WorldWideScience

Sample records for 3d random internal

  1. Random-Profiles-Based 3D Face Recognition System

    Directory of Open Access Journals (Sweden)

    Joongrock Kim

    2014-03-01

    Full Text Available In this paper, a noble nonintrusive three-dimensional (3D face modeling system for random-profile-based 3D face recognition is presented. Although recent two-dimensional (2D face recognition systems can achieve a reliable recognition rate under certain conditions, their performance is limited by internal and external changes, such as illumination and pose variation. To address these issues, 3D face recognition, which uses 3D face data, has recently received much attention. However, the performance of 3D face recognition highly depends on the precision of acquired 3D face data, while also requiring more computational power and storage capacity than 2D face recognition systems. In this paper, we present a developed nonintrusive 3D face modeling system composed of a stereo vision system and an invisible near-infrared line laser, which can be directly applied to profile-based 3D face recognition. We further propose a novel random-profile-based 3D face recognition method that is memory-efficient and pose-invariant. The experimental results demonstrate that the reconstructed 3D face data consists of more than 50 k 3D point clouds and a reliable recognition rate against pose variation.

  2. Seismic random noise attenuation via 3D block matching

    Science.gov (United States)

    Amani, Sajjad; Gholami, Ali; Javaheri Niestanak, Alireza

    2017-01-01

    The lack of signal to noise ratio increases the final errors of seismic interpretation. In the present study, we apply a new non-local transform domain method called "3 Dimensional Block Matching (3DBM)" for seismic random noise attenuation. Basically, 3DBM uses the similarities through the data for retrieving the amplitude of signal in a specific point in the f-x domain, and because of this, it is able to preserve discontinuities in the data such as fractures and faults. 3DBM considers each seismic profile as an image and thus it can be applied to both pre-stack and post-stack seismic data. It uses the block matching clustering method to gather similar blocks contained in 2D data into 3D groups in order to enhance the level of correlation in each 3D array. By applying a 2D transform and 1D transform (instead of a 3D transform) on each array, we can effectively attenuate the noise by shrinkage of the transform coefficients. The subsequent inverse 2D transform and inverse 1D transform yield estimates of all matched blocks. Finally, the random noise attenuated data is computed using the weighted average of all block estimates. We applied 3DBM on both synthetic and real pre-stack and post-stack seismic data and compared it with a Curvelet transform based denoising method which is one of the most powerful methods in this area. The results show that 3DBM method eventuates in higher signal to noise ratio, lower execution time and higher visual quality.

  3. Automatic Detection and Segmentation of Kidneys in 3D CT Images Using Random Forests

    OpenAIRE

    Cuingnet, Rémi; Prevost, Raphaël; Lesage, David; Cohen, Laurent D.; Mory, Benoît; Ardon, Roberto

    2012-01-01

    International audience; Kidney segmentation in 3D CT images allows extracting useful information for nephrologists. For practical use in clinical routine, such an algorithm should be fast, automatic and robust to contrast-agent enhancement and elds of view. By combining and re ning state-of-the-art techniques (random forests and template deformation), we demonstrate the possibility of building an algorithm that meets these requirements. Kidneys are localized with random forests following a co...

  4. 3D cadastre in the Netherlands: Developments and international applicability

    NARCIS (Netherlands)

    Stoter, J.; Ploeger, H.; Van Oosterom, P.

    This paper presents the design and implementation of the cadastral system extension for registration of 3D rights and restrictions in the Netherlands fitting within the ISO 19152, Land Administration Domain Model (LADM) final draft international standard. The implementation will be conducted in two

  5. Generation of nearly 3D-unpolarized evanescent optical near fields using total internal reflection.

    Science.gov (United States)

    Hassinen, Timo; Popov, Sergei; Friberg, Ari T; Setälä, Tero

    2016-07-01

    We analyze the time-domain partial polarization of optical fields composed of two evanescent waves created in total internal reflection by random electromagnetic beams with orthogonal planes of incidence. We show that such a two-beam configuration enables to generate nearly unpolarized, genuine three-component (3D) near fields. This result complements earlier studies on spectral polarization, which state that at least three symmetrically propagating beams are required to produce a 3D-unpolarized near field. The degree of polarization of the near field can be controlled by adjusting the polarization states and mutual correlation of the incident beams.

  6. Scaling of coercivity in a 3d random anisotropy model

    Energy Technology Data Exchange (ETDEWEB)

    Proctor, T.C., E-mail: proctortc@gmail.com; Chudnovsky, E.M., E-mail: EUGENE.CHUDNOVSKY@lehman.cuny.edu; Garanin, D.A.

    2015-06-15

    The random-anisotropy Heisenberg model is numerically studied on lattices containing over ten million spins. The study is focused on hysteresis and metastability due to topological defects, and is relevant to magnetic properties of amorphous and sintered magnets. We are interested in the limit when ferromagnetic correlations extend beyond the size of the grain inside which the magnetic anisotropy axes are correlated. In that limit the coercive field computed numerically roughly scales as the fourth power of the random anisotropy strength and as the sixth power of the grain size. Theoretical arguments are presented that provide an explanation of numerical results. Our findings should be helpful for designing amorphous and nanosintered materials with desired magnetic properties. - Highlights: • We study the random-anisotropy model on lattices containing up to ten million spins. • Irreversible behavior due to topological defects (hedgehogs) is elucidated. • Hysteresis loop area scales as the fourth power of the random anisotropy strength. • In nanosintered magnets the coercivity scales as the six power of the grain size.

  7. A Unified 3D Mesh Segmentation Framework Based on Markov Random Field

    Directory of Open Access Journals (Sweden)

    Z.F. Shi

    2012-04-01

    Full Text Available 3D Mesh segmentation has become an important research field in computer graphics during the past decades. Many geometry based and semantic oriented approaches for 3D mesh segmentation has been presented. In this paper, we present a definition of mesh segmentation according to labeling problem. Inspired by the Markov Random Field (MRF based image segmentation, we propose a new framework of 3D mesh segmentation based on MRF and use graph cuts to solve it. Any features of 3D mesh can be integrated into the segmentation framework. Experimental results show that the noise and over-segmentation are avoided. It also demonstrates that the proposed scheme has the capability of combining the geometric and topology information of the 3D mesh.

  8. Internal variability of a 3-D ocean model

    Directory of Open Access Journals (Sweden)

    Bjarne Büchmann

    2016-11-01

    Full Text Available The Defence Centre for Operational Oceanography runs operational forecasts for the Danish waters. The core setup is a 60-layer baroclinic circulation model based on the General Estuarine Transport Model code. At intervals, the model setup is tuned to improve ‘model skill’ and overall performance. It has been an area of concern that the uncertainty inherent to the stochastical/chaotic nature of the model is unknown. Thus, it is difficult to state with certainty that a particular setup is improved, even if the computed model skill increases. This issue also extends to the cases, where the model is tuned during an iterative process, where model results are fed back to improve model parameters, such as bathymetry.An ensemble of identical model setups with slightly perturbed initial conditions is examined. It is found that the initial perturbation causes the models to deviate from each other exponentially fast, causing differences of several PSUs and several kelvin within a few days of simulation. The ensemble is run for a full year, and the long-term variability of salinity and temperature is found for different regions within the modelled area. Further, the developing time scale is estimated for each region, and great regional differences are found – in both variability and time scale. It is observed that periods with very high ensemble variability are typically short-term and spatially limited events.A particular event is examined in detail to shed light on how the ensemble ‘behaves’ in periods with large internal model variability. It is found that the ensemble does not seem to follow any particular stochastic distribution: both the ensemble variability (standard deviation or range as well as the ensemble distribution within that range seem to vary with time and place. Further, it is observed that a large spatial variability due to mesoscale features does not necessarily correlate to large ensemble variability. These findings bear

  9. Research on the Impact of 3D Printing on the International Supply Chain

    Directory of Open Access Journals (Sweden)

    Zhen Chen

    2016-01-01

    Full Text Available In recent years 3D printing technology is developing rapidly. In the foreseeable future, when 3D printing is widely used, the world’s industrial structure will be greatly changed. Based on the actual data, this paper constructs an international supply chain model using system dynamics method. And it simulates the reconstruction trend of the supply chain after 3D printing application. The conclusion shows that the universal application of 3D printing will lead to the worldwide transport volume shrinking dramatically. The manufacturing activities will gradually outflow to the countries which are closer to the final customers. The relevant countries should carry out feasible measures to face this opportunity and challenge. The measures include the reform of logistics facilities, the logistics cooperation with the origin of 3D printing materials, and the matched transportation of 3D printing materials and traditional processing ones.

  10. Use of 3D printed models in medical education: A randomized control trial comparing 3D prints versus cadaveric materials for learning external cardiac anatomy.

    Science.gov (United States)

    Lim, Kah Heng Alexander; Loo, Zhou Yaw; Goldie, Stephen J; Adams, Justin W; McMenamin, Paul G

    2016-05-06

    Three-dimensional (3D) printing is an emerging technology capable of readily producing accurate anatomical models, however, evidence for the use of 3D prints in medical education remains limited. A study was performed to assess their effectiveness against cadaveric materials for learning external cardiac anatomy. A double blind randomized controlled trial was undertaken on undergraduate medical students without prior formal cardiac anatomy teaching. Following a pre-test examining baseline external cardiac anatomy knowledge, participants were randomly assigned to three groups who underwent self-directed learning sessions using either cadaveric materials, 3D prints, or a combination of cadaveric materials/3D prints (combined materials). Participants were then subjected to a post-test written by a third party. Fifty-two participants completed the trial; 18 using cadaveric materials, 16 using 3D models, and 18 using combined materials. Age and time since completion of high school were equally distributed between groups. Pre-test scores were not significantly different (P = 0.231), however, post-test scores were significantly higher for 3D prints group compared to the cadaveric materials or combined materials groups (mean of 60.83% vs. 44.81% and 44.62%, P = 0.010, adjusted P = 0.012). A significant improvement in test scores was detected for the 3D prints group (P = 0.003) but not for the other two groups. The finding of this pilot study suggests that use of 3D prints do not disadvantage students relative to cadaveric materials; maximally, results suggest that 3D may confer certain benefits to anatomy learning and supports their use and ongoing evaluation as supplements to cadaver-based curriculums. Anat Sci Educ 9: 213-221. © 2015 American Association of Anatomists.

  11. Effects of 3D random correlated velocity perturbations on predicted ground motions

    Science.gov (United States)

    Hartzell, S.; Harmsen, S.; Frankel, A.

    2010-01-01

    Three-dimensional, finite-difference simulations of a realistic finite-fault rupture on the southern Hayward fault are used to evaluate the effects of random, correlated velocity perturbations on predicted ground motions. Velocity perturbations are added to a three-dimensional (3D) regional seismic velocity model of the San Francisco Bay Area using a 3D von Karman random medium. Velocity correlation lengths of 5 and 10 km and standard deviations in the velocity of 5% and 10% are considered. The results show that significant deviations in predicted ground velocities are seen in the calculated frequency range (≤1 Hz) for standard deviations in velocity of 5% to 10%. These results have implications for the practical limits on the accuracy of scenario ground-motion calculations and on retrieval of source parameters using higher-frequency, strong-motion data.

  12. A novel 3D Cartesian random sampling strategy for Compressive Sensing Magnetic Resonance Imaging.

    Science.gov (United States)

    Valvano, Giuseppe; Martini, Nicola; Santarelli, Maria Filomena; Chiappino, Dante; Landini, Luigi

    2015-01-01

    In this work we propose a novel acquisition strategy for accelerated 3D Compressive Sensing Magnetic Resonance Imaging (CS-MRI). This strategy is based on a 3D cartesian sampling with random switching of the frequency encoding direction with other K-space directions. Two 3D sampling strategies are presented. In the first strategy, the frequency encoding direction is randomly switched with one of the two phase encoding directions. In the second strategy, the frequency encoding direction is randomly chosen between all the directions of the K-Space. These strategies can lower the coherence of the acquisition, in order to produce reduced aliasing artifacts and to achieve a better image quality after Compressive Sensing (CS) reconstruction. Furthermore, the proposed strategies can reduce the typical smoothing of CS due to the limited sampling of high frequency locations. We demonstrated by means of simulations that the proposed acquisition strategies outperformed the standard Compressive Sensing acquisition. This results in a better quality of the reconstructed images and in a greater achievable acceleration.

  13. Automatic 3-D Optical Detection on Orientation of Randomly Oriented Industrial Parts for Rapid Robotic Manipulation

    Directory of Open Access Journals (Sweden)

    Liang-Chia Chen

    2012-12-01

    Full Text Available This paper proposes a novel method employing a developed 3-D optical imaging and processing algorithm for accurate classification of an object’s surface characteristics in robot pick and place manipulation. In the method, 3-D geometry of industrial parts can be rapidly acquired by the developed one-shot imaging optical probe based on Fourier Transform Profilometry (FTP by using digital-fringe projection at a camera’s maximum sensing speed. Following this, the acquired range image can be effectively segmented into three surface types by classifying point clouds based on the statistical distribution of the normal surface vector of each detected 3-D point, and then the scene ground is reconstructed by applying least squares fitting and classification algorithms. Also, a recursive search process incorporating the region-growing algorithm for registering homogeneous surface regions has been developed. When the detected parts are randomly overlapped on a workbench, a group of defined 3-D surface features, such as surface areas, statistical values of the surface normal distribution and geometric distances of defined features, can be uniquely recognized for detection of the part’s orientation. Experimental testing was performed to validate the feasibility of the developed method for real robotic manipulation.

  14. Integrated photonic 3D waveguide arrays for quantum random walks on a circle

    CERN Document Server

    Linjordet, Trond

    2010-01-01

    Quantum random walks (QRWs) can be used to perform both quantum simulations and quantum algorithms. In order to exploit this potential, quantum walks on different types of graphs must be physically implemented. To this end this we design, model and experimentally fabricate, using the femtosecond laser direct-write technique, a 3D tubular waveguide array within glass to implement a photonic quantum walk on a circle. The boundary conditions of a QRW on a circle naturally suggests a 3D waveguide implementation - allowing much simpler device design than what could be achieved using a 2D waveguide architecture. We show that, in some cases, three-dimensional photonic circuits can be more suited to the simulation of complex quantum phenomena.

  15. 3D morphology of a random field from its 2D cross-section

    CERN Document Server

    Makarenko, Irina; Shukurov, Anvar

    2014-01-01

    We show that both aspect ratios of randomly oriented triaxial ellipsoids (representing isosurfaces of an isotropic 3D random field) can be determined from a single 2D cross-section of their sample using the probability distribution of the filamentarity F of the structures seen in the cross-section (F=0 for a circle and F=1 for a line). The probability distribution of F has a robust form with a sharp maximum and truncation that are sensitive to the ellipsoids' aspect ratios. We show that the aspect ratios of triaxial ellipsoids with randomly distributed dimensions can still be recovered from the probability distribution of F. This method is applicable to many shape recognition and classification problems, here illustrated with neutral hydrogen density in the turbulent interstellar medium of the Milky Way. The gas distribution is shown to be filamentary with the mean axis ratio 1:2:20.

  16. 3D Multisource Full‐Waveform Inversion using Dynamic Random Phase Encoding

    KAUST Repository

    Boonyasiriwat, Chaiwoot

    2010-10-17

    We have developed a multisource full‐waveform inversion algorithm using a dynamic phase encoding strategy with dual‐randomization—both the position and polarity of simultaneous sources are randomized and changed every iteration. The dynamic dual‐randomization is used to promote the destructive interference of crosstalk noise resulting from blending a large number of common shot gathers into a supergather. We compare our multisource algorithm with various algorithms in a numerical experiment using the 3D SEG/EAGE overthrust model and show that our algorithm provides a higher‐quality velocity tomogram than the other methods that use only monorandomization. This suggests that increasing the degree of randomness in phase encoding should improve the quality of the inversion result.

  17. DETERMINATION OF INTERNAL STRAIN IN 3-D BRAIDED COMPOSITES USING OPTIC FIBER STRAIN SENSORS

    Institute of Scientific and Technical Information of China (English)

    YuanShenfang; HuangRui; LiXianghua; LiuXiaohui

    2004-01-01

    A reliable understanding of the properties of 3-D braided composites is of primary importance for proper utilization of these materials. A new method is introduced to study the mechanical performance of braided composite materials using embedded optic fiber sensors. Experimental research is performed to devise a method of incorporating optic fibers into a 3-D braided composite structure. The efficacy of this new testing method is evaluated on two counts. First,the optical performance of optic fibers is studied before and after incorporated into 3-D braided composites, as well as after completion of the manufacturing process for 3-D braided composites,to validate the ability of the optic fiber to survive the manufacturing process. On the other hand,the influence of incorporated optic fiber on the original braided composite is also researched by tension and compression experiments. Second, two kinds of optic fiber sensors are co-embedded into 3-D braided composites to evaluate their respective ability to measure the internal strain.Experimental results show that multiple optic fiber sensors can be co-braided into 3-D braided composites to determine their internal strain which is difficult to be fulfilled by other current existing methods.

  18. Internal Strain Measurement in 3D Braided Composites Using Co-braided Optical Fiber Sensors

    Institute of Scientific and Technical Information of China (English)

    Shenfang YUAN; Rui HUANG; Yunjiang RAO

    2004-01-01

    3D braided composite technology has stimulated a great deal of interest in the world at large. But due to the threedimensional nature of these kinds of composites, coupled with the shortcomings of currently-adopted experimental test methods, it is difficult to measure the internal parameters of this materials, hence causes it difficult to understand the material performance. A new method is introduced herein to measure the internal strain of braided composite materials using co-braided fiber optic sensors. Two kinds of fiber optic sensors are co-braided into 3D braided composites to measure internal strain. One of these is the Fabry-Parrot (F-P) fiber optic sensor; the other is the polarimetric fiber optic sensor. Experiments are conducted to measure internal strain under tension, bending and thermal environments in the 3D carbon fiber braided composite specimens, both locally and globally. Experimental results show that multiple fiber optic sensors can be braided into the 3D braided composites to measure the internal parameters, providing a more accurate measurement method and leading to a better understanding of these materials.

  19. Mach-wave coherence in 3D media with random heterogeneities

    Science.gov (United States)

    Vyas, Jagdish C.; Mai, P. Martin; Galis, Martin; Dunham, Eric M.; Imperatori, Walter

    2016-04-01

    We investigate Mach-waves coherence for complex super-shear ruptures embedded in 3D random media that lead to seismic scattering. We simulate Mach-wave using kinematic earthquake sources that include fault-regions over which the rupture propagates at super-shear speed. The local slip rate is modeled with the regularized Yoffe function. The medium heterogeneities are characterized by Von Karman correlation function. We consider various realizations of 3D random media from combinations of different values of correlation length (0.5 km, 2 km, 5 km), standard deviation (5%, 10%, 15%) and Hurst exponent (0.2). Simulations in a homogeneous medium serve as a reference case. The ground-motion simulations (maximum resolved frequency of 5 Hz) are conducted by solving the elasto-dynamic equations of motions using a generalized finite-difference method, assuming a vertical strike-slip fault. The seismic wavefield is sampled at numerous locations within the Mach-cone region to study the properties and evolution of the Mach-waves in scattering media. We find that the medium scattering from random heterogeneities significantly diminishes the coherence of Mach-wave in terms of both amplitude and frequencies. We observe that Mach-waves are considerably scattered at distances RJB > 20 km (and beyond) for random media with standard deviation 10%. The scattering efficiency of the medium for small Hurst exponents (H seismic scattering. We suggest that if an earthquake is recorded within 10-15 km fault perpendicular distance and has high PGA, then inversion should be carried out by allowing rupture speed variations from sub-Rayleigh to super-shear.

  20. Technical report on implementation of reactor internal 3D modeling and visual database system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeun Seung; Eom, Young Sam; Lee, Suk Hee; Ryu, Seung Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    In this report was described a prototype of reactor internal 3D modeling and VDB system for NSSS design quality improvement. For improving NSSS design quality several cases of the nuclear developed nation`s integrated computer aided engineering system, such as Mitsubishi`s NUWINGS (Japan), AECL`s CANDID (Canada) and Duke Power`s PASCE (USA) were studied. On the basis of these studies the strategy for NSSS design improvement system was extracted and detail work scope was implemented as follows : 3D modelling of the reactor internals were implemented by using the parametric solid modeler, a prototype system of design document computerization and database was suggested, and walk-through simulation integrated with 3D modeling and VDB was accomplished. Major effects of NSSS design quality improvement system by using 3D modeling and VDB are the plant design optimization by simulation, improving the reliability through the single design database system and engineering cost reduction by improving productivity and efficiency. For applying the VDB to full scope of NSSS system design, 3D modelings of reactor coolant system and nuclear fuel assembly and fuel rod were attached as appendix. 2 tabs., 31 figs., 7 refs. (Author) .new.

  1. Design and Fabrication of Kidney Phantoms for Internal Radiation Dosimetry Using 3D Printing Technology.

    Science.gov (United States)

    Tran-Gia, Johannes; Schlögl, Susanne; Lassmann, Michael

    2016-12-01

    Currently, the validation of multimodal quantitative imaging and absorbed dose measurements is impeded by the lack of suitable, commercially available anthropomorphic phantoms of variable sizes and shapes. To demonstrate the potential of 3-dimensional (3D) printing techniques for quantitative SPECT/CT imaging, a set of kidney dosimetry phantoms and their spherical counterparts was designed and manufactured with a fused-deposition-modeling 3D printer. Nuclide-dependent SPECT/CT calibration factors were determined to assess the accuracy of quantitative imaging for internal renal dosimetry.

  2. Block matching 3D random noise filtering for absorption optical projection tomography

    Energy Technology Data Exchange (ETDEWEB)

    Fumene Feruglio, P; Vinegoni, C; Weissleder, R [Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114 (United States); Gros, J [Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston MA 02115 (United States); Sbarbati, A, E-mail: cvinegoni@mgh.harvard.ed [Department of Morphological and Biomedical Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona (Italy)

    2010-09-21

    Absorption and emission optical projection tomography (OPT), alternatively referred to as optical computed tomography (optical-CT) and optical-emission computed tomography (optical-ECT), are recently developed three-dimensional imaging techniques with value for developmental biology and ex vivo gene expression studies. The techniques' principles are similar to the ones used for x-ray computed tomography and are based on the approximation of negligible light scattering in optically cleared samples. The optical clearing is achieved by a chemical procedure which aims at substituting the cellular fluids within the sample with a cell membranes' index matching solution. Once cleared the sample presents very low scattering and is then illuminated with a light collimated beam whose intensity is captured in transillumination mode by a CCD camera. Different projection images of the sample are subsequently obtained over a 360{sup 0} full rotation, and a standard backprojection algorithm can be used in a similar fashion as for x-ray tomography in order to obtain absorption maps. Because not all biological samples present significant absorption contrast, it is not always possible to obtain projections with a good signal-to-noise ratio, a condition necessary to achieve high-quality tomographic reconstructions. Such is the case for example, for early stage's embryos. In this work we demonstrate how, through the use of a random noise removal algorithm, the image quality of the reconstructions can be considerably improved even when the noise is strongly present in the acquired projections. Specifically, we implemented a block matching 3D (BM3D) filter applying it separately on each acquired transillumination projection before performing a complete three-dimensional tomographical reconstruction. To test the efficiency of the adopted filtering scheme, a phantom and a real biological sample were processed. In both cases, the BM3D filter led to a signal-to-noise ratio

  3. Disulfide Connectivity Prediction Based on Modelled Protein 3D Structural Information and Random Forest Regression.

    Science.gov (United States)

    Yu, Dong-Jun; Li, Yang; Hu, Jun; Yang, Xibei; Yang, Jing-Yu; Shen, Hong-Bin

    2015-01-01

    Disulfide connectivity is an important protein structural characteristic. Accurately predicting disulfide connectivity solely from protein sequence helps to improve the intrinsic understanding of protein structure and function, especially in the post-genome era where large volume of sequenced proteins without being functional annotated is quickly accumulated. In this study, a new feature extracted from the predicted protein 3D structural information is proposed and integrated with traditional features to form discriminative features. Based on the extracted features, a random forest regression model is performed to predict protein disulfide connectivity. We compare the proposed method with popular existing predictors by performing both cross-validation and independent validation tests on benchmark datasets. The experimental results demonstrate the superiority of the proposed method over existing predictors. We believe the superiority of the proposed method benefits from both the good discriminative capability of the newly developed features and the powerful modelling capability of the random forest. The web server implementation, called TargetDisulfide, and the benchmark datasets are freely available at: http://csbio.njust.edu.cn/bioinf/TargetDisulfide for academic use.

  4. Adaptive Multi-GPU Exchange Monte Carlo for the 3D Random Field Ising Model

    CERN Document Server

    Navarro, C A; Deng, Youjin

    2015-01-01

    The study of disordered spin systems through Monte Carlo simulations has proven to be a hard task due to the adverse energy landscape present at the low temperature regime, making it difficult for the simulation to escape from a local minimum. Replica based algorithms such as the Exchange Monte Carlo (also known as parallel tempering) are effective at overcoming this problem, reaching equilibrium on disordered spin systems such as the Spin Glass or Random Field models, by exchanging information between replicas of neighbor temperatures. In this work we present a multi-GPU Exchange Monte Carlo method designed for the simulation of the 3D Random Field Model. The implementation is based on a two-level parallelization scheme that allows the method to scale its performance in the presence of faster and GPUs as well as multiple GPUs. In addition, we modified the original algorithm by adapting the set of temperatures according to the exchange rate observed from short trial runs, leading to an increased exchange rate...

  5. Adaptive multi-GPU Exchange Monte Carlo for the 3D Random Field Ising Model

    Science.gov (United States)

    Navarro, Cristóbal A.; Huang, Wei; Deng, Youjin

    2016-08-01

    This work presents an adaptive multi-GPU Exchange Monte Carlo approach for the simulation of the 3D Random Field Ising Model (RFIM). The design is based on a two-level parallelization. The first level, spin-level parallelism, maps the parallel computation as optimal 3D thread-blocks that simulate blocks of spins in shared memory with minimal halo surface, assuming a constant block volume. The second level, replica-level parallelism, uses multi-GPU computation to handle the simulation of an ensemble of replicas. CUDA's concurrent kernel execution feature is used in order to fill the occupancy of each GPU with many replicas, providing a performance boost that is more notorious at the smallest values of L. In addition to the two-level parallel design, the work proposes an adaptive multi-GPU approach that dynamically builds a proper temperature set free of exchange bottlenecks. The strategy is based on mid-point insertions at the temperature gaps where the exchange rate is most compromised. The extra work generated by the insertions is balanced across the GPUs independently of where the mid-point insertions were performed. Performance results show that spin-level performance is approximately two orders of magnitude faster than a single-core CPU version and one order of magnitude faster than a parallel multi-core CPU version running on 16-cores. Multi-GPU performance is highly convenient under a weak scaling setting, reaching up to 99 % efficiency as long as the number of GPUs and L increase together. The combination of the adaptive approach with the parallel multi-GPU design has extended our possibilities of simulation to sizes of L = 32 , 64 for a workstation with two GPUs. Sizes beyond L = 64 can eventually be studied using larger multi-GPU systems.

  6. 3D reconstruction of cortical microtubules using multi-angle total internal reflection fluorescence microscopy

    Science.gov (United States)

    Jin, Luhong; Xiu, Peng; Zhou, Xiaoxu; Fan, Jiannan; Kuang, Cuifang; Liu, Xu; Xu, Yingke

    2017-01-01

    Total internal reflection fluorescence microscopy (TIRFM) has been widely used in biomedical research to visualize cellular processes near the cell surface. In this study, a novel multi-angle ring-illuminated TIRFM system, equipped with two galvo mirrors that are on conjugate plan of a 4f optical system was developed. Multi-angle TIRFM generates images with different penetration depths through the controlled variation of the incident angle of illuminating laser. We presented a method to perform three-dimensional (3-D) reconstruction of microtubules from multi-angle TIRFM images. The performance of our method was validated in simulated microtubules with variable signal-to-noise ratios (SNR) and the axial resolution and accuracy of reconstruction were evaluated in selecting different numbers of illumination angles or in different SNR conditions. In U373 cells, we reconstructed the 3-D localization of microtubules near the cell surface with high resolution using over a hundred different illumination angles. Theoretically, the presented TIRFM setup and 3-D reconstruction method can achieve 40 nm axial resolution in experimental conditions where SNR is as low as 2, with 35 different illumination angles. Moreover, our system and reconstruction method have the potential to be used in live cells to track membrane dynamics in 3-D.

  7. X-Ray Nanofocus CT: Visualising Of Internal 3D-Structures With Submicrometer Resolution

    Science.gov (United States)

    Weinekoetter, Christian

    2008-09-01

    High-resolution X-ray Computed Tomography (CT) allows the visualization and failure analysis of the internal micro structure of objects—even if they have complicated 3D-structures where 2D X-ray microscopy would give unclear information. During the past several years, computed tomography has progressed to higher resolution and quicker reconstruction of the 3D-volume. Most recently it even allows a three-dimensional look into the inside of materials with submicron resolution. With the use of nanofocus® tube technology, nanoCT®-systems are pushing forward into application fields that were exclusive to high cost and rare available synchrotron techniques. The study was performed with the new nanotom, a very compact laboratory system which allows the analysis of samples up to 120 mm in diameter and weighing up to 1 kg with exceptional voxel-resolution down to click, this technique will substitute destructive mechanical slicing and cutting in many applications. The initial CT results obtained with the nanotom® demonstrate that it is now possible to analyze the three-dimensional micro structure of materials and small objects with submicrometer resolution. Any internal difference in material, density or porosity within a sample can be visualized and data like distances can be measured. NanoCT® widely expands the spectrum of detectable micro-structures. The nanotom® opens a new dimension of 3D-microanalysis and will replace more destructive methods—saving costs and time per sample inspected.

  8. Percolation and lasing in real 3D crystals with inhomogeneous distributed random pores

    Energy Technology Data Exchange (ETDEWEB)

    Burlak, Gennadiy, E-mail: gburlak@uaem.mx; Calderón-Segura, Yessica

    2014-11-15

    We systematically study the percolation phase transition in real 3D crystals where not only the state of pores but also their radius r and displacement s are random valued numbers. The mean values R=〈r〉 and S=〈s〉 emerge as additional spatial scales in such an extended network. This leads to variations of the threshold (critical) percolation probability p{sub C} and the percolation order parameter P that become to be the intricate functions of R and S. Our numerical simulations have shown that in such extended system the incipient spanning cluster can arise even for situations where for simple periodical system the percolation does not exist. We analyzed the validity of the nearest neighbor's approximation and found that such approximation is not valid for materials with large dispersivity of pores. The lasing of nanoemitters incorporated in such percolating spanning cluster is studied too. This effect can open interesting perspectives in modern nano- and micro-information technologies.

  9. Recognition of 3-D objects based on Markov random field models

    Institute of Scientific and Technical Information of China (English)

    HUANG Ying; DING Xiao-qing; WANG Sheng-jin

    2006-01-01

    The recognition of 3-D objects is quite a difficult task for computer vision systems.This paper presents a new object framework,which utilizes densely sampled grids with different resolutions to represent the local information of the input image.A Markov random field model is then created to model the geometric distribution of the object key nodes.Flexible matching,which aims to find the accurate correspondence map between the key points of two images,is performed by combining the local similarities and the geometric relations together using the highest confidence first method.Afterwards,a global similarity is calculated for object recognition. Experimental results on Coil-100 object database,which consists of 7 200 images of 100 objects,are presented.When the numbers of templates vary from 4,8,18 to 36 for each object,and the remaining images compose the test sets,the object recognition rates are 95.75 %,99.30 %,100.0 % and 100.0 %,respectively.The excellent recognition performance is much better than those of the other cited references,which indicates that our approach is well-suited for appearance-based object recognition.

  10. International Space Station (ISS) 3D Printer Performance and Material Characterization Methodology

    Science.gov (United States)

    Bean, Q. A.; Cooper, K. G.; Edmunson, J. E.; Johnston, M. M.; Werkheiser, M. J.

    2015-01-01

    In order for human exploration of the Solar System to be sustainable, manufacturing of necessary items on-demand in space or on planetary surfaces will be a requirement. As a first step towards this goal, the 3D Printing In Zero-G (3D Print) technology demonstration made the first items fabricated in space on the International Space Station. From those items, and comparable prints made on the ground, information about the microgravity effects on the printing process can be determined. Lessons learned from this technology demonstration will be applicable to other in-space manufacturing technologies, and may affect the terrestrial manufacturing industry as well. The flight samples were received at the George C. Marshall Space Flight Center on 6 April 2015. These samples will undergo a series of tests designed to not only thoroughly characterize the samples, but to identify microgravity effects manifested during printing by comparing their results to those of samples printed on the ground. Samples will be visually inspected, photographed, scanned with structured light, and analyzed with scanning electron microscopy. Selected samples will be analyzed with computed tomography; some will be assessed using ASTM standard tests. These tests will provide the information required to determine the effects of microgravity on 3D printing in microgravity.

  11. Influence of limited random-phase of objects on the image quality of 3D holographic display

    Science.gov (United States)

    Ma, He; Liu, Juan; Yang, Minqiang; Li, Xin; Xue, Gaolei; Wang, Yongtian

    2017-02-01

    Limited-random-phase time average method is proposed to suppress the speckle noise of three dimensional (3D) holographic display. The initial phase and the range of the random phase are studied, as well as their influence on the optical quality of the reconstructed images, and the appropriate initial phase ranges on object surfaces are obtained. Numerical simulations and optical experiments with 2D and 3D reconstructed images are performed, where the objects with limited phase range can suppress the speckle noise in reconstructed images effectively. It is expected to achieve high-quality reconstructed images in 2D or 3D display in the future because of its effectiveness and simplicity.

  12. A 3D unstructured non-hydrostatic ocean model for internal waves

    Science.gov (United States)

    Ai, Congfang; Ding, Weiye

    2016-10-01

    A 3D non-hydrostatic model is developed to compute internal waves. A novel grid arrangement is incorporated in the model. This not only ensures the homogenous Dirichlet boundary condition for the non-hydrostatic pressure can be precisely and easily imposed but also renders the model relatively simple in its discretized form. The Perot scheme is employed to discretize horizontal advection terms in the horizontal momentum equations, which is based on staggered grids and has the conservative property. Based on previous water wave models, the main works of the present paper are to (1) utilize a semi-implicit, fractional step algorithm to solve the Navier-Stokes equations (NSE); (2) develop a second-order flux-limiter method satisfying the max-min property; (3) incorporate a density equation, which is solved by a high-resolution finite volume method ensuring mass conservation and max-min property based on a vertical boundary-fitted coordinate system; and (4) validate the developed model by using four tests including two internal seiche waves, lock-exchange flow, and internal solitary wave breaking. Comparisons of numerical results with analytical solutions or experimental data or other model results show reasonably good agreement, demonstrating the model's capability to resolve internal waves relating to complex non-hydrostatic phenomena.

  13. Segmentation of Image Data from Complex Organotypic 3D Models of Cancer Tissues with Markov Random Fields.

    Directory of Open Access Journals (Sweden)

    Sean Robinson

    Full Text Available Organotypic, three dimensional (3D cell culture models of epithelial tumour types such as prostate cancer recapitulate key aspects of the architecture and histology of solid cancers. Morphometric analysis of multicellular 3D organoids is particularly important when additional components such as the extracellular matrix and tumour microenvironment are included in the model. The complexity of such models has so far limited their successful implementation. There is a great need for automatic, accurate and robust image segmentation tools to facilitate the analysis of such biologically relevant 3D cell culture models. We present a segmentation method based on Markov random fields (MRFs and illustrate our method using 3D stack image data from an organotypic 3D model of prostate cancer cells co-cultured with cancer-associated fibroblasts (CAFs. The 3D segmentation output suggests that these cell types are in physical contact with each other within the model, which has important implications for tumour biology. Segmentation performance is quantified using ground truth labels and we show how each step of our method increases segmentation accuracy. We provide the ground truth labels along with the image data and code. Using independent image data we show that our segmentation method is also more generally applicable to other types of cellular microscopy and not only limited to fluorescence microscopy.

  14. Segmentation of Image Data from Complex Organotypic 3D Models of Cancer Tissues with Markov Random Fields

    Science.gov (United States)

    Robinson, Sean; Guyon, Laurent; Nevalainen, Jaakko; Toriseva, Mervi

    2015-01-01

    Organotypic, three dimensional (3D) cell culture models of epithelial tumour types such as prostate cancer recapitulate key aspects of the architecture and histology of solid cancers. Morphometric analysis of multicellular 3D organoids is particularly important when additional components such as the extracellular matrix and tumour microenvironment are included in the model. The complexity of such models has so far limited their successful implementation. There is a great need for automatic, accurate and robust image segmentation tools to facilitate the analysis of such biologically relevant 3D cell culture models. We present a segmentation method based on Markov random fields (MRFs) and illustrate our method using 3D stack image data from an organotypic 3D model of prostate cancer cells co-cultured with cancer-associated fibroblasts (CAFs). The 3D segmentation output suggests that these cell types are in physical contact with each other within the model, which has important implications for tumour biology. Segmentation performance is quantified using ground truth labels and we show how each step of our method increases segmentation accuracy. We provide the ground truth labels along with the image data and code. Using independent image data we show that our segmentation method is also more generally applicable to other types of cellular microscopy and not only limited to fluorescence microscopy. PMID:26630674

  15. Reliable Gait Recognition Using 3D Reconstructions and Random Forests - An Anthropometric Approach.

    Science.gov (United States)

    Sandau, Martin; Heimbürger, Rikke V; Jensen, Karl E; Moeslund, Thomas B; Aanaes, Henrik; Alkjaer, Tine; Simonsen, Erik B

    2016-05-01

    Photogrammetric measurements of bodily dimensions and analysis of gait patterns in CCTV are important tools in forensic investigations but accurate extraction of the measurements are challenging. This study tested whether manual annotation of the joint centers on 3D reconstructions could provide reliable recognition. Sixteen participants performed normal walking where 3D reconstructions were obtained continually. Segment lengths and kinematics from the extremities were manually extracted by eight expert observers. The results showed that all the participants were recognized, assuming the same expert annotated the data. Recognition based on data annotated by different experts was less reliable achieving 72.6% correct recognitions as some parameters were heavily affected by interobserver variability. This study verified that 3D reconstructions are feasible for forensic gait analysis as an improved alternative to conventional CCTV. However, further studies are needed to account for the use of different clothing, field conditions, etc.

  16. Reliable Gait Recognition Using 3D Reconstructions and Random Forests - An Anthropometric Approach

    DEFF Research Database (Denmark)

    Sandau, Martin; Heimbürger, Rikke V.; Jensen, Karl E.

    2016-01-01

    Photogrammetric measurements of bodily dimensions and analysis of gait patterns in CCTV are important tools in forensic investigations but accurate extraction of the measurements are challenging. This study tested whether manual annotation of the joint centers on 3D reconstructions could provide...... expert annotated the data. Recognition based on data annotated by different experts was less reliable achieving 72.6% correct recognitions as some parameters were heavily affected by interobserver variability. This study verified that 3D reconstructions are feasible for forensic gait analysis...

  17. 3D Brain Tumors and Internal Brain Structures Segmentation in MR Images

    Directory of Open Access Journals (Sweden)

    P.NARENDRAN

    2012-02-01

    Full Text Available The main topic of this paper is to segment brain tumors, their components (edema and necrosis and internal structures of the brain in 3D MR images. For tumor segmentation we propose a framework that is a combination of region-based and boundary-based paradigms. In this framework, segment the brain using a method adapted for pathological cases and extract some global information on the tumor by symmetry based histogram analysis. We propose a new and original method that combines region and boundary information in two phases: initialization and refinement. The method relies on symmetry-based histogram analysis. The initial segmentation of the tumor is refined relying on boundary information of the image. We use a deformable model which is again constrained by the fused spatial relations of the structure. The method was also evaluated on 10 contrast enhanced T1-weighted images to segment the ventricles, caudate nucleus and thalamus.

  18. Use of 3D Printed Models in Medical Education: A Randomized Control Trial Comparing 3D Prints versus Cadaveric Materials for Learning External Cardiac Anatomy

    Science.gov (United States)

    Lim, Kah Heng Alexander; Loo, Zhou Yaw; Goldie, Stephen J.; Adams, Justin W.; McMenamin, Paul G.

    2016-01-01

    Three-dimensional (3D) printing is an emerging technology capable of readily producing accurate anatomical models, however, evidence for the use of 3D prints in medical education remains limited. A study was performed to assess their effectiveness against cadaveric materials for learning external cardiac anatomy. A double blind randomized…

  19. Method of internal 3D flow field numerical simulation for hydrodynamic torque converter

    Institute of Scientific and Technical Information of China (English)

    Tao SHANG; Dingxuan ZHAO; Yuankun ZHANG; Xiangen GUO; Xiangzhong SHI

    2008-01-01

    To enhance the performance of a hydrody-namic torque converter and thoroughly understand the trait of inside flow, a numerical simulation method of internal 3D flow for the three-element centrifugal hydrodynamic torque converter was systematically researched and expatiated in this paper. First, the internal flow field of each impeller was calculated. The curves that illustrate the relationships between the pressure differences of the inlet and outlet versus flux were drawn. Second, the concurrent working point of each impeller was approximately estimated. Finally, a calculation was performed considering the influence on each impeller. The flow field of a working point was solved by multiple calculations and the actual working condition was gradually determined. The pressure and velocity distributions of the flow field were proposed. The performance parameters of the hydrodynamic torque converter were predicted. The calculation method, and the proposed pressure and velocity distribution of the flow field, have practical significance for the design and improvement of a hydrodynamic torque converter.

  20. Generation of Multi-Lod 3d City Models in Citygml with the Procedural Modelling Engine RANDOM3DCITY

    Science.gov (United States)

    Biljecki, F.; Ledoux, H.; Stoter, J.

    2016-09-01

    The production and dissemination of semantic 3D city models is rapidly increasing benefiting a growing number of use cases. However, their availability in multiple LODs and in the CityGML format is still problematic in practice. This hinders applications and experiments where multi-LOD datasets are required as input, for instance, to determine the performance of different LODs in a spatial analysis. An alternative approach to obtain 3D city models is to generate them with procedural modelling, which is - as we discuss in this paper - well suited as a method to source multi-LOD datasets useful for a number of applications. However, procedural modelling has not yet been employed for this purpose. Therefore, we have developed RANDOM3DCITY, an experimental procedural modelling engine for generating synthetic datasets of buildings and other urban features. The engine is designed to produce models in CityGML and does so in multiple LODs. Besides the generation of multiple geometric LODs, we implement the realisation of multiple levels of spatiosemantic coherence, geometric reference variants, and indoor representations. As a result of their permutations, each building can be generated in 392 different CityGML representations, an unprecedented number of modelling variants of the same feature. The datasets produced by RANDOM3DCITY are suited for several applications, as we show in this paper with documented uses. The developed engine is available under an open-source licence at Github at github.com/tudelft3d/Random3Dcity"target="_blank">http://github.com/tudelft3d/Random3Dcity.

  1. AUTOMATIC EXTRACTION OF BUILDING ROOF PLANES FROM AIRBORNE LIDAR DATA APPLYING AN EXTENDED 3D RANDOMIZED HOUGH TRANSFORM

    OpenAIRE

    Maltezos, Evangelos; Ioannidis, Charalabos

    2016-01-01

    This study aims to extract automatically building roof planes from airborne LIDAR data applying an extended 3D Randomized Hough Transform (RHT). The proposed methodology consists of three main steps, namely detection of building points, plane detection and refinement. For the detection of the building points, the vegetative areas are first segmented from the scene content and the bare earth is extracted afterwards. The automatic plane detection of each building is performed applying extension...

  2. 3D visualization of the internal nanostructure of polyamide thin films in RO membranes

    KAUST Repository

    Pacheco Oreamuno, Federico

    2015-11-02

    The front and back surfaces of fully aromatic polyamide thin films isolated from reverse osmosis (RO) membranes were characterized by TEM, SEM and AFM. The front surfaces were relatively rough showing polyamide protuberances of different sizes and shapes; the back surfaces were all consistently smoother with very similar granular textures formed by polyamide nodules of 20–50 nm. Occasional pore openings of approximately the same size as the nodules were observed on the back surfaces. Because traditional microscopic imaging techniques provide limited information about the internal morphology of the thin films, TEM tomography was used to create detailed 3D visualizations that allowed the examination of any section of the thin film volume. These tomograms confirmed the existence of numerous voids within the thin films and revealed structural characteristics that support the water permeance difference between brackish water (BWRO) and seawater (SWRO) RO membranes. Consistent with a higher water permeance, the thin film of the BWRO membrane ESPA3 contained relatively more voids and thinner sections of polyamide than the SWRO membrane SWC3. According to the tomograms, most voids originate near the back surface and many extend all the way to the front surface shaping the polyamide protuberances. Although it is possible for the internal voids to be connected to the outside through the pore openings on the back surface, it was verified that some of these voids comprise nanobubbles that are completely encapsulated by polyamide. TEM tomography is a powerful technique for investigating the internal nanostructure of polyamide thin films. A comprehensive knowledge of the nanostructural distribution of voids and polyamide sections within the thin film may lead to a better understanding of mass transport and rejection mechanisms in RO membranes.

  3. Construction of Extended 3D Field of Views of the Internal Bladder Wall Surface: A Proof of Concept

    Science.gov (United States)

    Ben-Hamadou, Achraf; Daul, Christian; Soussen, Charles

    2016-09-01

    3D extended field of views (FOVs) of the internal bladder wall facilitate lesion diagnosis, patient follow-up and treatment traceability. In this paper, we propose a 3D image mosaicing algorithm guided by 2D cystoscopic video-image registration for obtaining textured FOV mosaics. In this feasibility study, the registration makes use of data from a 3D cystoscope prototype providing, in addition to each small FOV image, some 3D points located on the surface. This proof of concept shows that textured surfaces can be constructed with minimally modified cystoscopes. The potential of the method is demonstrated on numerical and real phantoms reproducing various surface shapes. Pig and human bladder textures are superimposed on phantoms with known shape and dimensions. These data allow for quantitative assessment of the 3D mosaicing algorithm based on the registration of images simulating bladder textures.

  4. Fracture Surgery of the extremities with the intra-operative use of 3D-RX: A randomized multicenter trial (EF3X-trial

    Directory of Open Access Journals (Sweden)

    Marmor Meir

    2011-07-01

    Full Text Available Abstract Background Posttraumatic osteoarthritis can develop after an intra-articular extremity fracture, leading to pain and loss of function. According to international guidelines, anatomical reduction and fixation are the basis for an optimal functional result. In order to achieve this during fracture surgery, an optimal view on the position of the bone fragments and fixation material is a necessity. The currently used 2D-fluoroscopy does not provide sufficient insight, in particular in cases with complex anatomy or subtle injury, and even an 18-26% suboptimal fracture reduction is reported for the ankle and foot. More intra-operative information is therefore needed. Recently the 3D-RX-system was developed, which provides conventional 2D-fluoroscopic images as well as a 3D-reconstruction of bony structures. This modality provides more information, which consequently leads to extra corrections in 18-30% of the fracture operations. However, the effect of the extra corrections on the quality of the anatomical fracture reduction and fixation as well as on patient relevant outcomes has never been investigated. The objective of this study protocol is to investigate the effectiveness of the intra-operative use of the 3D-RX-system as compared to the conventional 2D-fluoroscopy in patients with traumatic intra-articular fractures of the wrist, ankle and calcaneus. The effectiveness will be assessed in two different areas: 1 the quality of fracture reduction and fixation, based on the current golden standard, Computed Tomography. 2 The patient-relevant outcomes like functional outcome range of motion and pain. In addition, the diagnostic accuracy of the 3D-RX-scan will be determined in a clinical setting and a cost-effectiveness as well as a cost-utility analysis will be performed. Methods/design In this protocol for an international multicenter randomized clinical trial, adult patients (age > 17 years with a traumatic intra-articular fracture of the

  5. High 3D:5D ratio: A possible correlate of externalizing and internalizing problems: An exploratory study

    Directory of Open Access Journals (Sweden)

    Esther I. de Bruin

    2011-03-01

    Full Text Available Background and Objectives: The second to fourth (2D:4D digit ratio is a sexually dimorphic trait which has been studied to examine the association between fetal hormones and a variety of behaviors. Lower 2D:4D ratios, suggestive of exposure to higher levels of prenatal testosterone, have been associated with male-linked disorders, while higher 2D:4D ratios, suggestive of exposure to weaker prenatal androgen action, have been associated with female-linked disorders. Past research has concentrated on the 2D:4D ratio, whereas the relationship between other ratios, such as the 3D:5D ratio, and psychopathology has not much been studied before. Therefore, the aim of this study was to assess the correlation between the 2D:4D and 3D:5D ratio, and internalizing as well as externalizing symptoms, in a large non-clinical sample (143 boys, 150 girls of white Caucasian children aged 7 to 13 years. Methods: Externalizing and internalizing symptoms were assessed with the Child Behavior Checklist (CBCL. Results: The 3D:5D ratio in boys and in girls was positively associated with scores on Externalizing Problems. Further, in girls only, the 3D:5D ratio was positively correlated to scores on Internalizing Problems. Conclusions: The 3D:5D ratio can be considered a correlate of externalizing and internalizing problems in children from the general population.

  6. PSTD Simulations of Multiple Light Scattering in 3-D Macrocsopic Random Media

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, S H; Taflove, A; Maitland, D; Backman, V

    2005-10-19

    We report a full-vector, three-dimensional, numerical solution of Maxwell's equations for optical propagation within, and scattering by, a random medium of macroscopic dimensions. The total scattering cross-section is determined using the pseudospectral time-domain technique. Specific results reported in this Paper indicate that multiply scattered light also contains information that can be extracted by the proposed cross-correlation analysis. On a broader perspective, our results demonstrate the feasibility of accurately determining the optical characteristics of arbitrary, macroscopic random media, including geometries with continuous variations of refractive index. Specifically, our results point toward the new possibilities of tissue optics--by numerically solving Maxwell's equations, the optical properties of tissue structures can be determined unambiguously.

  7. Robust 3D object localization and pose estimation for random bin picking with the 3DMaMa algorithm

    Science.gov (United States)

    Skotheim, Øystein; Thielemann, Jens T.; Berge, Asbjørn; Sommerfelt, Arne

    2010-02-01

    Enabling robots to automatically locate and pick up randomly placed and oriented objects from a bin is an important challenge in factory automation, replacing tedious and heavy manual labor. A system should be able to recognize and locate objects with a predefined shape and estimate the position with the precision necessary for a gripping robot to pick it up. We describe a system that consists of a structured light instrument for capturing 3D data and a robust approach for object location and pose estimation. The method does not depend on segmentation of range images, but instead searches through pairs of 2D manifolds to localize candidates for object match. This leads to an algorithm that is not very sensitive to scene complexity or the number of objects in the scene. Furthermore, the strategy for candidate search is easily reconfigurable to arbitrary objects. Experiments reported in this paper show the utility of the method on a general random bin picking problem, in this paper exemplified by localization of car parts with random position and orientation. Full pose estimation is done in less than 380 ms per image. We believe that the method is applicable for a wide range of industrial automation problems where precise localization of 3D objects in a scene is needed.

  8. Non-stationary random vibration analysis of a 3D train-bridge system using the probability density evolution method

    Science.gov (United States)

    Yu, Zhi-wu; Mao, Jian-feng; Guo, Feng-qi; Guo, Wei

    2016-03-01

    Rail irregularity is one of the main sources causing train-bridge random vibration. A new random vibration theory for the coupled train-bridge systems is proposed in this paper. First, number theory method (NTM) with 2N-dimensional vectors for the stochastic harmonic function (SHF) of rail irregularity power spectrum density was adopted to determine the representative points of spatial frequencies and phases to generate the random rail irregularity samples, and the non-stationary rail irregularity samples were modulated with the slowly varying function. Second, the probability density evolution method (PDEM) was employed to calculate the random dynamic vibration of the three-dimensional (3D) train-bridge system by a program compiled on the MATLAB® software platform. Eventually, the Newmark-β integration method and double edge difference method of total variation diminishing (TVD) format were adopted to obtain the mean value curve, the standard deviation curve and the time-history probability density information of responses. A case study was presented in which the ICE-3 train travels on a three-span simply-supported high-speed railway bridge with excitation of random rail irregularity. The results showed that compared to the Monte Carlo simulation, the PDEM has higher computational efficiency for the same accuracy, i.e., an improvement by 1-2 orders of magnitude. Additionally, the influences of rail irregularity and train speed on the random vibration of the coupled train-bridge system were discussed.

  9. GENERATION OF MULTI-LOD 3D CITY MODELS IN CITYGML WITH THE PROCEDURAL MODELLING ENGINE RANDOM3DCITY

    Directory of Open Access Journals (Sweden)

    F. Biljecki

    2016-09-01

    Full Text Available The production and dissemination of semantic 3D city models is rapidly increasing benefiting a growing number of use cases. However, their availability in multiple LODs and in the CityGML format is still problematic in practice. This hinders applications and experiments where multi-LOD datasets are required as input, for instance, to determine the performance of different LODs in a spatial analysis. An alternative approach to obtain 3D city models is to generate them with procedural modelling, which is – as we discuss in this paper – well suited as a method to source multi-LOD datasets useful for a number of applications. However, procedural modelling has not yet been employed for this purpose. Therefore, we have developed RANDOM3DCITY, an experimental procedural modelling engine for generating synthetic datasets of buildings and other urban features. The engine is designed to produce models in CityGML and does so in multiple LODs. Besides the generation of multiple geometric LODs, we implement the realisation of multiple levels of spatiosemantic coherence, geometric reference variants, and indoor representations. As a result of their permutations, each building can be generated in 392 different CityGML representations, an unprecedented number of modelling variants of the same feature. The datasets produced by RANDOM3DCITY are suited for several applications, as we show in this paper with documented uses. The developed engine is available under an open-source licence at Github at http://github.com/tudelft3d/Random3Dcity.

  10. Verification of the code DYN3D/R with the help of international benchmarks

    Energy Technology Data Exchange (ETDEWEB)

    Grundmann, U.; Rohde, U.

    1997-10-01

    Different benchmarks for reactors with quadratic fuel assemblies were calculated with the code DYN3D/R. In this report comparisons with the results of the reference solutions are carried out. The results of DYN3D/R and the reference calculation for the eigenvalue k{sub eff} and the power distribution are shown for the steady-state 3-dimensional IAEA-Benchmark. The results of NEACRP-Benchmarks on control rod ejections in a standard PWR were compared with the reference solutions published by the NEA Data Bank. For assessing the accuracy of DYN3D/R results in comparison to other codes the deviations to the reference solutions are considered. Detailed comparisons with the published reference solutions of the NEA-NSC Benchmarks on uncontrolled withdrawal of control rods are made. The influence of the axial nodalization is also investigated. All in all, a good agreement of the DYN3D/R results with the reference solutions can be seen for the considered benchmark problems. (orig.) [Deutsch] Verschiedene Benchmarks fuer Reaktoren mit quadratischen Brennelementen wurden mit dem Code DYN3D/R berechnet. In diesem Bericht erfolgen Vergleiche mit den Ergebnissen der Referenzloesungen. Die Ergebnisse von DYN3D/R und der Referenzrechnung fuer Eigenwert k{sub eff} und Leistungsverteilung des stationaeren 3-dimensionalen IAEA-Benchmarks werden dargestellt. Die Ergebnisse der NEACRP-Benchmarks fuer die Auswuerfe von Steuerstaeben in einem typischen DWR werden mit den von der NEA Data Bank veroeffentlichten Referenzloesungen verglichen. Zur Einschaetzung der Genauigkeit der DYN3D/R Resultate im Vergleich zu anderen Rechenprogrammen werden die Abweichungen zu den Referenzloesungen betrachtet. Detaillierte Vergleiche mit den Referenzloesungen erfolgen fuer die NEA-NSC Benchmarks zum unkontrollierten Ausfahren von Steuerstaeben. Dabei wird der Einfluss der axialen Nodalisierung untersucht. Insgesamt wird eine gute Uebereinstimmung der DYN3D/R Resultate mit den Referenzloesungen fuer die

  11. Random center vortex lines in continuous 3D space-time

    CERN Document Server

    Höllwieser, Roman; Engelhardt, Michael

    2014-01-01

    We present a model of center vortices, represented by closed random lines in continuous 2+1- dimensional space- time. These random lines are modeled as being piece-wise linear and an ensemble is generated by Monte Carlo methods. The physical space in which the vortex lines are defined is a cuboid with periodic boundary conditions. Besides moving, growing and shrinking of the vortex configuration, also reconnections are allowed. Our ensemble therefore contains not a fixed, but a variable number of closed vortex lines. This is expected to be important for realizing the deconfining phase transition. Using the model, we study both vortex percolation and the potential V (R) between quark and anti-quark as a function of distance R at different vortex densities, vortex segment lengths, reconnection conditions and at different temperatures. We have found three deconfinement phase transitions, as a function of density, as a function of vortex segment length, and as a function of temperature. The model reproduces the q...

  12. Marginal Accuracy and Internal Fit of 3-D Printing Laser-Sintered Co-Cr Alloy Copings

    Directory of Open Access Journals (Sweden)

    Myung-Joo Kim

    2017-01-01

    Full Text Available Laser sintered technology has been introduced for clinical use and can be utilized more widely, accompanied by the digitalization of dentistry and the development of direct oral scanning devices. This study was performed with the aim of comparing the marginal accuracy and internal fit of Co-Cr alloy copings fabricated by casting, CAD/CAM (Computer-aided design/Computer-assisted manufacture milled, and 3-D laser sintered techniques. A total of 36 Co-Cr alloy crown-copings were fabricated from an implant abutment. The marginal and internal fit were evaluated by measuring the weight of the silicone material, the vertical marginal discrepancy using a microscope, and the internal gap in the sectioned specimens. The data were statistically analyzed by One-way ANOVA (analysis of variance, a Scheffe’s test, and Pearson’s correlation at the significance level of p = 0.05, using statistics software. The silicone weight was significantly low in the casting group. The 3-D laser sintered group showed the highest vertical discrepancy, and marginal-, occlusal-, and average- internal gaps (p < 0.05. The CAD/CAM milled group revealed a significantly high axial internal gap. There are moderate correlations between the vertical marginal discrepancy and the internal gap variables (r = 0.654, except for the silicone weight. In this study, the 3-D laser sintered group achieved clinically acceptable marginal accuracy and internal fit.

  13. Development of a randomized 3D cell model for Monte Carlo microdosimetry simulations

    Energy Technology Data Exchange (ETDEWEB)

    Douglass, Michael; Bezak, Eva; Penfold, Scott [School of Chemistry and Physics, University of Adelaide, North Terrace, Adelaide 5005, South Australia (Australia) and Department of Medical Physics, Royal Adelaide Hospital, North Terrace, Adelaide 5000, South Australia (Australia)

    2012-06-15

    Purpose: The objective of the current work was to develop an algorithm for growing a macroscopic tumor volume from individual randomized quasi-realistic cells. The major physical and chemical components of the cell need to be modeled. It is intended to import the tumor volume into GEANT4 (and potentially other Monte Carlo packages) to simulate ionization events within the cell regions. Methods: A MATLAB Copyright-Sign code was developed to produce a tumor coordinate system consisting of individual ellipsoidal cells randomized in their spatial coordinates, sizes, and rotations. An eigenvalue method using a mathematical equation to represent individual cells was used to detect overlapping cells. GEANT4 code was then developed to import the coordinate system into GEANT4 and populate it with individual cells of varying sizes and composed of the membrane, cytoplasm, reticulum, nucleus, and nucleolus. Each region is composed of chemically realistic materials. Results: The in-house developed MATLAB Copyright-Sign code was able to grow semi-realistic cell distributions ({approx}2 Multiplication-Sign 10{sup 8} cells in 1 cm{sup 3}) in under 36 h. The cell distribution can be used in any number of Monte Carlo particle tracking toolkits including GEANT4, which has been demonstrated in this work. Conclusions: Using the cell distribution and GEANT4, the authors were able to simulate ionization events in the individual cell components resulting from 80 keV gamma radiation (the code is applicable to other particles and a wide range of energies). This virtual microdosimetry tool will allow for a more complete picture of cell damage to be developed.

  14. AUTOMATIC EXTRACTION OF BUILDING ROOF PLANES FROM AIRBORNE LIDAR DATA APPLYING AN EXTENDED 3D RANDOMIZED HOUGH TRANSFORM

    Directory of Open Access Journals (Sweden)

    E. Maltezos

    2016-06-01

    Full Text Available This study aims to extract automatically building roof planes from airborne LIDAR data applying an extended 3D Randomized Hough Transform (RHT. The proposed methodology consists of three main steps, namely detection of building points, plane detection and refinement. For the detection of the building points, the vegetative areas are first segmented from the scene content and the bare earth is extracted afterwards. The automatic plane detection of each building is performed applying extensions of the RHT associated with additional constraint criteria during the random selection of the 3 points aiming at the optimum adaptation to the building rooftops as well as using a simple design of the accumulator that efficiently detects the prominent planes. The refinement of the plane detection is conducted based on the relationship between neighbouring planes, the locality of the point and the use of additional information. An indicative experimental comparison to verify the advantages of the extended RHT compared to the 3D Standard Hough Transform (SHT is implemented as well as the sensitivity of the proposed extensions and accumulator design is examined in the view of quality and computational time compared to the default RHT. Further, a comparison between the extended RHT and the RANSAC is carried out. The plane detection results illustrate the potential of the proposed extended RHT in terms of robustness and efficiency for several applications.

  15. Automatic Extraction of Building Roof Planes from Airborne LIDAR Data Applying AN Extended 3d Randomized Hough Transform

    Science.gov (United States)

    Maltezos, Evangelos; Ioannidis, Charalabos

    2016-06-01

    This study aims to extract automatically building roof planes from airborne LIDAR data applying an extended 3D Randomized Hough Transform (RHT). The proposed methodology consists of three main steps, namely detection of building points, plane detection and refinement. For the detection of the building points, the vegetative areas are first segmented from the scene content and the bare earth is extracted afterwards. The automatic plane detection of each building is performed applying extensions of the RHT associated with additional constraint criteria during the random selection of the 3 points aiming at the optimum adaptation to the building rooftops as well as using a simple design of the accumulator that efficiently detects the prominent planes. The refinement of the plane detection is conducted based on the relationship between neighbouring planes, the locality of the point and the use of additional information. An indicative experimental comparison to verify the advantages of the extended RHT compared to the 3D Standard Hough Transform (SHT) is implemented as well as the sensitivity of the proposed extensions and accumulator design is examined in the view of quality and computational time compared to the default RHT. Further, a comparison between the extended RHT and the RANSAC is carried out. The plane detection results illustrate the potential of the proposed extended RHT in terms of robustness and efficiency for several applications.

  16. Pseudo-random data acquisition geometry in 3D seismic survey; Sanjigen jishin tansa ni okeru giji random data shutoku reiauto ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Minegishi, M.; Tsuburaya, Y. [Japan National Oil Corp., Tokyo (Japan). Technology Research Center

    1996-10-01

    Influence of pseudo-random geometry on the imaging for 3D seismic exploration data acquisition has been investigate using a simple model by comparing with the regular geometry. When constituting wave front by the interference of elemental waves, pseudo-random geometry data did not always provide good results. In the case of a point diffractor, the imaging operation, where the constituted wave front was returned to the point diffractor by the interference of elemental waves for the spatial alias records, did not always give clear images. In the case of multi point diffractor, good images were obtained with less noise generation in spite of alias records. There are a lot of diffractors in the actual geological structures, which corresponds to the case of multi point diffractors. Finally, better images could be obtained by inputting records acquired using the pseudo-random geometry rather than by inputting spatial alias records acquired using the regular geometry. 7 refs., 6 figs.

  17. Segmentation of heterogeneous or small FDG PET positive tissue based on a 3D-locally adaptive random walk algorithm.

    Science.gov (United States)

    Onoma, D P; Ruan, S; Thureau, S; Nkhali, L; Modzelewski, R; Monnehan, G A; Vera, P; Gardin, I

    2014-12-01

    A segmentation algorithm based on the random walk (RW) method, called 3D-LARW, has been developed to delineate small tumors or tumors with a heterogeneous distribution of FDG on PET images. Based on the original algorithm of RW [1], we propose an improved approach using new parameters depending on the Euclidean distance between two adjacent voxels instead of a fixed one and integrating probability densities of labels into the system of linear equations used in the RW. These improvements were evaluated and compared with the original RW method, a thresholding with a fixed value (40% of the maximum in the lesion), an adaptive thresholding algorithm on uniform spheres filled with FDG and FLAB method, on simulated heterogeneous spheres and on clinical data (14 patients). On these three different data, 3D-LARW has shown better segmentation results than the original RW algorithm and the three other methods. As expected, these improvements are more pronounced for the segmentation of small or tumors having heterogeneous FDG uptake.

  18. Tailoring bulk mechanical properties of 3D printed objects of polylactic acid varying internal micro-architecture

    Science.gov (United States)

    Malinauskas, Mangirdas; Skliutas, Edvinas; Jonušauskas, Linas; Mizeras, Deividas; Šešok, Andžela; Piskarskas, Algis

    2015-05-01

    Herein we present 3D Printing (3DP) fabrication of structures having internal microarchitecture and characterization of their mechanical properties. Depending on the material, geometry and fill factor, the manufactured objects mechanical performance can be tailored from "hard" to "soft." In this work we employ low-cost fused filament fabrication 3D printer enabling point-by-point structuring of poly(lactic acid) (PLA) with~̴400 µm feature spatial resolution. The chosen architectures are defined as woodpiles (BCC, FCC and 60 deg rotating). The period is chosen to be of 1200 µm corresponding to 800 µm pores. The produced objects structural quality is characterized using scanning electron microscope, their mechanical properties such as flexural modulus, elastic modulus and stiffness are evaluated by measured experimentally using universal TIRAtest2300 machine. Within the limitation of the carried out study we show that the mechanical properties of 3D printed objects can be tuned at least 3 times by only changing the woodpile geometry arrangement, yet keeping the same filling factor and periodicity of the logs. Additionally, we demonstrate custom 3D printed µ-fluidic elements which can serve as cheap, biocompatible and environmentally biodegradable platforms for integrated Lab-On-Chip (LOC) devices.

  19. 3D technology of Sony Bloggie has no advantage in decision-making of tennis serve direction: A randomized placebo-controlled study.

    Science.gov (United States)

    Liu, Sicong; Ritchie, Jason; Sáenz-Moncaleano, Camilo; Ward, Savanna K; Paulsen, Cody; Klein, Tyler; Gutierrez, Oscar; Tenenbaum, Gershon

    2017-03-21

    This study aimed at exploring whether 3D technology enhances tennis decision-making under the conceptual framework of human performance model. A 3 (skill-level: varsity, club, recreational) × 3 (experimental condition: placebo, weak 3D [W3D], strong 3D [S3D]) between-participant design was used. Allocated to experimental conditions by a skill-level stratified randomization, 105 tennis players judged tennis serve direction from video scenarios and rated their perceptions of enjoyment, flow, and presence during task performance. Results showed that varsity players made more accurate decisions than less skilled ones. Additionally, applying 3D technology to typical video displays reduced tennis players' decision-making accuracy, although wearing the 3D glasses led to a placebo effect that shortened the decision-making reaction time. The unexpected negative effect of 3D technology on decision-making was possibly due to participants being more familiar to W3D than to S3D, and relatedly, a suboptimal task-technology match. Future directions for advancing this area of research are offered. Highlights • 3D technology augments binocular depth cues to tradition video displays, and thus results in the attainment of more authentic visual representation. This process enhances task fidelity in researching perceptual-cognitive skills in sports. • The paper clarified both conceptual and methodological difficulties in testing 3D technology in sports settings. Namely, the nomenclature of video footage (with/without 3D technology) and the possible placebo effect (arising from wearing glasses of 3D technology) merit researchers' attention. • Participants varying in level of domain-specific expertise were randomized into viewing conditions using a placebo-controlled design. Measurement consisted of both participants' subjective experience (i.e., presence, flow, and enjoyment) and objective performance (i.e., accuracy and reaction time) in a decision-making task. • Findings

  20. Using Parameters of Dynamic Pulse Function for 3d Modeling in LOD3 Based on Random Textures

    Science.gov (United States)

    Alizadehashrafi, B.

    2015-12-01

    priority for each layer. For instance the priority of the door layer can be higher than window layer which means that window texture cannot be projected on the door layer. Orthogonal and rectified perpendicular symmetric photos of the 3D objects that are proportional to the real façade geometry must be utilized for the generation of the output frame for DPF. The DPF produces very high quality and small data size of output image files in quite smaller dimension compare with the photorealistic texturing method. The disadvantage of DPF is its preprocessing method to generate output image file rather than online processing to generate the texture within the 3D environment such as CityGML. Furthermore the result of DPF can be utilized for 3D model in LOD2 rather than LOD3. In the current work the random textures of the window layers are created based on parameters of DPF within Ruby console of SketchUp Trimble to generate the deeper geometries of the windows and their exact position on the façade automatically along with random textures to increase Level of Realism (LoR)(Scarpino, 2010). As the output frame in DPF is proportional to real geometry (height and width of the façade) it is possible to query the XML database and convert them to units such as meter automatically. In this technique, the perpendicular terrestrial photo from the façade is rectified by employing projective transformation based on the frame which is in constrain proportion to real geometry. The rectified photos which are not suitable for texturing but necessary for measuring, can be resized in constrain proportion to real geometry before measuring process. Height and width of windows, doors, horizontal and vertical distance between windows from upper left corner of the photo dimensions of doors and windows are parameters that should be measured to run the program as a plugins in SketchUp Trimble. The system can use these parameters and texture file names and file paths to create the façade semi

  1. The internal density distribution of comet 67P/C-G based on 3D models

    Science.gov (United States)

    Jorda, Laurent; Faurschou Hviid, Stubbe; Capanna, Claire; Gaskell, Robert W.; Gutiérrez, Pedro; Preusker, Frank; Scholten, Frank; Rodionov, Sergey; OSIRIS Team

    2016-10-01

    The OSIRIS camera aboard the Rosetta spacecraft observed the nucleus of comet 67P/C-G from the mapping phase in summer 2014 until now. The images have allowed the reconstruction in three-dimension of nucleus surface with stereophotogrammetry (Preusker et al., Astron. Astrophys.) and stereophotoclinometry (Jorda et al., Icarus) techniques. We use the reconstructed models to constrain the internal density distribution based on: (i) the measurement of the offset between the center of mass and the center of figure of the object, and (ii) the assumption that flat areas observed at the surface of the comet correspond to iso-gravity surfaces. The results of our analysis will be presented, and the consequences for the internal structure and formation of the nucleus of comet 67P/C-G will be discussed.

  2. Marginal Accuracy and Internal Fit of 3-D Printing Laser-Sintered Co-Cr Alloy Copings

    OpenAIRE

    Myung-Joo Kim; Yun-Jung Choi; Seong-Kyun Kim; Seong-Joo Heo; Jai-Young Koak

    2017-01-01

    Laser sintered technology has been introduced for clinical use and can be utilized more widely, accompanied by the digitalization of dentistry and the development of direct oral scanning devices. This study was performed with the aim of comparing the marginal accuracy and internal fit of Co-Cr alloy copings fabricated by casting, CAD/CAM (Computer-aided design/Computer-assisted manufacture) milled, and 3-D laser sintered techniques. A total of 36 Co-Cr alloy crown-copings were fabricated from...

  3. Internal load transfer and damage evolution in a 3D interpenetrating metal/ceramic composite

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Siddhartha, E-mail: siddhartha.roy@kit.edu [Institute for Applied Materials, Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany); Gibmeier, Jens; Kostov, Vladimir; Weidenmann, Kay Andre [Institute for Applied Materials, Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany); Nagel, Alwin [Hochschule Aalen, Beethovenstr. 1, 73430 Aalen (Germany); Wanner, Alexander [Institute for Applied Materials, Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Internal load transfer and compressive damage in an interpenetrating composite is studied. Black-Right-Pointing-Pointer Unloading and reloading in tension initiates damage in alumina phase. Black-Right-Pointing-Pointer Load reversal causes Bauschinger effect in aluminium solid solution. Black-Right-Pointing-Pointer Compressive damage occurs by cracks at 45 Degree-Sign through the ceramic rich regions. - Abstract: The internal load transfer and compressive damage evolution in an interpenetrating Al{sub 2}O{sub 3}/AlSi12 composite have been studied in this work. The composite was fabricated by squeeze-casting eutectic aluminium-silicon alloy melt in a porous alumina preform. The preform was fabricated from a mixture of cellulose fibres and alumina particles via cold pressing and sintering. In an earlier work we reported the internal load transfer in the same composite material under monotonic compression and tension studied using energy dispersive synchrotron X-ray diffraction . The current work is a continuation of this earlier study, aimed at obtaining further understanding about load transfer occurring during load reversal and damage behaviour during external compression. The micromechanical load partitioning between the three phases present in the composite is studied during one load cycle starting in compression followed by unloading and reloading in tension until failure. Average strain and stress value in each phase is calculated from several diffraction planes of each phase and as a result the reported strain and stress are representative of the bulk material behaviour. The load transfer results allow identifying the occurrence of a substantial Bauschinger effect in the Al solid solution phase and progressive damage evolution within the alumina phase. In situ compression test inside a scanning electron microscope showed that failure of the composite occurred by propagation of cracks through the ceramic rich regions

  4. Prediction of conformational B-cell epitopes from 3D structures by random forests with a distance-based feature

    Directory of Open Access Journals (Sweden)

    Zou Hua

    2011-08-01

    Full Text Available Abstract Background Antigen-antibody interactions are key events in immune system, which provide important clues to the immune processes and responses. In Antigen-antibody interactions, the specific sites on the antigens that are directly bound by the B-cell produced antibodies are well known as B-cell epitopes. The identification of epitopes is a hot topic in bioinformatics because of their potential use in the epitope-based drug design. Although most B-cell epitopes are discontinuous (or conformational, insufficient effort has been put into the conformational epitope prediction, and the performance of existing methods is far from satisfaction. Results In order to develop the high-accuracy model, we focus on some possible aspects concerning the prediction performance, including the impact of interior residues, different contributions of adjacent residues, and the imbalanced data which contain much more non-epitope residues than epitope residues. In order to address above issues, we take following strategies. Firstly, a concept of 'thick surface patch' instead of 'surface patch' is introduced to describe the local spatial context of each surface residue, which considers the impact of interior residue. The comparison between the thick surface patch and the surface patch shows that interior residues contribute to the recognition of epitopes. Secondly, statistical significance of the distance distribution difference between non-epitope patches and epitope patches is observed, thus an adjacent residue distance feature is presented, which reflects the unequal contributions of adjacent residues to the location of binding sites. Thirdly, a bootstrapping and voting procedure is adopted to deal with the imbalanced dataset. Based on the above ideas, we propose a new method to identify the B-cell conformational epitopes from 3D structures by combining conventional features and the proposed feature, and the random forest (RF algorithm is used as the

  5. Internal wave attractors examined using laboratory experiments and 3D numerical simulations

    CERN Document Server

    Brouzet, Christophe; Scolan, H; Ermanyuk, E V; Dauxois, Thierry

    2016-01-01

    In the present paper, we combine numerical and experimental approaches to study the dynamics of stable and unstable internal wave attractors. The problem is considered in a classic trapezoidal setup filled with a uniformly stratified fluid. Energy is injected into the system at global scale by the small-amplitude motion of a vertical wall. Wave motion in the test tank is measured with the help of conventional synthetic schlieren and PIV techniques. The numerical setup closely reproduces the experimental one in terms of geometry and the operational range of the Reynolds and Schmidt numbers. The spectral element method is used as a numerical tool to simulate the nonlinear dynamics of a viscous salt-stratified fluid. We show that the results of three-dimensional calculations are in excellent qualitative and quantitative agreement with the experimental data, including the spatial and temporal parameters of the secondary waves produced by triadic resonance instability. Further, we explore experimentally and numeri...

  6. Revealing the 3D internal structure of natural polymer microcomposites using X-ray ultra microtomography.

    Science.gov (United States)

    Pakzad, A; Parikh, N; Heiden, P A; Yassar, R S

    2011-07-01

    Properties of composite materials are directly affected by the spatial arrangement of reinforcement and matrix. In this research, partially hydrolysed cellulose microcrystals were used to fabricate polycaprolactone microcomposites. The spatial distribution of cellulose microcrystals was characterized by a newly developed technique of X-ray ultra microscopy and microtomography. The phase and absorption contrast imaging of X-ray ultra microscopy revealed two-dimensional and three-dimensional information on CMC distribution in polymer matrices. The highest contrast and flux (signal-to-noise ratio) were obtained using vanadium foil targets with the accelerating voltage of 30 keV and beam current of >200 nA. The spatial distribution of cellulose microcrystals was correlated to the mechanical properties of the microcomposites. It was observed that heterogeneous distribution and clustering of cellulose microcrystals resulted in degradation of tensile strength and elastic modulus of composites. The utilization of X-ray ultra microscopy can open up new opportunities for composite researchers to explore the internal structure of microcomposites. X-ray ultra microscopy sample preparation is relatively simple in comparison to transmission electron microscopy and the spatial information is gathered at much larger scale.

  7. Optimization of Open Boundary Conditions in a 3D Internal Tidal Model with the Adjoint Method around Hawaii

    Directory of Open Access Journals (Sweden)

    Anzhou Cao

    2013-01-01

    Full Text Available Based on the theory of inverse problem, the optimization of open boundary conditions (OBCs in a 3D internal tidal model is investigated with the adjoint method. Fourier coefficients of M2 internal tide on four open boundaries, which are regarded as OBCs, are inverted simultaneously. During the optimization, the steepest descent method is used to minimize cost function. The reasonability and feasibility of the model are tested by twin experiments (TEs. In TE1, OBCs on four open boundaries are successfully inverted by using independent point (IP strategy, suggesting that IP strategy is useful in parameter estimation. Results of TE2 indicate that the model is effective even by assimilating inaccurate “observations.” Based on conclusions of TEs, the M2 internal tide around Hawaii is simulated by assimilating T/P data in practical experiment. The simulated cochart shows good agreement with that obtained from the Oregon State University tidal model and T/P observations. Careful inspection shows that the major difference between simulated results and OSU model results is short-scale fluctuations superposed on coamplitude lines, which can be treated as the surface manifestation modulated by the internal tide. The computed surface manifestation along T/P tracks is comparable to the estimation in previous work.

  8. International Legal and Ethical Challenges Related to the Use and Development of 3D Technology in the U.S. and China

    Directory of Open Access Journals (Sweden)

    Kimberley Kinsley

    2014-06-01

    Full Text Available Ethical and legal uses of technology should be addressed when a new technology gains popularity. The main focus of this research is to provide a detailed discussion of the legal and ethical issues pertaining to the use of 3D technology. Recent court cases provide examples of current and potential concerns associated with this technology from a consumer and business perspective. With the growing interest in 3D technology worldwide, especially in China, a discussion of similar laws in China related to 3D technology provides an international outlook of some of the trials ahead as business and consumer interest in 3D technology continues to escalate.

  9. Influence of bicortical techniques in internal connection placed in premaxillary area by 3D finite element analysis.

    Science.gov (United States)

    Verri, Fellippo Ramos; Cruz, Ronaldo Silva; Lemos, Cleidiel Aparecido Araújo; de Souza Batista, Victor Eduardo; Almeida, Daniel Augusto Faria; Verri, Ana Caroline Gonçales; Pellizzer, Eduardo Piza

    2017-02-01

    The aim of study was to evaluate the stress distribution in implant-supported prostheses and peri-implant bone using internal hexagon (IH) implants in the premaxillary area, varying surgical techniques (conventional, bicortical and bicortical in association with nasal floor elevation), and loading directions (0°, 30° and 60°) by three-dimensional (3D) finite element analysis. Three models were designed with Invesalius, Rhinoceros 3D and Solidworks software. Each model contained a bone block of the premaxillary area including an implant (IH, Ø4 × 10 mm) supporting a metal-ceramic crown. 178 N was applied in different inclinations (0°, 30°, 60°). The results were analyzed by von Mises, maximum principal stress, microstrain and displacement maps including ANOVA statistical test for some situations. Von Mises maps of implant, screws and abutment showed increase of stress concentration as increased loading inclination. Bicortical techniques showed reduction in implant apical area and in the head of fixation screws. Bicortical techniques showed slight increase stress in cortical bone in the maximum principal stress and microstrain maps under 60° loading. No differences in bone tissue regarding surgical techniques were observed. As conclusion, non-axial loads increased stress concentration in all maps. Bicortical techniques showed lower stress for implant and screw; however, there was slightly higher stress on cortical bone only under loads of higher inclinations (60°).

  10. The reproducibility and accuracy of internal fit of Cerec 3D CAD/CAM all ceramic crowns.

    LENUS (Irish Health Repository)

    D'Arcy, Brian L

    2009-06-01

    The objective of this study was to evaluate the reproducibility and accuracy of internal fit using Cerec 3D CAD\\/CAM (computer aided design\\/computer aided manufacturing) all-ceramic crowns and to investigate the proximal contact point areas between the crowns and neighbouring teeth, in terms of location and the presence or absence of contact. A total of 48 crowns were milled and divided into two groups of twenty-four each. One group consisted of testing a Control die and the other group consisted of testing single Replica stone die duplicates of the Control die. The Internal Marginal Gap, Axio-Occlusal Transition Gap and Occlusal Gap were measured on each crown in both groups. No significant differences were identified between the mean thickness of the Marginal Gap, the Axio-Occlusal Transition Gap and the Occlusal Gap of the Control die when compared with the Replica dies indicating uniformity and consistency of the accuracy of fit and therefore die replication.

  11. A study of internal structure in components made by additive manufacturing process using 3 D X-ray tomography

    Energy Technology Data Exchange (ETDEWEB)

    Raguvarun, K., E-mail: prajagopal@iitm.ac.in; Balasubramaniam, Krishnan, E-mail: prajagopal@iitm.ac.in; Rajagopal, Prabhu, E-mail: prajagopal@iitm.ac.in [Centre for NDE, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu (India); Palanisamy, Suresh [Swinburne University of Technology, Faculty of Engineering, Science and Technology, Hawthorn, Victoria 3122 Australia and Defence Materials Technology Centre, Hawthorn, Victoria 3122 (Australia); Nagarajah, Romesh; Kapoor, Ajay [Swinburne University of Technology, Faculty of Engineering, Science and Technology, Hawthorn, Victoria 3122 (Australia); Hoye, Nicholas; Curiri, Dominic [University of Wollongong, Faculty of Engineering, New South Wales 2522, Australia and Defence Materials Technology Centre, Hawthorn, Victoria 3122 (Australia)

    2015-03-31

    Additive manufacturing methods are gaining increasing popularity for rapidly and efficiently manufacturing parts and components in the industrial context, as well as for domestic applications. However, except when used for prototyping or rapid visualization of components, industries are concerned with the load carrying capacity and strength achievable by additive manufactured parts. In this paper, the wire-arc additive manufacturing (AM) process based on gas tungsten arc welding (GTAW) has been examined for the internal structure and constitution of components generated by the process. High-resolution 3D X-ray tomography is used to gain cut-views through wedge-shaped parts created using this GTAW additive manufacturing process with titanium alloy materials. In this work, two different control conditions for the GTAW process are considered. The studies reveal clusters of porosities, located in periodic spatial intervals along the sample cross-section. Such internal defects can have a detrimental effect on the strength of the resulting AM components, as shown in destructive testing studies. Closer examination of this phenomenon shows that defect clusters are preferentially located at GTAW traversal path intervals. These results highlight the strong need for enhanced control of process parameters in ensuring components with minimal defects and higher strength.

  12. Image-based analysis of the internal microstructure of bone replacement scaffolds fabricated by 3D printing

    Science.gov (United States)

    Irsen, Stephan H.; Leukers, Barbara; Bruckschen, Björn; Tille, Carsten; Seitz, Hermann; Beckmann, Felix; Müller, Bert

    2006-08-01

    Rapid Prototyping and especially the 3D printing, allows generating complex porous ceramic scaffolds directly from powders. Furthermore, these technologies allow manufacturing patient-specific implants of centimeter size with an internal pore network to mimic bony structures including vascularization. Besides the biocompatibility properties of the base material, a high degree of open, interconnected porosity is crucial for the success of the synthetic bone graft. Pores with diameters between 100 and 500 μm are the prerequisite for vascularization to supply the cells with nutrients and oxygen, because simple diffusion transport is ineffective. The quantification of porosity on the macro-, micro-, and nanometer scale using well-established techniques such as Hg-porosimetry and electron microscopy is restricted. Alternatively, we have applied synchrotron-radiation-based micro computed tomography (SRμCT) to determine the porosity with high precision and to validate the macroscopic internal structure of the scaffold. We report on the difficulties in intensity-based segmentation for nanoporous materials but we also elucidate the power of SRμCT in the quantitative analysis of the pores at the different length scales.

  13. Reflux venous flow in dural sinus and internal jugular vein on 3D time-of-flight MR angiography

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jinhee; Kim, Bum-soo; Kim, Bom-yi; Choi, Hyun Seok; Jung, So-Lyung; Ahn, Kook-Jin; Byun, Jae Young [The Catholic University of Korea, Department of Radiology, Seoul St. Mary' s Hospital, School of Medicine, Seoul (Korea, Republic of)

    2013-10-15

    Reflux venous signal on the brain and neck time-of-flight magnetic resonance angiography (TOF MRA) is thought to be related to a compressed left brachiocephalic vein. This study is aimed to assess the prevalence of venous reflux flow in internal jugular vein (IJV), sigmoid sinus/transverse sinus (SS/TS), and inferior petrosal sinus (IPS) on the brain and neck TOF MRA and its pattern. From the radiology database, 3,475 patients (1,526 men, 1,949 women, age range 19-94, median age 62 years) with brain and neck standard 3D TOF MRA at 3 T and 1.5 T were identified. Rotational maximal intensity projection images of 3D TOF MRA were assessed for the presence of reflux flow in IJV, IPS, and SS/TS. Fifty-five patients (1.6 %) had reflux flow, all in the left side. It was more prevalent in females (n = 43/1,949, 2.2 %) than in males (n = 12/1,526, 0.8 %) (p = 0.001). The mean age of patients with reflux flow (66 years old) was older than those (60 years old) without reflux flow (p = 0.001). Three patients had arteriovenous shunt in the left arm for hemodialysis. Of the remaining 52 patients, reflux was seen on IJV in 35 patients (67.3 %). There were more patients with reflux flow seen on SS/TS (n = 34) than on IPS (n = 25). Venous reflux flow on TOF MRA is infrequently observed, and reflux pattern is variable. Because it is exclusively located in the left side, the reflux signal on TOF MRA could be an alarm for an undesirable candidate for a contrast injection on the left side for contrast-enhanced imaging study. (orig.)

  14. Internal structure and volcanic hazard potential of Mt Tongariro, New Zealand, from 3D gravity and magnetic models

    Science.gov (United States)

    Miller, Craig A.; Williams-Jones, Glyn

    2016-06-01

    A new 3D geophysical model of the Mt Tongariro Volcanic Massif (TgVM), New Zealand, provides a high resolution view of the volcano's internal structure and hydrothermal system, from which we derive implications for volcanic hazards. Geologically constrained 3D inversions of potential field data provides a greater level of insight into the volcanic structure than is possible from unconstrained models. A complex region of gravity highs and lows (± 6 mGal) is set within a broader, ~ 20 mGal gravity low. A magnetic high (1300 nT) is associated with Mt Ngauruhoe, while a substantial, thick, demagnetised area occurs to the north, coincident with a gravity low and interpreted as representing the hydrothermal system. The hydrothermal system is constrained to the west by major faults, interpreted as an impermeable barrier to fluid migration and extends to basement depth. These faults are considered low probability areas for future eruption sites, as there is little to indicate they have acted as magmatic pathways. Where the hydrothermal system coincides with steep topographic slopes, an increased likelihood of landslides is present and the newly delineated hydrothermal system maps the area most likely to have phreatic eruptions. Such eruptions, while small on a global scale, are important hazards at the TgVM as it is a popular hiking area with hundreds of visitors per day in close proximity to eruption sites. The model shows that the volume of volcanic material erupted over the lifespan of the TgVM is five to six times greater than previous estimates, suggesting a higher rate of magma supply, in line with global rates of andesite production. We suggest that our model of physical property distribution can be used to provide constraints for other models of dynamic geophysical processes occurring at the TgVM.

  15. 3D random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing

    Directory of Open Access Journals (Sweden)

    E. Ghazvinian

    2014-12-01

    Full Text Available A grain-based distinct element model featuring three-dimensional (3D Voronoi tessellations (random poly-crystals is proposed for simulation of crack damage development in brittle rocks. The grain boundaries in poly-crystal structure produced by Voronoi tessellations can represent flaws in intact rock and allow for numerical replication of crack damage progression through initiation and propagation of micro-fractures along grain boundaries. The Voronoi modelling scheme has been used widely in the past for brittle fracture simulation of rock materials. However the difficulty of generating 3D Voronoi models has limited its application to two-dimensional (2D codes. The proposed approach is implemented in Neper, an open-source engine for generation of 3D Voronoi grains, to generate block geometry files that can be read directly into 3DEC. A series of Unconfined Compressive Strength (UCS tests are simulated in 3DEC to verify the proposed methodology for 3D simulation of brittle fractures and to investigate the relationship between each micro-parameter and the model's macro-response. The possibility of numerical replication of the classical U-shape strength curve for anisotropic rocks is also investigated in numerical UCS tests by using complex-shaped (elongated grains that are cemented to one another along their adjoining sides. A micro-parameter calibration procedure is established for 3D Voronoi models for accurate replication of the mechanical behaviour of isotropic and anisotropic (containing a fabric rocks.

  16. 3D random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing

    Institute of Scientific and Technical Information of China (English)

    E. Ghazvinian; M.S. Diederichs; R. Quey

    2014-01-01

    A grain-based distinct element model featuring three-dimensional (3D) Voronoi tessellations (random poly-crystals) is proposed for simulation of crack damage development in brittle rocks. The grain boundaries in poly-crystal structure produced by Voronoi tessellations can represent flaws in intact rock and allow for numerical replication of crack damage progression through initiation and propagation of micro-fractures along grain boundaries. The Voronoi modelling scheme has been used widely in the past for brittle fracture simulation of rock materials. However the difficulty of generating 3D Voronoi models has limited its application to two-dimensional (2D) codes. The proposed approach is implemented in Neper, an open-source engine for generation of 3D Voronoi grains, to generate block geometry files that can be read directly into 3DEC. A series of Unconfined Compressive Strength (UCS) tests are simulated in 3DEC to verify the proposed methodology for 3D simulation of brittle fractures and to investigate the relationship between each micro-parameter and the model’s macro-response. The possibility of nu-merical replication of the classical U-shape strength curve for anisotropic rocks is also investigated in numerical UCS tests by using complex-shaped (elongated) grains that are cemented to one another along their adjoining sides. A micro-parameter calibration procedure is established for 3D Voronoi models for accurate replication of the mechanical behaviour of isotropic and anisotropic (containing a fabric) rocks.

  17. Fully digital 1-D, 2-D and 3-D multiscroll chaos as hardware pseudo random number generators

    KAUST Repository

    Mansingka, Abhinav S.

    2012-10-07

    This paper introduces the first fully digital implementation of 1-D, 2-D and 3-D multiscroll chaos using the sawtooth nonlinearity in a 3rd order ODE with the Euler approximation. Systems indicate chaotic behaviour through phase space boundedness and positive Lyapunov exponent. Low-significance bits form a PRNG and pass all tests in the NIST SP. 800-22 suite without post-processing. Real-time control of the number of scrolls allows distinct output streams with 2-D and 3-D multiscroll chaos enabling greater controllability. The proposed PRNGs are experimentally verified on a Xilinx Virtex 4 FPGA with logic utilization less than 1.25%, throughput up to 5.25 Gbits/s and up to 512 distinct output streams with low cross-correlation.

  18. Treatment techniques for 3D conformal radiation to breast and chest wall including the internal mammary chain.

    Science.gov (United States)

    Sonnik, Deborah; Selvaraj, Raj N; Faul, Clare; Gerszten, Kristina; Heron, Dwight E; King, Gwendolyn C

    2007-01-01

    Breast, chest wall, and regional nodal irradiation have been associated with an improved outcome in high-risk breast cancer patients. Complex treatment planning is often utilized to ensure complete coverage of the target volume while minimizing the dose to surrounding normal tissues. The 2 techniques evaluated in this report are the partially wide tangent fields (PWTFs) and the 4-field photon/electron combination (the modified "Kuske Technique"). These 2 techniques were evaluated in 10 consecutive breast cancer patients. All patients had computerized tomographic (CT) scans for 3D planning supine on a breast board. The breast was defined clinically by the physician and confirmed radiographically with radiopaque bebes. The resulting dose-volume histograms (DVHs) of normal and target tissues were then compared. The deep tangent field with blocks resulted in optimal coverage of the target and the upper internal mammary chain (IMC) while sparing of critical and nontarget tissues. The wide tangent technique required less treatment planning and delivery time. We compared the 2 techniques and their resultant DVHs and feasibility in a busy clinic.

  19. Asymmetry of intracranial internal carotid artery on 3D TOF MR angiography: a sign of unilateral extracranial stenosis

    Energy Technology Data Exchange (ETDEWEB)

    Naggara, Olivier; Seiller, Nicolas; Gobin-Metteil, Marie-Pierre; Meder, Jean-Francois; Oppenheim, Catherine [Faculte de Medecine Rene Descartes, Universite Paris 5. Centre Hospitalier Sainte-Anne, Department of Neuroradiology, Paris cedex 14 (France); Touze, Emmanuel; Mas, Jean-Louis [Faculte de Medecine Rene Descartes, Universite Paris 5. Centre Hospitalier Sainte-Anne, Department of Neurology, Paris cedex 14 (France)

    2008-05-15

    The purpose of this case-control study was to determine whether an asymmetry of size of the intracranial internal carotid artery (ICA) on 3D time-of-flight MR angiography (MRA) is predictive of a high-grade cervical ICA stenosis. Ninety-six stroke/TIA consecutive patients were recruited for the study, of whom 32 had unilateral high-grade ICA stenosis ({>=}70% NASCET) and were included into the case group, and the remaining 64 did not have such high-grade stenosis and were included in the control group. On intracranial MRA, two observers, blinded to the characteristics of cervical ICA stenosis, independently searched for qualitative size asymmetry between ICAs and measured the cross-sectional surface of the intracranial ICAs. An intracranial size asymmetry was seen in 28 of the 32 high-grade stenoses by both readers, and in 10 (reader{sub 1}) and 8 (reader{sub 2}) of the 64 controls (sensitivity = 88%, specificity = 84-88%). In patients without agenesia of the A1 segment of the circle of Willis (n = 70), sensitivity was {>=}90% and specificity = 96%. Surfaces ratios were significantly different (p < 0.001) between cases and controls. However, using ROC curves analysis, the quantitative processing did not improve the detection when compared with the qualitative assessment of intracranial ICA asymmetry. A size asymmetry of the intracranial ICAs reveals the presence of an underlying high-grade cervical stenosis, with a high degree of confidence, especially in patients without anatomical variant of the anterior part of the circle of Willis. This sign may allow an early detection of high-grade cervical carotid stenosis in stroke patients before dedicated neck imaging is performed. (orig.)

  20. DOSIS & DOSIS 3D: long-term dose monitoring onboard the Columbus Laboratory of the International Space Station (ISS)

    Science.gov (United States)

    Berger, Thomas; Przybyla, Bartos; Matthiä, Daniel; Reitz, Günther; Burmeister, Sönke; Labrenz, Johannes; Bilski, Pawel; Horwacik, Tomasz; Twardak, Anna; Hajek, Michael; Fugger, Manfred; Hofstätter, Christina; Sihver, Lembit; Palfalvi, Jozsef K.; Szabo, Julianna; Stradi, Andrea; Ambrozova, Iva; Kubancak, Jan; Brabcova, Katerina Pachnerova; Vanhavere, Filip; Cauwels, Vanessa; Van Hoey, Olivier; Schoonjans, Werner; Parisi, Alessio; Gaza, Ramona; Semones, Edward; Yukihara, Eduardo G.; Benton, Eric R.; Doull, Brandon A.; Uchihori, Yukio; Kodaira, Satoshi; Kitamura, Hisashi; Boehme, Matthias

    2016-11-01

    The radiation environment encountered in space differs in nature from that on Earth, consisting mostly of highly energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones present on Earth for occupational radiation workers. Since the beginning of the space era, the radiation exposure during space missions has been monitored with various active and passive radiation instruments. Also onboard the International Space Station (ISS), a number of area monitoring devices provide data related to the spatial and temporal variation of the radiation field in and outside the ISS. The aim of the DOSIS (2009-2011) and the DOSIS 3D (2012-ongoing) experiments was and is to measure the radiation environment within the European Columbus Laboratory of the ISS. These measurements are, on the one hand, performed with passive radiation detectors mounted at 11 locations within Columbus for the determination of the spatial distribution of the radiation field parameters and, on the other, with two active radiation detectors mounted at a fixed position inside Columbus for the determination of the temporal variation of the radiation field parameters. Data measured with passive radiation detectors showed that the absorbed dose values inside the Columbus Laboratory follow a pattern, based on the local shielding configuration of the radiation detectors, with minimum dose values observed in the year 2010 of 195-270 μGy/day and maximum values observed in the year 2012 with values ranging from 260 to 360 μGy/day. The absorbed dose is modulated by (a) the variation in solar activity and (b) the changes in ISS altitude.

  1. DOSIS & DOSIS 3D: long-term dose monitoring onboard the Columbus Laboratory of the International Space Station (ISS

    Directory of Open Access Journals (Sweden)

    Berger Thomas

    2016-01-01

    Full Text Available The radiation environment encountered in space differs in nature from that on Earth, consisting mostly of highly energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones present on Earth for occupational radiation workers. Since the beginning of the space era, the radiation exposure during space missions has been monitored with various active and passive radiation instruments. Also onboard the International Space Station (ISS, a number of area monitoring devices provide data related to the spatial and temporal variation of the radiation field in and outside the ISS. The aim of the DOSIS (2009–2011 and the DOSIS 3D (2012–ongoing experiments was and is to measure the radiation environment within the European Columbus Laboratory of the ISS. These measurements are, on the one hand, performed with passive radiation detectors mounted at 11 locations within Columbus for the determination of the spatial distribution of the radiation field parameters and, on the other, with two active radiation detectors mounted at a fixed position inside Columbus for the determination of the temporal variation of the radiation field parameters. Data measured with passive radiation detectors showed that the absorbed dose values inside the Columbus Laboratory follow a pattern, based on the local shielding configuration of the radiation detectors, with minimum dose values observed in the year 2010 of 195–270 μGy/day and maximum values observed in the year 2012 with values ranging from 260 to 360 μGy/day. The absorbed dose is modulated by (a the variation in solar activity and (b the changes in ISS altitude.

  2. A Randomized Controlled Trial to Test the Effectiveness of an Immersive 3D Video Game for Anxiety Prevention among Adolescents

    Science.gov (United States)

    Scholten, Hanneke; Malmberg, Monique; Lobel, Adam; Engels, Rutger C. M. E.; Granic, Isabela

    2016-01-01

    Adolescent anxiety is debilitating, the most frequently diagnosed adolescent mental health problem, and leads to substantial long-term problems. A randomized controlled trial (n = 138) was conducted to test the effectiveness of a biofeedback video game (Dojo) for adolescents with elevated levels of anxiety. Adolescents (11–15 years old) were randomly assigned to play Dojo or a control game (Rayman 2: The Great Escape). Initial screening for anxiety was done on 1,347 adolescents in five high schools; only adolescents who scored above the “at-risk” cut-off on the Spence Children Anxiety Survey were eligible. Adolescents’ anxiety levels were assessed at pre-test, post-test, and at three month follow-up to examine the extent to which playing Dojo decreased adolescents’ anxiety. The present study revealed equal improvements in anxiety symptoms in both conditions at follow-up and no differences between Dojo and the closely matched control game condition. Latent growth curve models did reveal a steeper decrease of personalized anxiety symptoms (not of total anxiety symptoms) in the Dojo condition compared to the control condition. Moderation analyses did not show any differences in outcomes between boys and girls nor did age differentiate outcomes. The present results are of importance for prevention science, as this was the first full-scale randomized controlled trial testing indicated prevention effects of a video game aimed at reducing anxiety. Future research should carefully consider the choice of control condition and outcome measurements, address the potentially high impact of participants’ expectations, and take critical design issues into consideration, such as individual- versus group-based intervention and contamination issues. PMID:26816292

  3. A Randomized Controlled Trial to Test the Effectiveness of an Immersive 3D Video Game for Anxiety Prevention among Adolescents.

    Science.gov (United States)

    Scholten, Hanneke; Malmberg, Monique; Lobel, Adam; Engels, Rutger C M E; Granic, Isabela

    2016-01-01

    Adolescent anxiety is debilitating, the most frequently diagnosed adolescent mental health problem, and leads to substantial long-term problems. A randomized controlled trial (n = 138) was conducted to test the effectiveness of a biofeedback video game (Dojo) for adolescents with elevated levels of anxiety. Adolescents (11-15 years old) were randomly assigned to play Dojo or a control game (Rayman 2: The Great Escape). Initial screening for anxiety was done on 1,347 adolescents in five high schools; only adolescents who scored above the "at-risk" cut-off on the Spence Children Anxiety Survey were eligible. Adolescents' anxiety levels were assessed at pre-test, post-test, and at three month follow-up to examine the extent to which playing Dojo decreased adolescents' anxiety. The present study revealed equal improvements in anxiety symptoms in both conditions at follow-up and no differences between Dojo and the closely matched control game condition. Latent growth curve models did reveal a steeper decrease of personalized anxiety symptoms (not of total anxiety symptoms) in the Dojo condition compared to the control condition. Moderation analyses did not show any differences in outcomes between boys and girls nor did age differentiate outcomes. The present results are of importance for prevention science, as this was the first full-scale randomized controlled trial testing indicated prevention effects of a video game aimed at reducing anxiety. Future research should carefully consider the choice of control condition and outcome measurements, address the potentially high impact of participants' expectations, and take critical design issues into consideration, such as individual- versus group-based intervention and contamination issues.

  4. A Randomized Controlled Trial to Test the Effectiveness of an Immersive 3D Video Game for Anxiety Prevention among Adolescents.

    Directory of Open Access Journals (Sweden)

    Hanneke Scholten

    Full Text Available Adolescent anxiety is debilitating, the most frequently diagnosed adolescent mental health problem, and leads to substantial long-term problems. A randomized controlled trial (n = 138 was conducted to test the effectiveness of a biofeedback video game (Dojo for adolescents with elevated levels of anxiety. Adolescents (11-15 years old were randomly assigned to play Dojo or a control game (Rayman 2: The Great Escape. Initial screening for anxiety was done on 1,347 adolescents in five high schools; only adolescents who scored above the "at-risk" cut-off on the Spence Children Anxiety Survey were eligible. Adolescents' anxiety levels were assessed at pre-test, post-test, and at three month follow-up to examine the extent to which playing Dojo decreased adolescents' anxiety. The present study revealed equal improvements in anxiety symptoms in both conditions at follow-up and no differences between Dojo and the closely matched control game condition. Latent growth curve models did reveal a steeper decrease of personalized anxiety symptoms (not of total anxiety symptoms in the Dojo condition compared to the control condition. Moderation analyses did not show any differences in outcomes between boys and girls nor did age differentiate outcomes. The present results are of importance for prevention science, as this was the first full-scale randomized controlled trial testing indicated prevention effects of a video game aimed at reducing anxiety. Future research should carefully consider the choice of control condition and outcome measurements, address the potentially high impact of participants' expectations, and take critical design issues into consideration, such as individual- versus group-based intervention and contamination issues.

  5. Interplay between spin-density wave and 3 d local moments with random exchange in a molecular conductor

    Science.gov (United States)

    Kawaguchi, Genta; Maesato, Mitsuhiko; Komatsu, Tokutaro; Imakubo, Tatsuro; Kitagawa, Hiroshi

    2016-02-01

    We present the results of high-pressure transport measurements on the anion-mixed molecular conductors (DIETSe)2M Br2Cl2 [DIETSe = diiodo(ethylenedithio)tetraselenafulvalene; M =Fe , Ga]. They undergo a metal-insulator (M-I) transition below 9 K at ambient pressure, which is suppressed by applying pressure, indicating a spin-density-wave (SDW) transition caused by a nesting instability of the quasi-one-dimensional (Q1D) Fermi surface, as observed in the parent compounds (DIETSe)2M Cl4 (M =Fe , Ga). In the metallic state, the existence of the Q1D Fermi surface is confirmed by observing the Lebed resonance. The critical pressures of the SDW, Pc, of the M Br2Cl2 (M =Fe , Ga) salts are significantly lower than those of the the M Cl4 (M = Fe, Ga) salts, suggesting chemical pressure effects. Above Pc, field-induced SDW transitions appear, as evidenced by kink structures in the magnetoresistance (MR) in both salts. The FeBr2Cl2 salt also shows antiferromagnetic (AF) ordering of d spins at 4 K, below which significant spin-charge coupling is observed. A large positive MR change up to 150% appears above the spin-flop field at high pressure. At low pressure, in particular below Pc, a dip or kink structure appears in MR at the spin-flop field, which shows unconventionally large hysteresis at low temperature (T hysteresis region clearly decreases with increasing pressure towards Pc, strongly indicating that the coexisting SDW plays an important role in the enhancement of magnetic hysteresis besides the random exchange interaction.

  6. 3-D modeling of parietal liquid films in internal combustion engines; Modelisation tridimensionnelle des films liquides parietaux dans les moteurs a combustion interne

    Energy Technology Data Exchange (ETDEWEB)

    Foucart, H.

    1998-12-11

    To simulate the air-fuel mixing in the intake ports and cylinder of an internal combustion engines, a wall fuel liquid film model has been developed for integration in 3D CFD codes. Phenomena taken into account include wall film formation by an impinging spray without splashing effect, film transport such as governed by mass and momentum equations with hot wall effects, and evaporation considering energy equation with an analytical mass transfer formulation developed here. A continuous-fluid method is used to describe the wall film over a three dimensional complex surface. The basic approximation is that of a laminar incompressible boundary layer; the liquid film equations are written in an integral form and solved by a first-order ALE finite volume scheme; the equation system is closed without coefficient fitting requirements. The model has been implemented in a Multi-Block version of KIVA-II (KMB) and tested against problems having theoretical solutions. Then in a first step, it has been compared to the measurements obtained in a cylindrical pipe reproducing the main characteristics of SI engine intake pipe flow and in a second step, it has been compared to the Xiong experiment concerning the film evaporation on a hot wall. The film behaviour is satisfactory reproduced by the computations for a set of operating conditions. Finally, engine calculations were conducted showing the importance of including a liquid film model for the simulations. (author) 54 refs.

  7. Quartic canonical force field in curvilinear internal coordinates for XY3 (D3h) molecules. The case of the BH3 molecule.

    Science.gov (United States)

    Ródenas, Consuelo Rosales; Quesada, Juana Vázquez; Torres, Emilio Martínez; González, Juan Jesús López

    2014-06-01

    Using the canonical force field theory, expressions of quadratic, cubic, and quartic canonical force constants are obtained for XY3 (D3h) molecules in curvilinear redundant coordinates, i.e., simple valence internal coordinates (VICs), in terms of force constants in normal coordinates and in independent symmetry coordinates. To carry out this task, it was previously necessary to obtain for the first time the non-linear redundancy relation and the corresponding orthogonal projection onto the pure vibrational manifold for XY3 (D3h) molecules corresponding to a set of seven VICs. As an application, the quartic canonical force field in curvilinear redundant internal coordinates of BH3 is determined from ab initio force fields in normal coordinates calculated at the coupled-cluster singles and doubles level with perturbative treatment of the triples in conjunction with a triple- and quadruple-ζ size basis set. This anharmonic force field so obtained for the borane molecule, and in general for XY3 (D3h) molecules, is uniquely defined (therefore in an unambiguous form) and depending on the same number of parameters, i.e., force constants, when independent coordinates (natural or symmetry) are used in its description.

  8. 颈内动脉动脉瘤3D-DSA重建成像的构型分析%Configuration analysis of 3D-DSA reconstruction imagings of internal carotid artery (ICA)aneurysm

    Institute of Scientific and Technical Information of China (English)

    刘军; 王霞; 王浩洲; 王琳; 李吉贞; 张明然; 王莲

    2013-01-01

    目的 分析颈内动脉(ICA)动脉瘤在3D-DSA中的三维构型特点,探讨其指导临床的意义.方法 回顾性总结77例ICA动脉瘤患者3D-DSA的影像资料,对77例107个动脉瘤应用Syngo Inspace软件任务卡进行重建成像,显示其三维容积及三维形态结构,研究动脉瘤形态与ICA及其分支动脉开口的结构关系.结果 按ICA Bouthillier分段,动脉瘤在C4~C5段4个,C6~C7段(床突上段)103个.动脉瘤以类圆形鼓泡状形态自ICA凸起,其形态可分为单泡型74个(69.2%)、双泡型21个(19.6%)、多泡型12个(11.2%),双泡型及多泡型动脉瘤以圆泡连体的方式沿颈动脉轴线排列,不会横向排列.其中单泡型动脉瘤又分为单泡漏斗型、单泡水泡型、单泡窄颈型及单泡宽颈型.根据动脉瘤瘤颈开口与ICA及其分支动脉开口的关系,又可将动脉瘤分为分支无关型、分支相关型和分支泡上发出型,分别有51个、37个和19个.结论 根据3D-DSA可了解ICA动脉瘤的部位、形态结构,尤其是动脉瘤开口与ICA及其分支动脉开口的结构关系,对临床选择治疗方法,以及对治疗过程中容易产生的问题、术后疗效的判断都具有重要的指导意义.%Objective To study the three-dimensional configuration characteristic of internal carotid artery (ICA) aneurysms in 3D-DSA reconstruction imaging,and to discusses its guiding meaning for clinical teeatment of ICA aneurysm.Methods Retrospective analysis of 77 patients with ICA aneurysms.There were 107 aneurysms in 77 cases.Syngo Inspace software was used to reconstruct imaging to display three-dimensional volume and structure of the carotid artery aneurysm,and to study the space structure relationship of aneurysm with the ICA and branch artery.Results According to the Bouthillier segmentation of ICA.There were 4 aneurysms occurred in C4 ~ C5,and 103 in C6 ~ C7 (supraclinoidal segment).The aneurysms protrude from ICA with a series of circular bubble

  9. FLT3 internal tandem duplication and FLT3-D835 mutation in 80 AML patients categorized into cytogenetic risk groups

    Directory of Open Access Journals (Sweden)

    Ewa Mały DEF

    2010-10-01

    Full Text Available Background:Acute myeloid leukemia (AML is a clonal disorder characterized by various genetic abnormalities and variable response to treatment. About 50�0of patients with AML have no cytogenetic aberrations, presenting normal karyotype, and are categorized in the intermediate risk group. In this group detection of FLT3 mutations move a patient from the intermediate to the adverse risk group.Material/Methods:Bone marrow from 80 AML patients was cultured to obtain chromosome slides and then karyotype. Simultaneously DNA was isolated from bone marrow and PCR reaction was conducted to test the FLT3 mutation status (ITD and D835. For statistical analysis Chi squared test was used.Results:From the group of 80 AML patients seven were classified as a favorable risk group and FLT3/ITD was found only in one of these patients (14.28� and FLT3/D835 in another one (14.28� Fifteen patients showed a complex karyotype with more than three aberrations or with any aberration known as a poor prognosis. Among the adverse group FLT3/ITD was detected in three patients (20�20and D835 mutation in two other patients (13.33� Among 58 patients with normal karyotype in GTG banding FLT3/ITD occurred in six cases (10.34�20and D835 mutation in two cases (3.45� No significant difference was found among these three risk groups regarding presence or absence of FLT3/ITD and FLT/D835.Discussion:Molecular characterization of mutations in several genes, such as FLT3, NPM1, MLL, CEBPA, in acute myeloid leukemia, especially in normal karyotype cases, could be another factor after cytogenetic analysis to stratify AML patients into different prognostic categories.

  10. Comparison of standard 4-row versus 6-row 3-D linear cutter stapler in creation of gastrointestinal system anastomoses: a prospective randomized trial

    Science.gov (United States)

    Sozutek, Alper; Colak, Tahsin; Dag, Ahmet; Olmez, Tolga

    2012-01-01

    OBJECTIVE: This prospective study was conducted to compare the clinical outcomes of a 6-row 3-D linear cutter with the standard 4-row linear cutter in patients who underwent elective gastrointestinal surgery anastomosis. METHOD: Patients who underwent elective open gastrointestinal surgery that included stapled anastomosis using a linear cutter (Proximate®, Ethicon Endo-Surgery, Cincinnati, OH) between January 2011 and May 2011 were included in the study. The patients were randomly assigned to two groups according to the linear cutter that was used in the surgery: the standard 4-row cutter (the S group) or the new 6-row cutter (the N group). The groups were compared based on the patient demographic data, the laboratory parameters, the preoperative diagnosis, the surgery performed, the operation time, intra- or postoperative complications, the time to oral tolerance and the length of the hospital stay. RESULTS: The S group included 11 male and nine female patients with a mean age of 65±12 (35-84) years, while the N group included 13 male and eight female patients with a mean age of 62±11 (46-79) years (p = 0.448, p = 0.443, respectively). Anastomotic line bleeding was observed in eight (40%) patients in the S group and in one (4.7%) patient in the N group (p = 0.006). Dehiscence of the anastomosis line was observed in two (10%) patients in the S group and none in the N group (p = 0.131). Anastomotic leakage developed in three (15%) patients in the S group and in one (4.7%) patient in the N group (p = 0.269). The mean hospital stay was 12.65±6.1 days in the S group and 9.52±2.9 days in the N group (p = 0.043). CONCLUSION: The 6-row 3-D linear cutter is a safe and easily applied instrument that can be used to create anastomoses in gastrointestinal surgery. The new stapler provides some usage benefits and is also superior to the standard linear cutter with regard to anastomotic line bleeding. PMID:23018300

  11. SU-C-201-06: Utility of Quantitative 3D SPECT/CT Imaging in Patient Specific Internal Dosimetry of 153-Samarium with GATE Monte Carlo Package

    Energy Technology Data Exchange (ETDEWEB)

    Fallahpoor, M; Abbasi, M [Tehran University of Medical Sciences, Vali-Asr Hospital, Tehran, Tehran (Iran, Islamic Republic of); Sen, A [University of Houston, Houston, TX (United States); Parach, A [Shahid Sadoughi University of Medical Sciences, Yazd, Yazd (Iran, Islamic Republic of); Kalantari, F [UT Southwestern Medical Center, Dallas, TX (United States)

    2015-06-15

    Purpose: Patient-specific 3-dimensional (3D) internal dosimetry in targeted radionuclide therapy is essential for efficient treatment. Two major steps to achieve reliable results are: 1) generating quantitative 3D images of radionuclide distribution and attenuation coefficients and 2) using a reliable method for dose calculation based on activity and attenuation map. In this research, internal dosimetry for 153-Samarium (153-Sm) was done by SPECT-CT images coupled GATE Monte Carlo package for internal dosimetry. Methods: A 50 years old woman with bone metastases from breast cancer was prescribed 153-Sm treatment (Gamma: 103keV and beta: 0.81MeV). A SPECT/CT scan was performed with the Siemens Simbia-T scanner. SPECT and CT images were registered using default registration software. SPECT quantification was achieved by compensating for all image degrading factors including body attenuation, Compton scattering and collimator-detector response (CDR). Triple energy window method was used to estimate and eliminate the scattered photons. Iterative ordered-subsets expectation maximization (OSEM) with correction for attenuation and distance-dependent CDR was used for image reconstruction. Bilinear energy mapping is used to convert Hounsfield units in CT image to attenuation map. Organ borders were defined by the itk-SNAP toolkit segmentation on CT image. GATE was then used for internal dose calculation. The Specific Absorbed Fractions (SAFs) and S-values were reported as MIRD schema. Results: The results showed that the largest SAFs and S-values are in osseous organs as expected. S-value for lung is the highest after spine that can be important in 153-Sm therapy. Conclusion: We presented the utility of SPECT-CT images and Monte Carlo for patient-specific dosimetry as a reliable and accurate method. It has several advantages over template-based methods or simplified dose estimation methods. With advent of high speed computers, Monte Carlo can be used for treatment planning

  12. 3D dosimetry estimation for selective internal radiation therapy (SIRT) using SPECT/CT images: a phantom study

    Science.gov (United States)

    Debebe, Senait A.; Franquiz, Juan; McGoron, Anthony J.

    2015-03-01

    Selective Internal Radiation Therapy (SIRT) is a common way to treat liver cancer that cannot be treated surgically. SIRT involves administration of Yttrium - 90 (90Y) microspheres via the hepatic artery after a diagnostic procedure using 99mTechnetium (Tc)-macroaggregated albumin (MAA) to detect extrahepatic shunting to the lung or the gastrointestinal tract. Accurate quantification of radionuclide administered to patients and radiation dose absorbed by different organs is of importance in SIRT. Accurate dosimetry for SIRT allows optimization of dose delivery to the target tumor and may allow for the ability to assess the efficacy of the treatment. In this study, we proposed a method that can efficiently estimate radiation absorbed dose from 90Y bremsstrahlung SPECT/CT images of liver and the surrounding organs. Bremsstrahlung radiation from 90Y was simulated using the Compton window of 99mTc (78keV at 57%). 99mTc images acquired at the photopeak energy window were used as a standard to examine the accuracy of dosimetry prediction by the simulated bremsstrahlung images. A Liqui-Phil abdominal phantom with liver, stomach and two tumor inserts was imaged using a Philips SPECT/CT scanner. The Dose Point Kernel convolution method was used to find the radiation absorbed dose at a voxel level for a three dimensional dose distribution. This method will allow for a complete estimate of the distribution of radiation absorbed dose by tumors, liver, stomach and other surrounding organs at the voxel level. The method provides a quantitative predictive method for SIRT treatment outcome and administered dose response for patients who undergo the treatment.

  13. Development of a bio-mechanical model of the spine based on 3D internal-external relationships: bi-planar radiography and Moire fringes; Developpement d'un modele biomecanique du rachis base sur les relations 3D internes - externes: radiographie bi-planaire et franges de Moire

    Energy Technology Data Exchange (ETDEWEB)

    Saunier-Koell, P.

    2010-11-15

    Nowadays, radiography is the gold standard for the follow up of spinal pathologies. Furthermore, bi-planar radiography allows the assessment of vertebrae configuration, by 3-dimensional (3D) reconstruction. However, multiple radiographic examinations during childhood and adolescence increase the risk of breast cancer among women. To reduce radiation doses, some radiographic assessments could be replaced by the back surface evaluation. This kind of non-invasive procedure allows for acquisition of many clinical parameters useful for spinal pathologies diagnosis and follow-up. Moreover, with an appropriate bio mechanical model, the back surface measurements could be used to estimate the spine configuration. The aim of this thesis is to develop and implement such a model based on personalized internal and external data. The Biomod 3S device has been developed by the company AXS MEDICAL SAS, Bordeaux, France. It offers the possibility of simultaneous acquisitions of X-rays and Moire fringes to obtain 3D reconstructions of the spine and the back surface. Such acquisitions on fifteen scoliotic subjects have enabled us to assess several relationships between internal 3D parameters (for example axial rotation of vertebrae) and external 3D parameters (for example rib hump). The spine configuration and the back surface obtained during this acquisition will also be used as initial position to develop (with Scilab) the multi-body model. The other data used by the model are the back surface in a second position and constraints obtained from the surface in both positions (for example displacement of C7 vertebra). The model has been validated on nine healthy subjects, whose 3D spine and back surface were reconstructed in several positions (standing, leaning forward, sitting) from MRI acquisitions. Moreover, the model has been operated on a pathological subject. This work has explored and utilized many spine and back surface information and leads the way to non-invasive diagnosis

  14. 3D Animation Essentials

    CERN Document Server

    Beane, Andy

    2012-01-01

    The essential fundamentals of 3D animation for aspiring 3D artists 3D is everywhere--video games, movie and television special effects, mobile devices, etc. Many aspiring artists and animators have grown up with 3D and computers, and naturally gravitate to this field as their area of interest. Bringing a blend of studio and classroom experience to offer you thorough coverage of the 3D animation industry, this must-have book shows you what it takes to create compelling and realistic 3D imagery. Serves as the first step to understanding the language of 3D and computer graphics (CG)Covers 3D anim

  15. 3D video

    CERN Document Server

    Lucas, Laurent; Loscos, Céline

    2013-01-01

    While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century.The chapters in this book cover a large spectrum of areas connected to 3D video, which are presented both theoretically and technologically, while taking into account both physiological and perceptual aspects. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide th

  16. 鱼群启发的三维Ad hoc网络节点随机移动优化模型%Fish swarm inspired Ad hoc networks node random mobility optimization model in 3D environment

    Institute of Scientific and Technical Information of China (English)

    何明; 陈秋丽; 陈希亮; 郑翔; 陈剑

    2014-01-01

    In order to deploy mobile Ad-Hoc wireless networks (MAWN) effectively in 3D environment and improve its detection capability, inspired by the fish swarm, a new three-dimensional semi-random node mobility model (3D_NMM) is proposed. In this paper, a new node state of exclusive motion is added in 3D smooth Gauss Semi-Markov mobility model (3D-SGM), and a new way of node state transition is also presented. The virtual boundary is built in random waypoint mobility model (RWP), and a new boundary treatment method is presented. The simulation experiments show that the 3D_NMM has superior performance in space detection rate, real-time coverage rate and the time cost of the initial detection compared with 3D-SGM. The real-time coverage rate increases by 62.2%, and the time cost for initial detection area of 95% reduces by 77%, and 3D_NMM can improve the application efficiency of mobile wireless self-organized network effectively.%为有效指导三维环境中的移动自组织无线网络(MAWN)的部署,并提高网络感知能力,受鱼群启发,构建了一种新型三维节点半随机移动模型(3D_NMM)。本文在三维高斯半马尔科夫移动模型(3D-SGM)上增加节点排斥运动状态,设计了新的节点状态转换方式;在随机路点移动模型上构建虚拟边界,提出了一种新的边界处理方法。仿真实验表明,3D_NMM较3D-SGM在空间探测率、实时覆盖率及初始探测花费上具有优势,其中实时覆盖率提高了62.2%,初始探测95%区域的时间花费降低了77%,有效提升了移动无线自组织网络的应用效能。

  17. Experiments performed with bubbly flow in vertical pipes at different flow conditions covering the transition region: simulation by coupling Eulerian, Lagrangian and 3D random walks models

    Science.gov (United States)

    Muñoz-Cobo, José; Chiva, Sergio; El Aziz Essa, Mohamed; Mendes, Santos

    2012-08-01

    Two phase flow experiments with different superficial velocities of gas and water were performed in a vertical upward isothermal cocurrent air-water flow column with conditions ranging from bubbly flow, with very low void fraction, to transition flow with some cap and slug bubbles and void fractions around 25%. The superficial velocities of the liquid and the gas phases were varied from 0.5 to 3 m/s and from 0 to 0.6 m/s, respectively. Also to check the effect of changing the surface tension on the previous experiments small amounts of 1-butanol were added to the water. These amounts range from 9 to 75 ppm and change the surface tension. This study is interesting because in real cases the surface tension of the water diminishes with temperature, and with this kind of experiments we can study indirectly the effect of changing the temperature on the void fraction distribution. The following axial and radial distributions were measured in all these experiments: void fraction, interfacial area concentration, interfacial velocity, Sauter mean diameter and turbulence intensity. The range of values of the gas superficial velocities in these experiments covered the range from bubbly flow to the transition to cap/slug flow. Also with transition flow conditions we distinguish two groups of bubbles in the experiments, the small spherical bubbles and the cap/slug bubbles. Special interest was devoted to the transition region from bubbly to cap/slug flow; the goal was to understand the physical phenomena that take place during this transition A set of numerical simulations of some of these experiments for bubbly flow conditions has been performed by coupling a Lagrangian code, that tracks the three dimensional motion of the individual bubbles in cylindrical coordinates inside the field of the carrier liquid, to an Eulerian model that computes the magnitudes of continuous phase and to a 3D random walk model that takes on account the fluctuation in the velocity field of the

  18. Evaluation of Freehand B-Mode and Power-Mode 3D Ultrasound for Visualisation and Grading of Internal Carotid Artery Stenosis

    Science.gov (United States)

    Karlas, Thomas; Saur, Dorothee

    2017-01-01

    Background Currently, colour-coded duplex sonography (2D-CDS) is clinical standard for detection and grading of internal carotid artery stenosis (ICAS). However, unlike angiographic imaging modalities, 2D-CDS assesses ICAS by its hemodynamic effects rather than luminal changes. Aim of this study was to evaluate freehand 3D ultrasound (3DUS) for direct visualisation and quantification of ICAS. Methods Thirty-seven patients with 43 ICAS were examined with 2D-CDS as reference standard and with freehand B-mode respectively power-mode 3DUS. Stenotic value of 3D reconstructed ICAS was calculated as distal diameter respectively distal cross-sectional area (CSA) reduction percentage and compared with 2D-CDS. Results There was a trend but no significant difference in successful 3D reconstruction of ICAS between B-mode and power mode (examiner 1 {Ex1} 81% versus 93%, examiner 2 {Ex2} 84% versus 88%). Inter-rater agreement was best for power-mode 3DUS and assessment of stenotic value as distal CSA reduction percentage (intraclass correlation coefficient {ICC} 0.90) followed by power-mode 3DUS and distal diameter reduction percentage (ICC 0.81). Inter-rater agreement was poor for B-mode 3DUS (ICC, distal CSA reduction 0.36, distal diameter reduction 0.51). Intra-rater agreement for power-mode 3DUS was good for both measuring methods (ICC, distal CSA reduction 0.88 {Ex1} and 0.78 {Ex2}; ICC, distal diameter reduction 0.83 {Ex1} and 0.76 {Ex2}). In comparison to 2D-CDS inter-method agreement was good and clearly better for power-mode 3DUS (ICC, distal diameter reduction percentage: Ex1 0.85, Ex2 0.78; distal CSA reduction percentage: Ex1 0.63, Ex2 0.57) than for B-mode 3DUS (ICC, distal diameter reduction percentage: Ex1 0.40, Ex2 0.52; distal CSA reduction percentage: Ex1 0.15, Ex2 0.51). Conclusions Non-invasive power-mode 3DUS is superior to B-mode 3DUS for imaging and quantification of ICAS. Thereby, further studies are warranted which should now compare power-mode 3DUS with

  19. Acquired experience on organizing 3D S.UN.COP: international course to support nuclear license by user training in the areas of scaling, uncertainty, and 3D thermal-hydraulics/neutron-kinetics coupled codes

    Energy Technology Data Exchange (ETDEWEB)

    Petruzzi, Alessandro; D' Auria, Francesco [University of Pisa, San Piero a Grado (Italy). Nuclear Research Group San Piero a Grado (GRNSPG); Galetti, Regina, E-mail: regina@cnen.gov.b [National Commission for Nuclear Energy (CNEN), Rio de Janeiro, RJ (Brazil); Bajs, Tomislav [University of Zagreb (Croatia). Fac. of Electrical Engineering and Computing. Dept. of Power Systems; Reventos, Francesc [Technical University of Catalonia, Barcelona (Spain). Dept. of Physics and Nuclear Engineering

    2011-07-01

    Thermal-hydraulic system computer codes are extensively used worldwide for analysis of nuclear facilities by utilities, regulatory bodies, nuclear power plant designers, vendors, and research organizations. Computer code user represents a source of uncertainty that may significantly affect the results of system code calculations. Code user training and qualification represent an effective means for reducing the variation of results caused by the application of the codes by different users. This paper describes the experience in applying a systematic approach to training code users who, upon completion of the training, should be able to perform calculations making the best possible use of the capabilities of best estimate codes. In addition, this paper presents the organization and the main features of the 3D S.UN.COP (scaling, uncertainty, and 3D coupled code calculations) seminars during which particular emphasis is given to practical applications in connection with the licensing process of best estimate plus uncertainty methodologies, showing the designer, utility and regulatory approaches. (author)

  20. Daily eating activity of dairy cows from 3D accelerometer data and RFID signals: prediction by random forests and detection of sick cows

    DEFF Research Database (Denmark)

    Foldager, Leslie; Gildbjerg, Lars Bilde; Voss, Heidi

    2017-01-01

    Feed intake is very important for dairy cows and deviation from normal eating behaviour may predict a cow that needs treatment. We used video recordings of dairy cows at the Danish Cattle Research Centre (DKC) combined with data from a neck-collar mounted 3D accelerometer and RFID device from...

  1. Predicting daily eating activity of dairy cows from 3D accelerometer data and RFID signals by use of a random forests model

    DEFF Research Database (Denmark)

    Foldager, Leslie; Munksgaard, Lene; Trénel, Philipp

    2015-01-01

    /logger combinations and synchronised with video recordings at the Danish Cattle Research Centre (DKC). The sensor recorded 3D accelerometer data and radio frequency identification (RFID) signals for positioning of the cow at the feed bunk. Video observations from 21 to 48 hours per cow/logger combination were...

  2. IZDELAVA TISKALNIKA 3D

    OpenAIRE

    Brdnik, Lovro

    2015-01-01

    Diplomsko delo analizira trenutno stanje 3D tiskalnikov na trgu. Prikazan je razvoj in principi delovanja 3D tiskalnikov. Predstavljeni so tipi 3D tiskalnikov, njihove prednosti in slabosti. Podrobneje je predstavljena zgradba in delovanje koračnih motorjev. Opravljene so meritve koračnih motorjev. Opisana je programska oprema za rokovanje s 3D tiskalniki in komponente, ki jih potrebujemo za izdelavo. Diploma se oklepa vprašanja, ali je izdelava 3D tiskalnika bolj ekonomična kot pa naložba v ...

  3. Using the Flow-3D General Moving Object Model to Simulate Coupled Liquid Slosh - Container Dynamics on the SPHERES Slosh Experiment: Aboard the International Space Station

    Science.gov (United States)

    Schulman, Richard; Kirk, Daniel; Marsell, Brandon; Roth, Jacob; Schallhorn, Paul

    2013-01-01

    The SPHERES Slosh Experiment (SSE) is a free floating experimental platform developed for the acquisition of long duration liquid slosh data aboard the International Space Station (ISS). The data sets collected will be used to benchmark numerical models to aid in the design of rocket and spacecraft propulsion systems. Utilizing two SPHERES Satellites, the experiment will be moved through different maneuvers designed to induce liquid slosh in the experiment's internal tank. The SSE has a total of twenty-four thrusters to move the experiment. In order to design slosh generating maneuvers, a parametric study with three maneuvers types was conducted using the General Moving Object (GMO) model in Flow-30. The three types of maneuvers are a translation maneuver, a rotation maneuver and a combined rotation translation maneuver. The effectiveness of each maneuver to generate slosh is determined by the deviation of the experiment's trajectory as compared to a dry mass trajectory. To fully capture the effect of liquid re-distribution on experiment trajectory, each thruster is modeled as an independent force point in the Flow-3D simulation. This is accomplished by modifying the total number of independent forces in the GMO model from the standard five to twenty-four. Results demonstrate that the most effective slosh generating maneuvers for all motions occurs when SSE thrusters are producing the highest changes in SSE acceleration. The results also demonstrate that several centimeters of trajectory deviation between the dry and slosh cases occur during the maneuvers; while these deviations seem small, they are measureable by SSE instrumentation.

  4. 3D and Education

    Science.gov (United States)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  5. TEHNOLOGIJE 3D TISKALNIKOV

    OpenAIRE

    Kolar, Nataša

    2016-01-01

    Diplomsko delo predstavi razvoj tiskanja skozi čas. Podrobneje so opisani 3D tiskalniki, ki uporabljajo različne tehnologije 3D tiskanja. Predstavljene so različne tehnologije 3D tiskanja, njihova uporaba in narejeni prototipi oz. končni izdelki. Diplomsko delo opiše celoten postopek, od zamisli, priprave podatkov in tiskalnika do izdelave prototipa oz. končnega izdelka.

  6. International Legal and Ethical Challenges Related to the Use and Development of 3D Technology in the U.S. and China

    OpenAIRE

    Kimberley Kinsley; Gail Brooks; Tim Owens

    2014-01-01

    Ethical and legal uses of technology should be addressed when a new technology gains popularity. The main focus of this research is to provide a detailed discussion of the legal and ethical issues pertaining to the use of 3D technology. Recent court cases provide examples of current and potential concerns associated with this technology from a consumer and business perspective. With the growing interest in 3D technology worldwide, especially in China, a discussion of similar laws in China rel...

  7. 3D virtuel udstilling

    DEFF Research Database (Denmark)

    Tournay, Bruno; Rüdiger, Bjarne

    2006-01-01

    3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s.......3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s....

  8. Blender 3D cookbook

    CERN Document Server

    Valenza, Enrico

    2015-01-01

    This book is aimed at the professionals that already have good 3D CGI experience with commercial packages and have now decided to try the open source Blender and want to experiment with something more complex than the average tutorials on the web. However, it's also aimed at the intermediate Blender users who simply want to go some steps further.It's taken for granted that you already know how to move inside the Blender interface, that you already have 3D modeling knowledge, and also that of basic 3D modeling and rendering concepts, for example, edge-loops, n-gons, or samples. In any case, it'

  9. 3D Digital Modelling

    DEFF Research Database (Denmark)

    Hundebøl, Jesper

    wave of new building information modelling tools demands further investigation, not least because of industry representatives' somewhat coarse parlance: Now the word is spreading -3D digital modelling is nothing less than a revolution, a shift of paradigm, a new alphabet... Research qeustions. Based...... on empirical probes (interviews, observations, written inscriptions) within the Danish construction industry this paper explores the organizational and managerial dynamics of 3D Digital Modelling. The paper intends to - Illustrate how the network of (non-)human actors engaged in the promotion (and arrest) of 3......D Modelling (in Denmark) stabilizes - Examine how 3D Modelling manifests itself in the early design phases of a construction project with a view to discuss the effects hereof for i.a. the management of the building process. Structure. The paper introduces a few, basic methodological concepts...

  10. Professional Papervision3D

    CERN Document Server

    Lively, Michael

    2010-01-01

    Professional Papervision3D describes how Papervision3D works and how real world applications are built, with a clear look at essential topics such as building websites and games, creating virtual tours, and Adobe's Flash 10. Readers learn important techniques through hands-on applications, and build on those skills as the book progresses. The companion website contains all code examples, video step-by-step explanations, and a collada repository.

  11. AE3D

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-20

    AE3D solves for the shear Alfven eigenmodes and eigenfrequencies in a torodal magnetic fusion confinement device. The configuration can be either 2D (e.g. tokamak, reversed field pinch) or 3D (e.g. stellarator, helical reversed field pinch, tokamak with ripple). The equations solved are based on a reduced MHD model and sound wave coupling effects are not currently included.

  12. 3D analysis of craniofacial growth and tooth eruption

    DEFF Research Database (Denmark)

    Kreiborg, Sven

    The 9th International Congress on Cleft Palate and Related Craniofacial Anomalies, 3D analysis, craniofacial growth, tooth eruption......The 9th International Congress on Cleft Palate and Related Craniofacial Anomalies, 3D analysis, craniofacial growth, tooth eruption...

  13. High-resolution 3D analyses of the shape and internal constituents of small volcanic ash particles: The contribution of SEM micro-computed tomography (SEM micro-CT)

    Science.gov (United States)

    Vonlanthen, Pierre; Rausch, Juanita; Ketcham, Richard A.; Putlitz, Benita; Baumgartner, Lukas P.; Grobéty, Bernard

    2015-02-01

    The morphology of small volcanic ash particles is fundamental to our understanding of magma fragmentation, and in transport modeling of volcanic plumes and clouds. Until recently, the analysis of 3D features in small objects ( 20 μm3 (~ 3.5 μm in diameter) can be successfully reconstructed and quantified. In addition, new functionalities of the Blob3D software were developed to allow the particle shape factors frequently used as input parameters in ash transport and dispersion models to be calculated. This study indicates that SEM micro-CT is very well suited to quantify the various aspects of shape in fine volcanic ash, and potentially also to investigate the 3D morphology and internal structure of any object < 0.1 mm3.

  14. Radiochromic 3D Detectors

    Science.gov (United States)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  15. 3D Spectroscopic Instrumentation

    CERN Document Server

    Bershady, Matthew A

    2009-01-01

    In this Chapter we review the challenges of, and opportunities for, 3D spectroscopy, and how these have lead to new and different approaches to sampling astronomical information. We describe and categorize existing instruments on 4m and 10m telescopes. Our primary focus is on grating-dispersed spectrographs. We discuss how to optimize dispersive elements, such as VPH gratings, to achieve adequate spectral resolution, high throughput, and efficient data packing to maximize spatial sampling for 3D spectroscopy. We review and compare the various coupling methods that make these spectrographs ``3D,'' including fibers, lenslets, slicers, and filtered multi-slits. We also describe Fabry-Perot and spatial-heterodyne interferometers, pointing out their advantages as field-widened systems relative to conventional, grating-dispersed spectrographs. We explore the parameter space all these instruments sample, highlighting regimes open for exploitation. Present instruments provide a foil for future development. We give an...

  16. 3D Projection Installations

    DEFF Research Database (Denmark)

    Halskov, Kim; Johansen, Stine Liv; Bach Mikkelsen, Michelle

    2014-01-01

    Three-dimensional projection installations are particular kinds of augmented spaces in which a digital 3-D model is projected onto a physical three-dimensional object, thereby fusing the digital content and the physical object. Based on interaction design research and media studies, this article...... contributes to the understanding of the distinctive characteristics of such a new medium, and identifies three strategies for designing 3-D projection installations: establishing space; interplay between the digital and the physical; and transformation of materiality. The principal empirical case, From...... Fingerplan to Loop City, is a 3-D projection installation presenting the history and future of city planning for the Copenhagen area in Denmark. The installation was presented as part of the 12th Architecture Biennale in Venice in 2010....

  17. Biomechanical influence of crown-to-implant ratio on stress distribution over internal hexagon short implant: 3-D finite element analysis with statistical test.

    Science.gov (United States)

    Ramos Verri, Fellippo; Santiago Junior, Joel Ferreira; de Faria Almeida, Daniel Augusto; de Oliveira, Guilherme Bérgamo Brandão; de Souza Batista, Victor Eduardo; Marques Honório, Heitor; Noritomi, Pedro Yoshito; Pellizzer, Eduardo Piza

    2015-01-02

    The study of short implants is relevant to the biomechanics of dental implants, and research on crown increase has implications for the daily clinic. The aim of this study was to analyze the biomechanical interactions of a singular implant-supported prosthesis of different crown heights under vertical and oblique force, using the 3-D finite element method. Six 3-D models were designed with Invesalius 3.0, Rhinoceros 3D 4.0, and Solidworks 2010 software. Each model was constructed with a mandibular segment of bone block, including an implant supporting a screwed metal-ceramic crown. The crown height was set at 10, 12.5, and 15 mm. The applied force was 200 N (axial) and 100 N (oblique). We performed an ANOVA statistical test and Tukey tests; p0.05) under axial load. However, crown heights of 12.5 and 15 mm caused statistically significant damage to the stress distribution of screws and to the cortical bone (p<0.001) under oblique load. High crown to implant (C/I) ratio harmed microstrain distribution on bone tissue under axial and oblique loads (p<0.001). Crown increase was a possible deleterious factor to the screws and to the different regions of bone tissue.

  18. Changes in gene expression, protein content and morphology of chondrocytes cultured on a 3D Random Positioning Machine and 2D rotating clinostat

    Science.gov (United States)

    Aleshcheva, Ganna; Hauslage, Jens; Hemmersbach, Ruth; Infanger, Manfred; Bauer, Johann; Grimm, Daniela; Sahana, Jayashree

    Chondrocytes are the only cell type found in human cartilage consisting of proteoglycans and type II collagen. Several studies on chondrocytes cultured either in Space or on a ground-based facility for simulation of microgravity revealed that these cells are very resistant to adverse effects and stress induced by altered gravity. Tissue engineering of chondrocytes is a new strategy for cartilage regeneration. Using a three-dimensional Random Positioning Machine and a 2D rotating clinostat, devices designed to simulate microgravity on Earth, we investigated the early effects of microgravity exposure on human chondrocytes of six different donors after 30 min, 2 h, 4 h, 16 h, and 24 h and compared the results with the corresponding static controls cultured under normal gravity conditions. As little as 30 min of exposure resulted in increased expression of several genes responsible for cell motility, structure and integrity (beta-actin); control of cell growth, cell proliferation, cell differentiation and apoptosis; and cytoskeletal components such as microtubules (beta-tubulin) and intermediate filaments (vimentin). After 4 hours disruptions in the vimentin network were detected. These changes were less dramatic after 16 hours, when human chondrocytes appeared to reorganize their cytoskeleton. However, the gene expression and protein content of TGF-β1 was enhanced for 24 h. Based on the results achieved, we suggest that chondrocytes exposed to simulated microgravity seem to change their extracellular matrix production behavior while they rearrange their cytoskeletal proteins prior to forming three-dimensional aggregates.

  19. Interaktiv 3D design

    DEFF Research Database (Denmark)

    Villaume, René Domine; Ørstrup, Finn Rude

    2002-01-01

    Projektet undersøger potentialet for interaktiv 3D design via Internettet. Arkitekt Jørn Utzons projekt til Espansiva blev udviklet som et byggesystem med det mål, at kunne skabe mangfoldige planmuligheder og mangfoldige facade- og rumudformninger. Systemets bygningskomponenter er digitaliseret som...... 3D elementer og gjort tilgængelige. Via Internettet er det nu muligt at sammenstille og afprøve en uendelig  række bygningstyper som  systemet blev tænkt og udviklet til....

  20. Tangible 3D Modelling

    DEFF Research Database (Denmark)

    Hejlesen, Aske K.; Ovesen, Nis

    2012-01-01

    This paper presents an experimental approach to teaching 3D modelling techniques in an Industrial Design programme. The approach includes the use of tangible free form models as tools for improving the overall learning. The paper is based on lecturer and student experiences obtained through...

  1. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data...

  2. 3D Wire 2015

    DEFF Research Database (Denmark)

    Jordi, Moréton; F, Escribano; J. L., Farias

    This document is a general report on the implementation of gamification in 3D Wire 2015 event. As the second gamification experience in this event, we have delved deeply in the previous objectives (attracting public areas less frequented exhibition in previous years and enhance networking) and ha......, improves socialization and networking, improves media impact, improves fun factor and improves encouragement of the production team....

  3. 3D photoacoustic imaging

    Science.gov (United States)

    Carson, Jeffrey J. L.; Roumeliotis, Michael; Chaudhary, Govind; Stodilka, Robert Z.; Anastasio, Mark A.

    2010-06-01

    Our group has concentrated on development of a 3D photoacoustic imaging system for biomedical imaging research. The technology employs a sparse parallel detection scheme and specialized reconstruction software to obtain 3D optical images using a single laser pulse. With the technology we have been able to capture 3D movies of translating point targets and rotating line targets. The current limitation of our 3D photoacoustic imaging approach is its inability ability to reconstruct complex objects in the field of view. This is primarily due to the relatively small number of projections used to reconstruct objects. However, in many photoacoustic imaging situations, only a few objects may be present in the field of view and these objects may have very high contrast compared to background. That is, the objects have sparse properties. Therefore, our work had two objectives: (i) to utilize mathematical tools to evaluate 3D photoacoustic imaging performance, and (ii) to test image reconstruction algorithms that prefer sparseness in the reconstructed images. Our approach was to utilize singular value decomposition techniques to study the imaging operator of the system and evaluate the complexity of objects that could potentially be reconstructed. We also compared the performance of two image reconstruction algorithms (algebraic reconstruction and l1-norm techniques) at reconstructing objects of increasing sparseness. We observed that for a 15-element detection scheme, the number of measureable singular vectors representative of the imaging operator was consistent with the demonstrated ability to reconstruct point and line targets in the field of view. We also observed that the l1-norm reconstruction technique, which is known to prefer sparseness in reconstructed images, was superior to the algebraic reconstruction technique. Based on these findings, we concluded (i) that singular value decomposition of the imaging operator provides valuable insight into the capabilities of

  4. Autodesk Civil 3D在斯里兰卡国际机场地势设计的应用%On application of Autodesk Civil 3D in hypsography design for Sri Lanka international airport

    Institute of Scientific and Technical Information of China (English)

    王振殿; 王提

    2012-01-01

    The study points out Civil 3D is the solution scheme for the building information model, BIM, for the civil engineering design, introduces the Civil 3D' s application in the hypsography design for runways of the international airports by establishing the initial form landform surface, creating the runway routines and profiles, and building the runway section assembly and the slope making, forms the three-dimension effect of the airport runways from the model, and sums up the advantages of the Civil 3D in the hypsography design of the runways, so as to make the design personnel understand Civil 3D and promote the design efficiency.%指出Civil 3D是一款面向土木工程设计的建筑信息模型(BIM)解决方案,介绍了Civil 3D在国际机场跑道地势设计中的应用,通过建立原地形曲面、创建跑道路线及跑道纵断面、创建跑道断面装配、放坡等,最后可由模型生成机场跑道三维效果,总结了Civil 3D在跑道地势设计中的优点,使机场设计人员了解Civil 3D,从而提高设计效率。

  5. Unoriented 3d TFTs

    CERN Document Server

    Bhardwaj, Lakshya

    2016-01-01

    This paper generalizes two facts about oriented 3d TFTs to the unoriented case. On one hand, it is known that oriented 3d TFTs having a topological boundary condition admit a state-sum construction known as the Turaev-Viro construction. This is related to the string-net construction of fermionic phases of matter. We show how Turaev-Viro construction can be generalized to unoriented 3d TFTs. On the other hand, it is known that the "fermionic" versions of oriented TFTs, known as Spin-TFTs, can be constructed in terms of "shadow" TFTs which are ordinary oriented TFTs with an anomalous Z_2 1-form symmetry. We generalize this correspondence to Pin+ TFTs by showing that they can be constructed in terms of ordinary unoriented TFTs with anomalous Z_2 1-form symmetry having a mixed anomaly with time-reversal symmetry. The corresponding Pin+ TFT does not have any anomaly for time-reversal symmetry however and hence it can be unambiguously defined on a non-orientable manifold. In case a Pin+ TFT admits a topological bou...

  6. Simulation of bubbly flow in vertical pipes by coupling Lagrangian and Eulerian models with 3D random walks models: Validation with experimental data using multi-sensor conductivity probes and Laser Doppler Anemometry

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Cobo, Jose L., E-mail: jlcobos@iqn.upv.es [Instituto de Ingenieria Energetica, Universidad Politecnica de Valencia, Valencia (Spain); Chiva, Sergio [Department of Mechanical Engineering and Construction, Universitat Jaume I, Castellon (Spain); Essa, Mohamed Ali Abd El Aziz [Instituto de Ingenieria Energetica, Universidad Politecnica de Valencia, Valencia (Spain); Mendes, Santos [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer We have simulated bubbly flow in vertical pipes by coupling a Lagrangian model to an Eulerian one, and to a 3D random walk model. Black-Right-Pointing-Pointer A set of experiments in a vertical column with isothermal co-current two phase flow have been performed and used to validate the previous model. Black-Right-Pointing-Pointer We have investigated the influence of the turbulence induced by the bubbles on the results. Black-Right-Pointing-Pointer Comparison of experimental and computed results has been performed for different boundary conditions. - Abstract: A set of two phase flow experiments for different conditions ranging from bubbly flow to cap/slug flow have been performed under isothermal concurrent upward air-water flow conditions in a vertical column of 3 m height. Special attention in these experiments was devoted to the transition from bubbly to cap/slug flow. The interfacial velocity of the bubbles and the void fraction distribution was obtained using 2 and 4 sensors conductivity probes. Numerical simulations of these experiments for bubbly flow conditions were performed by coupling a Lagrangian code with an Eulerian one. The first one tracks the 3D motion of the individual bubbles in cylindrical coordinates (r, {phi}, z) inside the fluid field under the action of the following forces: buoyancy, drag, lift, wall lubrication. Also we have incorporated a 3D stochastic differential equation model to account for the random motion of the individual bubbles in the turbulent velocity field of the carrier liquid. Also we have considered the deformations undergone by the bubbles when they touch the walls of the pipe and are compressed until they rebound. The velocity and turbulence fields of the liquid phase were computed by solving the time dependent conservation equations in its Reynolds Averaged Transport Equation form (RANS). The turbulent kinetic energy k, and the dissipation rate {epsilon} transport equations

  7. 3D and beyond

    Science.gov (United States)

    Fung, Y. C.

    1995-05-01

    This conference on physiology and function covers a wide range of subjects, including the vasculature and blood flow, the flow of gas, water, and blood in the lung, the neurological structure and function, the modeling, and the motion and mechanics of organs. Many technologies are discussed. I believe that the list would include a robotic photographer, to hold the optical equipment in a precisely controlled way to obtain the images for the user. Why are 3D images needed? They are to achieve certain objectives through measurements of some objects. For example, in order to improve performance in sports or beauty of a person, we measure the form, dimensions, appearance, and movements.

  8. Filling gaps in cultural heritage documentation by 3D photography

    Directory of Open Access Journals (Sweden)

    W. Schuhr

    2015-08-01

    Niepce (1827, but seem to promise a great future also in 3D Cultural Heritage documentation. *Last not least 3D printers more and more seem to conquer the IT-market, obviously showing an international competition.

  9. Funding, disease area, and internal validity of hepatobiliary randomized clinical trials

    DEFF Research Database (Denmark)

    Kjaergard, Lise Lotte; Gluud, Christian

    2002-01-01

    The aim of this study was to assess whether funding and the disease area are related to the internal validity of hepatobiliary randomized clinical trials.......The aim of this study was to assess whether funding and the disease area are related to the internal validity of hepatobiliary randomized clinical trials....

  10. 3D Surgical Simulation

    Science.gov (United States)

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  11. TOWARDS: 3D INTERNET

    Directory of Open Access Journals (Sweden)

    Ms. Swapnali R. Ghadge

    2013-08-01

    Full Text Available In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot of discussions. Basically, one can look into this matter from a few different perspectives: visualization and representation of information, and creation and transportation of information, among others. All of them still constitute research challenges, as no products or services are yet available or foreseen for the near future. Nevertheless, one can try to envisage the directions that can be taken towards achieving this goal. People who take part in virtual worlds stay online longer with a heightened level of interest. To take advantage of that interest, diverse businesses and organizations have claimed an early stake in this fast-growing market. They include technology leaders such as IBM, Microsoft, and Cisco, companies such as BMW, Toyota, Circuit City, Coca Cola, and Calvin Klein, and scores of universities, including Harvard, Stanford and Penn State.

  12. A 3D Monte Carlo Method for Estimation of Patient-specific Internal Organs Absorbed Dose for (99m)Tc-hynic-Tyr(3)-octreotide Imaging.

    Science.gov (United States)

    Momennezhad, Mehdi; Nasseri, Shahrokh; Zakavi, Seyed Rasoul; Parach, Ali Asghar; Ghorbani, Mahdi; Asl, Ruhollah Ghahraman

    2016-01-01

    Single-photon emission computed tomography (SPECT)-based tracers are easily available and more widely used than positron emission tomography (PET)-based tracers, and SPECT imaging still remains the most prevalent nuclear medicine imaging modality worldwide. The aim of this study is to implement an image-based Monte Carlo method for patient-specific three-dimensional (3D) absorbed dose calculation in patients after injection of (99m)Tc-hydrazinonicotinamide (hynic)-Tyr(3)-octreotide as a SPECT radiotracer. (99m)Tc patient-specific S values and the absorbed doses were calculated with GATE code for each source-target organ pair in four patients who were imaged for suspected neuroendocrine tumors. Each patient underwent multiple whole-body planar scans as well as SPECT imaging over a period of 1-24 h after intravenous injection of (99m)hynic-Tyr(3)-octreotide. The patient-specific S values calculated by GATE Monte Carlo code and the corresponding S values obtained by MIRDOSE program differed within 4.3% on an average for self-irradiation, and differed within 69.6% on an average for cross-irradiation. However, the agreement between total organ doses calculated by GATE code and MIRDOSE program for all patients was reasonably well (percentage difference was about 4.6% on an average). Normal and tumor absorbed doses calculated with GATE were slightly higher than those calculated with MIRDOSE program. The average ratio of GATE absorbed doses to MIRDOSE was 1.07 ± 0.11 (ranging from 0.94 to 1.36). According to the results, it is proposed that when cross-organ irradiation is dominant, a comprehensive approach such as GATE Monte Carlo dosimetry be used since it provides more reliable dosimetric results.

  13. 3D imaging of flow patterns in an internally-pumped microfluidic device: redox magnetohydrodynamics and electrochemically-generated density gradients.

    Science.gov (United States)

    Gao, Feng; Kreidermacher, Adam; Fritsch, Ingrid; Heyes, Colin D

    2013-05-07

    Redox magnetohydrodynamics (MHD) is a promising technique for developing new electrochemical-based microfluidic flow devices with unique capabilities, such as easily switching flow direction and adjusting flow speeds and flow patterns as well as avoiding bubble formation. However, a detailed description of all the forces involved and predicting flow patterns in confined geometries is lacking. In addition to redox-MHD, density gradients caused by the redox reactions also play important roles. Flow in these devices with small fluid volumes has mainly been characterized by following microbead motion by optical microscopy either by particle tracking velocimetry (PTV) or by processing the microbead images by particle image velocimetry (PIV) software. This approach has limitations in spatial resolution and dimensionality. Here we use fluorescence correlation spectroscopy (FCS) to quantitatively and accurately measure flow speeds and patterns in the ~5-50 μm/s range in redox-MHD-based microfluidic devices, from which 3D flow maps are obtained with a spatial resolution down to 2 μm. The 2 μm spatial resolution flow speeds map revealed detailed flow profiles during redox-MHD in which the velocity increases linearly from above the electrode and reaches a plateau across the center of the cell. By combining FCS and video-microscopy (with PTV and PIV processing approaches), we are able to quantify a vertical flow of ~10 μm/s above the electrodes as a result of density gradients caused by the redox reactions and follow convection flow patterns. Overall, combining FCS, PIV, and PTV analysis of redox-MHD is a powerful combination to more thoroughly characterize the underlying forces in these promising microfluidic devices.

  14. 3D Printing the ATLAS' barrel toroid

    CERN Document Server

    Goncalves, Tiago Barreiro

    2016-01-01

    The present report summarizes my work as part of the Summer Student Programme 2016 in the CERN IR-ECO-TSP department (International Relations – Education, Communication & Outreach – Teacher and Student Programmes). Particularly, I worked closely with the S’Cool LAB team on a science education project. This project included the 3D designing, 3D printing, and assembling of a model of the ATLAS’ barrel toroid. A detailed description of the project' development is presented and a short manual on how to use 3D printing software and hardware is attached.

  15. Mayavi: Making 3D Data Visualization Reusable

    OpenAIRE

    Varoquaux, Gaël; Ramachandran, Prabhu

    2008-01-01

    International audience; Mayavi is a general-purpose 3D scientific visualization package. We believe 3D data visualization is a difficult task and different users can benefit from an easy-to-use tool for this purpose. In this article, we focus on how Mayavi addresses the needs of different users with a common code-base, rather than describing the data visualization functionalities of Mayavi, or the visualization model exposed to the user.

  16. Fast 3D imaging method for random array based on NUFFT BP%基于随机阵列的 NUFFT BP 三维快速成像

    Institute of Scientific and Technical Information of China (English)

    向高; 张晓玲; 吴宗亮

    2015-01-01

    Traditional two dimensional (2D)antenna array requires high pulse repetition frequency (PRF) to switch transmitters,when it is applied to 3D microwave imaging.Therefore,3D imaging is gotten by the random antenna array,as a result it reduces the requirement for PRF.Besides,a reasonable plan based on the phase center approximation (PCA)is proposed to implement the random antenna array of arbitrary geometry. The back projection (BP)algorithm interpolated by the nonuniform fast Fourier transform (NUFFT)is called NUFFT BP,and achieves high precision interpolation with relatively less computational complexity.Moreover, the NUFFT BP is further accelerated by the compute unified device architecture (CUDA)parallel computing technology,named CUDA NUFFT BP.It significantly improves the execution efficiency of the BP algorithm.%传统的二维实阵列用于三维微波成像时,需要相对较高的脉冲重复频率才能切换发射阵元。针对这种情况,利用随机阵列来实现三维成像,目的是有效降低脉冲重复频率。进一步提出利用等效相位中心原理来实现任意随机阵列布局的可行性方案。然后,基于随机阵列,发现使用非均匀快速傅里叶变换(nonuniform fast Fourier transform,NUFFT)来实现后向投影(back projection,BP)算法的插值过程,能够用较少的运算量实现 BP算法的高精度插值。最后,结合并行处理技术来实现 NUFFT BP 算法,结果使得 BP 算法的执行效率得到显著提高。

  17. 3D Position and Velocity Vector Computations of Objects Jettisoned from the International Space Station Using Close-Range Photogrammetry Approach

    Science.gov (United States)

    Papanyan, Valeri; Oshle, Edward; Adamo, Daniel

    2008-01-01

    Measurement of the jettisoned object departure trajectory and velocity vector in the International Space Station (ISS) reference frame is vitally important for prompt evaluation of the object s imminent orbit. We report on the first successful application of photogrammetric analysis of the ISS imagery for the prompt computation of the jettisoned object s position and velocity vectors. As post-EVA analyses examples, we present the Floating Potential Probe (FPP) and the Russian "Orlan" Space Suit jettisons, as well as the near-real-time (provided in several hours after the separation) computations of the Video Stanchion Support Assembly Flight Support Assembly (VSSA-FSA) and Early Ammonia Servicer (EAS) jettisons during the US astronauts space-walk. Standard close-range photogrammetry analysis was used during this EVA to analyze two on-board camera image sequences down-linked from the ISS. In this approach the ISS camera orientations were computed from known coordinates of several reference points on the ISS hardware. Then the position of the jettisoned object for each time-frame was computed from its image in each frame of the video-clips. In another, "quick-look" approach used in near-real time, orientation of the cameras was computed from their position (from the ISS CAD model) and operational data (pan and tilt) then location of the jettisoned object was calculated only for several frames of the two synchronized movies. Keywords: Photogrammetry, International Space Station, jettisons, image analysis.

  18. 3.0 T磁共振内听道FSE T2WI PROPELLER与3D-FIESTA对比研究%Comparison of FSE T2WI PROPELLER and 3D-FIESTA MRI sequences of internal auditory canal

    Institute of Scientific and Technical Information of China (English)

    邬海博; 袁慧书; 马芙蓉; 赵强; 张绍兴

    2015-01-01

    Objective To compare the image quality of FSE T2WI PROPELLER and 3D-FIESTA imaging of the internal auditory canal...Methods FSE T2WI PROPELLER and 3D-FIESTA examinations of the internal auditory canals were performed on 132 patients using a 3T MR scanner..The image quality was qualitatively evaluated by two radiologists and compared using the Wilcoxon signed rank test. Results The images quality of FSE T2WI PROPELLER was significantly better than that of the reconstructed images of 3D-FIESTA (P<0.05). Conclusion The FSE T2WI PROPELLER technique is superior to reconstructed 3D-FIESTA for assessing the internal auditory canals.%目的:探讨3.0 T MR的PROPELLER FSE T2WI与薄层3D-FIESTA重建图像对内听道细微结构显示情况的对比分析,探讨PROPELLER FSE T2WI提高内听道图像质量的作用。方法使用GE MR7503.0 T 超导MR成像仪,包括132例进行了双侧内听道MR检查的患者,分别进行斜矢状位(与内听道垂直) PROPELLER FSE T2WI与3D-FIESTA技术的两次采集,再将3D-FIESTA图像与前者完全一致的层面进行内听道垂直重建。2名放射医生采用一个4级标准评价内听道细微解剖结构总体图像质量,对比分析比较PROPELLER与3D-FIESTA技术重建同层面图像对内听道细微结构显示情况。图像之间的对比采用Wilcoxon秩和检验。结果 PROPELLER FSE T2WI组总体图像质量显著优于3D-FIESTA组(P<0.05)。结论内听道MRI应用PROPELLER FSE T2WI斜矢状位扫描在显示内听道内细微结构方面明显优3D-FIESTA重建图像,可以提高图像质量,但不能任意角度重建。

  19. 3D printing for dummies

    CERN Document Server

    Hausman, Kalani Kirk

    2014-01-01

    Get started printing out 3D objects quickly and inexpensively! 3D printing is no longer just a figment of your imagination. This remarkable technology is coming to the masses with the growing availability of 3D printers. 3D printers create 3-dimensional layered models and they allow users to create prototypes that use multiple materials and colors.  This friendly-but-straightforward guide examines each type of 3D printing technology available today and gives artists, entrepreneurs, engineers, and hobbyists insight into the amazing things 3D printing has to offer. You'll discover methods for

  20. Intraoral 3D scanner

    Science.gov (United States)

    Kühmstedt, Peter; Bräuer-Burchardt, Christian; Munkelt, Christoph; Heinze, Matthias; Palme, Martin; Schmidt, Ingo; Hintersehr, Josef; Notni, Gunther

    2007-09-01

    Here a new set-up of a 3D-scanning system for CAD/CAM in dental industry is proposed. The system is designed for direct scanning of the dental preparations within the mouth. The measuring process is based on phase correlation technique in combination with fast fringe projection in a stereo arrangement. The novelty in the approach is characterized by the following features: A phase correlation between the phase values of the images of two cameras is used for the co-ordinate calculation. This works contrary to the usage of only phase values (phasogrammetry) or classical triangulation (phase values and camera image co-ordinate values) for the determination of the co-ordinates. The main advantage of the method is that the absolute value of the phase at each point does not directly determine the coordinate. Thus errors in the determination of the co-ordinates are prevented. Furthermore, using the epipolar geometry of the stereo-like arrangement the phase unwrapping problem of fringe analysis can be solved. The endoscope like measurement system contains one projection and two camera channels for illumination and observation of the object, respectively. The new system has a measurement field of nearly 25mm × 15mm. The user can measure two or three teeth at one time. So the system can by used for scanning of single tooth up to bridges preparations. In the paper the first realization of the intraoral scanner is described.

  1. Martian terrain - 3D

    Science.gov (United States)

    1997-01-01

    This area of terrain near the Sagan Memorial Station was taken on Sol 3 by the Imager for Mars Pathfinder (IMP). 3D glasses are necessary to identify surface detail.The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  2. Numerical Simulation of 3-D Wave Crests

    Institute of Scientific and Technical Information of China (English)

    YU Dingyong; ZHANG Hanyuan

    2003-01-01

    A clear definition of 3-D wave crest and a description of the procedures to detect the boundary of wave crest are presented in the paper. By using random wave theory and directional wave spectrum, a MATLAB-platformed program is designed to simulate random wave crests for various directional spectral conditions in deep water. Statistics of wave crests with different directional spreading parameters and different directional functions are obtained and discussed.

  3. Comparative Evaluation of Marginal and Internal Gap of Co-Cr Copings Fabricated from Conventional Wax Pattern, 3D Printed Resin Pattern and DMLS Tech: An In Vitro Study.

    Science.gov (United States)

    Bhaskaran, Eswaran; Azhagarasan, N S; Miglani, Saket; Ilango, T; Krishna, G Phani; Gajapathi, B

    2013-09-01

    Accuracy of the fit of the restoration has always remained as one of the primary factors in determining success of the restoration. A well fitting restoration needs to be accurate both along its margins and internal surface. This study was conducted to comparatively evaluate the marginal gap and internal gap of cobalt-chromium (Co-Cr) copings fabricated by conventional casting procedures and with direct metal laser sintering (DMLS) technique. Among the total of 30 test samples 10 cast copings were made from inlay casting wax and 10 from 3D printed resin pattern. 10 copings were obtained from DMLS technique. All the 30 test samples were then cemented sequentially on stainless steel model using pressure indicating paste and evaluated for vertical marginal gap in 8 predetermined reference areas. All copings were then removed and partially sectioned and cemented sequentially on same master model for evaluation of internal gap at 4 predetermined reference areas. Both marginal gap and internal gap were measured in microns using video measuring system (VMS2010F). The results obtained for both marginal and internal gap were statistically analyzed and the values fall within the clinically acceptable range. The DMLS technique had an edge over the other two techniques used, as it exhibited minimal gap in the marginal region which is an area of chief concern.

  4. 3D Printing an Octohedron

    OpenAIRE

    Aboufadel, Edward F.

    2014-01-01

    The purpose of this short paper is to describe a project to manufacture a regular octohedron on a 3D printer. We assume that the reader is familiar with the basics of 3D printing. In the project, we use fundamental ideas to calculate the vertices and faces of an octohedron. Then, we utilize the OPENSCAD program to create a virtual 3D model and an STereoLithography (.stl) file that can be used by a 3D printer.

  5. Salient Local 3D Features for 3D Shape Retrieval

    CERN Document Server

    Godil, Afzal

    2011-01-01

    In this paper we describe a new formulation for the 3D salient local features based on the voxel grid inspired by the Scale Invariant Feature Transform (SIFT). We use it to identify the salient keypoints (invariant points) on a 3D voxelized model and calculate invariant 3D local feature descriptors at these keypoints. We then use the bag of words approach on the 3D local features to represent the 3D models for shape retrieval. The advantages of the method are that it can be applied to rigid as well as to articulated and deformable 3D models. Finally, this approach is applied for 3D Shape Retrieval on the McGill articulated shape benchmark and then the retrieval results are presented and compared to other methods.

  6. Long term dose monitoring onboard the European Columbus module of the international space station (ISS) in the frame of DOSIS and DOSIS 3D project - results from the active instruments

    Science.gov (United States)

    Burmeister, Soenke; Berger, Thomas; Reitz, Guenther; Boehme, Matthias; Haumann, Lutz; Labrenz, Johannes

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. For the investigation of the spatial and temporal distribution of the radiation field inside the European COLUMBUS module the experiment DOSIS (Dose Distribution Inside the ISS) under the lead of DLR has been launched on July 15 (th) 2009 with STS-127 to the ISS. The experimental package was transferred from the Space Shuttle into COLUMBUS on July 18 (th) . It consists of a combination of passive detector packages (PDP) distributed at 11 locations inside the European Columbus Laboratory and two active radiation detectors (Dosimetry Telescopes = DOSTELs) with a DDPU (DOSTEL Data and Power Unit) in a Nomex pouch (DOSIS MAIN BOX) mounted at a fixed location beneath the European Physiology Module rack (EPM) inside COLUMBUS. The active components of the DOSIS experiment were operational from July 18 (th) 2009 to June 16 (th) 2011. After refurbishment the hardware has been reactivated on May 15 (th) 2012 as active part of the DOSIS 3D experiment and provides continuous data since this activation. The presentation will focus on the latest results from the two DOSTEL instruments as absorbed dose, dose equivalent and the related LET spectra gathered within the DOSIS (2009 - 2011) and DOSIS 3D (2012 - 2014) experiment. The CAU contributions to DOSIS and DOSIS 3D are

  7. Multifractal modelling and 3D lacunarity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hanen, Akkari, E-mail: bettaieb.hanen@topnet.t [Laboratoire de biophysique, TIM, Faculte de Medecine (Tunisia); Imen, Bhouri, E-mail: bhouri_imen@yahoo.f [Unite de recherche ondelettes et multifractals, Faculte des sciences (Tunisia); Asma, Ben Abdallah, E-mail: asma.babdallah@cristal.rnu.t [Laboratoire de biophysique, TIM, Faculte de Medecine (Tunisia); Patrick, Dubois, E-mail: pdubois@chru-lille.f [INSERM, U 703, Lille (France); Hedi, Bedoui Mohamed, E-mail: medhedi.bedoui@fmm.rnu.t [Laboratoire de biophysique, TIM, Faculte de Medecine (Tunisia)

    2009-09-28

    This study presents a comparative evaluation of lacunarity of 3D grey level models with different types of inhomogeneity. A new method based on the 'Relative Differential Box Counting' was developed to estimate the lacunarity features of grey level volumes. To validate our method, we generated a set of 3D grey level multifractal models with random, anisotropic and hierarchical properties. Our method gives a lacunarity measurement correlated with the theoretical one and allows a better model classification compared with a classical approach.

  8. 3D MHD Flux emergence experiments

    DEFF Research Database (Denmark)

    Hood, A.W.; Archontis, V.; Mactaggart, David

    2012-01-01

    This paper reviews some of the many 3D numerical experiments of the emergence of magnetic fields from the solar interior and the subsequent interaction with the pre-existing coronal magnetic field. The models described here are idealised, in the sense that the internal energy equation only involves...

  9. SU-E-J-123: Assessing Segmentation Accuracy of Internal Volumes and Sub-Volumes in 4D PET/CT of Lung Tumors Using a Novel 3D Printed Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Soultan, D [University of California-San Diego, San Diego State University, La Jolla, CA (United States); Murphy, J; James, C; Hoh, C; Moiseenko, V; Cervino, L [University of California, San Diego, La Jolla, CA (United States); Gill, B [British Columbia Cancer Agency, Windsor, ON (Canada)

    2015-06-15

    Purpose: To assess the accuracy of internal target volume (ITV) segmentation of lung tumors for treatment planning of simultaneous integrated boost (SIB) radiotherapy as seen in 4D PET/CT images, using a novel 3D-printed phantom. Methods: The insert mimics high PET tracer uptake in the core and 50% uptake in the periphery, by using a porous design at the periphery. A lung phantom with the insert was placed on a programmable moving platform. Seven breathing waveforms of ideal and patient-specific respiratory motion patterns were fed to the platform, and 4D PET/CT scans were acquired of each of them. CT images were binned into 10 phases, and PET images were binned into 5 phases following the clinical protocol. Two scenarios were investigated for segmentation: a gate 30–70 window, and no gating. The radiation oncologist contoured the outer ITV of the porous insert with on CT images, while the internal void volume with 100% uptake was contoured on PET images for being indistinguishable from the outer volume in CT images. Segmented ITVs were compared to the expected volumes based on known target size and motion. Results: 3 ideal breathing patterns, 2 regular-breathing patient waveforms, and 2 irregular-breathing patient waveforms were used for this study. 18F-FDG was used as the PET tracer. The segmented ITVs from CT closely matched the expected motion for both no gating and gate 30–70 window, with disagreement of contoured ITV with respect to the expected volume not exceeding 13%. PET contours were seen to overestimate volumes in all the cases, up to more than 40%. Conclusion: 4DPET images of a novel 3D printed phantom designed to mimic different uptake values were obtained. 4DPET contours overestimated ITV volumes in all cases, while 4DCT contours matched expected ITV volume values. Investigation of the cause and effects of the discrepancies is undergoing.

  10. Numerical Analysis of 3-D Internal Flow Field for the Motor with Swing Nozzle%具有摆动喷管发动机三维内流场数值分析

    Institute of Scientific and Technical Information of China (English)

    周红梅; 黄志勇; 李季颖

    2011-01-01

    分析了喷管摆动对发动机内流场的影响,针对喷管摆动情况下的流场特点,采用动网格技术及用户自定义( UDF)编程,实现与喷管摆动相对应计算区域的实时变化,并对具有摆动喷管的发动机三维内流场进行了数值模拟,得到了发动机内流场的详细情况.%According to the characters of the flow field in the case of nozzle swaying, dynamic mesh and UDF programming technology are used to realize the real-time changing of the calculating area corresponding to nozzle swaying. This paper simulates the 3-D internal flow field for the motor with swing nozzle, obtains the detailed distribution about the internal flow field for the motor and analyses the effect on the motor's internal flow field when the nozzle sways.

  11. Randomized Field Trials and Internal Validity: Not So Fast My Friend.

    Directory of Open Access Journals (Sweden)

    James H. McMillan

    2007-12-01

    Full Text Available The purpose of this article is to summarize eight potential threats to internal validity that occur with randomized field trial (RFT studies. Depending on specific contextual factors, RFTs do not necessarily result in strong internal validity. Of particular concern is whether the unit of random assignment is the same as the number of replications of the intervention, threats as a result of local history, and subject effects. The eight threats are described, with suggestions for providing adequate monitoring to know if they rise to the level of likely or plausible threat to internal validity.

  12. 3D Spectroscopy in Astronomy

    Science.gov (United States)

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco

    2011-09-01

    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  13. Spherical 3D isotropic wavelets

    Science.gov (United States)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2012-04-01

    Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html

  14. 3D IBFV : Hardware-Accelerated 3D Flow Visualization

    NARCIS (Netherlands)

    Telea, Alexandru; Wijk, Jarke J. van

    2003-01-01

    We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique for 2D flow visualization in two main directions. First, we decompose the 3D flow visualization problem in a

  15. 3D Elevation Program—Virtual USA in 3D

    Science.gov (United States)

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  16. Interactive 3D multimedia content

    CERN Document Server

    Cellary, Wojciech

    2012-01-01

    The book describes recent research results in the areas of modelling, creation, management and presentation of interactive 3D multimedia content. The book describes the current state of the art in the field and identifies the most important research and design issues. Consecutive chapters address these issues. These are: database modelling of 3D content, security in 3D environments, describing interactivity of content, searching content, visualization of search results, modelling mixed reality content, and efficient creation of interactive 3D content. Each chapter is illustrated with example a

  17. A 3-D Contextual Classifier

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    1997-01-01

    . This includes the specification of a Gaussian distribution for the pixel values as well as a prior distribution for the configuration of class variables within the cross that is m ade of a pixel and its four nearest neighbours. We will extend this algorithm to 3-D, i.e. we will specify a simultaneous Gaussian...... distr ibution for a pixel and its 6 nearest 3-D neighbours, and generalise the class variable configuration distribution within the 3-D cross. The algorithm is tested on a synthetic 3-D multivariate dataset....

  18. 3D Bayesian contextual classifiers

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    2000-01-01

    We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours.......We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours....

  19. 3-D printers for libraries

    CERN Document Server

    Griffey, Jason

    2014-01-01

    As the maker movement continues to grow and 3-D printers become more affordable, an expanding group of hobbyists is keen to explore this new technology. In the time-honored tradition of introducing new technologies, many libraries are considering purchasing a 3-D printer. Jason Griffey, an early enthusiast of 3-D printing, has researched the marketplace and seen several systems first hand at the Consumer Electronics Show. In this report he introduces readers to the 3-D printing marketplace, covering such topics asHow fused deposition modeling (FDM) printing workBasic terminology such as build

  20. 3D for Graphic Designers

    CERN Document Server

    Connell, Ellery

    2011-01-01

    Helping graphic designers expand their 2D skills into the 3D space The trend in graphic design is towards 3D, with the demand for motion graphics, animation, photorealism, and interactivity rapidly increasing. And with the meteoric rise of iPads, smartphones, and other interactive devices, the design landscape is changing faster than ever.2D digital artists who need a quick and efficient way to join this brave new world will want 3D for Graphic Designers. Readers get hands-on basic training in working in the 3D space, including product design, industrial design and visualization, modeling, ani

  1. Spherical 3D Isotropic Wavelets

    CERN Document Server

    Lanusse, F; Starck, J -L

    2011-01-01

    Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D Spherical Fourier-Bessel (SFB) analysis in is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the Fourier-Bessel decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. 2006. We also present a new fast Discrete Spherical Fourier-Bessel Transform (DSFBT) based on both a discrete Bessel Transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large...

  2. Improvement of 3D Scanner

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The disadvantage remaining in 3D scanning system and its reasons are discussed. A new host-and-slave structure with high speed image acquisition and processing system is proposed to quicken the image processing and improve the performance of 3D scanning system.

  3. 3D Printing for Bricks

    OpenAIRE

    ECT Team, Purdue

    2015-01-01

    Building Bytes, by Brian Peters, is a project that uses desktop 3D printers to print bricks for architecture. Instead of using an expensive custom-made printer, it uses a normal standard 3D printer which is available for everyone and makes it more accessible and also easier for fabrication.

  4. 3D vision system assessment

    Science.gov (United States)

    Pezzaniti, J. Larry; Edmondson, Richard; Vaden, Justin; Hyatt, Bryan; Chenault, David B.; Kingston, David; Geulen, Vanilynmae; Newell, Scott; Pettijohn, Brad

    2009-02-01

    In this paper, we report on the development of a 3D vision system consisting of a flat panel stereoscopic display and auto-converging stereo camera and an assessment of the system's use for robotic driving, manipulation, and surveillance operations. The 3D vision system was integrated onto a Talon Robot and Operator Control Unit (OCU) such that direct comparisons of the performance of a number of test subjects using 2D and 3D vision systems were possible. A number of representative scenarios were developed to determine which tasks benefited most from the added depth perception and to understand when the 3D vision system hindered understanding of the scene. Two tests were conducted at Fort Leonard Wood, MO with noncommissioned officers ranked Staff Sergeant and Sergeant First Class. The scenarios; the test planning, approach and protocols; the data analysis; and the resulting performance assessment of the 3D vision system are reported.

  5. PLOT3D user's manual

    Science.gov (United States)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  6. 3D printing in dentistry.

    Science.gov (United States)

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  7. Using 3D in Visualization

    DEFF Research Database (Denmark)

    Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen

    2005-01-01

    The notion of three-dimensionality is applied to five stages of the visualization pipeline. While 3D visulization is most often associated with the visual mapping and representation of data, this chapter also identifies its role in the management and assembly of data, and in the media used...... to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...... with abstracted representations embedded in a 3D space. The interactions between development of geovisualization, the technology used to implement it and the theory surrounding cartographic representation are explored. The dominance of computing technologies, driven particularly by the gaming industry...

  8. Automated classification of RNA 3D motifs and the RNA 3D Motif Atlas.

    Science.gov (United States)

    Petrov, Anton I; Zirbel, Craig L; Leontis, Neocles B

    2013-10-01

    The analysis of atomic-resolution RNA three-dimensional (3D) structures reveals that many internal and hairpin loops are modular, recurrent, and structured by conserved non-Watson-Crick base pairs. Structurally similar loops define RNA 3D motifs that are conserved in homologous RNA molecules, but can also occur at nonhomologous sites in diverse RNAs, and which often vary in sequence. To further our understanding of RNA motif structure and sequence variability and to provide a useful resource for structure modeling and prediction, we present a new method for automated classification of internal and hairpin loop RNA 3D motifs and a new online database called the RNA 3D Motif Atlas. To classify the motif instances, a representative set of internal and hairpin loops is automatically extracted from a nonredundant list of RNA-containing PDB files. Their structures are compared geometrically, all-against-all, using the FR3D program suite. The loops are clustered into motif groups, taking into account geometric similarity and structural annotations and making allowance for a variable number of bulged bases. The automated procedure that we have implemented identifies all hairpin and internal loop motifs previously described in the literature. All motif instances and motif groups are assigned unique and stable identifiers and are made available in the RNA 3D Motif Atlas (http://rna.bgsu.edu/motifs), which is automatically updated every four weeks. The RNA 3D Motif Atlas provides an interactive user interface for exploring motif diversity and tools for programmatic data access.

  9. ADT-3D Tumor Detection Assistant in 3D

    Directory of Open Access Journals (Sweden)

    Jaime Lazcano Bello

    2008-12-01

    Full Text Available The present document describes ADT-3D (Three-Dimensional Tumor Detector Assistant, a prototype application developed to assist doctors diagnose, detect and locate tumors in the brain by using CT scan. The reader may find on this document an introduction to tumor detection; ADT-3D main goals; development details; description of the product; motivation for its development; result’s study; and areas of applicability.

  10. Unassisted 3D camera calibration

    Science.gov (United States)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  11. Bioprinting of 3D hydrogels.

    Science.gov (United States)

    Stanton, M M; Samitier, J; Sánchez, S

    2015-08-07

    Three-dimensional (3D) bioprinting has recently emerged as an extension of 3D material printing, by using biocompatible or cellular components to build structures in an additive, layer-by-layer methodology for encapsulation and culture of cells. These 3D systems allow for cell culture in a suspension for formation of highly organized tissue or controlled spatial orientation of cell environments. The in vitro 3D cellular environments simulate the complexity of an in vivo environment and natural extracellular matrices (ECM). This paper will focus on bioprinting utilizing hydrogels as 3D scaffolds. Hydrogels are advantageous for cell culture as they are highly permeable to cell culture media, nutrients, and waste products generated during metabolic cell processes. They have the ability to be fabricated in customized shapes with various material properties with dimensions at the micron scale. 3D hydrogels are a reliable method for biocompatible 3D printing and have applications in tissue engineering, drug screening, and organ on a chip models.

  12. Tuotekehitysprojekti: 3D-tulostin

    OpenAIRE

    Pihlajamäki, Janne

    2011-01-01

    Opinnäytetyössä tutustuttiin 3D-tulostamisen teknologiaan. Työssä käytiin läpi 3D-tulostimesta tehty tuotekehitysprojekti. Sen lisäksi esiteltiin yleisellä tasolla tuotekehitysprosessi ja syntyneiden tulosten mahdollisia suojausmenetelmiä. Tavoitteena tässä työssä oli kehittää markkinoilta jo löytyvää kotitulostin-tasoista 3D-laiteteknologiaa lähemmäksi ammattilaistason ratkaisua. Tavoitteeseen pyrittiin keskittymällä parantamaan laitteella saavutettavaa tulostustarkkuutta ja -nopeutt...

  13. Handbook of 3D integration

    CERN Document Server

    Garrou , Philip; Ramm , Peter

    2014-01-01

    Edited by key figures in 3D integration and written by top authors from high-tech companies and renowned research institutions, this book covers the intricate details of 3D process technology.As such, the main focus is on silicon via formation, bonding and debonding, thinning, via reveal and backside processing, both from a technological and a materials science perspective. The last part of the book is concerned with assessing and enhancing the reliability of the 3D integrated devices, which is a prerequisite for the large-scale implementation of this emerging technology. Invaluable reading fo

  14. Color 3D Reverse Engineering

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper presents a principle and a method of col or 3D laser scanning measurement. Based on the fundamental monochrome 3D measureme nt study, color information capture, color texture mapping, coordinate computati on and other techniques are performed to achieve color 3D measurement. The syste m is designed and composed of a line laser light emitter, one color CCD camera, a motor-driven rotary filter, a circuit card and a computer. Two steps in captu ring object's images in the measurement process: Firs...

  15. Exploration of 3D Printing

    OpenAIRE

    Lin, Zeyu

    2014-01-01

    3D printing technology is introduced and defined in this Thesis. Some methods of 3D printing are illustrated and their principles are explained with pictures. Most of the essential parts are presented with pictures and their effects are explained within the whole system. Problems on Up! Plus 3D printer are solved and a DIY product is made with this machine. The processes of making product are recorded and the items which need to be noticed during the process are the highlight in this th...

  16. SU-E-T-538: Lung SBRT Dosimetric Comparison of 3D Conformal and RapidArc Planning

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, R; Zhan, L; Osei, E [Grand River Hospital, Kitchener, ON (Canada)

    2015-06-15

    Purpose: Dose distributions of RapidArc Plan can be quite different from standard 3D conformal radiation therapy. SBRT plans can be optimized with high conformity or mimic the 3D conformal treatment planning with very high dose in the center of the tumor. This study quantifies the dosimetric differences among 3D conformal plan; flattened beam and FFF beam RapidArc Plans for lung SBRT. Methods: Five lung cancer patients treated with 3D non-coplanar SBRT were randomly selected. All the patients were CT scanned with 4DCT to determine the internal target volume. Abdominal compression was applied to minimize respiratory motion for SBRT patients. The prescription dose was 48 Gy in 4 fractions. The PTV coverage was optimized by two groups of objective function: one with high conformity, another mimicking 3D conformal dose distribution with high dose in the center of PTV. Optimization constraints were set to meet the criteria of the RTOG-0915 protocol. All VMAT plans were optimized with the RapidArc technique using four full arcs in Eclipse treatment planning system. The RapidArc SBRT plans with flattened 6MV beam and 6MV FFF beam were generated and dosimetric results were compared with the previous treated 3D non-coplanar plans. Results: All the RapidArc plans with flattened beam and FFF beam had similar results for the PTV and OARs. For the high conformity optimization group, The DVH of PTV exhibited a steep dose fall-off outside the PTV compared to the 3D non-coplanar plan. However, for the group mimicking the 3D conformal target dose distribution, although the PTV is very similar to the 3D conformal plan, the ITV coverage is better than 3D conformal plan. Conclusion: Due to excellent clinical experiences of 3D conformal SBRT treatment, the Rapid Arc optimization mimicking 3D conformal planning may be suggested for clinical use.

  17. Accepting the T3D

    Energy Technology Data Exchange (ETDEWEB)

    Rich, D.O.; Pope, S.C.; DeLapp, J.G.

    1994-10-01

    In April, a 128 PE Cray T3D was installed at Los Alamos National Laboratory`s Advanced Computing Laboratory as part of the DOE`s High-Performance Parallel Processor Program (H4P). In conjunction with CRI, the authors implemented a 30 day acceptance test. The test was constructed in part to help them understand the strengths and weaknesses of the T3D. In this paper, they briefly describe the H4P and its goals. They discuss the design and implementation of the T3D acceptance test and detail issues that arose during the test. They conclude with a set of system requirements that must be addressed as the T3D system evolves.

  18. Advanced 3-D Ultrasound Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer

    The main purpose of the PhD project was to develop methods that increase the 3-D ultrasound imaging quality available for the medical personnel in the clinic. Acquiring a 3-D volume gives the medical doctor the freedom to investigate the measured anatomy in any slice desirable after the scan has...... been completed. This allows for precise measurements of organs dimensions and makes the scan more operator independent. Real-time 3-D ultrasound imaging is still not as widespread in use in the clinics as 2-D imaging. A limiting factor has traditionally been the low image quality achievable using...... Field II simulations and measurements with the ultrasound research scanner SARUS and a 3.5MHz 1024 element 2-D transducer array. In all investigations, 3-D synthetic aperture imaging achieved a smaller main-lobe, lower sidelobes, higher contrast, and better signal to noise ratio than parallel...

  19. Conducting polymer 3D microelectrodes

    DEFF Research Database (Denmark)

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...

  20. 3D Face Apperance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Astrom, K

    2006-01-01

    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations......We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations...

  1. 3D Face Appearance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Åström, Kalle

    2006-01-01

    We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}......We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}...

  2. Main: TATCCAYMOTIFOSRAMY3D [PLACE

    Lifescience Database Archive (English)

    Full Text Available TATCCAYMOTIFOSRAMY3D S000256 01-August-2006 (last modified) kehi TATCCAY motif foun...d in rice (O.s.) RAmy3D alpha-amylase gene promoter; Y=T/C; a GATA motif as its antisense sequence; TATCCAY ...motif and G motif (see S000130) are responsible for sugar repression (Toyofuku et al. 1998); GATA; amylase; sugar; repression; rice (Oryza sativa) TATCCAY ...

  3. Mupirocin for the reduction of colonization of internal jugular cannulae: a randomized controlled trial

    NARCIS (Netherlands)

    R.L.R. Hill; A. P. Fisher; R. J. Ware; S. Wilson; M. W. Casewell

    1990-01-01

    textabstractIn a prospective study, 218 cardiothoracic patients, in whom 'Abbocath-T' cannulae had been inserted preoperatively into the internal jugular vein, were randomized to receive skin preparation of the insertion site with tincture of iodine (108 controls) or tincture of iodine followed by a

  4. Effects of Assertiveness Training and Expressive Writing on Acculturative Stress in International Students: A Randomized Trial

    Science.gov (United States)

    Tavakoli, Shedeh; Lumley, Mark A.; Hijazi, Alaa M.; Slavin-Spenny, Olga M.; Parris, George P.

    2009-01-01

    International university students often experience acculturative stress, and culturally appropriate techniques to manage stress are needed. This randomized trial tested the effects of group assertiveness training, private expressive writing, their combination, and a wait-list control on the acculturative stress, affect, and health of 118…

  5. 密炼机混炼橡胶的三维流场瞬态模拟%3D Transient Flow Field Simulation of Rubber Melt in Internal Mixer

    Institute of Scientific and Technical Information of China (English)

    滕薇; 许自成; 田明; 杨海波

    2012-01-01

    A 3D finite element model of the non-isothermal non-Newton rubber melt in internal mixer was built,using the real geometry of mixing chamber and assuming the chamber was completely filled. From the finite element simulation results the distribution of flow field parameters such as pressure, velocity, temperature, shear rate and so on was analyzed. It could be concluded that, large pressure gradient existed in the gap region between the rotor tip and internal wall of the mixing chamber; rubber melt in the wedging region flew into the middle area between the rotors;the flow direction of the rubber melt in the back pressure region was opposite to that in the gap region;and the temperature of the rubber melt in the gap region and in the area between the rotors was higher.%采用密炼室真实几何形状,假设胶料全部充满,建立密炼机内非等温、非牛顿橡胶流体的三维有限元模型,数值模拟分析胶料的压力、速度、温度和剪切速率等流场参数分布.分析结果表明,转子棱顶间隙处存在着一个很大的压力梯度,楔入区胶料流向密炼室轴向中间位置,而背压区和棱顶处胶料流向相反,除了密炼室内壁附近胶料温度较高外,两个转子之间区域的胶料温度也较高.

  6. MPML3D: Scripting Agents for the 3D Internet.

    Science.gov (United States)

    Prendinger, Helmut; Ullrich, Sebastian; Nakasone, Arturo; Ishizuka, Mitsuru

    2011-05-01

    The aim of this paper is two-fold. First, it describes a scripting language for specifying communicative behavior and interaction of computer-controlled agents ("bots") in the popular three-dimensional (3D) multiuser online world of "Second Life" and the emerging "OpenSimulator" project. While tools for designing avatars and in-world objects in Second Life exist, technology for nonprogrammer content creators of scenarios involving scripted agents is currently missing. Therefore, we have implemented new client software that controls bots based on the Multimodal Presentation Markup Language 3D (MPML3D), a highly expressive XML-based scripting language for controlling the verbal and nonverbal behavior of interacting animated agents. Second, the paper compares Second Life and OpenSimulator platforms and discusses the merits and limitations of each from the perspective of agent control. Here, we also conducted a small study that compares the network performance of both platforms.

  7. The EISCAT_3D Science Case

    Science.gov (United States)

    Tjulin, A.; Mann, I.; McCrea, I.; Aikio, A. T.

    2013-05-01

    EISCAT_3D will be a world-leading international research infrastructure using the incoherent scatter technique to study the atmosphere in the Fenno-Scandinavian Arctic and to investigate how the Earth's atmosphere is coupled to space. The EISCAT_3D phased-array multistatic radar system will be operated by EISCAT Scientific Association and thus be an integral part of an organisation that has successfully been running incoherent scatter radars for more than thirty years. The baseline design of the radar system contains a core site with transmitting and receiving capabilities located close to the intersection of the Swedish, Norwegian and Finnish borders and five receiving sites located within 50 to 250 km from the core. The EISCAT_3D project is currently in its Preparatory Phase and can smoothly transit into implementation in 2014, provided sufficient funding. Construction can start 2016 and first operations in 2018. The EISCAT_3D Science Case is prepared as part of the Preparatory Phase. It is regularly updated with annual new releases, and it aims at being a common document for the whole future EISCAT_3D user community. The areas covered by the Science Case are atmospheric physics and global change; space and plasma physics; solar system research; space weather and service applications; and radar techniques, new methods for coding and analysis. Two of the aims for EISCAT_3D are to understand the ways natural variability in the upper atmosphere, imposed by the Sun-Earth system, can influence the middle and lower atmosphere, and to improve the predictivity of atmospheric models by providing higher resolution observations to replace the current parametrised input. Observations by EISCAT_3D will also be used to monitor the direct effects from the Sun on the ionosphere-atmosphere system and those caused by solar wind magnetosphere-ionosphere interaction. In addition, EISCAT_3D will be used for remote sensing the large-scale behaviour of the magnetosphere from its

  8. From 3D view to 3D print

    Science.gov (United States)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  9. 3D-mallinnus ja 3D-animaatiot biovoimalaitoksesta

    OpenAIRE

    Hiltula, Tytti

    2014-01-01

    Opinnäytetyössä tehtiin biovoimalaitoksen piirustuksista 3D-mallinnus ja animaatiot. Työn tarkoituksena oli saada valmiiksi Recwell Oy:lle markkinointiin tarkoitetut kuva- ja videomateriaalit. Työssä perehdyttiin 3D-mallintamisen perustietoihin ja lähtökohtiin sekä animaation laatimiseen. Työ laadittiin kokonaisuudessaan AutoCAD-ohjelmalla, ja työn aikana tutustuttiin huolellisesti myös ohjelman käyttöohjeisiin. Piirustusten mitoituksessa huomattiin jo alkuvaiheessa suuria puutteita, ...

  10. 3D deformation field throughout the interior of materials.

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Huiqing; Lu, Wei-Yang

    2013-09-01

    This report contains the one-year feasibility study for our three-year LDRD proposal that is aimed to develop an experimental technique to measure the 3D deformation fields inside a material body. In this feasibility study, we first apply Digital Volume Correlation (DVC) algorithm to pre-existing in-situ Xray Computed Tomography (XCT) image sets with pure rigid body translation. The calculated displacement field has very large random errors and low precision that are unacceptable. Then we enhance these tomography images by setting threshold of the intensity of each slice. DVC algorithm is able to obtain accurate deformation fields from these enhanced image sets and the deformation fields are consistent with the global mechanical loading that is applied to the specimen. Through this study, we prove that the internal markers inside the pre-existing tomography images of aluminum alloy can be enhanced and are suitable for DVC to calculate the deformation field throughout the material body.

  11. Application of 3D Printing in the Surgical Planning of Trimalleolar Fracture and Doctor-Patient Communication

    Directory of Open Access Journals (Sweden)

    Long Yang

    2016-01-01

    Full Text Available To evaluate the effect of 3D printing in treating trimalleolar fractures and its roles in physician-patient communication, thirty patients with trimalleolar fractures were randomly divided into the 3D printing assisted-design operation group (Group A and the no-3D printing assisted-design group (Group B. In Group A, 3D printing was used by the surgeons to produce a prototype of the actual fracture to guide the surgical treatment. All patients underwent open reduction and internal fixation. A questionnaire was designed for doctors and patients to verify the verisimilitude and effectiveness of the 3D-printed prototype. Meanwhile, the operation time and the intraoperative blood loss were compared between the two groups. The fracture prototypes were accurately printed, and the average overall score of the verisimilitude and effectiveness of the 3D-printed prototypes was relatively high. Both the operation time and the intraoperative blood loss in Group A were less than those in Group B (P<0.05. Patient satisfaction using the 3D-printed prototype and the communication score were 9.3±0.6 points. A 3D-printed prototype can faithfully reflect the anatomy of the fracture site; it can effectively help the doctors plan the operation and represent an effective tool for physician-patient communication.

  12. Application of 3D Printing in the Surgical Planning of Trimalleolar Fracture and Doctor-Patient Communication.

    Science.gov (United States)

    Yang, Long; Shang, Xian-Wen; Fan, Jian-Nan; He, Zhi-Xu; Wang, Jian-Ji; Liu, Miao; Zhuang, Yong; Ye, Chuan

    2016-01-01

    To evaluate the effect of 3D printing in treating trimalleolar fractures and its roles in physician-patient communication, thirty patients with trimalleolar fractures were randomly divided into the 3D printing assisted-design operation group (Group A) and the no-3D printing assisted-design group (Group B). In Group A, 3D printing was used by the surgeons to produce a prototype of the actual fracture to guide the surgical treatment. All patients underwent open reduction and internal fixation. A questionnaire was designed for doctors and patients to verify the verisimilitude and effectiveness of the 3D-printed prototype. Meanwhile, the operation time and the intraoperative blood loss were compared between the two groups. The fracture prototypes were accurately printed, and the average overall score of the verisimilitude and effectiveness of the 3D-printed prototypes was relatively high. Both the operation time and the intraoperative blood loss in Group A were less than those in Group B (P < 0.05). Patient satisfaction using the 3D-printed prototype and the communication score were 9.3 ± 0.6 points. A 3D-printed prototype can faithfully reflect the anatomy of the fracture site; it can effectively help the doctors plan the operation and represent an effective tool for physician-patient communication.

  13. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    Science.gov (United States)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  14. 3D future internet media

    CERN Document Server

    Dagiuklas, Tasos

    2014-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The main contributions are based on the results of the FP7 European Projects ROMEO, which focus on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the Future Internet (www.ict-romeo.eu). The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of constant video quality to both fixed and mobile users. ROMEO will design and develop hybrid-networking solutions that co...

  15. Materialedreven 3d digital formgivning

    DEFF Research Database (Denmark)

    Hansen, Flemming Tvede

    2010-01-01

    Formålet med forskningsprojektet er for det første at understøtte keramikeren i at arbejde eksperimenterende med digital formgivning, og for det andet at bidrage til en tværfaglig diskurs om brugen af digital formgivning. Forskningsprojektet fokuserer på 3d formgivning og derved på 3d digital...... formgivning og Rapid Prototyping (RP). RP er en fællesbetegnelse for en række af de teknikker, der muliggør at overføre den digitale form til 3d fysisk form. Forskningsprojektet koncentrerer sig om to overordnede forskningsspørgsmål. Det første handler om, hvordan viden og erfaring indenfor det keramiske...... fagområde kan blive udnyttet i forhold til 3d digital formgivning. Det andet handler om, hvad en sådan tilgang kan bidrage med, og hvordan den kan blive udnyttet i et dynamisk samspil med det keramiske materiale i formgivningen af 3d keramiske artefakter. Materialedreven formgivning er karakteriseret af en...

  16. Novel 3D media technologies

    CERN Document Server

    Dagiuklas, Tasos

    2015-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The contributions are based on the results of the FP7 European Project ROMEO, which focuses on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the future Internet. The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of consistent video quality to fixed and mobile users. ROMEO will present hybrid networking solutions that combine the DVB-T2 and DVB-NGH broadcas...

  17. Speaking Volumes About 3-D

    Science.gov (United States)

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  18. Modification of 3D milling machine to 3D printer

    OpenAIRE

    Halamíček, Lukáš

    2015-01-01

    Tato práce se zabývá přestavbou gravírovací frézky na 3D tiskárnu. V první části se práce zabývá možnými technologiemi 3D tisku a možností jejich využití u přestavby. Dále jsou popsány a vybrány vhodné součásti pro přestavbu. V další části je realizováno řízení ohřevu podložky, trysky a řízení posuvu drátu pomocí softwaru TwinCat od společnosti Beckhoff na průmyslovém počítači. Výsledkem práce by měla být oživená 3D tiskárna. This thesis deals with rebuilding of engraving machine to 3D pri...

  19. Aspects of defects in 3d-3d correspondence

    Science.gov (United States)

    Gang, Dongmin; Kim, Nakwoo; Romo, Mauricio; Yamazaki, Masahito

    2016-10-01

    In this paper we study supersymmetric co-dimension 2 and 4 defects in the compactification of the 6d (2, 0) theory of type A N -1 on a 3-manifold M . The so-called 3d-3d correspondence is a relation between complexified Chern-Simons theory (with gauge group SL(N,C) ) on M and a 3d N=2 theory T N [ M ]. We study this correspondence in the presence of supersymmetric defects, which are knots/links inside the 3-manifold. Our study employs a number of different methods: state-integral models for complex Chern-Simons theory, cluster algebra techniques, domain wall theory T [SU( N )], 5d N=2 SYM, and also supergravity analysis through holography. These methods are complementary and we find agreement between them. In some cases the results lead to highly non-trivial predictions on the partition function. Our discussion includes a general expression for the cluster partition function, which can be used to compute in the presence of maximal and certain class of non-maximal punctures when N > 2. We also highlight the non-Abelian description of the 3d N=2 T N [ M ] theory with defect included, when such a description is available. This paper is a companion to our shorter paper [1], which summarizes our main results.

  20. 3-D Vector Flow Imaging

    DEFF Research Database (Denmark)

    Holbek, Simon

    studies and in vivo. Phantom measurements are compared with their corresponding reference value, whereas the in vivo measurement is validated against the current golden standard for non-invasive blood velocity estimates, based on magnetic resonance imaging (MRI). The study concludes, that a high precision......, if this significant reduction in the element count can still provide precise and robust 3-D vector flow estimates in a plane. The study concludes that the RC array is capable of estimating precise 3-D vector flow both in a plane and in a volume, despite the low channel count. However, some inherent new challenges......For the last decade, the field of ultrasonic vector flow imaging has gotten an increasingly attention, as the technique offers a variety of new applications for screening and diagnostics of cardiovascular pathologies. The main purpose of this PhD project was therefore to advance the field of 3-D...

  1. 3D vector flow imaging

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes

    The main purpose of this PhD project is to develop an ultrasonic method for 3D vector flow imaging. The motivation is to advance the field of velocity estimation in ultrasound, which plays an important role in the clinic. The velocity of blood has components in all three spatial dimensions, yet...... conventional methods can estimate only the axial component. Several approaches for 3D vector velocity estimation have been suggested, but none of these methods have so far produced convincing in vivo results nor have they been adopted by commercial manufacturers. The basis for this project is the Transverse...... on the TO fields are suggested. They can be used to optimize the TO method. In the third part, a TO method for 3D vector velocity estimation is proposed. It employs a 2D phased array transducer and decouples the velocity estimation into three velocity components, which are estimated simultaneously based on 5...

  2. Markerless 3D Face Tracking

    DEFF Research Database (Denmark)

    Walder, Christian; Breidt, Martin; Bulthoff, Heinrich

    2009-01-01

    We present a novel algorithm for the markerless tracking of deforming surfaces such as faces. We acquire a sequence of 3D scans along with color images at 40Hz. The data is then represented by implicit surface and color functions, using a novel partition-of-unity type method of efficiently...... combining local regressors using nearest neighbor searches. Both these functions act on the 4D space of 3D plus time, and use temporal information to handle the noise in individual scans. After interactive registration of a template mesh to the first frame, it is then automatically deformed to track...... the scanned surface, using the variation of both shape and color as features in a dynamic energy minimization problem. Our prototype system yields high-quality animated 3D models in correspondence, at a rate of approximately twenty seconds per timestep. Tracking results for faces and other objects...

  3. 3D Printed Bionic Nanodevices.

    Science.gov (United States)

    Kong, Yong Lin; Gupta, Maneesh K; Johnson, Blake N; McAlpine, Michael C

    2016-06-01

    The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and 'living' platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the

  4. Microfluidic 3D Helix Mixers

    Directory of Open Access Journals (Sweden)

    Georgette B. Salieb-Beugelaar

    2016-10-01

    Full Text Available Polymeric microfluidic systems are well suited for miniaturized devices with complex functionality, and rapid prototyping methods for 3D microfluidic structures are increasingly used. Mixing at the microscale and performing chemical reactions at the microscale are important applications of such systems and we therefore explored feasibility, mixing characteristics and the ability to control a chemical reaction in helical 3D channels produced by the emerging thread template method. Mixing at the microscale is challenging because channel size reduction for improving solute diffusion comes at the price of a reduced Reynolds number that induces a strictly laminar flow regime and abolishes turbulence that would be desired for improved mixing. Microfluidic 3D helix mixers were rapidly prototyped in polydimethylsiloxane (PDMS using low-surface energy polymeric threads, twisted to form 2-channel and 3-channel helices. Structure and flow characteristics were assessed experimentally by microscopy, hydraulic measurements and chromogenic reaction, and were modeled by computational fluid dynamics. We found that helical 3D microfluidic systems produced by thread templating allow rapid prototyping, can be used for mixing and for controlled chemical reaction with two or three reaction partners at the microscale. Compared to the conventional T-shaped microfluidic system used as a control device, enhanced mixing and faster chemical reaction was found to occur due to the combination of diffusive mixing in small channels and flow folding due to the 3D helix shape. Thus, microfluidic 3D helix mixers can be rapidly prototyped using the thread template method and are an attractive and competitive method for fluid mixing and chemical reactions at the microscale.

  5. Making Inexpensive 3-D Models

    Science.gov (United States)

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  6. 3D terahertz beam profiling

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Strikwerda, Andrew; Wang, Tianwu

    2013-01-01

    We present a characterization of THz beams generated in both a two-color air plasma and in a LiNbO3 crystal. Using a commercial THz camera, we record intensity images as a function of distance through the beam waist, from which we extract 2D beam profiles and visualize our measurements into 3D beam...

  7. 3D Printing: Exploring Capabilities

    Science.gov (United States)

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  8. When Art Meets 3D

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The presentation of the vanguard work,My Dream3D,the innovative production by the China Disabled People’s Performing Art Troupe(CDPPAT),directed by Joy Joosang Park,provided the film’s domestic premiere at Beijing’s Olympic Park onApril7.The show provided an intriguing insight not

  9. Simulation of bubbly flow in vertical pipes by coupling Lagrangian and Eulerian models with 3D random walks models: validation with experimental data using multi-sensor conductivity probes and laser doppler anemometry

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Cobo, J.L. [Univ. Politecnica de Valencia, Inst. de Ingenieria Energetica, Valencia (Spain); Chiva, S. [Univ. Jaume I, Dept. of Mechnical Engineering and Construction, Castellon (Spain); Abd El Aziz Essa, M. [Univ. Politecnica de Valencia, Inst. de Ingenieria Energetica, Valencia (Spain); Mendes, S. [Univ. Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica (Mexico)

    2011-07-01

    A set of air-water experiments have been performed under isothermal upward concurrent flow in a vertical column. The interfacial velocity, interfacial area of the bubbles and the void fraction distributions was obtained. Numerical validation of these results for bubbly flow conditions were performed by coupling a Lagrangian code which tracks the 3D motion of the individual bubbles, with an Eulerian one. Both Lagrangian and Eulerian calculations were performed in parallel and iterative self-consistent method was developed. The bubbles-induced turbulence is an important issue considered, to obtain good predictions of experimental results. (author)

  10. Priprava 3D modelov za 3D tisk

    OpenAIRE

    2015-01-01

    Po mnenju nekaterih strokovnjakov bo aditivna proizvodnja (ali 3D tiskanje) spremenila proizvodnjo industrijo, saj si bo vsak posameznik lahko natisnil svoj objekt po želji. V diplomski nalogi so predstavljene nekatere tehnologije aditivne proizvodnje. V nadaljevanju diplomske naloge je predstavljena izdelava makete hiše v merilu 1:100, vse od modeliranja do tiskanja. Poseben poudarek je posvečen predelavi modela, da je primeren za tiskanje, kjer je razvit pristop za hitrejše i...

  11. Post processing of 3D models for 3D printing

    OpenAIRE

    2015-01-01

    According to the opinion of some experts the additive manufacturing or 3D printing will change manufacturing industry, because any individual could print their own model according to his or her wishes. In this graduation thesis some of the additive manufacturing technologies are presented. Furthermore in the production of house scale model in 1:100 is presented, starting from modeling to printing. Special attention is given to postprocessing of the building model elements us...

  12. Contribution of 3D inversion of Electrical Resistivity Tomography data applied to volcanic structures

    Science.gov (United States)

    Portal, Angélie; Fargier, Yannick; Lénat, Jean-François; Labazuy, Philippe

    2016-04-01

    The electrical resistivity tomography (ERT) method, initially developed for environmental and engineering exploration, is now commonly used for geological structures imaging. Such structures can present complex characteristics that conventional 2D inversion processes cannot perfectly integrate. Here we present a new 3D inversion algorithm named EResI, firstly developed for levee investigation, and presently applied to the study of a complex lava dome (the Puy de Dôme volcano, France). EResI algorithm is based on a conventional regularized Gauss-Newton inversion scheme and a 3D non-structured discretization of the model (double grid method based on tetrahedrons). This discretization allows to accurately model the topography of investigated structure (without a mesh deformation procedure) and also permits a precise location of the electrodes. Moreover, we demonstrate that a complete 3D unstructured discretization limits the number of inversion cells and is better adapted to the resolution capacity of tomography than a structured discretization. This study shows that a 3D inversion with a non-structured parametrization has some advantages compared to classical 2D inversions. The first advantage comes from the fact that a 2D inversion leads to artefacts due to 3D effects (3D topography, 3D internal resistivity). The second advantage comes from the fact that the capacity to experimentally align electrodes along an axis (for 2D surveys) depends on the constrains on the field (topography...). In this case, a 2D assumption induced by 2.5D inversion software prevents its capacity to model electrodes outside this axis leading to artefacts in the inversion result. The last limitation comes from the use of mesh deformation techniques used to accurately model the topography in 2D softwares. This technique used for structured discretization (Res2dinv) is prohibed for strong topography (>60 %) and leads to a small computational errors. A wide geophysical survey was carried out

  13. Forensic 3D Scene Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.

    1999-10-12

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  14. 3D Printed Robotic Hand

    Science.gov (United States)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  15. 3D Printable Graphene Composite.

    Science.gov (United States)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-08

    In human being's history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today's personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite's linear thermal coefficient is below 75 ppm·°C(-1) from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  16. Nuclear 3D organization and radiosensitivity

    Science.gov (United States)

    Eidelman, Y. A.; Slanina, S. V.; Aleshchenko, A. V.; Sen’ko, O. V.; Kononkova, A. D.; Andreev, S. G.

    2017-01-01

    Current mechanisms of radiation-induced chromosomal aberration (CA) formation suggest misrepair of chromosomal lesions being in spatial proximity. In this case CAs have to depend on pattern of chromosomal contacts and on chromosome spatial organization in a cell nucleus. We were interested in whether variation of nucleus 3D organization results in difference of radiation induced CA formation frequency. Experimental data available do not provide information sufficient for definite conclusions. To have more deep insight in this issue we developed the biophysical modeling technique taking into account different levels of chromosome/nuclear organization and radiation damage of DNA and chromosomes. Computer experiments on gamma irradiation were carried out for two types of cells with different 3D organization of nuclei, preferentially peripheral and internal. CA frequencies were found to depend on spatial positioning of chromosomes within a nucleus which determines a pattern of interchromosomal contacts. For individual chromosomes this effect can be more pronounced than for genome averaged. Since significant part of aberrations, for example dicentrics, results in cell death, the proposed technique is capable of evaluating radiosensitivity of cells, both normal and cancer, with the incorporation of 3D genome information. This predictive technology allows to reduce uncertainties of prognosis of biological effects of radiation compared to phenomenological methods and may have variety of biomedical applications, in particular, in cancer radiation therapy.

  17. Medical 3D thermography system

    OpenAIRE

    GRUBIŠIĆ, IVAN

    2011-01-01

    Infrared (IR) thermography determines the surface temperature of an object or human body using thermal IR measurement camera. It is an imaging technology which is contactless and completely non-invasive. These propertiesmake IR thermography a useful method of analysis that is used in various industrial applications to detect, monitor and predict irregularities in many fields from engineering to medical and biological observations. This paper presents a conceptual model of Medical 3D Thermo...

  18. Filling gaps in cultural heritage documentation by 3D photography

    Science.gov (United States)

    Schuhr, W.; Lee, J. D.

    2015-08-01

    This contribution promotes 3D photography as an important tool to obtain objective object information. Keeping mainly in mind World Heritage documentation as well as Heritage protection, it is another intention of this paper, to stimulate the interest in applications of 3D photography for professionals as well as for amateurs. In addition this is also an activity report of the international CIPA task group 3. The main part of this paper starts with "Digging the treasure of existing international 3D photography". This does not only belong to tangible but also to intangible Cultural Heritage. 3D photography clearly supports the recording, the visualization, the preservation and the restoration of architectural and archaeological objects. Therefore the use of 3D photography in C.H. should increase on an international level. The presented samples in 3D represent a voluminous, almost partly "forgotten treasure" of international archives for 3D photography. The next chapter is on "Promoting new 3D photography in Cultural Heritage". Though 3D photographs are a well-established basic photographic and photogrammetric tool, even suited to provide "near real" documentation, they are still a matter of research and improvement. Beside the use of 3D cameras even single lenses cameras are very much suited for photographic 3D documentation purposes in Cultural Heritage. Currently at the Faculty of Civil Engineering of the University of Applied Sciences Magdeburg-Stendal, low altitude aerial photography is exposed from a maximum height of 13m, using a hand hold carbon telescope rod. The use of this "huge selfie stick" is also an (international) recommendation, to expose high resolution 3D photography of monuments under expedition conditions. In addition to the carbon rod recently a captive balloon and a hexacopter UAV- platform is in use, mainly to take better synoptically (extremely low altitude, ground truth) aerial photography. Additional experiments with respect to "easy

  19. 3D silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Parzefall, Ulrich [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany)], E-mail: ulrich.parzefall@physik.uni-freiburg.de; Bates, Richard [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Boscardin, Maurizio [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Dalla Betta, Gian-Franco [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Eckert, Simon [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Eklund, Lars; Fleta, Celeste [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Jakobs, Karl; Kuehn, Susanne [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Lozano, Manuel [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pahn, Gregor [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Parkes, Chris [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Pellegrini, Giulio [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pennicard, David [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Piemonte, Claudio; Ronchin, Sabina [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Szumlak, Tomasz [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Zoboli, Andrea [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Zorzi, Nicola [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy)

    2009-06-01

    While the Large Hadron Collider (LHC) at CERN has started operation in autumn 2008, plans for a luminosity upgrade to the Super-LHC (sLHC) have already been developed for several years. This projected luminosity increase by an order of magnitude gives rise to a challenging radiation environment for tracking detectors at the LHC experiments. Significant improvements in radiation hardness are required with respect to the LHC. Using a strawman layout for the new tracker of the ATLAS experiment as an example, silicon strip detectors (SSDs) with short strips of 2-3 cm length are foreseen to cover the region from 28 to 60 cm distance to the beam. These SSD will be exposed to radiation levels up to 10{sup 15}N{sub eq}/cm{sup 2}, which makes radiation resistance a major concern for the upgraded ATLAS tracker. Several approaches to increasing the radiation hardness of silicon detectors exist. In this article, it is proposed to combine the radiation hard 3D-design originally conceived for pixel-style applications with the benefits of the established planar technology for strip detectors by using SSDs that have regularly spaced doped columns extending into the silicon bulk under the detector strips. The first 3D SSDs to become available for testing were made in the Single Type Column (STC) design, a technological simplification of the original 3D design. With such 3D SSDs, a small number of prototype sLHC detector modules with LHC-speed front-end electronics as used in the semiconductor tracking systems of present LHC experiments were built. Modules were tested before and after irradiation to fluences of 10{sup 15}N{sub eq}/cm{sup 2}. The tests were performed with three systems: a highly focused IR-laser with 5{mu}m spot size to make position-resolved scans of the charge collection efficiency, an Sr{sup 90}{beta}-source set-up to measure the signal levels for a minimum ionizing particle (MIP), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of

  20. Superfast 3D absolute shape measurement using five binary patterns

    Science.gov (United States)

    Hyun, Jae-Sang; Zhang, Song

    2017-03-01

    This paper presents a method that recovers high-quality 3D absolute coordinates point by point with only five binary patterns. Specifically, three dense binary dithered patterns are used to compute the wrapped phase; and the average intensity is combined with two additional binary patterns to determine fringe order pixel by pixel in phase domain. The wrapped phase is temporarily unwrapped point by point by referring to the fringe order. We further developed a computational framework to reduce random noise impact due to dithering, defocusing and random noise. Since only five binary fringe patterns are required to recover one 3D frame, extremely high speed 3D shape measurement can be achieved. For example, we developed a system that captures 2D images at 3333 Hz, and thus performs 3D shape measurement at 667 Hz.

  1. Generalized Method of Variational Analysis for 3-D Flow

    Institute of Scientific and Technical Information of China (English)

    兰伟仁; 黄思训; 项杰

    2004-01-01

    The generalized method of variational analysis (GMVA) suggested for 2-D wind observations by Huang et al. is extended to 3-D cases. Just as in 2-D cases, the regularization idea is applied. But due to the complexity of the 3-D cases, the vertical vorticity is taken as a stable functional. The results indicate that wind observations can be both variationally optimized and filtered. The efficiency of GMVA is also checked in a numerical test. Finally, 3-D wind observations with random disturbances are manipulated by GMVA after being filtered.

  2. Wireless 3D Chocolate Printer

    Directory of Open Access Journals (Sweden)

    FROILAN G. DESTREZA

    2014-02-01

    Full Text Available This study is for the BSHRM Students of Batangas State University (BatStateU ARASOF for the researchers believe that the Wireless 3D Chocolate Printer would be helpful in their degree program especially on making creative, artistic, personalized and decorative chocolate designs. The researchers used the Prototyping model as procedural method for the successful development and implementation of the hardware and software. This method has five phases which are the following: quick plan, quick design, prototype construction, delivery and feedback and communication. This study was evaluated by the BSHRM Students and the assessment of the respondents regarding the software and hardware application are all excellent in terms of Accuracy, Effecitveness, Efficiency, Maintainability, Reliability and User-friendliness. Also, the overall level of acceptability of the design project as evaluated by the respondents is excellent. With regard to the observation about the best raw material to use in 3D printing, the chocolate is good to use as the printed material is slightly distorted,durable and very easy to prepare; the icing is also good to use as the printed material is not distorted and is very durable but consumes time to prepare; the flour is not good as the printed material is distorted, not durable but it is easy to prepare. The computation of the economic viability level of 3d printer with reference to ROI is 37.14%. The recommendation of the researchers in the design project are as follows: adding a cooling system so that the raw material will be more durable, development of a more simplified version and improving the extrusion process wherein the user do not need to stop the printing process just to replace the empty syringe with a new one.

  3. Interactive 3D Mars Visualization

    Science.gov (United States)

    Powell, Mark W.

    2012-01-01

    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.

  4. How 3-D Movies Work

    Institute of Scientific and Technical Information of China (English)

    吕铁雄

    2011-01-01

    难度:★★★★☆词数:450 建议阅读时间:8分钟 Most people see out of two eyes. This is a basic fact of humanity,but it’s what makes possible the illusion of depth(纵深幻觉) that 3-D movies create. Human eyes are spaced about two inches apart, meaning that each eye gives the brain a slightly different perspective(透视感)on the same object. The brain then uses this variance to quickly determine an object’s distance.

  5. Virtual 3-D Facial Reconstruction

    Directory of Open Access Journals (Sweden)

    Martin Paul Evison

    2000-06-01

    Full Text Available Facial reconstructions in archaeology allow empathy with people who lived in the past and enjoy considerable popularity with the public. It is a common misconception that facial reconstruction will produce an exact likeness; a resemblance is the best that can be hoped for. Research at Sheffield University is aimed at the development of a computer system for facial reconstruction that will be accurate, rapid, repeatable, accessible and flexible. This research is described and prototypical 3-D facial reconstructions are presented. Interpolation models simulating obesity, ageing and ethnic affiliation are also described. Some strengths and weaknesses in the models, and their potential for application in archaeology are discussed.

  6. The comparison of MSCTA and 3D-DSA reconstruction imaging in diagnosis of internal carotid artery aneurysm%多层螺旋CT与三维DSA重建成像对颈内动脉瘤构型分析的比较研究

    Institute of Scientific and Technical Information of China (English)

    刘军; 王霞; 王兆华; 王浩洲; 李庆民

    2014-01-01

    Objective To investigate the diagnosis and treatment values of MSCTA and 3D-DSA reconstruction imaging in the internal carotid artery aneurysm patients. Methods A retrospective analysis of 91 patients with the clinical data and imaging data of suspected intracranial aneurysms. All patients were underwent MSCTA and 3D-DSA examination. It was mainly show the three-dimensional conformation of the internal carotid artery aneurysm, mainly study of the location and shape of the carotid artery aneurysms and the connecting mode of internal carotid aneurysm neck opening with the parent artery and the classification of the internal carotid artery aneurysm. Study the sensitivity, specificity and accuracy of MSCTA in the diagnosis of carotid artery aneurysms using 3D-DSA as standard and the consistency of MSCTA reconstruction and 3D-DSA reconstruction using Kappa analysis. Study the positive rate of MSCTA and 3D-DSA in the diagnosis of double bubble and foam type internal carotid artery aneurysm using the chi-squared test analysis. Results Using 3D-DSA reconstruction 78 patients were found with internal carotid artery aneurysms, in which the single bubble patients were 59 cases, multiple bubble patients were 19 cases, 108 internal carotid artery aneurysm were found; the internal carotid artery aneurysm can be divided into three categories:(1) Single bubble type aneurysm were 74 cases accounting for 68.52%. (2) Double bubble and foam type aneurysm were 19 cases accounting for 17.92%. (3) Shuttle type aneurysm was 1 case, accounting for 0.93%. Using MSCTA reconstruction 77 patients with internal carotid artery aneurysms were detected, the solitary cases were 58, multiple cases were 19, 106 internal carotid artery aneurysms were found, in which the single bubble type were 86 cases, double bubble and foam type were 19 cases, aortic dissecting aneurysm was 1 case. From another perspective, according to 3D-DSA reconstruction all internal carotid artery aneurysm can be divided into

  7. 3D medical thermography device

    Science.gov (United States)

    Moghadam, Peyman

    2015-05-01

    In this paper, a novel handheld 3D medical thermography system is introduced. The proposed system consists of a thermal-infrared camera, a color camera and a depth camera rigidly attached in close proximity and mounted on an ergonomic handle. As a practitioner holding the device smoothly moves it around the human body parts, the proposed system generates and builds up a precise 3D thermogram model by incorporating information from each new measurement in real-time. The data is acquired in motion, thus it provides multiple points of view. When processed, these multiple points of view are adaptively combined by taking into account the reliability of each individual measurement which can vary due to a variety of factors such as angle of incidence, distance between the device and the subject and environmental sensor data or other factors influencing a confidence of the thermal-infrared data when captured. Finally, several case studies are presented to support the usability and performance of the proposed system.

  8. 3D Printable Graphene Composite

    Science.gov (United States)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  9. 3D printed bionic ears.

    Science.gov (United States)

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.

  10. The PRISM3D paleoenvironmental reconstruction

    Science.gov (United States)

    Dowsett, H.; Robinson, M.; Haywood, A.M.; Salzmann, U.; Hill, Daniel; Sohl, L.E.; Chandler, M.; Williams, Mark; Foley, K.; Stoll, D.K.

    2010-01-01

    The Pliocene Research, Interpretation and Synoptic Mapping (PRISM) paleoenvironmental reconstruction is an internally consistent and comprehensive global synthesis of a past interval of relatively warm and stable climate. It is regularly used in model studies that aim to better understand Pliocene climate, to improve model performance in future climate scenarios, and to distinguish model-dependent climate effects. The PRISM reconstruction is constantly evolving in order to incorporate additional geographic sites and environmental parameters, and is continuously refined by independent research findings. The new PRISM three dimensional (3D) reconstruction differs from previous PRISM reconstructions in that it includes a subsurface ocean temperature reconstruction, integrates geochemical sea surface temperature proxies to supplement the faunal-based temperature estimates, and uses numerical models for the first time to augment fossil data. Here we describe the components of PRISM3D and describe new findings specific to the new reconstruction. Highlights of the new PRISM3D reconstruction include removal of Hudson Bay and the Great Lakes and creation of open waterways in locations where the current bedrock elevation is less than 25m above modern sea level, due to the removal of the West Antarctic Ice Sheet and the reduction of the East Antarctic Ice Sheet. The mid-Piacenzian oceans were characterized by a reduced east-west temperature gradient in the equatorial Pacific, but PRISM3D data do not imply permanent El Niño conditions. The reduced equator-to-pole temperature gradient that characterized previous PRISM reconstructions is supported by significant displacement of vegetation belts toward the poles, is extended into the Arctic Ocean, and is confirmed by multiple proxies in PRISM3D. Arctic warmth coupled with increased dryness suggests the formation of warm and salty paleo North Atlantic Deep Water (NADW) and a more vigorous thermohaline circulation system that may

  11. 3DFC: a new container for 3D file formats compositing

    OpenAIRE

    Bouville Berthelot, Rozenn; Royan, Jérôme; Duval, Thierry; Arnaldi, Bruno

    2012-01-01

    International audience; We present a 3D container model that enables the compositing of 3D file formats. It allows not only to compose 3D scenes made of several 3D files of different types but also to combine their functionalities and to make them interact together in the rendering window. This model, calls 3DFC for 3D File Container, relies on the Scene Graph Adapter (SGA) architecture that makes it possible to load any scene-graph-based 3D file format in a 3D application whatever the involv...

  12. On the asymptotic internal path length and the asymptotic Wiener index of random split trees

    CERN Document Server

    Munsonius, G O

    2011-01-01

    The random split tree introduced by Devroye (1999) is considered. We derive a second order expansion for the mean of its internal path length and furthermore obtain a limit law by the contraction method. As an assumption we need the splitter having a Lebesgue density and mass in every neighborhood of 1. We use properly stopped homogeneous Markov chains, for which limit results in total variation distance as well as renewal theory are used. Furthermore, we extend this method to obtain the corresponding results for the Wiener index.

  13. Internal gallbladder drainage prevents development of acute cholecystitis in a pig model: a randomized study

    DEFF Research Database (Denmark)

    Kjaer, Daniel W; Mortensen, Frank V; Møller, Jens K;

    2010-01-01

    BACKGROUND: Acute cholecystitis can be the result of retention of bile in the gallbladder with possible secondary infection and ischaemia. The aim of the present study was to investigate whether internal drainage of the gallbladder could protect against the development of acute cholecystitis...... in a pig model. MATERIALS AND METHODS: Twenty pigs were randomized to either internal drainage (drained) or not (undrained). Day 0 acute cholecystitis was induced by ligation of the cystic artery and duct together with inoculation of bacteria. Four days later the pigs were killed and the gallbladders were...... removed and histologically scored for the presence of cholecystitis. Bile and blood samples were collected for bacterial culturing and biochemical analyses. RESULTS: The histological examination demonstrated statistical significant differences in acute cholecystitis development between groups, the degree...

  14. 3D biometrics systems and applications

    CERN Document Server

    Zhang, David

    2013-01-01

    Includes discussions on popular 3D imaging technologies, combines them with biometric applications, and then presents real 3D biometric systems Introduces many efficient 3D feature extraction, matching, and fusion algorithms Techniques presented have been supported by experimental results using various 3D biometric classifications

  15. Advanced Data Visualization in Astrophysics: The X3D Pathway

    Science.gov (United States)

    Vogt, Frédéric P. A.; Owen, Chris I.; Verdes-Montenegro, Lourdes; Borthakur, Sanchayeeta

    2016-02-01

    Most modern astrophysical data sets are multi-dimensional; a characteristic that can nowadays generally be conserved and exploited scientifically during the data reduction/simulation and analysis cascades. However, the same multi-dimensional data sets are systematically cropped, sliced, and/or projected to printable two-dimensional diagrams at the publication stage. In this article, we introduce the concept of the “X3D pathway” as a mean of simplifying and easing the access to data visualization and publication via three-dimensional (3D) diagrams. The X3D pathway exploits the facts that (1) the X3D 3D file format lies at the center of a product tree that includes interactive HTML documents, 3D printing, and high-end animations, and (2) all high-impact-factor and peer-reviewed journals in astrophysics are now published (some exclusively) online. We argue that the X3D standard is an ideal vector for sharing multi-dimensional data sets because it provides direct access to a range of different data visualization techniques, is fully open source, and is a well-defined standard from the International Organization for Standardization. Unlike other earlier propositions to publish multi-dimensional data sets via 3D diagrams, the X3D pathway is not tied to specific software (prone to rapid and unexpected evolution), but instead is compatible with a range of open-source software already in use by our community. The interactive HTML branch of the X3D pathway is also actively supported by leading peer-reviewed journals in the field of astrophysics. Finally, this article provides interested readers with a detailed set of practical astrophysical examples designed to act as a stepping stone toward the implementation of the X3D pathway for any other data set.

  16. 3D Tracking via Shoe Sensing

    Directory of Open Access Journals (Sweden)

    Fangmin Li

    2016-10-01

    Full Text Available Most location-based services are based on a global positioning system (GPS, which only works well in outdoor environments. Compared to outdoor environments, indoor localization has created more buzz in recent years as people spent most of their time indoors working at offices and shopping at malls, etc. Existing solutions mainly rely on inertial sensors (i.e., accelerometer and gyroscope embedded in mobile devices, which are usually not accurate enough to be useful due to the mobile devices’ random movements while people are walking. In this paper, we propose the use of shoe sensing (i.e., sensors attached to shoes to achieve 3D indoor positioning. Specifically, a short-time energy-based approach is used to extract the gait pattern. Moreover, in order to improve the accuracy of vertical distance estimation while the person is climbing upstairs, a state classification is designed to distinguish the walking status including plane motion (i.e., normal walking and jogging horizontally, walking upstairs, and walking downstairs. Furthermore, we also provide a mechanism to reduce the vertical distance accumulation error. Experimental results show that we can achieve nearly 100% accuracy when extracting gait patterns from walking/jogging with a low-cost shoe sensor, and can also achieve 3D indoor real-time positioning with high accuracy.

  17. 3D Tracking via Shoe Sensing.

    Science.gov (United States)

    Li, Fangmin; Liu, Guo; Liu, Jian; Chen, Xiaochuang; Ma, Xiaolin

    2016-10-28

    Most location-based services are based on a global positioning system (GPS), which only works well in outdoor environments. Compared to outdoor environments, indoor localization has created more buzz in recent years as people spent most of their time indoors working at offices and shopping at malls, etc. Existing solutions mainly rely on inertial sensors (i.e., accelerometer and gyroscope) embedded in mobile devices, which are usually not accurate enough to be useful due to the mobile devices' random movements while people are walking. In this paper, we propose the use of shoe sensing (i.e., sensors attached to shoes) to achieve 3D indoor positioning. Specifically, a short-time energy-based approach is used to extract the gait pattern. Moreover, in order to improve the accuracy of vertical distance estimation while the person is climbing upstairs, a state classification is designed to distinguish the walking status including plane motion (i.e., normal walking and jogging horizontally), walking upstairs, and walking downstairs. Furthermore, we also provide a mechanism to reduce the vertical distance accumulation error. Experimental results show that we can achieve nearly 100% accuracy when extracting gait patterns from walking/jogging with a low-cost shoe sensor, and can also achieve 3D indoor real-time positioning with high accuracy.

  18. Active Strokes: Coherent Line Stylization for Animated 3D Models

    OpenAIRE

    Bénard, Pierre; Jingwan, Lu; Cole, Forrester; Finkelstein, Adam; Thollot, Joëlle

    2012-01-01

    Paper session 8: Lines, strokes and textures in 3D; International audience; This paper presents a method for creating coherently animated line drawings that include strong abstraction and stylization effects. These effects are achieved with active strokes: 2D contours that approximate and track the lines of an animated 3D scene. Active strokes perform two functions: they connect and smooth unorganized line samples, and they carry coherent parameterization to support stylized rendering. Line s...

  19. 3D Lasers Increase Efficiency, Safety of Moving Machines

    Science.gov (United States)

    2015-01-01

    Canadian company Neptec Design Group Ltd. developed its Laser Camera System, used by shuttles to render 3D maps of their hulls for assessing potential damage. Using NASA funding, the firm incorporated LiDAR technology and created the TriDAR 3D sensor. Its commercial arm, Neptec Technologies Corp., has sold the technology to Orbital Sciences, which uses it to guide its Cygnus spacecraft during rendezvous and dock operations at the International Space Station.

  20. NoSQL Based 3D City Model Management System

    Science.gov (United States)

    Mao, B.; Harrie, L.; Cao, J.; Wu, Z.; Shen, J.

    2014-04-01

    To manage increasingly complicated 3D city models, a framework based on NoSQL database is proposed in this paper. The framework supports import and export of 3D city model according to international standards such as CityGML, KML/COLLADA and X3D. We also suggest and implement 3D model analysis and visualization in the framework. For city model analysis, 3D geometry data and semantic information (such as name, height, area, price and so on) are stored and processed separately. We use a Map-Reduce method to deal with the 3D geometry data since it is more complex, while the semantic analysis is mainly based on database query operation. For visualization, a multiple 3D city representation structure CityTree is implemented within the framework to support dynamic LODs based on user viewpoint. Also, the proposed framework is easily extensible and supports geoindexes to speed up the querying. Our experimental results show that the proposed 3D city management system can efficiently fulfil the analysis and visualization requirements.

  1. 3D Printing of Graphene Aerogels.

    Science.gov (United States)

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-01

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction.

  2. Conducting Polymer 3D Microelectrodes

    Directory of Open Access Journals (Sweden)

    Jenny Emnéus

    2010-12-01

    Full Text Available Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements.

  3. Supernova Remnant in 3-D

    Science.gov (United States)

    2009-01-01

    of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through. The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave. This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron. High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these structures, but their orientation and

  4. 3D Finite Element Analysis of Particle-Reinforced Aluminum

    Science.gov (United States)

    Shen, H.; Lissenden, C. J.

    2002-01-01

    Deformation in particle-reinforced aluminum has been simulated using three distinct types of finite element model: a three-dimensional repeating unit cell, a three-dimensional multi-particle model, and two-dimensional multi-particle models. The repeating unit cell model represents a fictitious periodic cubic array of particles. The 3D multi-particle (3D-MP) model represents randomly placed and oriented particles. The 2D generalized plane strain multi-particle models were obtained from planar sections through the 3D-MP model. These models were used to study the tensile macroscopic stress-strain response and the associated stress and strain distributions in an elastoplastic matrix. The results indicate that the 2D model having a particle area fraction equal to the particle representative volume fraction of the 3D models predicted the same macroscopic stress-strain response as the 3D models. However, there are fluctuations in the particle area fraction in a representative volume element. As expected, predictions from 2D models having different particle area fractions do not agree with predictions from 3D models. More importantly, it was found that the microscopic stress and strain distributions from the 2D models do not agree with those from the 3D-MP model. Specifically, the plastic strain distribution predicted by the 2D model is banded along lines inclined at 45 deg from the loading axis while the 3D model prediction is not. Additionally, the triaxial stress and maximum principal stress distributions predicted by 2D and 3D models do not agree. Thus, it appears necessary to use a multi-particle 3D model to accurately predict material responses that depend on local effects, such as strain-to-failure, fracture toughness, and fatigue life.

  5. Modeling 3D soil and sediment distributions for assessing catchment structure and hydrological feedbacks

    Science.gov (United States)

    Maurer, Thomas; Brück, Yasemine; Hinz, Christoph; Gerke, Horst H.

    2015-04-01

    Structural heterogeneity, namely the spatial distribution of soils and sediments (represented by mineral particles), characterizes catchment hydrological behavior. In natural catchments, local geology and the specific geomorphic processes determine the characteristics and spatial distribution of structures. In constructed catchments, structural features are determined primarily by the construction processes and the geological origin of the parent material. Objectives are scenarios of 3D catchment structures in form of complete 3D description of soil hydraulic properties generated from the knowledge of the formation processes. The constructed hydrological catchment 'Hühnerwasser' (Lower Lusatia, Brandenburg, Germany) was used for the calibration and validation of model results due to its well-known conditions. For the modelling of structural features, a structure generator was used to model i) quasi-deterministic sediment distributions using input data from a geological model of the parent material excavation site; ii) sediment distributions that are conditioned to measurement data from soil sampling; and iii) stochastic component sediment distributions. All three approaches allow a randomization within definable limits. Furthermore, the spoil cone / spoil ridge orientation, internal layering, surface compaction and internal spoil cone compaction were modified. These generated structural models were incorporated in a gridded 3D volume model constructed with the GOCAD software. For selected scenarios, the impact of structure variation was assessed by hydrological modelling with HYDRUS 2D/3D software. For that purpose, 3D distributions of soil hydraulic properties were estimated based on generated sediment properties using adapted pedotransfer functions. Results from the hydrological model were compared them to measured discharges from the catchment. The impact of structural feature variation on flow behaviour was analysed by comparing different simulation scenarios

  6. Deposit 3D modeling and application

    Institute of Scientific and Technical Information of China (English)

    LUO Zhou-quan; LIU Xiao-ming; SU Jia-hong; WU Ya-bin; LIU Wang-ping

    2007-01-01

    By the aid of the international mining software SURPAC, a geologic database for a multi-metal mine was established, 3D models of the surface, geologic fault, ore body, cavity and the underground openings were built, and the volume of the cavity of the mine based on the cavity 3D model was calculated. In order to compute the reserves, a grade block model was built and each metal element grade was estimated using Ordinary Kriging. Then, the reserve of each metal element and every sublevel of the mine was worked out. Finally, the calculated result of each metal reserve to its actual prospecting reserve was compared, and the results show that they are all almost equal to each other. The absolute errors of Sn, Pb, and Zn reserves are only 1.45%, 1.59% and 1.62%,respectively. Obviously, the built models are reliable and the calculated results of reserves are correct. They can be used to assist the geologic and mining engineers of the mine to do research work of reserves estimation, mining design, plan making and so on.

  7. 3D stereolithography printing of graphene oxide reinforced complex architectures.

    Science.gov (United States)

    Lin, Dong; Jin, Shengyu; Zhang, Feng; Wang, Chao; Wang, Yiqian; Zhou, Chi; Cheng, Gary J

    2015-10-30

    Properties of polymer based nanocomposites reply on distribution, concentration, geometry and property of nanofillers in polymer matrix. Increasing the concentration of carbon based nanomaterials, such as CNTs, in polymer matrix often results in stronger but more brittle material. Here, we demonstrated the first three-dimensional (3D) printed graphene oxide complex structures by stereolithography with good combination of strength and ductility. With only 0.2% GOs, the tensile strength is increased by 62.2% and elongation increased by 12.8%. Transmission electron microscope results show that the GOs were randomly aligned in the cross section of polymer. We investigated the strengthening mechanism of the 3D printed structure in terms of tensile strength and Young's modulus. It is found that an increase in ductility of the 3D printed nanocomposites is related to increase in crystallinity of GOs reinforced polymer. Compression test of 3D GOs structure reveals the metal-like failure model of GOs nanocomposites.

  8. 3D multiplexed immunoplasmonics microscopy

    Science.gov (United States)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  9. 3D-CT angiography. Intracranial arterial lesions

    Energy Technology Data Exchange (ETDEWEB)

    Asato, Mikio; Tong, X.Q.; Tamura, Shozo [Miyazaki Medical Coll., Kiyotake (Japan)] [and others

    1997-06-01

    Since its introduction, three dimensional CT angiography (3D-CTA) on spiral (helical) CT has played an important role in clinical imaging. Initially it was reported to be useful in depicting aortic abnormalities, afterwards the merit in detecting intracranial aneurysm by 3D-CTA was also described. We have investigated the usefullness of 3D-CTA in detecting patients of intracranial aneurysm as well as arterio-venous malformation (AVM), Moyamoya disease and stenosis of middle cerebral artery, meanwhile the MR angiography (MRA) and digital subtraction angiography (DSA) examination of these patients were also studied as comparison to the 3D-CTA results. The sensitivity and specificity on investigating intracranial aneurysm were similar with other reports so far. 3D-CTA was possible to identify the feeding artery, nidus and draining vein of AVM, although DSA showed higher detectability. Occlusion of internal carotid artery and post-operative anastomosis in Moyamoya disease were all demonstrated by 3D-CTA, however the Moyamoya collaterals were shown better on MRA. 3D-CTA revealed the site of stenosis of middle cerebral artery in all of our cases, but in general maximum intensity projection (MIP) images can provide more exact information about the degree of stenosis. Five years has passed since the emergence of spiral CT and utilizing of 3D-CTA in clinical applications. With the development of hard and soft ware in the near future, it is possible to delineate more small vessels by 3D-CTA. We predict that 3D-CTA would be widely used for detecting vasculature of the whole body, and may take the place of conventional angiography in many cases. (author)

  10. 3-D nonlinear evolution of MHD instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, G.; Hicks, H. R.; Wooten, J. W.

    1977-03-01

    The nonlinear evolution of ideal MHD internal instabilities is investigated in straight cylindrical geometry by means of a 3-D initial-value computer code. These instabilities are characterized by pairs of velocity vortex cells rolling off each other and helically twisted down the plasma column. The cells persist until the poloidal velocity saturates at a few tenths of the Alfven velocity. The nonlinear phase is characterized by convection around these essentially fixed vortex cells. For example, the initially centrally peaked temperature profile is convected out and around to form an annulus of high temperature surrounding a small region of lower temperature. Weak, centrally localized instabilities do not alter the edge of the plasma. Strong, large-scale instabilities, resulting from a stronger longitudinal equilibrium current, drive the plasma against the wall. After three examples of instability are analyzed in detail, the numerical methods and their verification are discussed.

  11. Kuvaus 3D-tulostamisesta hammastekniikassa

    OpenAIRE

    Munne, Mauri; Mustonen, Tuomas; Vähäjylkkä, Jaakko

    2013-01-01

    3D-tulostaminen kehittyy nopeasti ja yleistyy koko ajan. Tulostimien tarkkuuksien kehittyessä 3D-tulostus on ottamassa myös jalansijaa hammastekniikan alalta. Tämän opinnäytetyön tarkoituksena on kuvata 3D-tulostamisen tilaa hammastekniikassa. 3D-tulostaminen on Suomessa vielä melko harvinaista, joten opinnäytetyön tavoitteena on koota yhteen kaikki mahdollinen tieto liittyen 3D-tulostamiseen hammastekniikassa. Tavoitteena on myös 3D-tulostimen testaaminen käytännössä aina suun skannaami...

  12. Crowdsourcing Based 3d Modeling

    Science.gov (United States)

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  13. 3D Flash LIDAR Space Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc. (ASC) is a small business that has developed 3D Flash LIDAR systems for space and terrestrial applications. 3D Flash LIDAR is...

  14. Eesti 3D jaoks kitsas / Virge Haavasalu

    Index Scriptorium Estoniae

    Haavasalu, Virge

    2009-01-01

    Produktsioonifirma Digitaalne Sputnik: Kaur ja Kaspar Kallas tegelevad filmide produtseerimise ning 3D digitaalkaamerate tootearendusega (Silicon Imaging LLC). Vendade Kallaste 3D-kaamerast. Kommenteerib Eesti Filmi Sihtasutuse direktor Marge Liiske

  15. Will 3D printers manufacture your meals?

    NARCIS (Netherlands)

    Bommel, K.J.C. van

    2013-01-01

    These days, 3D printers are laying down plastics, metals, resins, and other materials in whatever configurations creative people can dream up. But when the next 3D printing revolution comes, you'll be able to eat it.

  16. An interactive multiview 3D display system

    Science.gov (United States)

    Zhang, Zhaoxing; Geng, Zheng; Zhang, Mei; Dong, Hui

    2013-03-01

    The progresses in 3D display systems and user interaction technologies will help more effective 3D visualization of 3D information. They yield a realistic representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them. In this paper, we describe an autostereoscopic multiview 3D display system with capability of real-time user interaction. Design principle of this autostereoscopic multiview 3D display system is presented, together with the details of its hardware/software architecture. A prototype is built and tested based upon multi-projectors and horizontal optical anisotropic display structure. Experimental results illustrate the effectiveness of this novel 3D display and user interaction system.

  17. Sliding Adjustment for 3D Video Representation

    Directory of Open Access Journals (Sweden)

    Galpin Franck

    2002-01-01

    Full Text Available This paper deals with video coding of static scenes viewed by a moving camera. We propose an automatic way to encode such video sequences using several 3D models. Contrary to prior art in model-based coding where 3D models have to be known, the 3D models are automatically computed from the original video sequence. We show that several independent 3D models provide the same functionalities as one single 3D model, and avoid some drawbacks of the previous approaches. To achieve this goal we propose a novel algorithm of sliding adjustment, which ensures consistency of successive 3D models. The paper presents a method to automatically extract the set of 3D models and associate camera positions. The obtained representation can be used for reconstructing the original sequence, or virtual ones. It also enables 3D functionalities such as synthetic object insertion, lightning modification, or stereoscopic visualization. Results on real video sequences are presented.

  18. Improving Semantic Updating Method on 3d City Models Using Hybrid Semantic-Geometric 3d Segmentation Technique

    Science.gov (United States)

    Sharkawi, K.-H.; Abdul-Rahman, A.

    2013-09-01

    Cities and urban areas entities such as building structures are becoming more complex as the modern human civilizations continue to evolve. The ability to plan and manage every territory especially the urban areas is very important to every government in the world. Planning and managing cities and urban areas based on printed maps and 2D data are getting insufficient and inefficient to cope with the complexity of the new developments in big cities. The emergence of 3D city models have boosted the efficiency in analysing and managing urban areas as the 3D data are proven to represent the real world object more accurately. It has since been adopted as the new trend in buildings and urban management and planning applications. Nowadays, many countries around the world have been generating virtual 3D representation of their major cities. The growing interest in improving the usability of 3D city models has resulted in the development of various tools for analysis based on the 3D city models. Today, 3D city models are generated for various purposes such as for tourism, location-based services, disaster management and urban planning. Meanwhile, modelling 3D objects are getting easier with the emergence of the user-friendly tools for 3D modelling available in the market. Generating 3D buildings with high accuracy also has become easier with the availability of airborne Lidar and terrestrial laser scanning equipments. The availability and accessibility to this technology makes it more sensible to analyse buildings in urban areas using 3D data as it accurately represent the real world objects. The Open Geospatial Consortium (OGC) has accepted CityGML specifications as one of the international standards for representing and exchanging spatial data, making it easier to visualize, store and manage 3D city models data efficiently. CityGML able to represents the semantics, geometry, topology and appearance of 3D city models in five well-defined Level-of-Details (LoD), namely LoD0

  19. Forward ramp in 3D

    Science.gov (United States)

    1997-01-01

    Mars Pathfinder's forward rover ramp can be seen successfully unfurled in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This ramp was not used for the deployment of the microrover Sojourner, which occurred at the end of Sol 2. When this image was taken, Sojourner was still latched to one of the lander's petals, waiting for the command sequence that would execute its descent off of the lander's petal.The image helped Pathfinder scientists determine whether to deploy the rover using the forward or backward ramps and the nature of the first rover traverse. The metallic object at the lower left of the image is the lander's low-gain antenna. The square at the end of the ramp is one of the spacecraft's magnetic targets. Dust that accumulates on the magnetic targets will later be examined by Sojourner's Alpha Proton X-Ray Spectrometer instrument for chemical analysis. At right, a lander petal is visible.The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  20. An overview of 3D topology for LADM-based objects

    NARCIS (Netherlands)

    Zulkifli, N.A.; Rahman, A.A.; Van Oosterom, P.J.M.

    2015-01-01

    This paper reviews 3D topology within Land Administration Domain Model (LADM) international standard. It is important to review characteristic of the different 3D topological models and to choose the most suitable model for certain applications. The characteristic of the different 3D topological mod

  1. Laser Based 3D Volumetric Display System

    Science.gov (United States)

    1993-03-01

    Literature, Costa Mesa, CA July 1983. 3. "A Real Time Autostereoscopic Multiplanar 3D Display System", Rodney Don Williams, Felix Garcia, Jr., Texas...8217 .- NUMBERS LASER BASED 3D VOLUMETRIC DISPLAY SYSTEM PR: CD13 0. AUTHOR(S) PE: N/AWIU: DN303151 P. Soltan, J. Trias, W. Robinson, W. Dahlke 7...laser generated 3D volumetric images on a rotating double helix, (where the 3D displays are computer controlled for group viewing with the naked eye

  2. 3D Printing and Its Urologic Applications.

    Science.gov (United States)

    Soliman, Youssef; Feibus, Allison H; Baum, Neil

    2015-01-01

    3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology.

  3. Beowulf 3D: a case study

    Science.gov (United States)

    Engle, Rob

    2008-02-01

    This paper discusses the creative and technical challenges encountered during the production of "Beowulf 3D," director Robert Zemeckis' adaptation of the Old English epic poem and the first film to be simultaneously released in IMAX 3D and digital 3D formats.

  4. 3D Printing and Its Urologic Applications

    Science.gov (United States)

    Soliman, Youssef; Feibus, Allison H; Baum, Neil

    2015-01-01

    3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology. PMID:26028997

  5. Expanding Geometry Understanding with 3D Printing

    Science.gov (United States)

    Cochran, Jill A.; Cochran, Zane; Laney, Kendra; Dean, Mandi

    2016-01-01

    With the rise of personal desktop 3D printing, a wide spectrum of educational opportunities has become available for educators to leverage this technology in their classrooms. Until recently, the ability to create physical 3D models was well beyond the scope, skill, and budget of many schools. However, since desktop 3D printers have become readily…

  6. Investigating Mobile Stereoscopic 3D Touchscreen Interaction

    OpenAIRE

    Colley, Ashley; Hakkila, Jonna; SCHOENING, Johannes; Posti, Maaret

    2013-01-01

    3D output is no longer limited to large screens in cinemas or living rooms. Nowadays more and more mobile devices are equipped with autostereoscopic 3D (S3D) touchscreens. As a consequence interaction with 3D content now also happens whilst users are on the move. In this paper we carried out a user study with 27 participants to assess how mobile interaction, i.e. whilst walking, with mobile S3D devices, differs from interaction with 2D mobile touchscreens. We investigate the difference in tou...

  7. Wafer level 3-D ICs process technology

    CERN Document Server

    Tan, Chuan Seng; Reif, L Rafael

    2009-01-01

    This book focuses on foundry-based process technology that enables the fabrication of 3-D ICs. The core of the book discusses the technology platform for pre-packaging wafer lever 3-D ICs. However, this book does not include a detailed discussion of 3-D ICs design and 3-D packaging. This is an edited book based on chapters contributed by various experts in the field of wafer-level 3-D ICs process technology. They are from academia, research labs and industry.

  8. View-based 3-D object retrieval

    CERN Document Server

    Gao, Yue

    2014-01-01

    Content-based 3-D object retrieval has attracted extensive attention recently and has applications in a variety of fields, such as, computer-aided design, tele-medicine,mobile multimedia, virtual reality, and entertainment. The development of efficient and effective content-based 3-D object retrieval techniques has enabled the use of fast 3-D reconstruction and model design. Recent technical progress, such as the development of camera technologies, has made it possible to capture the views of 3-D objects. As a result, view-based 3-D object retrieval has become an essential but challenging res

  9. Web-based interactive visualization of 3D video mosaics using X3D standard

    Institute of Scientific and Technical Information of China (English)

    CHON Jaechoon; LEE Yang-Won; SHIBASAKI Ryosuke

    2006-01-01

    We present a method of 3D image mosaicing for real 3D representation of roadside buildings, and implement a Web-based interactive visualization environment for the 3D video mosaics created by 3D image mosaicing. The 3D image mosaicing technique developed in our previous work is a very powerful method for creating textured 3D-GIS data without excessive data processing like the laser or stereo system. For the Web-based open access to the 3D video mosaics, we build an interactive visualization environment using X3D, the emerging standard of Web 3D. We conduct the data preprocessing for 3D video mosaics and the X3D modeling for textured 3D data. The data preprocessing includes the conversion of each frame of 3D video mosaics into concatenated image files that can be hyperlinked on the Web. The X3D modeling handles the representation of concatenated images using necessary X3D nodes. By employing X3D as the data format for 3D image mosaics, the real 3D representation of roadside buildings is extended to the Web and mobile service systems.

  10. Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion

    Science.gov (United States)

    Handy Turner, Tara

    2010-02-01

    From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.

  11. 3D laptop for defense applications

    Science.gov (United States)

    Edmondson, Richard; Chenault, David

    2012-06-01

    Polaris Sensor Technologies has developed numerous 3D display systems using a US Army patented approach. These displays have been developed as prototypes for handheld controllers for robotic systems and closed hatch driving, and as part of a TALON robot upgrade for 3D vision, providing depth perception for the operator for improved manipulation and hazard avoidance. In this paper we discuss the prototype rugged 3D laptop computer and its applications to defense missions. The prototype 3D laptop combines full temporal and spatial resolution display with the rugged Amrel laptop computer. The display is viewed through protective passive polarized eyewear, and allows combined 2D and 3D content. Uses include robot tele-operation with live 3D video or synthetically rendered scenery, mission planning and rehearsal, enhanced 3D data interpretation, and simulation.

  12. User-centered 3D geovisualisation

    DEFF Research Database (Denmark)

    Nielsen, Anette Hougaard

    2004-01-01

    3D Geovisualisation is a multidisciplinary science mainly utilizing geographically related data, developing software systems for 3D visualisation and producing relevant models. In this paper the connection between geoinformation stored as 3D objects and the end user is of special interest....... In a broader perspective, the overall aim is to develop a language in 3D Geovisualisation gained through usability projects and the development of a theoretical background. A conceptual level of user-centered 3D Geovisualisation is introduced by applying a categorisation originating from Virtual Reality....... The conceptual level is used to structure and organise user-centered 3D Geovisualisation into four categories: representation, rendering, interface and interaction. The categories reflect a process of development of 3D Geovisualisation where objects can be represented verisimilar to the real world...

  13. On Angular Sampling Methods for 3-D Spatial Channel Models

    DEFF Research Database (Denmark)

    Fan, Wei; Jämsä, Tommi; Nielsen, Jesper Ødum

    2015-01-01

    This paper discusses generating three dimensional (3D) spatial channel models with emphasis on the angular sampling methods. Three angular sampling methods, i.e. modified uniform power sampling, modified uniform angular sampling, and random pairing methods are proposed and investigated in detail....... The random pairing method, which uses only twenty sinusoids in the ray-based model for generating the channels, presents good results if the spatial channel cluster is with a small elevation angle spread. For spatial clusters with large elevation angle spreads, however, the random pairing method would fail...... and the other two methods should be considered....

  14. A 3D Split Manufacturing Approach to Trustworthy System Development

    Science.gov (United States)

    2012-12-01

    DAC ), June 2006. [17] S. Mysore, B. Agrawal, S.C. Lin, N. Srivastava, K. Banerjee, and T. Sherwood. Introspective 3-D chips. In Proceedings of the 12th...from audio visualizers to electro-muscular incapacitating devices. David has worked as an intern at the Naval Postgraduate School for two summers. He

  15. 3-D Printed Ultem 9085 Testing and Analysis

    Science.gov (United States)

    Aguilar, Daniel; Christensen, Sean; Fox, Emmet J.

    2015-01-01

    The purpose of this document is to analyze the mechanical properties of 3-D printed Ultem 9085. This document will focus on the capabilities, limitations, and complexities of 3D printing in general, and explain the methods by which this material is tested. Because 3-D printing is a relatively new process that offers an innovative means to produce hardware, it is important that the aerospace community understands its current advantages and limitations, so that future endeavors involving 3-D printing may be completely safe. This document encompasses three main sections: a Slosh damage assessment, a destructive test of 3-D printed Ultem 9085 samples, and a test to verify simulation for the 3-D printed SDP (SPHERES Docking Port). Described below, 'Slosh' and 'SDP' refer to two experiments that are built using Ultem 9085 for use with the SPHERES (Synchronized Position Hold, Engage, Reorient, Experimental Satellites) program onboard the International Space Station (ISS) [16]. The SPHERES Facility is managed out of the National Aeronautics and Space Administration (NASA) Ames Research Center in California.

  16. How little do we need for 3-D shape perception?

    Science.gov (United States)

    Nandakumar, Chetan; Torralba, Antonio; Malik, Jitendra

    2011-01-01

    How little do we need to perceive 3-D shape in monocular natural images? The shape-from-texture and shape-from-shading perspectives would motivate that 3-D perception vanishes once low-level cues are disrupted. Is this the case in human vision? Or can top-down influences salvage the percept? In this study we probe this question by employing a gauge-figure paradigm similar to that used by Koenderink et al (1992, Perception & Psychophysics 52 487-496). Subjects were presented degraded natural images and instructed to make local assessments of slant and tilt at various locations thereby quantifying their internal 3-D percept. Analysis of subjects' responses reveals recognition to be a significant influence thereby allowing subjects to perceive 3-D shape at high levels of degradation. Specifically, we identify the 'medium-blur' condition, images approximately 32 pixels on a side, to be the limit for accurate 3-D shape perception. In addition, we find that degradation affects the perceived slant of point-estimates making images look flatter as degradation increases. A subsequent condition that eliminates texture and shading but preserves contour and recognition reveals how bottom-up and top-down cues can combine for accurate 3-D shape perception.

  17. Laser printing of cells into 3D scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Ovsianikov, A; Gruene, M; Koch, L; Maiorana, F; Chichkov, B [Nanotechnology Department, Laser Zentrum Hannover eV, Hollerithallee 8, 30419 Hannover (Germany); Pflaum, M; Wilhelmi, M; Haverich, A, E-mail: a.ovsianikov@lzh.d [Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover (Germany)

    2010-03-15

    One of the most promising approaches in tissue engineering is the application of 3D scaffolds, which provide cell support and guidance in the initial tissue formation stage. The porosity of the scaffold and internal pore organization influence cell migration and play a major role in its biodegradation dynamics, nutrient diffusion and mechanical stability. In order to control cell migration and cellular interactions within the scaffold, novel technologies capable of producing 3D structures in accordance with predefined design are required. The two-photon polymerization (2PP) technique, used in this report for the fabrication of scaffolds, allows the realization of arbitrary 3D structures with submicron spatial resolution. Highly porous 3D scaffolds, produced by 2PP of acrylated poly(ethylene glycol), are seeded with cells by means of laser-induced forward transfer (LIFT). In this laser printing approach, a propulsive force, resulting from laser-induced shock wave, is used to propel individual cells or cell groups from a donor substrate towards the receiver substrate. We demonstrate that with this technique printing of multiple cell types into 3D scaffolds is possible. Combination of LIFT and 2PP provides a route for the realization of 3D multicellular tissue constructs and artificial ECM engineered on the microscale.

  18. FROM 3D MODEL DATA TO SEMANTICS

    Directory of Open Access Journals (Sweden)

    My Abdellah Kassimi

    2012-01-01

    Full Text Available The semantic-based 3D models retrieval systems have become necessary since the increase of 3D modelsdatabases. In this paper, we propose a new method for the mapping problem between 3D model data andsemantic data involved in semantic based retrieval for 3D models given by polygonal meshes. First, wefocused on extracting invariant descriptors from the 3D models and analyzing them to efficient semanticannotation and to improve the retrieval accuracy. Selected shape descriptors provide a set of termscommonly used to describe visually a set of objects using linguistic terms and are used as semanticconcept to label 3D model. Second, spatial relationship representing directional, topological anddistance relationships are used to derive other high-level semantic features and to avoid the problem ofautomatic 3D model annotation. Based on the resulting semantic annotation and spatial concepts, anontology for 3D model retrieval is constructed and other concepts can be inferred. This ontology is usedto find similar 3D models for a given query model. We adopted the query by semantic example approach,in which the annotation is performed mostly automatically. The proposed method is implemented in our3D search engine (SB3DMR, tested using the Princeton Shape Benchmark Database.

  19. 3D change detection - Approaches and applications

    Science.gov (United States)

    Qin, Rongjun; Tian, Jiaojiao; Reinartz, Peter

    2016-12-01

    Due to the unprecedented technology development of sensors, platforms and algorithms for 3D data acquisition and generation, 3D spaceborne, airborne and close-range data, in the form of image based, Light Detection and Ranging (LiDAR) based point clouds, Digital Elevation Models (DEM) and 3D city models, become more accessible than ever before. Change detection (CD) or time-series data analysis in 3D has gained great attention due to its capability of providing volumetric dynamics to facilitate more applications and provide more accurate results. The state-of-the-art CD reviews aim to provide a comprehensive synthesis and to simplify the taxonomy of the traditional remote sensing CD techniques, which mainly sit within the boundary of 2D image/spectrum analysis, largely ignoring the particularities of 3D aspects of the data. The inclusion of 3D data for change detection (termed 3D CD), not only provides a source with different modality for analysis, but also transcends the border of traditional top-view 2D pixel/object-based analysis to highly detailed, oblique view or voxel-based geometric analysis. This paper reviews the recent developments and applications of 3D CD using remote sensing and close-range data, in support of both academia and industry researchers who seek for solutions in detecting and analyzing 3D dynamics of various objects of interest. We first describe the general considerations of 3D CD problems in different processing stages and identify CD types based on the information used, being the geometric comparison and geometric-spectral analysis. We then summarize relevant works and practices in urban, environment, ecology and civil applications, etc. Given the broad spectrum of applications and different types of 3D data, we discuss important issues in 3D CD methods. Finally, we present concluding remarks in algorithmic aspects of 3D CD.

  20. NASA VERVE: Interactive 3D Visualization Within Eclipse

    Science.gov (United States)

    Cohen, Tamar; Allan, Mark B.

    2014-01-01

    At NASA, we develop myriad Eclipse RCP applications to provide situational awareness for remote systems. The Intelligent Robotics Group at NASA Ames Research Center has developed VERVE - a high-performance, robot user interface that provides scientists, robot operators, and mission planners with powerful, interactive 3D displays of remote environments.VERVE includes a 3D Eclipse view with an embedded Java Ardor3D scenario, including SWT and mouse controls which interact with the Ardor3D camera and objects in the scene. VERVE also includes Eclipse views for exploring and editing objects in the Ardor3D scene graph, and a HUD (Heads Up Display) framework allows Growl-style notifications and other textual information to be overlayed onto the 3D scene. We use VERVE to listen to telemetry from robots and display the robots and associated scientific data along the terrain they are exploring; VERVE can be used for any interactive 3D display of data.VERVE is now open source. VERVE derives from the prior Viz system, which was developed for Mars Polar Lander (2001) and used for the Mars Exploration Rover (2003) and the Phoenix Lander (2008). It has been used for ongoing research with IRG's K10 and KRex rovers in various locations. VERVE was used on the International Space Station during two experiments in 2013 - Surface Telerobotics, in which astronauts controlled robots on Earth from the ISS, and SPHERES, where astronauts control a free flying robot on board the ISS.We will show in detail how to code with VERVE, how to interact between SWT controls to the Ardor3D scenario, and share example code.

  1. 3D Printing and Digital Rock Physics for Geomaterials

    Science.gov (United States)

    Martinez, M. J.; Yoon, H.; Dewers, T. A.

    2015-12-01

    Imaging techniques for the analysis of porous structures have revolutionized our ability to quantitatively characterize geomaterials. Digital representations of rock from CT images and physics modeling based on these pore structures provide the opportunity to further advance our quantitative understanding of fluid flow, geomechanics, and geochemistry, and the emergence of coupled behaviors. Additive manufacturing, commonly known as 3D printing, has revolutionized production of custom parts with complex internal geometries. For the geosciences, recent advances in 3D printing technology may be co-opted to print reproducible porous structures derived from CT-imaging of actual rocks for experimental testing. The use of 3D printed microstructure allows us to surmount typical problems associated with sample-to-sample heterogeneity that plague rock physics testing and to test material response independent from pore-structure variability. Together, imaging, digital rocks and 3D printing potentially enables a new workflow for understanding coupled geophysical processes in a real, but well-defined setting circumventing typical issues associated with reproducibility, enabling full characterization and thus connection of physical phenomena to structure. In this talk we will discuss the possibilities that these technologies can bring to geosciences and present early experiences with coupled multiscale experimental and numerical analysis using 3D printed fractured rock specimens. In particular, we discuss the processes of selection and printing of transparent fractured specimens based on 3D reconstruction of micro-fractured rock to study fluid flow characterization and manipulation. Micro-particle image velocimetry is used to directly visualize 3D single and multiphase flow velocity in 3D fracture networks. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U

  2. Random 3-D young diagrams and representation theory

    NARCIS (Netherlands)

    Gorin, V.

    2011-01-01

    The topic of the thesis is related to statistical mechanics and probability theory from one side, and to the representation theory of ``big'' groups on the other side. A typical example of a ``big'' group is the union of unitary groups naturally embedded one into another; it is called the infinite--

  3. 3D Systems” ‘Stuck in the Middle’ of the 3D Printer Boom?

    NARCIS (Netherlands)

    A. Hoffmann (Alan)

    2014-01-01

    textabstract3D Systems, the pioneer of 3D printing, predicted a future where "kids from 8 to 80" could design and print their ideas at home. By 2013, 9 years after the creation of the first working 3D printer, there were more than 30 major 3D printing companies competing for market share. 3DS and it

  4. 3D-tulostus : case Printrbot

    OpenAIRE

    Arvekari, Lassi

    2013-01-01

    Opinnäytetyön tavoitteena on selvittää 3D-tulostustekniikan perusteita ja 3D-tulostuksen nykytilannetta. 3D-tulostukseen sopivien mallien luomista tutkitaan ja mallin tekemiseen on etsitty toimivia ohjesääntöjä. Tärkeä osa työtä on tutkia mitä vaiheita 3D-tulostimen hankinnassa kotikäyttöön tulee vastaan. Käytännön kokeita varten opinnäytetyössä on case Printrbot, jossa on tutustuttu edulliseen 3D-tulostuslaitteeseen kokoonpanosta lähtien. Työn kuluessa selvisi että edulliset 3D-tulos...

  5. Stability Criteria of 3D Inviscid Shears

    CERN Document Server

    Li, Y Charles

    2009-01-01

    The classical plane Couette flow, plane Poiseuille flow, and pipe Poiseuille flow share some universal 3D steady coherent structure in the form of "streak-roll-critical layer". As the Reynolds number approaches infinity, the steady coherent structure approaches a 3D limiting shear of the form ($U(y,z), 0, 0$) in velocity variables. All such 3D shears are steady states of the 3D Euler equations. This raises the importance of investigating the stability of such inviscid 3D shears in contrast to the classical Rayleigh theory of inviscid 2D shears. Several general criteria of stability for such inviscid 3D shears are derived. In the Appendix, an argument is given to show that a 2D limiting shear can only be the classical laminar shear.

  6. Analysis of the of bones through 3D computerized tomography; Analise de estrutura ossea atraves de microtomografia computadorizada 3D

    Energy Technology Data Exchange (ETDEWEB)

    Lima, I.; Lopes, R.T. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE), Rio de Janeiro, RJ (Brazil). Lab. de Instrumentacao Nuclear; Oliveira, L.F. [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Fisica. Dept. de Fisica Aplicada e Termodinamica; Alves, J.M. [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Escola de Engenharia

    2009-03-15

    This work shows the analysis of the internal structure of the bones samples through 3D micro tomography technique (3D-{mu}TC). The comprehension of the bone structure is particularly important when related to osteoporosis diagnosis because this implies in a deterioration of the trabecular bone architecture, which increases the fragility and the possibility to have bone fractures. Two bone samples (human calcaneous and Wistar rat femur) were used, and the method was a radiographic system in real time with an X Ray microfocus tube. The quantifications parameters are based on stereological principles and they are five: a bone volume fraction, trabecular number, the ratio between surface and bone volume, the trabecular thickness and the trabecular separation. The quantifications were done with a program developed especially for this purpose in Nuclear Instrumentation Laboratory - COPPE/UFRJ. This program uses as input the 3D reconstructions images and generates a table with the quantifications. The results of the human calcaneous quantifications are presented in tables 1 and 2, and the 3D reconstructions are illustrated in Figure 5. The Figure 6 illustrate the 2D reconstructed image and the Figure 7 the 3D visualization respectively of the Wistar femur sample. The obtained results show that the 3D-{mu}TC is a powerful technique that can be used to analyze bone microstructures. (author)

  7. A safety assessment approach using coupled NEAR3D and CHAN3D - Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Longcheng; Moreno, Luis; Neretnieks, Ivars (Dept. of Chemical Engineering and Technology, Royal Inst. of Technology, Stockholm (Sweden)); Gylling, Bjoern (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2010-12-15

    Safety assessment calculations for the Forsmark site were performed using a new code, which couples the far-field code CHAN3D and the near-field code NEAR3D. In addition, the package has a Graphical User Interface (GUI) and a code that governs the simulations (Coupling). The simulations were performed for 90 different canister locations, which were randomly chosen. Deterministic data were used for tunnels, deposition holes, and shafts. The background fractures were stochastically generated in two HRD realizations. The F-ratio and the water travel time distributions were used to study the performance of the simulations. Near-field calculations were not performed for the Forsmark site using the new coded presented in the prevailing report. However, the obtained results in this study are compared with the results from the Task 2 model of the ConnectFlow report /Joyce et al. 2010/. Although the results cannot be compared directly, a reasonably good agreement is obtained for the F-ratio

  8. Ultrasonic Sensor Based 3D Mapping & Localization

    Directory of Open Access Journals (Sweden)

    Shadman Fahim Ahmad

    2016-04-01

    Full Text Available This article provides a basic level introduction to 3D mapping using sonar sensors and localization. It describes the methods used to construct a low-cost autonomous robot along with the hardware and software used as well as an insight to the background of autonomous robotic 3D mapping and localization. We have also given an overview to what the future prospects of the robot may hold in 3D based mapping.

  9. ERP system for 3D printing industry

    Directory of Open Access Journals (Sweden)

    Deaky Bogdan

    2017-01-01

    Full Text Available GOCREATE is an original cloud-based production management and optimization service which helps 3D printing service providers to use their resources better. The proposed Enterprise Resource Planning system can significantly increase income through improved productivity. With GOCREATE, the 3D printing service providers get a much higher production efficiency at a much lower licensing cost, to increase their competitiveness in the fast growing 3D printing market.

  10. Reconhecimento de faces 3D com Kinect

    OpenAIRE

    Cardia Neto, João Baptista [UNESP

    2014-01-01

    For person identification, facil recognition has several advantages over other biometric traits due mostly to its high universelly, collectability, and acceptability. When dealing with 2D face images several problems arise related to pose, illumination, and facial expressions. To increase the performance of facial recognition, 3D mehtods have been proposed and developedm since working with 3D objects allow us to handle better the aforementioned problems. With 3D object, it is possible to rota...

  11. 3D Human Scanning Solution for Medical Measurements

    OpenAIRE

    Sütő, Balázs; Könnyű, Zsolt; Tölgyesi, Zsolt; Skala, Tibor; Rudas, Imre; Kozlovszky, Miklos

    2015-01-01

    Part 8: Signal Processing in Medicine; International audience; Today anthropometry can be performed with three-dimensional scanners. Our aim is to establish a low-cost, easy-to-use hardware and software solution, which is capable to do automatic, computer-based anthropometry and medical measurements for health care. We have designed and build a large, remote controlled turntable and a 3D scanner application, which can be used to digitalize 0.2-2,6 m tall real world objects into 3D models. Wit...

  12. 3D-model view characterization using equilibrium planes

    OpenAIRE

    Theetten, Adrien; Filali Ansary, Tarik; Vandeborre, Jean-Philippe

    2008-01-01

    International audience; We propose a new method for 3D-mesh model characteristic view selection. It consists in using the views that come from the equilibrium states of a 3D-model: they correspond to the horizontal plane on which an object is stat- ically laying under the effect of gravity. The selected views are then very intuitive for the user. Indeed, to present a query, the user will take a photo or draw a sketch of the object on a table or on a floor, putting thus the object in a static ...

  13. Topology Dictionary for 3D Video Understanding

    OpenAIRE

    2012-01-01

    This paper presents a novel approach that achieves 3D video understanding. 3D video consists of a stream of 3D models of subjects in motion. The acquisition of long sequences requires large storage space (2 GB for 1 min). Moreover, it is tedious to browse data sets and extract meaningful information. We propose the topology dictionary to encode and describe 3D video content. The model consists of a topology-based shape descriptor dictionary which can be generated from either extracted pattern...

  14. Illustrating Mathematics using 3D Printers

    OpenAIRE

    Knill, Oliver; Slavkovsky, Elizabeth

    2013-01-01

    3D printing technology can help to visualize proofs in mathematics. In this document we aim to illustrate how 3D printing can help to visualize concepts and mathematical proofs. As already known to educators in ancient Greece, models allow to bring mathematics closer to the public. The new 3D printing technology makes the realization of such tools more accessible than ever. This is an updated version of a paper included in book Low-Cost 3D Printing for science, education and Sustainable Devel...

  15. Calibration for 3D Structured Light Measurement

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A calibration procedure was developed for three-dimensional(3D) binocular structured light measurement systems. In virtue of a specially designed pattern, matching points in stereo images are extracted. And then sufficient 3D space points are obtained through pairs of images with the intrinsic and extrinsic parameters of each camera estimated prior and consequently some lights are calibrated by means of multi point fitting. Finally, a mathematical model is applied to interpolate and approximate all dynamic scanning lights based on geometry. The process of calibration method is successfully used in the binocular 3D measurement system based on structured lights and the 3D reconstruction results are satisfying.

  16. Getting started in 3D with Maya

    CERN Document Server

    Watkins, Adam

    2012-01-01

    Deliver professional-level 3D content in no time with this comprehensive guide to 3D animation with Maya. With over 12 years of training experience, plus several award winning students under his belt, author Adam Watkins is the ideal mentor to get you up to speed with 3D in Maya. Using a structured and pragmatic approach Getting Started in 3D with Maya begins with basic theory of fundamental techniques, then builds on this knowledge using practical examples and projects to put your new skills to the test. Prepared so that you can learn in an organic fashion, each chapter builds on the know

  17. Virtual Realization using 3D Password

    Directory of Open Access Journals (Sweden)

    A.B.Gadicha

    2012-03-01

    Full Text Available Current authentication systems suffer from many weaknesses. Textual passwords are commonly used; however, users do not follow their requirements. Users tend to choose meaningful words from dictionaries, which make textual passwords easy to break and vulnerable to dictionary or brute force attacks. Many available graphical passwords have a password space that is less than or equal to the textual password space. Smart cards or tokens can be stolen. Many biometric authentications have been proposed; however, users tend to resist using biometrics because of their intrusiveness and the effect on their privacy. Moreover, biometrics cannot be revoked. In this paper, we present and evaluate our contribution, i.e., the 3D password. The 3D password is a multifactor authentication scheme. To be authenticated, we present a 3D virtual environment where the user navigates and interacts with various objects. The sequence of actions and interactions toward the objects inside the 3D environment constructs the user’s 3D password. The 3D password can combine most existing authentication schemes such as textual passwords, graphical passwords, and various types of biometrics into a 3D virtual environment. The design of the 3D virtual environment and the type of objects selected determine the 3D password key space.

  18. Ekologinen 3D-tulostettava asuste

    OpenAIRE

    Paulasaari, Laura

    2014-01-01

    Tämän opinnäytetyön aiheena oli ekologisuus 3D-tulostuksessa ja sen hyödynnettävyys erityisesti asustesuunnittelussa. Työn tarkoituksena oli selvittää, kuinka 3D-tulostusta voi tehdä ekologisemmin ja mitä vaihtoehtoja kuluttajalle tällä hetkellä on. Työ tehtiin Young skills –osuuskunnalle. 3D-tulostuksella on mahdollisuus antaa todella paljon tulevaisuuden tuotantomenetelmille ja se vapauttaa tuotteiden muotoilua täysin uudella tavalla. 3D-tulostuksen avulla voidaan keskittyä enemmän esim...

  19. An aerial 3D printing test mission

    Science.gov (United States)

    Hirsch, Michael; McGuire, Thomas; Parsons, Michael; Leake, Skye; Straub, Jeremy

    2016-05-01

    This paper provides an overview of an aerial 3D printing technology, its development and its testing. This technology is potentially useful in its own right. In addition, this work advances the development of a related in-space 3D printing technology. A series of aerial 3D printing test missions, used to test the aerial printing technology, are discussed. Through completing these test missions, the design for an in-space 3D printer may be advanced. The current design for the in-space 3D printer involves focusing thermal energy to heat an extrusion head and allow for the extrusion of molten print material. Plastics can be used as well as composites including metal, allowing for the extrusion of conductive material. A variety of experiments will be used to test this initial 3D printer design. High altitude balloons will be used to test the effects of microgravity on 3D printing, as well as parabolic flight tests. Zero pressure balloons can be used to test the effect of long 3D printing missions subjected to low temperatures. Vacuum chambers will be used to test 3D printing in a vacuum environment. The results will be used to adapt a current prototype of an in-space 3D printer. Then, a small scale prototype can be sent into low-Earth orbit as a 3-U cube satellite. With the ability to 3D print in space demonstrated, future missions can launch production hardware through which the sustainability and durability of structures in space will be greatly improved.

  20. 3D plant phenotyping in sunflower using architecture-based organ segmentation from 3D point clouds

    OpenAIRE

    Gélard, William; Burger, Philippe; Casadebaig, Pierre; Langlade, Nicolas; Debaeke, Philippe; Devy, Michel; Herbulot, Ariane

    2016-01-01

    International audience; This paper presents a 3D phenotyping method applied to sunflower, allowing to compute the leaf area of an isolated plant. This is a preliminary step towards the automated monitoring of leaf area and plant growth through the plant life cycle. First, a model-based segmentation method is applied to 3D data derived from RGB images acquired on sunflower plants grown in pots. The RGB image acquisitions are made all around the isolated plant with a single hand-held standard c...

  1. 3D Printing and Retail : The Effects of Additive Manufacturing Techniques to the Retail Market in the Next Decade

    OpenAIRE

    2014-01-01

    The thesis takes a practical approach to assess the uses of 3D printing on both consumer and professional levels, tries to identify the type of internal processes in retail where 3D printing could be used, and the threats and opportunities 3D printing creates to retail. The first part of the thesis, the overview of 3D printing, explains what 3D printing is, finds out about its history, categories, current and future applications, expected diffusion rate, the advantages and disadvantages ...

  2. Integration of real-time 3D image acquisition and multiview 3D display

    Science.gov (United States)

    Zhang, Zhaoxing; Geng, Zheng; Li, Tuotuo; Li, Wei; Wang, Jingyi; Liu, Yongchun

    2014-03-01

    Seamless integration of 3D acquisition and 3D display systems offers enhanced experience in 3D visualization of the real world objects or scenes. The vivid representation of captured 3D objects displayed on a glasses-free 3D display screen could bring the realistic viewing experience to viewers as if they are viewing real-world scene. Although the technologies in 3D acquisition and 3D display have advanced rapidly in recent years, effort is lacking in studying the seamless integration of these two different aspects of 3D technologies. In this paper, we describe our recent progress on integrating a light-field 3D acquisition system and an autostereoscopic multiview 3D display for real-time light field capture and display. This paper focuses on both the architecture design and the implementation of the hardware and the software of this integrated 3D system. A prototype of the integrated 3D system is built to demonstrate the real-time 3D acquisition and 3D display capability of our proposed system.

  3. 3D Printed Block Copolymer Nanostructures

    Science.gov (United States)

    Scalfani, Vincent F.; Turner, C. Heath; Rupar, Paul A.; Jenkins, Alexander H.; Bara, Jason E.

    2015-01-01

    The emergence of 3D printing has dramatically advanced the availability of tangible molecular and extended solid models. Interestingly, there are few nanostructure models available both commercially and through other do-it-yourself approaches such as 3D printing. This is unfortunate given the importance of nanotechnology in science today. In this…

  4. Parametrizable cameras for 3D computational steering

    NARCIS (Netherlands)

    Mulder, J.D.; Wijk, J.J. van

    1997-01-01

    We present a method for the definition of multiple views in 3D interfaces for computational steering. The method uses the concept of a point-based parametrizable camera object. This concept enables a user to create and configure multiple views on his custom 3D interface in an intuitive graphical man

  5. 3D elastic control for mobile devices.

    Science.gov (United States)

    Hachet, Martin; Pouderoux, Joachim; Guitton, Pascal

    2008-01-01

    To increase the input space of mobile devices, the authors developed a proof-of-concept 3D elastic controller that easily adapts to mobile devices. This embedded device improves the completion of high-level interaction tasks such as visualization of large documents and navigation in 3D environments. It also opens new directions for tomorrow's mobile applications.

  6. 3D printing of functional structures

    NARCIS (Netherlands)

    Krijnen, G.J.M.

    2016-01-01

    The technology colloquial known as ‘3D printing’ has developed in such diversity in printing technologies and application fields that meanwhile it seems anything is possible. However, clearly the ideal 3D Printer, with high resolution, multi-material capability, fast printing, etc. is yet to be deve

  7. 3D, or Not to Be?

    Science.gov (United States)

    Norbury, Keith

    2012-01-01

    It may be too soon for students to be showing up for class with popcorn and gummy bears, but technology similar to that behind the 3D blockbuster movie "Avatar" is slowly finding its way into college classrooms. 3D classroom projectors are taking students on fantastic voyages inside the human body, to the ruins of ancient Greece--even to faraway…

  8. The 3D-city model

    DEFF Research Database (Denmark)

    Holmgren, Steen; Rüdiger, Bjarne; Tournay, Bruno

    2001-01-01

    We have worked with the construction and use of 3D city models for about ten years. This work has given us valuable experience concerning model methodology. In addition to this collection of knowledge, our perception of the concept of city models has changed radically. In order to explain...... of 3D city models....

  9. 3D Printing of Molecular Models

    Science.gov (United States)

    Gardner, Adam; Olson, Arthur

    2016-01-01

    Physical molecular models have played a valuable role in our understanding of the invisible nano-scale world. We discuss 3D printing and its use in producing models of the molecules of life. Complex biomolecular models, produced from 3D printed parts, can demonstrate characteristics of molecular structure and function, such as viral self-assembly,…

  10. 3D Printing. What's the Harm?

    Science.gov (United States)

    Love, Tyler S.; Roy, Ken

    2016-01-01

    Health concerns from 3D printing were first documented by Stephens, Azimi, Orch, and Ramos (2013), who found that commercially available 3D printers were producing hazardous levels of ultrafine particles (UFPs) and volatile organic compounds (VOCs) when plastic materials were melted through the extruder. UFPs are particles less than 100 nanometers…

  11. Topology dictionary for 3D video understanding.

    Science.gov (United States)

    Tung, Tony; Matsuyama, Takashi

    2012-08-01

    This paper presents a novel approach that achieves 3D video understanding. 3D video consists of a stream of 3D models of subjects in motion. The acquisition of long sequences requires large storage space (2 GB for 1 min). Moreover, it is tedious to browse data sets and extract meaningful information. We propose the topology dictionary to encode and describe 3D video content. The model consists of a topology-based shape descriptor dictionary which can be generated from either extracted patterns or training sequences. The model relies on 1) topology description and classification using Reeb graphs, and 2) a Markov motion graph to represent topology change states. We show that the use of Reeb graphs as the high-level topology descriptor is relevant. It allows the dictionary to automatically model complex sequences, whereas other strategies would require prior knowledge on the shape and topology of the captured subjects. Our approach serves to encode 3D video sequences, and can be applied for content-based description and summarization of 3D video sequences. Furthermore, topology class labeling during a learning process enables the system to perform content-based event recognition. Experiments were carried out on various 3D videos. We showcase an application for 3D video progressive summarization using the topology dictionary.

  12. 3D background aerodynamics using CFD

    DEFF Research Database (Denmark)

    Sørensen, Niels N.

    2002-01-01

    3D rotor computations for the Greek Geovilogiki (GEO) 44 meter rotor equipped with 19 meters blades are performed. The lift and drag polars are extracted at five spanvise locations r/R= (.37, .55, .71, .82, .93) based on identification of stagnationpoints between 2D and 3D computations. The inner...

  13. Limited Feedback for 3D Massive MIMO under 3D-UMa and 3D-UMi Scenarios

    Directory of Open Access Journals (Sweden)

    Zheng Hu

    2015-01-01

    Full Text Available For three-dimensional (3D massive MIMO utilizing the uniform rectangular array (URA in the base station (BS, we propose a limited feedback transmission scheme in which the channel state information (CSI feedback operations for horizontal domain and vertical domain are separate. Compared to the traditional feedback scheme, the scheme can reduce the feedback overhead, code word index search complexity, and storage requirement. Also, based on the zenith of departure angle (ZoD distribution in 3D-Urban Macro Cell (3D-UMa and 3D-Urban Micro Cell (3D-UMi scenarios, we propose the angle quantization codebook for vertical domain, while the codebook of long term evolution-advanced (LTE-Advanced is still adopted in horizontal domain to preserve compatibility with the LTE-Advanced. Based on the angle quantization codebook, the subsampled 3-bit DFT codebook is designed for vertical domain. The system-level simulation results reveal that, to compromise the feedback overhead and system performance, 2-bit codebook for 3D-UMa scenario and 3-bit codebook for 3D-UMi scenario can meet requirements in vertical domain. The feedback period for vertical domain can also be extended appropriately to reduce the feedback overhead.

  14. Fabrication of 3D Silicon Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; /SINTEF, Oslo; Kenney, C.; Hasi, J.; /SLAC; Da Via, C.; /Manchester U.; Parker, S.I.; /Hawaii U.

    2012-06-06

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  15. Maintaining and troubleshooting your 3D printer

    CERN Document Server

    Bell, Charles

    2014-01-01

    Maintaining and Troubleshooting Your 3D Printer by Charles Bell is your guide to keeping your 3D printer running through preventive maintenance, repair, and diagnosing and solving problems in 3D printing. If you've bought or built a 3D printer such as a MakerBot only to be confounded by jagged edges, corner lift, top layers that aren't solid, or any of a myriad of other problems that plague 3D printer enthusiasts, then here is the book to help you get past all that and recapture the joy of creative fabrication. The book also includes valuable tips for builders and those who want to modify the

  16. 2D/3D switchable displays

    Science.gov (United States)

    Dekker, T.; de Zwart, S. T.; Willemsen, O. H.; Hiddink, M. G. H.; IJzerman, W. L.

    2006-02-01

    A prerequisite for a wide market acceptance of 3D displays is the ability to switch between 3D and full resolution 2D. In this paper we present a robust and cost effective concept for an auto-stereoscopic switchable 2D/3D display. The display is based on an LCD panel, equipped with switchable LC-filled lenticular lenses. We will discuss 3D image quality, with the focus on display uniformity. We show that slanting the lenticulars in combination with a good lens design can minimize non-uniformities in our 20" 2D/3D monitors. Furthermore, we introduce fractional viewing systems as a very robust concept to further improve uniformity in the case slanting the lenticulars and optimizing the lens design are not sufficient. We will discuss measurements and numerical simulations of the key optical characteristics of this display. Finally, we discuss 2D image quality, the switching characteristics and the residual lens effect.

  17. 6D Interpretation of 3D Gravity

    Science.gov (United States)

    Herfray, Yannick; Krasnov, Kirill; Scarinci, Carlos

    2017-02-01

    We show that 3D gravity, in its pure connection formulation, admits a natural 6D interpretation. The 3D field equations for the connection are equivalent to 6D Hitchin equations for the Chern–Simons 3-form in the total space of the principal bundle over the 3-dimensional base. Turning this construction around one gets an explanation of why the pure connection formulation of 3D gravity exists. More generally, we interpret 3D gravity as the dimensional reduction of the 6D Hitchin theory. To this end, we show that any \\text{SU}(2) invariant closed 3-form in the total space of the principal \\text{SU}(2) bundle can be parametrised by a connection together with a 2-form field on the base. The dimensional reduction of the 6D Hitchin theory then gives rise to 3D gravity coupled to a topological 2-form field.

  18. 3D Visualization Development of SIUE Campus

    Science.gov (United States)

    Nellutla, Shravya

    Geographic Information Systems (GIS) has progressed from the traditional map-making to the modern technology where the information can be created, edited, managed and analyzed. Like any other models, maps are simplified representations of real world. Hence visualization plays an essential role in the applications of GIS. The use of sophisticated visualization tools and methods, especially three dimensional (3D) modeling, has been rising considerably due to the advancement of technology. There are currently many off-the-shelf technologies available in the market to build 3D GIS models. One of the objectives of this research was to examine the available ArcGIS and its extensions for 3D modeling and visualization and use them to depict a real world scenario. Furthermore, with the advent of the web, a platform for accessing and sharing spatial information on the Internet, it is possible to generate interactive online maps. Integrating Internet capacity with GIS functionality redefines the process of sharing and processing the spatial information. Enabling a 3D map online requires off-the-shelf GIS software, 3D model builders, web server, web applications and client server technologies. Such environments are either complicated or expensive because of the amount of hardware and software involved. Therefore, the second objective of this research was to investigate and develop simpler yet cost-effective 3D modeling approach that uses available ArcGIS suite products and the free 3D computer graphics software for designing 3D world scenes. Both ArcGIS Explorer and ArcGIS Online will be used to demonstrate the way of sharing and distributing 3D geographic information on the Internet. A case study of the development of 3D campus for the Southern Illinois University Edwardsville is demonstrated.

  19. The psychology of the 3D experience

    Science.gov (United States)

    Janicke, Sophie H.; Ellis, Andrew

    2013-03-01

    With 3D televisions expected to reach 50% home saturation as early as 2016, understanding the psychological mechanisms underlying the user response to 3D technology is critical for content providers, educators and academics. Unfortunately, research examining the effects of 3D technology has not kept pace with the technology's rapid adoption, resulting in large-scale use of a technology about which very little is actually known. Recognizing this need for new research, we conducted a series of studies measuring and comparing many of the variables and processes underlying both 2D and 3D media experiences. In our first study, we found narratives within primetime dramas had the power to shift viewer attitudes in both 2D and 3D settings. However, we found no difference in persuasive power between 2D and 3D content. We contend this lack of effect was the result of poor conversion quality and the unique demands of 3D production. In our second study, we found 3D technology significantly increased enjoyment when viewing sports content, yet offered no added enjoyment when viewing a movie trailer. The enhanced enjoyment of the sports content was shown to be the result of heightened emotional arousal and attention in the 3D condition. We believe the lack of effect found for the movie trailer may be genre-related. In our final study, we found 3D technology significantly enhanced enjoyment of two video games from different genres. The added enjoyment was found to be the result of an increased sense of presence.

  20. SWIPT in 3-D Bipolar Ad Hoc Networks with Sectorized Antennas

    OpenAIRE

    Krikidis, Ioannis

    2016-01-01

    In this letter, we study the simultaneous wireless information and power transfer (SWIPT) concept in 3-D bipolar ad hoc networks with spatial randomness. Due to three spatial dimensions of the network, we introduce a 3-D antenna sectorization that exploits the horizontal and the vertical spatial separation. The impact of 3-D antenna sectorization on SWIPT performance is evaluated for the power-splitting technique by using stochastic geometry tools. Theoretical and numerical results show that ...

  1. High-frequency normal-mode statistics in shallow water: the combined effect of random surface and internal waves.

    Science.gov (United States)

    Raghukumar, Kaustubha; Colosi, John A

    2015-05-01

    In an earlier article, the statistical properties of mode propagation were studied at a frequency of 1 kHz in a shallow water environment with random sound-speed perturbations from linear internal waves, using a hybrid transport theory and Monte Carlo numerical simulations. Here, the analysis is extended to include the effects of random linear surface waves, in isolation and in combination with internal waves. Mode coupling rates for both surface and internal waves are found to be significant, but strongly dependent on mode number. Mode phase randomization by surface waves is found to be dominated by coupling effects, and therefore a full transport theory treatment of the range evolution of the cross mode coherence matrix is needed. The second-moment of mode amplitudes is calculated using transport theory, thereby providing the mean intensity while the fourth-moment is calculated using Monte Carlo simulations, which provides the scintillation index. The transport theory results for second-moment statistics are shown to closely reproduce Monte Carlo simulations. Both surface waves and internal waves strongly influence the acoustic field fluctuations.

  2. Development and validation of a 3-D model to predict knee joint loading during dynamic movement.

    Science.gov (United States)

    McLean, S G; Su, A; van den Bogert, A J

    2003-12-01

    The purpose of this study was to develop a subject-specific 3-D model of the lower extremity to predict neuromuscular control effects on 3-D knee joint loading during movements that can potentially cause injury to the anterior cruciate ligament (ACL) in the knee. The simulation consisted of a forward dynamic 3-D musculoskeletal model of the lower extremity, scaled to represent a specific subject. Inputs of the model were the initial position and velocity of the skeletal elements, and the muscle stimulation patterns. Outputs of the model were movement and ground reaction forces, as well as resultant 3-D forces and moments acting across the knee joint. An optimization method was established to find muscle stimulation patterns that best reproduced the subject's movement and ground reaction forces during a sidestepping task. The optimized model produced movements and forces that were generally within one standard deviation of the measured subject data. Resultant knee joint loading variables extracted from the optimized model were comparable to those reported in the literature. The ability of the model to successfully predict the subject's response to altered initial conditions was quantified and found acceptable for use of the model to investigate the effect of altered neuromuscular control on knee joint loading during sidestepping. Monte Carlo simulations (N = 100,000) using randomly perturbed initial kinematic conditions, based on the subject's variability, resulted in peak anterior force, valgus torque and internal torque values of 378 N, 94 Nm and 71 Nm, respectively, large enough to cause ACL rupture. We conclude that the procedures described in this paper were successful in creating valid simulations of normal movement, and in simulating injuries that are caused by perturbed neuromuscular control.

  3. 3D imaging in forensic odontology.

    Science.gov (United States)

    Evans, Sam; Jones, Carl; Plassmann, Peter

    2010-06-16

    This paper describes the investigation of a new 3D capture method for acquiring and subsequent forensic analysis of bite mark injuries on human skin. When documenting bite marks with standard 2D cameras errors in photographic technique can occur if best practice is not followed. Subsequent forensic analysis of the mark is problematic when a 3D structure is recorded into a 2D space. Although strict guidelines (BAFO) exist, these are time-consuming to follow and, due to their complexity, may produce errors. A 3D image capture and processing system might avoid the problems resulting from the 2D reduction process, simplifying the guidelines and reducing errors. Proposed Solution: a series of experiments are described in this paper to demonstrate that the potential of a 3D system might produce suitable results. The experiments tested precision and accuracy of the traditional 2D and 3D methods. A 3D image capture device minimises the amount of angular distortion, therefore such a system has the potential to create more robust forensic evidence for use in courts. A first set of experiments tested and demonstrated which method of forensic analysis creates the least amount of intra-operator error. A second set tested and demonstrated which method of image capture creates the least amount of inter-operator error and visual distortion. In a third set the effects of angular distortion on 2D and 3D methods of image capture were evaluated.

  4. Medical 3D Printing for the Radiologist.

    Science.gov (United States)

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A; Cai, Tianrun; Kumamaru, Kanako K; George, Elizabeth; Wake, Nicole; Caterson, Edward J; Pomahac, Bohdan; Ho, Vincent B; Grant, Gerald T; Rybicki, Frank J

    2015-01-01

    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article.

  5. Digital relief generation from 3D models

    Science.gov (United States)

    Wang, Meili; Sun, Yu; Zhang, Hongming; Qian, Kun; Chang, Jian; He, Dongjian

    2016-09-01

    It is difficult to extend image-based relief generation to high-relief generation, as the images contain insufficient height information. To generate reliefs from three-dimensional (3D) models, it is necessary to extract the height fields from the model, but this can only generate bas-reliefs. To overcome this problem, an efficient method is proposed to generate bas-reliefs and high-reliefs directly from 3D meshes. To produce relief features that are visually appropriate, the 3D meshes are first scaled. 3D unsharp masking is used to enhance the visual features in the 3D mesh, and average smoothing and Laplacian smoothing are implemented to achieve better smoothing results. A nonlinear variable scaling scheme is then employed to generate the final bas-reliefs and high-reliefs. Using the proposed method, relief models can be generated from arbitrary viewing positions with different gestures and combinations of multiple 3D models. The generated relief models can be printed by 3D printers. The proposed method provides a means of generating both high-reliefs and bas-reliefs in an efficient and effective way under the appropriate scaling factors.

  6. 3D Reconstruction Technique for Tomographic PIV

    Institute of Scientific and Technical Information of China (English)

    姜楠; 包全; 杨绍琼

    2015-01-01

    Tomographic particle image velocimetry(Tomo-PIV) is a state-of-the-art experimental technique based on a method of optical tomography to achieve the three-dimensional(3D) reconstruction for three-dimensional three-component(3D-3C) flow velocity measurements. 3D reconstruction for Tomo-PIV is carried out herein. Meanwhile, a 3D simplified tomographic reconstruction model reduced from a 3D volume light inten-sity field with 2D projection images into a 2D Tomo-slice plane with 1D projecting lines, i.e., simplifying this 3D reconstruction into a problem of 2D Tomo-slice plane reconstruction, is applied thereafter. Two kinds of the most well-known algebraic reconstruction techniques, algebraic reconstruction technique(ART) and multiple algebraic reconstruction technique(MART), are compared as well. The principles of the two reconstruction algorithms are discussed in detail, which has been performed by a series of simulation images, yielding the corresponding recon-struction images that show different features between the ART and MART algorithm, and then their advantages and disadvantages are discussed. Further discussions are made for the standard particle image reconstruction when the background noise of the pre-initial particle image has been removed. Results show that the particle image recon-struction has been greatly improved. The MART algorithm is much better than the ART. Furthermore, the computa-tional analyses of two parameters(the particle density and the number of cameras), are performed to study their effects on the reconstruction. Lastly, the 3D volume particle field is reconstructed by using the improved algorithm based on the simplified 3D tomographic reconstruction model, which proves that the algorithm simplification is feasible and it can be applied to the reconstruction of 3D volume particle field in a Tomo-PIV system.

  7. 3D object-oriented image analysis in 3D geophysical modelling

    DEFF Research Database (Denmark)

    Fadel, I.; van der Meijde, M.; Kerle, N.

    2015-01-01

    Non-uniqueness of satellite gravity interpretation has traditionally been reduced by using a priori information from seismic tomography models. This reduction in the non-uniqueness has been based on velocity-density conversion formulas or user interpretation of the 3D subsurface structures (objects......) based on the seismic tomography models and then forward modelling these objects. However, this form of object-based approach has been done without a standardized methodology on how to extract the subsurface structures from the 3D models. In this research, a 3D object-oriented image analysis (3D OOA......) approach was implemented to extract the 3D subsurface structures from geophysical data. The approach was applied on a 3D shear wave seismic tomography model of the central part of the East African Rift System. Subsequently, the extracted 3D objects from the tomography model were reconstructed in the 3D...

  8. 3-D Human Modeling and Animation

    CERN Document Server

    Ratner, Peter

    2012-01-01

    3-D Human Modeling and Animation Third Edition All the tools and techniques you need to bring human figures to 3-D life Thanks to today's remarkable technology, artists can create and animate realistic, three-dimensional human figures that were not possible just a few years ago. This easy-to-follow book guides you through all the necessary steps to adapt your own artistic skill in figure drawing, painting, and sculpture to this exciting digital canvas. 3-D Human Modeling and Animation, Third Edition starts you off with simple modeling, then prepares you for more advanced techniques for crea

  9. FIT3D: Fitting optical spectra

    Science.gov (United States)

    Sánchez, S. F.; Pérez, E.; Sánchez-Blázquez, P.; González, J. J.; Rosales-Ortega, F. F.; Cano-Díaz, M.; López-Cobá, C.; Marino, R. A.; Gil de Paz, A.; Mollá, M.; López-Sánchez, A. R.; Ascasibar, Y.; Barrera-Ballesteros, J.

    2016-09-01

    FIT3D fits optical spectra to deblend the underlying stellar population and the ionized gas, and extract physical information from each component. FIT3D is focused on the analysis of Integral Field Spectroscopy data, but is not restricted to it, and is the basis of Pipe3D, a pipeline used in the analysis of datasets like CALIFA, MaNGA, and SAMI. It can run iteratively or in an automatic way to derive the parameters of a large set of spectra.

  10. 3D Immersive Visualization with Astrophysical Data

    Science.gov (United States)

    Kent, Brian R.

    2017-01-01

    We present the refinement of a new 3D immersion technique for astrophysical data visualization.Methodology to create 360 degree spherical panoramas is reviewed. The 3D software package Blender coupled with Python and the Google Spatial Media module are used together to create the final data products. Data can be viewed interactively with a mobile phone or tablet or in a web browser. The technique can apply to different kinds of astronomical data including 3D stellar and galaxy catalogs, images, and planetary maps.

  11. 3D face modeling, analysis and recognition

    CERN Document Server

    Daoudi, Mohamed; Veltkamp, Remco

    2013-01-01

    3D Face Modeling, Analysis and Recognition presents methodologies for analyzing shapes of facial surfaces, develops computational tools for analyzing 3D face data, and illustrates them using state-of-the-art applications. The methodologies chosen are based on efficient representations, metrics, comparisons, and classifications of features that are especially relevant in the context of 3D measurements of human faces. These frameworks have a long-term utility in face analysis, taking into account the anticipated improvements in data collection, data storage, processing speeds, and application s

  12. A high capacity 3D steganography algorithm.

    Science.gov (United States)

    Chao, Min-Wen; Lin, Chao-hung; Yu, Cheng-Wei; Lee, Tong-Yee

    2009-01-01

    In this paper, we present a very high-capacity and low-distortion 3D steganography scheme. Our steganography approach is based on a novel multilayered embedding scheme to hide secret messages in the vertices of 3D polygon models. Experimental results show that the cover model distortion is very small as the number of hiding layers ranges from 7 to 13 layers. To the best of our knowledge, this novel approach can provide much higher hiding capacity than other state-of-the-art approaches, while obeying the low distortion and security basic requirements for steganography on 3D models.

  13. RHOCUBE: 3D density distributions modeling code

    Science.gov (United States)

    Nikutta, Robert; Agliozzo, Claudia

    2016-11-01

    RHOCUBE models 3D density distributions on a discrete Cartesian grid and their integrated 2D maps. It can be used for a range of applications, including modeling the electron number density in LBV shells and computing the emission measure. The RHOCUBE Python package provides several 3D density distributions, including a powerlaw shell, truncated Gaussian shell, constant-density torus, dual cones, and spiralling helical tubes, and can accept additional distributions. RHOCUBE provides convenient methods for shifts and rotations in 3D, and if necessary, an arbitrary number of density distributions can be combined into the same model cube and the integration ∫ dz performed through the joint density field.

  14. Computer Modelling of 3D Geological Surface

    CERN Document Server

    Kodge, B G

    2011-01-01

    The geological surveying presently uses methods and tools for the computer modeling of 3D-structures of the geographical subsurface and geotechnical characterization as well as the application of geoinformation systems for management and analysis of spatial data, and their cartographic presentation. The objectives of this paper are to present a 3D geological surface model of Latur district in Maharashtra state of India. This study is undertaken through the several processes which are discussed in this paper to generate and visualize the automated 3D geological surface model of a projected area.

  15. FUN3D Manual: 12.8

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.8, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  16. FUN3D Manual: 12.6

    Science.gov (United States)

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.6, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  17. FUN3D Manual: 12.5

    Science.gov (United States)

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2014-01-01

    This manual describes the installation and execution of FUN3D version 12.5, including optional dependent packages. FUN3D is a suite of computational uid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables ecient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  18. FUN3D Manual: 13.1

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2017-01-01

    This manual describes the installation and execution of FUN3D version 13.1, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  19. FUN3D Manual: 12.4

    Science.gov (United States)

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2014-01-01

    This manual describes the installation and execution of FUN3D version 12.4, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixedelement unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  20. FUN3D Manual: 12.7

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.7, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  1. Automatic balancing of 3D models

    DEFF Research Database (Denmark)

    Christiansen, Asger Nyman; Schmidt, Ryan; Bærentzen, Jakob Andreas

    2014-01-01

    3D printing technologies allow for more diverse shapes than are possible with molds and the cost of making just one single object is negligible compared to traditional production methods. However, not all shapes are suitable for 3D print. One of the remaining costs is therefore human time spent......, in these cases, we will apply a rotation of the object which only deforms the shape a little near the base. No user input is required but it is possible to specify manufacturing constraints related to specific 3D print technologies. Several models have successfully been balanced and printed using both polyjet...

  2. Participation and 3D Visualization Tools

    DEFF Research Database (Denmark)

    Mullins, Michael; Jensen, Mikkel Holm; Henriksen, Sune

    2004-01-01

    With a departure point in a workshop held at the VR Media Lab at Aalborg University , this paper deals with aspects of public participation and the use of 3D visualisation tools. The workshop grew from a desire to involve a broad collaboration between the many actors in the city through using new...... perceptions of architectural representation in urban design where 3D visualisation techniques are used. It is the authors? general finding that, while 3D visualisation media have the potential to increase understanding of virtual space for the lay public, as well as for professionals, the lay public require...

  3. The reactor dynamics code DYN3D

    Energy Technology Data Exchange (ETDEWEB)

    Kliem, Soeren; Bilodid, Yuri; Fridman, Emil; Baier, Silvio; Grahn, Alexander; Gommlich, Andre; Nikitin, Evgeny; Rohde, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany)

    2016-05-15

    The article provides an overview on the code DYN3D which is a three-dimensional core model for steady-state, dynamic and depletion calculations in reactor cores with quadratic or hexagonal fuel assembly geometry being developed by the Helmholtz-Zentrum Dresden-Rossendorf for more than 20 years. The current paper gives an overview on the basic DYN3D models and the available code couplings. The verification and validation status is shortly outlined. The paper concludes with the current developments of the DYN3D code. For more detailed information the reader is referred to the publications cited in the corresponding chapters.

  4. Development of the Improving Process for the 3D Printed Structure

    Science.gov (United States)

    Takagishi, Kensuke; Umezu, Shinjiro

    2017-01-01

    The authors focus on the Fused Deposition Modeling (FDM) 3D printer because the FDM 3D printer can print the utility resin material. It can print with low cost and therefore it is the most suitable for home 3D printer. The FDM 3D printer has the problem that it produces layer grooves on the surface of the 3D printed structure. Therefore the authors developed the 3D-Chemical Melting Finishing (3D-CMF) for removing layer grooves. In this method, a pen-style device is filled with a chemical able to dissolve the materials used for building 3D printed structures. By controlling the behavior of this pen-style device, the convex parts of layer grooves on the surface of the 3D printed structure are dissolved, which, in turn, fills the concave parts. In this study it proves the superiority of the 3D-CMF than conventional processing for the 3D printed structure. It proves utilizing the evaluation of the safety, selectively and stability. It confirms the improving of the 3D-CMF and it is confirmed utilizing the data of the surface roughness precision and the observation of the internal state and the evaluation of the mechanical characteristics. PMID:28054558

  5. Development of the Improving Process for the 3D Printed Structure

    Science.gov (United States)

    Takagishi, Kensuke; Umezu, Shinjiro

    2017-01-01

    The authors focus on the Fused Deposition Modeling (FDM) 3D printer because the FDM 3D printer can print the utility resin material. It can print with low cost and therefore it is the most suitable for home 3D printer. The FDM 3D printer has the problem that it produces layer grooves on the surface of the 3D printed structure. Therefore the authors developed the 3D-Chemical Melting Finishing (3D-CMF) for removing layer grooves. In this method, a pen-style device is filled with a chemical able to dissolve the materials used for building 3D printed structures. By controlling the behavior of this pen-style device, the convex parts of layer grooves on the surface of the 3D printed structure are dissolved, which, in turn, fills the concave parts. In this study it proves the superiority of the 3D-CMF than conventional processing for the 3D printed structure. It proves utilizing the evaluation of the safety, selectively and stability. It confirms the improving of the 3D-CMF and it is confirmed utilizing the data of the surface roughness precision and the observation of the internal state and the evaluation of the mechanical characteristics.

  6. Do-It-Yourself: 3D Models of Hydrogenic Orbitals through 3D Printing

    Science.gov (United States)

    Griffith, Kaitlyn M.; de Cataldo, Riccardo; Fogarty, Keir H.

    2016-01-01

    Introductory chemistry students often have difficulty visualizing the 3-dimensional shapes of the hydrogenic electron orbitals without the aid of physical 3D models. Unfortunately, commercially available models can be quite expensive. 3D printing offers a solution for producing models of hydrogenic orbitals. 3D printing technology is widely…

  7. 3D presentatie van geluid in de cockpit [3D sound presentation in the cockpit

    NARCIS (Netherlands)

    Bronkhorst, A.W.

    2003-01-01

    A.W. Bronkhorst, 3D-presentatie van geluid in de cockpit 1 Using virtual acoustics, sound can be presented from virtual sources located in the 3D space around the listener. This 3D sound has interesting applications in the cockpit. Sounds can be used to convey directional information, and interferen

  8. Effect of Resonant Magnetic Perturbations on 3D equilibria in the MST RFP

    Science.gov (United States)

    Munaretto, Stefano

    2015-11-01

    The orientation of 3D, stellarator-like equilibria in the MST RFP can now be controlled with application of an m = 1 RMP. This has led to greatly improved diagnosis, revealing enhancements in both the central electron temperature and density. Coupled to a recent advance in the V3FIT code, reconstructions of the 3D equilibria have also been dramatically improved. The RMP also inhibits the generation of high-energy >20 keV electrons that is otherwise common with the 3D state. This state occurs when the normally broad spectrum of core-resonant m = 1 tearing modes condenses, with the innermost resonant mode growing to large amplitude, reaching ~ 8% of the axisymmetric field strength. This occurs in plasmas of sufficiently large Lundquist number ~ IpTe3/2, and the duration of the state is maximized with zero applied Bt (infinite toroidal beta). As the dominant mode grows, eddy current in MST's conducting shell slows the mode's rotation. This leads to locking of the 3D structure, but with an orientation that varies randomly shot to shot, making diagnosis difficult. An m = 1 RMP can now be applied with an array of saddle coils at the vertical insulated cut in the shell. With an amplitude br/B ~ 10% and a tailored temporal waveform, the RMP can force the 3D structure into any desired orientation relative to MST's diagnostics. A recent advance in V3FIT allows calculation of the substantial helical image current flowing in MST's shell, which has in turn allowed self-consistent utilization of both external and internal (Faraday rotation) measurements of the magnetic field. The ORBIT code predicts reduced stochasticity and improved confinement of high-energy electrons within the 3D structure. The suppression of these electrons by the m = 1 RMP may reflect a change to the central magnetic topology. The generation of these electrons is unaffected by non-resonant perturbations, such as m = 3. Supported by the US DOE.

  9. Networked 3D Virtual Museum System

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Virtual heritage has become increasingly important in the conservation, preservation, and interpretation of our cultural and natural history. Moreover, rapid advances in digital technologies in recent years offer virtual heritage new direction. This paper introduces our approach toward a networked 3D virtual museum system, especially, how to model, manage, present virtual heritages and furthermore how to use computer network for the share of virtual heritage in the networked virtual environment. This paper first addresses a 3D acquisition and processing technique for virtual heritage modeling and shows some illustrative examples. Then, this paper describes a management of virtual heritage assets that are composed by various rich media. This paper introduces our schemes to present the virtual heritages, which include 3D virtual heritage browser system, CAVE system, and immersive VR theater. Finally, this paper presents the new direction of networked 3D virtual museum of which main idea is remote guide of the virtual heritage using the mixed reality technique.

  10. Two Accelerating Techniques for 3D Reconstruction

    Institute of Scientific and Technical Information of China (English)

    刘世霞; 胡事民; 孙家广

    2002-01-01

    Automatic reconstruction of 3D objects from 2D orthographic views has been a major research issue in CAD/CAM. In this paper, two accelerating techniques to improve the efficiency of reconstruction are presented. First, some pseudo elements are removed by depth and topology information as soon as the wire-frame is constructed, which reduces the searching space. Second, the proposed algorithm does not establish all possible surfaces in the process of generating 3D faces. The surfaces and edge loops are generated by using the relationship between the boundaries of 3D faces and their projections. This avoids the growth in combinational complexity of previous methods that have to check all possible pairs of 3D candidate edges.

  11. 3D-FPA Hybridization Improvements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc. (ASC) is a small business, which has developed a compact, eye-safe 3D Flash LIDARTM Camera (FLC) well suited for real-time...

  12. The 3-d view of planetary nebulae

    Directory of Open Access Journals (Sweden)

    Hugo E. Schwarz

    2006-01-01

    Full Text Available Considerando las nebulosas planetarias (PNe de manera tridimensional (3-D, demonstramos que se pueden reducir las grandes incertidumbres asociadas con los m etodos cl asicos de modelar y observar PNe para obtener sus estructuras 3-D y distancias. Usando espectrofotometr a de ranura larga o empleando un Integral Field Unit para restringir los modelos de fotoionizaci on 3-D de PNe y as eliminar dicha incertidumbre de la densidad y de la fracci on del volumen que emite radiaci on ( lling factor, determinamos las detalladas estructuras 3-D, los par ametros de las estrellas centrales y las distancias con una precisi on de 10-20%. Los m etodos cl asicos t picamente daban estos par ametros con una incertidumbre de un factor 3 o m as.

  13. Nonlaser-based 3D surface imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.

  14. Designing Biomaterials for 3D Printing.

    Science.gov (United States)

    Guvendiren, Murat; Molde, Joseph; Soares, Rosane M D; Kohn, Joachim

    2016-10-10

    Three-dimensional (3D) printing is becoming an increasingly common technique to fabricate scaffolds and devices for tissue engineering applications. This is due to the potential of 3D printing to provide patient-specific designs, high structural complexity, rapid on-demand fabrication at a low-cost. One of the major bottlenecks that limits the widespread acceptance of 3D printing in biomanufacturing is the lack of diversity in "biomaterial inks". Printability of a biomaterial is determined by the printing technique. Although a wide range of biomaterial inks including polymers, ceramics, hydrogels and composites have been developed, the field is still struggling with processing of these materials into self-supporting devices with tunable mechanics, degradation, and bioactivity. This review aims to highlight the past and recent advances in biomaterial ink development and design considerations moving forward. A brief overview of 3D printing technologies focusing on ink design parameters is also included.

  15. DNA biosensing with 3D printing technology.

    Science.gov (United States)

    Loo, Adeline Huiling; Chua, Chun Kiang; Pumera, Martin

    2017-01-16

    3D printing, an upcoming technology, has vast potential to transform conventional fabrication processes due to the numerous improvements it can offer to the current methods. To date, the employment of 3D printing technology has been examined for applications in the fields of engineering, manufacturing and biological sciences. In this study, we examined the potential of adopting 3D printing technology for a novel application, electrochemical DNA biosensing. Metal 3D printing was utilized to construct helical-shaped stainless steel electrodes which functioned as a transducing platform for the detection of DNA hybridization. The ability of electroactive methylene blue to intercalate into the double helix structure of double-stranded DNA was then exploited to monitor the DNA hybridization process, with its inherent reduction peak serving as an analytical signal. The designed biosensing approach was found to demonstrate superior selectivity against a non-complementary DNA target, with a detection range of 1-1000 nM.

  16. Cubical Cohomology Ring of 3D Photographs

    CERN Document Server

    Gonzalez-Diaz, Rocio; Medrano, Belen; 10.1002/ima.20271

    2011-01-01

    Cohomology and cohomology ring of three-dimensional (3D) objects are topological invariants that characterize holes and their relations. Cohomology ring has been traditionally computed on simplicial complexes. Nevertheless, cubical complexes deal directly with the voxels in 3D images, no additional triangulation is necessary, facilitating efficient algorithms for the computation of topological invariants in the image context. In this paper, we present formulas to directly compute the cohomology ring of 3D cubical complexes without making use of any additional triangulation. Starting from a cubical complex $Q$ that represents a 3D binary-valued digital picture whose foreground has one connected component, we compute first the cohomological information on the boundary of the object, $\\partial Q$ by an incremental technique; then, using a face reduction algorithm, we compute it on the whole object; finally, applying the mentioned formulas, the cohomology ring is computed from such information.

  17. 3D scanning particle tracking velocimetry

    Science.gov (United States)

    Hoyer, Klaus; Holzner, Markus; Lüthi, Beat; Guala, Michele; Liberzon, Alexander; Kinzelbach, Wolfgang

    2005-11-01

    In this article, we present an experimental setup and data processing schemes for 3D scanning particle tracking velocimetry (SPTV), which expands on the classical 3D particle tracking velocimetry (PTV) through changes in the illumination, image acquisition and analysis. 3D PTV is a flexible flow measurement technique based on the processing of stereoscopic images of flow tracer particles. The technique allows obtaining Lagrangian flow information directly from measured 3D trajectories of individual particles. While for a classical PTV the entire region of interest is simultaneously illuminated and recorded, in SPTV the flow field is recorded by sequential tomographic high-speed imaging of the region of interest. The advantage of the presented method is a considerable increase in maximum feasible seeding density. Results are shown for an experiment in homogenous turbulence and compared with PTV. SPTV yielded an average 3,500 tracked particles per time step, which implies a significant enhancement of the spatial resolution for Lagrangian flow measurements.

  18. Lightning fast animation in Element 3D

    CERN Document Server

    Audronis, Ty

    2014-01-01

    An easy-to-follow and all-inclusive guide, in which the underlying principles of 3D animation as well as their importance are explained in detail. The lessons are designed to teach you how to think of 3D animation in such a way that you can troubleshoot any problem, or animate any scene that comes your way.If you are a Digital Artist, Animation Artist, or a Game Programmer and you want to become an expert in Element 3D, this is the book for you. Although there are a lot of basics for beginners in this book, it includes some advanced techniques for both animating in Element 3D, and overcoming i

  19. Advanced 3D Object Identification System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Optra will build an Advanced 3D Object Identification System utilizing three or more high resolution imagers spaced around a launch platform. Data from each imager...

  20. 3D Biomaterial Microarrays for Regenerative Medicine

    DEFF Research Database (Denmark)

    Gaharwar, Akhilesh K.; Arpanaei, Ayyoob; Andresen, Thomas Lars;

    2015-01-01

    Three dimensional (3D) biomaterial microarrays hold enormous promise for regenerative medicine because of their ability to accelerate the design and fabrication of biomimetic materials. Such tissue-like biomaterials can provide an appropriate microenvironment for stimulating and controlling stem...

  1. 3D-printed bioanalytical devices

    Science.gov (United States)

    Bishop, Gregory W.; Satterwhite-Warden, Jennifer E.; Kadimisetty, Karteek; Rusling, James F.

    2016-07-01

    While 3D printing technologies first appeared in the 1980s, prohibitive costs, limited materials, and the relatively small number of commercially available printers confined applications mainly to prototyping for manufacturing purposes. As technologies, printer cost, materials, and accessibility continue to improve, 3D printing has found widespread implementation in research and development in many disciplines due to ease-of-use and relatively fast design-to-object workflow. Several 3D printing techniques have been used to prepare devices such as milli- and microfluidic flow cells for analyses of cells and biomolecules as well as interfaces that enable bioanalytical measurements using cellphones. This review focuses on preparation and applications of 3D-printed bioanalytical devices.

  2. 3D VISUALIZATION FOR VIRTUAL MUSEUM DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    M. Skamantzari

    2016-06-01

    Full Text Available The interest in the development of virtual museums is nowadays rising rapidly. During the last decades there have been numerous efforts concerning the 3D digitization of cultural heritage and the development of virtual museums, digital libraries and serious games. The realistic result has always been the main concern and a real challenge when it comes to 3D modelling of monuments, artifacts and especially sculptures. This paper implements, investigates and evaluates the results of the photogrammetric methods and 3D surveys that were used for the development of a virtual museum. Moreover, the decisions, the actions, the methodology and the main elements that this kind of application should include and take into consideration are described and analysed. It is believed that the outcomes of this application will be useful to researchers who are planning to develop and further improve the attempts made on virtual museums and mass production of 3D models.

  3. Eyes on the Earth 3D

    Science.gov (United States)

    Kulikov, anton I.; Doronila, Paul R.; Nguyen, Viet T.; Jackson, Randal K.; Greene, William M.; Hussey, Kevin J.; Garcia, Christopher M.; Lopez, Christian A.

    2013-01-01

    Eyes on the Earth 3D software gives scientists, and the general public, a realtime, 3D interactive means of accurately viewing the real-time locations, speed, and values of recently collected data from several of NASA's Earth Observing Satellites using a standard Web browser (climate.nasa.gov/eyes). Anyone with Web access can use this software to see where the NASA fleet of these satellites is now, or where they will be up to a year in the future. The software also displays several Earth Science Data sets that have been collected on a daily basis. This application uses a third-party, 3D, realtime, interactive game engine called Unity 3D to visualize the satellites and is accessible from a Web browser.

  4. 3D Flash LIDAR Space Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc (ASC) is a small business, which has developed a compact, eye-safe 3D Flash LIDARTM Camera (FLC) well suited for real-time...

  5. Copper Electrodeposition for 3D Integration

    CERN Document Server

    Beica, Rozalia; Ritzdorf, Tom

    2008-01-01

    Two dimensional (2D) integration has been the traditional approach for IC integration. Due to increasing demands for providing electronic devices with superior performance and functionality in more efficient and compact packages, has driven the semiconductor industry to develop more advanced packaging technologies. Three-dimensional (3D) approaches address both miniaturization and integration required for advanced and portable electronic products. Vertical integration proved to be essential in achieving a greater integration flexibility of disparate technologies, reason for which a general trend of transition from 2D to 3D integration is currently being observed in the industry. 3D chip integration using through silicon via (TSV) copper is considered one of the most advanced technologies among all different types of 3D packaging technologies. Copper electrodeposition is one of technologies that enable the formation of TSV structures. Because of its well-known application for copper damascene, it was believed ...

  6. Pentingnya Pengetahuan Anatomi untuk 3D Artist

    Directory of Open Access Journals (Sweden)

    Anton Sugito Kurniawan

    2011-03-01

    Full Text Available No matter how far the current technological advances, anatomical knowledge will still be needed as a basis for making a good character design. Understanding anatomy will help us in the placement of the articulation of muscles and joints, thus more realistic modeling of 3d characters will be achieved in the form and movement. As a 3d character artist, anatomy should be able to inform in every aspect of our work. Each 3D/CG (Computer Graphics-artist needs to know how to use software applications, but what differentiates a 3d artist with a computer operator is an artistic vision and understanding of the basic shape of the human body. Artistic vision could not easily be taught, but a CG-artist may study it on their own from which so many reference sources may help understand and deepen their knowledge of anatomy.

  7. Measuring Visual Closeness of 3-D Models

    KAUST Repository

    Morales, Jose A.

    2012-09-01

    Measuring visual closeness of 3-D models is an important issue for different problems and there is still no standardized metric or algorithm to do it. The normal of a surface plays a vital role in the shading of a 3-D object. Motivated by this, we developed two applications to measure visualcloseness, introducing normal difference as a parameter in a weighted metric in Metro’s sampling approach to obtain the maximum and mean distance between 3-D models using 3-D and 6-D correspondence search structures. A visual closeness metric should provide accurate information on what the human observers would perceive as visually close objects. We performed a validation study with a group of people to evaluate the correlation of our metrics with subjective perception. The results were positive since the metrics predicted the subjective rankings more accurately than the Hausdorff distance.

  8. 3DSEM: A 3D microscopy dataset

    Directory of Open Access Journals (Sweden)

    Ahmad P. Tafti

    2016-03-01

    Full Text Available The Scanning Electron Microscope (SEM as a 2D imaging instrument has been widely used in many scientific disciplines including biological, mechanical, and materials sciences to determine the surface attributes of microscopic objects. However the SEM micrographs still remain 2D images. To effectively measure and visualize the surface properties, we need to truly restore the 3D shape model from 2D SEM images. Having 3D surfaces would provide anatomic shape of micro-samples which allows for quantitative measurements and informative visualization of the specimens being investigated. The 3DSEM is a dataset for 3D microscopy vision which is freely available at [1] for any academic, educational, and research purposes. The dataset includes both 2D images and 3D reconstructed surfaces of several real microscopic samples.

  9. 3D Spatial Data Infrastructures for web-based Visualization

    OpenAIRE

    Schilling, Arne

    2014-01-01

    In this thesis, concepts for developing Spatial Data Infrastructures with an emphasis on visualizing 3D landscape and city models in distributed environments are discussed. Spatial Data Infrastructures are important for public authorities in order to perform tasks on a daily basis, and serve as research topic in geo-informatics. Joint initiatives at national and international level exist for harmonizing procedures and technologies. Interoperability is an important aspect in this context - as ...

  10. Custom 3D Printers Revolutionize Space Supply Chain

    Science.gov (United States)

    2015-01-01

    Under a series of SBIR contracts with Marshall Space Flight Center, start-up company Made In Space, located on the center's campus, developed a high-precision 3D printer capable of manufacturing items in microgravity. The company will soon have a printer installed on the International Space Station, altering the space supply chain. It will print supplies and tools for NASA, as well as nanosatellite shells and other items for public and private entities.

  11. Signal and Noise in 3D Environments

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Signal and Noise in 3D Environments Michael B. Porter...complicated 3D environments . I have also been doing a great deal of work in modeling the noise field (the ocean soundscape) due to various sources...we have emphasized the propagation of ‘signals’. We have become increasingly interested in modeling ‘ noise ’ which can illuminate the ocean environment

  12. 3D GEO: AN ALTERNATIVE APPROACH

    OpenAIRE

    2016-01-01

    The expression GEO is mostly used to denote relation to the earth. However it should not be confined to what is related to the earth's surface, as other objects also need three dimensional representation and documentation, like cultural heritage objects. They include both tangible and intangible ones. In this paper the 3D data acquisition and 3D modelling of cultural heritage assets are briefly described and their significance is also highlighted. Moreover the organization of such information...

  13. 3D Computer Graphics and Nautical Charts

    OpenAIRE

    Porathe, Thomas

    2011-01-01

    This paper gives an overview of an ongoing project using real-time 3D visualization to display nautical charts in a way used by 3D computer games. By displaying the map in an egocentric perspective the need to make cognitively demanding mental rotations are suggested to be removed, leading to faster decision-making and less errors. Experimental results support this hypothesis. Practical tests with limited success have been performed this year.

  14. 3D Printing Electrically Small Spherical Antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2013-01-01

    3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations.......3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations....

  15. 3D Reconstruction of NMR Images

    Directory of Open Access Journals (Sweden)

    Peter Izak

    2007-01-01

    Full Text Available This paper introduces experiment of 3D reconstruction NMR images scanned from magnetic resonance device. There are described methods which can be used for 3D reconstruction magnetic resonance images in biomedical application. The main idea is based on marching cubes algorithm. For this task was chosen sophistication method by program Vision Assistant, which is a part of program LabVIEW.

  16. Algorithms for 3D shape scanning with a depth camera.

    Science.gov (United States)

    Cui, Yan; Schuon, Sebastian; Thrun, Sebastian; Stricker, Didier; Theobalt, Christian

    2013-05-01

    We describe a method for 3D object scanning by aligning depth scans that were taken from around an object with a Time-of-Flight (ToF) camera. These ToF cameras can measure depth scans at video rate. Due to comparably simple technology, they bear potential for economical production in big volumes. Our easy-to-use, cost-effective scanning solution, which is based on such a sensor, could make 3D scanning technology more accessible to everyday users. The algorithmic challenge we face is that the sensor's level of random noise is substantial and there is a nontrivial systematic bias. In this paper, we show the surprising result that 3D scans of reasonable quality can also be obtained with a sensor of such low data quality. Established filtering and scan alignment techniques from the literature fail to achieve this goal. In contrast, our algorithm is based on a new combination of a 3D superresolution method with a probabilistic scan alignment approach that explicitly takes into account the sensor's noise characteristics.

  17. Auto convergence for stereoscopic 3D cameras

    Science.gov (United States)

    Zhang, Buyue; Kothandaraman, Sreenivas; Batur, Aziz Umit

    2012-03-01

    Viewing comfort is an important concern for 3-D capable consumer electronics such as 3-D cameras and TVs. Consumer generated content is typically viewed at a close distance which makes the vergence-accommodation conflict particularly pronounced, causing discomfort and eye fatigue. In this paper, we present a Stereo Auto Convergence (SAC) algorithm for consumer 3-D cameras that reduces the vergence-accommodation conflict on the 3-D display by adjusting the depth of the scene automatically. Our algorithm processes stereo video in realtime and shifts each stereo frame horizontally by an appropriate amount to converge on the chosen object in that frame. The algorithm starts by estimating disparities between the left and right image pairs using correlations of the vertical projections of the image data. The estimated disparities are then analyzed by the algorithm to select a point of convergence. The current and target disparities of the chosen convergence point determines how much horizontal shift is needed. A disparity safety check is then performed to determine whether or not the maximum and minimum disparity limits would be exceeded after auto convergence. If the limits would be exceeded, further adjustments are made to satisfy the safety limits. Finally, desired convergence is achieved by shifting the left and the right frames accordingly. Our algorithm runs real-time at 30 fps on a TI OMAP4 processor. It is tested using an OMAP4 embedded prototype stereo 3-D camera. It significantly improves 3-D viewing comfort.

  18. 3D steerable wavelets in practice.

    Science.gov (United States)

    Chenouard, Nicolas; Unser, Michael

    2012-11-01

    We introduce a systematic and practical design for steerable wavelet frames in 3D. Our steerable wavelets are obtained by applying a 3D version of the generalized Riesz transform to a primary isotropic wavelet frame. The novel transform is self-reversible (tight frame) and its elementary constituents (Riesz wavelets) can be efficiently rotated in any 3D direction by forming appropriate linear combinations. Moreover, the basis functions at a given location can be linearly combined to design custom (and adaptive) steerable wavelets. The features of the proposed method are illustrated with the processing and analysis of 3D biomedical data. In particular, we show how those wavelets can be used to characterize directional patterns and to detect edges by means of a 3D monogenic analysis. We also propose a new inverse-problem formalism along with an optimization algorithm for reconstructing 3D images from a sparse set of wavelet-domain edges. The scheme results in high-quality image reconstructions which demonstrate the feature-reduction ability of the steerable wavelets as well as their potential for solving inverse problems.

  19. ASSESSING 3D PHOTOGRAMMETRY TECHNIQUES IN CRANIOMETRICS

    Directory of Open Access Journals (Sweden)

    M. C. Moshobane

    2016-06-01

    Full Text Available Morphometrics (the measurement of morphological features has been revolutionized by the creation of new techniques to study how organismal shape co-varies with several factors such as ecophenotypy. Ecophenotypy refers to the divergence of phenotypes due to developmental changes induced by local environmental conditions, producing distinct ecophenotypes. None of the techniques hitherto utilized could explicitly address organismal shape in a complete biological form, i.e. three-dimensionally. This study investigates the use of the commercial software, Photomodeler Scanner® (PMSc® three-dimensional (3D modelling software to produce accurate and high-resolution 3D models. Henceforth, the modelling of Subantarctic fur seal (Arctocephalus tropicalis and Antarctic fur seal (Arctocephalus gazella skulls which could allow for 3D measurements. Using this method, sixteen accurate 3D skull models were produced and five metrics were determined. The 3D linear measurements were compared to measurements taken manually with a digital caliper. In addition, repetitive measurements were recorded by varying researchers to determine repeatability. To allow for comparison straight line measurements were taken with the software, assuming that close accord with all manually measured features would illustrate the model’s accurate replication of reality. Measurements were not significantly different demonstrating that realistic 3D skull models can be successfully produced to provide a consistent basis for craniometrics, with the additional benefit of allowing non-linear measurements if required.

  20. Assessing 3d Photogrammetry Techniques in Craniometrics

    Science.gov (United States)

    Moshobane, M. C.; de Bruyn, P. J. N.; Bester, M. N.

    2016-06-01

    Morphometrics (the measurement of morphological features) has been revolutionized by the creation of new techniques to study how organismal shape co-varies with several factors such as ecophenotypy. Ecophenotypy refers to the divergence of phenotypes due to developmental changes induced by local environmental conditions, producing distinct ecophenotypes. None of the techniques hitherto utilized could explicitly address organismal shape in a complete biological form, i.e. three-dimensionally. This study investigates the use of the commercial software, Photomodeler Scanner® (PMSc®) three-dimensional (3D) modelling software to produce accurate and high-resolution 3D models. Henceforth, the modelling of Subantarctic fur seal (Arctocephalus tropicalis) and Antarctic fur seal (Arctocephalus gazella) skulls which could allow for 3D measurements. Using this method, sixteen accurate 3D skull models were produced and five metrics were determined. The 3D linear measurements were compared to measurements taken manually with a digital caliper. In addition, repetitive measurements were recorded by varying researchers to determine repeatability. To allow for comparison straight line measurements were taken with the software, assuming that close accord with all manually measured features would illustrate the model's accurate replication of reality. Measurements were not significantly different demonstrating that realistic 3D skull models can be successfully produced to provide a consistent basis for craniometrics, with the additional benefit of allowing non-linear measurements if required.

  1. Computer Graphics Teaching Support using X3D: Extensible 3D Graphics for Web Authors

    OpenAIRE

    Brutzman, Don

    2008-01-01

    X3D is the ISO-standard scene-graph language for interactive 3D graphics on the Web. A new course is available for teaching the fundamentals of 3D graphics using Extensible 3D (X3D). Resources include a detailed textbook, an authoring tool, hundreds of example scenes, and detailed slidesets covering each chapter. The published book is commercially available, while all other course-module resources are provided online free under open-source licenses. Numerous other commercial and o...

  2. Recording stereoscopic 3D neurosurgery with a head-mounted 3D camera system.

    Science.gov (United States)

    Lee, Brian; Chen, Brian R; Chen, Beverly B; Lu, James Y; Giannotta, Steven L

    2015-06-01

    Stereoscopic three-dimensional (3D) imaging can present more information to the viewer and further enhance the learning experience over traditional two-dimensional (2D) video. Most 3D surgical videos are recorded from the operating microscope and only feature the crux, or the most important part of the surgery, leaving out other crucial parts of surgery including the opening, approach, and closing of the surgical site. In addition, many other surgeries including complex spine, trauma, and intensive care unit procedures are also rarely recorded. We describe and share our experience with a commercially available head-mounted stereoscopic 3D camera system to obtain stereoscopic 3D recordings of these seldom recorded aspects of neurosurgery. The strengths and limitations of using the GoPro(®) 3D system as a head-mounted stereoscopic 3D camera system in the operating room are reviewed in detail. Over the past several years, we have recorded in stereoscopic 3D over 50 cranial and spinal surgeries and created a library for education purposes. We have found the head-mounted stereoscopic 3D camera system to be a valuable asset to supplement 3D footage from a 3D microscope. We expect that these comprehensive 3D surgical videos will become an important facet of resident education and ultimately lead to improved patient care.

  3. 3D-mallien muokkaus 3D-tulostamista varten CAD-ohjelmilla

    OpenAIRE

    Lehtimäki, Jarmo

    2013-01-01

    Insinöörityössäni käsitellään 3D-mallien tulostamista ja erityisesti 3D-mallien mallintamista niin, että kappaleiden valmistaminen 3D-tulostimella onnistuisi mahdollisimman hyvin. Työ tehtiin Prohoc Oy:lle, joka sijaitsee Vaasassa. 3D-tulostuspalveluun tuli jatkuvasti 3D-malleja, joiden tulostuksessa oli ongelmia. Työssäni tutkin näiden ongelmien syntyä ja tein ohjeita eri 3D-mallinnusohjelmille, joiden tarkoituksena on auttaa tekemään helpommin tulostettavia 3D-malleja. Työhön kuului myös et...

  4. 3D-PRINTING OF BUILD OBJECTS

    Directory of Open Access Journals (Sweden)

    SAVYTSKYI M. V.

    2016-03-01

    Full Text Available Raising of problem. Today, in all spheres of our life we can constate the permanent search for new, modern methods and technologies that meet the principles of sustainable development. New approaches need to be, on the one hand more effective in terms of conservation of exhaustible resources of our planet, have minimal impact on the environment and on the other hand to ensure a higher quality of the final product. Construction is not exception. One of the new promising technology is the technology of 3D -printing of individual structures and buildings in general. 3Dprinting - is the process of real object recreating on the model of 3D. Unlike conventional printer which prints information on a sheet of paper, 3D-printer allows you to display three-dimensional information, i.e. creates certain physical objects. Currently, 3D-printer finds its application in many areas of production: machine building elements, a variety of layouts, interior elements, various items. But due to the fact that this technology is fairly new, it requires the creation of detailed and accurate technologies, efficient equipment and materials, and development of common vocabulary and regulatory framework in this field. Research Aim. The analysis of existing methods of creating physical objects using 3D-printing and the improvement of technology and equipment for the printing of buildings and structures. Conclusion. 3D-printers building is a new generation of equipment for the construction of buildings, structures, and structural elements. A variety of building printing technics opens up wide range of opportunities in the construction industry. At this stage, printers design allows to create low-rise buildings of different configurations with different mortars. The scientific novelty of this work is to develop proposals to improve the thermal insulation properties of constructed 3D-printing objects and technological equipment. The list of key terms and notions of construction

  5. Visual Fixation for 3D Video Stabilization

    Directory of Open Access Journals (Sweden)

    Hans-Peter Seidel

    2011-03-01

    Full Text Available Visual fixation is employed by humans and some animals to keep a specific 3D location at the center of the visual gaze. Inspired by this phenomenon in nature, this paper explores the idea to transfer this mechanism to the context of video stabilization for a hand-held video camera. A novel approach is presented that stabilizes a video by fixating on automatically extracted 3D target points. This approach is different from existing automatic solutions that stabilize the video by smoothing. To determine the 3D target points, the recorded scene is analyzed with a state-of-the-art structure-from-motion algorithm, which estimates camera motion and reconstructs a 3D point cloud of the static scene objects. Special algorithms are presented that search either virtual or real 3D target points, which back-project close to the center of the image for as long a period of time as possible. The stabilization algorithm then transforms the original images of the sequence so that these 3D target points are kept exactly in the center of the image, which, in case of real 3D target points, produces a perfectly stable result at the image center. Furthermore, different methods of additional user interaction are investigated. It is shown that the stabilization process can easily be controlled and that it can be combined with state-of-the-art tracking techniques in order to obtain a powerful image stabilization tool. The approach is evaluated on a variety of videos taken with a hand-held camera in natural scenes.

  6. PLOT3D Export Tool for Tecplot

    Science.gov (United States)

    Alter, Stephen

    2010-01-01

    The PLOT3D export tool for Tecplot solves the problem of modified data being impossible to output for use by another computational science solver. The PLOT3D Exporter add-on enables the use of the most commonly available visualization tools to engineers for output of a standard format. The exportation of PLOT3D data from Tecplot has far reaching effects because it allows for grid and solution manipulation within a graphical user interface (GUI) that is easily customized with macro language-based and user-developed GUIs. The add-on also enables the use of Tecplot as an interpolation tool for solution conversion between different grids of different types. This one add-on enhances the functionality of Tecplot so significantly, it offers the ability to incorporate Tecplot into a general suite of tools for computational science applications as a 3D graphics engine for visualization of all data. Within the PLOT3D Export Add-on are several functions that enhance the operations and effectiveness of the add-on. Unlike Tecplot output functions, the PLOT3D Export Add-on enables the use of the zone selection dialog in Tecplot to choose which zones are to be written by offering three distinct options - output of active, inactive, or all zones (grid blocks). As the user modifies the zones to output with the zone selection dialog, the zones to be written are similarly updated. This enables the use of Tecplot to create multiple configurations of a geometry being analyzed. For example, if an aircraft is loaded with multiple deflections of flaps, by activating and deactivating different zones for a specific flap setting, new specific configurations of that aircraft can be easily generated by only writing out specific zones. Thus, if ten flap settings are loaded into Tecplot, the PLOT3D Export software can output ten different configurations, one for each flap setting.

  7. A microfluidic device for 2D to 3D and 3D to 3D cell navigation

    Science.gov (United States)

    Shamloo, Amir; Amirifar, Leyla

    2016-01-01

    Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be obtained by diffusion. The device was designed by a numerical simulation so that the uniformity of the concentration gradients throughout the cell culture chamber was obtained. Adult neural cells were cultured within this device and they showed different branching and axonal navigation phenotypes within varying nerve growth factor (NGF) concentration profiles. Neural stem cells were also cultured within varying collagen matrix densities while exposed to NGF concentrations and they experienced 3D to 3D collective migration. By generating vascular endothelial growth factor concentration gradients, adult human dermal microvascular endothelial cells also migrated in a 2D to 3D manner and formed a stable lumen within a specific collagen matrix density. It was observed that a minimum absolute concentration and concentration gradient were required to stimulate migration of all types of the cells. This device has the advantage of changing multiple parameters simultaneously and is expected to have wide applicability in cell studies.

  8. Frontal Conversion and Uniformity in 3D Printing by Photopolymerisation

    Directory of Open Access Journals (Sweden)

    Alessandra Vitale

    2016-09-01

    Full Text Available We investigate the impact of the non-uniform spatio-temporal conversion, intrinsic to photopolymerisation, in the context of light-driven 3D printing of polymers. The polymerisation kinetics of a series of model acrylate and thiol-ene systems, both neat and doped with a light-absorbing dye, is investigated experimentally and analysed according to a descriptive coarse-grained model for photopolymerisation. In particular, we focus on the relative kinetics of polymerisation with those of 3D printing, by comparing the evolution of the position of the conversion profile (zf to the sequential displacement of the object stage (∆z. After quantifying the characteristic sigmoidal monomer-to-polymer conversion of the various systems, with a combination of patterning experiments, FT-IR mapping, and modelling, we compute representative regimes for which zf is smaller, commensurate with, or larger than ∆z. While non-monotonic conversion can be detrimental to 3D printing, for instance in causing differential shrinkage of inhomogeneity in material properties, we identify opportunities for facile fabrication of modulated materials in the z-direction (i.e., along the illuminated axis. Our simple framework and model, based on directly measured parameters, can thus be employed in photopolymerisation-based 3D printing, both in process optimisation and in the precise design of complex, internally stratified materials by coupling the z-stage displacement and frontal polymerisation kinetics.

  9. Comprehending 3D Diagrams: Sketching to Support Spatial Reasoning.

    Science.gov (United States)

    Gagnier, Kristin M; Atit, Kinnari; Ormand, Carol J; Shipley, Thomas F

    2016-11-25

    Science, technology, engineering, and mathematics (STEM) disciplines commonly illustrate 3D relationships in diagrams, yet these are often challenging for students. Failing to understand diagrams can hinder success in STEM because scientific practice requires understanding and creating diagrammatic representations. We explore a new approach to improving student understanding of diagrams that convey 3D relations that is based on students generating their own predictive diagrams. Participants' comprehension of 3D spatial diagrams was measured in a pre- and post-design where students selected the correct 2D slice through 3D geologic block diagrams. Generating sketches that predicated the internal structure of a model led to greater improvement in diagram understanding than visualizing the interior of the model without sketching, or sketching the model without attempting to predict unseen spatial relations. In addition, we found a positive correlation between sketched diagram accuracy and improvement on the diagram comprehension measure. Results suggest that generating a predictive diagram facilitates students' abilities to make inferences about spatial relationships in diagrams. Implications for use of sketching in supporting STEM learning are discussed.

  10. Automatic Texture Optimization for 3D Urban Reconstruction

    Directory of Open Access Journals (Sweden)

    LI Ming

    2017-03-01

    Full Text Available In order to solve the problem of texture optimization in 3D city reconstruction by using multi-lens oblique images, the paper presents a method of seamless texture model reconstruction. At first, it corrects the radiation information of images by camera response functions and image dark channel. Then, according to the corresponding relevance between terrain triangular mesh surface model to image, implements occlusion detection by sparse triangulation method, and establishes the triangles' texture list of visible. Finally, combines with triangles' topology relationship in 3D triangular mesh surface model and means and variances of image, constructs a graph-cuts-based texture optimization algorithm under the framework of MRF(Markov random filed, to solve the discrete label problem of texture optimization selection and clustering, ensures the consistency of the adjacent triangles in texture mapping, achieves the seamless texture reconstruction of city. The experimental results verify the validity and superiority of our proposed method.

  11. 3D BUILDING MODELS SEGMENTATION BASED ON K-MEANS++ CLUSTER ANALYSIS

    Directory of Open Access Journals (Sweden)

    C. Zhang

    2016-10-01

    Full Text Available 3D mesh model segmentation is drawing increasing attentions from digital geometry processing field in recent years. The original 3D mesh model need to be divided into separate meaningful parts or surface patches based on certain standards to support reconstruction, compressing, texture mapping, model retrieval and etc. Therefore, segmentation is a key problem for 3D mesh model segmentation. In this paper, we propose a method to segment Collada (a type of mesh model 3D building models into meaningful parts using cluster analysis. Common clustering methods segment 3D mesh models by K-means, whose performance heavily depends on randomized initial seed points (i.e., centroid and different randomized centroid can get quite different results. Therefore, we improved the existing method and used K-means++ clustering algorithm to solve this problem. Our experiments show that K-means++ improves both the speed and the accuracy of K-means, and achieve good and meaningful results.

  12. Heat Equation to 3D Image Segmentation

    Directory of Open Access Journals (Sweden)

    Nikolay Sirakov

    2006-04-01

    Full Text Available This paper presents a new approach, capable of 3D image segmentation and objects' surface reconstruction. The main advantages of the method are: large capture range; quick segmentation of a 3D scene/image to regions; multiple 3D objects reconstruction. The method uses centripetal force and penalty function to segment the entire 3D scene/image to regions containing a single 3D object. Each region is inscribed in a convex, smooth closed surface, which defines a centripetal force. Then the surface is evolved by the geometric heat differential equation toward the force's direction. The penalty function is defined to stop evolvement of those surface patches, whose normal vectors encountered object's surface. On the base of the theoretical model Forward Difference Algorithm was developed and coded by Mathematica. Stability convergence condition, truncation error and calculation complexity of the algorithm are determined. The obtained results, advantages and disadvantages of the method are discussed at the end of this paper.

  13. Recent Progress on 3D Silicon Detectors

    CERN Document Server

    Lange, Jörn

    2015-01-01

    3D silicon detectors, in which the electrodes penetrate the sensor bulk perpendicular to the surface, have recently undergone a rapid development from R\\&D over industrialisation to their first installation in a real high-energy-physics experiment. Since June 2015, the ATLAS Insertable B-Layer is taking first collision data with 3D pixel detectors. At the same time, preparations are advancing to install 3D pixel detectors in forward trackers such as the ATLAS Forward Proton detector or the CMS-TOTEM Proton Precision Spectrometer. For those experiments, the main requirements are a slim edge and the ability to cope with non-uniform irradiation. Both have been shown to be fulfilled by 3D pixel detectors. For the High-Luminosity LHC pixel upgrades of the major experiments, 3D detectors are promising candidates for the innermost pixel layers to cope with harsh radiation environments up to fluences of $2\\times10^{16}$\\,n$_{eq}$/cm$^2$ thanks to their excellent radiation hardness at low operational voltages and ...

  14. Full-color holographic 3D printer

    Science.gov (United States)

    Takano, Masami; Shigeta, Hiroaki; Nishihara, Takashi; Yamaguchi, Masahiro; Takahashi, Susumu; Ohyama, Nagaaki; Kobayashi, Akihiko; Iwata, Fujio

    2003-05-01

    A holographic 3D printer is a system that produces a direct hologram with full-parallax information using the 3-dimensional data of a subject from a computer. In this paper, we present a proposal for the reproduction of full-color images with the holographic 3D printer. In order to realize the 3-dimensional color image, we selected the 3 laser wavelength colors of red (λ=633nm), green (λ=533nm), and blue (λ=442nm), and we built a one-step optical system using a projection system and a liquid crystal display. The 3-dimensional color image is obtained by synthesizing in a 2D array the multiple exposure with these 3 wavelengths made on each 250mm elementary hologram, and moving recording medium on a x-y stage. For the natural color reproduction in the holographic 3D printer, we take the approach of the digital processing technique based on the color management technology. The matching between the input and output colors is performed by investigating first, the relation between the gray level transmittance of the LCD and the diffraction efficiency of the hologram and second, by measuring the color displayed by the hologram to establish a correlation. In our first experimental results a non-linear functional relation for single and multiple exposure of the three components were found. These results are the first step in the realization of a natural color 3D image produced by the holographic color 3D printer.

  15. Magnetic Properties of 3D Printed Toroids

    Science.gov (United States)

    Bollig, Lindsey; Otto, Austin; Hilpisch, Peter; Mowry, Greg; Nelson-Cheeseman, Brittany; Renewable Energy; Alternatives Lab (REAL) Team

    Transformers are ubiquitous in electronics today. Although toroidal geometries perform most efficiently, transformers are traditionally made with rectangular cross-sections due to the lower manufacturing costs. Additive manufacturing techniques (3D printing) can easily achieve toroidal geometries by building up a part through a series of 2D layers. To get strong magnetic properties in a 3D printed transformer, a composite filament is used containing Fe dispersed in a polymer matrix. How the resulting 3D printed toroid responds to a magnetic field depends on two structural factors of the printed 2D layers: fill factor (planar density) and fill pattern. In this work, we investigate how the fill factor and fill pattern affect the magnetic properties of 3D printed toroids. The magnetic properties of the printed toroids are measured by a custom circuit that produces a hysteresis loop for each toroid. Toroids with various fill factors and fill patterns are compared to determine how these two factors can affect the magnetic field the toroid can produce. These 3D printed toroids can be used for numerous applications in order to increase the efficiency of transformers by making it possible for manufacturers to make a toroidal geometry.

  16. 3D culture for cardiac cells.

    Science.gov (United States)

    Zuppinger, Christian

    2016-07-01

    This review discusses historical milestones, recent developments and challenges in the area of 3D culture models with cardiovascular cell types. Expectations in this area have been raised in recent years, but more relevant in vitro research, more accurate drug testing results, reliable disease models and insights leading to bioartificial organs are expected from the transition to 3D cell culture. However, the construction of organ-like cardiac 3D models currently remains a difficult challenge. The heart consists of highly differentiated cells in an intricate arrangement.Furthermore, electrical “wiring”, a vascular system and multiple cell types act in concert to respond to the rapidly changing demands of the body. Although cardiovascular 3D culture models have been predominantly developed for regenerative medicine in the past, their use in drug screening and for disease models has become more popular recently. Many sophisticated 3D culture models are currently being developed in this dynamic area of life science. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  17. BEAMS3D Neutral Beam Injection Model

    Science.gov (United States)

    McMillan, Matthew; Lazerson, Samuel A.

    2014-09-01

    With the advent of applied 3D fields in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous slowing down, and pitch angle scattering are modeled with the ADAS atomic physics database. Elementary benchmark calculations are presented to verify the collisionless particle orbits, NBI model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields. Notice: this manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  18. 3D bioprinting for engineering complex tissues.

    Science.gov (United States)

    Mandrycky, Christian; Wang, Zongjie; Kim, Keekyoung; Kim, Deok-Ho

    2016-01-01

    Bioprinting is a 3D fabrication technology used to precisely dispense cell-laden biomaterials for the construction of complex 3D functional living tissues or artificial organs. While still in its early stages, bioprinting strategies have demonstrated their potential use in regenerative medicine to generate a variety of transplantable tissues, including skin, cartilage, and bone. However, current bioprinting approaches still have technical challenges in terms of high-resolution cell deposition, controlled cell distributions, vascularization, and innervation within complex 3D tissues. While no one-size-fits-all approach to bioprinting has emerged, it remains an on-demand, versatile fabrication technique that may address the growing organ shortage as well as provide a high-throughput method for cell patterning at the micrometer scale for broad biomedical engineering applications. In this review, we introduce the basic principles, materials, integration strategies and applications of bioprinting. We also discuss the recent developments, current challenges and future prospects of 3D bioprinting for engineering complex tissues. Combined with recent advances in human pluripotent stem cell technologies, 3D-bioprinted tissue models could serve as an enabling platform for high-throughput predictive drug screening and more effective regenerative therapies.

  19. Digital Geological Model (DGM): a 3D raster model of the subsurface of the Netherlands

    NARCIS (Netherlands)

    Gunnink, J.L.; Maljers, D.; Gessel, S.F. van; Menkovic, A.; Hummelman, H.J.

    2013-01-01

    A 3D geological raster model has been constructed of the onshore of the Netherlands. The model displays geological units for the upper 500 m in 3D in an internally consistent way. The units are based on the lithostratigraphical classification of the Netherlands. This classification is used to interp

  20. A Hybrid 3D Indoor Space Model

    Science.gov (United States)

    Jamali, Ali; Rahman, Alias Abdul; Boguslawski, Pawel

    2016-10-01

    GIS integrates spatial information and spatial analysis. An important example of such integration is for emergency response which requires route planning inside and outside of a building. Route planning requires detailed information related to indoor and outdoor environment. Indoor navigation network models including Geometric Network Model (GNM), Navigable Space Model, sub-division model and regular-grid model lack indoor data sources and abstraction methods. In this paper, a hybrid indoor space model is proposed. In the proposed method, 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. This research proposes a method of indoor space modeling for the buildings which do not have proper 2D/3D geometrical models or they lack semantic or topological information. The proposed hybrid model consists of topological, geometrical and semantical space.

  1. 3D Printed Multimaterial Microfluidic Valve

    Science.gov (United States)

    Patrick, William G.; Sharma, Sunanda; Kong, David S.; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics. PMID:27525809

  2. Resist loss in 3D compact modeling

    Science.gov (United States)

    Zheng, Xin; Huang, Jensheng; Chin, Fook; Kazarian, Aram; Kuo, Chun-Chieh

    2012-03-01

    An enhancement to compact modeling capability to include photoresist (PR) loss at different heights is developed and discussed. A hypsometric map representing 3-D resist profile was built by applying a first principle approximation to estimate the "energy loss" from the resist top to any other plane of interest as a proportional corresponding change in model threshold, which is analogous to a change in exposure dose. The result is compared and validated with 3D rigorous modeling as well as SEM images. Without increase in computation time, this compact model can construct 3D resist profiles capturing resist profile degradation at any vertical plane. Sidewall angle and standing wave information can also be granted from the vertical profile reconstruction. Since this method does not change any form of compact modeling, it can be integrated to validation and correction without any additional work.

  3. 3D integral imaging with optical processing

    Science.gov (United States)

    Martínez-Corral, Manuel; Martínez-Cuenca, Raúl; Saavedra, Genaro; Javidi, Bahram

    2008-04-01

    Integral imaging (InI) systems are imaging devices that provide auto-stereoscopic images of 3D intensity objects. Since the birth of this new technology, InI systems have faced satisfactorily many of their initial drawbacks. Basically, two kind of procedures have been used: digital and optical procedures. The "3D Imaging and Display Group" at the University of Valencia, with the essential collaboration of Prof. Javidi, has centered its efforts in the 3D InI with optical processing. Among other achievements, our Group has proposed the annular amplitude modulation for enlargement of the depth of field, dynamic focusing for reduction of the facet-braiding effect, or the TRES and MATRES devices to enlarge the viewing angle.

  4. Pyrolytic 3D Carbon Microelectrodes for Electrochemistry

    DEFF Research Database (Denmark)

    Hemanth, Suhith; Caviglia, Claudia; Amato, Letizia

    2016-01-01

    electrochemical activity, chemical stability, and ease in surface functionalization [1]. The most common carbon microfabrication techniques (i.e. screen printing) produce two-dimensional (2D) electrodes, which limit the detection sensitivity. Hence several 3D microfabrication techniques have been explored......This work presents the fabrication and characterization of multi-layered three-dimensional (3D) pyrolysed carbon microelectrodes for electrochemical applications. For this purpose, an optimized UV photolithography and pyrolysis process with the negative tone photoresist SU-8 has been developed...... carbon [2]. This process enables fabrication of 2D and 3D electrodes with possibility for tailoring ad-hoc designs and unique sensitivities for specific applications. Due to this, pyrolysed carbon is becoming increasingly attractive for numerous applications, such as novel sensors and scaffolds for cell...

  5. Structured light field 3D imaging.

    Science.gov (United States)

    Cai, Zewei; Liu, Xiaoli; Peng, Xiang; Yin, Yongkai; Li, Ameng; Wu, Jiachen; Gao, Bruce Z

    2016-09-05

    In this paper, we propose a method by means of light field imaging under structured illumination to deal with high dynamic range 3D imaging. Fringe patterns are projected onto a scene and modulated by the scene depth then a structured light field is detected using light field recording devices. The structured light field contains information about ray direction and phase-encoded depth, via which the scene depth can be estimated from different directions. The multidirectional depth estimation can achieve high dynamic 3D imaging effectively. We analyzed and derived the phase-depth mapping in the structured light field and then proposed a flexible ray-based calibration approach to determine the independent mapping coefficients for each ray. Experimental results demonstrated the validity of the proposed method to perform high-quality 3D imaging for highly and lowly reflective surfaces.

  6. Multiplane 3D superresolution optical fluctuation imaging

    CERN Document Server

    Geissbuehler, Stefan; Godinat, Aurélien; Bocchio, Noelia L; Dubikovskaya, Elena A; Lasser, Theo; Leutenegger, Marcel

    2013-01-01

    By switching fluorophores on and off in either a deterministic or a stochastic manner, superresolution microscopy has enabled the imaging of biological structures at resolutions well beyond the diffraction limit. Superresolution optical fluctuation imaging (SOFI) provides an elegant way of overcoming the diffraction limit in all three spatial dimensions by computing higher-order cumulants of image sequences of blinking fluorophores acquired with a conventional widefield microscope. So far, three-dimensional (3D) SOFI has only been demonstrated by sequential imaging of multiple depth positions. Here we introduce a versatile imaging scheme which allows for the simultaneous acquisition of multiple focal planes. Using 3D cross-cumulants, we show that the depth sampling can be increased. Consequently, the simultaneous acquisition of multiple focal planes reduces the acquisition time and hence the photo-bleaching of fluorescent markers. We demonstrate multiplane 3D SOFI by imaging the mitochondria network in fixed ...

  7. Solving a 3D structural puzzle

    DEFF Research Database (Denmark)

    Hoeck, Casper

    to spatial structural information using NMR spectroscopy. Experimental distances from nuclear Overhauser effect (NOE) correlations, and dihedral angles from 3JHH-coupling constants, were used to obtain 3D structural information for several natural and synthetic compounds. The stereochemistry of novel natural...... samples, which allows for RDCs to be extracted. The number of internuclear vectors for the correlation of RDCs to 3D structures is often limited for small molecules. Homonuclear RDCs were extracted by use of the homonuclear S3 HMBC that correlated well to alignment tensors from 1DCH-coupling constants......-calculation of RDCs from 3D structures was developed and tested, which copes better with multiple conformers than the commonly used SVD methodology. The approach thus resulted in good conformer populations for several small molecules, including multiple cinchona alkaloids....

  8. A Hybrid 3D Indoor Space Model

    Directory of Open Access Journals (Sweden)

    A. Jamali

    2016-10-01

    Full Text Available GIS integrates spatial information and spatial analysis. An important example of such integration is for emergency response which requires route planning inside and outside of a building. Route planning requires detailed information related to indoor and outdoor environment. Indoor navigation network models including Geometric Network Model (GNM, Navigable Space Model, sub-division model and regular-grid model lack indoor data sources and abstraction methods. In this paper, a hybrid indoor space model is proposed. In the proposed method, 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. This research proposes a method of indoor space modeling for the buildings which do not have proper 2D/3D geometrical models or they lack semantic or topological information. The proposed hybrid model consists of topological, geometrical and semantical space.

  9. 3D nanopillar optical antenna photodetectors.

    Science.gov (United States)

    Senanayake, Pradeep; Hung, Chung-Hong; Shapiro, Joshua; Scofield, Adam; Lin, Andrew; Williams, Benjamin S; Huffaker, Diana L

    2012-11-05

    We demonstrate 3D surface plasmon photoresponse in nanopillar arrays resulting in enhanced responsivity due to both Localized Surface Plasmon Resonances (LSPRs) and Surface Plasmon Polariton Bloch Waves (SPP-BWs). The LSPRs are excited due to a partial gold shell coating the nanopillar which acts as a 3D Nanopillar Optical Antenna (NOA) in focusing light into the nanopillar. Angular photoresponse measurements show that SPP-BWs can be spectrally coincident with LSPRs to result in a x2 enhancement in responsivity at 1180 nm. Full-wave Finite Difference Time Domain (FDTD) simulations substantiate both the spatial and spectral coupling of the SPP-BW / LSPR for enhanced absorption and the nature of the LSPR. Geometrical control of the 3D NOA and the self-aligned metal hole lattice allows the hybridization of both localized and propagating surface plasmon modes for enhanced absorption. Hybridized plasmonic modes opens up new avenues in optical antenna design in nanoscale photodetectors.

  10. Atomic resolution 3D electron diffraction microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Jianwei; Ohsuna, Tetsu; Terasaki, Osamu; O' Keefe, Michael A.

    2002-03-01

    Electron lens aberration is the major barrier limiting the resolution of electron microscopy. Here we describe a novel form of electron microscopy to overcome electron lens aberration. By combining coherent electron diffraction with the oversampling phasing method, we show that the 3D structure of a 2 x 2 x 2 unit cell nano-crystal (framework of LTA [Al12Si12O48]8) can be ab initio determined at the resolution of 1 Angstrom from a series of simulated noisy diffraction pattern projections with rotation angles ranging from -70 degrees to +70 degrees in 5 degrees increments along a single rotation axis. This form of microscopy (which we call 3D electron diffraction microscopy) does not require any reference waves, and can image the 3D structure of nanocrystals, as well as non-crystalline biological and materials science samples, with the resolution limited only by the quality of sample diffraction.

  11. Spectroradiometric characterization of autostereoscopic 3D displays

    Science.gov (United States)

    Rubiño, Manuel; Salas, Carlos; Pozo, Antonio M.; Castro, J. J.; Pérez-Ocón, Francisco

    2013-11-01

    Spectroradiometric measurements have been made for the experimental characterization of the RGB channels of autostereoscopic 3D displays, giving results for different measurement angles with respect to the normal direction of the plane of the display. In the study, 2 different models of autostereoscopic 3D displays of different sizes and resolutions were used, making measurements with a spectroradiometer (model PR-670 SpectraScan of PhotoResearch). From the measurements made, goniometric results were recorded for luminance contrast, and the fundamental hypotheses have been evaluated for the characterization of the displays: independence of the RGB channels and their constancy. The results show that the display with the lower angle variability in the contrast-ratio value and constancy of the chromaticity coordinates nevertheless presented the greatest additivity deviations with the measurement angle. For both displays, when the parameters evaluated were taken into account, lower angle variability consistently resulted in the 2D mode than in the 3D mode.

  12. 3D-printed microfluidic devices.

    Science.gov (United States)

    Amin, Reza; Knowlton, Stephanie; Hart, Alexander; Yenilmez, Bekir; Ghaderinezhad, Fariba; Katebifar, Sara; Messina, Michael; Khademhosseini, Ali; Tasoglu, Savas

    2016-06-20

    Microfluidics is a flourishing field, enabling a wide range of biochemical and clinical applications such as cancer screening, micro-physiological system engineering, high-throughput drug testing, and point-of-care diagnostics. However, fabrication of microfluidic devices is often complicated, time consuming, and requires expensive equipment and sophisticated cleanroom facilities. Three-dimensional (3D) printing presents a promising alternative to traditional techniques such as lithography and PDMS-glass bonding, not only by enabling rapid design iterations in the development stage, but also by reducing the costs associated with institutional infrastructure, equipment installation, maintenance, and physical space. With the recent advancements in 3D printing technologies, highly complex microfluidic devices can be fabricated via single-step, rapid, and cost-effective protocols, making microfluidics more accessible to users. In this review, we discuss a broad range of approaches for the application of 3D printing technology to fabrication of micro-scale lab-on-a-chip devices.

  13. Novel proposals in widefield 3D microscopy

    Science.gov (United States)

    Sanchez-Ortiga, E.; Doblas, A.; Saavedra, G.; Martinez-Corral, M.

    2010-04-01

    Patterned illumination is a successful set of techniques in high resolution 3D microscopy. In particular, structured illumination microscopy is based on the projection of 1D periodic patterns onto the 3D sample under study. In this research we propose the implementation of a very simple method for the flexible production of 1D structured illumination. Specifically, we propose the insertion of a Fresnel biprism after a monochromatic point source. The biprism produces a pair of twin, fully coherent, virtual point sources. After imaging the virtual sources onto the objective aperture stop, the expected 1D periodic pattern is produced into the 3D sample. The main advantage of using the Fresnel biprism is that by simply varying the distance between the biprism and the point source one can tune the period of the fringes while keeping their contrast.

  14. 3D face analysis for demographic biometrics

    Energy Technology Data Exchange (ETDEWEB)

    Tokola, Ryan A [ORNL; Mikkilineni, Aravind K [ORNL; Boehnen, Chris Bensing [ORNL

    2015-01-01

    Despite being increasingly easy to acquire, 3D data is rarely used for face-based biometrics applications beyond identification. Recent work in image-based demographic biometrics has enjoyed much success, but these approaches suffer from the well-known limitations of 2D representations, particularly variations in illumination, texture, and pose, as well as a fundamental inability to describe 3D shape. This paper shows that simple 3D shape features in a face-based coordinate system are capable of representing many biometric attributes without problem-specific models or specialized domain knowledge. The same feature vector achieves impressive results for problems as diverse as age estimation, gender classification, and race classification.

  15. First 3D view of solar eruptions

    Science.gov (United States)

    2004-07-01

    loops, rather than a bubble or rope-like structure. Although this technique had been independently developed previously to study relatively static structures in the solar atmosphere during eclipses, this is the first time that it is applied to fast moving CMEs. Moran and Davila believe that their method will complement data from the upcoming NASA’s Solar Terrestrial Relations Observatory (STEREO) mission, scheduled for launch in February 2006. STEREO will use two widely separated spacecraft to construct 3D views of CMEs by combining images from the different vantage points of the twin spacecraft. Commenting on this result, Bernhard Fleck, SOHO Project Scientist at ESA, said: "These are really amazing images. Once again scientists have come up with a clever idea for analysing SOHO data in ways that were not even dreamt of when the mission was designed." Movie: http://esamultimedia.esa.int/images/spcs/soho/soho20040702.mpg 3 stills from the movie http://esamultimedia.esa.int/images/spcs/soho/soho20040702c.tiff http://esamultimedia.esa.int/images/spcs/soho/soho20040702d.tiff http://esamultimedia.esa.int/images/spcs/soho/soho20040702e.tiff This movie shows a 3D rendering of the data in Figure 2. It starts out viewing the Sun from SOHO's perspective, then rotates the scene to view the data from the side, and finally from the top. Note that one distinct feature shown at about 11 o'clock in Figure 2 panel a has been left out of the movie, because it is a static structure and not a part of the CME. Notes to Editors: This new result by T. Moran and J. Davila is published in today’s issue of the magazine Science. More about SOHO SOHO is a project of international co-operation between ESA and NASA to study the Sun, from its deep core to the outer corona, and the solar wind. Fourteen European countries, led by the European Space Agency and prime contractor Astrium (formerly Matra-Marconi), built the SOHO spacecraft. It carries twelve instruments (nine European-led and three

  16. 3D-skannauksen hyödyntäminen 3D-tulostuksessa

    OpenAIRE

    Seppälä, Mikko

    2016-01-01

    Opinnäytetyössä tutustuttiin 3D-skannaus- ja 3D-tulostusteknologioihin. Työssä käytiin läpi erilaiset 3D-tulostusmenetelmät ja esiteltiin erilaisia 3D-skannausmenetelmiä. Lisäksi käytiin läpi 3D-skannaus- ja 3D-tulostusprosessi. Tavoitteena opinnäytetyössä oli tutkia, kuinka nämä kaksi teknologiaa toimivat yhdessä. Tarkoituksena oli käydä läpi prosessi, jossa fyysinen kappale skannattiin digitaaliseen muotoon, jonka jälkeen se voidaan tulostaa uudeksi fyysiseksi kappaleeksi. Lisäksi tarko...

  17. 3D Hilbert Space Filling Curves in 3D City Modeling for Faster Spatial Queries

    DEFF Research Database (Denmark)

    Ujang, Uznir; Antón Castro, Francesc/François; Azri, Suhaibah;

    2014-01-01

    are presented in this paper. The advantages of implementing space-filling curves in 3D city modeling will improve data retrieval time by means of optimized 3D adjacency, nearest neighbor information and 3D indexing. The Hilbert mapping, which maps a sub-interval of the ([0,1]) interval to the corresponding...... method, retrieving portions of and especially searching these 3D city models, will not be done optimally. Even though current developments are based on an open data model allotted by the Open Geospatial Consortium (OGC) called CityGML, its XML-based structure makes it challenging to cluster the 3D urban...... web standards. However, these 3D city models consume much more storage compared to two dimensional (2 D) spatial data. They involve extra geometrical and topological information together with semantic data. Without a proper spatial data clustering method and its corresponding spatial data access...

  18. 3D scene reconstruction based on 3D laser point cloud combining UAV images

    Science.gov (United States)

    Liu, Huiyun; Yan, Yangyang; Zhang, Xitong; Wu, Zhenzhen

    2016-03-01

    It is a big challenge capturing and modeling 3D information of the built environment. A number of techniques and technologies are now in use. These include GPS, and photogrammetric application and also remote sensing applications. The experiment uses multi-source data fusion technology for 3D scene reconstruction based on the principle of 3D laser scanning technology, which uses the laser point cloud data as the basis and Digital Ortho-photo Map as an auxiliary, uses 3DsMAX software as a basic tool for building three-dimensional scene reconstruction. The article includes data acquisition, data preprocessing, 3D scene construction. The results show that the 3D scene has better truthfulness, and the accuracy of the scene meet the need of 3D scene construction.

  19. X3d2pov. Traductor of X3D to POV-Ray

    Directory of Open Access Journals (Sweden)

    Andrea Castellanos Mendoza

    2011-01-01

    Full Text Available High-quality and low-quality interactive graphics represent two different approaches to computer graphics’ 3D object representation. The former is mainly used to produce high computational cost movie animation. The latter is used for producing interactive scenes as part of virtual reality environments. Many file format specifications have appeared to satisfy underlying model needs; POV-ray (persistence of vision is an open source specification for rendering photorealistic images with the ray tracer algorithm and X3D (extendable 3D as the VRML successor standard for producing web virtual-reality environments written in XML. X3D2POV has been introduced to render high-quality images from an X3D scene specification; it is a grammar translator tool from X3D code to POV-ray code.

  20. Design and Implementation of 3D Model Database for General-Purpose 3D GIS

    Institute of Scientific and Technical Information of China (English)

    XU Weiping; ZHU Qing; DU Zhiqiang; ZHANG Yeting

    2010-01-01

    To improve the reusability of three-dimensional (3D) models and simplify the complexity of natural scene reconstruction, this paper presents a 3D model database for universal 3D GIS. After the introduction of its extensible function architecture,accompanied by the conclusion of implicit spatial-temporal hierarchy of models in any reconstructed scene of 3D GIS for general purpose, several key issues are discussed in detail, such as the storage and management of 3D models and related retrieval and load method, as well as the interfaces for further on-demand development. Finally, the validity and feasibility of this model database are proved through its application in the development of 3D visualization system of railway operation.

  1. The Use of Airborne and Mobile Laser Scanning for Modeling Railway Environments in 3D

    Directory of Open Access Journals (Sweden)

    Lingli Zhu

    2014-04-01

    Full Text Available This paper presents methods for 3D modeling of railway environments from airborne laser scanning (ALS and mobile laser scanning (MLS. Conventionally, aerial data such as ALS and aerial images were utilized for 3D model reconstruction. However, 3D model reconstruction only from aerial-view datasets can not meet the requirement of advanced visualization (e.g., walk-through visualization. In this paper, objects in a railway environment such as the ground, railroads, buildings, high voltage powerlines, pylons and so on were reconstructed and visualized in real-life experiments in Kokemaki, Finland. Because of the complex terrain and scenes in railway environments, 3D modeling is challenging, especially for high resolution walk-through visualizations. However, MLS has flexible platforms and provides the possibility of acquiring data in a complex environment in high detail by combining with ALS data to produce complete 3D scene modeling. A procedure from point cloud classification to 3D reconstruction and 3D visualization is introduced, and new solutions are proposed for object extraction, 3D reconstruction, model simplification and final model 3D visualization. Image processing technology is used for the classification, 3D randomized Hough transformations (RHT are used for the planar detection, and a quadtree approach is used for the ground model simplification. The results are visually analyzed by a comparison with an orthophoto at a 20 cm ground resolution.

  2. 基于3D-CT、4D-CT和锥形束CT定义的非小细胞肺癌内靶区比较%Comparison of internal target volumes defined on three-dimensional CT, four-dimensional CT and cone-beam CT images of non-small-cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    李奉祥; 李建彬; 马志芳; 张英杰; 邢军; 戚焕鹏; 尚东平; 余宁莎

    2014-01-01

    Objective To compare positional and volumetric differences between internal target volumes defined on three-dimensional CT (3D-CT),four-dimensional CT (4D-CT) and cone-beam CT (CBCT) images of non-small-cell lung cancer.Methods Thirty-one patients with NSCLC sequentially underwent 3D-CT and 4D-CT simulation scans of the thorax during free breathing.A 3D conformal treatment plan was created based on 3D-CT.The CBCT images were obtained in the first fraction and registered to the planning CT using the bony anatomy registration.All target volumes were contoured with the same protocol by a radiation oncologist.GTVs were contoured based on 3D-CT,maximum intensity projection (MIP) of 4D-CT and CBCT.CTV3D,ITVMIPand ITVCBCTWere defined with a margin of 7 mm accounting for microscopic disease.ITV10mm and ITV5 mm were defined based on CTV3D.ITV10 mm with a margin of 5 mm in LR,AP directions and 10 mm in CC direction,while ITV5 mm with an isotropic internal margin (IM) of 5 mm.The differences in the position,size,Dice's similarity coefficient (DSC) and inclusion relation of different volumes were compared.Results The median size ratio of ITV10 mm,ITV5mm,ITVMIPto ITVCBCTwere 2.33,1.88,1.03 respectively for tumors in the upper lobe and 2.13,1.76,1.10 respectively for tumors in the middle-lower lobe.The median DSC of ITVMIP and ITVCBCT(0.83) was greater than that of ITV10 mm and ITVcBcT (0.6) and ITV5 mm and ITVCBCT (0.66) for all patients (Z =-4.86,-4.86,P < 0.05).The median percentages of ITVCBCT not included in ITV10 mm,ITV5 mm,ITVMIPwere 0.10%,1.63% and 15.21% respectively,while the median percentage of ITV10mm,ITV5mm,ITVMIP,not included in ITVCBCT were 57.08%,48.89% and 20.04%,respectively.The median percentage of ITVCBCT not included in ITV5 mm was 1.24% for tumors in the upper lobe and 5.8% for tumors in the middle-lower lobe.Conclusions The individual ITV based on 4D-CT can't encompass the ITV based on CBCT effectively.The use of the ITV derived from 4

  3. Body Language Advanced 3D Character Rigging

    CERN Document Server

    Allen, Eric; Fong, Jared; Sidwell, Adam G

    2011-01-01

    Whether you're a professional Character TD or just like to create 3D characters, this detailed guide reveals the techniques you need to create sophisticated 3D character rigs that range from basic to breathtaking. Packed with step-by-step instructions and full-color illustrations, Body Language walks you through rigging techniques for all the body parts to help you create realistic and believable movements in every character you design. You'll learn advanced rigging concepts that involve MEL scripting and advanced deformation techniques and even how to set up a character pipeline.

  4. 3D Membrane Imaging and Porosity Visualization

    KAUST Repository

    Sundaramoorthi, Ganesh

    2016-03-03

    Ultrafiltration asymmetric porous membranes were imaged by two microscopy methods, which allow 3D reconstruction: Focused Ion Beam and Serial Block Face Scanning Electron Microscopy. A new algorithm was proposed to evaluate porosity and average pore size in different layers orthogonal and parallel to the membrane surface. The 3D-reconstruction enabled additionally the visualization of pore interconnectivity in different parts of the membrane. The method was demonstrated for a block copolymer porous membrane and can be extended to other membranes with application in ultrafiltration, supports for forward osmosis, etc, offering a complete view of the transport paths in the membrane.

  5. Immersive 3D geovisualisation in higher education

    Science.gov (United States)

    Philips, Andrea; Walz, Ariane; Bergner, Andreas; Graeff, Thomas; Heistermann, Maik; Kienzler, Sarah; Korup, Oliver; Lipp, Torsten; Schwanghart, Wolfgang; Zeilinger, Gerold

    2014-05-01

    Through geovisualisation we explore spatial data, we analyse it towards a specific questions, we synthesise results, and we present and communicate them to a specific audience (MacEachren & Kraak 1997). After centuries of paper maps, the means to represent and visualise our physical environment and its abstract qualities have changed dramatically since the 1990s - and accordingly the methods how to use geovisualisation in teaching. Whereas some people might still consider the traditional classroom as ideal setting for teaching and learning geographic relationships and its mapping, we used a 3D CAVE (computer-animated virtual environment) as environment for a problem-oriented learning project called "GEOSimulator". Focussing on this project, we empirically investigated, if such a technological advance like the CAVE make 3D visualisation, including 3D geovisualisation, not only an important tool for businesses (Abulrub et al. 2012) and for the public (Wissen et al. 2008), but also for educational purposes, for which it had hardly been used yet. The 3D CAVE is a three-sided visualisation platform, that allows for immersive and stereoscopic visualisation of observed and simulated spatial data. We examined the benefits of immersive 3D visualisation for geographic research and education and synthesized three fundamental technology-based visual aspects: First, the conception and comprehension of space and location does not need to be generated, but is instantaneously and intuitively present through stereoscopy. Second, optical immersion into virtual reality strengthens this spatial perception which is in particular important for complex 3D geometries. And third, a significant benefit is interactivity, which is enhanced through immersion and allows for multi-discursive and dynamic data exploration and knowledge transfer. Based on our problem-oriented learning project, which concentrates on a case study on flood risk management at the Wilde Weisseritz in Germany, a river

  6. The Local Universe: Galaxies in 3D

    CERN Document Server

    Koribalski, B S

    2016-01-01

    Here I present results from individual galaxy studies and galaxy surveys in the Local Universe with particular emphasis on the spatially resolved properties of neutral hydrogen gas. The 3D nature of the data allows detailed studies of the galaxy morphology and kinematics, their relation to local and global star formation as well as galaxy environments. I use new 3D visualisation tools to present multi-wavelength data, aided by tilted-ring models of the warped galaxy disks. Many of the algorithms and tools currently under development are essential for the exploration of upcoming large survey data, but are also highly beneficial for the analysis of current galaxy surveys.

  7. Tekstiilit 3d-mallinnuksessa ja -animaatiossa

    OpenAIRE

    Lahti, Toni

    2007-01-01

    Opinnäytetyön tarkoituksena oli tutkia tekstiilien 3D-mallinnusta ja animaatiota. Hahmon vaatetus on työn pääroolissa ja esimerkit liittyvät useimmiten vaatekappaleisiin. Vaatteet ovat mielenkiintoisimpia ja vaikeimmin toteutettavia tekstiilejä.; Alkuun täytyi tutustua tekstiilien luonteeseen. Tekstiilien erilaiset rakenteet vaikuttavat siihen kuinka tekstiili käyttäytyy. Tämän takia työssä esitellään kudotun ja neulotun tekstiilin valmistus ja niiden perusrakenteet.; 3D-mallinnettujen tekst...

  8. Factorization of the 3d superconformal index

    CERN Document Server

    Hwang, Chiung; Park, Jaemo

    2012-01-01

    We prove that 3d superconformal index for general $\\mathcal N=2$ U(N) gauge group with fundamentals and anti-fundmentals with/without Chern-Simons terms is factorized into vortex and anti-vortex partition function. We show that for simple cases, 3d vortex partition function coincides with a suitable topological open string partition function. We provide much more elegant derivation at the index level for $\\mathcal N=2$ Seiberg-like dualities of unitary gauge groups with fundamantal matters and $\\mathcal N=4$ mirror symmetry

  9. SURVEY AND ANALYSIS OF 3D STEGANOGRAPHY

    Directory of Open Access Journals (Sweden)

    K .LAKSHMI

    2011-01-01

    Full Text Available Steganography is the science that involves communicating secret data in an appropriate multimedia carrier, eg., images, audio, and video files. The remarkable growth in computational power, increase in current security approaches and techniques are often used together to ensures security of the secret message. Steganography’s ultimate objectives, which are capacity and invisibility, are the main factors that separate it from related techniques. In this paper we focus on 3D models of steganography and conclude with some review analysis of high capacity data hiding and low-distortion 3D models.

  10. Building 3D models with modo 701

    CERN Document Server

    García, Juan Jiménez

    2013-01-01

    The book will focus on creating a sample application throughout the book, building gradually from chapter to chapter.If you are new to the 3D world, this is the key to getting started with a modern software in the modern visualization industry. Only minimal previous knowledge is needed.If you have some previous knowledge about 3D content creation, you will find useful tricks that will differentiate the learning experience from a typical user manual from this, a practical guide concerning the most common problems and situations and how to solve them.

  11. 3D Modeling Engine Representation Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Steven Prescott; Ramprasad Sampath; Curtis Smith; Timothy Yang

    2014-09-01

    Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This summary report addressed the methods, techniques, and resources used to develop a 3D modeling engine to represent risk analysis simulation for advanced small modular reactor structures and components. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

  12. Local orientation measurements in 3D

    DEFF Research Database (Denmark)

    Juul Jensen, D.

    2005-01-01

    The 3 Dimensional X-Ray Diffraction (3DXRD) method is presented and its potentials illustrated by examples. The 3DXRD method is based on diffraction of high energy X-rays and allows fast and nondestructive 3D characterization of the local distribution of crystallographic orientations in the bulk....... The spatial resolution is about 1x5x5 mu m but diffraction from microstructural elements as small as 100 nm may be monitored within suitable samples. As examples of the use of the 3DXRD method, it is chosen to present results for complete 3D characterization of grain structures, in-situ "filming...

  13. The Galicia 3D experiment: an Introduction.

    Science.gov (United States)

    Reston, Timothy; Martinez Loriente, Sara; Holroyd, Luke; Merry, Tobias; Sawyer, Dale; Morgan, Julia; Jordan, Brian; Tesi Sanjurjo, Mari; Alexanian, Ara; Shillington, Donna; Gibson, James; Minshull, Tim; Karplus, Marianne; Bayracki, Gaye; Davy, Richard; Klaeschen, Dirk; Papenberg, Cord; Ranero, Cesar; Perez-Gussinye, Marta; Martinez, Miguel

    2014-05-01

    In June and July 2013, scientists from 8 institutions took part in the Galicia 3D seismic experiment, the first ever crustal -scale academic 3D MCS survey over a rifted margin. The aim was to determine the 3D structure of a critical portion of the west Galicia rifted margin. At this margin, well-defined tilted fault blocks, bound by west-dipping faults and capped by synrift sediments are underlain by a bright reflection, undulating on time sections, termed the S reflector and thought to represent a major detachment fault of some kind. Moving west, the crust thins to zero thickness and mantle is unroofed, as evidence by the "Peridotite Ridge" first reported at this margin, but since observed at many other magma-poor margins. By imaging such a margin in detail, the experiment aimed to resolve the processes controlling crustal thinning and mantle unroofing at a type example magma poor margin. The experiment set out to collect several key datasets: a 3D seismic reflection volume measuring ~20x64km and extending down to ~14s TWT, a 3D ocean bottom seismometer dataset suitable for full wavefield inversion (the recording of the complete 3D seismic shots by 70 ocean bottom instruments), the "mirror imaging" of the crust using the same grid of OBS, a single 2D combined reflection/refraction profile extending to the west to determine the transition from unroofed mantle to true oceanic crust, and the seismic imaging of the water column, calibrated by regular deployment of XBTs to measure the temperature structure of the water column. We collected 1280 km2 of seismic reflection data, consisting of 136533 shots recorded on 1920 channels, producing 260 million seismic traces, each ~ 14s long. This adds up to ~ 8 terabytes of data, representing, we believe, the largest ever academic 3D MCS survey in terms of both the area covered and the volume of data. The OBS deployment was the largest ever within an academic 3D survey.

  14. Delft3D turbine turbulence module

    Energy Technology Data Exchange (ETDEWEB)

    2016-04-18

    The DOE has funded Sandia National Labs (SNL) to develop an open-source modeling tool to guide the design and layout of marine hydrokinetic (MHK) arrays to maximize power production while minimizing environmental effects. This modeling framework simulates flows through and around a MHK arrays while quantifying environmental responses. As an augmented version of the Dutch company, Deltares’s, environmental hydrodynamics code, Delft3D, SNL-Delft3D includes a new module that simulates energy conversion (momentum withdrawal) by MHK devices with commensurate changes in the turbulent kinetic energy and its dissipation rate.

  15. Identifying Suitable Projection Parameters and Display Configurations for Mobile True-3D Displays

    OpenAIRE

    Serrano, Marcos; Hildebrandt, Dale; Subramanian, Sriram; Irani, Pourang

    2014-01-01

    International audience; We present a two-part exploration on mobile true-3D displays, i.e. displaying volumetric 3D content in mid-air. We first identify and study the parameters of a mobile true-3D projection, in terms of the projection's distance to the phone, angle to the phone, display volume and position within the display. We identify suitable parameters and constraints, which we propose as requirements for developing mobile true-3D systems. We build on the first outcomes to explore met...

  16. 3D-2D ultrasound feature-based registration for navigated prostate biopsy: A feasibility study

    OpenAIRE

    Selmi, Sonia,; Promayon, Emmanuel; Troccaz, Jocelyne

    2016-01-01

    International audience; The aim of this paper is to describe a 3D-2D ultrasound feature-based registration method for navigated prostate biopsy and its first results obtained on patient data. A system combining a low-cost tracking system and a 3D-2D registration algorithm was designed. The proposed 3D-2D registration method combines geometric and image-based distances. After extracting features from ultrasound images, 3D and 2D features within a defined distance are matched using an intensity...

  17. Analysis of the expected density of internal equilibria in random evolutionary multi-player multi-strategy games.

    Science.gov (United States)

    Duong, Manh Hong; Han, The Anh

    2016-12-01

    In this paper, we study the distribution and behaviour of internal equilibria in a d-player n-strategy random evolutionary game where the game payoff matrix is generated from normal distributions. The study of this paper reveals and exploits interesting connections between evolutionary game theory and random polynomial theory. The main contributions of the paper are some qualitative and quantitative results on the expected density, [Formula: see text], and the expected number, E(n, d), of (stable) internal equilibria. Firstly, we show that in multi-player two-strategy games, they behave asymptotically as [Formula: see text] as d is sufficiently large. Secondly, we prove that they are monotone functions of d. We also make a conjecture for games with more than two strategies. Thirdly, we provide numerical simulations for our analytical results and to support the conjecture. As consequences of our analysis, some qualitative and quantitative results on the distribution of zeros of a random Bernstein polynomial are also obtained.

  18. MRS3D: 3D Spherical Wavelet Transform on the Sphere

    Science.gov (United States)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2011-12-01

    Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D Spherical Fourier-Bessel (SFB) analysis is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. We present a new fast Discrete Spherical Fourier-Bessel Transform (DSFBT) based on both a discrete Bessel Transform and the HEALPIX angular pixelisation scheme. We tested the 3D wavelet transform and as a toy-application, applied a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and found we can successfully remove noise without much loss to the large scale structure. The new spherical 3D isotropic wavelet transform, called MRS3D, is ideally suited to analysing and denoising future 3D spherical cosmological surveys; it uses a novel discrete spherical Fourier-Bessel Transform. MRS3D is based on two packages, IDL and Healpix and can be used only if these two packages have been installed.

  19. PB3D: A new code for edge 3-D ideal linear peeling-ballooning stability

    Science.gov (United States)

    Weyens, T.; Sánchez, R.; Huijsmans, G.; Loarte, A.; García, L.

    2017-02-01

    A new numerical code PB3D (Peeling-Ballooning in 3-D) is presented. It implements and solves the intermediate-to-high-n ideal linear magnetohydrodynamic stability theory extended to full edge 3-D magnetic toroidal configurations in previous work [1]. The features that make PB3D unique are the assumptions on the perturbation structure through intermediate-to-high mode numbers n in general 3-D configurations, while allowing for displacement of the plasma edge. This makes PB3D capable of very efficient calculations of the full 3-D stability for the output of multiple equilibrium codes. As first verification, it is checked that results from the stability code MISHKA [2], which considers axisymmetric equilibrium configurations, are accurately reproduced, and these are then successfully extended to 3-D configurations, through comparison with COBRA [3], as well as using checks on physical consistency. The non-intuitive 3-D results presented serve as a tentative first proof of the capabilities of the code.

  20. Scalable 3D GIS environment managed by 3D-XML-based modeling

    Science.gov (United States)

    Shi, Beiqi; Rui, Jianxun; Chen, Neng

    2008-10-01

    Nowadays, the namely 3D GIS technologies become a key factor in establishing and maintaining large-scale 3D geoinformation services. However, with the rapidly increasing size and complexity of the 3D models being acquired, a pressing needed for suitable data management solutions has become apparent. This paper outlines that storage and exchange of geospatial data between databases and different front ends like 3D models, GIS or internet browsers require a standardized format which is capable to represent instances of 3D GIS models, to minimize loss of information during data transfer and to reduce interface development efforts. After a review of previous methods for spatial 3D data management, a universal lightweight XML-based format for quick and easy sharing of 3D GIS data is presented. 3D data management based on XML is a solution meeting the requirements as stated, which can provide an efficient means for opening a new standard way to create an arbitrary data structure and share it over the Internet. To manage reality-based 3D models, this paper uses 3DXML produced by Dassault Systemes. 3DXML uses opening XML schemas to communicate product geometry, structure and graphical display properties. It can be read, written and enriched by standard tools; and allows users to add extensions based on their own specific requirements. The paper concludes with the presentation of projects from application areas which will benefit from the functionality presented above.

  1. Innovations in 3D printing: a 3D overview from optics to organs.

    Science.gov (United States)

    Schubert, Carl; van Langeveld, Mark C; Donoso, Larry A

    2014-02-01

    3D printing is a method of manufacturing in which materials, such as plastic or metal, are deposited onto one another in layers to produce a three dimensional object, such as a pair of eye glasses or other 3D objects. This process contrasts with traditional ink-based printers which produce a two dimensional object (ink on paper). To date, 3D printing has primarily been used in engineering to create engineering prototypes. However, recent advances in printing materials have now enabled 3D printers to make objects that are comparable with traditionally manufactured items. In contrast with conventional printers, 3D printing has the potential to enable mass customisation of goods on a large scale and has relevance in medicine including ophthalmology. 3D printing has already been proved viable in several medical applications including the manufacture of eyeglasses, custom prosthetic devices and dental implants. In this review, we discuss the potential for 3D printing to revolutionise manufacturing in the same way as the printing press revolutionised conventional printing. The applications and limitations of 3D printing are discussed; the production process is demonstrated by producing a set of eyeglass frames from 3D blueprints.

  2. Parameterization adaption for 3D shape optimization in aerodynamics

    Directory of Open Access Journals (Sweden)

    Badr Abou El Majd

    2013-10-01

    Full Text Available When solving a PDE problem numerically, a certain mesh-refinement process is always implicit, and very classically, mesh adaptivity is a very effective means to accelerate grid convergence. Similarly, when optimizing a shape by means of an explicit geometrical representation, it is natural to seek for an analogous concept of parameterization adaptivity. We propose here an adaptive parameterization for three-dimensional optimum design in aerodynamics by using the so-called “Free-Form Deformation” approach based on 3D tensorial Bézier parameterization. The proposed procedure leads to efficient numerical simulations with highly reduced computational costs.[How to cite this article:  Majd, B.A.. 2014. Parameterization adaption for 3D shape optimization in aerodynamics. International Journal of Science and Engineering, 6(1:61-69. Doi: 10.12777/ijse.6.1.61-69

  3. Effect of UV Radiation by Projectors on 3D Printing

    Directory of Open Access Journals (Sweden)

    Kovalenko Iaroslav

    2017-01-01

    Full Text Available Polymers that solidify under light radiation are commonly used in digital light processing (DLP 3D printing. A wide range of photopolymers use photoinitiators that react to radiation in range of ultraviolet (UV wavelength. In the present study we provided measurement of radiant fluence in the UV wavelength range from 280 nm to 400 nm for two data projectors and compared effect of radiation on quality of 3D printing. One projector is commonly used DLP projector with high energy lamp. Second one is an industrial projector, in which RGB light emitting diodes (LEDs are replaced by UV LEDs with wattage at the level of 3.6 % of the first one. Achieved data confirmed uneven distribution of radiant energy on illuminated area. These results validate, that undesired heating light causes internal stress inside built models that causes defects in final products.

  4. Efficacy of Crest Herbal Toothpaste in “Clearing Internal Heat”: A Randomized, Double-Blind Clinical Study

    Directory of Open Access Journals (Sweden)

    Jia-Xu Chen

    2013-01-01

    Full Text Available Objective. Evaluation of the efficacy of Crest Herbal Crystal Toothpaste in “clearing internal heat.” Methods. This was a randomized, double-blind, controlled parallel design clinical test of a product that was already on the market. 72 subjects were randomly assigned to control group (group A with Colgate Herbal Salty Toothpaste or treatment group (group B with Crest Herbal Crystal Toothpaste with ratio of 1 : 2. Subjects were instructed to brush with 1g toothpaste for 2 minutes each time, 2 times per day in a 4-aweek test period; measurement with the rating scale on the efficacy of “clearing internal heat” for the herbal toothpaste was done at baseline, 2 weeks, and 4 weeks of toothpaste usage. Results. The rating scale on efficacy of “clearing internal heat” for the herbal toothpaste reveals that the primitive points of 72-case intention-to-treat (ITT analysis and 67-case per-protocol (PP analysis for subjects in group A and subjects in group B were found to be reduced progressively with statistical significance (P<0.05. The overall effective rates for group A and group B were, respectively, 62.50%, 56.25% (ITT and 62.50%, 60.64% (PP. The statistical results indicated that the symptoms of fire-heat for both groups of subjects have been improved after application of toothpaste. Conclusion. The efficacy of Crest Herbal Crystal Toothpaste in “clearing internal heat” was confirmed by the trial as compared to Colgate Herbal Salty Toothpaste. And its efficacy was objectively evaluated by the rating scale on efficacy of “clearing internal heat.”

  5. A 3-D constitutive model for pressure-dependent phase transformation of porous shape memory alloys.

    Science.gov (United States)

    Ashrafi, M J; Arghavani, J; Naghdabadi, R; Sohrabpour, S

    2015-02-01

    Porous shape memory alloys (SMAs) exhibit the interesting characteristics of porous metals together with shape memory effect and pseudo-elasticity of SMAs that make them appropriate for biomedical applications. In this paper, a 3-D phenomenological constitutive model for the pseudo-elastic behavior and shape memory effect of porous SMAs is developed within the framework of irreversible thermodynamics. Comparing to micromechanical and computational models, the proposed model is computationally cost effective and predicts the behavior of porous SMAs under proportional and non-proportional multiaxial loadings. Considering the pressure dependency of phase transformation in porous SMAs, proper internal variables, free energy and limit functions are introduced. With the aim of numerical implementation, time discretization and solution algorithm for the proposed model are also presented. Due to lack of enough experimental data on multiaxial loadings of porous SMAs, we employ a computational simulation method (CSM) together with available experimental data to validate the proposed constitutive model. The method is based on a 3-D finite element model of a representative volume element (RVE) with random pores pattern. Good agreement between the numerical predictions of the model and CSM results is observed for elastic and phase transformation behaviors in various thermomechanical loadings.

  6. Semi-automatic segmentation for 3D motion analysis of the tongue with dynamic MRI.

    Science.gov (United States)

    Lee, Junghoon; Woo, Jonghye; Xing, Fangxu; Murano, Emi Z; Stone, Maureen; Prince, Jerry L

    2014-12-01

    Dynamic MRI has been widely used to track the motion of the tongue and measure its internal deformation during speech and swallowing. Accurate segmentation of the tongue is a prerequisite step to define the target boundary and constrain the tracking to tissue points within the tongue. Segmentation of 2D slices or 3D volumes is challenging because of the large number of slices and time frames involved in the segmentation, as well as the incorporation of numerous local deformations that occur throughout the tongue during motion. In this paper, we propose a semi-automatic approach to segment 3D dynamic MRI of the tongue. The algorithm steps include seeding a few slices at one time frame, propagating seeds to the same slices at different time frames using deformable registration, and random walker segmentation based on these seed positions. This method was validated on the tongue of five normal subjects carrying out the same speech task with multi-slice 2D dynamic cine-MR images obtained at three orthogonal orientations and 26 time frames. The resulting semi-automatic segmentations of a total of 130 volumes showed an average dice similarity coefficient (DSC) score of 0.92 with less segmented volume variability between time frames than in manual segmentations.

  7. 3D real-space calculations of continuum response

    CERN Document Server

    Nakatsukasa, T; Nakatsukasa, Takashi; Yabana, Kazuhiro

    2001-01-01

    We present linear response theories in the continuum capable of describing continuum spectra and dynamical correlations of finite systems with no spatial symmetry. Our formulation is essentially the same as the continuum random-phase approximation (RPA) but suitable for uniform grid representation in the three-dimensional (3D) Cartesian coordinate. Effects of the continuum are taken into account by solving equations iteratively with a retarded Green's function. The method is applied to photoabsorption spectra in small molecules (acetylene and ethylene) and inelastic electron scattering from a deformed nucleus 12C.

  8. RELAP5-3D Developer Guidelines and Programming Practices

    Energy Technology Data Exchange (ETDEWEB)

    Dr. George L Mesina

    2014-03-01

    Our ultimate goal is to create and maintain RELAP5-3D as the best software tool available to analyze nuclear power plants. This begins with writing excellent programming and requires thorough testing. This document covers development of RELAP5-3D software, the behavior of the RELAP5-3D program that must be maintained, and code testing. RELAP5-3D must perform in a manner consistent with previous code versions with backward compatibility for the sake of the users. Thus file operations, code termination, input and output must remain consistent in form and content while adding appropriate new files, input and output as new features are developed. As computer hardware, operating systems, and other software change, RELAP5-3D must adapt and maintain performance. The code must be thoroughly tested to ensure that it continues to perform robustly on the supported platforms. The coding must be written in a consistent manner that makes the program easy to read to reduce the time and cost of development, maintenance and error resolution. The programming guidelines presented her are intended to institutionalize a consistent way of writing FORTRAN code for the RELAP5-3D computer program that will minimize errors and rework. A common format and organization of program units creates a unifying look and feel to the code. This in turn increases readability and reduces time required for maintenance, development and debugging. It also aids new programmers in reading and understanding the program. Therefore, when undertaking development of the RELAP5-3D computer program, the programmer must write computer code that follows these guidelines. This set of programming guidelines creates a framework of good programming practices, such as initialization, structured programming, and vector-friendly coding. It sets out formatting rules for lines of code, such as indentation, capitalization, spacing, etc. It creates limits on program units, such as subprograms, functions, and modules. It

  9. 3D Printing in Zero-G ISS Technology Demonstration

    Science.gov (United States)

    Johnston, Mallory M.; Werkheiser, Mary J.; Cooper, Kenneth G.; Snyder, Michael P.; Edmunson, Jennifer E.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) has a long term strategy to fabricate components and equipment on-demand for manned missions to the Moon, Mars, and beyond. To support this strategy, NASA and Made in Space, Inc. are developing the 3D Printing In Zero-G payload as a Technology Demonstration for the International Space Station. The 3D Printing In Zero-G experiment will be the first machine to perform 3D printing in space. The greater the distance from Earth and the longer the mission duration, the more difficult resupply becomes; this requires a change from the current spares, maintenance, repair, and hardware design model that has been used on the International Space Station up until now. Given the extension of the ISS Program, which will inevitably result in replacement parts being required, the ISS is an ideal platform to begin changing the current model for resupply and repair to one that is more suitable for all exploration missions. 3D Printing, more formally known as Additive Manufacturing, is the method of building parts/ objects/tools layer-by-layer. The 3D Print experiment will use extrusion-based additive manufacturing, which involves building an object out of plastic deposited by a wire-feed via an extruder head. Parts can be printed from data files loaded on the device at launch, as well as additional files uplinked to the device while on-orbit. The plastic extrusion additive manufacturing process is a low-energy, low-mass solution to many common needs on board the ISS. The 3D Print payload will serve as the ideal first step to proving that process in space. It is unreasonable to expect NASA to launch large blocks of material from which parts or tools can be traditionally machined, and even more unreasonable to fly up specialized manufacturing hardware to perform the entire range of function traditionally machining requires. The technology to produce parts on demand, in space, offers unique design options that are not possible

  10. A biochemical/biophysical 3D FE intervertebral disc model.

    Science.gov (United States)

    Schroeder, Y; Huyghe, J M; van Donkelaar, C C; Ito, K

    2010-10-01

    Present research focuses on different strategies to preserve the degenerated disc. To assure long-term success of novel approaches, favorable mechanical conditions in the disc tissue are essential. To evaluate these, a model is required that can determine internal mechanical conditions which cannot be directly measured as a function of assessable biophysical characteristics. Therefore, the objective is to evaluate if constitutive and material laws acquired on isolated samples of nucleus and annulus tissue can be used directly in a whole-organ 3D FE model to describe intervertebral disc behavior. The 3D osmo-poro-visco-hyper-elastic disc (OVED) model describes disc behavior as a function of annulus and nucleus tissue biochemical composition, organization and specific constituent properties. The description of the 3D collagen network was enhanced to account for smaller fibril structures. Tissue mechanical behavior tests on isolated nucleus and annulus samples were simulated with models incorporating tissue composition to calculate the constituent parameter values. The obtained constitutive laws were incorporated into the whole-organ model. The overall behavior and disc properties of the model were corroborated against in vitro creep experiments of human L4/L5 discs. The OVED model simulated isolated tissue experiments on confined compression and uniaxial tensile test and whole-organ disc behavior. This was possible, provided that secondary fiber structures were accounted for. The fair agreement (radial bulge, axial creep deformation and intradiscal pressure) between model and experiment was obtained using constitutive properties that are the same for annulus and nucleus. Both tissue models differed in the 3D OVED model only by composition. The composition-based modeling presents the advantage of reducing the numbers of material parameters to a minimum and to use tissue composition directly as input. Hence, this approach provides the possibility to describe internal

  11. Planetary Torque in 3D Isentropic Disks

    CERN Document Server

    Fung, Jeffrey; Lega, Elena; Velasco, David

    2016-01-01

    Planet migration is inherently a three-dimensional (3D) problem, because Earth-size planetary cores are deeply embedded in protoplanetary disks. Simulations of these 3D disks remain challenging due to the steep requirement in resolution. Using two different hydrodynamics code, FARGO3D and PEnGUIn, we simulate disk-planet interaction for a 1 to 5 Earth-mass planet embedded in an isentropic disk. We measure the torque on the planet and ensure that the measurements are converged both in resolution and between the two codes. We find that the torque is independent of the smoothing length of the planet's potential ($r_{\\rm s}$), and that it has a weak dependence on the adiabatic index of the gaseous disk ($\\gamma$). The torque values correspond to an inward migration rate qualitatively similar to previous linear calculations. We perform additional simulations with explicit radiative transfer using FARGOCA, and again find agreement between 3D simulations and existing torque formulae. We also present the flow pattern...

  12. 3D gender recognition using cognitive modeling

    DEFF Research Database (Denmark)

    Fagertun, Jens; Andersen, Tobias; Hansen, Thomas

    2013-01-01

    We use 3D scans of human faces and cognitive modeling to estimate the “gender strength”. The “gender strength” is a continuous class variable of the gender, superseding the traditional binary class labeling. To visualize some of the visual trends humans use when performing gender classification, ...

  13. Rubber Impact on 3D Textile Composites

    Science.gov (United States)

    Heimbs, Sebastian; Van Den Broucke, Björn; Duplessis Kergomard, Yann; Dau, Frederic; Malherbe, Benoit

    2012-06-01

    A low velocity impact study of aircraft tire rubber on 3D textile-reinforced composite plates was performed experimentally and numerically. In contrast to regular unidirectional composite laminates, no delaminations occur in such a 3D textile composite. Yarn decohesions, matrix cracks and yarn ruptures have been identified as the major damage mechanisms under impact load. An increase in the number of 3D warp yarns is proposed to improve the impact damage resistance. The characteristic of a rubber impact is the high amount of elastic energy stored in the impactor during impact, which was more than 90% of the initial kinetic energy. This large geometrical deformation of the rubber during impact leads to a less localised loading of the target structure and poses great challenges for the numerical modelling. A hyperelastic Mooney-Rivlin constitutive law was used in Abaqus/Explicit based on a step-by-step validation with static rubber compression tests and low velocity impact tests on aluminium plates. Simulation models of the textile weave were developed on the meso- and macro-scale. The final correlation between impact simulation results on 3D textile-reinforced composite plates and impact test data was promising, highlighting the potential of such numerical simulation tools.

  14. 3D Urban Visualization with LOD Techniques

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In 3D urban visualization, large data volumes related to buildings are a major factor that limits the delivery and browsing speed in a web-based computer system. This paper proposes a new approach based on the level of detail (LOD) technique advanced in 3D visualization in computer graphics. The key idea of LOD technique is to generalize details of object surfaces without losing details for delivery and displaying objects. This technique has been successfully used in visualizing one or a few multiple objects in films and other industries. However, applying the technique to 3D urban visualization requires an effective generalization method for urban buildings. Conventional two-dimensional (2D) generalization method at different scales provides a good generalization reference for 3D urban visualization. Yet, it is difficult to determine when and where to retrieve data for displaying buildings. To solve this problem, this paper defines an imaging scale point and image scale region for judging when and where to get the right data for visualization. The results show that the average response time of view transformations is much decreased.

  15. Pyrolytic 3D Carbon Microelectrodes for Electrochemistry

    DEFF Research Database (Denmark)

    Hemanth, Suhith; Caviglia, Claudia; Amato, Letizia;

    2016-01-01

    by pyrolysis at 900ºC for 1h was developed. With this process, microelectrode chips with a three electrode configuration were fabricated and characterized with cyclic voltammetry (CV) using a 10mM potassium ferri-ferrocyanide redox probe in a custom made batch system with magnetic clamping. The 3D pyrolytic...

  16. 3D Printing and Global Value Chains

    DEFF Research Database (Denmark)

    Rehnberg, Märtha; Ponte, Stefano

    From the birth of industrialization, access to new technology has been a decisive factor in how value added is created and distributed across networks of global production. This article provides a balanced assessment of the potential impact that one of these technologies (3D printing, or 3DP) may...

  17. Techniques and architectures for 3D interaction

    NARCIS (Netherlands)

    De Haan, G.

    2009-01-01

    Spatial scientific datasets are all around us, and 3D visualization is a powerful tool to explore details and structures within them. When dealing with complex spatial structures, interactive Virtual Reality (VR) systems can potentially improve exploration over desktop-based systems. However, from p

  18. Collaborative annotation of 3D crystallographic models.

    Science.gov (United States)

    Hunter, J; Henderson, M; Khan, I

    2007-01-01

    This paper describes the AnnoCryst system-a tool that was designed to enable authenticated collaborators to share online discussions about 3D crystallographic structures through the asynchronous attachment, storage, and retrieval of annotations. Annotations are personal comments, interpretations, questions, assessments, or references that can be attached to files, data, digital objects, or Web pages. The AnnoCryst system enables annotations to be attached to 3D crystallographic models retrieved from either private local repositories (e.g., Fedora) or public online databases (e.g., Protein Data Bank or Inorganic Crystal Structure Database) via a Web browser. The system uses the Jmol plugin for viewing and manipulating the 3D crystal structures but extends Jmol by providing an additional interface through which annotations can be created, attached, stored, searched, browsed, and retrieved. The annotations are stored on a standardized Web annotation server (Annotea), which has been extended to support 3D macromolecular structures. Finally, the system is embedded within a security framework that is capable of authenticating users and restricting access only to trusted colleagues.

  19. Infra Red 3D Computer Mouse

    DEFF Research Database (Denmark)

    Harbo, Anders La-Cour; Stoustrup, Jakob

    2000-01-01

    of bandwidth, the signals are designed by means of the wavelet and the Rudin-Shapiro transforms. This also allows for easy separation of simultaneously made measurements. The measured intensities are converted to an 3D position by a neural net. The principle also applies to other applications, for instance...

  20. Planetary Torque in 3D Isentropic Disks

    Science.gov (United States)

    Fung, Jeffrey; Masset, Frédéric; Lega, Elena; Velasco, David

    2017-03-01

    Planetary migration is inherently a three-dimensional (3D) problem, because Earth-size planetary cores are deeply embedded in protoplanetary disks. Simulations of these 3D disks remain challenging due to the steep resolution requirements. Using two different hydrodynamics codes, FARGO3D and PEnGUIn, we simulate disk–planet interaction for a one to five Earth-mass planet embedded in an isentropic disk. We measure the torque on the planet and ensure that the measurements are converged both in resolution and between the two codes. We find that the torque is independent of the smoothing length of the planet’s potential (r s), and that it has a weak dependence on the adiabatic index of the gaseous disk (γ). The torque values correspond to an inward migration rate qualitatively similar to previous linear calculations. We perform additional simulations with explicit radiative transfer using FARGOCA, and again find agreement between 3D simulations and existing torque formulae. We also present the flow pattern around the planets that show active flow is present within the planet’s Hill sphere, and meridional vortices are shed downstream. The vertical flow speed near the planet is faster for a smaller r s or γ, up to supersonic speeds for the smallest r s and γ in our study.

  1. Automated analysis of 3D echocardiography

    NARCIS (Netherlands)

    Stralen, Marijn van

    2009-01-01

    In this thesis we aim at automating the analysis of 3D echocardiography, mainly targeting the functional analysis of the left ventricle. Manual analysis of these data is cumbersome, time-consuming and is associated with inter-observer and inter-institutional variability. Methods for reconstruction o

  2. 3D scanning particle tracking velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hoyer, Klaus; Holzner, Markus; Guala, Michele; Liberzon, Alexander; Kinzelbach, Wolfgang [Swiss Federal Institut of Technology Zurich, Institut fuer Hydromechanik und Wasserwirtschaft, Zuerich (Switzerland); Luethi, Beat [Risoe National Laboratory, Roskilde (Denmark)

    2005-11-01

    In this article, we present an experimental setup and data processing schemes for 3D scanning particle tracking velocimetry (SPTV), which expands on the classical 3D particle tracking velocimetry (PTV) through changes in the illumination, image acquisition and analysis. 3D PTV is a flexible flow measurement technique based on the processing of stereoscopic images of flow tracer particles. The technique allows obtaining Lagrangian flow information directly from measured 3D trajectories of individual particles. While for a classical PTV the entire region of interest is simultaneously illuminated and recorded, in SPTV the flow field is recorded by sequential tomographic high-speed imaging of the region of interest. The advantage of the presented method is a considerable increase in maximum feasible seeding density. Results are shown for an experiment in homogenous turbulence and compared with PTV. SPTV yielded an average 3,500 tracked particles per time step, which implies a significant enhancement of the spatial resolution for Lagrangian flow measurements. (orig.)

  3. Spacecraft 3D Augmented Reality Mobile App

    Science.gov (United States)

    Hussey, Kevin J.; Doronila, Paul R.; Kumanchik, Brian E.; Chan, Evan G.; Ellison, Douglas J.; Boeck, Andrea; Moore, Justin M.

    2013-01-01

    The Spacecraft 3D application allows users to learn about and interact with iconic NASA missions in a new and immersive way using common mobile devices. Using Augmented Reality (AR) techniques to project 3D renditions of the mission spacecraft into real-world surroundings, users can interact with and learn about Curiosity, GRAIL, Cassini, and Voyager. Additional updates on future missions, animations, and information will be ongoing. Using a printed AR Target and camera on a mobile device, users can get up close with these robotic explorers, see how some move, and learn about these engineering feats, which are used to expand knowledge and understanding about space. The software receives input from the mobile device's camera to recognize the presence of an AR marker in the camera's field of view. It then displays a 3D rendition of the selected spacecraft in the user's physical surroundings, on the mobile device's screen, while it tracks the device's movement in relation to the physical position of the spacecraft's 3D image on the AR marker.

  4. The New Realm of 3-D Vision

    Science.gov (United States)

    2002-01-01

    Dimension Technologies Inc., developed a line of 2-D/3-D Liquid Crystal Display (LCD) screens, including a 15-inch model priced at consumer levels. DTI's family of flat panel LCD displays, called the Virtual Window(TM), provide real-time 3-D images without the use of glasses, head trackers, helmets, or other viewing aids. Most of the company initial 3-D display research was funded through NASA's Small Business Innovation Research (SBIR) program. The images on DTI's displays appear to leap off the screen and hang in space. The display accepts input from computers or stereo video sources, and can be switched from 3-D to full-resolution 2-D viewing with the push of a button. The Virtual Window displays have applications in data visualization, medicine, architecture, business, real estate, entertainment, and other research, design, military, and consumer applications. Displays are currently used for computer games, protein analysis, and surgical imaging. The technology greatly benefits the medical field, as surgical simulators are helping to increase the skills of surgical residents. Virtual Window(TM) is a trademark of Dimension Technologies Inc.

  5. Constructing Arguments with 3-D Printed Models

    Science.gov (United States)

    McConnell, William; Dickerson, Daniel

    2017-01-01

    In this article, the authors describe a fourth-grade lesson where 3-D printing technologies were not only a stimulus for engagement but also served as a modeling tool providing meaningful learning opportunities. Specifically, fourth-grade students construct an argument that animals' external structures function to support survival in a particular…

  6. Introduction to 3D Graphics through Excel

    Science.gov (United States)

    Benacka, Jan

    2013-01-01

    The article presents a method of explaining the principles of 3D graphics through making a revolvable and sizable orthographic parallel projection of cuboid in Excel. No programming is used. The method was tried in fourteen 90 minute lessons with 181 participants, which were Informatics teachers, undergraduates of Applied Informatics and gymnasium…

  7. 3-D GIS : Virtual London and beyond

    Directory of Open Access Journals (Sweden)

    Michael Batty

    2006-10-01

    Full Text Available In this paper, we outline how we have developed a series of technologies to enable detailed interactive 3-D Geographical Information Systems (GIS based models of cities to be created. Until relatively recently these models have been developed in Computer Aided Design (CAD software more often then in GIS. One of the main reasons was that ‘3-D GIS’ was often only 2.5-D under closer inspection. This is changing, and by straddling both technologies, and integrating others, we show how these models in turn enable planning information, statistics, pollution levels, sea level rises and much more to be visualised and analysed in the context of the 3-D city model. The client for ‘Virtual London’ is the Greater London Authority (GLA and their aim is to develop improved dissemination of planning information, which is explored. We then argue that virtual cities should go well beyond the traditional conceptions of 3-D GIS and CAD into virtual worlds and online design. But we also urge caution in pushing the digital message too far, showing how more conventional tangible media is always necessary in rooting such models in more realistic and familiar representations.

  8. 3D Cell Culture in Alginate Hydrogels

    Directory of Open Access Journals (Sweden)

    Therese Andersen

    2015-03-01

    Full Text Available This review compiles information regarding the use of alginate, and in particular alginate hydrogels, in culturing cells in 3D. Knowledge of alginate chemical structure and functionality are shown to be important parameters in design of alginate-based matrices for cell culture. Gel elasticity as well as hydrogel stability can be impacted by the type of alginate used, its concentration, the choice of gelation technique (ionic or covalent, and divalent cation chosen as the gel inducing ion. The use of peptide-coupled alginate can control cell–matrix interactions. Gelation of alginate with concomitant immobilization of cells can take various forms. Droplets or beads have been utilized since the 1980s for immobilizing cells. Newer matrices such as macroporous scaffolds are now entering the 3D cell culture product market. Finally, delayed gelling, injectable, alginate systems show utility in the translation of in vitro cell culture to in vivo tissue engineering applications. Alginate has a history and a future in 3D cell culture. Historically, cells were encapsulated in alginate droplets cross-linked with calcium for the development of artificial organs. Now, several commercial products based on alginate are being used as 3D cell culture systems that also demonstrate the possibility of replacing or regenerating tissue.

  9. Embedding 3D into multipurpose cadastre

    NARCIS (Netherlands)

    Rahman, A.A.; Hua, T.C.; Van Oosterom, P.J.M.

    2011-01-01

    There is no doubt that the cadastral map provides a useful entrance to information in a land parcel based information system. However, such information system could be made more meaningful and useful if it can be extended for multiple usages with multi data layers, and in three-dimensions (3D). Curr

  10. 3D microstructuring of biodegradable polymers

    DEFF Research Database (Denmark)

    Nagstrup, Johan; Keller, Stephan Sylvest; Almdal, Kristoffer

    2011-01-01

    Biopolymer films with a thickness of 100μm are prepared using spin coating technique with solutions consisting of 25wt.% polycaprolactone or poly-l-lactide in dichloromethane. SU-8 stamps are fabricated using three photolithography steps. The stamps are used to emboss 3D microstructures...

  11. 3D Video Compression and Transmission

    DEFF Research Database (Denmark)

    Zamarin, Marco; Forchhammer, Søren

    In this short paper we provide a brief introduction to 3D and multi-view video technologies - like three-dimensional television and free-viewpoint video - focusing on the aspects related to data compression and transmission. Geometric information represented by depth maps is introduced as well...

  12. 3D Printed Terahertz Focusing Grating Couplers

    Science.gov (United States)

    Jahn, David; Weidenbach, Marcel; Lehr, Jannik; Becker, Leonard; Beltrán-Mejía, Felipe; Busch, Stefan F.; Balzer, Jan C.; Koch, Martin

    2017-02-01

    We have designed, constructed and characterized a grating that focuses electromagnetic radiation at specific frequencies out of a dielectric waveguide. A simple theoretical model predicts the focusing behaviour of these chirped gratings, along with numerical results that support our assumptions and improved the grating geometry. The leaky waveguide was 3D printed and characterized at 120 GHz demonstrating its potential for manipulating terahertz waves.

  13. 3D virtual table in anatomy education

    DEFF Research Database (Denmark)

    Dahl, Mads Ronald; Simonsen, Eivind Ortind

    The ‘Anatomage’ is a 3D virtual human anatomy table, with touchscreen functionality, where it is possible to upload CT-scans and digital. Learning the human anatomy terminology requires time, a very good memory, anatomy atlas, books and lectures. Learning the 3 dimensional structure, connections...

  14. View Based Methods can achieve Bayes-Optimal 3D Recognition

    CERN Document Server

    Breuel, Thomas M

    2007-01-01

    This paper proves that visual object recognition systems using only 2D Euclidean similarity measurements to compare object views against previously seen views can achieve the same recognition performance as observers having access to all coordinate information and able of using arbitrary 3D models internally. Furthermore, it demonstrates that such systems do not require more training views than Bayes-optimal 3D model-based systems. For building computer vision systems, these results imply that using view-based or appearance-based techniques with carefully constructed combination of evidence mechanisms may not be at a disadvantage relative to 3D model-based systems. For computational approaches to human vision, they show that it is impossible to distinguish view-based and 3D model-based techniques for 3D object recognition solely by comparing the performance achievable by human and 3D model-based systems.}

  15. An Update on Design Tools for Optimization of CMC 3D Fiber Architectures

    Science.gov (United States)

    Lang, J.; DiCarlo, J.

    2012-01-01

    Objective: Describe and up-date progress for NASA's efforts to develop 3D architectural design tools for CMC in general and for SIC/SiC composites in particular. Describe past and current sequential work efforts aimed at: Understanding key fiber and tow physical characteristics in conventional 2D and 3D woven architectures as revealed by microstructures in the literature. Developing an Excel program for down-selecting and predicting key geometric properties and resulting key fiber-controlled properties for various conventional 3D architectures. Developing a software tool for accurately visualizing all the key geometric details of conventional 3D architectures. Validating tools by visualizing and predicting the Internal geometry and key mechanical properties of a NASA SIC/SIC panel with a 3D orthogonal architecture. Applying the predictive and visualization tools toward advanced 3D orthogonal SiC/SIC composites, and combining them into a user-friendly software program.

  16. Scoops3D: software to analyze 3D slope stability throughout a digital landscape

    Science.gov (United States)

    Reid, Mark E.; Christian, Sarah B.; Brien, Dianne L.; Henderson, Scott T.

    2015-01-01

    The computer program, Scoops3D, evaluates slope stability throughout a digital landscape represented by a digital elevation model (DEM). The program uses a three-dimensional (3D) method of columns approach to assess the stability of many (typically millions) potential landslides within a user-defined size range. For each potential landslide (or failure), Scoops3D assesses the stability of a rotational, spherical slip surface encompassing many DEM cells using a 3D version of either Bishop’s simplified method or the Ordinary (Fellenius) method of limit-equilibrium analysis. Scoops3D has several options for the user to systematically and efficiently search throughout an entire DEM, thereby incorporating the effects of complex surface topography. In a thorough search, each DEM cell is included in multiple potential failures, and Scoops3D records the lowest stability (factor of safety) for each DEM cell, as well as the size (volume or area) associated with each of these potential landslides. It also determines the least-stable potential failure for the entire DEM. The user has a variety of options for building a 3D domain, including layers or full 3D distributions of strength and pore-water pressures, simplistic earthquake loading, and unsaturated suction conditions. Results from Scoops3D can be readily incorporated into a geographic information system (GIS) or other visualization software. This manual includes information on the theoretical basis for the slope-stability analysis, requirements for constructing and searching a 3D domain, a detailed operational guide (including step-by-step instructions for using the graphical user interface [GUI] software, Scoops3D-i) and input/output file specifications, practical considerations for conducting an analysis, results of verification tests, and multiple examples illustrating the capabilities of Scoops3D. Easy-to-use software installation packages are available for the Windows or Macintosh operating systems; these packages

  17. Effect of viewing distance on 3D fatigue caused by viewing mobile 3D content

    Science.gov (United States)

    Mun, Sungchul; Lee, Dong-Su; Park, Min-Chul; Yano, Sumio

    2013-05-01

    With an advent of autostereoscopic display technique and increased needs for smart phones, there has been a significant growth in mobile TV markets. The rapid growth in technical, economical, and social aspects has encouraged 3D TV manufacturers to apply 3D rendering technology to mobile devices so that people have more opportunities to come into contact with many 3D content anytime and anywhere. Even if the mobile 3D technology leads to the current market growth, there is an important thing to consider for consistent development and growth in the display market. To put it briefly, human factors linked to mobile 3D viewing should be taken into consideration before developing mobile 3D technology. Many studies have investigated whether mobile 3D viewing causes undesirable biomedical effects such as motion sickness and visual fatigue, but few have examined main factors adversely affecting human health. Viewing distance is considered one of the main factors to establish optimized viewing environments from a viewer's point of view. Thus, in an effort to determine human-friendly viewing environments, this study aims to investigate the effect of viewing distance on human visual system when exposing to mobile 3D environments. Recording and analyzing brainwaves before and after watching mobile 3D content, we explore how viewing distance affects viewing experience from physiological and psychological perspectives. Results obtained in this study are expected to provide viewing guidelines for viewers, help ensure viewers against undesirable 3D effects, and lead to make gradual progress towards a human-friendly mobile 3D viewing.

  18. Adjuvant chemotherapy with sequential or concurrent anthracycline and docetaxel: Breast International Group 02-98 randomized trial

    DEFF Research Database (Denmark)

    Francis, P.; Crown, J.; Di, Leo A.

    2008-01-01

    ). Docetaxel and control treatment groups were compared by log-rank tests, and hazard ratios (HR) of DFS events were calculated by Cox modeling. All statistical tests were two-sided. RESULTS: Due to a lower-than-anticipated rate of relapse, this analysis was performed after 5 years with 732 events. Patients......BACKGROUND: Docetaxel is more effective than doxorubicin for patients with advanced breast cancer. The Breast International Group 02-98 randomized trial tested the effect of incorporating docetaxel into anthracycline-based adjuvant chemotherapy and compared sequential vs concurrent administration...... of doxorubicin and docetaxel. METHODS: Patients with lymph node-positive breast cancer (n = 2887) were randomly assigned to one of four treatments: 1) sequential control (four cycles of doxorubicin at 75 mg/m2, followed by three cycles of cyclophosphamide, methotrexate, and 5-fluorouracil [CMF]); 2) concurrent...

  19. Development of three-dimensional memory (3D-M)

    Science.gov (United States)

    Yu, Hong-Yu; Shen, Chen; Jiang, Lingli; Dong, Bin; Zhang, Guobiao

    2016-10-01

    Since the invention of 3-D ROM in 1996, three-dimensional memory (3D-M) has been under development for nearly two decades. In this presentation, we'll review the 3D-M history and compare different 3D-Ms (including 3D-OTP from Matrix Semiconductor, 3D-NAND from Samsung and 3D-XPoint from Intel/Micron).

  20. 3D fascicle orientations in triceps surae.

    Science.gov (United States)

    Rana, Manku; Hamarneh, Ghassan; Wakeling, James M

    2013-07-01

    The aim of this study was to determine the three-dimensional (3D) muscle fascicle architecture in human triceps surae muscles at different contraction levels and muscle lengths. Six male subjects were tested for three contraction levels (0, 30, and 60% of maximal voluntary contraction) and four ankle angles (-15, 0, 15, and 30° of plantar flexion), and the muscles were imaged with B-mode ultrasound coupled to 3D position sensors. 3D fascicle orientations were represented in terms of pennation angle relative to the major axis of the muscle and azimuthal angle (a new architectural parameter introduced in this study representing the radial angle around the major axis). 3D orientations of the fascicles, and the sheets along which they lie, were regionalized in all the three muscles (medial and lateral gastrocnemius and the soleus) and changed significantly with contraction level and ankle angle. Changes in the azimuthal angle were of similar magnitude to the changes in pennation angle. The 3D information was used for an error analysis to determine the errors in predictions of pennation that would occur in purely two-dimensional studies. A comparison was made for assessing pennation in the same plane for different contraction levels, or for adjusting the scanning plane orientation for different contractions: there was no significant difference between the two simulated scanning conditions for the gastrocnemii; however, a significant difference of 4.5° was obtained for the soleus. Correct probe orientation is thus more critical during estimations of pennation for the soleus than the gastrocnemii due to its more complex fascicle arrangement.

  1. Laser printing of 3D metallic interconnects

    Science.gov (United States)

    Beniam, Iyoel; Mathews, Scott A.; Charipar, Nicholas A.; Auyeung, Raymond C. Y.; Piqué, Alberto

    2016-04-01

    The use of laser-induced forward transfer (LIFT) techniques for the printing of functional materials has been demonstrated for numerous applications. The printing gives rise to patterns, which can be used to fabricate planar interconnects. More recently, various groups have demonstrated electrical interconnects from laser-printed 3D structures. The laser printing of these interconnects takes place through aggregation of voxels of either molten metal or of pastes containing dispersed metallic particles. However, the generated 3D structures do not posses the same metallic conductivity as a bulk metal interconnect of the same cross-section and length as those formed by wire bonding or tab welding. An alternative is to laser transfer entire 3D structures using a technique known as lase-and-place. Lase-and-place is a LIFT process whereby whole components and parts can be transferred from a donor substrate onto a desired location with one single laser pulse. This paper will describe the use of LIFT to laser print freestanding, solid metal foils or beams precisely over the contact pads of discrete devices to interconnect them into fully functional circuits. Furthermore, this paper will also show how the same laser can be used to bend or fold the bulk metal foils prior to transfer, thus forming compliant 3D structures able to provide strain relief for the circuits under flexing or during motion from thermal mismatch. These interconnect "ridges" can span wide gaps (on the order of a millimeter) and accommodate height differences of tens of microns between adjacent devices. Examples of these laser printed 3D metallic bridges and their role in the development of next generation electronics by additive manufacturing will be presented.

  2. Tracking earthquake source evolution in 3-D

    Science.gov (United States)

    Kennett, B. L. N.; Gorbatov, A.; Spiliopoulos, S.

    2014-08-01

    Starting from the hypocentre, the point of initiation of seismic energy, we seek to estimate the subsequent trajectory of the points of emission of high-frequency energy in 3-D, which we term the `evocentres'. We track these evocentres as a function of time by energy stacking for putative points on a 3-D grid around the hypocentre that is expanded as time progresses, selecting the location of maximum energy release as a function of time. The spatial resolution in the neighbourhood of a target point can be simply estimated by spatial mapping using the properties of isochrons from the stations. The mapping of a seismogram segment to space is by inverse slowness, and thus more distant stations have a broader spatial contribution. As in hypocentral estimation, the inclusion of a wide azimuthal distribution of stations significantly enhances 3-D capability. We illustrate this approach to tracking source evolution in 3-D by considering two major earthquakes, the 2007 Mw 8.1 Solomons islands event that ruptured across a plate boundary and the 2013 Mw 8.3 event 610 km beneath the Sea of Okhotsk. In each case we are able to provide estimates of the evolution of high-frequency energy that tally well with alternative schemes, but also to provide information on the 3-D characteristics that is not available from backprojection from distant networks. We are able to demonstrate that the major characteristics of event rupture can be captured using just a few azimuthally distributed stations, which opens the opportunity for the approach to be used in a rapid mode immediately after a major event to provide guidance for, for example tsunami warning for megathrust events.

  3. Construction of a 3D meso-structure and analysis of mechanical properties for deposit body medium

    Institute of Scientific and Technical Information of China (English)

    石崇; 陈凯华; 徐卫亚; 张海龙; 王海礼; 王盛年

    2015-01-01

    For deposit body medium, the internal structural properties may be the controlling factors for the strength of the material and the mechanical response. Based on the results of soil-rock meso-statistics using digital imaging, a simulated annealing algorithm is adopted to expand the meso-structural features of deposit bodies in 3D. The construction of the 3D meso-structure of a deposit body is achieved, and then the particle flow analysis program PFC3D is used to simulate the mechanical properties of the deposit body. It is shown that with a combination of the simulated annealing algorithm and the statistical feature functions, the randomness and heterogeneity of the rock distribution in the 3D inner structure of deposit body medium can be realized, and the reconstructed structural features of the deposit medium can match the features of the digital images well. The spatial utilizations and the compacting effects of the body-centered cubic, hexagonal close and face-centered packing models are high, so these structures can be applied in the simulations of the deposit structures. However, the shear features of the deposit medium vary depending on the different model constructive modes. Rocks, which are the backbone of the deposit, are the factors that determine the shear strength and deformation modulus of the deposit body. The modeling method proposed is useful for the construction of 3D meso-scope models from 2D meso-scope statistics and can be used for studying the mechanical properties of mixed media, such as deposit bodies.

  4. Needle Steering in 3-D Via Rapid Replanning

    Science.gov (United States)

    Patil, Sachin; Burgner, Jessica; Webster, Robert J.; Alterovitz, Ron

    2014-01-01

    Steerable needles have the potential to improve the effectiveness of needle-based clinical procedures such as biopsy and drug delivery by improving targeting accuracy and reaching previously inaccessible targets that are behind sensitive or impenetrable anatomical regions. We present a new needle steering system capable of automatically reaching targets in 3-D environments while avoiding obstacles and compensating for real-world uncertainties. Given a specification of anatomical obstacles and a clinical target (e.g., from preoperative medical images), our system plans and controls needle motion in a closed-loop fashion under sensory feedback to optimize a clinical metric. We unify planning and control using a new fast algorithm that continuously replans the needle motion. Our rapid replanning approach is enabled by an efficient sampling-based rapidly exploring random tree (RRT) planner that achieves orders-of-magnitude reduction in computation time compared with prior 3-D approaches by incorporating variable curvature kinematics and a novel distance metric for planning. Our system uses an electromagnetic tracking system to sense the state of the needle tip during the procedure. We experimentally evaluate our needle steering system using tissue phantoms and animal tissue ex vivo. We demonstrate that our rapid replanning strategy successfully guides the needle around obstacles to desired 3-D targets with an average error of less than 3 mm. PMID:25435829

  5. Effective classification of 3D image data using partitioning methods

    Science.gov (United States)

    Megalooikonomou, Vasileios; Pokrajac, Dragoljub; Lazarevic, Aleksandar; Obradovic, Zoran

    2002-03-01

    We propose partitioning-based methods to facilitate the classification of 3-D binary image data sets of regions of interest (ROIs) with highly non-uniform distributions. The first method is based on recursive dynamic partitioning of a 3-D volume into a number of 3-D hyper-rectangles. For each hyper-rectangle, we consider, as a potential attribute, the number of voxels (volume elements) that belong to ROIs. A hyper-rectangle is partitioned only if the corresponding attribute does not have high discriminative power, determined by statistical tests, but it is still sufficiently large for further splitting. The final discriminative hyper-rectangles form new attributes that are further employed in neural network classification models. The second method is based on maximum likelihood employing non-spatial (k-means) and spatial DBSCAN clustering algorithms to estimate the parameters of the underlying distributions. The proposed methods were experimentally evaluated on mixtures of Gaussian distributions, on realistic lesion-deficit data generated by a simulator conforming to a clinical study, and on synthetic fractal data. Both proposed methods have provided good classification on Gaussian mixtures and on realistic data. However, the experimental results on fractal data indicated that the clustering-based methods were only slightly better than random guess, while the recursive partitioning provided significantly better classification accuracy.

  6. Framework for 3D TransRectal Ultrasound

    CERN Document Server

    Mozer, Pierre; Chevreau, G; Daanen, Vincent; Moreau-Gaudry, Alexandre; Troccaz, Jocelyne

    2008-01-01

    Prostate biopsies are mainly performed under 2D TransRectal UltraSound (TRUS) control by sampling the prostate according to a predefined pattern. In case of first biopsies, this pattern follows a random systematic plan. Sometimes, repeat biopsies can be needed to target regions unsampled by previous biopsies or resample critical regions (for example in case of cancer expectant management or previous prostatic intraepithelial neoplasia findings). From a clinical point of view, it could be useful to control the 3D spatial distribution of theses biopsies inside the prostate. Modern 3D-TRUS probes allow acquiring high-quality volumes of the prostate in few seconds. We developed a framework to track the prostate in 3D TRUS images. It means that if one acquires a reference volume at the beginning of the session and another during each biopsy, it is possible to determine the relationship between the prostate in the reference and the others volumes by aligning images. We used this tool to evaluate the ability of a si...

  7. Needle Steering in 3-D Via Rapid Replanning.

    Science.gov (United States)

    Patil, Sachin; Burgner, Jessica; Webster, Robert J; Alterovitz, Ron

    2014-08-01

    Steerable needles have the potential to improve the effectiveness of needle-based clinical procedures such as biopsy and drug delivery by improving targeting accuracy and reaching previously inaccessible targets that are behind sensitive or impenetrable anatomical regions. We present a new needle steering system capable of automatically reaching targets in 3-D environments while avoiding obstacles and compensating for real-world uncertainties. Given a specification of anatomical obstacles and a clinical target (e.g., from preoperative medical images), our system plans and controls needle motion in a closed-loop fashion under sensory feedback to optimize a clinical metric. We unify planning and control using a new fast algorithm that continuously replans the needle motion. Our rapid replanning approach is enabled by an efficient sampling-based rapidly exploring random tree (RRT) planner that achieves orders-of-magnitude reduction in computation time compared with prior 3-D approaches by incorporating variable curvature kinematics and a novel distance metric for planning. Our system uses an electromagnetic tracking system to sense the state of the needle tip during the procedure. We experimentally evaluate our needle steering system using tissue phantoms and animal tissue ex vivo. We demonstrate that our rapid replanning strategy successfully guides the needle around obstacles to desired 3-D targets with an average error of less than 3 mm.

  8. FIT3D toolbox: multiple view geometry and 3D reconstruction for Matlab

    NARCIS (Netherlands)

    Esteban, I.; Dijk, J.; Groen, F.

    2010-01-01

    FIT3D is a Toolbox built for Matlab that aims at unifying and distributing a set of tools that will allow the researcher to obtain a complete 3D model from a set of calibrated images. In this paper we motivate and present the structure of the toolbox in a tutorial and example based approach. Given i

  9. FIT3D Toolbox : multiple view geometry and 3D reconstruction for MATLAB

    NARCIS (Netherlands)

    Esteban, I.; Dijk, J.; Groen, F.

    2010-01-01

    FIT3D is a Toolbox built for Matlab that aims at unifying and distributing a set of tools that will allow the researcher to obtain a complete 3D model from a set of calibrated images. In this paper we motivate and present the structure of the toolbox in a tutorial and example based approach. Given i

  10. Three-dimensional (3D) printing of mouse primary hepatocytes to generate 3D hepatic structure

    Science.gov (United States)

    Kim, Yohan; Kang, Kyojin; Jeong, Jaemin; Paik, Seung Sam; Kim, Ji Sook; Park, Su A; Kim, Wan Doo; Park, Jisun

    2017-01-01

    Purpose The major problem in producing artificial livers is that primary hepatocytes cannot be cultured for many days. Recently, 3-dimensional (3D) printing technology draws attention and this technology regarded as a useful tool for current cell biology. By using the 3D bio-printing, these problems can be resolved. Methods To generate 3D bio-printed structures (25 mm × 25 mm), cells-alginate constructs were fabricated by 3D bio-printing system. Mouse primary hepatocytes were isolated from the livers of 6–8 weeks old mice by a 2-step collagenase method. Samples of 4 × 107 hepatocytes with 80%–90% viability were printed with 3% alginate solution, and cultured with well-defined culture medium for primary hepatocytes. To confirm functional ability of hepatocytes cultured on 3D alginate scaffold, we conducted quantitative real-time polymerase chain reaction and immunofluorescence with hepatic marker genes. Results Isolated primary hepatocytes were printed with alginate. The 3D printed hepatocytes remained alive for 14 days. Gene expression levels of Albumin, HNF-4α and Foxa3 were gradually increased in the 3D structures. Immunofluorescence analysis showed that the primary hepatocytes produced hepatic-specific proteins over the same period of time. Conclusion Our research indicates that 3D bio-printing technique can be used for long-term culture of primary hepatocytes. It can therefore be used for drug screening and as a potential method of producing artificial livers. PMID:28203553

  11. FI3D : Direct-Touch Interaction for the Exploration of 3D Scientific Visualization Spaces

    NARCIS (Netherlands)

    Yu, Lingyun; Svetachov, Pjotr; Isenberg, Petra; Everts, Maarten H.; Isenberg, Tobias

    2010-01-01

    We present the design and evaluation of FI3D, a direct-touch data exploration technique for 3D visualization spaces. The exploration of three-dimensional data is core to many tasks and domains involving scientific visualizations. Thus, effective data navigation techniques are essential to enable com

  12. Development of a 3D pixel module for an ultralarge screen 3D display

    Science.gov (United States)

    Hashiba, Toshihiko; Takaki, Yasuhiro

    2004-10-01

    A large screen 2D display used at stadiums and theaters consists of a number of pixel modules. The pixel module usually consists of 8x8 or 16x16 LED pixels. In this study we develop a 3D pixel module in order to construct a large screen 3D display which is glass-free and has the motion parallax. This configuration for a large screen 3D display dramatically reduces the complexity of wiring 3D pixels. The 3D pixel module consists of several LCD panels, several cylindrical lenses, and one small PC. The LCD panels are slanted in order to differentiate the distances from same color pixels to the axis of the cylindrical lens so that the rays from the same color pixels are refracted into the different horizontal directions by the cylindrical lens. We constructed a prototype 3D pixel module, which consists of 8x4 3D pixels. The prototype module is designed to display 300 different patterns into different horizontal directions with the horizontal display angle pitch of 0.099 degree. The LCD panels are controlled by a small PC and the 3D image data is transmitted through the Gigabit Ethernet.

  13. R3D-2-MSA: the RNA 3D structure-to-multiple sequence alignment server.

    Science.gov (United States)

    Cannone, Jamie J; Sweeney, Blake A; Petrov, Anton I; Gutell, Robin R; Zirbel, Craig L; Leontis, Neocles

    2015-07-01

    The RNA 3D Structure-to-Multiple Sequence Alignment Server (R3D-2-MSA) is a new web service that seamlessly links RNA three-dimensional (3D) structures to high-quality RNA multiple sequence alignments (MSAs) from diverse biological sources. In this first release, R3D-2-MSA provides manual and programmatic access to curated, representative ribosomal RNA sequence alignments from bacterial, archaeal, eukaryal and organellar ribosomes, using nucleotide numbers from representative atomic-resolution 3D structures. A web-based front end is available for manual entry and an Application Program Interface for programmatic access. Users can specify up to five ranges of nucleotides and 50 nucleotide positions per range. The R3D-2-MSA server maps these ranges to the appropriate columns of the corresponding MSA and returns the contents of the columns, either for display in a web browser or in JSON format for subsequent programmatic use. The browser output page provides a 3D interactive display of the query, a full list of sequence variants with taxonomic information and a statistical summary of distinct sequence variants found. The output can be filtered and sorted in the browser. Previous user queries can be viewed at any time by resubmitting the output URL, which encodes the search and re-generates the results. The service is freely available with no login requirement at http://rna.bgsu.edu/r3d-2-msa.

  14. 基于3D打印和接骨板标准件库数字化的股骨远端骨折内固定%Digital design of internal fixation for distal femoral fractures via 3D printing and standard parts database

    Institute of Scientific and Technical Information of China (English)

    林海滨; 黄文华; 陈宣煌; 张国栋; 余正希; 吴献伟; 吴长福; 陈旭

    2016-01-01

    目的 探讨软件数字化设计结合3D打印技术在股骨远端骨折中导航置入标准件库接骨板进行内固定的方法.方法 收集2013年8月至2014年6月莆田学院附属医院骨科收治的21例股骨远端骨折患者的CT扫描Dicom格式图像资料,分别导入Mimics软件予以三维重建、骨折复位.从标准件库中选择接骨板虚拟内固定,设计带钉道的导航模块.3D打印骨骼、接骨板、导航模块,进行现实骨骼模型内固定手术,导航放置接骨板、螺钉,观察导航模块卡位、板钉位置情况,以术后外观,CT扫描三维重建,三维配准后统计分析螺钉进、出钉点空间位置三维坐标值评价效果.结果 共导航置入21块接骨板,180枚螺钉.21例骨骼模型术后均行CT扫描三维重建,结合外观,显示接骨板位置均与Mimics软件中模拟预设的一致,螺钉的进出钉点空间位置比较差异无统计学意义(P>0.05),术前设计与现实手术实施效果高度相似.导航模块和相对应的股骨远端骨性结构贴合紧密,嵌合度良好,在应用时卡位及稳定性良好,可以很好指引接骨板放置、螺钉置入.术前与术后进、出钉点高度相关(X轴0.989 2、Y轴0.963 1、Z轴0.961 7;X轴0.989 3、Y轴0.985 0、Z轴0.941 0;P<0.0001).结论 在导航模块的辅助下,股骨远端骨折标准件库接骨板内固定置入准确率高.%Objective To study the method of internal fixation by the navigation embedded plate from standard parts database for the distal femoral fractures based on digital design by Mimics software with 3D printing technology,and to explore its feasibility and accuracy.Methods A total of 21 cases with distal femoral fractures admitted into the Department of Orthopedics,Affiliated Hospital of Putian University were included in this study.Dicom format data of lamellar CT scanning was imported into Mimics software for 3D anatomical modeling and virtual fracture reduction.The steel plates was chose

  15. 3D Turtle Graphics” by using a 3D Printer

    Directory of Open Access Journals (Sweden)

    Yasusi Kanada

    2015-04-01

    Full Text Available When creating shapes by using a 3D printer, usually, a static (declarative model designed by using a 3D CAD system is translated to a CAM program and it is sent to the printer. However, widely-used FDM-type 3D printers input a dynamical (procedural program that describes control of motions of the print head and extrusion of the filament. If the program is expressed by using a programming language or a library in a straight manner, solids can be created by a method similar to turtle graphics. An open-source library that enables “turtle 3D printing” method was described by Python and tested. Although this method currently has a problem that it cannot print in the air; however, if this problem is solved by an appropriate method, shapes drawn by 3D turtle graphics freely can be embodied by this method.

  16. The dimension added by 3D scanning and 3D printing of meteorites

    Science.gov (United States)

    de Vet, S. J.

    2016-01-01

    An overview for the 3D photodocumentation of meteorites is presented, focussing on two 3D scanning methods in relation to 3D printing. The 3D photodocumention of meteorites provides new ways for the digital preservation of culturally, historically or scientifically unique meteorites. It has the potential for becoming a new documentation standard of meteorites that can exist complementary to traditional photographic documentation. Notable applications include (i.) use of physical properties in dark flight-, strewn field-, or aerodynamic modelling; (ii.) collection research of meteorites curated by different museum collections, and (iii.) public dissemination of meteorite models as a resource for educational users. The possible applications provided by the additional dimension of 3D illustrate the benefits for the meteoritics community.

  17. Quasi 3D dosimetry (EPID, conventional 2D/3D detector matrices)

    Science.gov (United States)

    Bäck, A.

    2015-01-01

    Patient specific pretreatment measurement for IMRT and VMAT QA should preferably give information with a high resolution in 3D. The ability to distinguish complex treatment plans, i.e. treatment plans with a difference between measured and calculated dose distributions that exceeds a specified tolerance, puts high demands on the dosimetry system used for the pretreatment measurements and the results of the measurement evaluation needs a clinical interpretation. There are a number of commercial dosimetry systems designed for pretreatment IMRT QA measurements. 2D arrays such as MapCHECK® (Sun Nuclear), MatriXXEvolution (IBA Dosimetry) and OCTAVIOUS® 1500 (PTW), 3D phantoms such as OCTAVIUS® 4D (PTW), ArcCHECK® (Sun Nuclear) and Delta4 (ScandiDos) and software for EPID dosimetry and 3D reconstruction of the dose in the patient geometry such as EPIDoseTM (Sun Nuclear) and Dosimetry CheckTM (Math Resolutions) are available. None of those dosimetry systems can measure the 3D dose distribution with a high resolution (full 3D dose distribution). Those systems can be called quasi 3D dosimetry systems. To be able to estimate the delivered dose in full 3D the user is dependent on a calculation algorithm in the software of the dosimetry system. All the vendors of the dosimetry systems mentioned above provide calculation algorithms to reconstruct a full 3D dose in the patient geometry. This enables analyzes of the difference between measured and calculated dose distributions in DVHs of the structures of clinical interest which facilitates the clinical interpretation and is a promising tool to be used for pretreatment IMRT QA measurements. However, independent validation studies on the accuracy of those algorithms are scarce. Pretreatment IMRT QA using the quasi 3D dosimetry systems mentioned above rely on both measurement uncertainty and accuracy of calculation algorithms. In this article, these quasi 3D dosimetry systems and their use in patient specific pretreatment IMRT

  18. Unidirectional high fiber content composites: Automatic 3D FE model generation and damage simulation

    DEFF Research Database (Denmark)

    Qing, Hai; Mishnaevsky, Leon

    2009-01-01

    A new method and a software code for the automatic generation of 3D micromechanical FE models of unidirectional long-fiber-reinforced composite (LFRC) with high fiber volume fraction with random fiber arrangement are presented. The fiber arrangement in the cross-section is generated through random...

  19. Comprehensive evaluation of latest 2D/3D monitors and comparison to a custom-built 3D mirror-based display in laparoscopic surgery

    Science.gov (United States)

    Wilhelm, Dirk; Reiser, Silvano; Kohn, Nils; Witte, Michael; Leiner, Ulrich; Mühlbach, Lothar; Ruschin, Detlef; Reiner, Wolfgang; Feussner, Hubertus

    2014-03-01

    Though theoretically superior, 3D video systems did not yet achieve a breakthrough in laparoscopic surgery. Furthermore, visual alterations, such as eye strain, diplopia and blur have been associated with the use of stereoscopic systems. Advancements in display and endoscope technology motivated a re-evaluation of such findings. A randomized study on 48 test subjects was conducted to investigate whether surgeons can benefit from using most current 3D visualization systems. Three different 3D systems, a glasses-based 3D monitor, an autostereoscopic display and a mirror-based theoretically ideal 3D display were compared to a state-of-the-art 2D HD system. The test subjects split into a novice and an expert surgeon group, which high experience in laparoscopic procedures. Each of them had to conduct a well comparable laparoscopic suturing task. Multiple performance parameters like task completion time and the precision of stitching were measured and compared. Electromagnetic tracking provided information on the instruments path length, movement velocity and economy. The NASA task load index was used to assess the mental work load. Subjective ratings were added to assess usability, comfort and image quality of each display. Almost all performance parameters were superior for the 3D glasses-based display as compared to the 2D and the autostereoscopic one, but were often significantly exceeded by the mirror-based 3D display. Subjects performed the task at average 20% faster and with a higher precision. Work-load parameters did not show significant differences. Experienced and non-experienced laparoscopists profited equally from 3D. The 3D mirror system gave clear evidence for additional potential of 3D visualization systems with higher resolution and motion parallax presentation.

  20. INCORPORATING DYNAMIC 3D SIMULATION INTO PRA

    Energy Technology Data Exchange (ETDEWEB)

    Steven R Prescott; Curtis Smith

    2011-07-01

    Through continued advancement in computational resources, development that was previously done by trial and error production is now performed through computer simulation. These virtual physical representations have the potential to provide accurate and valid modeling results and are being used in many different technical fields. Risk assessment now has the opportunity to use 3D simulation to improve analysis results and insights, especially for external event analysis. By using simulations, the modeler only has to determine the likelihood of an event without having to also predict the results of that event. The 3D simulation automatically determines not only the outcome of the event, but when those failures occur. How can we effectively incorporate 3D simulation into traditional PRA? Most PRA plant modeling is made up of components with different failure modes, probabilities, and rates. Typically, these components are grouped into various systems and then are modeled together (in different combinations) as a “system” with logic structures to form fault trees. Applicable fault trees are combined through scenarios, typically represented by event tree models. Though this method gives us failure results for a given model, it has limitations when it comes to time-based dependencies or dependencies that are coupled to physical processes which may themselves be space- or time-dependent. Since, failures from a 3D simulation are naturally time related, they should be used in that manner. In our simulation approach, traditional static models are converted into an equivalent state diagram representation with start states, probabilistic driven movements between states and terminal states. As the state model is run repeatedly, it converges to the same results as the PRA model in cases where time-related factors are not important. In cases where timing considerations are important (e.g., when events are dependent upon each other), then the simulation approach will typically