed 3D microstructures of a SOC and an OSM. The calculation method demonstrates high computational efficiency for large size 3D tomographic microstructures, and permits parallel calculation. The framework can serve as a powerful tool for correlating the transport properties and the 3D microstructure to the performance and the stability of MIEC devices.

  20. GlaRe, a GIS tool to reconstruct the 3D surface of palaeoglaciers

    Science.gov (United States)

    Pellitero, Ramón; Rea, Brice R.; Spagnolo, Matteo; Bakke, Jostein; Ivy-Ochs, Susan; Frew, Craig R.; Hughes, Philip; Ribolini, Adriano; Lukas, Sven; Renssen, Hans

    2016-09-01

    Glacier reconstructions are widely used in palaeoclimatic studies and this paper presents a new semi-automated method for generating glacier reconstructions: GlaRe, is a toolbox coded in Python and operating in ArcGIS. This toolbox provides tools to generate the ice thickness from the bed topography along a palaeoglacier flowline applying the standard flow law for ice, and generates the 3D surface of the palaeoglacier using multiple interpolation methods. The toolbox performance has been evaluated using two extant glaciers, an icefield and a cirque/valley glacier from which the subglacial topography is known, using the basic reconstruction routine in GlaRe. Results in terms of ice surface, ice extent and equilibrium line altitude show excellent agreement that confirms the robustness of this procedure in the reconstruction of palaeoglaciers from glacial landforms such as frontal moraines.

  1. Fast 3D spine reconstruction of postoperative patients using a multilevel statistical model.

    Science.gov (United States)

    Lecron, Fabian; Boisvert, Jonathan; Mahmoudi, Saïd; Labelle, Hubert; Benjelloun, Mohammed

    2012-01-01

    Severe cases of spinal deformities such as scoliosis are usually treated by a surgery where instrumentation (hooks, screws and rods) is installed to the spine to correct deformities. Even if the purpose is to obtain a normal spine curve, the result is often straighter than normal. In this paper, we propose a fast statistical reconstruction algorithm based on a general model which can deal with such instrumented spines. To this end, we present the concept of multilevel statistical model where the data are decomposed into a within-group and a between-group component. The reconstruction procedure is formulated as a second-order cone program which can be solved very fast (few tenths of a second). Reconstruction errors were evaluated on real patient data and results showed that multilevel modeling allows better 3D reconstruction than classical models.

  2. CAVAREV-an open platform for evaluating 3D and 4D cardiac vasculature reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Rohkohl, Christopher; Hornegger, Joachim [Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander University Erlangen-Nuremberg, Martensstr. 3, 91058 Erlangen (Germany); Lauritsch, Guenter [Siemens AG, Healthcare Sector, Siemensstr. 1, 91301 Forchheim (Germany); Keil, Andreas, E-mail: christopher.rohkohl@informatik.uni-erlangen.d, E-mail: guenter.lauritsch@siemens.co, E-mail: andreas.keil@cs.tum.ed, E-mail: joachim.hornegger@informatik.uni-erlangen.d [Computer Aided Medical Procedures and Augmented Reality, TU Muenchen, Boltzmannstr. 3, 85748 Garching (Germany)

    2010-05-21

    The 3D reconstruction of cardiac vasculature, e.g. the coronary arteries, using C-arm CT (rotational angiography) is an active and challenging field of research. There are numerous publications on different reconstruction techniques. However, there is still a lack of comparability of achieved results for several reasons: foremost, datasets used in publications are not open to public and thus experiments are not reproducible by other researchers. Further, the results highly depend on the vasculature motion, i.e. cardiac and breathing motion patterns which are also not comparable across publications. We aim to close this gap by providing an open platform, called Cavarev (CArdiac VAsculature Reconstruction EValuation). It features two simulated dynamic projection datasets based on the 4D XCAT phantom with contrasted coronary arteries which was derived from patient data. In the first dataset, the vasculature undergoes a continuous periodic motion. The second dataset contains aperiodic heart motion by including additional breathing motion. The geometry calibration and acquisition protocol were obtained from a real-world C-arm system. For qualitative evaluation of the reconstruction results, the correlation of the morphology is used. Two segmentation-based quality measures are introduced which allow us to assess the 3D and 4D reconstruction quality. They are based on the spatial overlap of the vasculature reconstruction with the ground truth. The measures enable a comprehensive analysis and comparison of reconstruction results independent from the utilized reconstruction algorithm. An online platform (www.cavarev.com) is provided where the datasets can be downloaded, researchers can manage and publish algorithm results and download a reference C++ and Matlab implementation.

  3. Improved 3D reconstruction in smart-room environments using ToF imaging

    DEFF Research Database (Denmark)

    Guðmundsson, Sigurjón Árni; Pardas, Montse; Casas, Josep R.;

    2010-01-01

    This paper presents the use of Time-of-Flight (ToF) cameras in smart-rooms and how this leads to improved results in segmenting the people in the room from the background and consequently better 3D reconstruction of foreground objects. A calibrated rig consisting of one Swissranger SR3100 Time......-of-Flight range camera and a high resolution standard CCD camera is set in a smart-room containing five other standard cameras. A probabilistic background model is used to segment each view and a shape from silhouette volume is reconstructed. It is shown that the presence of the range camera gives ways...

  4. Benchmarking Close-range Structure from Motion 3D Reconstruction Software under Varying Capturing Conditions

    DEFF Research Database (Denmark)

    Nikolov, Ivan Adriyanov; Madsen, Claus B.

    2016-01-01

    Structure from Motion 3D reconstruction has become widely used in recent years in a number of fields such as industrial surface in- inspection, archeology, cultural heritage preservation and geomapping. A number of software solutions have been released using variations of this technique....... In this paper we analyse the state of the art of these software applications, by comparing the resultant 3D meshes qualitatively and quantitatively. We propose a number of testing scenarios using different lighting conditions, camera positions and image acquisition methods for the best in-depth analysis...... and discuss the results, the overall performance and the problems present in each software. We employ distance and roughness metrics for evaluating the final reconstruction results....

  5. 3D RECONSTRUCTION AND ANALYSIS OF THE FRAGMENTED GRAINS IN A COMPOSITE MATERIAL

    Directory of Open Access Journals (Sweden)

    Luc Gillibert

    2013-06-01

    Full Text Available X-ray microtomography from solid propellant allows studying the microstructure of fragmented grains in damaged samples. A new reconstruction algorithm of fragmented grains for 3D images is introduced. Based on a watershed transform of a morphological closing of the input image, the algorithm can be used  with different sets of markers. Two of them are compared. After the grain reconstruction, a multiscale segmentation  algorithm is used to extract each fragment of the damaged grains. This allows an original quantitative study of the  fragmentation of each grain in 3D. Experimental results on X-ray microtomographic images of a solid propellant fragmented under compression are presented and validated.

  6. Reconstruction of 3D ion beam micro-tomography data for applications in Cell Biology

    Energy Technology Data Exchange (ETDEWEB)

    Habchi, C. [Universite de Bordeaux, Centre d' Etudes Nucleaires de Bordeaux Gradignan, UMR 5797, Gradignan F-33175 (France)], E-mail: habchi@cenbg.in2p3.fr; Nguyen, D.T.; Barberet, Ph. [Universite de Bordeaux, Centre d' Etudes Nucleaires de Bordeaux Gradignan, UMR 5797, Gradignan F-33175 (France); Incerti, S. [CNRS/IN2P3, Centre d' Etudes Nucleaires de Bordeaux Gradignan, UMR 5797, Gradignan F-33175 (France); Moretto, Ph. [Universite de Bordeaux, Centre d' Etudes Nucleaires de Bordeaux Gradignan, UMR 5797, Gradignan F-33175 (France); Sakellariou, A. [Research School of Physical Sciences and Engineering, Australian National University, Canberra ACT 0200 (Australia); Seznec, H. [CNRS/IN2P3, Centre d' Etudes Nucleaires de Bordeaux Gradignan, UMR 5797, Gradignan F-33175 (France)

    2009-06-15

    The DISRA (Discrete Image Space Reconstruction Algorithm) reconstruction code, created by A. Sakellariou, was conceived for the ideal case of complete three-dimensional (3D) PIXET (Particle Induced X-ray Emission Tomography) data. This implies two major difficulties for biological samples: first, the long duration of such experiments and second, the subsequent damage that occurs on such fragile specimens. For this reason, the DISRA code was extended at CENBG in order to probe isolated PIXET slices, taking into account the sample structure and mass density provided by 3D STIMT (Scanning Transmission Ion Microscopy Tomography) in the volume of interest. This modified version was tested on a phantom sample and first results on human cancer cells are also presented.

  7. Reconstruction of 3D ion beam micro-tomography data for applications in Cell Biology

    Science.gov (United States)

    Habchi, C.; Nguyen, D. T.; Barberet, Ph.; Incerti, S.; Moretto, Ph.; Sakellariou, A.; Seznec, H.

    2009-06-01

    The DISRA (Discrete Image Space Reconstruction Algorithm) reconstruction code, created by A. Sakellariou, was conceived for the ideal case of complete three-dimensional (3D) PIXET (Particle Induced X-ray Emission Tomography) data. This implies two major difficulties for biological samples: first, the long duration of such experiments and second, the subsequent damage that occurs on such fragile specimens. For this reason, the DISRA code was extended at CENBG in order to probe isolated PIXET slices, taking into account the sample structure and mass density provided by 3D STIMT (Scanning Transmission Ion Microscopy Tomography) in the volume of interest. This modified version was tested on a phantom sample and first results on human cancer cells are also presented.

  8. Robust Stereo-Vision Based 3D Object Reconstruction for the Assistive Robot FRIEND

    Directory of Open Access Journals (Sweden)

    COJBASIC, Z.

    2011-11-01

    Full Text Available A key requirement of assistive robot vision is the robust 3D object reconstruction in complex environments for reliable autonomous object manipulation. In this paper the idea is presented of achieving high robustness of a complete robot vision system against external influences such as variable illumination by including feedback control of the object segmentation in stereo images. The approach used is to change the segmentation parameters in closed-loop so that object features extraction is driven to a desired result. Reliable feature extraction is necessary to fully exploit a neuro-fuzzy classifier which is the core of the proposed 2D object recognition method, predecessor of 3D object reconstruction. Experimental results on the rehabilitation assistive robotic system FRIEND demonstrate the effectiveness of the proposed method.

  9. Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins

    Science.gov (United States)

    Tsai, Chun-Ying; Chang, Yuan-Chih; Lobato, Ivan; van Dyck, Dirk; Chen, Fu-Rong

    2016-06-01

    The main bottlenecks for high-resolution biological imaging in electron microscopy are radiation sensitivity and low contrast. The phase contrast at low spatial frequencies can be enhanced by using a large defocus but this strongly reduces the resolution. Recently, phase plates have been developed to enhance the contrast at small defocus but electrical charging remains a problem. Single particle cryo-electron microscopy is mostly used to minimize the radiation damage and to enhance the resolution of the 3D reconstructions but it requires averaging images of a massive number of individual particles. Here we present a new route to achieve the same goals by hollow cone dark field imaging using thermal diffuse scattered electrons giving about a 4 times contrast increase as compared to bright field imaging. We demonstrate the 3D reconstruction of a stained GroEL particle can yield about 13.5 Å resolution but using a strongly reduced number of images.

  10. Renal Tumor Cryoablation Planning. The Efficiency of Simulation on Reconstructed 3D CT Scan

    Directory of Open Access Journals (Sweden)

    Ciprian Valerian LUCAN

    2010-12-01

    Full Text Available Introduction & Objective: Nephron-sparing surgical techniques risks are related to tumor relationships with adjacent anatomic structures. Complexity of the renal anatomy drives the interest to develop tools for 3D reconstruction and surgery simulation. The aim of the article was to assess the simulation on reconstructed 3D CT scan used for planning the cryoablation. Material & Method: A prospective randomized study was performed between Jan. 2007 and July 2009 on 27 patients who underwent retroperitoneoscopic T1a renal tumors cryoablation (RC. All patients were assessed preoperatively by CT scan, also used for 3D volume rendering. In the Gr.A, the patients underwent surgery planning by simulation on 3D CT scan. In the Gr.B., patients underwent standard RC. The two groups were compared in terms of surgical time, bleeding, postoperative drainage, analgesics requirement, hospital stay, time to socio-professional reintegration. Results: Fourteen patients underwent preoperative cryoablation planning (Gr.A and 13 patients underwent standard CR (Gr.B. All parameters analyzed were shorter in the Gr.A. On multivariate logistic regression, only shortens of the surgical time (138.79±5.51 min. in Gr.A. vs. 140.92±5.54 min in Gr.B. and bleeding (164.29±60.22 mL in Gr.A. vs. 215.38±100.80 mL in Gr.B. achieved statistical significance (p<0.05. The number of cryoneedles assessed by simulation had a 92.52% accuracy when compared with those effectively used. Conclusions: Simulation of the cryoablation using reconstructed 3D CT scan improves the surgical results. The application used for simulation was able to accurately assess the number of cryoneedles required for tumor ablation, their direction and approach.

  11. Order reconstruction phenomena and temperature-driven dynamics in a 3D zenithally bistable device

    KAUST Repository

    Raisch, A.

    2014-07-01

    We model the zenithally bistable device (ZBD) in three dimensions (3D), within the Landau-de Gennes theory, and find three stable static states in 3D without an applied field: the vertically aligned nematic (VAN) state, the hybrid aligned nematic (HAN) state and a third, high-tilt state, which we call the THAN state, with an interior and a surface defect. We recover the order reconstruction (OR) phenomenon around the defects in the HAN and THAN states and the 3D THAN and HAN solutions exhibit stable biaxial cylinders connecting defects on opposite faces of the ZBD device. We demonstrate a two-way temperature-driven switching between high-tilt and low-tilt states through controlled heating and cooling procedures in two dimensions (2D), with no applied fields. © CopyrightEPLA, 2014.

  12. 3D Indoor Building Environment Reconstruction using calibration of Range finder Data

    DEFF Research Database (Denmark)

    Jamali, Ali; Anton, François; Rahman, Alias Abdul

    2015-01-01

    Nowadays, municipalities intend to have 3D city models for facility management, disaster management and architectural planning. 3D data acquisition can be done by laser scanning for indoor environment which is a costly and time consuming process. Currently, for indoor surveying, Electronic Distance...... Measurement (EDM) and Terrestrial Laser Scanner (TLS) are mostly used. In this paper, several techniques for indoor 3D building data acquisition have been investigated. For reducing the time and cost of indoor building data acquisition process, the Trimble LaserAce 1000 range finder is used. The accuracy...... of the rangefinder is evaluated and a simple spatial model is reconstructed from real data. This technique is rapid (it requires a shorter time as compared to others), but the results show inconsistencies in horizontal angles for short distances in indoor environments. The range finder was calibrated using a least...

  13. 3D Modeling of Murine Abdominal Aortic Aneurysms: Quantification of Segmentation and Volumetric Reconstruction

    OpenAIRE

    Sarmiento, Paula A; Adelsperger, Amelia R; Goergen, Craig J.

    2016-01-01

    Abdominal Aortic Aneurysms (AAA) cause 5,900 deaths in the United States each year. Surgical intervention is clinically studied by non-invasive techniques such as computed tomography and magnetic resonance imaging. However, three-dimensional (3D) ultrasound imaging has become an inexpensive alternative and useful tool to characterize aneurysms, allowing for reconstruction of the vessel, quantification of hemodynamics through computational fluid dynamics (CFD) simulation, and possible predicti...

  14. Free-hand 3D reconstruction and tumor segmentation of Laparoscopic Ultrasounds for pancreatic MIS interventions

    OpenAIRE

    Fernández Pena, A.; Viana Matesanz, M.; Rodríguez Vila, Borja; Oropesa García, Ignacio; Sánchez González, Patricia; Sánchez Margallo, Juan Antonio; Moyano García-Cuevas, J.L.; Sánchez Margallo, Francisco Miguel; Gómez Aguilera, Enrique J.

    2015-01-01

    Pancreatic cancer's treatment dilemma comes while trying to determine the precise nature of the lesion. The best approach is defined by diagnose of the tumor cells' staging. This paper presents a fast approach towards acquiring an estimation of the tumor positioning and size through laparoscopic ultrasound (LUS) images. The method segments 2D images of pancreas and lesions before reconstructing the extracted tumors into a full 3D volume. The whole method is integrated into a visualization and...

  15. Custom-made, 3D, intraoperative surgical guides for nasal reconstruction.

    Science.gov (United States)

    Sultan, Babar; Byrne, Patrick J

    2011-11-01

    This article presents the use of an intraoperative surgical guide created by 3D laser surface scanning and rapid prototyping. The authors present outcomes of 3 patients in whom the nasal surgical guide was used intraoperatively for reconstruction of full-thickness, complex nasal defects. This effort highlights the multidisciplinary approach involving a surgeon and anaplastologist integrated with the latest technology to provide patients with the best possible outcomes.

  16. PCA-based 3D Shape Reconstruction of Human Foot Using Multiple Viewpoint Cameras

    Institute of Scientific and Technical Information of China (English)

    Edmée Amstutz; Tomoaki Teshima; Makoto Kimura; Masaaki Mochimaru; Hideo Saito

    2008-01-01

    This paper describes a multiple camera-based method to reconstruct the 3D shape of a human foot. From a foot database,an initial 3D model of the foot represented by a cloud of points is built. The shape parameters, which can characterize more than 92% of a foot, are defined by using the principal component analysis method. Then, using "active shape models", the initial 3D model is adapted to the real foot captured in multiple images by applying some constraints (edge points' distance and color variance). We insist here on the experiment part where we demonstrate the efficiency of the proposed method on a plastic foot model, and also on real human feet with various shapes. We propose and compare different ways of texturing the foot which is needed for reconstruction. We present an experiment performed on the plastic foot model and on human feet and propose two different ways to improve the final 3D shape's accuracy according to the previous experiments' results. The first improvement proposed is the densification of the cloud of points used to represent the initial model and the foot database. The second improvement concerns the projected patterns used to texture the foot. We conclude by showing the obtained results for a human foot with the average computed shape error being only 1.06mm.

  17. Sensor fusion of cameras and a laser for city-scale 3D reconstruction.

    Science.gov (United States)

    Bok, Yunsu; Choi, Dong-Geol; Kweon, In So

    2014-11-04

    This paper presents a sensor fusion system of cameras and a 2D laser sensorfor large-scale 3D reconstruction. The proposed system is designed to capture data on afast-moving ground vehicle. The system consists of six cameras and one 2D laser sensor,and they are synchronized by a hardware trigger. Reconstruction of 3D structures is doneby estimating frame-by-frame motion and accumulating vertical laser scans, as in previousworks. However, our approach does not assume near 2D motion, but estimates free motion(including absolute scale) in 3D space using both laser data and image features. In orderto avoid the degeneration associated with typical three-point algorithms, we present a newalgorithm that selects 3D points from two frames captured by multiple cameras. The problemof error accumulation is solved by loop closing, not by GPS. The experimental resultsshow that the estimated path is successfully overlaid on the satellite images, such that thereconstruction result is very accurate.

  18. 3D TEM reconstruction and segmentation process of laminar bio-nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Iturrondobeitia, M., E-mail: maider.iturrondobeitia@ehu.es; Okariz, A.; Fernandez-Martinez, R.; Jimbert, P.; Guraya, T.; Ibarretxe, J. [eMERG, University of the Basque Country, Rafael Moreno Pitxitxi street 2 and 3, 48013, Bilbao (Spain)

    2015-03-30

    The microstructure of laminar bio-nanocomposites (Poly (lactic acid)(PLA)/clay) depends on the amount of clay platelet opening after integration with the polymer matrix and determines the final properties of the material. Transmission electron microscopy (TEM) technique is the only one that can provide a direct observation of the layer dispersion and the degree of exfoliation. However, the orientation of the clay platelets, which affects the final properties, is practically immeasurable from a single 2D TEM image. This issue can be overcome using transmission electron tomography (ET), a technique that allows the complete 3D characterization of the structure, including the measurement of the orientation of clay platelets, their morphology and their 3D distribution. ET involves a 3D reconstruction of the study volume and a subsequent segmentation of the study object. Currently, accurate segmentation is performed manually, which is inefficient and tedious. The aim of this work is to propose an objective/automated segmentation methodology process of a 3D TEM tomography reconstruction. In this method the segmentation threshold is optimized by minimizing the variation of the dimensions of the segmented objects and matching the segmented V{sub clay} (%) and the actual one. The method is first validated using a fictitious set of objects, and then applied on a nanocomposite.

  19. Comparison Between Two Generic 3d Building Reconstruction Approaches - Point Cloud Based VS. Image Processing Based

    Science.gov (United States)

    Dahlke, D.; Linkiewicz, M.

    2016-06-01

    This paper compares two generic approaches for the reconstruction of buildings. Synthesized and real oblique and vertical aerial imagery is transformed on the one hand into a dense photogrammetric 3D point cloud and on the other hand into photogrammetric 2.5D surface models depicting a scene from different cardinal directions. One approach evaluates the 3D point cloud statistically in order to extract the hull of structures, while the other approach makes use of salient line segments in 2.5D surface models, so that the hull of 3D structures can be recovered. With orders of magnitudes more analyzed 3D points, the point cloud based approach is an order of magnitude more accurate for the synthetic dataset compared to the lower dimensioned, but therefor orders of magnitude faster, image processing based approach. For real world data the difference in accuracy between both approaches is not significant anymore. In both cases the reconstructed polyhedra supply information about their inherent semantic and can be used for subsequent and more differentiated semantic annotations through exploitation of texture information.

  20. Sensor Fusion of Cameras and a Laser for City-Scale 3D Reconstruction

    Directory of Open Access Journals (Sweden)

    Yunsu Bok

    2014-11-01

    Full Text Available This paper presents a sensor fusion system of cameras and a 2D laser sensorfor large-scale 3D reconstruction. The proposed system is designed to capture data on afast-moving ground vehicle. The system consists of six cameras and one 2D laser sensor,and they are synchronized by a hardware trigger. Reconstruction of 3D structures is doneby estimating frame-by-frame motion and accumulating vertical laser scans, as in previousworks. However, our approach does not assume near 2D motion, but estimates free motion(including absolute scale in 3D space using both laser data and image features. In orderto avoid the degeneration associated with typical three-point algorithms, we present a newalgorithm that selects 3D points from two frames captured by multiple cameras. The problemof error accumulation is solved by loop closing, not by GPS. The experimental resultsshow that the estimated path is successfully overlaid on the satellite images, such that thereconstruction result is very accurate.

  1. Generic camera model and its calibration for computational integral imaging and 3D reconstruction.

    Science.gov (United States)

    Li, Weiming; Li, Youfu

    2011-03-01

    Integral imaging (II) is an important 3D imaging technology. To reconstruct 3D information of the viewed objects, modeling and calibrating the optical pickup process of II are necessary. This work focuses on the modeling and calibration of an II system consisting of a lenslet array, an imaging lens, and a charge-coupled device camera. Most existing work on such systems assumes a pinhole array model (PAM). In this work, we explore a generic camera model that accommodates more generality. This model is an empirical model based on measurements, and we constructed a setup for its calibration. Experimental results show a significant difference between the generic camera model and the PAM. Images of planar patterns and 3D objects were computationally reconstructed with the generic camera model. Compared with the images reconstructed using the PAM, the images present higher fidelity and preserve more high spatial frequency components. To the best of our knowledge, this is the first attempt in applying a generic camera model to an II system.

  2. Real-Time 3D Tracking and Reconstruction on Mobile Phones.

    Science.gov (United States)

    Prisacariu, Victor Adrian; Kähler, Olaf; Murray, David W; Reid, Ian D

    2015-05-01

    We present a novel framework for jointly tracking a camera in 3D and reconstructing the 3D model of an observed object. Due to the region based approach, our formulation can handle untextured objects, partial occlusions, motion blur, dynamic backgrounds and imperfect lighting. Our formulation also allows for a very efficient implementation which achieves real-time performance on a mobile phone, by running the pose estimation and the shape optimisation in parallel. We use a level set based pose estimation but completely avoid the, typically required, explicit computation of a global distance. This leads to tracking rates of more than 100 Hz on a desktop PC and 30 Hz on a mobile phone. Further, we incorporate additional orientation information from the phone's inertial sensor which helps us resolve the tracking ambiguities inherent to region based formulations. The reconstruction step first probabilistically integrates 2D image statistics from selected keyframes into a 3D volume, and then imposes coherency and compactness using a total variational regularisation term. The global optimum of the overall energy function is found using a continuous max-flow algorithm and we show that, similar to tracking, the integration of per voxel posteriors instead of likelihoods improves the precision and accuracy of the reconstruction.

  3. Quality Analysis on 3d Buidling Models Reconstructed from Uav Imagery

    Science.gov (United States)

    Jarzabek-Rychard, M.; Karpina, M.

    2016-06-01

    Recent developments in UAV technology and structure from motion techniques have effected that UAVs are becoming standard platforms for 3D data collection. Because of their flexibility and ability to reach inaccessible urban parts, drones appear as optimal solution for urban applications. Building reconstruction from the data collected with UAV has the important potential to reduce labour cost for fast update of already reconstructed 3D cities. However, especially for updating of existing scenes derived from different sensors (e.g. airborne laser scanning), a proper quality assessment is necessary. The objective of this paper is thus to evaluate the potential of UAV imagery as an information source for automatic 3D building modeling at LOD2. The investigation process is conducted threefold: (1) comparing generated SfM point cloud to ALS data; (2) computing internal consistency measures of the reconstruction process; (3) analysing the deviation of Check Points identified on building roofs and measured with a tacheometer. In order to gain deep insight in the modeling performance, various quality indicators are computed and analysed. The assessment performed according to the ground truth shows that the building models acquired with UAV-photogrammetry have the accuracy of less than 18 cm for the plannimetric position and about 15 cm for the height component.

  4. 3D virtual reconstruction of the Pleistocene cheetah skull from the Tangshan, Nanjing, China

    Institute of Scientific and Technical Information of China (English)

    DONG Wei; HOU Xinwen; LIU Jinyi; FANG Yingsan; JIN Changzhu; ZHU Qizhi

    2007-01-01

    The development of computer tomography and image processing has made it possible to establish virtual 3D reconstruction and non-invasive dissection of fossil specimens. We used these methods to reconstruct a virtual 3D skull of a Pleistocene cheetah skull from the Tuozi cave, Tangshan, Nanjing, and virtually dissected it for anatomic studies, and measured the volumes of different parts of the endocranium. The endocranium of the cheetah skull has showed that its frontal sinus is beehive-like, the frontal lobe of cerebra is relatively large but the temporal lobe is relatively small, its cerebral sulcus and gyrus are more complicated than those of the domestic cat, similar to those of the domestic dog, but simpler than those of giant panda, pig, cattle and horse. The technology of virtual 3D reconstruction and non-invasive dissection of fossil specimens can extend the morphological study from the exterior to the interior, and it can also help to study fragile specimens and virtually backup rare and precious specimens.

  5. Reconstruction Accuracy Assessment of Surface and Underwater 3D Motion Analysis: A New Approach

    Directory of Open Access Journals (Sweden)

    Kelly de Jesus

    2015-01-01

    Full Text Available This study assessed accuracy of surface and underwater 3D reconstruction of a calibration volume with and without homography. A calibration volume (6000 × 2000 × 2500 mm with 236 markers (64 above and 88 underwater control points—with 8 common points at water surface—and 92 validation points was positioned on a 25 m swimming pool and recorded with two surface and four underwater cameras. Planar homography estimation for each calibration plane was computed to perform image rectification. Direct linear transformation algorithm for 3D reconstruction was applied, using 1600000 different combinations of 32 and 44 points out of the 64 and 88 control points for surface and underwater markers (resp.. Root Mean Square (RMS error with homography of control and validations points was lower than without it for surface and underwater cameras (P≤0.03. With homography, RMS errors of control and validation points were similar between surface and underwater cameras (P≥0.47. Without homography, RMS error of control points was greater for underwater than surface cameras (P≤0.04 and the opposite was observed for validation points (P≤0.04. It is recommended that future studies using 3D reconstruction should include homography to improve swimming movement analysis accuracy.

  6. Comparison of 3D Reconstructive Technologies Used for Morphometric Research and the Translation of Knowledge Using a Decision Matrix

    Science.gov (United States)

    Martin, Charys M.; Roach, Victoria A.; Nguyen, Ngan; Rice, Charles L.; Wilson, Timothy D.

    2013-01-01

    The use of three-dimensional (3D) models for education, pre-operative assessment, presurgical planning, and measurement have become more prevalent. With the increase in prevalence of 3D models there has also been an increase in 3D reconstructive software programs that are used to create these models. These software programs differ in…

  7. A novel 3D template for mandible and maxilla reconstruction: Rapid prototyping using stereolithography

    Directory of Open Access Journals (Sweden)

    Samir Kumta

    2015-01-01

    Full Text Available Introduction: Replication of the exact three-dimensional (3D structure of the maxilla and mandible is now a priority whilst attempting reconstruction of these bones to attain a complete functional and aesthetic rehabilitation. We hereby present the process of rapid prototyping using stereolithography to produce templates for modelling bone grafts and implants for maxilla/mandible reconstructions, its applications in tumour/trauma, and outcomes for primary and secondary reconstruction. Materials and Methods: Stereolithographic template-assisted reconstruction was used on 11 patients for the reconstruction of the mandible/maxilla primarily following tumour excision and secondarily for the realignment of post-traumatic malunited fractures or deformity corrections. Data obtained from the computed tomography (CT scans with 1-mm resolution were converted into a computer-aided design (CAD using the CT Digital Imaging and Communications in Medicine (DICOM data. Once a CAD model was constructed, it was converted into a stereolithographic format and then processed by the rapid prototyping technology to produce the physical anatomical model using a resin. This resin model replicates the native mandible, which can be thus used off table as a guide for modelling the bone grafts. Discussion: This conversion of two-dimensional (2D data from CT scan into 3D models is a very precise guide to shaping the bone grafts. Further, this CAD can reconstruct the defective half of the mandible using the mirror image principle, and the normal anatomical model can be created to aid secondary reconstructions. Conclusion: This novel approach allows a precise translation of the treatment plan directly to the surgical field. It is also an important teaching tool for implant moulding and fixation, and helps in patient counselling.

  8. Rapid reconstruction of 3D neuronal morphology from light microscopy images with augmented rayburst sampling.

    Science.gov (United States)

    Ming, Xing; Li, Anan; Wu, Jingpeng; Yan, Cheng; Ding, Wenxiang; Gong, Hui; Zeng, Shaoqun; Liu, Qian

    2013-01-01

    Digital reconstruction of three-dimensional (3D) neuronal morphology from light microscopy images provides a powerful technique for analysis of neural circuits. It is time-consuming to manually perform this process. Thus, efficient computer-assisted approaches are preferable. In this paper, we present an innovative method for the tracing and reconstruction of 3D neuronal morphology from light microscopy images. The method uses a prediction and refinement strategy that is based on exploration of local neuron structural features. We extended the rayburst sampling algorithm to a marching fashion, which starts from a single or a few seed points and marches recursively forward along neurite branches to trace and reconstruct the whole tree-like structure. A local radius-related but size-independent hemispherical sampling was used to predict the neurite centerline and detect branches. Iterative rayburst sampling was performed in the orthogonal plane, to refine the centerline location and to estimate the local radius. We implemented the method in a cooperative 3D interactive visualization-assisted system named flNeuronTool. The source code in C++ and the binaries are freely available at http://sourceforge.net/projects/flneurontool/. We validated and evaluated the proposed method using synthetic data and real datasets from the Digital Reconstruction of Axonal and Dendritic Morphology (DIADEM) challenge. Then, flNeuronTool was applied to mouse brain images acquired with the Micro-Optical Sectioning Tomography (MOST) system, to reconstruct single neurons and local neural circuits. The results showed that the system achieves a reasonable balance between fast speed and acceptable accuracy, which is promising for interactive applications in neuronal image analysis.

  9. Rapid reconstruction of 3D neuronal morphology from light microscopy images with augmented rayburst sampling.

    Directory of Open Access Journals (Sweden)

    Xing Ming

    Full Text Available Digital reconstruction of three-dimensional (3D neuronal morphology from light microscopy images provides a powerful technique for analysis of neural circuits. It is time-consuming to manually perform this process. Thus, efficient computer-assisted approaches are preferable. In this paper, we present an innovative method for the tracing and reconstruction of 3D neuronal morphology from light microscopy images. The method uses a prediction and refinement strategy that is based on exploration of local neuron structural features. We extended the rayburst sampling algorithm to a marching fashion, which starts from a single or a few seed points and marches recursively forward along neurite branches to trace and reconstruct the whole tree-like structure. A local radius-related but size-independent hemispherical sampling was used to predict the neurite centerline and detect branches. Iterative rayburst sampling was performed in the orthogonal plane, to refine the centerline location and to estimate the local radius. We implemented the method in a cooperative 3D interactive visualization-assisted system named flNeuronTool. The source code in C++ and the binaries are freely available at http://sourceforge.net/projects/flneurontool/. We validated and evaluated the proposed method using synthetic data and real datasets from the Digital Reconstruction of Axonal and Dendritic Morphology (DIADEM challenge. Then, flNeuronTool was applied to mouse brain images acquired with the Micro-Optical Sectioning Tomography (MOST system, to reconstruct single neurons and local neural circuits. The results showed that the system achieves a reasonable balance between fast speed and acceptable accuracy, which is promising for interactive applications in neuronal image analysis.

  10. Ultra-fast digital tomosynthesis reconstruction using general-purpose GPU programming for image-guided radiation therapy.

    Science.gov (United States)

    Park, Justin C; Park, Sung Ho; Kim, Jin Sung; Han, Youngyih; Cho, Min Kook; Kim, Ho Kyung; Liu, Zhaowei; Jiang, Steve B; Song, Bongyong; Song, William Y

    2011-08-01

    The purpose of this work is to demonstrate an ultra-fast reconstruction technique for digital tomosynthesis (DTS) imaging based on the algorithm proposed by Feldkamp, Davis, and Kress (FDK) using standard general-purpose graphics processing unit (GPGPU) programming interface. To this end, the FDK-based DTS algorithm was programmed "in-house" with C language with utilization of 1) GPU and 2) central processing unit (CPU) cards. The GPU card consisted of 480 processing cores (2 x 240 dual chip) with 1,242 MHz processing clock speed and 1,792 MB memory space. In terms of CPU hardware, we used 2.68 GHz clock speed, 12.0 GB DDR3 RAM, on a 64-bit OS. The performance of proposed algorithm was tested on twenty-five patient cases (5 lung, 5 liver, 10 prostate, and 5 head-and-neck) scanned either with a full-fan or half-fan mode on our cone-beam computed tomography (CBCT) system. For the full-fan scans, the projections from 157.5°-202.5° (45°-scan) were used to reconstruct coronal DTS slices, whereas for the half-fan scans, the projections from both 157.5°-202.5° and 337.5°-22.5° (2 x 45°-scan) were used to reconstruct larger FOV coronal DTS slices. For this study, we chose 45°-scan angle that contained ~80 projections for the full-fan and ~160 projections with 2 x 45°-scan angle for the half-fan mode, each with 1024 x 768 pixels with 32-bit precision. Absolute pixel value differences, profiles, and contrast-to-noise ratio (CNR) calculations were performed to compare and evaluate the images reconstructed using GPU- and CPU-based implementations. The time dependence on the reconstruction volume was also tested with (512 x 512) x 16, 32, 64, 128, and 256 slices. In the end, the GPU-based implementation achieved, at most, 1.3 and 2.5 seconds to complete full reconstruction of 512 x 512 x 256 volume, for the full-fan and half-fan modes, respectively. In turn, this meant that our implementation can process > 13 projections-per-second (pps) and > 18 pps for the full

  11. Fast, automatic, and accurate catheter reconstruction in HDR brachytherapy using an electromagnetic 3D tracking system

    Energy Technology Data Exchange (ETDEWEB)

    Poulin, Eric; Racine, Emmanuel; Beaulieu, Luc, E-mail: Luc.Beaulieu@phy.ulaval.ca [Département de physique, de génie physique et d’optique et Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, Québec G1V 0A6, Canada and Département de radio-oncologie et Axe Oncologie du Centre de recherche du CHU de Québec, CHU de Québec, 11 Côte du Palais, Québec, Québec G1R 2J6 (Canada); Binnekamp, Dirk [Integrated Clinical Solutions and Marketing, Philips Healthcare, Veenpluis 4-6, Best 5680 DA (Netherlands)

    2015-03-15

    Purpose: In high dose rate brachytherapy (HDR-B), current catheter reconstruction protocols are relatively slow and error prone. The purpose of this technical note is to evaluate the accuracy and the robustness of an electromagnetic (EM) tracking system for automated and real-time catheter reconstruction. Methods: For this preclinical study, a total of ten catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a 18G biopsy needle, used as an EM stylet and equipped with a miniaturized sensor, and the second generation Aurora{sup ®} Planar Field Generator from Northern Digital Inc. The Aurora EM system provides position and orientation value with precisions of 0.7 mm and 0.2°, respectively. Phantoms were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical computed tomography (CT) system with a spatial resolution of 89 μm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, five catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 s, leading to a total reconstruction time inferior to 3 min for a typical 17-catheter implant. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.66 ± 0.33 mm and 1.08 ± 0.72 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be more accurate. A maximum difference of less than 0.6 mm was found between successive EM reconstructions. Conclusions: The EM reconstruction was found to be more accurate and precise than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators.

  12. Application of 3D photo-reconstruction in soil erosion studies

    Science.gov (United States)

    Castillo, Carlos; James, Michael; Pérez, Rafael; Gómez, Jose Alfonso

    2014-05-01

    3D photo-reconstruction (3D-PR) has been applied successfully to obtain elevation models using uncalibrated and nonmetric cameras for a range of geoscience applications (e.g. James and Robson, 2012), including gully erosion assessment (Castillo et al., 2012). However, its application in soil erosion studies is currently at the outset. The aim of this work is to compare 3D-PR with conventional techniques that have been employed traditionally for different purposes in soil erosion studies. In this preliminary work, we tested three applications that involve volume calculations: estimation of soil bulk density (BD), quantification of soil erosion at road banks (RB) and sedimentation rates behind check dams (CD). For each analysis, a PR field survey was carried out simultaneously with a conventional method (volume of water was used for BD, and total station surveys for RB and CD). For the 3D-PR technique, the accuracy as a function of the number of pictures taken was evaluated. In this study we explore the difference in the volume estimates between 3D-PR and conventional techniques as well as the time requirements for each method in order to compare their performance and optimal field of application.

  13. Application of spiral CT image 3D reconstruction in severe talar neck fracture

    Institute of Scientific and Technical Information of China (English)

    HE Fei; HUANG He; DENG Ya-min; Wang Bing; ZHANG Chun-qiang; ZHAO Zhi; TANG Xi-zhang; ZHOU Zhao-wen; ZHAO Xue-ling

    2007-01-01

    Objective:To explore the application of the spiral computerized tomography (CT) image three-dimensional(3D ) reconstruction technique associated with the conventional radiography in the diagnosis and treatment of severe talar neck fracture. Methods:Using the multi-slice spiral CT image 3D reconstruction technique,we analysed 11 cases of talar neck fracture.The fractures were reduced and fixed through a minimal incision and internal fixation with titanium cannulated lag screws. Results:In the 11 cases,the results of CT image 3D reconstruction were in concordance with plain radiograph in 6 case of Hawkins type H.And the remaining 5 cases of Hawkins types Ⅲ and Ⅳ could not be classified exactly only by radiographs,one of whom was misdiagnosed.After using the CT image 3D reconstruction,the 5 cases were classified exactly before osteosynthesis.The classifications of these 11 cases were confirmed finally by surgical findings.The duration of operation were 45-140 min,averaging 81min (including the duration of C-arm fluoroscopy).X-ray exposure time was 6-58 seconds,averaging 22 seconds.The blood loss was less than 100 ml.The fracture union was achieved in 3 months. No nonunion, talus avascular necrosis or joint surface collapse occurred.Postoperative follow-up was from 1 to 25 months.According to Hawkins score,excellent result was found in 6 type Ⅱ cases and 1type Ⅲ case;good result in 1 type Ⅲ case with both medial and lateral malleolar fracture,1 type Ⅲ with medial malleolus fractures and 1 open type Ⅲ;fair result in 1 open type Ⅳ with lateral malleolus fracture. Conclusions:By using the multi-slice spiral CT image 3D reconstruction associated with radiography to diagnose and treat severe talar neck fractures,the accuracy of diagnosis can be improved obviously. Based on this technique,more consummate operational plan can be designed and performed so as to achieve a better therapeutic effect.

  14. Reconstruction of 3D structure using stochastic methods: morphology and transport properties

    Science.gov (United States)

    Karsanina, Marina; Gerke, Kirill; Čapek, Pavel; Vasilyev, Roman; Korost, Dmitry; Skvortsova, Elena

    2013-04-01

    One of the main factors defining numerous flow phenomena in rocks, soils and other porous media, including fluid and solute movements, is pore structure, e.g., pore sizes and their connectivity. Numerous numerical methods were developed to quantify single and multi-phase flow in such media on microscale. Among most popular ones are: 1) a wide range of finite difference/element/volume solutions of Navier-Stokes equations and its simplifications; 2) lattice-Boltzmann method; 3) pore-network models, among others. Each method has some advantages and shortcomings, so that different research teams usually utilize more than one, depending on the study case. Recent progress in 3D imaging of internal structure, e.g., X-ray tomography, FIB-SEM and confocal microscopy, made it possible to obtain digitized input pore parameters for such models, however, a trade-off between resolution and sample size is usually unavoidable. There are situations then only standard two-dimensional information of porous structure is known due to tomography high cost or resolution limitations. However, physical modeling on microscale requires 3D information. There are three main approaches to reconstruct (using 2D cut(s) or some other limited information/properties) porous media: 1) statistical methods (correlation functions and simulated annealing, multi-point statistics, entropy methods), 2) sequential methods (sphere or other granular packs) and 3) morphological methods. Stochastic reconstructions using correlation functions possess some important advantage - they provide a statistical description of the structure, which is known to have relationships with all physical properties. In addition, this method is more flexible for other applications to characterize porous media. Taking different 3D scans of natural and artificial porous materials (sandstones, soils, shales, ceramics) we choose some 2D cut/s as sources of input correlation functions. Based on different types of correlation functions

  15. Segmentation, Reconstruction, and Analysis of Blood Thrombus Formation in 3D 2-Photon Microscopy Images

    Directory of Open Access Journals (Sweden)

    Xu Zhiliang

    2010-01-01

    Full Text Available We study the problem of segmenting, reconstructing, and analyzing the structure growth of thrombi (clots in blood vessels in vivo based on 2-photon microscopic image data. First, we develop an algorithm for segmenting clots in 3D microscopic images based on density-based clustering and methods for dealing with imaging artifacts. Next, we apply the union-of-balls (or alpha-shape algorithm to reconstruct the boundary of clots in 3D. Finally, we perform experimental studies and analysis on the reconstructed clots and obtain quantitative data of thrombus growth and structures. We conduct experiments on laser-induced injuries in vessels of two types of mice (the wild type and the type with low levels of coagulation factor VII and analyze and compare the developing clot structures based on their reconstructed clots from image data. The results we obtain are of biomedical significance. Our quantitative analysis of the clot composition leads to better understanding of the thrombus development, and is valuable to the modeling and verification of computational simulation of thrombogenesis.

  16. 3-D reconstruction of a human fetus with combined holoprosencephaly and cyclopia

    Directory of Open Access Journals (Sweden)

    Meiselbach Veronika

    2009-06-01

    Full Text Available Abstract Background The purpose of this study was to examine a human fetus with combined holoprosencephaly and cyclopia by means of histology and 3-D reconstruction to determine the internal structure and extent of the malformation. Methods The head from a human fetus at 20 weeks gestation and a diagnosis of holoprosencephaly and cyclopia was investigated histologically and three-dimensionally reconstructed with CAD techniques. The cranial bones, blood vessels, nerves, eye and brain anlagen were reconstructed. Results The 3-D reconstruction revealed both severe malformation and absence of the facial midline bones above the maxilla, and a malformation of the maxilla and sphenoid bone. The mandible, posterior cranial bones, cranial nerves and blood vessels were normal. A synophthalmic eye with two lenses was found. The prosencephalon was a single small protrusion above the diencephalon. No nasal cavity was present. Above the single eye a proboscis was found. Conclusion The absence of the facial midline bones above the maxilla and the presence of a proboscis as a nose-like structure above the cyclopic eye both mean that there was a developmental defect in the fronto-nasal facial process of this fetus.

  17. Measurement Matrix Optimization and Mismatch Problem Compensation for DLSLA 3-D SAR Cross-Track Reconstruction

    Science.gov (United States)

    Bao, Qian; Jiang, Chenglong; Lin, Yun; Tan, Weixian; Wang, Zhirui; Hong, Wen

    2016-01-01

    With a short linear array configured in the cross-track direction, downward looking sparse linear array three-dimensional synthetic aperture radar (DLSLA 3-D SAR) can obtain the 3-D image of an imaging scene. To improve the cross-track resolution, sparse recovery methods have been investigated in recent years. In the compressive sensing (CS) framework, the reconstruction performance depends on the property of measurement matrix. This paper concerns the technique to optimize the measurement matrix and deal with the mismatch problem of measurement matrix caused by the off-grid scatterers. In the model of cross-track reconstruction, the measurement matrix is mainly affected by the configuration of antenna phase centers (APC), thus, two mutual coherence based criteria are proposed to optimize the configuration of APCs. On the other hand, to compensate the mismatch problem of the measurement matrix, the sparse Bayesian inference based method is introduced into the cross-track reconstruction by jointly estimate the scatterers and the off-grid error. Experiments demonstrate the performance of the proposed APCs’ configuration schemes and the proposed cross-track reconstruction method. PMID:27556471

  18. Measurement Matrix Optimization and Mismatch Problem Compensation for DLSLA 3-D SAR Cross-Track Reconstruction.

    Science.gov (United States)

    Bao, Qian; Jiang, Chenglong; Lin, Yun; Tan, Weixian; Wang, Zhirui; Hong, Wen

    2016-08-22

    With a short linear array configured in the cross-track direction, downward looking sparse linear array three-dimensional synthetic aperture radar (DLSLA 3-D SAR) can obtain the 3-D image of an imaging scene. To improve the cross-track resolution, sparse recovery methods have been investigated in recent years. In the compressive sensing (CS) framework, the reconstruction performance depends on the property of measurement matrix. This paper concerns the technique to optimize the measurement matrix and deal with the mismatch problem of measurement matrix caused by the off-grid scatterers. In the model of cross-track reconstruction, the measurement matrix is mainly affected by the configuration of antenna phase centers (APC), thus, two mutual coherence based criteria are proposed to optimize the configuration of APCs. On the other hand, to compensate the mismatch problem of the measurement matrix, the sparse Bayesian inference based method is introduced into the cross-track reconstruction by jointly estimate the scatterers and the off-grid error. Experiments demonstrate the performance of the proposed APCs' configuration schemes and the proposed cross-track reconstruction method.

  19. 3D nanostructure reconstruction based on the SEM imaging principle, and applications.

    Science.gov (United States)

    Zhu, Fu-Yun; Wang, Qi-Qi; Zhang, Xiao-Sheng; Hu, Wei; Zhao, Xin; Zhang, Hai-Xia

    2014-05-09

    This paper addresses a novel 3D reconstruction method for nanostructures based on the scanning electron microscopy (SEM) imaging principle. In this method, the shape from shading (SFS) technique is employed, to analyze the gray-scale information of a single top-view SEM image which contains all the visible surface information, and finally to reconstruct the 3D surface morphology. It offers not only unobstructed observation from various angles but also the exact physical dimensions of nanostructures. A convenient and commercially available tool (NanoViewer) is developed based on this method for nanostructure analysis and characterization of properties. The reconstruction result coincides well with the SEM nanostructure image and is verified in different ways. With the extracted structure information, subsequent research of the nanostructure can be carried out, such as roughness analysis, optimizing properties by structure improvement and performance simulation with a reconstruction model. Efficient, practical and non-destructive, the method will become a powerful tool for nanostructure surface observation and characterization.

  20. Implementation of a fully 3D system model for brain SPECT with fan- beam-collimator OSEM reconstruction with 3D total variation regularization

    Science.gov (United States)

    Ye, Hongwei; Krol, Andrzej; Lipson, Edward D.; Lu, Yao; Xu, Yuesheng; Lee, Wei; Feiglin, David H.

    2007-03-01

    In order to improve tomographically reconstructed image quality, we have implemented a fully 3D reconstruction, using an ordered subsets expectation maximization (OSEM) algorithm for fan-beam collimator (FBC) SPECT, along with a volumetric system model-fan-volume system model (FVSM), a modified attenuation compensation, a 3D depth- and angle-dependent resolution and sensitivity correction, and a 3D total variation (TV) regularization. SPECT data were acquired in a 128x64 matrix, in 120 views with a circular orbit. The numerical Zubal brain phantom was used to simulate a FBC HMPAO Tc-99m brain SPECT scan, and a low noise and scatter-free projection dataset was obtained using the SimSET Monte Carlo package. A SPECT scan for a mini-Defrise phantom and brain HMPAO SPECT scans for five patients were acquired with a triple-head gamma camera (Triad 88) equipped with a low-energy high-resolution (LEHR) FBC. The reconstructed images, obtained using clinical filtered back projection (FBP), OSEM with a line-length system model (LLSM) and 3D TV regularization, and OSEM with FVSM and 3D TV regularization were quantitatively studied. Overall improvement in the image quality has been observed, including better axial and transaxial resolution, better integral uniformity, higher contrast-to-noise ration between the gray matter and the white matter, and better accuracy and lower bias in OSEM-FVSM, compared with OSEM-LLSM and clinical FBP.

  1. 3D RECONSTRUCTION OF BUILDINGS WITH GABLED AND HIPPED STRUCTURES USING LIDAR DATA

    Directory of Open Access Journals (Sweden)

    H. Amini

    2014-10-01

    Full Text Available Buildings are the most important objects in urban areas. Thus, building detection using photogrammetry and remote sensing data as well as 3D model of buildings are very useful for many applications such as mobile navigation, tourism, and disaster management. In this paper, an approach has been proposed for detecting buildings by LiDAR data and aerial images, as well as reconstructing 3D model of buildings. In this regard, firstly, building detection carried out by utilizing a Supper Vector Machine (SVM as a supervise method. The supervise methods need training data that could be collected from some features. Hence, LiDAR data and aerial images were utilized to produce some features. The features were selected by considering their abilities for separating buildings from other objects. The evaluation results of building detection showed high accuracy and precision of the utilized approach. The detected buildings were labeled in order to reconstruct buildings, individually. Then the planes of each building were separated and adjacent planes were recognized to reduce the calculation volume and to increase the accuracy. Subsequently, the bottom planes of each building were detected in order to compute the corners of hipped roofs using intersection of three adjacent planes. Also, the corners of gabled roofs were computed by both calculating the intersection line of the adjacent planes and finding the intersection between the planes intersection line and their detected parcel. Finally, the coordinates of some nodes in building floor were computed and 3D model reconstruction was carried out. In order to evaluate the proposed method, 3D model of some buildings with different complexity level were generated. The evaluation results showed that the proposed method has reached credible performance.

  2. 3D reconstruction of digitized histological sections for vasculature quantification in the mouse hind limb

    Science.gov (United States)

    Xu, Yiwen; Pickering, J. Geoffrey; Nong, Zengxuan; Gibson, Eli; Ward, Aaron D.

    2014-03-01

    In contrast to imaging modalities such as magnetic resonance imaging and micro computed tomography, digital histology reveals multiple stained tissue features at high resolution (0.25μm/pixel). However, the two-dimensional (2D) nature of histology challenges three-dimensional (3D) quantification and visualization of the different tissue components, cellular structures, and subcellular elements. This limitation is particularly relevant to the vasculature, which has a complex and variable structure within tissues. The objective of this study was to perform a fully automated 3D reconstruction of histology tissue in the mouse hind limb preserving the accurate systemic orientation of the tissues, stained with hematoxylin and immunostained for smooth muscle α actin. We performed a 3D reconstruction using pairwise rigid registrations of 5μm thick, paraffin-embedded serial sections, digitized at 0.25μm/pixel. Each registration was performed using the iterative closest points algorithm on blood vessel landmarks. Landmarks were vessel centroids, determined according to a signed distance map of each pixel to a decision boundary in hue-saturation-value color space; this decision boundary was determined based on manual annotation of a separate training set. Cell nuclei were then automatically extracted and corresponded to refine the vessel landmark registration. Homologous nucleus landmark pairs appearing on not more than two adjacent slides were chosen to avoid registrations which force curved or non-sectionorthogonal structures to be straight and section-orthogonal. The median accumulated target registration errors ± interquartile ranges for the vessel landmark registration, and the nucleus landmark refinement were 43.4+/-42.8μm and 2.9+/-1.7μm, respectively (p<0.0001). Fully automatic and accurate 3D rigid reconstruction of mouse hind limb histology imaging is feasible based on extracted vasculature and nuclei.

  3. Real-time 3D computed tomographic reconstruction using commodity graphics hardware

    Science.gov (United States)

    Xu, Fang; Mueller, Klaus

    2007-07-01

    The recent emergence of various types of flat-panel x-ray detectors and C-arm gantries now enables the construction of novel imaging platforms for a wide variety of clinical applications. Many of these applications require interactive 3D image generation, which cannot be satisfied with inexpensive PC-based solutions using the CPU. We present a solution based on commodity graphics hardware (GPUs) to provide these capabilities. While GPUs have been employed for CT reconstruction before, our approach provides significant speedups by exploiting the various built-in hardwired graphics pipeline components for the most expensive CT reconstruction task, backprojection. We show that the timings so achieved are superior to those obtained when using the GPU merely as a multi-processor, without a drop in reconstruction quality. In addition, we also show how the data flow across the graphics pipeline can be optimized, by balancing the load among the pipeline components. The result is a novel streaming CT framework that conceptualizes the reconstruction process as a steady flow of data across a computing pipeline, updating the reconstruction result immediately after the projections have been acquired. Using a single PC equipped with a single high-end commodity graphics board (the Nvidia 8800 GTX), our system is able to process clinically-sized projection data at speeds meeting and exceeding the typical flat-panel detector data production rates, enabling throughput rates of 40-50 projections s-1 for the reconstruction of 5123 volumes.

  4. Real-time 3D computed tomographic reconstruction using commodity graphics hardware

    Energy Technology Data Exchange (ETDEWEB)

    Xu Fang; Mueller, Klaus [Center for Visual Computing, Computer Science Department, Stony Brook University, Stony Brook, NY 11794-4400 (United States)

    2007-07-21

    The recent emergence of various types of flat-panel x-ray detectors and C-arm gantries now enables the construction of novel imaging platforms for a wide variety of clinical applications. Many of these applications require interactive 3D image generation, which cannot be satisfied with inexpensive PC-based solutions using the CPU. We present a solution based on commodity graphics hardware (GPUs) to provide these capabilities. While GPUs have been employed for CT reconstruction before, our approach provides significant speedups by exploiting the various built-in hardwired graphics pipeline components for the most expensive CT reconstruction task, backprojection. We show that the timings so achieved are superior to those obtained when using the GPU merely as a multi-processor, without a drop in reconstruction quality. In addition, we also show how the data flow across the graphics pipeline can be optimized, by balancing the load among the pipeline components. The result is a novel streaming CT framework that conceptualizes the reconstruction process as a steady flow of data across a computing pipeline, updating the reconstruction result immediately after the projections have been acquired. Using a single PC equipped with a single high-end commodity graphics board (the Nvidia 8800 GTX), our system is able to process clinically-sized projection data at speeds meeting and exceeding the typical flat-panel detector data production rates, enabling throughput rates of 40-50 projections s{sup -1} for the reconstruction of 512{sup 3} volumes.

  5. Design and performance of the prototype full field breast tomosynthesis system with selenium based flat panel detector

    Science.gov (United States)

    Ren, Baorui; Ruth, Chris; Stein, Jay; Smith, Andrew; Shaw, Ian; Jing, Zhenxue

    2005-04-01

    We have developed a breast tomosynthesis system utilizing a selenium-based direct conversion flat panel detector. This prototype system is a modification of Selenia, Hologic"s full field digital mammography system, using an add-on breast holding device to allow 3D tomosynthetic imaging. During a tomosynthesis scan, the breast is held stationary while the x-ray source and detector mounted on a c-arm rotate continuously around the breast over an angular range up to 30 degrees. The x-ray tube is pulsed to acquire 11 projections at desired c-arm angles. Images are reconstructed in planes parallel to the breastplate using a filtered backprojection algorithm. Processing time is typically 1 minute for a 50 mm thick breast at 0.1 mm in-plane pixel size, 1 mm slice-to-slice separation. Clinical studies are in progress. Performance evaluations were carried out at the system and the subsystem levels including spatial resolution, signal-to-noise ratio, spectra optimization, imaging technique, and phantom and patient studies. Experimental results show that we have successfully built a tomosynthesis system with images showing less structure noise and revealing 3D information compared with the conventional mammogram. We introduce, for the first time, the definition of "Depth of Field" for tomosynthesis based on a spatial resolution study. This parameter is used together with Modulation Transfer Function (MTF) to evaluate 3D resolution of a tomosynthesis system as a function of system design, imaging technique, and reconstruction algorithm. Findings from the on-going clinical studies will help the design of the next generation tomosynthesis system offering improved performance.

  6. Computer-aided detection of clustered microcalcifications in multiscale bilateral filtering regularized reconstructed digital breast tomosynthesis volume

    Energy Technology Data Exchange (ETDEWEB)

    Samala, Ravi K., E-mail: rsamala@umich.edu; Chan, Heang-Ping; Lu, Yao; Hadjiiski, Lubomir; Wei, Jun; Helvie, Mark A. [Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109-5842 (United States); Sahiner, Berkman [Center for Devices and Radiological Health, U.S. Food and Drug Administration, Maryland 20993 (United States)

    2014-02-15

    Purpose: Develop a computer-aided detection (CADe) system for clustered microcalcifications in digital breast tomosynthesis (DBT) volume enhanced with multiscale bilateral filtering (MSBF) regularization. Methods: With Institutional Review Board approval and written informed consent, two-view DBT of 154 breasts, of which 116 had biopsy-proven microcalcification (MC) clusters and 38 were free of MCs, was imaged with a General Electric GEN2 prototype DBT system. The DBT volumes were reconstructed with MSBF-regularized simultaneous algebraic reconstruction technique (SART) that was designed to enhance MCs and reduce background noise while preserving the quality of other tissue structures. The contrast-to-noise ratio (CNR) of MCs was further improved with enhancement-modulated calcification response (EMCR) preprocessing, which combined multiscale Hessian response to enhance MCs by shape and bandpass filtering to remove the low-frequency structured background. MC candidates were then located in the EMCR volume using iterative thresholding and segmented by adaptive region growing. Two sets of potential MC objects, cluster centroid objects and MC seed objects, were generated and the CNR of each object was calculated. The number of candidates in each set was controlled based on the breast volume. Dynamic clustering around the centroid objects grouped the MC candidates to form clusters. Adaptive criteria were designed to reduce false positive (FP) clusters based on the size, CNR values and the number of MCs in the cluster, cluster shape, and cluster based maximum intensity projection. Free-response receiver operating characteristic (FROC) and jackknife alternative FROC (JAFROC) analyses were used to assess the performance and compare with that of a previous study. Results: Unpaired two-tailedt-test showed a significant increase (p < 0.0001) in the ratio of CNRs for MCs with and without MSBF regularization compared to similar ratios for FPs. For view-based detection, a

  7. a Line-Based 3d Roof Model Reconstruction Algorithm: Tin-Merging and Reshaping (tmr)

    Science.gov (United States)

    Rau, J.-Y.

    2012-07-01

    Three-dimensional building model is one of the major components of a cyber-city and is vital for the realization of 3D GIS applications. In the last decade, the airborne laser scanning (ALS) data is widely used for 3D building model reconstruction and object extraction. Instead, based on 3D roof structural lines, this paper presents a novel algorithm for automatic roof models reconstruction. A line-based roof model reconstruction algorithm, called TIN-Merging and Reshaping (TMR), is proposed. The roof structural line, such as edges, eaves and ridges, can be measured manually from aerial stereo-pair, derived by feature line matching or inferred from ALS data. The originality of the TMR algorithm for 3D roof modelling is to perform geometric analysis and topology reconstruction among those unstructured lines and then reshapes the roof-type using elevation information from the 3D structural lines. For topology reconstruction, a line constrained Delaunay Triangulation algorithm is adopted where the input structural lines act as constraint and their vertex act as input points. Thus, the constructed TINs will not across the structural lines. Later at the stage of Merging, the shared edge between two TINs will be check if the original structural line exists. If not, those two TINs will be merged into a polygon. Iterative checking and merging of any two neighboured TINs/Polygons will result in roof polygons on the horizontal plane. Finally, at the Reshaping stage any two structural lines with fixed height will be used to adjust a planar function for the whole roof polygon. In case ALS data exist, the Reshaping stage can be simplified by adjusting the point cloud within the roof polygon. The proposed scheme reduces the complexity of 3D roof modelling and makes the modelling process easier. Five test datasets provided by ISPRS WG III/4 located at downtown Toronto, Canada and Vaihingen, Germany are used for experiment. The test sites cover high rise buildings and residential

  8. Theoretical framework for filtered back projection in tomosynthesis

    Science.gov (United States)

    Lauritsch, Guenter; Haerer, Wolfgang H.

    1998-06-01

    Tomosynthesis provides only incomplete 3D-data of the imaged object. Therefore it is important for reconstruction tasks to take all available information carefully into account. We are focusing on geometrical aspects of the scan process which can be incorporated into reconstruction algorithms by filtered backprojection methods. Our goal is a systematic approach to filter design. A unified theory of tomosynthesis is derived in the context of linear system theory, and a general four-step filter design concept is presented. Since the effects of filtering are understandable in this context, a methodical formulation of filter functions is possible in order to optimize image quality regarding the specific requirements of any application. By variation of filter parameters the slice thickness and the spatial resolution can easily be adjusted. The proposed general concept of filter design is exemplarily discussed for circular scanning but is valid for any specific scan geometry. The inherent limitations of tomosynthesis are pointed out and strategies for reducing the effects of incomplete sampling are developed. Results of a dental application show a striking improvement in image quality.

  9. Implementation of a fast running full core pin power reconstruction method in DYN3D

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Torres, Armando Miguel [Instituto Nacional de Investigaciones Nucleares, Department of Nuclear Systems, Carretera Mexico – Toluca s/n, La Marquesa, 52750 Ocoyoacac (Mexico); Sanchez-Espinoza, Victor Hugo, E-mail: victor.sanchez@kit.edu [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology, Hermann-vom-Helmhotz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Kliem, Sören; Gommlich, Andre [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden (Germany)

    2014-07-01

    Highlights: • New pin power reconstruction (PPR) method for the nodal diffusion code DYN3D. • Flexible PPR method applicable to a single, a group or to all fuel assemblies (square, hex). • Combination of nodal with pin-wise solutions (non-conform geometry). • PPR capabilities shown for REA of a Minicore (REA) PWR whole core. - Abstract: This paper presents a substantial extension of the pin power reconstruction (PPR) method used in the reactor dynamics code DYN3D with the aim to better describe the heterogeneity within the fuel assembly during reactor simulations. The flexibility of the new implemented PPR permits the local spatial refinement of one fuel assembly, of a cluster of fuel assemblies, of a quarter or eight of a core or even of a whole core. The application of PPR in core regions of interest will pave the way for the coupling with sub-channel codes enabling the prediction of local safety parameters. One of the main advantages of considering regions and not only a hot fuel assembly (FA) is the fact that the cross flow within this region can be taken into account by the subchannel code. The implementation of the new PPR method has been tested analysing a rod ejection accident (REA) in a PWR minicore consisting of 3 × 3 FA. Finally, the new capabilities of DNY3D are demonstrated by the analysing a boron dilution transient in a PWR MOX core and the pin power of a VVER-1000 reactor at stationary conditions.

  10. 3D Reconstruction of End-Effector in Autonomous Positioning Process Using Depth Imaging Device

    Directory of Open Access Journals (Sweden)

    Yanzhu Hu

    2016-01-01

    Full Text Available The real-time calculation of positioning error, error correction, and state analysis has always been a difficult challenge in the process of manipulator autonomous positioning. In order to solve this problem, a simple depth imaging equipment (Kinect is used and Kalman filtering method based on three-frame subtraction to capture the end-effector motion is proposed in this paper. Moreover, backpropagation (BP neural network is adopted to recognize the target. At the same time, batch point cloud model is proposed in accordance with depth video stream to calculate the space coordinates of the end-effector and the target. Then, a 3D surface is fitted by using the radial basis function (RBF and the morphology. The experiments have demonstrated that the end-effector positioning error can be corrected in a short time. The prediction accuracies of both position and velocity have reached 99% and recognition rate of 99.8% has been achieved for cylindrical object. Furthermore, the gradual convergence of the end-effector center (EEC to the target center (TC shows that the autonomous positioning is successful. Simultaneously, 3D reconstruction is also completed to analyze the positioning state. Hence, the proposed algorithm in this paper is competent for autonomous positioning of manipulator. The algorithm effectiveness is also validated by 3D reconstruction. The computational ability is increased and system efficiency is greatly improved.

  11. Computer-aided planning and reconstruction of cranial 3D implants.

    Science.gov (United States)

    Gall, Markus; Xing Li; Xiaojun Chen; Schmalstieg, Dieter; Egger, Jan

    2016-08-01

    In this contribution, a prototype for semiautomatic computer-aided planning and reconstruction of cranial 3D Implants is presented. The software prototype guides the user through the workflow, beginning with loading and mirroring the patient's head to obtain an initial curvature of the cranial implant. However, naïve mirroring is not sufficient for an implant, because human heads are in general too asymmetric. Thus, the user can perform Laplacian smoothing, followed by Delaunay triangulation, for generating an aesthetic looking and well-fitting implant. Finally, our software prototype allows to save the designed 3D model of the implant as a STL-file for 3D printing. The 3D printed implant can be used for further pre-interventional planning or even as the final implant for the patient. In summary, our findings show that a customized MeVisLab prototype can be an alternative to complex commercial planning software, which may not be available in a clinic.

  12. Object-shape recognition and 3D reconstruction from tactile sensor images.

    Science.gov (United States)

    Khasnobish, Anwesha; Singh, Garima; Jati, Arindam; Konar, Amit; Tibarewala, D N

    2014-04-01

    This article presents a novel approach of edged and edgeless object-shape recognition and 3D reconstruction from gradient-based analysis of tactile images. We recognize an object's shape by visualizing a surface topology in our mind while grasping the object in our palm and also taking help from our past experience of exploring similar kind of objects. The proposed hybrid recognition strategy works in similar way in two stages. In the first stage, conventional object-shape recognition using linear support vector machine classifier is performed where regional descriptors features have been extracted from the tactile image. A 3D shape reconstruction is also performed depending upon the edged or edgeless objects classified from the tactile images. In the second stage, the hybrid recognition scheme utilizes the feature set comprising both the previously obtained regional descriptors features and some gradient-related information from the reconstructed object-shape image for the final recognition in corresponding four classes of objects viz. planar, one-edged object, two-edged object and cylindrical objects. The hybrid strategy achieves 97.62 % classification accuracy, while the conventional recognition scheme reaches only to 92.60 %. Moreover, the proposed algorithm has been proved to be less noise prone and more statistically robust.

  13. Acceleration of EM-Based 3D CT Reconstruction Using FPGA.

    Science.gov (United States)

    Choi, Young-Kyu; Cong, Jason

    2016-06-01

    Reducing radiation doses is one of the key concerns in computed tomography (CT) based 3D reconstruction. Although iterative methods such as the expectation maximization (EM) algorithm can be used to address this issue, applying this algorithm to practice is difficult due to the long execution time. Our goal is to decrease this long execution time to an order of a few minutes, so that low-dose 3D reconstruction can be performed even in time-critical events. In this paper we introduce a novel parallel scheme that takes advantage of numerous block RAMs on field-programmable gate arrays (FPGAs). Also, an external memory bandwidth reduction strategy is presented to reuse both the sinogram and the voxel intensity. Moreover, a customized processing engine based on the FPGA is presented to increase overall throughput while reducing the logic consumption. Finally, a hardware and software flow is proposed to quickly construct a design for various CT machines. The complete reconstruction system is implemented on an FPGA-based server-class node. Experiments on actual patient data show that a 26.9 × speedup can be achieved over a 16-thread multicore CPU implementation.

  14. New Virtual Cutting Algorithms for 3D Surface Model Reconstructed from Medical Images

    Institute of Scientific and Technical Information of China (English)

    WANG Wei-hong; QIN Xu-Jia

    2006-01-01

    This paper proposes a practical algorithms of plane cutting, stereo clipping and arbitrary cutting for 3D surface model reconstructed from medical images. In plane cutting and stereo clipping algorithms, the 3D model is cut by plane or polyhedron. Lists of edge and vertex in every cut plane are established. From these lists the boundary contours are created and their relationship of embrace is ascertained. The region closed by the contours is triangulated using Delaunay triangulation algorithm. Arbitrary cutting operation creates cutting curve interactively.The cut model still maintains its correct topology structure. With these operations,tissues inside can be observed easily and it can aid doctors to diagnose. The methods can also be used in surgery planning of radiotherapy.

  15. 3D tracking the Brownian motion of colloidal particles using digital holographic microscopy and joint reconstruction

    CERN Document Server

    Verrier, Nicolas; Fournel, Thierry

    2015-01-01

    In-line digital holography is a valuable tool for sizing, locating and tracking micro- or nano-objects in a volume. When a parametric imaging model is available, Inverse Problems approaches provide a straightforward estimate of the object parameters by fitting data with the model, thereby allowing accurate reconstruction. As recently proposed and demonstrated, combining pixel super-resolution techniques with Inverse Problems approaches improves the estimation of particle size and 3D-position. Here we demonstrate the accurate tracking of colloidal particles in Brownian motion. Particle size and 3D-position are jointly optimized from video holograms acquired with a digital holographic microscopy set up based on a "low-end" microscope objective ($\\times 20$, $\\rm NA\\ 0.5$). Exploiting information redundancy makes it possible to characterize particles with a standard deviation of 15 nm in size and a theoretical resolution of 2 x 2 x 5 nm$^3$ for position under additive white Gaussian noise assumption.

  16. Quantitative roughness characterization and 3D reconstruction of electrode surface using cyclic voltammetry and SEM image

    Energy Technology Data Exchange (ETDEWEB)

    Dhillon, Shweta; Kant, Rama, E-mail: rkant@chemistry.du.ac.in

    2013-10-01

    Area measurements from cyclic voltammetry (CV) and image from scanning electron microscopy (SEM) are used to characterize electrode statistical morphology, 3D surface reconstruction and its electroactivity. SEM images of single phased materials correspond to two-dimensional (2D) projections of 3D structures, leading to an incomplete characterization. Lack of third dimension information in SEM image is circumvented using equivalence between denoised SEM image and CV area measurements. This CV-SEM method can be used to estimate power spectral density (PSD), width, gradient, finite fractal nature of roughness and local morphology of the electrode. We show that the surface morphological statistical property like distribution function of gradient can be related to local electro-activity. Electrode surface gradient micrographs generated here can provide map of electro-activity sites. Finally, the densely and uniformly packed small gradient over the Pt-surface is the determining criterion for high intrinsic electrode activity.

  17. Three-dimensional reconstruction of the guinea pig inner ear, comparison of OPFOS and light microscopy, applications of 3D reconstruction

    NARCIS (Netherlands)

    Hofman, R.; Segenhout, J. M.; Wit, H. P.

    2009-01-01

    Three-dimensional (3D) reconstruction of anatomical structures can give additional insight into the morphology and function of these structures. We compare 3D reconstructions of the guinea pig inner ear, using light microscopy and orthogonal plane fluorescence optical sectioning microscopy. Applicat

  18. Numerical solution of a nonlinear least squares problem in digital breast tomosynthesis

    Science.gov (United States)

    Landi, G.; Loli Piccolomini, E.; Nagy, J. G.

    2015-11-01

    In digital tomosynthesis imaging, multiple projections of an object are obtained along a small range of different incident angles in order to reconstruct a pseudo-3D representation (i.e., a set of 2D slices) of the object. In this paper we describe some mathematical models for polyenergetic digital breast tomosynthesis image reconstruction that explicitly takes into account various materials composing the object and the polyenergetic nature of the x-ray beam. A polyenergetic model helps to reduce beam hardening artifacts, but the disadvantage is that it requires solving a large-scale nonlinear ill-posed inverse problem. We formulate the image reconstruction process (i.e., the method to solve the ill-posed inverse problem) in a nonlinear least squares framework, and use a Levenberg-Marquardt scheme to solve it. Some implementation details are discussed, and numerical experiments are provided to illustrate the performance of the methods.

  19. 3D Scene Reconstruction Using Omnidirectional Vision and LiDAR: A Hybrid Approach

    Directory of Open Access Journals (Sweden)

    Michiel Vlaminck

    2016-11-01

    Full Text Available In this paper, we propose a novel approach to obtain accurate 3D reconstructions of large-scale environments by means of a mobile acquisition platform. The system incorporates a Velodyne LiDAR scanner, as well as a Point Grey Ladybug panoramic camera system. It was designed with genericity in mind, and hence, it does not make any assumption about the scene or about the sensor set-up. The main novelty of this work is that the proposed LiDAR mapping approach deals explicitly with the inhomogeneous density of point clouds produced by LiDAR scanners. To this end, we keep track of a global 3D map of the environment, which is continuously improved and refined by means of a surface reconstruction technique. Moreover, we perform surface analysis on consecutive generated point clouds in order to assure a perfect alignment with the global 3D map. In order to cope with drift, the system incorporates loop closure by determining the pose error and propagating it back in the pose graph. Our algorithm was exhaustively tested on data captured at a conference building, a university campus and an industrial site of a chemical company. Experiments demonstrate that it is capable of generating highly accurate 3D maps in very challenging environments. We can state that the average distance of corresponding point pairs between the ground truth and estimated point cloud approximates one centimeter for an area covering approximately 4000 m 2 . To prove the genericity of the system, it was tested on the well-known Kitti vision benchmark. The results show that our approach competes with state of the art methods without making any additional assumptions.

  20. 3D Scene Reconstruction Using Omnidirectional Vision and LiDAR: A Hybrid Approach.

    Science.gov (United States)

    Vlaminck, Michiel; Luong, Hiep; Goeman, Werner; Philips, Wilfried

    2016-11-16

    In this paper, we propose a novel approach to obtain accurate 3D reconstructions of large-scale environments by means of a mobile acquisition platform. The system incorporates a Velodyne LiDAR scanner, as well as a Point Grey Ladybug panoramic camera system. It was designed with genericity in mind, and hence, it does not make any assumption about the scene or about the sensor set-up. The main novelty of this work is that the proposed LiDAR mapping approach deals explicitly with the inhomogeneous density of point clouds produced by LiDAR scanners. To this end, we keep track of a global 3D map of the environment, which is continuously improved and refined by means of a surface reconstruction technique. Moreover, we perform surface analysis on consecutive generated point clouds in order to assure a perfect alignment with the global 3D map. In order to cope with drift, the system incorporates loop closure by determining the pose error and propagating it back in the pose graph. Our algorithm was exhaustively tested on data captured at a conference building, a university campus and an industrial site of a chemical company. Experiments demonstrate that it is capable of generating highly accurate 3D maps in very challenging environments. We can state that the average distance of corresponding point pairs between the ground truth and estimated point cloud approximates one centimeter for an area covering approximately 4000 m 2 . To prove the genericity of the system, it was tested on the well-known Kitti vision benchmark. The results show that our approach competes with state of the art methods without making any additional assumptions.

  1. Canine neuroanatomy: Development of a 3D reconstruction and interactive application for undergraduate veterinary education

    Science.gov (United States)

    Raffan, Hazel; Guevar, Julien; Poyade, Matthieu; Rea, Paul M.

    2017-01-01

    Current methods used to communicate and present the complex arrangement of vasculature related to the brain and spinal cord is limited in undergraduate veterinary neuroanatomy training. Traditionally it is taught with 2-dimensional (2D) diagrams, photographs and medical imaging scans which show a fixed viewpoint. 2D representations of 3-dimensional (3D) objects however lead to loss of spatial information, which can present problems when translating this to the patient. Computer-assisted learning packages with interactive 3D anatomical models have become established in medical training, yet equivalent resources are scarce in veterinary education. For this reason, we set out to develop a workflow methodology creating an interactive model depicting the vasculature of the canine brain that could be used in undergraduate education. Using MR images of a dog and several commonly available software programs, we set out to show how combining image editing, segmentation and surface generation, 3D modeling and texturing can result in the creation of a fully interactive application for veterinary training. In addition to clearly identifying a workflow methodology for the creation of this dataset, we have also demonstrated how an interactive tutorial and self-assessment tool can be incorporated into this. In conclusion, we present a workflow which has been successful in developing a 3D reconstruction of the canine brain and associated vasculature through segmentation, surface generation and post-processing of readily available medical imaging data. The reconstructed model was implemented into an interactive application for veterinary education that has been designed to target the problems associated with learning neuroanatomy, primarily the inability to visualise complex spatial arrangements from 2D resources. The lack of similar resources in this field suggests this workflow is original within a veterinary context. There is great potential to explore this method, and introduce

  2. Grammar-Supported 3d Indoor Reconstruction from Point Clouds for As-Built Bim

    Science.gov (United States)

    Becker, S.; Peter, M.; Fritsch, D.

    2015-03-01

    The paper presents a grammar-based approach for the robust automatic reconstruction of 3D interiors from raw point clouds. The core of the approach is a 3D indoor grammar which is an extension of our previously published grammar concept for the modeling of 2D floor plans. The grammar allows for the modeling of buildings whose horizontal, continuous floors are traversed by hallways providing access to the rooms as it is the case for most office buildings or public buildings like schools, hospitals or hotels. The grammar is designed in such way that it can be embedded in an iterative automatic learning process providing a seamless transition from LOD3 to LOD4 building models. Starting from an initial low-level grammar, automatically derived from the window representations of an available LOD3 building model, hypotheses about indoor geometries can be generated. The hypothesized indoor geometries are checked against observation data - here 3D point clouds - collected in the interior of the building. The verified and accepted geometries form the basis for an automatic update of the initial grammar. By this, the knowledge content of the initial grammar is enriched, leading to a grammar with increased quality. This higher-level grammar can then be applied to predict realistic geometries to building parts where only sparse observation data are available. Thus, our approach allows for the robust generation of complete 3D indoor models whose quality can be improved continuously as soon as new observation data are fed into the grammar-based reconstruction process. The feasibility of our approach is demonstrated based on a real-world example.

  3. Visualization and 3D reconstruction of flame cells of Taenia solium (cestoda.

    Directory of Open Access Journals (Sweden)

    Laura E Valverde-Islas

    Full Text Available BACKGROUND: Flame cells are the terminal cells of protonephridial systems, which are part of the excretory systems of invertebrates. Although the knowledge of their biological role is incomplete, there is a consensus that these cells perform excretion/secretion activities. It has been suggested that the flame cells participate in the maintenance of the osmotic environment that the cestodes require to live inside their hosts. In live Platyhelminthes, by light microscopy, the cells appear beating their flames rapidly and, at the ultrastructural, the cells have a large body enclosing a tuft of cilia. Few studies have been performed to define the localization of the cytoskeletal proteins of these cells, and it is unclear how these proteins are involved in cell function. METHODOLOGY/PRINCIPAL FINDINGS: Parasites of two different developmental stages of T. solium were used: cysticerci recovered from naturally infected pigs and intestinal adults obtained from immunosuppressed and experimentally infected golden hamsters. Hamsters were fed viable cysticerci to recover adult parasites after one month of infection. In the present studies focusing on flame cells of cysticerci tissues was performed. Using several methods such as video, confocal and electron microscopy, in addition to computational analysis for reconstruction and modeling, we have provided a 3D visual rendition of the cytoskeletal architecture of Taenia solium flame cells. CONCLUSIONS/SIGNIFICANCE: We consider that visual representations of cells open a new way for understanding the role of these cells in the excretory systems of Platyhelminths. After reconstruction, the observation of high resolution 3D images allowed for virtual observation of the interior composition of cells. A combination of microscopic images, computational reconstructions and 3D modeling of cells appears to be useful for inferring the cellular dynamics of the flame cell cytoskeleton.

  4. Robust affine-invariant feature points matching for 3D surface reconstruction of complex landslide scenes

    Science.gov (United States)

    Stumpf, André; Malet, Jean-Philippe; Allemand, Pascal; Skupinski, Grzegorz; Deseilligny, Marc-Pierrot

    2013-04-01

    Multi-view stereo surface reconstruction from dense terrestrial photographs is being increasingly applied for geoscience applications such as quantitative geomorphology, and a number of different software solution and processing streamlines have been suggested. For image matching, camera self-calibration and bundle block adjustment, most approaches make use of scale-invariant feature transform (SIFT) to identify homologous points in multiple images. SIFT-like point matching is robust to apparent translation, rotation, and scaling of objects in multiple viewing geometries but the number of correctly identified matching points typically declines drastically with increasing angles between the viewpoints. For the application of multi-view stereo of complex landslide scenes, the viewing geometry is often constrained by the local topography and barriers such as rocks and vegetation occluding the target. Under such conditions it is not uncommon to encounter view angle differences of > 30% that hinder the image matching and eventually prohibit the joint estimation of the camera parameters from all views. Recently an affine invariant extension of the SIFT detector (ASIFT) has been demonstrated to provide more robust matches when large view-angle differences become an issue. In this study the ASIFT detector was adopted to detect homologous points in terrestrial photographs preceding 3D reconstruction of different parts (main scarp, toe) of the Super-Sauze landslide (Southern French Alps). 3D surface models for different time periods and different parts of the landslide were derived using the multi-view stereo framework implemented in MicMac (©IGN). The obtained 3D models were compared with reconstructions using the traditional SIFT detectors as well as alternative structure-from-motion implementations. An estimate of the absolute accuracy of the photogrammetric models was obtained through co-registration and comparison with high-resolution terrestrial LiDAR scans.

  5. TReMAP: Automatic 3D Neuron Reconstruction Based on Tracing, Reverse Mapping and Assembling of 2D Projections.

    Science.gov (United States)

    Zhou, Zhi; Liu, Xiaoxiao; Long, Brian; Peng, Hanchuan

    2016-01-01

    Efficient and accurate digital reconstruction of neurons from large-scale 3D microscopic images remains a challenge in neuroscience. We propose a new automatic 3D neuron reconstruction algorithm, TReMAP, which utilizes 3D Virtual Finger (a reverse-mapping technique) to detect 3D neuron structures based on tracing results on 2D projection planes. Our fully automatic tracing strategy achieves close performance with the state-of-the-art neuron tracing algorithms, with the crucial advantage of efficient computation (much less memory consumption and parallel computation) for large-scale images.

  6. Fast 3D-EM reconstruction using Planograms for stationary planar positron emission mammography camera.

    Science.gov (United States)

    Motta, A; Guerra, A Del; Belcari, N; Moehrs, S; Panetta, D; Righi, S; Valentini, D

    2005-12-01

    At the University of Pisa we are building a PEM prototype, the YAP-PEM camera, consisting of two opposite 6 x 6 x 3 cm3 detector heads of 30 x 30 YAP:Ce finger crystals, 2 x 2 x 30 mm3 each. The camera will be equipped with breast compressors. The acquisition will be stationary. Compared with a whole body PET scanner, a planar Positron Emission Mammography (PEM) camera allows a better, easier and more flexible positioning around the breast in the vicinity of the tumor: this increases the sensitivity and solid angle coverage, and reduces cost. To avoid software rejection of data during the reconstruction, resulting in a reduced sensitivity, we adopted a 3D-EM reconstruction which uses all of the collected Lines Of Response (LORs). This skips the PSF distortion given by data rebinning procedures and/or Fourier methods. The traditional 3D-EM reconstruction requires several times the computation of the LOR-voxel correlation matrix, or probability matrix {p(ij)}; therefore is highly time-consuming. We use the sparse and symmetry properties of the matrix {p(ij)} to perform fast 3D-EM reconstruction. Geometrically, a 3D grid of cubic voxels (FOV) is crossed by several divergent 3D line sets (LORs). The symmetries occur when tracing different LORs produces the same p(ij) value. Parallel LORs of different sets cross the FOV in the same way, and the repetition of p(ij) values depends on the ratio between the tube and voxel sizes. By optimizing this ratio, the occurrence of symmetries is increased. We identify a nucleus of symmetry of LORs: for each set of symmetrical LORs we choose just one LOR to be put in the nucleus, while the others lie outside. All of the possible p(ij) values are obtainable by tracking only the LORs of this nucleus. The coordinates of the voxels of all of the other LORs are given by means of simple translation rules. Before making the reconstruction, we trace the LORs of the nucleus to find the intersecting voxels, whose p(ij) values are computed and

  7. Numerical modeling of 3-D Position Reconstruction from 3-Axial Planar Spiral Coil Sensor Sensitivity

    CERN Document Server

    Sanjaya, Edi; Viridi, Sparisoma

    2011-01-01

    A sensitivity profile of a planar spiral coil sensor (PSCS) is proposed and use to generate the relation of 3-D position of object observed using three (PSCS)-s, one in each x, y, and z axis to the sensors response. A numerical procedure using self consistent field-like method to reconstruct the real position of observed object from sensor sensitivity is presented and the results are discussed. Unfortunately, the procedure fails to approach the desired results due to the existence of quadratic terms.

  8. 3D CAD model reconstruction of a human femur from MRI images

    Directory of Open Access Journals (Sweden)

    Benaissa EL FAHIME

    2013-05-01

    Full Text Available Medical practice and life sciences take full advantage of progress in engineering disciplines, in particular the computer assisted placement technique in hip surgery. This paper describes the three dimensional model reconstruction of human femur from MRI images. The developed program enables to obtain digital shape of 3D femur recognized by all CAD software and allows an accurate placement of the femoral component. This technic provides precise measurement of implant alignment during hip resurfacing or total hip arthroplasty, thereby reducing the risk of component mal-positioning and femoral neck notching.

  9. Cell volume and geometric parameters determination in living cells using confocal microscopy and 3D reconstruction

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: David Hevia, Aida Rodriguez-Garcia, Marta Alonso-Gervós, Isabel Quirós-González, Henar M Cimadevilla, Carmen Gómez-Cordovés, Rosa M Sainz & Juan C Mayo ### Abstract The protocol reported here describes a simple, easy, fast and reproducible method aimed to know the geometric parameters of living cells based on confocal laser scanning microscopy combined with 3D reconstruction software. Briefly, the method is based on intrinsic fluorescence properties of acridine orange (AO...

  10. Molecular-Frame 3D Photoelectron Momentum Distributions by Tomographic Reconstruction

    DEFF Research Database (Denmark)

    Maurer, Jochen; Dimitrovski, Darko; Christensen, Lauge;

    2012-01-01

    Naphthalene molecules are fixed in space by a laser field and rotated, in 2° steps, over 180°. For each orientation, they are ionized by an intense, circularly polarized femtosecond laser pulse, and the 2D projection of the photoelectron momentum distribution is recorded. The molecular-frame 3D...... momentum distribution is obtained by tomographic reconstruction from all 90 projections. It reveals an anisotropic electron distribution, angularly shifted in the polarization plane, that is not accessible by the 2D momentum images. Our theoretical analysis shows that the magnitude of the angular shift...

  11. 3D reconstruction for partial data electrical impedance tomography using a sparsity prior

    DEFF Research Database (Denmark)

    Garde, Henrik; Knudsen, Kim

    2015-01-01

    In electrical impedance tomography the electrical conductivity inside a physical body is computed from electro-static boundary measurements. The focus of this paper is to extend recent results for the 2D problem to 3D: prior information about the sparsity and spatial distribution...... of the conductivity is used to improve reconstructions for the partial data problem with Cauchy data measured only on a subset of the boundary. A sparsity prior is enforced using the ℓ1 norm in the penalty term of a Tikhonov functional, and spatial prior information is incorporated by applying a spatially distributed...

  12. An adaptive learning approach for 3-D surface reconstruction from point clouds.

    Science.gov (United States)

    Junior, Agostinho de Medeiros Brito; Neto, Adrião Duarte Dória; de Melo, Jorge Dantas; Goncalves, Luiz Marcos Garcia

    2008-06-01

    In this paper, we propose a multiresolution approach for surface reconstruction from clouds of unorganized points representing an object surface in 3-D space. The proposed method uses a set of mesh operators and simple rules for selective mesh refinement, with a strategy based on Kohonen's self-organizing map (SOM). Basically, a self-adaptive scheme is used for iteratively moving vertices of an initial simple mesh in the direction of the set of points, ideally the object boundary. Successive refinement and motion of vertices are applied leading to a more detailed surface, in a multiresolution, iterative scheme. Reconstruction was experimented on with several point sets, including different shapes and sizes. Results show generated meshes very close to object final shapes. We include measures of performance and discuss robustness.

  13. 2D and 3D reconstructions in acousto-electric tomography

    KAUST Repository

    Kuchment, Peter

    2011-04-18

    We propose and test stable algorithms for the reconstruction of the internal conductivity of a biological object using acousto-electric measurements. Namely, the conventional impedance tomography scheme is supplemented by scanning the object with acoustic waves that slightly perturb the conductivity and cause the change in the electric potential measured on the boundary of the object. These perturbations of the potential are then used as the data for the reconstruction of the conductivity. The present method does not rely on \\'perfectly focused\\' acoustic beams. Instead, more realistic propagating spherical fronts are utilized, and then the measurements that would correspond to perfect focusing are synthesized. In other words, we use synthetic focusing. Numerical experiments with simulated data show that our techniques produce high-quality images, both in 2D and 3D, and that they remain accurate in the presence of high-level noise in the data. Local uniqueness and stability for the problem also hold. © 2011 IOP Publishing Ltd.

  14. Incremental Multi-view 3D Reconstruction Starting from Two Images Taken by a Stereo Pair of Cameras

    Science.gov (United States)

    El hazzat, Soulaiman; Saaidi, Abderrahim; Karam, Antoine; Satori, Khalid

    2015-03-01

    In this paper, we present a new method for multi-view 3D reconstruction based on the use of a binocular stereo vision system constituted of two unattached cameras to initialize the reconstruction process. Afterwards , the second camera of stereo vision system (characterized by varying parameters) moves to capture more images at different times which are used to obtain an almost complete 3D reconstruction. The first two projection matrices are estimated by using a 3D pattern with known properties. After that, 3D scene points are recovered by triangulation of the matched interest points between these two images. The proposed approach is incremental. At each insertion of a new image, the camera projection matrix is estimated using the 3D information already calculated and new 3D points are recovered by triangulation from the result of the matching of interest points between the inserted image and the previous image. For the refinement of the new projection matrix and the new 3D points, a local bundle adjustment is performed. At first, all projection matrices are estimated, the matches between consecutive images are detected and Euclidean sparse 3D reconstruction is obtained. So, to increase the number of matches and have a more dense reconstruction, the Match propagation algorithm, more suitable for interesting movement of the camera, was applied on the pairs of consecutive images. The experimental results show the power and robustness of the proposed approach.

  15. 3D RECONSTRUCTION FROM MULTI-VIEW MEDICAL X-RAY IMAGES – REVIEW AND EVALUATION OF EXISTING METHODS

    Directory of Open Access Journals (Sweden)

    S. Hosseinian

    2015-12-01

    Full Text Available The 3D concept is extremely important in clinical studies of human body. Accurate 3D models of bony structures are currently required in clinical routine for diagnosis, patient follow-up, surgical planning, computer assisted surgery and biomechanical applications. However, 3D conventional medical imaging techniques such as computed tomography (CT scan and magnetic resonance imaging (MRI have serious limitations such as using in non-weight-bearing positions, costs and high radiation dose(for CT. Therefore, 3D reconstruction methods from biplanar X-ray images have been taken into consideration as reliable alternative methods in order to achieve accurate 3D models with low dose radiation in weight-bearing positions. Different methods have been offered for 3D reconstruction from X-ray images using photogrammetry which should be assessed. In this paper, after demonstrating the principles of 3D reconstruction from X-ray images, different existing methods of 3D reconstruction of bony structures from radiographs are classified and evaluated with various metrics and their advantages and disadvantages are mentioned. Finally, a comparison has been done on the presented methods with respect to several metrics such as accuracy, reconstruction time and their applications. With regards to the research, each method has several advantages and disadvantages which should be considered for a specific application.

  16. GPS tomography: validation of reconstructed 3-D humidity fields with radiosonde profiles

    Directory of Open Access Journals (Sweden)

    M. Shangguan

    2013-09-01

    Full Text Available Water vapor plays an important role in meteorological applications; GeoForschungsZentrum (GFZ therefore developed a tomographic system to derive 3-D distributions of the tropospheric water vapor above Germany using GPS data from about 300 ground stations. Input data for the tomographic reconstructions are generated by the Earth Parameter and Orbit determination System (EPOS software of the GFZ, which provides zenith total delay (ZTD, integrated water vapor (IWV and slant total delay (STD data operationally with a temporal resolution of 2.5 min (STD and 15 min (ZTD, IWV. The water vapor distribution in the atmosphere is derived by tomographic reconstruction techniques. The quality of the solution is dependent on many factors such as the spatial coverage of the atmosphere with slant paths, the spatial distribution of their intersections and the accuracy of the input observations. Independent observations are required to validate the tomographic reconstructions and to get precise information on the accuracy of the derived 3-D water vapor fields. To determine the quality of the GPS tomography, more than 8000 vertical water vapor profiles at 13 German radiosonde stations were used for the comparison. The radiosondes were launched twice a day (at 00:00 UTC and 12:00 UTC in 2007. In this paper, parameters of the entire profiles such as the wet refractivity, and the zenith wet delay have been compared. Before the validation the temporal and spatial distribution of the slant paths, serving as a basis for tomographic reconstruction, as well as their angular distribution were studied. The mean wet refractivity differences between tomography and radiosonde data for all points vary from −1.3 to 0.3, and the root mean square is within the range of 6.5–9. About 32% of 6803 profiles match well, 23% match badly and 45% are difficult to classify as they match only in parts.

  17. Linear stratified approach using full geometric constraints for 3D scene reconstruction and camera calibration.

    Science.gov (United States)

    Kim, Jae-Hean; Koo, Bon-Ki

    2013-02-25

    This paper presents a new linear framework to obtain 3D scene reconstruction and camera calibration simultaneously from uncalibrated images using scene geometry. Our strategy uses the constraints of parallelism, coplanarity, colinearity, and orthogonality. These constraints can be obtained in general man-made scenes frequently. This approach can give more stable results with fewer images and allow us to gain the results with only linear operations. In this paper, it is shown that all the geometric constraints used in the previous works performed independently up to now can be implemented easily in the proposed linear method. The study on the situations that cannot be dealt with by the previous approaches is also presented and it is shown that the proposed method being able to handle the cases is more flexible in use. The proposed method uses a stratified approach, in which affine reconstruction is performed first and then metric reconstruction. In this procedure, the additional constraints newly extracted in this paper have an important role for affine reconstruction in practical situations.

  18. Towards the reconstruction of 3D orientation information from direction-sensitive X-ray projections

    Energy Technology Data Exchange (ETDEWEB)

    Malecki, Andreas; Biernath, Thomas; Bech, Martin; Potdevin, Guillaume; Pfeiffer, Franz [Technische Univ. Muenchen (Germany). Dept. of Physics (E17); Technische Univ. Muenchen (Germany). Inst. of Medical Engineering (IMETUM); Lasser, Tobias [Technische Univ. Muenchen (Germany). Chair for Computer Aided Medical Procedures and Augmented Reality (CAMP)

    2011-07-01

    For medical in vivo applications the resolution of a computed tomography (CT) scan is limited by the acceptable patient received dose. Thus it does not allow to image microstructures in the body. Novel X-ray contrast mechanisms provide two additional signal channels, phase contrast and dark-field contrast. In this study we report on our progress to use the dark-field signal to gain micro-structural information by reconstructing a tensor field describing the local sample scattering power. For that purpose we developed an experimental setup composed of an X-ray tube, a Talbot Lau interferometer, an Euler cradle to orient the sample and a detector. This setup allows a direct measurement of the sample scattering strength in all directions. The reconstruction of several test samples is done using filtered back-projection or the algebraic reconstruction technique. The definition of the physical model behind the reconstructed quantity is obtained from a second ansatz by using 3D density map (micro-CT) data as an input to a computer simulation of the whole setup. We consider this project important for diagnostic improvements in the case of bone pathologies. (orig.)

  19. Implementation of a close range photogrammetric system for 3D reconstruction of a scoliotic torso

    Science.gov (United States)

    Detchev, Ivan Denislavov

    Scoliosis is a deformity of the human spine most commonly encountered with children. After being detected, periodic examinations via x-rays are traditionally used to measure its progression. However, due to the increased risk of cancer, a non-invasive and radiation-free scoliosis detection and progression monitoring methodology is needed. Quantifying the scoliotic deformity through the torso surface is a valid alternative, because of its high correlation with the internal spine curvature. This work proposes a low-cost multi-camera photogrammetric system for semi-automated 3D reconstruction of a torso surface with sub-millimetre level accuracy. The thesis describes the system design and calibration for optimal accuracy. It also covers the methodology behind the reconstruction and registration procedures. The experimental results include the complete reconstruction of a scoliotic torso mannequin. The final accuracy is evaluated through the goodness of fit between the reconstructed surface and a more accurate set of points measured by a coordinate measuring machine.

  20. MULTIPARAMETER MEASUREMENT FOR RACEWAY GROOVE OF BEARING BASED ON 3D RECONSTRUCTION WITH DIGITAL STRUCTURED LIGHT

    Institute of Scientific and Technical Information of China (English)

    He Tao; Zhong Ming; Li Wei; Zhong Yuning; Shi Tielin

    2005-01-01

    A fast 3D reconstruction method based on structured light to measure various parameters of the raceway groove is presented. Digital parallel grating stripes distributed with sine density are projected onto the raceway groove by a DLP projector, and distorting of stripes is happened on the raceway. Simultaneously, aided by three-step phase-shifting approach, three images covered by different stripes are obtained by a high-resolution CCD camera at the same location, thus a more accuracy local topography can be obtained. And then the bearing is rotated on a high precision computer controlled rotational stage. Three images are also obtained as the former step at next planned location triggered by the motor. After one cycle, all images information is combined through the mosaics. As a result, the 3D information of raceway groove can be gained. Not only geometric properties but also surface flaws can be extracted by software. A preliminary hardware system has been built, with which some geometric parameters have been extracted from reconstructed local topography.

  1. Reconstructing 3D coastal cliffs from airborne oblique photographs without ground control points

    Science.gov (United States)

    Dewez, T. J. B.

    2014-05-01

    Coastal cliff collapse hazard assessment requires measuring cliff face topography at regular intervals. Terrestrial laser scanner techniques have proven useful so far but are expensive to use either through purchasing the equipment or through survey subcontracting. In addition, terrestrial laser surveys take time which is sometimes incompatible with the time during with the beach is accessible at low-tide. By comparison, structure from motion techniques (SFM) are much less costly to implement, and if airborne, acquisition of several kilometers of coastline can be done in a matter of minutes. In this paper, the potential of GPS-tagged oblique airborne photographs and SFM techniques is examined to reconstruct chalk cliff dense 3D point clouds without Ground Control Points (GCP). The focus is put on comparing the relative 3D point of views reconstructed by Visual SFM with their synchronous Solmeta Geotagger Pro2 GPS locations using robust estimators. With a set of 568 oblique photos, shot from the open door of an airplane with a triplet of synchronized Nikon D7000, GPS and SFM-determined view point coordinates converge to X: ±31.5 m; Y: ±39.7 m; Z: ±13.0 m (LE66). Uncertainty in GPS position affects the model scale, angular attitude of the reference frame (the shoreline ends up tilted by 2°) and absolute positioning. Ground Control Points cannot be avoided to orient such models.

  2. Hybrid Parallel Bundle Adjustment for 3D Scene Reconstruction with Massive Points

    Institute of Scientific and Technical Information of China (English)

    Xin Liu; Wei Gao; Zhan-Yi Hu

    2012-01-01

    Bundle adjustment (BA) is a crucial but time consuming step in 3D reconstruction.In this paper,we intend to tackle a special class of BA problems where the reconstructed 3D points are much more numerous than the camera parameters,called Massive-Points BA (MPBA) problems.This is often the case when high-resolution images are used.We present a design and implementation of a new bundle adjustment algorithm for efficiently solving the MPBA problems.The use of hardware parallelism,the multi-core CPUs as well as GPUs,is explored.By careful memory-usage design,the graphic-memory limitation is effectively alleviated.Several modern acceleration strategies for bundle adjustment,such as the mixed-precision arithmetics,the embedded point iteration,and the preconditioned conjugate gradients,are explored and compared.By using several high-resolution image datasets,we generate a variety of MPBA problems,with which the performance of five bundle adjustment algorithms are evaluated.The experimental results show that our algorithm is up to 40 times faster than classical Sparse Bundle Adjustment,while maintaining comparable precision.

  3. Skeletal camera network embedded structure-from-motion for 3D scene reconstruction from UAV images

    Science.gov (United States)

    Xu, Zhihua; Wu, Lixin; Gerke, Markus; Wang, Ran; Yang, Huachao

    2016-11-01

    Structure-from-Motion (SfM) techniques have been widely used for 3D scene reconstruction from multi-view images. However, due to the large computational costs of SfM methods there is a major challenge in processing highly overlapping images, e.g. images from unmanned aerial vehicles (UAV). This paper embeds a novel skeletal camera network (SCN) into SfM to enable efficient 3D scene reconstruction from a large set of UAV images. First, the flight control data are used within a weighted graph to construct a topologically connected camera network (TCN) to determine the spatial connections between UAV images. Second, the TCN is refined using a novel hierarchical degree bounded maximum spanning tree to generate a SCN, which contains a subset of edges from the TCN and ensures that each image is involved in at least a 3-view configuration. Third, the SCN is embedded into the SfM to produce a novel SCN-SfM method, which allows performing tie-point matching only for the actually connected image pairs. The proposed method was applied in three experiments with images from two fixed-wing UAVs and an octocopter UAV, respectively. In addition, the SCN-SfM method was compared to three other methods for image connectivity determination. The comparison shows a significant reduction in the number of matched images if our method is used, which leads to less computational costs. At the same time the achieved scene completeness and geometric accuracy are comparable.

  4. Large-scale reconstruction of 3D structures of human chromosomes from chromosomal contact data.

    Science.gov (United States)

    Trieu, Tuan; Cheng, Jianlin

    2014-04-01

    Chromosomes are not positioned randomly within a nucleus, but instead, they adopt preferred spatial conformations to facilitate necessary long-range gene-gene interactions and regulations. Thus, obtaining the 3D shape of chromosomes of a genome is critical for understanding how the genome folds, functions and how its genes interact and are regulated. Here, we describe a method to reconstruct preferred 3D structures of individual chromosomes of the human genome from chromosomal contact data generated by the Hi-C chromosome conformation capturing technique. A novel parameterized objective function was designed for modeling chromosome structures, which was optimized by a gradient descent method to generate chromosomal structural models that could satisfy as many intra-chromosomal contacts as possible. We applied the objective function and the corresponding optimization method to two Hi-C chromosomal data sets of both a healthy and a cancerous human B-cell to construct 3D models of individual chromosomes at resolutions of 1 MB and 200 KB, respectively. The parameters used with the method were calibrated according to an independent fluorescence in situ hybridization experimental data. The structural models generated by our method could satisfy a high percentage of contacts (pairs of loci in interaction) and non-contacts (pairs of loci not in interaction) and were compatible with the known two-compartment organization of human chromatin structures. Furthermore, structural models generated at different resolutions and from randomly permuted data sets were consistent.

  5. Automated reconstruction of curvilinear fibres from 3D datasets acquired by X-ray microtomography.

    Science.gov (United States)

    Eberhardt, C N; Clarke, A R

    2002-04-01

    The characterization of fibrous structures is important in both composites and textiles research for relating to the bulk properties of the material. However, the microscopic nature of the fibres and their high densities make them very difficult to characterize. Many techniques have been developed for the measurement and characterization of fibrous structures but they tend to be restricted to measurements on the sample surface or within physical cross-sections. X-ray microtomography can be used to non-destructively probe the internal structure of a range of fibrous materials, providing large amounts of 3D data. A technique has been developed for tracing fibres within 3D datasets acquired by X-ray microtomography and this has been applied to a glass fibre reinforced composite and also a non-woven textile sample. The 3D fibrous structures of both samples were successfully reconstructed and their fibre orientation distributions calculated. This technique enables novel characterizations, such as the through-thickness variation of fibre orientation in non-wovens.

  6. 3D endobronchial ultrasound reconstruction and analysis for multimodal image-guided bronchoscopy

    Science.gov (United States)

    Zang, Xiaonan; Bascom, Rebecca; Gilbert, Christopher R.; Toth, Jennifer W.; Higgins, William E.

    2014-03-01

    State-of-the-art image-guided intervention (IGI) systems for lung-cancer management draw upon high-resolution three-dimensional multi-detector computed-tomography (MDCT) images and bronchoscopic video. An MDCT scan provides a high-resolution three-dimensional (3D) image of the chest that is used for preoperative procedure planning, while bronchoscopy gives live intraoperative video of the endobronchial airway tree structure. However, because neither source provides live extraluminal information on suspect nodules or lymph nodes, endobronchial ultrasound (EBUS) is often introduced during a procedure. Unfortunately, existing IGI systems provide no direct synergistic linkage between the MDCT/video data and EBUS data. Hence, EBUS proves difficult to use and can lead to inaccurate interpretations. To address this drawback, we present a prototype of a multimodal IGI system that brings together the various image sources. The system enables 3D reconstruction and visualization of structures depicted in the 2D EBUS video stream. It also provides a set of graphical tools that link the EBUS data directly to the 3D MDCT and bronchoscopic video. Results using phantom and human data indicate that the new system could potentially enable smooth natural incorporation of EBUS into the system-level work flow of bronchoscopy.

  7. On the 3-D reconstruction of Coronal Mass Ejections using coronagraph data

    Directory of Open Access Journals (Sweden)

    M. Mierla

    2010-01-01

    Full Text Available Coronal Mass ejections (CMEs are enormous eruptions of magnetized plasma expelled from the Sun into the interplanetary space, over the course of hours to days. They can create major disturbances in the interplanetary medium and trigger severe magnetic storms when they collide with the Earth's magnetosphere. It is important to know their real speed, propagation direction and 3-D configuration in order to accurately predict their arrival time at the Earth. Using data from the SECCHI coronagraphs onboard the STEREO mission, which was launched in October 2006, we can infer the propagation direction and the 3-D structure of such events. In this review, we first describe different techniques that were used to model the 3-D configuration of CMEs in the coronagraph field of view (up to 15 R⊙. Then, we apply these techniques to different CMEs observed by various coronagraphs. A comparison of results obtained from the application of different reconstruction algorithms is presented and discussed.

  8. AN IMAGE-BASED TECHNIQUE FOR 3D BUILDING RECONSTRUCTION USING MULTI-VIEW UAV IMAGES

    Directory of Open Access Journals (Sweden)

    F. Alidoost

    2015-12-01

    Full Text Available Nowadays, with the development of the urban areas, the automatic reconstruction of the buildings, as an important objects of the city complex structures, became a challenging topic in computer vision and photogrammetric researches. In this paper, the capability of multi-view Unmanned Aerial Vehicles (UAVs images is examined to provide a 3D model of complex building façades using an efficient image-based modelling workflow. The main steps of this work include: pose estimation, point cloud generation, and 3D modelling. After improving the initial values of interior and exterior parameters at first step, an efficient image matching technique such as Semi Global Matching (SGM is applied on UAV images and a dense point cloud is generated. Then, a mesh model of points is calculated using Delaunay 2.5D triangulation and refined to obtain an accurate model of building. Finally, a texture is assigned to mesh in order to create a realistic 3D model. The resulting model has provided enough details of building based on visual assessment.

  9. Motion and positional error correction for cone beam 3D-reconstruction with mobile C-arms.

    Science.gov (United States)

    Bodensteiner, C; Darolti, C; Schumacher, H; Matthäus, L; Schweikard, A

    2007-01-01

    CT-images acquired by mobile C-arm devices can contain artefacts caused by positioning errors. We propose a data driven method based on iterative 3D-reconstruction and 2D/3D-registration to correct projection data inconsistencies. With a 2D/3D-registration algorithm, transformations are computed to align the acquired projection images to a previously reconstructed volume. In an iterative procedure, the reconstruction algorithm uses the results of the registration step. This algorithm also reduces small motion artefacts within 3D-reconstructions. Experiments with simulated projections from real patient data show the feasibility of the proposed method. In addition, experiments with real projection data acquired with an experimental robotised C-arm device have been performed with promising results.

  10. AUTOMATIC MODEL SELECTION FOR 3D RECONSTRUCTION OF BUILDINGS FROM SATELLITE IMAGARY

    Directory of Open Access Journals (Sweden)

    T. Partovi

    2013-09-01

    Full Text Available Through the improvements of satellite sensor and matching technology, the derivation of 3D models from space borne stereo data obtained a lot of interest for various applications such as mobile navigation, urban planning, telecommunication, and tourism. The automatic reconstruction of 3D building models from space borne point cloud data is still an active research topic. The challenging problem in this field is the relatively low quality of the Digital Surface Model (DSM generated by stereo matching of satellite data comparing to airborne LiDAR data. In order to establish an efficient method to achieve high quality models and complete automation from the mentioned DSM, in this paper a new method based on a model-driven strategy is proposed. For improving the results, refined orthorectified panchromatic images are introduced into the process as additional data. The idea of this method is based on ridge line extraction and analysing height values in direction of and perpendicular to the ridgeline direction. After applying pre-processing to the orthorectified data, some feature descriptors are extracted from the DSM, to improve the automatic ridge line detection. Applying RANSAC a line is fitted to each group of ridge points. Finally these ridge lines are refined by matching them or closing gaps. In order to select the type of roof model the heights of point in extension of the ridge line and height differences perpendicular to the ridge line are analysed. After roof model selection, building edge information is extracted from canny edge detection and parameters derived from the roof parts. Then the best model is fitted to extracted façade roofs based on detected type of model. Each roof is modelled independently and final 3D buildings are reconstructed by merging the roof models with the corresponding walls.

  11. RECONSTRUCTION OF 3D VECTOR MODELS OF BUILDINGS BY COMBINATION OF ALS, TLS AND VLS DATA

    Directory of Open Access Journals (Sweden)

    H. Boulaassal

    2012-09-01

    Full Text Available Airborne Laser Scanning (ALS, Terrestrial Laser Scanning (TLS and Vehicle based Laser Scanning (VLS are widely used as data acquisition methods for 3D building modelling. ALS data is often used to generate, among others, roof models. TLS data has proven its effectiveness in the geometric reconstruction of building façades. Although the operating algorithms used in the processing chain of these two kinds of data are quite similar, their combination should be more investigated. This study explores the possibility of combining ALS and TLS data for simultaneously producing 3D building models from bird point of view and pedestrian point of view. The geometric accuracy of roofs and façades models is different due to the acquisition techniques. In order to take these differences into account, the surfaces composing roofs and façades are extracted with the same algorithm of segmentation. Nevertheless the segmentation algorithm must be adapted to the properties of the different point clouds. It is based on the RANSAC algorithm, but has been applied in a sequential way in order to extract all potential planar clusters from airborne and terrestrial datasets. Surfaces are fitted to planar clusters, allowing edge detection and reconstruction of vector polygons. Models resulting from TLS data are obviously more accurate than those generated from ALS data. Therefore, the geometry of the roofs is corrected and adapted according to the geometry of the corresponding façades. Finally, the effects of the differences between raw ALS and TLS data on the results of the modeling process are analyzed. It is shown that such combination could be used to produce reliable 3D building models.

  12. A generative statistical approach to automatic 3D building roof reconstruction from laser scanning data

    Science.gov (United States)

    Huang, Hai; Brenner, Claus; Sester, Monika

    2013-05-01

    This paper presents a generative statistical approach to automatic 3D building roof reconstruction from airborne laser scanning point clouds. In previous works, bottom-up methods, e.g., points clustering, plane detection, and contour extraction, are widely used. Due to the data artefacts caused by tree clutter, reflection from windows, water features, etc., the bottom-up reconstruction in urban areas may suffer from a number of incomplete or irregular roof parts. Manually given geometric constraints are usually needed to ensure plausible results. In this work we propose an automatic process with emphasis on top-down approaches. The input point cloud is firstly pre-segmented into subzones containing a limited number of buildings to reduce the computational complexity for large urban scenes. For the building extraction and reconstruction in the subzones we propose a pure top-down statistical scheme, in which the bottom-up efforts or additional data like building footprints are no more required. Based on a predefined primitive library we conduct a generative modeling to reconstruct roof models that fit the data. Primitives are assembled into an entire roof with given rules of combination and merging. Overlaps of primitives are allowed in the assembly. The selection of roof primitives, as well as the sampling of their parameters, is driven by a variant of Markov Chain Monte Carlo technique with specified jump mechanism. Experiments are performed on data-sets of different building types (from simple houses, high-rise buildings to combined building groups) and resolutions. The results show robustness despite the data artefacts mentioned above and plausibility in reconstruction.

  13. Single-Particle Cryo-EM and 3D Reconstruction of Hybrid Nanoparticles with Electron-Dense Components.

    Science.gov (United States)

    Yu, Guimei; Yan, Rui; Zhang, Chuan; Mao, Chengde; Jiang, Wen

    2015-10-01

    Single-particle cryo-electron microscopy (cryo-EM), accompanied with 3D reconstruction, is a broadly applicable tool for the structural characterization of macromolecules and nanoparticles. Recently, the cryo-EM field has pushed the limits of this technique to higher resolutions and samples of smaller molecular mass, however, some samples still present hurdles to this technique. Hybrid particles with electron-dense components, which have been studied using single-particle cryo-EM yet with limited success in 3D reconstruction due to the interference caused by electron-dense elements, constitute one group of such challenging samples. To process such hybrid particles, a masking method is developed in this work to adaptively remove pixels arising from electron-dense portions in individual projection images while maintaining maximal biomass signals for subsequent 2D alignment, 3D reconstruction, and iterative refinements. As demonstrated by the success in 3D reconstruction of an octahedron DNA/gold hybrid particle, which has been previously published without a 3D reconstruction, the devised strategy that combines adaptive masking and standard single-particle 3D reconstruction approach has overcome the hurdle of electron-dense elements interference, and is generally applicable to cryo-EM structural characterization of most, if not all, hybrid nanomaterials with electron-dense components.

  14. Putting 3D modelling and 3D printing into practice: virtual surgery and preoperative planning to reconstruct complex post-traumatic skeletal deformities and defects

    Directory of Open Access Journals (Sweden)

    Tetsworth Kevin

    2017-01-01

    Full Text Available 3D printing technology has revolutionized and gradually transformed manufacturing across a broad spectrum of industries, including healthcare. Nowhere is this more apparent than in orthopaedics with many surgeons already incorporating aspects of 3D modelling and virtual procedures into their routine clinical practice. As a more extreme application, patient-specific 3D printed titanium truss cages represent a novel approach for managing the challenge of segmental bone defects. This review illustrates the potential indications of this innovative technique using 3D printed titanium truss cages in conjunction with the Masquelet technique. These implants are custom designed during a virtual surgical planning session with the combined input of an orthopaedic surgeon, an orthopaedic engineering professional and a biomedical design engineer. The ability to 3D model an identical replica of the original intact bone in a virtual procedure is of vital importance when attempting to precisely reconstruct normal anatomy during the actual procedure. Additionally, other important factors must be considered during the planning procedure, such as the three-dimensional configuration of the implant. Meticulous design is necessary to allow for successful implantation through the planned surgical exposure, while being aware of the constraints imposed by local anatomy and prior implants. This review will attempt to synthesize the current state of the art as well as discuss our personal experience using this promising technique. It will address implant design considerations including the mechanical, anatomical and functional aspects unique to each case.

  15. Putting 3D modelling and 3D printing into practice: virtual surgery and preoperative planning to reconstruct complex post-traumatic skeletal deformities and defects.

    Science.gov (United States)

    Tetsworth, Kevin; Block, Steve; Glatt, Vaida

    2017-01-01

    3D printing technology has revolutionized and gradually transformed manufacturing across a broad spectrum of industries, including healthcare. Nowhere is this more apparent than in orthopaedics with many surgeons already incorporating aspects of 3D modelling and virtual procedures into their routine clinical practice. As a more extreme application, patient-specific 3D printed titanium truss cages represent a novel approach for managing the challenge of segmental bone defects. This review illustrates the potential indications of this innovative technique using 3D printed titanium truss cages in conjunction with the Masquelet technique. These implants are custom designed during a virtual surgical planning session with the combined input of an orthopaedic surgeon, an orthopaedic engineering professional and a biomedical design engineer. The ability to 3D model an identical replica of the original intact bone in a virtual procedure is of vital importance when attempting to precisely reconstruct normal anatomy during the actual procedure. Additionally, other important factors must be considered during the planning procedure, such as the three-dimensional configuration of the implant. Meticulous design is necessary to allow for successful implantation through the planned surgical exposure, while being aware of the constraints imposed by local anatomy and prior implants. This review will attempt to synthesize the current state of the art as well as discuss our personal experience using this promising technique. It will address implant design considerations including the mechanical, anatomical and functional aspects unique to each case.

  16. Putting 3D modelling and 3D printing into practice: virtual surgery and preoperative planning to reconstruct complex post-traumatic skeletal deformities and defects

    Science.gov (United States)

    Tetsworth, Kevin; Block, Steve; Glatt, Vaida

    2017-01-01

    3D printing technology has revolutionized and gradually transformed manufacturing across a broad spectrum of industries, including healthcare. Nowhere is this more apparent than in orthopaedics with many surgeons already incorporating aspects of 3D modelling and virtual procedures into their routine clinical practice. As a more extreme application, patient-specific 3D printed titanium truss cages represent a novel approach for managing the challenge of segmental bone defects. This review illustrates the potential indications of this innovative technique using 3D printed titanium truss cages in conjunction with the Masquelet technique. These implants are custom designed during a virtual surgical planning session with the combined input of an orthopaedic surgeon, an orthopaedic engineering professional and a biomedical design engineer. The ability to 3D model an identical replica of the original intact bone in a virtual procedure is of vital importance when attempting to precisely reconstruct normal anatomy during the actual procedure. Additionally, other important factors must be considered during the planning procedure, such as the three-dimensional configuration of the implant. Meticulous design is necessary to allow for successful implantation through the planned surgical exposure, while being aware of the constraints imposed by local anatomy and prior implants. This review will attempt to synthesize the current state of the art as well as discuss our personal experience using this promising technique. It will address implant design considerations including the mechanical, anatomical and functional aspects unique to each case. PMID:28220752

  17. X-ray imaging and 3D reconstruction of in-flight exploding foil initiator flyers

    Science.gov (United States)

    Willey, T. M.; Champley, K.; Hodgin, R.; Lauderbach, L.; Bagge-Hansen, M.; May, C.; Sanchez, N.; Jensen, B. J.; Iverson, A.; van Buuren, T.

    2016-06-01

    Exploding foil initiators (EFIs), also known as slapper initiators or detonators, offer clear safety and timing advantages over other means of initiating detonation in high explosives. This work outlines a new capability for imaging and reconstructing three-dimensional images of operating EFIs. Flyer size and intended velocity were chosen based on parameters of the imaging system. The EFI metal plasma and plastic flyer traveling at 2.5 km/s were imaged with short ˜80 ps pulses spaced 153.4 ns apart. A four-camera system acquired 4 images from successive x-ray pulses from each shot. The first frame was prior to bridge burst, the 2nd images the flyer about 0.16 mm above the surface but edges of the foil and/or flyer are still attached to the substrate. The 3rd frame captures the flyer in flight, while the 4th shows a completely detached flyer in a position that is typically beyond where slappers strike initiating explosives. Multiple acquisitions at different incident angles and advanced computed tomography reconstruction algorithms were used to produce a 3-dimensional image of the flyer at 0.16 and 0.53 mm above the surface. Both the x-ray images and the 3D reconstruction show a strong anisotropy in the shape of the flyer and underlying foil parallel vs. perpendicular to the initiating current and electrical contacts. These results provide detailed flyer morphology during the operation of the EFI.

  18. Rapid 3D dynamic arterial spin labeling with a sparse model-based image reconstruction.

    Science.gov (United States)

    Zhao, Li; Fielden, Samuel W; Feng, Xue; Wintermark, Max; Mugler, John P; Meyer, Craig H

    2015-11-01

    Dynamic arterial spin labeling (ASL) MRI measures the perfusion bolus at multiple observation times and yields accurate estimates of cerebral blood flow in the presence of variations in arterial transit time. ASL has intrinsically low signal-to-noise ratio (SNR) and is sensitive to motion, so that extensive signal averaging is typically required, leading to long scan times for dynamic ASL. The goal of this study was to develop an accelerated dynamic ASL method with improved SNR and robustness to motion using a model-based image reconstruction that exploits the inherent sparsity of dynamic ASL data. The first component of this method is a single-shot 3D turbo spin echo spiral pulse sequence accelerated using a combination of parallel imaging and compressed sensing. This pulse sequence was then incorporated into a dynamic pseudo continuous ASL acquisition acquired at multiple observation times, and the resulting images were jointly reconstructed enforcing a model of potential perfusion time courses. Performance of the technique was verified using a numerical phantom and it was validated on normal volunteers on a 3-Tesla scanner. In simulation, a spatial sparsity constraint improved SNR and reduced estimation errors. Combined with a model-based sparsity constraint, the proposed method further improved SNR, reduced estimation error and suppressed motion artifacts. Experimentally, the proposed method resulted in significant improvements, with scan times as short as 20s per time point. These results suggest that the model-based image reconstruction enables rapid dynamic ASL with improved accuracy and robustness.

  19. 3D VIRTUAL RECONSTRUCTION OF AN URBAN HISTORICAL SPACE: A CONSIDERATION ON THE METHOD

    Directory of Open Access Journals (Sweden)

    M. Galizia

    2012-09-01

    Full Text Available Urban historical spaces are often characterized by a variety of shapes, geometries, volumes, materials. Their virtual reconstruction requires a critical approach in terms of acquired data's density, timing optimization, final product's quality and slimness. The research team has focused its attention on the study on Francesco Neglia square (previously named Saint Thomas square in Enna. This square is an urban space fronted by architectures which present historical and stylistic differences. For example you can find the Saint Thomas'church belfry (in aragounese-catalan stile dated XIV century and the porch, the Anime Sante baroque's church (XVII century, Saint Mary of the Grace's nunnery (XVIII century and as well as some civil buildings of minor importance built in the mid twentieth century. The research has compared two different modeling tools approaches: the first one is based on the construction of triangulated surfaces which are segmented and simplified; the second one is based on the detection of surfaces geometrical features, the extraction of the more significant profiles by using a software dedicated to the elaboration of cloud points and the subsequent mathematical reconstruction by using a 3d modelling software. The following step was aimed to process the virtual reconstruction of urban scene by assembling the single optimized models. This work highlighted the importance of the image of the operator and of its cultural contribution, essential to recognize geometries which generates surfaces in order to create high quality semantic models.

  20. 3D reconstruction and standardization of the rat vibrissal cortex for precise registration of single neuron morphology.

    Directory of Open Access Journals (Sweden)

    Robert Egger

    Full Text Available The three-dimensional (3D structure of neural circuits is commonly studied by reconstructing individual or small groups of neurons in separate preparations. Investigation of structural organization principles or quantification of dendritic and axonal innervation thus requires integration of many reconstructed morphologies into a common reference frame. Here we present a standardized 3D model of the rat vibrissal cortex and introduce an automated registration tool that allows for precise placement of single neuron reconstructions. We (1 developed an automated image processing pipeline to reconstruct 3D anatomical landmarks, i.e., the barrels in Layer 4, the pia and white matter surfaces and the blood vessel pattern from high-resolution images, (2 quantified these landmarks in 12 different rats, (3 generated an average 3D model of the vibrissal cortex and (4 used rigid transformations and stepwise linear scaling to register 94 neuron morphologies, reconstructed from in vivo stainings, to the standardized cortex model. We find that anatomical landmarks vary substantially across the vibrissal cortex within an individual rat. In contrast, the 3D layout of the entire vibrissal cortex remains remarkably preserved across animals. This allows for precise registration of individual neuron reconstructions with approximately 30 µm accuracy. Our approach could be used to reconstruct and standardize other anatomically defined brain areas and may ultimately lead to a precise digital reference atlas of the rat brain.

  1. The Performance Evaluation of Multi-Image 3d Reconstruction Software with Different Sensors

    Science.gov (United States)

    Mousavi, V.; Khosravi, M.; Ahmadi, M.; Noori, N.; Naveh, A. Hosseini; Varshosaz, M.

    2015-12-01

    Today, multi-image 3D reconstruction is an active research field and generating three dimensional model of the objects is one the most discussed issues in Photogrammetry and Computer Vision that can be accomplished using range-based or image-based methods. Very accurate and dense point clouds generated by range-based methods such as structured light systems and laser scanners has introduced them as reliable tools in the industry. Image-based 3D digitization methodologies offer the option of reconstructing an object by a set of unordered images that depict it from different viewpoints. As their hardware requirements are narrowed down to a digital camera and a computer system, they compose an attractive 3D digitization approach, consequently, although range-based methods are generally very accurate, image-based methods are low-cost and can be easily used by non-professional users. One of the factors affecting the accuracy of the obtained model in image-based methods is the software and algorithm used to generate three dimensional model. These algorithms are provided in the form of commercial software, open source and web-based services. Another important factor in the accuracy of the obtained model is the type of sensor used. Due to availability of mobile sensors to the public, popularity of professional sensors and the advent of stereo sensors, a comparison of these three sensors plays an effective role in evaluating and finding the optimized method to generate three-dimensional models. Lots of research has been accomplished to identify a suitable software and algorithm to achieve an accurate and complete model, however little attention is paid to the type of sensors used and its effects on the quality of the final model. The purpose of this paper is deliberation and the introduction of an appropriate combination of a sensor and software to provide a complete model with the highest accuracy. To do this, different software, used in previous studies, were compared and

  2. Inlining 3d Reconstruction, Multi-Source Texture Mapping and Semantic Analysis Using Oblique Aerial Imagery

    Science.gov (United States)

    Frommholz, D.; Linkiewicz, M.; Poznanska, A. M.

    2016-06-01

    This paper proposes an in-line method for the simplified reconstruction of city buildings from nadir and oblique aerial images that at the same time are being used for multi-source texture mapping with minimal resampling. Further, the resulting unrectified texture atlases are analyzed for façade elements like windows to be reintegrated into the original 3D models. Tests on real-world data of Heligoland/ Germany comprising more than 800 buildings exposed a median positional deviation of 0.31 m at the façades compared to the cadastral map, a correctness of 67% for the detected windows and good visual quality when being rendered with GPU-based perspective correction. As part of the process building reconstruction takes the oriented input images and transforms them into dense point clouds by semi-global matching (SGM). The point sets undergo local RANSAC-based regression and topology analysis to detect adjacent planar surfaces and determine their semantics. Based on this information the roof, wall and ground surfaces found get intersected and limited in their extension to form a closed 3D building hull. For texture mapping the hull polygons are projected into each possible input bitmap to find suitable color sources regarding the coverage and resolution. Occlusions are detected by ray-casting a full-scale digital surface model (DSM) of the scene and stored in pixel-precise visibility maps. These maps are used to derive overlap statistics and radiometric adjustment coefficients to be applied when the visible image parts for each building polygon are being copied into a compact texture atlas without resampling whenever possible. The atlas bitmap is passed to a commercial object-based image analysis (OBIA) tool running a custom rule set to identify windows on the contained façade patches. Following multi-resolution segmentation and classification based on brightness and contrast differences potential window objects are evaluated against geometric constraints and

  3. Clinical anatomy and 3D virtual reconstruction of the lumbar plexus with respect to lumbar surgery

    Directory of Open Access Journals (Sweden)

    Ding Zi-hai

    2011-04-01

    Full Text Available Abstract Background Exposure of the anterior or lateral lumbar via the retroperitoneal approach easily causes injuries to the lumbar plexus. Lumbar plexus injuries which occur during anterior or transpsoas lumbar spine exposure and placement of instruments have been reported. This study aims is to provide more anatomical data and surgical landmarks in operations concerning the lumbar plexus in order to prevent lumbar plexus injuries and to increase the possibility of safety in anterior approach lumbar surgery. Methods To study the applied anatomy related to the lumbar plexus of fifteen formaldehyde-preserved cadavers, Five sets of Virtual Human (VH data set were prepared and used in the study. Three-dimensional (3D computerized reconstructions of the lumbar plexus and their adjacent structures were conducted from the VH female data set. Results The order of lumbar nerves is regular. From the anterior view, lumbar plexus nerves are arranged from medial at L5 to lateral at L2. From the lateral view, lumbar nerves are arranged from ventral at L2 to dorsal at L5. The angle of each nerve root exiting outward to the corresponding intervertebral foramen increases from L1 to L5. The lumbar plexus nerves are observed to be in close contact with transverse processes (TP. All parts of the lumbar plexus were located by sectional anatomy in the dorsal third of the psoas muscle. Thus, access to the psoas major muscle at the ventral 2/3 region can safely prevent nerve injuries. 3D reconstruction of the lumbar plexus based on VCH data can clearly show the relationships between the lumbar plexus and the blood vessels, vertebral body, kidney, and psoas muscle. Conclusion The psoas muscle can be considered as a surgical landmark since incision at the ventral 2/3 of the region can prevent lumbar plexus injuries for procedures requiring exposure of the lateral anterior of the lumbar. The transverse process can be considered as a landmark and reference in surgical

  4. Analysis of bite marks in foodstuffs by computer tomography (cone beam CT)--3D reconstruction.

    Science.gov (United States)

    Marques, Jeidson; Musse, Jamilly; Caetano, Catarina; Corte-Real, Francisco; Corte-Real, Ana Teresa

    2013-12-01

    The use of three-dimensional (3D) analysis of forensic evidence is highlighted in comparison with traditional methods. This three-dimensional analysis is based on the registration of the surface from a bitten object. The authors propose to use Cone Beam Computed Tomography (CBCT), which is used in dental practice, in order to study the surface and interior of bitten objects and dental casts of suspects. In this study, CBCT is applied to the analysis of bite marks in foodstuffs, which may be found in a forensic case scenario. 6 different types of foodstuffs were used: chocolate, cheese, apple, chewing gum, pizza and tart (flaky pastry and custard). The food was bitten into and dental casts of the possible suspects were made. The dental casts and bitten objects were registered using an x-ray source and the CBCT equipment iCAT® (Pennsylvania, EUA). The software InVivo5® (Anatomage Inc, EUA) was used to visualize and analyze the tomographic slices and 3D reconstructions of the objects. For each material an estimate of its density was assessed by two methods: HU values and specific gravity. All the used materials were successfully reconstructed as good quality 3D images. The relative densities of the materials in study were compared. Amongst the foodstuffs, the chocolate had the highest density (median value 100.5 HU and 1,36 g/cm(3)), while the pizza showed to have the lowest (median value -775 HU and 0,39 g/cm(3)), on both scales. Through tomographic slices and three-dimensional reconstructions it was possible to perform the metric analysis of the bite marks in all the foodstuffs, except for the pizza. These measurements could also be obtained from the dental casts. The depth of the bite mark was also successfully determined in all the foodstuffs except for the pizza. Cone Beam Computed Tomography has the potential to become an important tool for forensic sciences, namely for the registration and analysis of bite marks in foodstuffs that may be found in a crime

  5. In-air versus underwater comparison of 3D reconstruction accuracy using action sport cameras.

    Science.gov (United States)

    Bernardina, Gustavo R D; Cerveri, Pietro; Barros, Ricardo M L; Marins, João C B; Silvatti, Amanda P

    2017-01-25

    Action sport cameras (ASC) have achieved a large consensus for recreational purposes due to ongoing cost decrease, image resolution and frame rate increase, along with plug-and-play usability. Consequently, they have been recently considered for sport gesture studies and quantitative athletic performance evaluation. In this paper, we evaluated the potential of two ASCs (GoPro Hero3+) for in-air (laboratory) and underwater (swimming pool) three-dimensional (3D) motion analysis as a function of different camera setups involving the acquisition frequency, image resolution and field of view. This is motivated by the fact that in swimming, movement cycles are characterized by underwater and in-air phases what imposes the technical challenge of having a split volume configuration: an underwater measurement volume observed by underwater cameras and an in-air measurement volume observed by in-air cameras. The reconstruction of whole swimming cycles requires thus merging of simultaneous measurements acquired in both volumes. Characterizing and optimizing the instrumental errors of such a configuration makes mandatory the assessment of the instrumental errors of both volumes. In order to calibrate the camera stereo pair, black spherical markers placed on two calibration tools, used both in-air and underwater, and a two-step nonlinear optimization were exploited. The 3D reconstruction accuracy of testing markers and the repeatability of the estimated camera parameters accounted for system performance. For both environments, statistical tests were focused on the comparison of the different camera configurations. Then, each camera configuration was compared across the two environments. In all assessed resolutions, and in both environments, the reconstruction error (true distance between the two testing markers) was less than 3mm and the error related to the working volume diagonal was in the range of 1:2000 (3×1.3×1.5m(3)) to 1:7000 (4.5×2.2×1.5m(3)) in agreement with the

  6. Estimation of the average glandular dose on a team of tomosynthesis; Estimacion de la dosis glandular media en un equipo de tomosintesis

    Energy Technology Data Exchange (ETDEWEB)

    Nunez Martinez, L. M. R.; Sanchez Jimenez, J.; Pizarro trigo, F.

    2013-07-01

    Seeking to improve the information that gives us an image of mammography the manufacturers have implemented tomosynthesis. With this method of acquisition and reconstruction of image we went from having a 2D to a 3D image image, in such a way that it reduces or eliminates the effect of overlap of tissues. The estimate of the dose, which is always a fundamental parameter in the control of quality of radiology equipment, is more in the case of mammography by the radiosensitivity of this body and the frequency of their use. The objective of this work is the determination of the mean in a team glandular dose of with tomosynthesis mammography. (Author)

  7. 3D shape reconstruction of specular surfaces by using phase measuring deflectometry

    Science.gov (United States)

    Zhou, Tian; Chen, Kun; Wei, Haoyun; Li, Yan

    2016-10-01

    The existing estimation methods for recovering height information from surface gradient are mainly divided into Modal and Zonal techniques. Since specular surfaces used in the industry always have complex and large areas, considerations must be given to both the improvement of measurement accuracy and the acceleration of on-line processing speed, which beyond the capacity of existing estimations. Incorporating the Modal and Zonal approaches into a unifying scheme, we introduce an improved 3D shape reconstruction version of specular surfaces based on Phase Measuring Deflectometry in this paper. The Modal estimation is firstly implemented to derive the coarse height information of the measured surface as initial iteration values. Then the real shape can be recovered utilizing a modified Zonal wave-front reconstruction algorithm. By combining the advantages of Modal and Zonal estimations, the proposed method simultaneously achieves consistently high accuracy and dramatically rapid convergence. Moreover, the iterative process based on an advanced successive overrelaxation technique shows a consistent rejection of measurement errors, guaranteeing the stability and robustness in practical applications. Both simulation and experimentally measurement demonstrate the validity and efficiency of the proposed improved method. According to the experimental result, the computation time decreases approximately 74.92% in contrast to the Zonal estimation and the surface error is about 6.68 μm with reconstruction points of 391×529 pixels of an experimentally measured sphere mirror. In general, this method can be conducted with fast convergence speed and high accuracy, providing an efficient, stable and real-time approach for the shape reconstruction of specular surfaces in practical situations.

  8. A new multiresolution method applied to the 3D reconstruction of small bodies

    Science.gov (United States)

    Capanna, C.; Jorda, L.; Lamy, P. L.; Gesquiere, G.

    2012-12-01

    The knowledge of the three-dimensional (3D) shape of small solar system bodies, such as asteroids and comets, is essential in determining their global physical properties (volume, density, rotational parameters). It also allows performing geomorphological studies of their surface through the characterization of topographic features, such as craters, faults, landslides, grooves, hills, etc.. In the case of small bodies, the shape is often only constrained by images obtained by interplanetary spacecrafts. Several techniques are available to retrieve 3D global shapes from these images. Stereography which relies on control points has been extensively used in the past, most recently to reconstruct the nucleus of comet 9P/Tempel 1 [Thomas (2007)]. The most accurate methods are however photogrammetry and photoclinometry, often used in conjunction with stereography. Stereophotogrammetry (SPG) has been used to reconstruct the shapes of the nucleus of comet 19P/Borrelly [Oberst (2004)] and of the asteroid (21) Lutetia [Preusker (2012)]. Stereophotoclinometry (SPC) has allowed retrieving an accurate shape of the asteroids (25143) Itokawa [Gaskell (2008)] and (2867) Steins [Jorda (2012)]. We present a new photoclinometry method based on the deformation of a 3D triangular mesh [Capanna (2012)] using a multi-resolution scheme which starts from a sphere of 300 facets and yields a shape model with 100; 000 facets. Our strategy is inspired by the "Full Multigrid" method [Botsch (2007)] and consists in going alternatively between two resolutions in order to obtain an optimized shape model at a given resolution before going to the higher resolution. In order to improve the robustness of our method, we use a set of control points obtained by stereography. Our method has been tested on images acquired by the OSIRIS visible camera, aboard the Rosetta spacecraft of the European Space Agency, during the fly-by of asteroid (21) Lutetia in July 2010. We present the corresponding 3D shape

  9. 2D and 3D reconstruction and geomechanical characterization of kilometre-scale complex folded structures

    Science.gov (United States)

    Zanchi, Andrea; Agliardi, Federico; Crosta, Giovanni B.; Villa, Alberto; Bistacchi, Andrea; Iudica, Gaetano

    2015-04-01

    points based on their normal vector orientations to identify and map bedding and fractures. Combined stereographic analysis of bedding orientations and use of filters allowed the quantification of fold hinge and limb geometries and their 3D reconstruction in GOCAD. Fracture patterns derived from points clouds and field data allowed identifying different geomechanical domains associated to the folded structure. Our results encourage the integrated analysis of high-resolution point clouds and detailed structural and geomechanical field data as inputs to the 3D geometrical reconstruction and modelling of folded rock masses. Validation of virtual outcrop reconstructions through a comparison with field structural measurements suggests that very precise geometrical constraints can be obtained by TLS on geological bodies with complex geometrical features. However, additional constraints on TLS survey layout design are required to optimise the reconstruction and distinction of specific structural elements associated to folding as bedding and fold-related fracture systems.

  10. EFFECT OF DIGITAL FRINGE PROJECTION PARAMETERS ON 3D RECONSTRUCTION ACCURACY

    Directory of Open Access Journals (Sweden)

    A. Babaei

    2013-09-01

    This paper aims to evaluate different parameters which affect the accuracy of the final results. For this purpose, some test were designed and implemented. These tests assess the number of phase shifts, spatial frequency of the fringe pattern, light condition, noise level of images, and the color and material of target objects on the quality of resulted phase map. The evaluation results demonstrate that digital fringe projection method is capable of obtaining depth map of complicated object with high accuracy. The contrast test results showed that this method is able to work under different ambient light condition; although at places with high light condition will not work properly. The results of implementation on different objects with various materials, color and shapes demonstrate the high capability of this method of 3D reconstruction.

  11. Data Management Framework of Drone-Based 3d Model Reconstruction of Disaster Site

    Science.gov (United States)

    Kim, C.; Moon, H.; Lee, W.

    2016-06-01

    To rescue peoples in the disaster site in time, information acquisition of current feature of collapsed buildings and terrain is quite important for disaster site rescue manager. Based on information about disaster site, they can accurately plan the rescue process and remove collapsed buildings or other facilities. However, due to the harsh condition of disaster areas, rapid and accurate acquisition of disaster site information is not an easy task. There are possibilities of further damages in the collapse and there are also difficulties in acquiring information about current disaster situation due to large disaster site and limited rescue resources. To overcome these circumstances of disaster sites, an unmanned aerial vehicle, commonly known as a drone is used to rapidly and effectively acquire current image data of the large disaster areas. Then, the procedure of drone-based 3D model reconstruction visualization function of developed system is presented.

  12. QUALITY ASSESSMENT OF 3D RECONSTRUCTION USING FISHEYE AND PERSPECTIVE SENSORS

    Directory of Open Access Journals (Sweden)

    C. Strecha

    2015-03-01

    Full Text Available Recent mathematical advances, growing alongside the use of unmanned aerial vehicles, have not only overcome the restriction of roll and pitch angles during flight but also enabled us to apply non-metric cameras in photogrammetric method, providing more flexibility for sensor selection. Fisheye cameras, for example, advantageously provide images with wide coverage; however, these images are extremely distorted and their non-uniform resolutions make them more difficult to use for mapping or terrestrial 3D modelling. In this paper, we compare the usability of different camera-lens combinations, using the complete workflow implemented in Pix4Dmapper to achieve the final terrestrial reconstruction result of a well-known historical site in Switzerland: the Chillon Castle. We assess the accuracy of the outcome acquired by consumer cameras with perspective and fisheye lenses, comparing the results to a laser scanner point cloud.

  13. 3D equilibrum reconstruction for the RFP with V3FIT

    Science.gov (United States)

    Terranova, David; Marrelli, Lionello; Hanson, James; Hirshman, Steven; Marco, Gobbin; Trevisan, Gregorio

    2012-10-01

    Helical states are routinely found in all Reversed Field Pinch experiments and their description requires a 3D equilibrium reconstruction. We present the application of the V3FIT code for the RFX-mod experiment. Magnetic and kinetic diagnostics (Te from Thomson scattering, SXR emissivity, Ne from interferometer) are used in order to properly deal with the problem of degeneracy when only external magnetic measurements are used. A sensitivity study of external measurements on the internal topological structure is also presented, showing a link between external measurements and internal profiles. Fixed-boundary equilibria can be computed by independently calculating vacuum fields. The results provide a good match with experimental data and the obtained equilibria are suitable for both transport and stability analysis.

  14. 3D reconstruction of the source and scale of buried young flood channels on Mars.

    Science.gov (United States)

    Morgan, Gareth A; Campbell, Bruce A; Carter, Lynn M; Plaut, Jeffrey J; Phillips, Roger J

    2013-05-01

    Outflow channels on Mars are interpreted as the product of gigantic floods due to the catastrophic eruption of groundwater that may also have initiated episodes of climate change. Marte Vallis, the largest of the young martian outflow channels (Mars hydrologic activity during a period otherwise considered to be cold and dry. Using data from the Shallow Radar sounder on the Mars Reconnaissance Orbiter, we present a three-dimensional (3D) reconstruction of buried channels on Mars and provide estimates of paleohydrologic parameters. Our work shows that Cerberus Fossae provided the waters that carved Marte Vallis, and it extended an additional 180 kilometers to the east before the emplacement of the younger lava flows. We identified two stages of channel incision and determined that channel depths were more than twice those of previous estimates.

  15. ROLE OF COMPUTED TOMOGRAPHY AND 3D RECONSTRUCTIONS IN PELVIC RIM AND ACETABULAR FRACTURES

    Directory of Open Access Journals (Sweden)

    Somasekhar

    2015-03-01

    Full Text Available To determine the role of computed tomography and 3D Reconstructions in classification of pelvic rim and acetabular fractures and assessing possible changes in fracture classification . We collected retrospective information in a period of 18 months in our institution , of patients with pelvic injuries considering --- demographic data , radiological examination performed and the moment when it was performed , fracture classification and management . In 12 cases ( 54% there were isolated pelvic rim fr actures and 7 cases of isolated acetabular fractures ( 32% and 3 cases ( 14% involving both . After the CT scan was obtained , the initial classification was changed in five cases ( 22 . 7% . Tridimensional CT based modeling is very helpful in the classificati on of pelvic fractures and is a complement of the plain X - ray .

  16. 3-D reconstruction of an ancient Egyptian mummy using X-ray computer tomography.

    Science.gov (United States)

    Baldock, C; Hughes, S W; Whittaker, D K; Taylor, J; Davis, R; Spencer, A J; Tonge, K; Sofat, A

    1994-12-01

    Computer tomography has been used to image and reconstruct in 3-D an Egyptian mummy from the collection of the British Museum. This study of Tjentmutengebtiu, a priestess from the 22nd dynasty (945-715 BC) revealed invaluable information of a scientific, Egyptological and palaeopathological nature without mutilation and destruction of the painted cartonnage case or linen wrappings. Precise details on the removal of the brain through the nasal cavity and the viscera from the abdominal cavity were obtained. The nature and composition of the false eyes were investigated. The detailed analysis of the teeth provided a much closer approximation of age at death. The identification of materials used for the various amulets including that of the figures placed in the viscera was graphically demonstrated using this technique.

  17. 3D optical phase reconstruction within PMMA samples using a spectral OCT system

    Science.gov (United States)

    Briones-R., Manuel d. J.; De La Torre-Ibarra, Manuel H.; Mendoza Santoyo, Fernando

    2015-08-01

    The optical coherence tomography (OCT) technique has proved to be a useful method in biomedical areas such as ophthalmology, dentistry, dermatology, among many others. In all these applications the main target is to reconstruct the internal structure of the samples from which the physician's expertise may recognize and diagnose the existence of a disease. Nowadays OCT has been applied one step further and is used to study the mechanics of some particular type of materials, where the resulting information involves more than just their internal structure and the measurement of parameters such as displacements, stress and strain. Here we report on a spectral OCT system used to image the internal 3D microstructure and displacement maps from a PMMA (Poly-methyl-methacrylate) sample, subjected to a deformation by a controlled three point bending and tilting. The internal mechanical response of the polymer is shown as consecutive 2D images.

  18. Zooming in: high resolution 3D reconstruction of differently stained histological whole slide images

    Science.gov (United States)

    Lotz, Johannes; Berger, Judith; Müller, Benedikt; Breuhahn, Kai; Grabe, Niels; Heldmann, Stefan; Homeyer, André; Lahrmann, Bernd; Laue, Hendrik; Olesch, Janine; Schwier, Michael; Sedlaczek, Oliver; Warth, Arne

    2014-03-01

    Much insight into metabolic interactions, tissue growth, and tissue organization can be gained by analyzing differently stained histological serial sections. One opportunity unavailable to classic histology is three-dimensional (3D) examination and computer aided analysis of tissue samples. In this case, registration is needed to reestablish spatial correspondence between adjacent slides that is lost during the sectioning process. Furthermore, the sectioning introduces various distortions like cuts, folding, tearing, and local deformations to the tissue, which need to be corrected in order to exploit the additional information arising from the analysis of neighboring slide images. In this paper we present a novel image registration based method for reconstructing a 3D tissue block implementing a zooming strategy around a user-defined point of interest. We efficiently align consecutive slides at increasingly fine resolution up to cell level. We use a two-step approach, where after a macroscopic, coarse alignment of the slides as preprocessing, a nonlinear, elastic registration is performed to correct local, non-uniform deformations. Being driven by the optimization of the normalized gradient field (NGF) distance measure, our method is suitable for differently stained and thus multi-modal slides. We applied our method to ultra thin serial sections (2 μm) of a human lung tumor. In total 170 slides, stained alternately with four different stains, have been registered. Thorough visual inspection of virtual cuts through the reconstructed block perpendicular to the cutting plane shows accurate alignment of vessels and other tissue structures. This observation is confirmed by a quantitative analysis. Using nonlinear image registration, our method is able to correct locally varying deformations in tissue structures and exceeds the limitations of globally linear transformations.

  19. The Avignon Bridge: a 3d Reconstruction Project Integrating Archaeological, Historical and Gemorphological Issues

    Science.gov (United States)

    Berthelot, M.; Nony, N.; Gugi, L.; Bishop, A.; De Luca, L.

    2015-02-01

    The history and identity of the Avignon's bridge is inseparable from that of the Rhône river. Therefore, in order to share the history and memory of the Rhône, it is essential to get to know this bridge and especially to identify and make visible the traces of its past, its construction, its interaction with the river dynamics, which greatly influenced his life. These are the objectives of the PAVAGE project that focuses on digitally surveying, modelling and re-visiting a heritage site of primary importance with the aim of virtually restoring the link between the two sides which, after the disappearance of the Roman bridge of Arles, constituted for a long time the only connection between Lyon or Vienna and the sea. Therefore, this project has an important geo-historical dimension for which geo-morphological and paleoenvironmental studies were implemented in connection with the latest digital simulation methods exploiting geographic information systems. By integrating knowledge and reflections of archaeologists, historians, geomorphologists, environmentalists, architects, engineers and computer scientists, the result of this project (which involved 5 laboratories during 4 years) is a 3D digital model covering an extension of 50 km2 achieved by integrating satellite imagery, UAV-based acquisitions, terrestrial laser scanning and photogrammetry, etc. Beyond the actions of scientific valorisation concerning the historical and geomorphological dimensions of the project, the results of this work of this interdisciplinary investigation and interpretation of this site are today integrated within a location-based augmented reality application allowing tourists to exploring the virtual reconstruction of the bridge and its environment through tablets inside the portion of territory covered by this project (between Avignon and Villeneuve-lez-Avignon). This paper presents the main aspects of the 3D virtual reconstruction approach.

  20. Compressed Sensing Reconstruction of 3D Ultrasound Data Using Dictionary Learning and Line-Wise Subsampling.

    Science.gov (United States)

    Lorintiu, Oana; Liebgott, Hervé; Alessandrini, Martino; Bernard, Olivier; Friboulet, Denis

    2015-12-01

    In this paper we present a compressed sensing (CS) method adapted to 3D ultrasound imaging (US). In contrast to previous work, we propose a new approach based on the use of learned overcomplete dictionaries that allow for much sparser representations of the signals since they are optimized for a particular class of images such as US images. In this study, the dictionary was learned using the K-SVD algorithm and CS reconstruction was performed on the non-log envelope data by removing 20% to 80% of the original data. Using numerically simulated images, we evaluate the influence of the training parameters and of the sampling strategy. The latter is done by comparing the two most common sampling patterns, i.e., point-wise and line-wise random patterns. The results show in particular that line-wise sampling yields an accuracy comparable to the conventional point-wise sampling. This indicates that CS acquisition of 3D data is feasible in a relatively simple setting, and thus offers the perspective of increasing the frame rate by skipping the acquisition of RF lines. Next, we evaluated this approach on US volumes of several ex vivo and in vivo organs. We first show that the learned dictionary approach yields better performances than conventional fixed transforms such as Fourier or discrete cosine. Finally, we investigate the generality of the learned dictionary approach and show that it is possible to build a general dictionary allowing to reliably reconstruct different volumes of different ex vivo or in vivo organs.

  1. GPU accelerated generation of digitally reconstructed radiographs for 2-D/3-D image registration.

    Science.gov (United States)

    Dorgham, Osama M; Laycock, Stephen D; Fisher, Mark H

    2012-09-01

    Recent advances in programming languages for graphics processing units (GPUs) provide developers with a convenient way of implementing applications which can be executed on the CPU and GPU interchangeably. GPUs are becoming relatively cheap, powerful, and widely available hardware components, which can be used to perform intensive calculations. The last decade of hardware performance developments shows that GPU-based computation is progressing significantly faster than CPU-based computation, particularly if one considers the execution of highly parallelisable algorithms. Future predictions illustrate that this trend is likely to continue. In this paper, we introduce a way of accelerating 2-D/3-D image registration by developing a hybrid system which executes on the CPU and utilizes the GPU for parallelizing the generation of digitally reconstructed radiographs (DRRs). Based on the advancements of the GPU over the CPU, it is timely to exploit the benefits of many-core GPU technology by developing algorithms for DRR generation. Although some previous work has investigated the rendering of DRRs using the GPU, this paper investigates approximations which reduce the computational overhead while still maintaining a quality consistent with that needed for 2-D/3-D registration with sufficient accuracy to be clinically acceptable in certain applications of radiation oncology. Furthermore, by comparing implementations of 2-D/3-D registration on the CPU and GPU, we investigate current performance and propose an optimal framework for PC implementations addressing the rigid registration problem. Using this framework, we are able to render DRR images from a 256×256×133 CT volume in ~24 ms using an NVidia GeForce 8800 GTX and in ~2 ms using NVidia GeForce GTX 580. In addition to applications requiring fast automatic patient setup, these levels of performance suggest image-guided radiation therapy at video frame rates is technically feasible using relatively low cost PC

  2. Reconstructing the Vulcano Island evolution from 3D modeling of magnetic signatures

    Science.gov (United States)

    Napoli, Rosalba; Currenti, Gilda

    2016-06-01

    High-resolution ground and marine magnetic data are exploited for a detailed definition of a 3D model of the Vulcano Island volcanic complex. The resulting 3D magnetic imaging, obtained by 3-D inverse modeling technique, has delivered useful constraints both to reconstruct the Vulcano Island evolution and to be used as input data for volcanic hazard assessment models. Our results constrained the depth and geometry of the main geo-structural features revealing more subsurface volcanic structures than exposed ones and allowing to elucidate the relationships between them. The recognition of two different magnetization sectors, approximatively coincident with the structural depressions of Piano caldera, in the southern half of the island, and La Fossa caldera at the north, suggests a complex structural and volcanic evolution. Magnetic highs identified across the southern half of the island reflect the main crystallized feeding systems, intrusions and buried vents, whose NNW-SSE preferential alignment highlights the role of the NNW-SSE Tindari-Letojanni regional system from the initial activity of the submarine edifice, to the more recent activity of the Vulcano complex. The low magnetization area, in the middle part of the island may result from hydrothermally altered rocks. Their presence not only in the central part of the volcano edifice but also in other peripheral areas, is a sign of a more diffuse historical hydrothermal activity than in present days. Moreover, the high magnetization heterogeneity within the upper flanks of La Fossa cone edifice is an imprint of a composite distribution of unaltered and altered rocks with different mechanical properties, which poses in this area a high risk level for failure processes especially during volcanic or hydrothermal crisis.

  3. Region-Based 3d Surface Reconstruction Using Images Acquired by Low-Cost Unmanned Aerial Systems

    Science.gov (United States)

    Lari, Z.; Al-Rawabdeh, A.; He, F.; Habib, A.; El-Sheimy, N.

    2015-08-01

    Accurate 3D surface reconstruction of our environment has become essential for an unlimited number of emerging applications. In the past few years, Unmanned Aerial Systems (UAS) are evolving as low-cost and flexible platforms for geospatial data collection that could meet the needs of aforementioned application and overcome limitations of traditional airborne and terrestrial mobile mapping systems. Due to their payload restrictions, these systems usually include consumer-grade imaging and positioning sensor which will negatively impact the quality of the collected geospatial data and reconstructed surfaces. Therefore, new surface reconstruction surfaces are needed to mitigate the impact of using low-cost sensors on the final products. To date, different approaches have been proposed to for 3D surface construction using overlapping images collected by imaging sensor mounted on moving platforms. In these approaches, 3D surfaces are mainly reconstructed based on dense matching techniques. However, generated 3D point clouds might not accurately represent the scanned surfaces due to point density variations and edge preservation problems. In order to resolve these problems, a new region-based 3D surface renostruction trchnique is introduced in this paper. This approach aims to generate a 3D photo-realistic model of individually scanned surfaces within the captured images. This approach is initiated by a Semi-Global dense Matching procedure is carried out to generate a 3D point cloud from the scanned area within the collected images. The generated point cloud is then segmented to extract individual planar surfaces. Finally, a novel region-based texturing technique is implemented for photorealistic reconstruction of the extracted planar surfaces. Experimental results using images collected by a camera mounted on a low-cost UAS demonstrate the feasibility of the proposed approach for photorealistic 3D surface reconstruction.

  4. REGION-BASED 3D SURFACE RECONSTRUCTION USING IMAGES ACQUIRED BY LOW-COST UNMANNED AERIAL SYSTEMS

    Directory of Open Access Journals (Sweden)

    Z. Lari

    2015-08-01

    Full Text Available Accurate 3D surface reconstruction of our environment has become essential for an unlimited number of emerging applications. In the past few years, Unmanned Aerial Systems (UAS are evolving as low-cost and flexible platforms for geospatial data collection that could meet the needs of aforementioned application and overcome limitations of traditional airborne and terrestrial mobile mapping systems. Due to their payload restrictions, these systems usually include consumer-grade imaging and positioning sensor which will negatively impact the quality of the collected geospatial data and reconstructed surfaces. Therefore, new surface reconstruction surfaces are needed to mitigate the impact of using low-cost sensors on the final products. To date, different approaches have been proposed to for 3D surface construction using overlapping images collected by imaging sensor mounted on moving platforms. In these approaches, 3D surfaces are mainly reconstructed based on dense matching techniques. However, generated 3D point clouds might not accurately represent the scanned surfaces due to point density variations and edge preservation problems. In order to resolve these problems, a new region-based 3D surface renostruction trchnique is introduced in this paper. This approach aims to generate a 3D photo-realistic model of individually scanned surfaces within the captured images. This approach is initiated by a Semi-Global dense Matching procedure is carried out to generate a 3D point cloud from the scanned area within the collected images. The generated point cloud is then segmented to extract individual planar surfaces. Finally, a novel region-based texturing technique is implemented for photorealistic reconstruction of the extracted planar surfaces. Experimental results using images collected by a camera mounted on a low-cost UAS demonstrate the feasibility of the proposed approach for photorealistic 3D surface reconstruction.

  5. Semi-automated 3D leaf reconstruction and analysis of trichome patterning from light microscopic images.

    Directory of Open Access Journals (Sweden)

    Henrik Failmezger

    2013-04-01

    Full Text Available Trichomes are leaf hairs that are formed by single cells on the leaf surface. They are known to be involved in pathogen resistance. Their patterning is considered to emerge from a field of initially equivalent cells through the action of a gene regulatory network involving trichome fate promoting and inhibiting factors. For a quantitative analysis of single and double mutants or the phenotypic variation of patterns in different ecotypes, it is imperative to statistically evaluate the pattern reliably on a large number of leaves. Here we present a method that enables the analysis of trichome patterns at early developmental leaf stages and the automatic analysis of various spatial parameters. We focus on the most challenging young leaf stages that require the analysis in three dimensions, as the leaves are typically not flat. Our software TrichEratops reconstructs 3D surface models from 2D stacks of conventional light-microscope pictures. It allows the GUI-based annotation of different stages of trichome development, which can be analyzed with respect to their spatial distribution to capture trichome patterning events. We show that 3D modeling removes biases of simpler 2D models and that novel trichome patterning features increase the sensitivity for inter-accession comparisons.

  6. Superquadric Based Hierarchical Reconstruction for Virtualizing Free Form Objects from 3D Data

    Institute of Scientific and Technical Information of China (English)

    LIU Weibin; YUAN Baozong

    2001-01-01

    The superquadric description is usedin modeling the virtual objects in AVR (from ActualReality to Virtual Reality).However,due to the in-trinsic property,the superquadric and its deforma-tion extensions (DSQ) are not flexible enough to de-scribe precisely the complex objects with asymmetryand free form surface.To solve the problem,a hierar-chical reconstruction approach in AVR for virtualizingthe objects with superquadric based models from 3Ddata is developed.Firstly,an initial approximation isproduced by a superquadric fit to the 3D data.Then,the crude superquadric fit is refined by fitting theresidue (distance map) with global and local DirectManipulation of Free-Form Deformation (DMFFD).The key elements of the hierarchical method,includ-ing superquadric fit to 3D data,mathematical detailsand the recursive-fitting algorithm for DMFFD,com-putation of distance maps,adaptive refinement anddecimation of polygon mesh under DMFFD,are pro-posed.An implementation example of hierarchicalreconstruction is presented.The proposed approachis shown competent and efficient for virtualizing thecomplex objects into virtual environment.

  7. Introduction to 3D reconstruction of macromolecules using single particle electron microscopy

    Institute of Scientific and Technical Information of China (English)

    Oscar LLORCA

    2005-01-01

    Single-particle electron microscopy has now reached maturity, becoming a commonly used method in the examination ofmacromolecular structure. Using a small amount of purified protein, isolated molecules are observed under the electron microscope and the data collected can be averaged into a 3D reconstruction.Single-particle electron microscopy is an appropriate tool for the analysis of proteins that can only be obtained in modest quantities, like many of the large complexes currently of interest in biomedicine. Whilst the use of electron microscopy expands, new methods are being developed and improved to deal with further challenges, such as reaching higher resolutions and the combination of information at different levels of structural detail. More importantly, present methodology is still not robust enough when studying certain "tricky" proteins like those displaying extensive conformational flexibility and a great deal of user expertise is required, posing a threat to the consistency of the final structure. This mini review describes a brief outline of the methods currently used in the 3D analysis of macromolecules using single-particle electron microscopy, intended for those first approaching this field. A summary of methods, techniques, software, and some recent work is presented. The spectacular improvements to the technique in recent years, its advantages and limitations compared to other structural methods,and its future developments are discussed.

  8. 3D Reconstruction of the Vortex in a Human Right Ventricle Model using High Speed PIV

    Science.gov (United States)

    Kheradvar, Arash; Falahatpisheh, Ahmad

    2011-11-01

    This work aims to characterize the formation process and translation of the vortex, which forms along with the trans-tricuspid jet in a realistic model of a human right ventricle (RV). A clear model of the RV made of silicone rubber was carefully casted in real size from echocardiographic data of an adult human heart. The RV model was used in our heart pulsed-flow simulator at KLAB at UCI to perform experiments. Bioprosthetic heart valves in appropriate sizes were used at tricuspid and pulmonary positions. Multi-planar high-speed PIV was performed to capture and reconstruct the 3D flow field with a 1-millisecond time gap between each two velocity frames. λ2 iso-surfaces were used to illustrate the evolution of vortex cores. The highly asymmetric shape of the RV chamber results in a complex 3D trans-tricuspid vortex that forms and translates toward right ventricular outflow tract, and finally departs RV from pulmonary valve. Through this study, -for the first time- the formation, evolution and pathway of the RV vortex have been characterized in vitro.

  9. Ion track reconstruction in 3D using alumina-based fluorescent nuclear track detectors

    CERN Document Server

    Niklas, Martin; Akselrod, Mark S; Abollahi, Amir; Jäkel, Oliver; Greilich, Steffen

    2013-01-01

    Fluorescent nuclear track detectors (FNTDs) based on Al2O3:C,Mg single crystal combined with confocal microscopy provide 3D information on ion tracks with a resolution only limited by light diffraction. FNTDs are also ideal substrates to be coated with cells to engineer cell-fluorescent ion track hybrid detectors. This radiobiological tool enables a novel platform linking cell responses to physical dose deposition on a sub-cellular level in proton and heavy ion therapies. To achieve spatial correlation between single ion hits in the cell coating and its biological response the ion traversals have to be reconstructed in 3D using the depth information gained by the FNTD read-out. FNTDs were coated with a confluent human lung adenocarcinoma epithelial cell layer. Carbon ion irradiation of the hybrid detector was performed perpendicular and angular to the detector surface. In-situ imaging of the fluorescently labeled cell layer and the FNTD was performed in a sequential read-out. Making use of the trajectory info...

  10. Assessment of anterior cruciate ligament reconstruction using 3D ultrashort echo-time MR imaging.

    Science.gov (United States)

    Rahmer, Jürgen; Börnert, Peter; Dries, Sebastian P M

    2009-02-01

    This work demonstrates the potential of ultrashort TE (UTE) imaging for visualizing graft material and fixation elements after surgical repair of soft tissue trauma such as ligament or meniscal injury. Three asymptomatic patients with anterior cruciate ligament (ACL) reconstruction using different graft fixation methods were imaged at 1.5T using a 3D UTE sequence. Conventional multislice turbo spin-echo (TSE) measurements were performed for comparison. 3D UTE imaging yields high signal from tendon graft material at isotropic spatial resolution, thus facilitating direct positive contrast graft visualization. Furthermore, metal and biopolymer graft fixation elements are clearly depicted due to the high contrast between the signal-void implants and the graft material. Thus, the ability of UTE MRI to visualize short-T(2) tissues such as tendons, ligaments, or tendon grafts can provide additional information about the status of the graft and its fixation in the situation after cruciate ligament repair. UTE MRI can therefore potentially support diagnosis when problems occur or persist after surgical procedures involving short-T(2) tissues and implants.

  11. A continuous surface reconstruction method on point cloud captured from a 3D surface photogrammetry system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenyang [Department of Bioengineering, University of California, Los Angeles, California 90095 (United States); Cheung, Yam; Sabouri, Pouya; Arai, Tatsuya J.; Sawant, Amit [Department of Radiation Oncology, University of Texas Southwestern, Dallas, Texas 75390 (United States); Ruan, Dan, E-mail: druan@mednet.ucla.edu [Department of Bioengineering, University of California, Los Angeles, California 90095 and Department of Radiation Oncology, University of California, Los Angeles, California 90095 (United States)

    2015-11-15

    achieved submillimeter reconstruction RMSE under different configurations, demonstrating quantitatively the faith of the proposed method in preserving local structural properties of the underlying surface in the presence of noise and missing measurements, and its robustness toward variations of such characteristics. On point clouds from the human subject, the proposed method successfully reconstructed all patient surfaces, filling regions where raw point coordinate readings were missing. Within two comparable regions of interest in the chest area, similar mean curvature distributions were acquired from both their reconstructed surface and CT surface, with mean and standard deviation of (μ{sub recon} = − 2.7 × 10{sup −3} mm{sup −1}, σ{sub recon} = 7.0 × 10{sup −3} mm{sup −1}) and (μ{sub CT} = − 2.5 × 10{sup −3} mm{sup −1}, σ{sub CT} = 5.3 × 10{sup −3} mm{sup −1}), respectively. The agreement of local geometry properties between the reconstructed surfaces and the CT surface demonstrated the ability of the proposed method in faithfully representing the underlying patient surface. Conclusions: The authors have integrated and developed an accurate level-set based continuous surface reconstruction method on point clouds acquired by a 3D surface photogrammetry system. The proposed method has generated a continuous representation of the underlying phantom and patient surfaces with good robustness against noise and missing measurements. It serves as an important first step for further development of motion tracking methods during radiotherapy.

  12. A continuous surface reconstruction method on point cloud captured from a 3D surface photogrammetry system

    Science.gov (United States)

    Liu, Wenyang; Cheung, Yam; Sabouri, Pouya; Arai, Tatsuya J.; Sawant, Amit; Ruan, Dan

    2015-01-01

    achieved submillimeter reconstruction RMSE under different configurations, demonstrating quantitatively the faith of the proposed method in preserving local structural properties of the underlying surface in the presence of noise and missing measurements, and its robustness toward variations of such characteristics. On point clouds from the human subject, the proposed method successfully reconstructed all patient surfaces, filling regions where raw point coordinate readings were missing. Within two comparable regions of interest in the chest area, similar mean curvature distributions were acquired from both their reconstructed surface and CT surface, with mean and standard deviation of (μrecon = − 2.7 × 10−3 mm−1, σrecon = 7.0 × 10−3 mm−1) and (μCT = − 2.5 × 10−3 mm−1, σCT = 5.3 × 10−3 mm−1), respectively. The agreement of local geometry properties between the reconstructed surfaces and the CT surface demonstrated the ability of the proposed method in faithfully representing the underlying patient surface. Conclusions: The authors have integrated and developed an accurate level-set based continuous surface reconstruction method on point clouds acquired by a 3D surface photogrammetry system. The proposed method has generated a continuous representation of the underlying phantom and patient surfaces with good robustness against noise and missing measurements. It serves as an important first step for further development of motion tracking methods during radiotherapy. PMID:26520747

  13. 3D PET image reconstruction based on Maximum Likelihood Estimation Method (MLEM) algorithm

    CERN Document Server

    Słomski, Artur; Bednarski, Tomasz; Białas, Piotr; Czerwiński, Eryk; Kapłon, Łukasz; Kochanowski, Andrzej; Korcyl, Grzegorz; Kowal, Jakub; Kowalski, Paweł; Kozik, Tomasz; Krzemień, Wojciech; Molenda, Marcin; Moskal, Paweł; Niedźwiecki, Szymon; Pałka, Marek; Pawlik, Monika; Raczyński, Lech; Salabura, Piotr; Gupta-Sharma, Neha; Silarski, Michał; Smyrski, Jerzy; Strzelecki, Adam; Wiślicki, Wojciech; Zieliński, Marcin; Zoń, Natalia

    2015-01-01

    Positron emission tomographs (PET) do not measure an image directly. Instead, they measure at the boundary of the field-of-view (FOV) of PET tomograph a sinogram that consists of measurements of the sums of all the counts along the lines connecting two detectors. As there is a multitude of detectors build-in typical PET tomograph structure, there are many possible detector pairs that pertain to the measurement. The problem is how to turn this measurement into an image (this is called imaging). Decisive improvement in PET image quality was reached with the introduction of iterative reconstruction techniques. This stage was reached already twenty years ago (with the advent of new powerful computing processors). However, three dimensional (3D) imaging remains still a challenge. The purpose of the image reconstruction algorithm is to process this imperfect count data for a large number (many millions) of lines-of-responce (LOR) and millions of detected photons to produce an image showing the distribution of the l...

  14. Successful micronucleus testing with the EPI/001 3D reconstructed epidermis model: preliminary findings.

    Science.gov (United States)

    Andres, E; Molinari, J; Remoué, N; Sá-Rocha, V M; Barrichello, C; Hurtado, S P

    2012-03-18

    Currently, the cosmetics industry relies on the results of in vitro genotoxicity tests to assess the safety of chemicals. Although the cytokinesis-block micronucleus (CBMN) test for the detection of cells that have divided once is routinely used and currently accepted by regulatory agencies, it has some limitations. Reconstituted human epidermis (RHE) is widely used in safety assessments because its physiological properties resemble those of the skin, and because it allows testing of substances such as hydrophobic compounds. Thus, the micronucleus test is being adapted for application in RHE-reconstructed tissues. Here we investigated whether two different reconstructed epidermis models (EPI/001 from Straticell, and RHE/S/17 from Skinethic) are suitable for application of the micronucleus test. We found that acetone does not modify micronucleus frequency, cell viability, and model structure, compared with non-treated RHE. Treatment of the EPI/001 model with mitomycin C and vinblastine resulted in a dose-dependent increase of micronucleus frequency as well as a decrease of tissue viability and of binucleated cell rate, while no changes of the epidermal structure were observed. The number of binucleated cells obtained with the RHE/S/17 model was too small to permit micronucleus testing. These results indicate that the proliferative rate of the tissue used is a critical parameter in performing the micronucleus test on a 3D model.

  15. 3D building reconstruction from ALS data using unambiguous decomposition into elementary structures

    Science.gov (United States)

    Jarząbek-Rychard, M.; Borkowski, A.

    2016-08-01

    The objective of the paper is to develop an automated method that enables for the recognition and semantic interpretation of topological building structures. The novelty of the proposed modeling approach is an unambiguous decomposition of complex objects into predefined simple parametric structures, resulting in the reconstruction of one topological unit without independent overlapping elements. The aim of a data processing chain is to generate complete polyhedral models at LOD2 with an explicit topological structure and semantic information. The algorithms are performed on 3D point clouds acquired by airborne laser scanning. The presented methodology combines data-based information reflected in an attributed roof topology graph with common knowledge about buildings stored in a library of elementary structures. In order to achieve an appropriate balance between reconstruction precision and visualization aspects, the implemented library contains a set of structure-depended soft modeling rules instead of strictly defined geometric primitives. The proposed modeling algorithm starts with roof plane extraction performed by the segmentation of building point clouds, followed by topology identification and recognition of predefined structures. We evaluate the performance of the novel procedure by the analysis of the modeling accuracy and the degree of modeling detail. The assessment according to the validation methods standardized by the International Society for Photogrammetry and Remote Sensing shows that the completeness of the algorithm is above 80%, whereas the correctness exceeds 98%.

  16. 3D reconstruction of single rising bubble in water using digital image processing and characteristic matrix

    Institute of Scientific and Technical Information of China (English)

    Yuchen Bian; Feng Dong; Weida Zhang; Hongyi Wang; Chao Tan; Zhiqiang Zhang

    2013-01-01

    Reconstructing the shape of a bubble will lay a firm foundation for further description of the dynamic characteristics of bubbly flow,especially for a single rising bubble or separate bubbles whose interaction could be neglected.In this case,the rising bubble is usually simulated as an ellipsoid consisting of two semi-ellipsoids up and down.Thus the projected image of a bubble consists of two semi-ellipses.In this paper,a method for reconstructing the ellipsoid bubble model is described following digital image processing,using the Hough transform in 2D ellipse parameter extraction which could cover most of the bubble edge points in the image.Then a method based on characteristic symmetric matrix is described to detect 3D bubble ellipsoid model parameters from 2D ellipse parameters of projection planes.This method can be applied to bubbles rising with low-velocity in static flow field much in conformity with the projection theory and the shape variation of the rising bubble.This method does not need to solve nonlinear equation sets and provides an easy way to calculate the characteristic matrix of a space ellipsoid model for deformed bubble.For bubble application,two assumed conditions and a calibration factor are proposed to simplify calculation and detection.Errors of ellipsoid center and three axes are minor.Errors of the three rotation angles have no negative effect on further study on bubbly flow.

  17. Processing of MRI images weighted in TOF for blood vessels analysis: 3-D reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez D, J.; Cordova F, T. [Universidad de Guanajuato, Campus Leon, Departamento de Ingenieria Fisica, Loma del Bosque No. 103, Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Cruz A, I., E-mail: hernandezdj.gto@gmail.com [CONACYT, Centro de Investigacion en Matematicas, A. C., Jalisco s/n, Col. Valenciana, 36000 Guanajuato, Gto. (Mexico)

    2015-10-15

    This paper presents a novel presents an approach based on differences of intensities for the identification of vascular structures in medical images from MRI studies of type time of flight method (TOF). The plating method hypothesis gave high intensities belonging to the vascular system image type TOF can be segmented by thresholding of the histogram. The enhanced vascular structures is performed using the filter Vesselness, upon completion of a decision based on fuzzy thresholding minimizes error in the selection of vascular structures. It will give a brief introduction to the vascular system problems and how the images have helped diagnosis, is summarized the physical history of the different imaging modalities and the evolution of digital images with computers. Segmentation and 3-D reconstruction became image type time of flight; these images are typically used in medical diagnosis of cerebrovascular diseases. The proposed method has less error in segmentation and reconstruction of volumes related to the vascular system, clear images and less noise compared with edge detection methods. (Author)

  18. A 3D photogrammetric reconstruction attempt of specimens of Badenian echinoids

    Science.gov (United States)

    Polonkai, Bálint; Raveloson, Andrea; Görög, Ágnes; Bodor, Emese; Székely, Balázs

    2016-04-01

    The rich echinoid fauna of the Badenian (Middle Miocene) from Budapest (Hungary) is well known for more than one hundred years. Along the road cuts and due to the construction of large buildings from 1960 to 2011, new Badenian outcrops with rich and well preserved echinoids were found in the city. Thus the main aim of this study was to revise historically collected echinoids (in the collection of Geological and Geophysical Institute of Hungary) from different parts of the city (Örs Vezér Square, Gyakorló Street, Rákos and District of Budafok-Tétény) and to classify the newly collected fossils, moreover to carry out the palaeoenvironmental reconstruction of the different localities. The specimens studied are from the Upper Badenian Leithakalk Formation Rákos Member, which consists of sandy limestone, calcareous loose sandstone with volcanic clast and/or calcarenite without terrigenous or volcanic clast. One of the most common echinoidea in the Badenian, the Parascutella gibbercula DE SERRES, 1829 is well known and researched in both morphological and taxonomic aspects. However there are some intraspecific morphological features that show sharp differences across the specimens: the adapical conical convexity is considerably different between several forms. The petalodium's length/width ratio is also different between many specimens. Other morphological characters for example peristomal and periproctal aperture and the food groove can also be different. These differences within this relatively small area could be determined by ecological conditions (such as substrate, palaeodepth), or can be related to taxonomical or pathological changes. For an appropriate comparison, quantification of these features is necessary. Photogrammetry is in general a useful and well-developed tool to reconstruct 3D surfaces of artefacts (e.g., in archaeology, cultural heritage, and also in palaeontology). In order to evaluate the differences found in P. gibbercula specimens various

  19. Optimal relaxation parameters of DRAMA (dynamic RAMLA) aiming at one-pass image reconstruction for 3D-PET

    Science.gov (United States)

    Tanaka, Eiichi; Kudo, Hiroyuki

    2010-05-01

    We have reported a block-iterative algorithm named DRAMA for image reconstruction for emission tomography (Tanaka and Kudo 2003 Phys. Med. Biol. 48 1405-22). DRAMA is a modified version of the row-action maximum likelihood algorithm (RAMLA), in which the relaxation parameter is subset dependent and is changed in such a way that the noise propagation from subsets to the reconstructed image is substantially independent of the access order of the subsets. The algorithm provides fast convergence with a reasonable signal-to-noise ratio. The optimal relaxation parameter has been derived assuming a two-dimensional (2D)-PET model, and detailed performance in three-dimensional (3D) reconstruction has not been clear enough. We have developed the new version 'DRAMA-3D', based on the 3D-PET model. The optimal relaxation parameter is a function of the access order of the subsets and the ring difference, and its value is determined by simple formulas from the design parameters of the PET scanner, the operating conditions and the post-smoothing resolution. In this paper, we present the theory of DRAMA-3D, the results of simulation studies on the performance of DRAMA-3D and the comparative studies of the related algorithms. It is shown that DRAMA-3D is robust for various access orders of subsets and is suitable to realize one-pass (single-iteration) reconstruction.

  20. Use of reconstructed 3D VMEC equilibria to match effects of toroidally rotating discharges in DIII-D

    Science.gov (United States)

    Wingen, A.; Wilcox, R. S.; Cianciosa, M. R.; Seal, S. K.; Unterberg, E. A.; Hanson, J. M.; Hirshman, S. P.; Lao, L. L.; Logan, N. C.; Paz-Soldan, C.; Shafer, M. W.

    2017-01-01

    A technique for tokamak equilibrium reconstructions is used for multiple DIII-D discharges, including L-mode and H-mode cases when weakly 3D fields ≤ft(δ B/B˜ {{10}-3}\\right) are applied. The technique couples diagnostics to the non-linear, ideal MHD equilibrium solver VMEC, using the V3FIT code, to find the most likely 3D equilibrium based on a suite of measurements. It is demonstrated that V3FIT can be used to find non-linear 3D equilibria that are consistent with experimental measurements of the plasma response to very weak 3D perturbations, as well as with 2D profile measurements. Observations at DIII-D show that plasma rotation larger than 20 krad s-1 changes the relative phase between the applied 3D fields and the measured plasma response. Discharges with low averaged rotation (10 krad s-1) and peaked rotation profiles (40 krad s-1) are reconstructed. Similarities and differences to forward modeled VMEC equilibria, which do not include rotational effects, are shown. Toroidal phase shifts of up to {{30}\\circ} are found between the measured and forward modeled plasma responses at the highest values of rotation. The plasma response phases of reconstructed equilibra on the other hand match the measured ones. This is the first time V3FIT has been used to reconstruct weakly 3D tokamak equilibria.

  1. Gothic Churches in Paris ST Gervais et ST Protais Image Matching 3d Reconstruction to Understand the Vaults System Geometry

    Science.gov (United States)

    Capone, M.; Campi, M.; Catuogno, R.

    2015-02-01

    This paper is part of a research about ribbed vaults systems in French Gothic Cathedrals. Our goal is to compare some different gothic cathedrals to understand the complex geometry of the ribbed vaults. The survey isn't the main objective but it is the way to verify the theoretical hypotheses about geometric configuration of the flamboyant churches in Paris. The survey method's choice generally depends on the goal; in this case we had to study many churches in a short time, so we chose 3D reconstruction method based on image dense stereo matching. This method allowed us to obtain the necessary information to our study without bringing special equipment, such as the laser scanner. The goal of this paper is to test image matching 3D reconstruction method in relation to some particular study cases and to show the benefits and the troubles. From a methodological point of view this is our workflow: - theoretical study about geometrical configuration of rib vault systems; - 3D model based on theoretical hypothesis about geometric definition of the vaults' form; - 3D model based on image matching 3D reconstruction methods; - comparison between 3D theoretical model and 3D model based on image matching;

  2. A 3D Freehand Ultrasound System for Multi-view Reconstructions from Sparse 2D Scanning Planes

    Directory of Open Access Journals (Sweden)

    Agurto Carla

    2011-01-01

    Full Text Available Abstract Background A significant limitation of existing 3D ultrasound systems comes from the fact that the majority of them work with fixed acquisition geometries. As a result, the users have very limited control over the geometry of the 2D scanning planes. Methods We present a low-cost and flexible ultrasound imaging system that integrates several image processing components to allow for 3D reconstructions from limited numbers of 2D image planes and multiple acoustic views. Our approach is based on a 3D freehand ultrasound system that allows users to control the 2D acquisition imaging using conventional 2D probes. For reliable performance, we develop new methods for image segmentation and robust multi-view registration. We first present a new hybrid geometric level-set approach that provides reliable segmentation performance with relatively simple initializations and minimum edge leakage. Optimization of the segmentation model parameters and its effect on performance is carefully discussed. Second, using the segmented images, a new coarse to fine automatic multi-view registration method is introduced. The approach uses a 3D Hotelling transform to initialize an optimization search. Then, the fine scale feature-based registration is performed using a robust, non-linear least squares algorithm. The robustness of the multi-view registration system allows for accurate 3D reconstructions from sparse 2D image planes. Results Volume measurements from multi-view 3D reconstructions are found to be consistently and significantly more accurate than measurements from single view reconstructions. The volume error of multi-view reconstruction is measured to be less than 5% of the true volume. We show that volume reconstruction accuracy is a function of the total number of 2D image planes and the number of views for calibrated phantom. In clinical in-vivo cardiac experiments, we show that volume estimates of the left ventricle from multi-view reconstructions

  3. A LabVIEW based user-friendly nano-CT image alignment and 3D reconstruction platform

    CERN Document Server

    Wang, Shenghao; Wang, Zhili; Gao, Kun; Wu, Zhao; Zhu, Peiping; Wu, Ziyu

    2014-01-01

    X-ray nanometer computed tomography (nano-CT) offers applications and opportunities in many scientific researches and industrial areas. Here we present a user-friendly and fast LabVIEW based package running, after acquisition of the raw projection images, a procedure to obtain the inner structure of the sample under analysis. At first, a reliable image alignment procedure fixes possible misalignments among image series due to mechanical errors, thermal expansion and other external contributions, then a novel fast parallel beam 3D reconstruction performs the tomographic reconstruction. The remarkable improved reconstruction after the image calibration confirms the fundamental role of the image alignment procedure. It minimizes blurring and additional streaking artifacts present in a reconstructed slice that cause loss of information and faked structures in the observed material. The nano-CT image alignment and 3D reconstruction LabVIEW package significantly reducing the data process, makes faster and easier th...

  4. Etruscanning 3D project. The 3D reconstruction of the Regolini Galassi Tomb as a research tool and a new approach in storytelling

    Directory of Open Access Journals (Sweden)

    Wim Hupperetz

    2012-11-01

    Full Text Available In the “Etruscanning3D” european project framework, the virtual reconstruction of the Regolini Galassi tomb, in Cerveteri, has been realized, in order to recontextualize its precious funerary goods, today preserved in the vatican Museums, in their ancient space, digitally represented in 3D. The reconstruction has been preceded by a huge work of data collection, reinterpretations, topographical acquisitions through a variety of techniques, digital restorations, in order to create a plausible simulation of how the tomb could appear when it was closed, at the half of the VII century BC. The final purpose of the VR application is communication inside museums, so the narrative approach and the metaphors of interactions played another key role.

  5. Cardiac C-arm computed tomography using a 3D + time ROI reconstruction method with spatial and temporal regularization

    Energy Technology Data Exchange (ETDEWEB)

    Mory, Cyril, E-mail: cyril.mory@philips.com [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, F-69621 Villeurbanne Cedex (France); Philips Research Medisys, 33 rue de Verdun, 92156 Suresnes (France); Auvray, Vincent; Zhang, Bo [Philips Research Medisys, 33 rue de Verdun, 92156 Suresnes (France); Grass, Michael; Schäfer, Dirk [Philips Research, Röntgenstrasse 24–26, D-22335 Hamburg (Germany); Chen, S. James; Carroll, John D. [Department of Medicine, Division of Cardiology, University of Colorado Denver, 12605 East 16th Avenue, Aurora, Colorado 80045 (United States); Rit, Simon [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1 (France); Centre Léon Bérard, 28 rue Laënnec, F-69373 Lyon (France); Peyrin, Françoise [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, F-69621 Villeurbanne Cedex (France); X-ray Imaging Group, European Synchrotron, Radiation Facility, BP 220, F-38043 Grenoble Cedex (France); Douek, Philippe; Boussel, Loïc [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1 (France); Hospices Civils de Lyon, 28 Avenue du Doyen Jean Lépine, 69500 Bron (France)

    2014-02-15

    Purpose: Reconstruction of the beating heart in 3D + time in the catheter laboratory using only the available C-arm system would improve diagnosis, guidance, device sizing, and outcome control for intracardiac interventions, e.g., electrophysiology, valvular disease treatment, structural or congenital heart disease. To obtain such a reconstruction, the patient's electrocardiogram (ECG) must be recorded during the acquisition and used in the reconstruction. In this paper, the authors present a 4D reconstruction method aiming to reconstruct the heart from a single sweep 10 s acquisition. Methods: The authors introduce the 4D RecOnstructiOn using Spatial and TEmporal Regularization (short 4D ROOSTER) method, which reconstructs all cardiac phases at once, as a 3D + time volume. The algorithm alternates between a reconstruction step based on conjugate gradient and four regularization steps: enforcing positivity, averaging along time outside a motion mask that contains the heart and vessels, 3D spatial total variation minimization, and 1D temporal total variation minimization. Results: 4D ROOSTER recovers the different temporal representations of a moving Shepp and Logan phantom, and outperforms both ECG-gated simultaneous algebraic reconstruction technique and prior image constrained compressed sensing on a clinical case. It generates 3D + time reconstructions with sharp edges which can be used, for example, to estimate the patient's left ventricular ejection fraction. Conclusions: 4D ROOSTER can be applied for human cardiac C-arm CT, and potentially in other dynamic tomography areas. It can easily be adapted to other problems as regularization is decoupled from projection and back projection.

  6. Low-amplitude craniofacial EMG power spectral density and 3D muscle reconstruction from MRI

    Directory of Open Access Journals (Sweden)

    Lukas Wiedemann

    2015-03-01

    Full Text Available Improving EEG signal interpretation, specificity, and sensitivity is a primary focus of many current investigations, and the successful application of EEG signal processing methods requires a detailed knowledge of both the topography and frequency spectra of low-amplitude, high-frequency craniofacial EMG. This information remains limited in clinical research, and as such, there is no known reliable technique for the removal of these artifacts from EEG data. The results presented herein outline a preliminary investigation of craniofacial EMG high-frequency spectra and 3D MRI segmentation that offers insight into the development of an anatomically-realistic model for characterizing these effects. The data presented highlights the potential for confounding signal contribution from around 60 to 200 Hz, when observed in frequency space, from both low and high-amplitude EMG signals. This range directly overlaps that of both low γ (30-50 Hz and high γ (50-80 Hz waves, as defined traditionally in standatrd EEG measurements, and mainly with waves presented in dense-array EEG recordings. Likewise, average EMG amplitude comparisons from each condition highlights the similarities in signal contribution of low-activity muscular movements and resting, control conditions. In addition to the FFT analysis performed, 3D segmentation and reconstruction of the craniofacial muscles whose EMG signals were measured was successful. This recapitulation of the relevant EMG morphology is a crucial first step in developing an anatomical model for the isolation and removal of confounding low-amplitude craniofacial EMG signals from EEG data. Such a model may be eventually applied in a clinical setting to ultimately help to extend the use of EEG in various clinical roles.

  7. Low-Amplitude Craniofacial EMG Power Spectral Density and 3D Muscle Reconstruction from MRI.

    Science.gov (United States)

    Wiedemann, Lukas; Chaberova, Jana; Edmunds, Kyle; Einarsdóttir, Guðrún; Ramon, Ceon; Gargiulo, Paolo

    2015-03-11

    Improving EEG signal interpretation, specificity, and sensitivity is a primary focus of many current investigations, and the successful application of EEG signal processing methods requires a detailed knowledge of both the topography and frequency spectra of low-amplitude, high-frequency craniofacial EMG. This information remains limited in clinical research, and as such, there is no known reliable technique for the removal of these artifacts from EEG data. The results presented herein outline a preliminary investigation of craniofacial EMG high-frequency spectra and 3D MRI segmentation that offers insight into the development of an anatomically-realistic model for characterizing these effects. The data presented highlights the potential for confounding signal contribution from around 60 to 200 Hz, when observed in frequency space, from both low and high-amplitude EMG signals. This range directly overlaps that of both low γ (30-50 Hz) and high γ (50-80 Hz) waves, as defined traditionally in standatrd EEG measurements, and mainly with waves presented in dense-array EEG recordings. Likewise, average EMG amplitude comparisons from each condition highlights the similarities in signal contribution of low-activity muscular movements and resting, control conditions. In addition to the FFT analysis performed, 3D segmentation and reconstruction of the craniofacial muscles whose EMG signals were measured was successful. This recapitulation of the relevant EMG morphology is a crucial first step in developing an anatomical model for the isolation and removal of confounding low-amplitude craniofacial EMG signals from EEG data. Such a model may be eventually applied in a clinical setting to ultimately help to extend the use of EEG in various clinical roles.

  8. Low-Amplitude Craniofacial EMG Power Spectral Density and 3D Muscle Reconstruction from MRI

    Science.gov (United States)

    Wiedemann, Lukas; Chaberova, Jana; Edmunds, Kyle; Einarsdóttir, Guðrún; Ramon, Ceon

    2015-01-01

    Improving EEG signal interpretation, specificity, and sensitivity is a primary focus of many current investigations, and the successful application of EEG signal processing methods requires a detailed knowledge of both the topography and frequency spectra of low-amplitude, high-frequency craniofacial EMG. This information remains limited in clinical research, and as such, there is no known reliable technique for the removal of these artifacts from EEG data. The results presented herein outline a preliminary investigation of craniofacial EMG high-frequency spectra and 3D MRI segmentation that offers insight into the development of an anatomically-realistic model for characterizing these effects. The data presented highlights the potential for confounding signal contribution from around 60 to 200 Hz, when observed in frequency space, from both low and high-amplitude EMG signals. This range directly overlaps that of both low γ (30-50 Hz) and high γ (50-80 Hz) waves, as defined traditionally in standatrd EEG measurements, and mainly with waves presented in dense-array EEG recordings. Likewise, average EMG amplitude comparisons from each condition highlights the similarities in signal contribution of low-activity muscular movements and resting, control conditions. In addition to the FFT analysis performed, 3D segmentation and reconstruction of the craniofacial muscles whose EMG signals were measured was successful. This recapitulation of the relevant EMG morphology is a crucial first step in developing an anatomical model for the isolation and removal of confounding low-amplitude craniofacial EMG signals from EEG data. Such a model may be eventually applied in a clinical setting to ultimately help to extend the use of EEG in various clinical roles. PMID:26913150

  9. Using on-site liver 3-D reconstruction and volumetric calculations in split liver transplantation

    Institute of Scientific and Technical Information of China (English)

    Trevor W Reichman; Brittan Y Fiorello; Ian Carmody; Humberto Bohorquez; Ari Cohen; John Seal; David Bruce; George E Loss

    2016-01-01

    BACKGROUND: Split liver transplantation increases the number of grafts available for transplantation. Pre-recovery assessment of liver graft volume is essential for selecting suit-able recipients. The purpose of this study was to determine the ability and feasibility of constructing a 3-D model to aid in surgical planning and to predict graft weight prior to anin situ division of the donor liver. METHODS: Over 11 months, 3-D volumetric reconstruction of 4 deceased donors was performed using Pathifnder Scout© liver volumetric software. Demographic, laboratory, operative, perioperative and survival data for these patients along with donor demographic data were collected prospectively and analyzed retrospectively. RESULTS: The average predicted weight of the grafts from the adult donors obtained from anin situ split procedure were 1130 g (930-1458 g) for the extended right lobe donors and 312 g (222-396 g) for left lateral segment grafts. Actual adult graft weight was 92% of the predicted weight for both the ex-tended right grafts and the left lateral segment grafts. The pre-dicted and actual graft weights for the pediatric donors were 176 g and 210 g for the left lateral segment grafts and 308 g and 280 g for the extended right lobe grafts, respectively. All grafts were transplanted except for the right lobe from the pediatric donors due to the small graft weight. CONCLUSIONS: On-site volumetric assessment of donors provides useful information for the planning of anin situ split and for selection of recipients. This information may expand the donor pool to recipients previously felt to be unsuitable due to donor and/or recipient weight.

  10. Fast generation of virtual X-ray images for reconstruction of 3D anatomy.

    Science.gov (United States)

    Ehlke, Moritz; Ramm, Heiko; Lamecker, Hans; Hege, Hans-Christian; Zachow, Stefan

    2013-12-01

    We propose a novel GPU-based approach to render virtual X-ray projections of deformable tetrahedral meshes. These meshes represent the shape and the internal density distribution of a particular anatomical structure and are derived from statistical shape and intensity models (SSIMs). We apply our method to improve the geometric reconstruction of 3D anatomy (e.g. pelvic bone) from 2D X-ray images. For that purpose, shape and density of a tetrahedral mesh are varied and virtual X-ray projections are generated within an optimization process until the similarity between the computed virtual X-ray and the respective anatomy depicted in a given clinical X-ray is maximized. The OpenGL implementation presented in this work deforms and projects tetrahedral meshes of high resolution (200.000+ tetrahedra) at interactive rates. It generates virtual X-rays that accurately depict the density distribution of an anatomy of interest. Compared to existing methods that accumulate X-ray attenuation in deformable meshes, our novel approach significantly boosts the deformation/projection performance. The proposed projection algorithm scales better with respect to mesh resolution and complexity of the density distribution, and the combined deformation and projection on the GPU scales better with respect to the number of deformation parameters. The gain in performance allows for a larger number of cycles in the optimization process. Consequently, it reduces the risk of being stuck in a local optimum. We believe that our approach will improve treatments in orthopedics, where 3D anatomical information is essential.

  11. Extreme 3D reconstruction of the final ROSETTA/PHILAE landing site

    Science.gov (United States)

    Capanna, Claire; Jorda, Laurent; Lamy, Philippe; Gesquiere, Gilles; Delmas, Cédric; Durand, Joelle; Garmier, Romain; Gaudon, Philippe; Jurado, Eric

    2016-04-01

    The Philae lander aboard the Rosetta spacecraft successfully landed at the surface of comet 67P/Churyumov-Gerasimenko (hereafter 67P/C-G) after two rebounds on November 12, 2014. The final landing site, now known as « Abydos », has been identified on images acquired by the OSIRIS imaging system onboard the Rosetta orbiter[1]. The available images of Abydos are very limited in number and reveal a very extreme topography containing cliffs and overhangs. Furthermore, the surface is only observed under very high incidence angles of 60° on average, which implies that the images also exhibit lots of cast shadows. This makes it very difficult to reconstruct the 3D topography with standard methods such as photogrammetry or standard clinometry. We apply a new method called ''Multiresolution PhotoClinometry by Deformation'' (MPCD, [2]) to retrieve the 3D topography of the area around Abydos. The method works in two main steps: (i) a DTM of this region is extracted from a low resolution MPCD global shape model of comet 67P/C-G, and (ii) the resulting triangular mesh is progressively deformed at increasing spatial sampling down to 0.25 m in order to match a set of 14 images of Abydos with projected pixel scales between 1 and 8 m. The method used to perform the image matching is a quasi-Newton non-linear optimization method called L-BFGS-b[3] especially suited to large-scale problems. Finally, we also checked the compatibility of the final MPCD digital terrain model with a set of five panoramic images obtained by the CIVA-P instrument aboard Philae[4]. [1] Lamy et al., 2016, submitted. [2] Capanna et al., Three dimensional reconstruction using multiresoluton photoclinometry by deformation, The visual Computer, v. 29(6-8) pp. 825-835, 2013. [3] Morales et al., Remark on "Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound constrained optimization", v.38(1) pp.1-4, ACM Trans. Math. Softw., 2011 [4] Bibring et al., 67P/Churyumov-Gerasimenko surface properties as

  12. Quantitative Digital Tomosynthesis Mammography for Improved Breast Cancer Detection and Diagnosis

    Science.gov (United States)

    2008-04-01

    reconstruction", Medical Physics , 34(9), 3603-3613, 2007. Conference Proceedings: 1. Y. Zhang, H.-P. Chan, Y.-T. Wu, B. Sahiner, C. Zhou, J. Wei, J. Ge...Wei, L. M. Hadjiiski, "Application of boundary detection information in breast tomosynthesis reconstruction", Medical Physics , 34(9), 3603-3613, 2007...application of Medical Physics , Vol. 34, No. 9, September 2007the 2D and 3D breast boundary information to DTM recon- struction in an effort to reduce

  13. 3D-printed haptic "reverse" models for preoperative planning in soft tissue reconstruction: a case report.

    Science.gov (United States)

    Chae, Michael P; Lin, Frank; Spychal, Robert T; Hunter-Smith, David J; Rozen, Warren Matthew

    2015-02-01

    In reconstructive surgery, preoperative planning is essential for optimal functional and aesthetic outcome. Creating a three-dimensional (3D) model from two-dimensional (2D) imaging data by rapid prototyping has been used in industrial design for decades but has only recently been introduced for medical application. 3D printing is one such technique that is fast, convenient, and relatively affordable. In this report, we present a case in which a reproducible method for producing a 3D-printed "reverse model" representing a skin wound defect was used for flap design and harvesting. This comprised a 82-year-old man with an exposed ankle prosthesis after serial soft tissue debridements for wound infection. Soft tissue coverage and dead-space filling were planned with a composite radial forearm free flap (RFFF). Computed tomographic angiography (CTA) of the donor site (left forearm), recipient site (right ankle), and the left ankle was performed. 2D data from the CTA was 3D-reconstructed using computer software, with a 3D image of the left ankle used as a "control." A 3D model was created by superimposing the left and right ankle images, to create a "reverse image" of the defect, and printed using a 3D printer. The RFFF was thus planned and executed effectively, without complication. To our knowledge, this is the first report of a mechanism of calculating a soft tissue wound defect and producing a 3D model that may be useful for surgical planning. 3D printing and particularly "reverse" modeling may be versatile options in reconstructive planning, and have the potential for broad application.

  14. Joint Cross-Range Scaling and 3D Geometry Reconstruction of ISAR Targets Based on Factorization Method.

    Science.gov (United States)

    Lei Liu; Feng Zhou; Xue-Ru Bai; Ming-Liang Tao; Zi-Jing Zhang

    2016-04-01

    Traditionally, the factorization method is applied to reconstruct the 3D geometry of a target from its sequential inverse synthetic aperture radar images. However, this method requires performing cross-range scaling to all the sub-images and thus has a large computational burden. To tackle this problem, this paper proposes a novel method for joint cross-range scaling and 3D geometry reconstruction of steadily moving targets. In this method, we model the equivalent rotational angular velocity (RAV) by a linear polynomial with time, and set its coefficients randomly to perform sub-image cross-range scaling. Then, we generate the initial trajectory matrix of the scattering centers, and solve the 3D geometry and projection vectors by the factorization method with relaxed constraints. After that, the coefficients of the polynomial are estimated from the projection vectors to obtain the RAV. Finally, the trajectory matrix is re-scaled using the estimated rotational angle, and accurate 3D geometry is reconstructed. The two major steps, i.e., the cross-range scaling and the factorization, are performed repeatedly to achieve precise 3D geometry reconstruction. Simulation results have proved the effectiveness and robustness of the proposed method.

  15. 3D reconstruction of the structure of a residual limb for customising the design of a prosthetic socket.

    Science.gov (United States)

    Shuxian, Zheng; Wanhua, Zhao; Bingheng, Lu

    2005-01-01

    Aiming at overcoming the limitations of the plaster-casting method in traditional prosthetic socket fabrication, the idea of reconstructing the 3D models for bones and skin of the residual limb is proposed. Given the two-dimensional obtained image through CT scanning, using image processing and reverse engineering techniques, the 3D solid model of the residual limb can be successfully reconstructed. The new approach can reproduce both the internal and the external structure of the residual limb. It can moreover avoid making a positive mould by the way of manual modifications. In addition to this, it can provide a scientific basis for the individualization of prosthetic socket design.

  16. Automated 3D Scene Reconstruction from Open Geospatial Data Sources: Airborne Laser Scanning and a 2D Topographic Database

    Directory of Open Access Journals (Sweden)

    Lingli Zhu

    2015-05-01

    Full Text Available Open geospatial data sources provide opportunities for low cost 3D scene reconstruction. In this study, based on a sparse airborne laser scanning (ALS point cloud (0.8 points/m2 obtained from open source databases, a building reconstruction pipeline for CAD building models was developed. The pipeline includes voxel-based roof patch segmentation, extraction of the key-points representing the roof patch outline, step edge identification and adjustment, and CAD building model generation. The advantages of our method lie in generating CAD building models without the step of enforcing the edges to be parallel or building regularization. Furthermore, although it has been challenging to use sparse datasets for 3D building reconstruction, our result demonstrates the great potential in such applications. In this paper, we also investigated the applicability of open geospatial datasets for 3D road detection and reconstruction. Road central lines were acquired from an open source 2D topographic database. ALS data were utilized to obtain the height and width of the road. A constrained search method (CSM was developed for road width detection. The CSM method was conducted by splitting a given road into patches according to height and direction criteria. The road edges were detected patch by patch. The road width was determined by the average distance from the edge points to the central line. As a result, 3D roads were reconstructed from ALS and a topographic database.

  17. Peripheral pulmonary arteries: identification at multi-slice spiral CT with 3D reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Coche, Emmanuel; Pawlak, Sebastien; Dechambre, Stephane; Maldague, Baudouin [Department of Radiology, St. Luc Hospital, UCL, Avenue Hippocrate, 10, 1200 Brussels (Belgium)

    2003-04-01

    Our objective was to analyze the peripheral pulmonary arteries using thin-collimation multi-slice spiral CT. Twenty consecutive patients underwent enhanced-spiral multi-slice CT using 1-mm collimation. Two observers analyzed the pulmonary arteries by consensus on a workstation. Each artery was identified on axial and 3D shaded-surface display reconstruction images. Each subsegmental artery was measured at a mediastinal window setting and compared with anatomical classifications. The location and branching of every subsegmental artery was recorded. The number of well-visualized sub-subsegmental arteries at a mediastinal window setting was compared with those visualized at a lung window setting. Of 800 subsegmental arteries, 769 (96%) were correctly visualized and 123 accessory subsegmental arteries were identified using the mediastinal window setting. One thousand ninety-two of 2019 sub-subsegmental arteries (54%) identified using the lung window setting were correctly visualized using the mediastinal window setting. Enhanced multi-slice spiral CT with thin collimation can be used to analyze precisely the subsegmental pulmonary arteries and may identify even more distal pulmonary arteries. (orig.)

  18. Peripheral pulmonary arteries: identification at multi-slice spiral CT with 3D reconstruction.

    Science.gov (United States)

    Coche, Emmanuel; Pawlak, Sebastien; Dechambre, Stéphane; Maldague, Baudouin

    2003-04-01

    Our objective was to analyze the peripheral pulmonary arteries using thin-collimation multi-slice spiral CT. Twenty consecutive patients underwent enhanced-spiral multi-slice CT using 1-mm collimation. Two observers analyzed the pulmonary arteries by consensus on a workstation. Each artery was identified on axial and 3D shaded-surface display reconstruction images. Each subsegmental artery was measured at a mediastinal window setting and compared with anatomical classifications. The location and branching of every subsegmental artery was recorded. The number of well-visualized sub-subsegmental arteries at a mediastinal window setting was compared with those visualized at a lung window setting. Of 800 subsegmental arteries, 769 (96%) were correctly visualized and 123 accessory subsegmental arteries were identified using the mediastinal window setting. One thousand ninety-two of 2019 sub-subsegmental arteries (54%) identified using the lung window setting were correctly visualized using the mediastinal window setting. Enhanced multi-slice spiral CT with thin collimation can be used to analyze precisely the subsegmental pulmonary arteries and may identify even more distal pulmonary arteries.

  19. A 3D approach to reconstruct continuous optical images using lidar and MODIS

    Institute of Scientific and Technical Information of China (English)

    HuaGuo; Huang; Jun; Lian

    2015-01-01

    Background: Monitoring forest health and biomass for changes over time in the global environment requires the provision of continuous satellite images. However, optical images of land surfaces are generally contaminated when clouds are present or rain occurs.Methods: To estimate the actual reflectance of land surfaces masked by clouds and potential rain, 3D simulations by the RAPID radiative transfer model were proposed and conducted on a forest farm dominated by birch and larch in Genhe City, Da Xing’An Ling Mountain in Inner Mongolia, China. The canopy height model(CHM) from lidar data were used to extract individual tree structures(location, height, crown width). Field measurements related tree height to diameter of breast height(DBH), lowest branch height and leaf area index(LAI). Series of Landsat images were used to classify tree species and land cover. MODIS LAI products were used to estimate the LAI of individual trees. Combining all these input variables to drive RAPID, high-resolution optical remote sensing images were simulated and validated with available satellite images.Results: Evaluations on spatial texture, spectral values and directional reflectance were conducted to show comparable results.Conclusions: The study provides a proof-of-concept approach to link lidar and MODIS data in the parameterization of RAPID models for high temporal and spatial resolutions of image reconstruction in forest dominated areas.

  20. Cranial reconstruction: 3D biomodel and custom-built implant created using additive manufacturing.

    Science.gov (United States)

    Jardini, André Luiz; Larosa, Maria Aparecida; Maciel Filho, Rubens; Zavaglia, Cecília Amélia de Carvalho; Bernardes, Luis Fernando; Lambert, Carlos Salles; Calderoni, Davi Reis; Kharmandayan, Paulo

    2014-12-01

    Additive manufacturing (AM) technology from engineering has helped to achieve several advances in the medical field, particularly as far as fabrication of implants is concerned. The use of AM has made it possible to carry out surgical planning and simulation using a three-dimensional physical model which accurately represents the patient's anatomy. AM technology enables the production of models and implants directly from a 3D virtual model, facilitating surgical procedures and reducing risks. Furthermore, AM has been used to produce implants designed for individual patients in areas of medicine such as craniomaxillofacial surgery, with optimal size, shape and mechanical properties. This work presents AM technologies which were applied to design and fabricate a biomodel and customized implant for the surgical reconstruction of a large cranial defect. A series of computed tomography data was obtained and software was used to extract the cranial geometry. The protocol presented was used to create an anatomic biomodel of the bone defect for surgical planning and, finally, the design and manufacture of the patient-specific implant.

  1. 3D analytic cone-beam reconstruction for multiaxial CT acquisitions.

    Science.gov (United States)

    Yin, Zhye; De Man, Bruno; Pack, Jed

    2009-01-01

    A conventional 3rd generation Computed Tomography (CT) system with a single circular source trajectory is limited in terms of longitudinal scan coverage since extending the scan coverage beyond 40 mm results in significant cone-beam artifacts. A multiaxial CT acquisition is achieved by combining multiple sequential 3rd generation axial scans or by performing a single axial multisource CT scan with multiple longitudinally offset sources. Data from multiple axial scans or multiple sources provide complementary information. For full-scan acquisitions, we present a window-based 3D analytic cone-beam reconstruction algorithm by tessellating data from neighboring axial datasets. We also show that multi-axial CT acquisition can extend the axial scan coverage while minimizing cone-beam artifacts. For half-scan acquisitions, one cannot take advantage of conjugate rays. We propose a cone-angle dependent weighting approach to combine multi-axial half-scan data. We compute the relative contribution from each axial dataset to each voxel based on the X-ray beam collimation, the respective cone-angles, and the spacing between the axial scans. We present numerical experiments to demonstrate that the proposed techniques successfully reduce cone-beam artifacts at very large volumetric coverage.

  2. 3D Velocity and Density Reconstructions of the Local Universe with Cosmicflows-1

    CERN Document Server

    Courtois, Helene M; Tully, R Brent; Gottlober, Stefan

    2011-01-01

    This paper presents an analysis of the local peculiar velocity field based on the Wiener Filter reconstruction method. We used our currently available catalog of distance measurements containing 1,797 galaxies within 3000 km/s: Cosmicflows-1. The Wiener Filter method is used to recover the full 3D peculiar velocity field from the observed map of radial velocities and to recover the underlying linear density field. The velocity field within a data zone of 3000 km/s is decomposed into a local component that is generated within the data zone and a tidal one that is generated by the mass distribution outside that zone. The tidal component is characterized by a coherent flow toward the Norma-Hydra-Centaurus (Great Attractor) region while the local component is dominated by a flow toward the Virgo Cluster and away from the Local Void. A detailed analysis shows that the local flow is predominantly governed by the Local Void and the Virgo Cluster plays a lesser role. The analysis procedure was tested against a mock c...

  3. 3D reconstruction method and connectivity rules of fracture networks generated under different mining layouts

    Institute of Scientific and Technical Information of China (English)

    Zhang Ru; Ai Ting; Li Hegui; Zhang Zetian; Liu Jianfeng

    2013-01-01

    In current research, a series of triaxial tests, which were employed to simulate three typical mining lay-outs (i.e., top-coal caving, non-pillar mining and protected coal seam mining), were conducted on coal by using MTS815 Flex Test GT rock mechanics test system, and the fracture networks in the broken coal samples were qualitatively and quantitatively investigated by employing CT scanning and 3D reconstruc-tion techniques. This work aimed at providing a detail description on the micro-structure and fracture-connectivity characteristics of rupture coal samples under different mining layouts. The results show that: (i) for protected coal seam mining layout, the coal specimens failure is in a compression-shear manner and oppositely, (ii) the tension-shear failure phenomenon is observed for top-coal caving and non-pillar mining layouts. By investigating the connectivity features of the generated fractures in the direction of r1 under different mining layouts, it is found that the connectivity level of the fractures of the samples corresponding to non-pillar mining layout was the highest.

  4. Evaluating Dense 3d Reconstruction Software Packages for Oblique Monitoring of Crop Canopy Surface

    Science.gov (United States)

    Brocks, S.; Bareth, G.

    2016-06-01

    Crop Surface Models (CSMs) are 2.5D raster surfaces representing absolute plant canopy height. Using multiple CMSs generated from data acquired at multiple time steps, a crop surface monitoring is enabled. This makes it possible to monitor crop growth over time and can be used for monitoring in-field crop growth variability which is useful in the context of high-throughput phenotyping. This study aims to evaluate several software packages for dense 3D reconstruction from multiple overlapping RGB images on field and plot-scale. A summer barley field experiment located at the Campus Klein-Altendorf of University of Bonn was observed by acquiring stereo images from an oblique angle using consumer-grade smart cameras. Two such cameras were mounted at an elevation of 10 m and acquired images for a period of two months during the growing period of 2014. The field experiment consisted of nine barley cultivars that were cultivated in multiple repetitions and nitrogen treatments. Manual plant height measurements were carried out at four dates during the observation period. The software packages Agisoft PhotoScan, VisualSfM with CMVS/PMVS2 and SURE are investigated. The point clouds are georeferenced through a set of ground control points. Where adequate results are reached, a statistical analysis is performed.

  5. AX-PET A novel PET detector concept with full 3D reconstruction

    CERN Document Server

    Braem, A; Séguinot, J; Dissertori, G; Djambazov, L; Lustermann, W; Nessi-Tedaldi, F; Pauss, F; Schinzel, D; Solevi, P; Lacasta, C; Oliver, J F; Rafecas, M; De Leo, R; Nappi, E; Vilardi, I; Chesi, E; Cochran, E; Honscheid, K; Kagan, H; Rudge, A; Smith, S; Weilhammer, P; Johnson, I; Renker, D; Clinthorne, N; Huh, S; Bolle, E; Stapnes, S; Meddi, F

    2009-01-01

    We describe the concept and first experimental tests of a novel 3D axial Positron Emission Tomography (PET) geometry. It allows for a new way of measuring the interaction point in the detector with very high precision. It is based on a matrix of long Lutetium-Yttrium OxyorthoSilicate (LYSO) crystals oriented in the axial direction, each coupled to one Geiger Mode Avalanche Photodiode (G-APD) array. To derive the axial coordinate, Wave Length Shifter (WLS) strips are mounted orthogonally and interleaved between the crystals. The light from the WLS strips is read by custom-made G-APDs. The weighted mean of the signals in the WLS strips has proven to give very precise axial resolution. The achievable resolution along the three axes is mainly driven by the dimensions of the LYSO crystals and WLS strips. This concept is inherently free of parallax errors. Furthermore, it will allow identification of Compton interactions in the detector and for reconstruction of a fraction of them, which is expected to enhance imag...

  6. Implementation of multiple 3D scans for error calculation on object digital reconstruction

    Directory of Open Access Journals (Sweden)

    Sidiropoulos Andreas

    2017-01-01

    Full Text Available Laser scanning is a widespread methodology of visualizing the natural environment and the manmade structures that exist in it. Laser scanners accomplish to digitalize our reality by making highly accurate measurements. Using these measurements they create a set of points in 3D space which is called point cloud and depicts an entire area or object or parts of them. Triangulation laser scanners use the triangle theories and they mainly are used to visualize handheld objects at a very close range from them. In many cases, users of such devices take for granted the accuracy specifications provided by laser scanner manufacturers and respective software and for many applications this is enough. In this paper we use point clouds, collected by a triangulation laser scanner under a repetition method, of two cubes that are geometrically similar to each other but differ in material. At first, the data of each repetition are being compared to each other to examine the consistency of the scanner under multiple measurements of the same scene. Then, the reconstruction of the objects‟ geometry is achieved and the results are being compared to the data derived by a digital caliper. The errors of calculated dimensions were estimated by the use of error propagation law.

  7. A 3D approach to reconstruct continuous optical images using lidar and MODIS

    Directory of Open Access Journals (Sweden)

    HuaGuo Huang

    2015-06-01

    Full Text Available Background Monitoring forest health and biomass for changes over time in the global environment requires the provision of continuous satellite images. However, optical images of land surfaces are generally contaminated when clouds are present or rain occurs. Methods To estimate the actual reflectance of land surfaces masked by clouds and potential rain, 3D simulations by the RAPID radiative transfer model were proposed and conducted on a forest farm dominated by birch and larch in Genhe City, DaXing’AnLing Mountain in Inner Mongolia, China. The canopy height model (CHM from lidar data were used to extract individual tree structures (location, height, crown width. Field measurements related tree height to diameter of breast height (DBH, lowest branch height and leaf area index (LAI. Series of Landsat images were used to classify tree species and land cover. MODIS LAI products were used to estimate the LAI of individual trees. Combining all these input variables to drive RAPID, high-resolution optical remote sensing images were simulated and validated with available satellite images. Results Evaluations on spatial texture, spectral values and directional reflectance were conducted to show comparable results. Conclusions The study provides a proof-of-concept approach to link lidar and MODIS data in the parameterization of RAPID models for high temporal and spatial resolutions of image reconstruction in forest dominated areas.

  8. Automatic Reconstruction of Fault Networks from Seismicity Catalogs: 3D Optimal Anisotropic Dynamic Clustering

    CERN Document Server

    Ouillon, G; Sornette, D; Ouillon, Guy; Ducorbier, Caroline; Sornette, Didier

    2007-01-01

    We propose a new pattern recognition method that is able to reconstruct the 3D structure of the active part of a fault network using the spatial location of earthquakes. The method is a generalization of the so-called dynamic clustering method, that originally partitions a set of datapoints into clusters, using a global minimization criterion over the spatial inertia of those clusters. The new method improves on it by taking into account the full spatial inertia tensor of each cluster, in order to partition the dataset into fault-like, anisotropic clusters. Given a catalog of seismic events, the output is the optimal set of plane segments that fits the spatial structure of the data. Each plane segment is fully characterized by its location, size and orientation. The main tunable parameter is the accuracy of the earthquake localizations, which fixes the resolution, i.e. the residual variance of the fit. The resolution determines the number of fault segments needed to describe the earthquake catalog, the better...

  9. Automated 3D Scene Reconstruction from Open Geospatial Data Sources: Airborne Laser Scanning and a 2D Topographic Database

    OpenAIRE

    Lingli Zhu; Matti Lehtomäki; Juha Hyyppä; Eetu Puttonen; Anssi Krooks; Hannu Hyyppä

    2015-01-01

    Open geospatial data sources provide opportunities for low cost 3D scene reconstruction. In this study, based on a sparse airborne laser scanning (ALS) point cloud (0.8 points/m2) obtained from open source databases, a building reconstruction pipeline for CAD building models was developed. The pipeline includes voxel-based roof patch segmentation, extraction of the key-points representing the roof patch outline, step edge identification and adjustment, and CAD building model generation. The a...

  10. Urethral reconstruction with a 3D porous bacterial cellulose scaffold seeded with lingual keratinocytes in a rabbit model.

    Science.gov (United States)

    Huang, Jian-Wen; Lv, Xiang-Guo; Li, Zhe; Song, Lu-Jie; Feng, Chao; Xie, Min-Kai; Li, Chao; Li, Hong-Bin; Wang, Ji-Hong; Zhu, Wei-Dong; Chen, Shi-Yan; Wang, Hua-Ping; Xu, Yue-Min

    2015-09-11

    The goal of this study was to evaluate the effects of urethral reconstruction with a three-dimensional (3D) porous bacterial cellulose (BC) scaffold seeded with lingual keratinocytes in a rabbit model. A novel 3D porous BC scaffold was prepared by gelatin sponge interfering in the BC fermentation process. Rabbit lingual keratinocytes were isolated, expanded, and seeded onto 3D porous BC. BC alone (group 1, N  =  10), 3D porous BC alone (group 2, N  =  10), and 3D porous BC seeded with lingual keratinocytes (group 3, N  =  10) were used to repair rabbit ventral urethral defects (2.0   ×   0.8 cm). Scanning electron microscopy revealed that BC consisted of a compact laminate while 3D porous BC was composed of a porous sheet buttressed by a dense outer layer. The average pore diameter and porosity of the 3D porous BC were 4.23   ±   1.14 μm and 67.00   ±   6.80%, respectively. At 3 months postoperatively, macroscopic examinations and retrograde urethrograms of urethras revealed that all urethras maintained wide calibers in group 3. Strictures were found in all rabbits in groups 1 and 2. Histologically, at 1 month postoperatively, intact epithelium occurred in group 3, and discontinued epithelium was found in groups 1 and 2. However, groups 2 and 3 exhibited similar epithelial regeneration, which was superior to that of group 1 at 3 months (p  3D porous BC seeded with lingual keratinocytes enhanced urethral tissue regeneration. 3D porous BC could potentially be used as an optimized scaffold for urethral reconstruction.

  11. 3D Indoor Building Environment Reconstruction using Polynomial Kernel, Least Square Adjustment, Interval Analysis and Homotopy Continuation

    DEFF Research Database (Denmark)

    Jamali, Ali; Rahman, Alias Abdul; Antón Castro, Francesc/François

    2016-01-01

    Nowadays, municipalities intend to have 3D city models for facility management, disaster management and architectural planning. Indoor models can be reconstructed from construction plans but sometimes, they are not available or very often, they differ from ‘as-built’ plans. In this case, the buil...

  12. Reconstruction of high-resolution 3D dose from matrix measurements : error detection capability of the COMPASS correction kernel method

    NARCIS (Netherlands)

    Godart, J.; Korevaar, E. W.; Visser, R.; Wauben, D. J. L.; van t Veld, Aart

    2011-01-01

    TheCOMPASS system (IBADosimetry) is a quality assurance (QA) tool which reconstructs 3D doses inside a phantom or a patient CT. The dose is predicted according to the RT plan with a correction derived from 2D measurements of a matrix detector. This correction method is necessary since a direct recon

  13. Precise 3D Track Reconstruction Algorithm for the ICARUS T600 Liquid Argon Time Projection Chamber Detector

    Directory of Open Access Journals (Sweden)

    M. Antonello

    2013-01-01

    Full Text Available Liquid Argon Time Projection Chamber (LAr TPC detectors offer charged particle imaging capability with remarkable spatial resolution. Precise event reconstruction procedures are critical in order to fully exploit the potential of this technology. In this paper we present a new, general approach to 3D reconstruction for the LAr TPC with a practical application to the track reconstruction. The efficiency of the method is evaluated on a sample of simulated tracks. We present also the application of the method to the analysis of stopping particle tracks collected during the ICARUS T600 detector operation with the CNGS neutrino beam.

  14. Reconstruction of 3d grain boundaries from rock thin sections, using polarised light

    Science.gov (United States)

    Markus Hammes, Daniel; Peternell, Mark

    2016-04-01

    Grain boundaries affect the physical and chemical properties of polycrystalline materials significantly by initiating reactions and collecting impurities (Birchenall, 1959), and play an essential role in recrystallization (Doherty et al. 1997). In particular, the shape and crystallographic orientation of grain boundaries reveal the deformation and annealing history of rocks (Kruhl and Peternell 2002, Kuntcheva et al. 2006). However, there is a lack of non-destructive and easy-to-use computer supported methods to determine grain boundary geometries in 3D. The only available instrument using optical light to measure grain boundary angles is still the polarising microscope with attached universal stage; operated manually and time-consuming in use. Here we present a new approach to determine 3d grain boundary orientations from 2D rock thin sections. The data is recorded by using an automatic fabric analyser microscope (Peternell et al., 2010). Due to its unique arrangement of 9 light directions the highest birefringence colour due to each light direction and crystal orientation (retardation) can be determined at each pixel in the field of view. Retardation profiles across grain boundaries enable the calculation of grain boundary angle and direction. The data for all positions separating the grains are combined and further processed. In combination with the lateral position of the grain boundary, acquired using the FAME software (Hammes and Peternell, in review), the data is used to reconstruct a 3d grain boundary model. The processing of data is almost fully automatic by using MATLAB®. Only minor manual input is required. The applicability was demonstrated on quartzite samples, but the method is not solely restricted on quartz grains and other birefringent polycrystalline materials could be used instead. References: Birchenall, C.E., 1959: Physical Metallurgy. McGraw-Hill, New York. Doherty, R.D., Hughes, D.A., Humphreys, F.J., Jonas, J.J., Juul Jensen, D., Kassner, M

  15. Identifying same-cell contours in image stacks: a key step in making 3D reconstructions.

    Science.gov (United States)

    Leung, Tony Kin Shun; Veldhuis, Jim H; Krens, S F Gabby; Heisenberg, C P; Brodland, G Wayne

    2011-02-01

    Identification of contours belonging to the same cell is a crucial step in the analysis of confocal stacks and other image sets in which cell outlines are visible, and it is central to the making of 3D cell reconstructions. When the cells are close packed, the contour grouping problem is more complex than that found in medical imaging, for example, because there are multiple regions of interest, the regions are not separable from each other by an identifiable background and regions cannot be distinguished by intensity differences. Here, we present an algorithm that uses three primary metrics-overlap of contour areas in adjacent images, co-linearity of the centroids of these areas across three images in a stack, and cell taper-to assign cells to groups. Decreasing thresholds are used to successively assign contours whose membership is less obvious. In a final step, remaining contours are assigned to existing groups by setting all thresholds to zero and groups having strong hour-glass shapes are partitioned. When applied to synthetic data from isotropic model aggregates, a curved model epithelium in which the long axes of the cells lie at all possible angles to the transection plane, and a confocal image stack, algorithm assignments were between 97 and 100% accurate in sets having at least four contours per cell. The algorithm is not particularly sensitive to the thresholds used, and a single set of parameters was used for all of the tests. The algorithm, which could be extended to time-lapse data, solves a key problem in the translation of image data into cell information.

  16. Building 3D aerial image in photoresist with reconstructed mask image acquired with optical microscope

    Science.gov (United States)

    Chou, C. S.; Tang, Y. P.; Chu, F. S.; Huang, W. C.; Liu, R. G.; Gau, T. S.

    2012-03-01

    Calibration of mask images on wafer becomes more important as features shrink. Two major types of metrology have been commonly adopted. One is to measure the mask image with scanning electron microscope (SEM) to obtain the contours on mask and then simulate the wafer image with optical simulator. The other is to use an optical imaging tool Aerial Image Measurement System (AIMSTM) to emulate the image on wafer. However, the SEM method is indirect. It just gathers planar contours on a mask with no consideration of optical characteristics such as 3D topography structures. Hence, the image on wafer is not predicted precisely. Though the AIMSTM method can be used to directly measure the intensity at the near field of a mask but the image measured this way is not quite the same as that on the wafer due to reflections and refractions in the films on wafer. Here, a new approach is proposed to emulate the image on wafer more precisely. The behavior of plane waves with different oblique angles is well known inside and between planar film stacks. In an optical microscope imaging system, plane waves can be extracted from the pupil plane with a coherent point source of illumination. Once plane waves with a specific coherent illumination are analyzed, the partially coherent component of waves could be reconstructed with a proper transfer function, which includes lens aberration, polarization, reflection and refraction in films. It is a new method that we can transfer near light field of a mask into an image on wafer without the disadvantages of indirect SEM measurement such as neglecting effects of mask topography, reflections and refractions in the wafer film stacks. Furthermore, with this precise latent image, a separated resist model also becomes more achievable.

  17. In situ growth rates of deep-water octocorals determined from 3D photogrammetric reconstructions

    Science.gov (United States)

    Bennecke, Swaantje; Kwasnitschka, Tom; Metaxas, Anna; Dullo, Wolf-Christian

    2016-12-01

    Growth rates of deep-water corals provide important information on the recovery potential of these ecosystems, for example from fisheries-induced impacts. Here, we present in situ growth dynamics that are currently largely unknown for deep-water octocorals, calculated by applying a non-destructive method. Videos of a boulder harbouring multiple colonies of Paragorgia arborea and Primnoa resedaeformis in the Northeast Channel Coral Conservation Area at the entrance to the Gulf of Maine at 863 m depth were collected in 2006, 2010 and 2014. Photogrammetric reconstructions of the boulder and the fauna yielded georeferenced 3D models for all sampling years. Repeated measurements of total length and cross-sectional area of the same colonies allowed the observation of growth dynamics. Growth rates of total length of Paragorgia arborea decreased over time with higher rates between 2006 and 2010 than between 2010 and 2014, while growth rates of cross-sectional area remained comparatively constant. A general trend of decreasing growth rates of total length with size of the coral colony was documented. While no growth was observed for the largest colony (165 cm in length) between 2010 and 2014, a colony 50-65 cm in length grew 3.7 cm yr-1 between 2006 and 2010. Minimum growth rates of 1.6-2.7 cm yr-1 were estimated for two recruits (<23 cm in 2014) of Primnoa resedaeformis. We successfully extracted biologically meaningful data from photogrammetric models and present the first in situ growth rates for these coral species in the Northwest Atlantic.

  18. Growth trajectories of the human fetal brain tissues estimated from 3D reconstructed in utero MRI.

    Science.gov (United States)

    Scott, Julia A; Habas, Piotr A; Kim, Kio; Rajagopalan, Vidya; Hamzelou, Kia S; Corbett-Detig, James M; Barkovich, A James; Glenn, Orit A; Studholme, Colin

    2011-08-01

    In the latter half of gestation (20-40 gestational weeks), human brain growth accelerates in conjunction with cortical folding and the deceleration of ventricular zone progenitor cell proliferation. These processes are reflected in changes in the volume of respective fetal tissue zones. Thus far, growth trajectories of the fetal tissue zones have been extracted primarily from 2D measurements on histological sections and magnetic resonance imaging (MRI). In this study, the volumes of major fetal zones-cortical plate (CP), subplate and intermediate zone (SP+IZ), germinal matrix (GMAT), deep gray nuclei (DG), and ventricles (VENT)--are calculated from automatic segmentation of motion-corrected, 3D reconstructed MRI. We analyzed 48 T2-weighted MRI scans from 39 normally developing fetuses in utero between 20.57 and 31.14 gestational weeks (GW). The supratentorial volume (STV) increased linearly at a rate of 15.22% per week. The SP+IZ (14.75% per week) and DG (15.56% per week) volumes increased at similar rates. The CP increased at a greater relative rate (18.00% per week), while the VENT (9.18% per week) changed more slowly. Therefore, CP increased as a fraction of STV and the VENT fraction declined. The total GMAT volume slightly increased then decreased after 25 GW. We did not detect volumetric sexual dimorphisms or total hemispheric volume asymmetries, which may emerge later in gestation. Further application of the automated fetal brain segmentation to later gestational ages will bridge the gap between volumetric studies of premature brain development and normal brain development in utero.

  19. Comparison of 3D reconstruction of mandible for pre-operative planning using commercial and open-source software

    Science.gov (United States)

    Abdullah, Johari Yap; Omar, Marzuki; Pritam, Helmi Mohd Hadi; Husein, Adam; Rajion, Zainul Ahmad

    2016-12-01

    3D printing of mandible is important for pre-operative planning, diagnostic purposes, as well as for education and training. Currently, the processing of CT data is routinely performed with commercial software which increases the cost of operation and patient management for a small clinical setting. Usage of open-source software as an alternative to commercial software for 3D reconstruction of the mandible from CT data is scarce. The aim of this study is to compare two methods of 3D reconstruction of the mandible using commercial Materialise Mimics software and open-source Medical Imaging Interaction Toolkit (MITK) software. Head CT images with a slice thickness of 1 mm and a matrix of 512x512 pixels each were retrieved from the server located at the Radiology Department of Hospital Universiti Sains Malaysia. The CT data were analysed and the 3D models of mandible were reconstructed using both commercial Materialise Mimics and open-source MITK software. Both virtual 3D models were saved in STL format and exported to 3matic and MeshLab software for morphometric and image analyses. Both models were compared using Wilcoxon Signed Rank Test and Hausdorff Distance. No significant differences were obtained between the 3D models of the mandible produced using Mimics and MITK software. The 3D model of the mandible produced using MITK open-source software is comparable to the commercial MIMICS software. Therefore, open-source software could be used in clinical setting for pre-operative planning to minimise the operational cost.

  20. From 2D to 3D: novel nanostructured scaffolds to investigate signalling in reconstructed neuronal networks.

    Science.gov (United States)

    Bosi, Susanna; Rauti, Rossana; Laishram, Jummi; Turco, Antonio; Lonardoni, Davide; Nieus, Thierry; Prato, Maurizio; Scaini, Denis; Ballerini, Laura

    2015-04-24

    To recreate in vitro 3D neuronal circuits will ultimately increase the relevance of results from cultured to whole-brain networks and will promote enabling technologies for neuro-engineering applications. Here we fabricate novel elastomeric scaffolds able to instruct 3D growth of living primary neurons. Such systems allow investigating the emerging activity, in terms of calcium signals, of small clusters of neurons as a function of the interplay between the 2D or 3D architectures and network dynamics. We report the ability of 3D geometry to improve functional organization and synchronization in small neuronal assemblies. We propose a mathematical modelling of network dynamics that supports such a result. Entrapping carbon nanotubes in the scaffolds remarkably boosted synaptic activity, thus allowing for the first time to exploit nanomaterial/cell interfacing in 3D growth support. Our 3D system represents a simple and reliable construct, able to improve the complexity of current tissue culture models.

  1. i-BRUSH: a gaze-contingent virtual paintbrush for dense 3D reconstruction in robotic assisted surgery.

    Science.gov (United States)

    Visentini-Scarzanella, Marco; Mylonas, George P; Stoyanov, Danail; Yang, Guang-Zhong

    2009-01-01

    With increasing demand on intra-operative navigation and motion compensation during robotic assisted minimally invasive surgery, real-time 3D deformation recovery remains a central problem. Currently the majority of existing methods rely on salient features, where the inherent paucity of distinctive landmarks implies either a semi-dense reconstruction or the use of strong geometrical constraints. In this study, we propose a gaze-contingent depth reconstruction scheme by integrating human perception with semi-dense stereo and p-q based shading information. Depth inference is carried out in real-time through a novel application of Bayesian chains without smoothness priors. The practical value of the scheme is highlighted by detailed validation using a beating heart phantom model with known geometry to verify the performance of gaze-contingent 3D surface reconstruction and deformation recovery.

  2. A Unified Approach to Diffusion Direction Sensitive Slice Registration and 3-D DTI Reconstruction From Moving Fetal Brain Anatomy

    DEFF Research Database (Denmark)

    Hansen, Mads Fogtmann; Seshamani, Sharmishtaa; Kroenke, Christopher

    2014-01-01

    This paper presents an approach to 3-D diffusion tensor image (DTI) reconstruction from multi-slice diffusion weighted (DW) magnetic resonance imaging acquisitions of the moving fetal brain. Motion scatters the slice measurements in the spatial and spherical diffusion domain with respect...... to the underlying anatomy. Previous image registration techniques have been described to estimate the between slice fetal head motion, allowing the reconstruction of 3D a diffusion estimate on a regular grid using interpolation. We propose Approach to Unified Diffusion Sensitive Slice Alignment and Reconstruction...... (AUDiSSAR) that explicitly formulates a process for diffusion direction sensitive DW-slice-to-DTI-volume alignment. This also incorporates image resolution modeling to iteratively deconvolve the effects of the imaging point spread function using the multiple views provided by thick slices acquired...

  3. An open-source Matlab code package for improved rank-reduction 3D seismic data denoising and reconstruction

    Science.gov (United States)

    Chen, Yangkang; Huang, Weilin; Zhang, Dong; Chen, Wei

    2016-10-01

    Simultaneous seismic data denoising and reconstruction is a currently popular research subject in modern reflection seismology. Traditional rank-reduction based 3D seismic data denoising and reconstruction algorithm will cause strong residual noise in the reconstructed data and thus affect the following processing and interpretation tasks. In this paper, we propose an improved rank-reduction method by modifying the truncated singular value decomposition (TSVD) formula used in the traditional method. The proposed approach can help us obtain nearly perfect reconstruction performance even in the case of low signal-to-noise ratio (SNR). The proposed algorithm is tested via one synthetic and field data examples. Considering that seismic data interpolation and denoising source packages are seldom in the public domain, we also provide a program template for the rank-reduction based simultaneous denoising and reconstruction algorithm by providing an open-source Matlab package.

  4. Possibility of reconstruction of dental plaster cast from 3D digital study models

    OpenAIRE

    Kasparova, Magdalena; Grafova, Lucie; Dvorak, Petr; Dostalova,Tatjana; Prochazka, Ales; Eliasova, Hana; Prusa, Josef; Kakawand, Soroush

    2013-01-01

    Objectives To compare traditional plaster casts, digital models and 3D printed copies of dental plaster casts based on various criteria. To determine whether 3D printed copies obtained using open source system RepRap can replace traditional plaster casts in dental practice. To compare and contrast the qualities of two possible 3D printing options – open source system RepRap and commercially available 3D printing. Design and settings A method comparison study on 10 dental plaster casts from th...

  5. Research and development of fringe projection-based methods in 3D shape reconstruction

    Institute of Scientific and Technical Information of China (English)

    WU Lu-shen; PENG Qing-jin

    2006-01-01

    This paper discusses current research and development of fringe projection-based techniques. A system based on Fourier transform profilometry (FTP) is proposed for three-dimensional (3D) shape recovery. The system improves the method of phase unwrapping to gain accurate 3D shapes of objects. The method uses a region-growing algorithm for the path prediction guided by the quality map to increase the recovering accuracy and provides a fast and simple tool for 3D shape recovery. The shape measurement and data recovery are integrated to offer a new method of 3D modelling. Examples are presented to verify the feasibility of the proposed method.

  6. Holographic microscopy reconstruction in both object and image half spaces with undistorted 3D grid

    CERN Document Server

    Verrier, Nicolas; Tessier, Gilles; Gross, Michel

    2015-01-01

    We propose a holographic microscopy reconstruction method, which propagates the hologram, in the object half space, in the vicinity of the object. The calibration yields reconstructions with an undistorted reconstruction grid i.e. with orthogonal x, y and z axis and constant pixels pitch. The method is validated with an USAF target imaged by a x60 microscope objective, whose holograms are recorded and reconstructed for different USAF locations along the longitudinal axis:-75 to +75 {\\mu}m. Since the reconstruction numerical phase mask, the reference phase curvature and MO form an afocal device, the reconstruction can be interpreted as occurring equivalently in the object or in image half space.

  7. Workflows and the Role of Images for Virtual 3d Reconstruction of no Longer Extant Historic Objects

    Science.gov (United States)

    Münster, S.

    2013-07-01

    3D reconstruction technologies have gained importance as tools for the research and visualization of no longer extant historic objects during the last decade. Within such reconstruction processes, visual media assumes several important roles: as the most important sources especially for a reconstruction of no longer extant objects, as a tool for communication and cooperation within the production process, as well as for a communication and visualization of results. While there are many discourses about theoretical issues of depiction as sources and as visualization outcomes of such projects, there is no systematic research about the importance of depiction during a 3D reconstruction process and based on empirical findings. Moreover, from a methodological perspective, it would be necessary to understand which role visual media plays during the production process and how it is affected by disciplinary boundaries and challenges specific to historic topics. Research includes an analysis of published work and case studies investigating reconstruction projects. This study uses methods taken from social sciences to gain a grounded view of how production processes would take place in practice and which functions and roles images would play within them. For the investigation of these topics, a content analysis of 452 conference proceedings and journal articles related to 3D reconstruction modeling in the field of humanities has been completed. Most of the projects described in those publications dealt with data acquisition and model building for existing objects. Only a small number of projects focused on structures that no longer or never existed physically. Especially that type of project seems to be interesting for a study of the importance of pictures as sources and as tools for interdisciplinary cooperation during the production process. In the course of the examination the authors of this paper applied a qualitative content analysis for a sample of 26 previously

  8. Efficacy of 3-D computed tomographic reconstruction in evaluating anatomical relationships of colovesical fistula.

    Science.gov (United States)

    Shinojima, Toshiaki; Nakajima, Fumio; Koizumi, Jun

    2002-04-01

    A case of colovesical fistula is reported. The anatomy of the pelvis was determined preoperatively with 3-D computed tomography (CT), and the fistula, including adjacent structures, could clearly be seen. Compared with conventional axial CT imaging, 3-D CT provided better and more complete visualization of the anatomical relationships, which facilitated the surgical procedure and provided a good outcome.

  9. Development of a fully 3D system model in iterative expectation-maximization reconstruction for cone-beam SPECT

    Science.gov (United States)

    Ye, Hongwei; Vogelsang, Levon; Feiglin, David H.; Lipson, Edward D.; Krol, Andrzej

    2008-03-01

    In order to improve reconstructed image quality for cone-beam collimator SPECT, we have developed and implemented a fully 3D reconstruction, using an ordered subsets expectation maximization (OSEM) algorithm, along with a volumetric system model - cone-volume system model (CVSM), a modified attenuation compensation, and a 3D depth- and angle-dependent resolution and sensitivity correction. SPECT data were acquired in a 128×128 matrix, in 120 views with a single circular orbit. Two sets of numerical Defrise phantoms were used to simulate CBC SPECT scans, and low noise and scatter-free projection datasets were obtained using the SimSET Monte Carlo package. The reconstructed images, obtained using OSEM with a line-length system model (LLSM) and a 3D Gaussian post-filter, and OSEM with FVSM and a 3D Gaussian post-filter were quantitatively studied. Overall improvement in the image quality has been observed, including better transaxial resolution, higher contrast-to-noise ratio between hot and cold disks, and better accuracy and lower bias in OSEM-CVSM, compared with OSEM-LLSM.

  10. Integration of multi-modality imaging for accurate 3D reconstruction of human coronary arteries in vivo

    Science.gov (United States)

    Giannoglou, George D.; Chatzizisis, Yiannis S.; Sianos, George; Tsikaderis, Dimitrios; Matakos, Antonis; Koutkias, Vassilios; Diamantopoulos, Panagiotis; Maglaveras, Nicos; Parcharidis, George E.; Louridas, George E.

    2006-12-01

    In conventional intravascular ultrasound (IVUS)-based three-dimensional (3D) reconstruction of human coronary arteries, IVUS images are arranged linearly generating a straight vessel volume. However, with this approach real vessel curvature is neglected. To overcome this limitation an imaging method was developed based on integration of IVUS and biplane coronary angiography (BCA). In 17 coronary arteries from nine patients, IVUS and BCA were performed. From each angiographic projection, a single end-diastolic frame was selected and in each frame the IVUS catheter was interactively detected for the extraction of 3D catheter path. Ultrasound data was obtained with a sheath-based catheter and recorded on S-VHS videotape. S-VHS data was digitized and lumen and media-adventitia contours were semi-automatically detected in end-diastolic IVUS images. Each pair of contours was aligned perpendicularly to the catheter path and rotated in space by implementing an algorithm based on Frenet-Serret rules. Lumen and media-adventitia contours were interpolated through generation of intermediate contours creating a real 3D lumen and vessel volume, respectively. The absolute orientation of the reconstructed lumen was determined by back-projecting it onto both angiographic planes and comparing the projected lumen with the actual angiographic lumen. In conclusion, our method is capable of performing rapid and accurate 3D reconstruction of human coronary arteries in vivo. This technique can be utilized for reliable plaque morphometric, geometrical and hemodynamic analyses.

  11. 3D reconstruction of carotid atherosclerotic plaque: comparison between spatial compound ultrasound models and anatomical models

    DEFF Research Database (Denmark)

    Lind, Bo L.; Fagertun, Jens; Wilhjelm, Jens E.;

    2007-01-01

    This study deals with the creation of 3D models that can work as a tool for discriminating between tissue and background in the development of tissue classification methods. Ten formalin-fixed atherosclerotic carotid plaques removed by endarterectomy were scanned with 3D multi-angle spatial...... compound ultrasound (US) and subsequently sliced and photographed to produce a 3D anatomical data set. Outlines in the ultrasound data were found by means of active contours and combined into 10 3D ultrasound models. The plaque regions of the anatomical photographs were outlined manually and then combined...... into 10 3D anatomical models. The volumes of the anatomical models correlated with the volume found by a water displacement method (r = 0.95), except for an offset. The models were compared in three ways. Visual inspection showed quite good agreement between the models. The volumes of the ultrasound...

  12. 3D kinematic in-vitro comparison of posterolateral corner reconstruction techniques in a combined injury model.

    Science.gov (United States)

    Nau, Thomas; Chevalier, Yan; Hagemeister, Nicola; Duval, Nicolas; deGuise, Jacques A

    2005-10-01

    With the variable injury pattern to the posterolateral structures (PLS) of the knee, a number of reconstructive procedures have been introduced. It was the aim of the present study to evaluate the resulting 3D kinematics following three different surgical techniques of reconstruction in a combined posterior cruciate ligament (PCL)/PLS injury model. In nine human cadaveric knees, 3D kinematics were recorded during the path of flexion-extension using a computer based custom made 6-degree-of-freedom (DOF) testing apparatus. Additional laxity tests were conducted at 30 and 90 degrees of flexion. Testing was performed before and after cutting the PLS and PCL, followed by PCL reconstruction alone. Reconstructing the posterolateral corner, three surgical techniques were compared: (a) the posterolateral corner sling procedure (PLCS), (b) the biceps tenodesis (BT), and (c) a bone patellar-tendon bone (BTB) allograft reconstruction. Posterior as well as rotational laxity were significantly increased after PCL/PLS transection at 30 and 90 degrees of flexion. Isolated PCL reconstruction resulted in a remaining external rotational deficiency for both tested flexion angles. Additional PLS reconstruction closely restored external rotation as well as posterior translation to intact values by all tested procedures. Compared to the intact knee, dynamic testing revealed a significant internal tibial rotation for (b) BT (mean=3.9 degrees, p=0.043) and for (c) BTB allograft (mean=4.3 degrees, p=0.012). (a) The PLCS demonstrated a tendency to internal tibial rotation between 0 and 60 degrees of flexion (mean=2.2 degrees, p=0.079). Varus/valgus rotation as well as anterior/posterior translation did not show significant differences for any of the tested techniques. The present study shows that despite satisfying results in static laxity testing, pathological 3D knee kinematics were not restored to normal, demonstrated by a nonphysiological internal tibial rotation during the path of

  13. Virtual surgical planning and 3D printing in prosthetic orbital reconstruction with percutaneous implants: a technical case report

    Directory of Open Access Journals (Sweden)

    Huang Y

    2016-10-01

    Full Text Available Yu-Hui Huang,1,2 Rosemary Seelaus,1,2 Linping Zhao,1,2 Pravin K Patel,1,2 Mimis Cohen1,2 1The Craniofacial Center, Department of Surgery, Division of Plastic & Reconstructive Surgery, University of Illinois Hospital & Health Sciences System, 2University of Illinois College of Medicine at Chicago, Chicago, IL, USA Abstract: Osseointegrated titanium implants to the cranial skeleton for retention of facial prostheses have proven to be a reliable replacement for adhesive systems. However, improper placement of the implants can jeopardize prosthetic outcomes, and long-term success of an implant-retained prosthesis. Three-dimensional (3D computer imaging, virtual planning, and 3D printing have become accepted components of the preoperative planning and design phase of treatment. Computer-aided design and computer-assisted manufacture that employ cone-beam computed tomography data offer benefits to patient treatment by contributing to greater predictability and improved treatment efficiencies with more reliable outcomes in surgical and prosthetic reconstruction. 3D printing enables transfer of the virtual surgical plan to the operating room by fabrication of surgical guides. Previous studies have shown that accuracy improves considerably with guided implantation when compared to conventional template or freehand implant placement. This clinical case report demonstrates the use of a 3D technological pathway for preoperative virtual planning through prosthesis fabrication, utilizing 3D printing, for a patient with an acquired orbital defect that was restored with an implant-retained silicone orbital prosthesis. Keywords: computer-assisted surgery, virtual surgical planning (VSP, 3D printing, orbital prosthetic reconstruction, craniofacial implants

  14. GPU-based rapid reconstruction of cellular 3D refractive index maps from tomographic phase microscopy (Conference Presentation)

    Science.gov (United States)

    Dardikman, Gili; Shaked, Natan T.

    2016-03-01

    We present highly parallel and efficient algorithms for real-time reconstruction of the quantitative three-dimensional (3-D) refractive-index maps of biological cells without labeling, as obtained from the interferometric projections acquired by tomographic phase microscopy (TPM). The new algorithms are implemented on the graphic processing unit (GPU) of the computer using CUDA programming environment. The reconstruction process includes two main parts. First, we used parallel complex wave-front reconstruction of the TPM-based interferometric projections acquired at various angles. The complex wave front reconstructions are done on the GPU in parallel, while minimizing the calculation time of the Fourier transforms and phase unwrapping needed. Next, we implemented on the GPU in parallel the 3-D refractive index map retrieval using the TPM filtered-back projection algorithm. The incorporation of algorithms that are inherently parallel with a programming environment such as Nvidia's CUDA makes it possible to obtain real-time processing rate, and enables high-throughput platform for label-free, 3-D cell visualization and diagnosis.

  15. Forensic veterinary radiology: ballistic-radiological 3D computertomographic reconstruction of an illegal lynx shooting in Switzerland.

    Science.gov (United States)

    Thali, Michael J; Kneubuehl, Beat P; Bolliger, Stephan A; Christe, Andreas; Koenigsdorfer, Urs; Ozdoba, Christoph; Spielvogel, Elke; Dirnhofer, Richard

    2007-08-24

    The lynx, which was reintroduced to Switzerland after being exterminated at the beginning of the 20th century, is protected by Swiss law. However, poaching occurs from time to time, which makes criminal investigations necessary. In the presented case, an illegally shot lynx was examined by conventional plane radiography and three-dimensional multislice computertomography (3D MSCT), of which the latter yielded superior results with respect to documentation and reconstruction of the inflicted gunshot wounds. We believe that 3D MSCT, already described in human forensic-pathological cases, is also a suitable and promising new technique for veterinary pathology.

  16. Portable high-intensity focused ultrasound system with 3D electronic steering, real-time cavitation monitoring, and 3D image reconstruction algorithms: a preclinical study in pigs

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin Woo; Lee, Jae Young; Hwang, Eui Jin; Hwang, In Pyeong; Woo, Sung Min; Lee, Chang Joo; Park, Eun Joo; Choi, Byung Ihn [Dept. of Radiology and Institute of Radiation Medicine, Seoul National University Hospital, Seoul (Korea, Republic of)

    2014-10-15

    The aim of this study was to evaluate the safety and accuracy of a new portable ultrasonography-guided high-intensity focused ultrasound (USg-HIFU) system with a 3-dimensional (3D) electronic steering transducer, a simultaneous ablation and imaging module, real-time cavitation monitoring, and 3D image reconstruction algorithms. To address the accuracy of the transducer, hydrophones in a water chamber were used to assess the generation of sonic fields. An animal study was also performed in five pigs by ablating in vivo thighs by single-point sonication (n=10) or volume sonication (n=10) and ex vivo kidneys by single-point sonication (n=10). Histological and statistical analyses were performed. In the hydrophone study, peak voltages were detected within 1.0 mm from the targets on the y- and z-axes and within 2.0-mm intervals along the x-axis (z-axis, direction of ultrasound propagation; y- and x-axes, perpendicular to the direction of ultrasound propagation). Twenty-nine of 30 HIFU sessions successfully created ablations at the target. The in vivo porcine thigh study showed only a small discrepancy (width, 0.5-1.1 mm; length, 3.0 mm) between the planning ultrasonograms and the pathological specimens. Inordinate thermal damage was not observed in the adjacent tissues or sonic pathways in the in vivo thigh and ex vivo kidney studies. Our study suggests that this new USg-HIFU system may be a safe and accurate technique for ablating soft tissues and encapsulated organs.

  17. Sieving Scattered 3D Point Clouds Using Clustering Analysis for 3D Surface Reconstruction%三维重建中散乱点云的聚类筛选与网格重建

    Institute of Scientific and Technical Information of China (English)

    陈晓霞; 陈孝威

    2011-01-01

    During the course of 3d surface reconstruction, there are a large number of noises and isolated 3d points in raw 3d point clouds, which obtained from images. If we directly use these data to reconstruct surface, the algorithm will make surface sharply prominent and ineffective reconstruction. Because of above problems, a method that sieving 3d point clouds based on DBSCAN is presented in this paper, and then 3d surface is reconstructed using filtered 3d point clouds. Experiments show that good 3d surface reconstruction is obtained using this algorithm.%三维重建过程中获得的初始海量数据存在大量的噪声和孤立点,使得直接使用这些数据进行网格重建时,将会产生尖锐的凸出,导致重建效果不好,甚至是网格重建失败.针对以上问题,提出首先采用基于密度聚类的方法筛选三维点云,然后进行网格重建.实验表明本文算法获得了较好的网格重建效果.

  18. An image-based approach to the reconstruction of ancient architectures by extracting and arranging 3D spatial components

    Institute of Scientific and Technical Information of China (English)

    Divya Udayan J; HyungSeok KIM; Jee-In KIM

    2015-01-01

    The objective of this research is the rapid reconstruction of ancient buildings of historical importance using a single image. The key idea of our approach is to reduce the infi nite solutions that might otherwise arise when recovering a 3D geometry from 2D photographs. The main outcome of our research shows that the proposed methodology can be used to reconstruct ancient monuments for use as proxies for digital effects in applications such as tourism, games, and entertainment, which do not require very accurate modeling. In this article, we consider the reconstruction of ancient Mughal architecture including the Taj Mahal. We propose a modeling pipeline that makes an easy reconstruction possible using a single photograph taken from a single view, without the need to create complex point clouds from multiple images or the use of laser scanners. First, an initial model is automatically reconstructed using locally fi tted planar primitives along with their boundary polygons and the adjacency relation among parts of the polygons. This approach is faster and more accurate than creating a model from scratch because the initial reconstruction phase provides a set of structural information together with the adjacency relation, which makes it possible to estimate the approximate depth of the entire structural monument. Next, we use manual extrapolation and editing techniques with modeling software to assemble and adjust different 3D components of the model. Thus, this research opens up the opportunity for the present generation to experience remote sites of architectural and cultural importance through virtual worlds and real-time mobile applications. Variations of a recreated 3D monument to represent an amalgam of various cultures are targeted for future work.

  19. A Graph-Based Approach for 3D Building Model Reconstruction from Airborne LiDAR Point Clouds

    Directory of Open Access Journals (Sweden)

    Bin Wu

    2017-01-01

    Full Text Available 3D building model reconstruction is of great importance for environmental and urban applications. Airborne light detection and ranging (LiDAR is a very useful data source for acquiring detailed geometric and topological information of building objects. In this study, we employed a graph-based method based on hierarchical structure analysis of building contours derived from LiDAR data to reconstruct urban building models. The proposed approach first uses a graph theory-based localized contour tree method to represent the topological structure of buildings, then separates the buildings into different parts by analyzing their topological relationships, and finally reconstructs the building model by integrating all the individual models established through the bipartite graph matching process. Our approach provides a more complete topological and geometrical description of building contours than existing approaches. We evaluated the proposed method by applying it to the Lujiazui region in Shanghai, China, a complex and large urban scene with various types of buildings. The results revealed that complex buildings could be reconstructed successfully with a mean modeling error of 0.32 m. Our proposed method offers a promising solution for 3D building model reconstruction from airborne LiDAR point clouds.

  20. A user-friendly nano-CT image alignment and 3D reconstruction platform based on LabVIEW

    Science.gov (United States)

    Wang, Sheng-Hao; Zhang, Kai; Wang, Zhi-Li; Gao, Kun; Wu, Zhao; Zhu, Pei-Ping; Wu, Zi-Yu

    2015-01-01

    X-ray computed tomography at the nanometer scale (nano-CT) offers a wide range of applications in scientific and industrial areas. Here we describe a reliable, user-friendly, and fast software package based on LabVIEW that may allow us to perform all procedures after the acquisition of raw projection images in order to obtain the inner structure of the investigated sample. A suitable image alignment process to address misalignment problems among image series due to mechanical manufacturing errors, thermal expansion, and other external factors has been considered, together with a novel fast parallel beam 3D reconstruction procedure that was developed ad hoc to perform the tomographic reconstruction. We have obtained remarkably improved reconstruction results at the Beijing Synchrotron Radiation Facility after the image calibration, the fundamental role of this image alignment procedure was confirmed, which minimizes the unwanted blurs and additional streaking artifacts that are always present in reconstructed slices. Moreover, this nano-CT image alignment and its associated 3D reconstruction procedure are fully based on LabVIEW routines, significantly reducing the data post-processing cycle, thus making the activity of the users faster and easier during experimental runs.

  1. Hardware Implementation and Validation of 3D Underwater Shape Reconstruction Algorithm Using a Stereo-Catadioptric System

    Directory of Open Access Journals (Sweden)

    Rihab Hmida

    2016-08-01

    Full Text Available In this paper, we present a new stereo vision-based system and its efficient hardware implementation for real-time underwater environments exploration throughout 3D sparse reconstruction based on a number of feature points. The proposed underwater 3D shape reconstruction algorithm details are presented. The main concepts and advantages are discussed and comparison with existing systems is performed. In order to achieve real-time video constraints, a hardware implementation of the algorithm is performed using Xilinx System Generator. The pipelined stereo vision system has been implemented using Field Programmable Gate Arrays (FPGA technology. Both timing constraints and mathematical operations precision have been evaluated in order to validate the proposed hardware implementation of our system. Experimental results show that the proposed system presents high accuracy and execution time performances.

  2. Calibration and 3D reconstruction of underwater objects with non-single-view projection model by structured light stereo imaging.

    Science.gov (United States)

    Wang, Yexin; Negahdaripour, Shahriar; Aykin, Murat D

    2016-08-20

    Establishing the projection model of imaging systems is critical in 3D reconstruction of object shapes from multiple 2D views. When deployed underwater, these are enclosed in waterproof housings with transparent glass ports that generate nonlinear refractions of optical rays at interfaces, leading to invalidation of the commonly assumed single-viewpoint (SVP) model. In this paper, we propose a non-SVP ray tracing model for the calibration of a projector-camera system, employed for 3D reconstruction based on the structured light paradigm. The projector utilizes dot patterns, having established that the contrast loss is less severe than for traditional stripe patterns in highly turbid waters. Experimental results are presented to assess the achieved calibrating accuracy.

  3. A collaborative computing framework of cloud network and WBSN applied to fall detection and 3-D motion reconstruction.

    Science.gov (United States)

    Lai, Chin-Feng; Chen, Min; Pan, Jeng-Shyang; Youn, Chan-Hyun; Chao, Han-Chieh

    2014-03-01

    As cloud computing and wireless body sensor network technologies become gradually developed, ubiquitous healthcare services prevent accidents instantly and effectively, as well as provides relevant information to reduce related processing time and cost. This study proposes a co-processing intermediary framework integrated cloud and wireless body sensor networks, which is mainly applied to fall detection and 3-D motion reconstruction. In this study, the main focuses includes distributed computing and resource allocation of processing sensing data over the computing architecture, network conditions and performance evaluation. Through this framework, the transmissions and computing time of sensing data are reduced to enhance overall performance for the services of fall events detection and 3-D motion reconstruction.

  4. 2D-3D shape reconstruction of the distal femur from stereo X-Ray imaging using statistical shape models

    DEFF Research Database (Denmark)

    Baka, N.; Kaptein, B. L.; de Bruijne, Marleen;

    2011-01-01

    as it lowers both the acquisition costs and the radiation dose compared to CT. We propose a method for pose estimation and shape reconstruction of 3D bone surfaces from two (or more) calibrated X-ray images using a statistical shape model (SSM). User interaction is limited to manual initialization of the mean...... shape. The proposed method combines a 3D distance based objective function with automatic edge selection on a Canny edge map. Landmark-edge correspondences are weighted based on the orientation difference of the projected silhouette and the corresponding image edge. The method was evaluated by rigid...... pose estimation of ground truth shapes as well as 3D shape estimation using a SSM of the whole femur, from stereo cadaver X-rays, in vivo biplane fluoroscopy image-pairs, and an in vivo biplane fluoroscopic sequence. Ground truth shapes for all experiments were available in the form of CT segmentations...

  5. Quantification of gully volume using very high resolution DSM generated through 3D reconstruction from airborne and field digital imagery

    Science.gov (United States)

    Castillo, Carlos; Zarco-Tejada, Pablo; Laredo, Mario; Gómez, Jose Alfonso

    2013-04-01

    Major advances have been made recently in automatic 3D photo-reconstruction techniques using uncalibrated and non-metric cameras (James and Robson, 2012). However, its application on soil conservation studies and landscape feature identification is currently at the outset. The aim of this work is to compare the performance of a remote sensing technique using a digital camera mounted on an airborne platform, with 3D photo-reconstruction, a method already validated for gully erosion assessment purposes (Castillo et al., 2012). A field survey was conducted in November 2012 in a 250 m-long gully located in field crops on a Vertisol in Cordoba (Spain). The airborne campaign was conducted with a 4000x3000 digital camera installed onboard an aircraft flying at 300 m above ground level to acquire 6 cm resolution imagery. A total of 990 images were acquired over the area ensuring a large overlap in the across- and along-track direction of the aircraft. An ortho-mosaic and the digital surface model (DSM) were obtained through automatic aerial triangulation and camera calibration methods. For the field-level photo-reconstruction technique, the gully was divided in several reaches to allow appropriate reconstruction (about 150 pictures taken per reach) and, finally, the resulting point clouds were merged into a unique mesh. A centimetric-accuracy GPS provided a benchmark dataset for gully perimeter and distinguishable reference points in order to allow the assessment of measurement errors of the airborne technique and the georeferenciation of the photo-reconstruction 3D model. The uncertainty on the gully limits definition was explicitly addressed by comparison of several criteria obtained by 3D models (slope and second derivative) with the outer perimeter obtained by the GPS operator identifying visually the change in slope at the top of the gully walls. In this study we discussed the magnitude of planimetric and altimetric errors and the differences observed between the

  6. 3D reconstruction and dynamic modeling of root architecture in situ and its application to crop phosphorus research.

    Science.gov (United States)

    Fang, Suqin; Yan, Xiaolong; Liao, Hong

    2009-12-01

    Root architecture plays important roles in plant water and nutrient acquisition. However, accurate modeling of the root system that provides a realistic representation of roots in the soil is limited by a lack of appropriate tools for the non-destructive and precise measurement of the root system architecture in situ. Here we describe a root growth system in which the roots grow in a solid gel matrix that was used to reconstruct 3D root architecture in situ and dynamically simulate its changes under various nutrient conditions with a high degree of precision. A 3D laser scanner combined with a transparent gel-based growth system was used to capture 3D images of roots. The root system skeleton was extracted using a skeleton extraction method based on the Hough transformation, and mesh modeling using Ball-B spline was employed. We successfully used this system to reconstruct rice and soybean root architectures and determine their changes under various phosphorus (P) supply conditions. Our results showed that the 3D root architecture parameters that were dynamically calculated based on the skeletonization and simulation of root systems were significantly correlated with the biomass and P content of rice and soybean based on both the simulation system and previous reports. Therefore, this approach provides a novel technique for the study of crop root growth and its adaptive changes to various environmental conditions.

  7. Method for 3D Object Reconstruction Using Several Portion of 2D Images from the Different Aspects Acquired with Image Scopes Included in the Fiber Retractor

    Directory of Open Access Journals (Sweden)

    Kohei Arai

    2012-12-01

    Full Text Available Method for 3D object reconstruction using several portions of 2D images from the different aspects which are acquired with image scopes included in the fiber retractor is proposed. Experimental results show a great possibilityfor reconstruction of acceptable quality of 3D object on the computer with several imageswhich are viewed from the different aspects of 2D images.

  8. 3D Dose reconstruction: Banding artefacts in cine mode EPID images during VMAT delivery

    Science.gov (United States)

    Woodruff, H. C.; Greer, P. B.

    2013-06-01

    Cine (continuous) mode images obtained during VMAT delivery are heavily degraded by banding artefacts. We have developed a method to reconstruct the pulse sequence (and hence dose deposited) from open field images. For clinical VMAT fields we have devised a frame averaging strategy that greatly improves image quality and dosimetric information for three-dimensional dose reconstruction.

  9. Effects of CT image segmentation methods on the accuracy of long bone 3D reconstructions.

    Science.gov (United States)

    Rathnayaka, Kanchana; Sahama, Tony; Schuetz, Michael A; Schmutz, Beat

    2011-03-01

    An accurate and accessible image segmentation method is in high demand for generating 3D bone models from CT scan data, as such models are required in many areas of medical research. Even though numerous sophisticated segmentation methods have been published over the years, most of them are not readily available to the general research community. Therefore, this study aimed to quantify the accuracy of three popular image segmentation methods, two implementations of intensity thresholding and Canny edge detection, for generating 3D models of long bones. In order to reduce user dependent errors associated with visually selecting a threshold value, we present a new approach of selecting an appropriate threshold value based on the Canny filter. A mechanical contact scanner in conjunction with a microCT scanner was utilised to generate the reference models for validating the 3D bone models generated from CT data of five intact ovine hind limbs. When the overall accuracy of the bone model is considered, the three investigated segmentation methods generated comparable results with mean errors in the range of 0.18-0.24 mm. However, for the bone diaphysis, Canny edge detection and Canny filter based thresholding generated 3D models with a significantly higher accuracy compared to those generated through visually selected thresholds. This study demonstrates that 3D models with sub-voxel accuracy can be generated utilising relatively simple segmentation methods that are available to the general research community.

  10. 3-D reconstructions of the early-November 2004 CDAW geomagnetic storms: analysis of Ooty IPS speed and density data

    Directory of Open Access Journals (Sweden)

    M. M. Bisi

    2009-12-01

    Full Text Available Interplanetary scintillation (IPS remote-sensing observations provide a view of the solar wind covering a wide range of heliographic latitudes and heliocentric distances from the Sun between ~0.1 AU and 3.0 AU. Such observations are used to study the development of solar coronal transients and the solar wind while propagating out through interplanetary space. They can also be used to measure the inner-heliospheric response to the passage of coronal mass ejections (CMEs and co-rotating heliospheric structures. IPS observations can, in general, provide a speed estimate of the heliospheric material crossing the observing line of site; some radio antennas/arrays can also provide a radio scintillation level. We use a three-dimensional (3-D reconstruction technique which obtains perspective views from outward-flowing solar wind and co-rotating structure as observed from Earth by iteratively fitting a kinematic solar wind model to these data. Using this 3-D modelling technique, we are able to reconstruct the velocity and density of CMEs as they travel through interplanetary space. For the time-dependent model used here with IPS data taken from the Ootacamund (Ooty Radio Telescope (ORT in India, the digital resolution of the tomography is 10° by 10° in both latitude and longitude with a half-day time cadence. Typically however, the resolutions range from 10° to 20° in latitude and longitude, with a half- to one-day time cadence for IPS data dependant upon how much data are used as input to the tomography. We compare reconstructed structures during early-November 2004 with in-situ measurements from the Wind spacecraft orbiting the Sun-Earth L1-Point to validate the 3-D tomographic reconstruction results and comment on how these improve upon prior reconstructions.

  11. 3D PET image reconstruction including both motion correction and registration directly into an MR or stereotaxic spatial atlas

    Science.gov (United States)

    Gravel, Paul; Verhaeghe, Jeroen; Reader, Andrew J.

    2013-01-01

    This work explores the feasibility and impact of including both the motion correction and the image registration transformation parameters from positron emission tomography (PET) image space to magnetic resonance (MR), or stereotaxic, image space within the system matrix of PET image reconstruction. This approach is motivated by the fields of neuroscience and psychiatry, where PET is used to investigate differences in activation patterns between different groups of participants, requiring all images to be registered to a common spatial atlas. Currently, image registration is performed after image reconstruction which introduces interpolation effects into the final image. Furthermore, motion correction (also requiring registration) introduces a further level of interpolation, and the overall result of these operations can lead to resolution degradation and possibly artifacts. It is important to note that performing such operations on a post-reconstruction basis means, strictly speaking, that the final images are not ones which maximize the desired objective function (e.g. maximum likelihood (ML), or maximum a posteriori reconstruction (MAP)). To correctly seek parameter estimates in the desired spatial atlas which are in accordance with the chosen reconstruction objective function, it is necessary to include the transformation parameters for both motion correction and registration within the system modeling stage of image reconstruction. Such an approach not only respects the statistically chosen objective function (e.g. ML or MAP), but furthermore should serve to reduce the interpolation effects. To evaluate the proposed method, this work investigates registration (including motion correction) using 2D and 3D simulations based on the high resolution research tomograph (HRRT) PET scanner geometry, with and without resolution modeling, using the ML expectation maximization (MLEM) reconstruction algorithm. The quality of reconstruction was assessed using bias

  12. Virtual surgical planning and 3D printing in prosthetic orbital reconstruction with percutaneous implants: a technical case report.

    Science.gov (United States)

    Huang, Yu-Hui; Seelaus, Rosemary; Zhao, Linping; Patel, Pravin K; Cohen, Mimis

    2016-01-01

    Osseointegrated titanium implants to the cranial skeleton for retention of facial prostheses have proven to be a reliable replacement for adhesive systems. However, improper placement of the implants can jeopardize prosthetic outcomes, and long-term success of an implant-retained prosthesis. Three-dimensional (3D) computer imaging, virtual planning, and 3D printing have become accepted components of the preoperative planning and design phase of treatment. Computer-aided design and computer-assisted manufacture that employ cone-beam computed tomography data offer benefits to patient treatment by contributing to greater predictability and improved treatment efficiencies with more reliable outcomes in surgical and prosthetic reconstruction. 3D printing enables transfer of the virtual surgical plan to the operating room by fabrication of surgical guides. Previous studies have shown that accuracy improves considerably with guided implantation when compared to conventional template or freehand implant placement. This clinical case report demonstrates the use of a 3D technological pathway for preoperative virtual planning through prosthesis fabrication, utilizing 3D printing, for a patient with an acquired orbital defect that was restored with an implant-retained silicone orbital prosthesis.

  13. Reconstruction of 3D Shapes of Opaque Cumulus Clouds from Airborne Multiangle Imaging: A Proof-of-Concept

    Science.gov (United States)

    Davis, A. B.; Bal, G.; Chen, J.

    2015-12-01

    Operational remote sensing of microphysical and optical cloud properties is invariably predicated on the assumption of plane-parallel slab geometry for the targeted cloud. The sole benefit of this often-questionable assumption about the cloud is that it leads to one-dimensional (1D) radiative transfer (RT)---a textbook, computationally tractable model. We present new results as evidence that, thanks to converging advances in 3D RT, inverse problem theory, algorithm implementation, and computer hardware, we are at the dawn of a new era in cloud remote sensing where we can finally go beyond the plane-parallel paradigm. Granted, the plane-parallel/1D RT assumption is reasonable for spatially extended stratiform cloud layers, as well as the smoothly distributed background aerosol layers. However, these 1D RT-friendly scenarios exclude cases that are critically important for climate physics. 1D RT---whence operational cloud remote sensing---fails catastrophically for cumuliform clouds that have fully 3D outer shapes and internal structures driven by shallow or deep convection. For these situations, the first order of business in a robust characterization by remote sensing is to abandon the slab geometry framework and determine the 3D geometry of the cloud, as a first step toward bone fide 3D cloud tomography. With this specific goal in mind, we deliver a proof-of-concept for an entirely new kind of remote sensing applicable to 3D clouds. It is based on highly simplified 3D RT and exploits multi-angular suites of cloud images at high spatial resolution. Airborne sensors like AirMSPI readily acquire such data. The key element of the reconstruction algorithm is a sophisticated solution of the nonlinear inverse problem via linearization of the forward model and an iteration scheme supported, where necessary, by adaptive regularization. Currently, the demo uses a 2D setting to show how either vertical profiles or horizontal slices of the cloud can be accurately reconstructed

  14. Fully-3D PET image reconstruction using scanner-independent, adaptive projection data and highly rotation-symmetric voxel assemblies.

    Science.gov (United States)

    Scheins, J J; Herzog, H; Shah, N J

    2011-03-01

    For iterative, fully 3D positron emission tomography (PET) image reconstruction intrinsic symmetries can be used to significantly reduce the size of the system matrix. The precalculation and beneficial memory-resident storage of all nonzero system matrix elements is possible where sufficient compression exists. Thus, reconstruction times can be minimized independently of the used projector and more elaborate weighting schemes, e.g., volume-of-intersection (VOI), are applicable. A novel organization of scanner-independent, adaptive 3D projection data is presented which can be advantageously combined with highly rotation-symmetric voxel assemblies. In this way, significant system matrix compression is achieved. Applications taking into account all physical lines-of-response (LORs) with individual VOI projectors are presented for the Siemens ECAT HR+ whole-body scanner and the Siemens BrainPET, the PET component of a novel hybrid-MR/PET imaging system. Measured and simulated data were reconstructed using the new method with ordered-subset-expectation-maximization (OSEM). Results are compared to those obtained by the sinogram-based OSEM reconstruction provided by the manufacturer. The higher computational effort due to the more accurate image space sampling provides significantly improved images in terms of resolution and noise.

  15. Efficient and robust 3D CT image reconstruction based on total generalized variation regularization using the alternating direction method.

    Science.gov (United States)

    Chen, Jianlin; Wang, Linyuan; Yan, Bin; Zhang, Hanming; Cheng, Genyang

    2015-01-01

    Iterative reconstruction algorithms for computed tomography (CT) through total variation regularization based on piecewise constant assumption can produce accurate, robust, and stable results. Nonetheless, this approach is often subject to staircase artefacts and the loss of fine details. To overcome these shortcomings, we introduce a family of novel image regularization penalties called total generalized variation (TGV) for the effective production of high-quality images from incomplete or noisy projection data for 3D reconstruction. We propose a new, fast alternating direction minimization algorithm to solve CT image reconstruction problems through TGV regularization. Based on the theory of sparse-view image reconstruction and the framework of augmented Lagrange function method, the TGV regularization term has been introduced in the computed tomography and is transformed into three independent variables of the optimization problem by introducing auxiliary variables. This new algorithm applies a local linearization and proximity technique to make the FFT-based calculation of the analytical solutions in the frequency domain feasible, thereby significantly reducing the complexity of the algorithm. Experiments with various 3D datasets corresponding to incomplete projection data demonstrate the advantage of our proposed algorithm in terms of preserving fine details and overcoming the staircase effect. The computation cost also suggests that the proposed algorithm is applicable to and is effective for CBCT imaging. Theoretical and technical optimization should be investigated carefully in terms of both computation efficiency and high resolution of this algorithm in application-oriented research.

  16. Investigation of the Z-axis resolution of breast tomosynthesis mammography systems

    Science.gov (United States)

    Zhang, Yiheng; Chan, Heang-Ping; Sahiner, Berkman; Wei, Jun; Ge, Jun; Hadjiiski, Lubomir M.; Zhou, Chuan

    2007-03-01

    Digital Tomosynthesis Mammography (DTM) is a promising modality that can improve breast cancer detection. DTM acquires low-dose mammograms at a number of projection angles over a limited angular range and reconstructs the 3D breast volume. DTM can provide depth information to separate overlapping breast tissues occurred in conventional mammograms, thereby facilitating detection of subtle lesions. In this work, we investigated the impact of the imaging parameters and reconstruction methods on the Z-axis resolution in DTM systems. The Z-axis resolution represents the ability of the DTM system to distinguish adjacent objects along the depth direction. A DTM system with variable image acquisition parameters was modeled. In this preliminary study, a computer phantom containing a high-density point object embedded in an air volume was used. We simulated a range of DTM conditions by generating an appropriate number of PV images in 3° increments covering a total tomosynthesis angle from +/-15° to +/-30°. The Simultaneous Algebraic Reconstruction Technique (SART) was used for reconstruction of the imaged volume from the noise-free projection data and the results were compared to those of back-projection method. Vertical line profiles along the Z-axis and through the object center were extracted from the reconstructed volume and the full-width-at-half-maximum (FWHM) of the normalized intensity profile was used to evaluate the Z-axis resolution. Preliminary results demonstrated that while the Z-axis resolution remains almost constant as a function of depth within a 5-cm-thick volume, it is strongly affected by the PV angular range such that the depth resolution improves with increasing total tomosynthesis angle. The depth resolution also depends on the reconstruction algorithm employed; the SART method is superior to the simple back-projection method in terms of depth resolution.

  17. Utilization of intraoperative 3D navigation for delayed reconstruction of orbitozygomatic complex fractures.

    Science.gov (United States)

    Morrison, Clinton S; Taylor, Helena O; Sullivan, Stephen R

    2013-05-01

    Reconstructive goals for orbitozygomaticomaxillary complex fractures include restoration of orbital volume, facial projection, and facial width. Delayed reconstruction is made more difficult by malunion, nonunion, bony absorption, loss of the soft tissue envelope, and scar. Three-dimensional intraoperative navigation, widely used in neurosurgery and sinus surgery, can improve the accuracy with which bony reduction is performed. This is particularly useful in the setting of bony absorption and comminution. We report a case of delayed reconstruction of an orbitozygomaticomaxillary complex fracture using intraoperative navigation and review this technology's utility in this setting.

  18. Spatial resolution of the HRRT PET scanner using 3D-OSEM PSF reconstruction

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Sibomana, Merence; Keller, Sune Høgild;

    2009-01-01

    The spatial resolution of the Siemens High Resolution Research Tomograph (HRRT) dedicated brain PET scanner installed at Copenhagen University Hospital (Rigshospitalet) was measured using a point-source phantom with high statistics. Further, it was demonstrated how the newly developed 3D-OSEM PSF...

  19. Ground truth evaluation of computer vision based 3D reconstruction of synthesized and real plant images

    DEFF Research Database (Denmark)

    Nielsen, Michael; Andersen, Hans Jørgen; Slaughter, David

    2007-01-01

    There is an increasing interest in using 3D computer vision in precision agriculture. This calls for better quantitative evaluation and understanding of computer vision methods. This paper proposes a test framework using ray traced crop scenes that allows in-depth analysis of algorithm performance...

  20. 3D Reconstruction of the Glycocalyx Structure in Mammalian Capillaries using Electron Tomography

    DEFF Research Database (Denmark)

    Arkill, Kp; Neal, Cr; Mantell, Jm;

    2012-01-01

    success (e.g. freeze fracture). A new approach is therefore needed. Here we demonstrate the effectiveness of using the relatively novel electron microscopy technique of 3D electron tomography ontwo differently stained preparations to reveal details of the architecture of the glycocalyx just above...

  1. Reconstruction for Time-Domain In Vivo EPR 3D Multigradient Oximetric Imaging—A Parallel Processing Perspective

    Directory of Open Access Journals (Sweden)

    Christopher D. Dharmaraj

    2009-01-01

    Full Text Available Three-dimensional Oximetric Electron Paramagnetic Resonance Imaging using the Single Point Imaging modality generates unpaired spin density and oxygen images that can readily distinguish between normal and tumor tissues in small animals. It is also possible with fast imaging to track the changes in tissue oxygenation in response to the oxygen content in the breathing air. However, this involves dealing with gigabytes of data for each 3D oximetric imaging experiment involving digital band pass filtering and background noise subtraction, followed by 3D Fourier reconstruction. This process is rather slow in a conventional uniprocessor system. This paper presents a parallelization framework using OpenMP runtime support and parallel MATLAB to execute such computationally intensive programs. The Intel compiler is used to develop a parallel C++ code based on OpenMP. The code is executed on four Dual-Core AMD Opteron shared memory processors, to reduce the computational burden of the filtration task significantly. The results show that the parallel code for filtration has achieved a speed up factor of 46.66 as against the equivalent serial MATLAB code. In addition, a parallel MATLAB code has been developed to perform 3D Fourier reconstruction. Speedup factors of 4.57 and 4.25 have been achieved during the reconstruction process and oximetry computation, for a data set with 23×23×23 gradient steps. The execution time has been computed for both the serial and parallel implementations using different dimensions of the data and presented for comparison. The reported system has been designed to be easily accessible even from low-cost personal computers through local internet (NIHnet. The experimental results demonstrate that the parallel computing provides a source of high computational power to obtain biophysical parameters from 3D EPR oximetric imaging, almost in real-time.

  2. Patient-specific reconstruction utilizing computer assisted 3D modelling for partial bone flap defect in hybrid cranioplasty

    Science.gov (United States)

    Hueh, Low Peh; Abdullah, Johari Yap; Abdullah, Abdul Manaf; Yahya, Suzana; Idris, Zamzuri; Mohamad, Dasmawati

    2016-12-01

    Autologous cranioplasty using a patient's original bone flap remain the commonest practice nowadays. However, partial bone flap defect is commonly encountered. Replacing the bone flap with pre-moulded synthetic bone flap is costly and not affordable to many patients. Hence most of the small to medium size defect was topped up with alloplastic material on a free hand basis intra-operatively which often resulted in inaccurate implant approximation with unsatisfactory cosmetic result. This study aims to evaluate implant accuracy and cosmetic outcome of cranioplasty candidates who underwent partial bone flap reconstruction utilising computer assisted 3D modelling. 3D images of the skull were obtained from post-craniectomy axial 1-mm spiral computed tomography (CT) scans and a virtual 3D model was generated using the Materialise Mimics software. The Materialise 3-Matic was then utilised to design a patient-specific implant. Prefabrication of the implant was performed by the 3D Objet printer, and a negative gypsum mold was created with the prefabricated cranial implant. Intraoperatively, a hybrid polymethyl methacrylate (PMMA)-autologous cranial implant was produced using the gypsum mold, and fit into the cranial defect. This study is still ongoing at the moment. To date, two men has underwent partial bone flap reconstruction utilising this technique and both revealed satisfactory implant alignment with favourable cosmesis. Mean implant size was 12cm2, and the mean duration of intraoperative reconstruction for the partial bone flap defect was 40 minutes. No significant complication was reported. As a conclusion, this new technique and approach resulted in satisfactory implant alignment and favourable cosmetic outcome. However, more study samples are needed to increase the validity of the study results.

  3. Reconstruction for time-domain in vivo EPR 3D multigradient oximetric imaging--a parallel processing perspective.

    Science.gov (United States)

    Dharmaraj, Christopher D; Thadikonda, Kishan; Fletcher, Anthony R; Doan, Phuc N; Devasahayam, Nallathamby; Matsumoto, Shingo; Johnson, Calvin A; Cook, John A; Mitchell, James B; Subramanian, Sankaran; Krishna, Murali C

    2009-01-01

    Three-dimensional Oximetric Electron Paramagnetic Resonance Imaging using the Single Point Imaging modality generates unpaired spin density and oxygen images that can readily distinguish between normal and tumor tissues in small animals. It is also possible with fast imaging to track the changes in tissue oxygenation in response to the oxygen content in the breathing air. However, this involves dealing with gigabytes of data for each 3D oximetric imaging experiment involving digital band pass filtering and background noise subtraction, followed by 3D Fourier reconstruction. This process is rather slow in a conventional uniprocessor system. This paper presents a parallelization framework using OpenMP runtime support and parallel MATLAB to execute such computationally intensive programs. The Intel compiler is used to develop a parallel C++ code based on OpenMP. The code is executed on four Dual-Core AMD Opteron shared memory processors, to reduce the computational burden of the filtration task significantly. The results show that the parallel code for filtration has achieved a speed up factor of 46.66 as against the equivalent serial MATLAB code. In addition, a parallel MATLAB code has been developed to perform 3D Fourier reconstruction. Speedup factors of 4.57 and 4.25 have been achieved during the reconstruction process and oximetry computation, for a data set with 23 x 23 x 23 gradient steps. The execution time has been computed for both the serial and parallel implementations using different dimensions of the data and presented for comparison. The reported syste