Radiative Transfer in 3D Numerical Simulations
Stein, R; Stein, Robert; Nordlund, Aake
2002-01-01
We simulate convection near the solar surface, where the continuum optical depth is of order unity. Hence, to determine the radiative heating and cooling in the energy conservation equation, we must solve the radiative transfer equation (instead of using the diffusion or optically thin cooling approximations). A method efficient enough to calculate the radiation for thousands of time steps is needed. We assume LTE and a non-gray opacity grouped into 4 bins according to strength. We perform a formal solution of the Feautrier equation along a vertical and four straight, slanted, rays (at four azimuthal angles which are rotated 15 deg. every time step). We present details of our method. We also give some results: comparing simulated and observed line profiles for the Sun, showing the importance of 3D transfer for the structure of the mean atmosphere and the eigenfrequencies of p-modes, illustrating Stokes profiles for micropores, and analyzing the effect of radiation on p-mode asymmetries.
A 3D radiative transfer framework. IX. Time dependence
Jack, D.; Hauschildt, P. H.; Baron, E.
2012-10-01
Context. Time-dependent, 3D radiation transfer calculations are important for the modeling of a variety of objects, from supernovae and novae to simulations of stellar variability and activity. Furthermore, time-dependent calculations can be used to obtain a 3D radiative equilibrium model structure via relaxation in time. Aims: We extend our 3D radiative transfer framework to include direct time dependence of the radiation field; i.e., the ∂I/∂t terms are fully considered in the solution of radiative transfer problems. Methods: We build on the framework that we have described in previous papers in this series and develop a subvoxel method for the ∂I/∂t terms. Results: We test the implementation by comparing the 3D results to our well tested 1D time dependent radiative transfer code in spherical symmetry. A simple 3D test model is also presented. Conclusions: The 3D time dependent radiative transfer method is now included in our 3D RT framework and in PHOENIX/3D.
A 3D radiative transfer framework IX. Time dependence
Jack, D; Baron, E
2012-01-01
Context. Time-dependent, 3D radiation transfer calculations are important for the modeling of a variety of objects, from supernovae and novae to simulations of stellar variability and activity. Furthermore, time-dependent calculations can be used to obtain a 3D radiative equilibrium model structure via relaxation in time. Aims. We extend our 3D radiative transfer framework to include direct time dependence of the radiation field; i.e., the $\\partial I/ \\partial t$ terms are fully considered in the solution of radiative transfer problems. Methods. We build on the framework that we have described in previous papers in this series and develop a subvoxel method for the $\\partial I/\\partial t$ terms. Results. We test the implementation by comparing the 3D results to our well tested 1D time dependent radiative transfer code in spherical symmetry. A simple 3D test model is also presented. Conclusions. The 3D time dependent radiative transfer method is now included in our 3D RT framework and in PHOENIX/3D.
Computing Radiative Transfer in a 3D Medium
Von Allmen, Paul; Lee, Seungwon
2012-01-01
A package of software computes the time-dependent propagation of a narrow laser beam in an arbitrary three- dimensional (3D) medium with absorption and scattering, using the transient-discrete-ordinates method and a direct integration method. Unlike prior software that utilizes a Monte Carlo method, this software enables simulation at very small signal-to-noise ratios. The ability to simulate propagation of a narrow laser beam in a 3D medium is an improvement over other discrete-ordinate software. Unlike other direct-integration software, this software is not limited to simulation of propagation of thermal radiation with broad angular spread in three dimensions or of a laser pulse with narrow angular spread in two dimensions. Uses for this software include (1) computing scattering of a pulsed laser beam on a material having given elastic scattering and absorption profiles, and (2) evaluating concepts for laser-based instruments for sensing oceanic turbulence and related measurements of oceanic mixed-layer depths. With suitable augmentation, this software could be used to compute radiative transfer in ultrasound imaging in biological tissues, radiative transfer in the upper Earth crust for oil exploration, and propagation of laser pulses in telecommunication applications.
Using 3D Voronoi grids in radiative transfer simulations
Camps, Peter; Saftly, Waad
2013-01-01
Probing the structure of complex astrophysical objects requires effective three-dimensional (3D) numerical simulation of the relevant radiative transfer (RT) processes. As with any numerical simulation code, the choice of an appropriate discretization is crucial. Adaptive grids with cuboidal cells such as octrees have proven very popular, however several recently introduced hydrodynamical and RT codes are based on a Voronoi tessellation of the spatial domain. Such an unstructured grid poses new challenges in laying down the rays (straight paths) needed in RT codes. We show that it is straightforward to implement accurate and efficient RT on 3D Voronoi grids. We present a method for computing straight paths between two arbitrary points through a 3D Voronoi grid in the context of a RT code. We implement such a grid in our RT code SKIRT, using the open source library Voro++ to obtain the relevant properties of the Voronoi grid cells based solely on the generating points. We compare the results obtained through t...
3-D Radiative Transfer Modeling of Structured Winds in Massive Hot Stars with Wind3D
Lobel, A; Blomme, R
2010-01-01
We develop 3-D models of the structured winds of massive hot stars with the Wind3D radiative transfer (RT) code. We investigate the physical properties of large-scale structures observed in the wind of the B-type supergiant HD 64760 with detailed line profile fits to Discrete Absorption Components (DACs) and rotational modulations observed with IUE in Si IV {\\lambda}1395. We develop parameterized input models Wind3D with large-scale equatorial wind density- and velocity-structures, or so-called `Co-rotating Interaction Regions' (CIRs) and `Rotational Modulation Regions' (RMRs). The parameterized models offer important advantages for high-performance RT calculations over ab-initio hydrodynamic input models. The acceleration of the input model calculations permits us to simulate and investigate a wide variety of physical conditions in the extended winds of massive hot stars. The new modeling method is very flexible for constraining the dynamic and geometric wind properties of RMRs in HD 64760. We compute that t...
3D Monte Carlo radiation transfer modelling of photodynamic therapy
Campbell, C. Louise; Christison, Craig; Brown, C. Tom A.; Wood, Kenneth; Valentine, Ronan M.; Moseley, Harry
2015-06-01
The effects of ageing and skin type on Photodynamic Therapy (PDT) for different treatment methods have been theoretically investigated. A multilayered Monte Carlo Radiation Transfer model is presented where both daylight activated PDT and conventional PDT are compared. It was found that light penetrates deeper through older skin with a lighter complexion, which translates into a deeper effective treatment depth. The effect of ageing was found to be larger for darker skin types. The investigation further strengthens the usage of daylight as a potential light source for PDT where effective treatment depths of about 2 mm can be achieved.
Parameterization and analysis of 3-D radiative transfer in clouds
Energy Technology Data Exchange (ETDEWEB)
Varnai, Tamas
2012-03-16
This report provides a summary of major accomplishments from the project. The project examines the impact of radiative interactions between neighboring atmospheric columns, for example clouds scattering extra sunlight toward nearby clear areas. While most current cloud models don't consider these interactions and instead treat sunlight in each atmospheric column separately, the resulting uncertainties have remained unknown. This project has provided the first estimates on the way average solar heating is affected by interactions between nearby columns. These estimates have been obtained by combining several years of cloud observations at three DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility sites (in Alaska, Oklahoma, and Papua New Guinea) with simulations of solar radiation around the observed clouds. The importance of radiative interactions between atmospheric columns was evaluated by contrasting simulations that included the interactions with those that did not. This study provides lower-bound estimates for radiative interactions: It cannot consider interactions in cross-wind direction, because it uses two-dimensional vertical cross-sections through clouds that were observed by instruments looking straight up as clouds drifted aloft. Data from new DOE scanning radars will allow future radiative studies to consider the full three-dimensional nature of radiative processes. The results reveal that two-dimensional radiative interactions increase overall day-and-night average solar heating by about 0.3, 1.2, and 4.1 Watts per meter square at the three sites, respectively. This increase grows further if one considers that most large-domain cloud simulations have resolutions that cannot specify small-scale cloud variability. For example, the increases in solar heating mentioned above roughly double for a fairly typical model resolution of 1 km. The study also examined the factors that shape radiative interactions between atmospheric columns
A 3D radiative transfer framework: XI. multi-level NLTE
Hauschildt, Peter H
2014-01-01
Multi-level non-local thermodynamic equilibrium (NLTE) radiation transfer calculations have become standard throughout the stellar atmospheres community and are applied to all types of stars as well as dynamical systems such as novae and supernovae. Even today spherically symmetric 1D calculations with full physics are computationally intensive. We show that full NLTE calculations can be done with fully 3 dimensional (3D) radiative transfer. With modern computational techniques and current massive parallel computational resources, full detailed solution of the multi-level NLTE problem coupled to the solution of the radiative transfer scattering problem can be solved without sacrificing the micro physics description. We extend the use of a rate operator developed to solve the coupled NLTE problem in spherically symmetric 1D systems. In order to spread memory among processors we have implemented the NLTE/3D module with a hierarchical domain decomposition method that distributes the NLTE levels, radiative rates,...
3D hydrodynamical and radiative transfer modeling of Eta Carinae's colliding winds
Madura, Thomas I; Gull, Theodore R; Kruip, Chael J H; Paardekooper, Jan-Pieter; Icke, Vincent
2015-01-01
We present results of full 3D hydrodynamical and radiative transfer simulations of the colliding stellar winds in the massive binary system Eta Carinae. We accomplish this by applying the SimpleX algorithm for 3D radiative transfer on an unstructured Voronoi-Delaunay grid to recent 3D smoothed particle hydrodynamics (SPH) simulations of the binary colliding winds. We use SimpleX to obtain detailed ionization fractions of hydrogen and helium, in 3D, at the resolution of the original SPH simulations. We investigate several computational domain sizes and Luminous Blue Variable primary star mass-loss rates. We furthermore present new methods of visualizing and interacting with output from complex 3D numerical simulations, including 3D interactive graphics and 3D printing. While we initially focus on Eta Car, the methods employed can be applied to numerous other colliding wind (WR 140, WR 137, WR 19) and dusty 'pinwheel' (WR 104, WR 98a) binary systems. Coupled with 3D hydrodynamical simulations, SimpleX simulatio...
Niccolini, G.; Alcolea, J.
Solving the radiative transfer problem is a common problematic to may fields in astrophysics. With the increasing angular resolution of spatial or ground-based telescopes (VLTI, HST) but also with the next decade instruments (NGST, ALMA, ...), astrophysical objects reveal and will certainly reveal complex spatial structures. Consequently, it is necessary to develop numerical tools being able to solve the radiative transfer equation in three dimensions in order to model and interpret these observations. I present a 3D radiative transfer program, using a new method for the construction of an adaptive spatial grid, based on the Monte Claro method. With the help of this tools, one can solve the continuum radiative transfer problem (e.g. a dusty medium), computes the temperature structure of the considered medium and obtain the flux of the object (SED and images).
Hayek, W; Carlsson, M; Trampedach, R; Collet, R; Gudiksen, B V; Hansteen, V H; Leenaarts, J
2010-01-01
We present the implementation of a radiative transfer solver with coherent scattering in the new BIFROST code for radiative magneto-hydrodynamical (MHD) simulations of stellar surface convection. The code is fully parallelized using MPI domain decomposition, which allows for large grid sizes and improved resolution of hydrodynamical structures. We apply the code to simulate the surface granulation in a solar-type star, ignoring magnetic fields, and investigate the importance of coherent scattering for the atmospheric structure. A scattering term is added to the radiative transfer equation, requiring an iterative computation of the radiation field. We use a short-characteristics-based Gauss-Seidel acceleration scheme to compute radiative flux divergences for the energy equation. The effects of coherent scattering are tested by comparing the temperature stratification of three 3D time-dependent hydrodynamical atmosphere models of a solar-type star: without scattering, with continuum scattering only, and with bo...
Partial redistribution in 3D non-LTE radiative transfer in solar atmosphere models
Sukhorukov, Andrii V
2016-01-01
Resonance spectral lines such as H I Ly {\\alpha}, Mg II h&k, and Ca II H&K that form in the solar chromosphere are influenced by the effects of 3D radiative transfer as well as partial redistribution (PRD). So far no one has modeled these lines including both effects simultaneously owing to the high computing demands of existing algorithms. Such modeling is however indispensable for accurate diagnostics of the chromosphere. We present a computationally tractable method to treat PRD scattering in 3D model atmospheres using a 3D non-LTE radiative transfer code. To make the method memory-friendly, we use the hybrid approximation of Leenaarts et al. (2012) for the redistribution integral. To make it fast, we use linear interpolation on equidistant frequency grids. We verify our algorithm against computations with the RH code and analyze it for stability, convergence, and usefulness of acceleration using model atoms of Mg II with the h&k lines and H I with the Ly {\\alpha} line treated in PRD. A typical...
Monte Carlo techniques for time-dependent radiative transfer in 3-D supernovae
Lucy, L B
2004-01-01
Monte Carlo techniques based on indivisible energy packets are described for computing light curves and spectra for 3-D supernovae. The radiative transfer is time-dependent and includes all effects of O(v/c). Monte Carlo quantization is achieved by discretizing the initial distribution of 56Ni into radioactive pellets. Each pellet decays with the emission of a single energy packet comprising gamma-ray photons representing one line from either the 56Ni or the 56Co decay spectrum. Subsequently, these energy packets propagate through the homologously-expanding ejecta with appropriate changes in the nature of their contained energy as they undergo Compton scatterings and pure absorptions. The 3-D code is tested by applying it to a spherically-symmetric SN in which the transfer of optical radiation is treated with a grey absorption coefficient. This 1-D problem is separately solved using Castor's co-moving frame moment equations. Satisfactory agreement is obtained. The Monte Carlo code is a platform onto which mor...
3D Hydrodynamic & Radiative Transfer Models of X-ray Emission from Colliding Wind Binaries
Russell, Christopher M P; Owocki, Stanley P; Corcoran, Michael F; Hamaguchi, Kenji; Sugawara, Yasuharu
2014-01-01
Colliding wind binaries (CWBs) are unique laboratories for X-ray astrophysics. The massive stars in these systems possess powerful stellar winds with speeds up to $\\sim$3000 km s$^{-1}$, and their collision leads to hot plasma (up to $\\sim10^8$K) that emit thermal X-rays (up to $\\sim$10 keV). Many X-ray telescopes have observed CWBs, including Suzaku, and our work aims to model these X-ray observations. We use 3D smoothed particle hydrodynamics (SPH) to model the wind-wind interaction, and then perform 3D radiative transfer to compute the emergent X-ray flux, which is folded through X-ray telescopes' response functions to compare directly with observations. In these proceedings, we present our models of Suzaku observations of the multi-year-period, highly eccentric systems $\\eta$ Carinae and WR 140. The models reproduce the observations well away from periastron passage, but only $\\eta$ Carinae's X-ray spectrum is reproduced at periastron; the WR 140 model produces too much flux during this more complicated p...
Jinya, John; Bipasha, Paul S.
2016-05-01
Clouds strongly modulate the Earths energy balance and its atmosphere through their interaction with the solar and terrestrial radiation. They interact with radiation in various ways like scattering, emission and absorption. By observing these changes in radiation at different wavelength, cloud properties can be estimated. Cloud properties are of utmost importance in studying different weather and climate phenomena. At present, no satellite provides cloud microphysical parameters over the Indian region with high temporal resolution. INSAT-3D imager observations in 6 spectral channels from geostationary platform offer opportunity to study continuous cloud properties over Indian region. Visible (0.65 μm) and shortwave-infrared (1.67 μm) channel radiances can be used to retrieve cloud microphysical parameters such as cloud optical thickness (COT) and cloud effective radius (CER). In this paper, we have carried out a feasibility study with the objective of cloud microphysics retrieval. For this, an inter-comparison of 15 globally available radiative transfer models (RTM) were carried out with the aim of generating a Look-up- Table (LUT). SBDART model was chosen for the simulations. The sensitivity of each spectral channel to different cloud properties was investigated. The inputs to the RT model were configured over our study region (50°S - 50°N and 20°E - 130°E) and a large number of simulations were carried out using random input vectors to generate the LUT. The determination of cloud optical thickness and cloud effective radius from spectral reflectance measurements constitutes the inverse problem and is typically solved by comparing the measured reflectances with entries in LUT and searching for the combination of COT and CER that gives the best fit. The products are available on the website www.mosdac.gov.in
High-resolution 3D dust radiative transfer in galaxies with DART-Ray
Natale, Giovanni; Popescu, Cristina C.; Tuffs, Richard. J.; Debattista, Victor P.; Grootes, Meiert W.
2015-02-01
DART-Ray is a 3D ray-tracing dust radiative transfer (RT) code that can be used to derive stellar and dust emission maps of galaxy models and simulations with arbitrary geometries. In addition to the previously published RT algorithm, we have now included in DART-Ray the possibility of calculating the stocastically heated dust emission from each volume element within a galaxy. To show the capabilities of the code, we performed a high-resolution (26 pc) RT calculation for a galaxy N-body+SPH simulation. The simulated galaxy we considered is characterized by a nuclear disc and a flocculent spiral structure. We analysed the derived galaxy maps for the global and local effects of dust on the galaxy attenuation as well as the contribution of scattered radiation to the predicted observed emission. In addition, by performing an additional RT calculation including only the stellar volume emissivity due to young stellar populations (SPs), we derived the contribution to the total dust emission powered by young and old SPs. Full details of this work will be presented in a forthcoming publication.
Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Icke, V.; Gull, T. R.
2014-01-01
Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions and evolution, and stellar wind-wind collisions. Recent three-dimensional (3D) simulations set the stage for understanding the highly complex 3D flows in Eta Car. Observations of different broad high- and low-ionization forbidden emission lines provide an excellent tool to constrain the orientation of the system, the primary's mass-loss rate, and the ionizing flux of the hot secondary. In this work we present the first steps towards generating synthetic observations to compare with available and future HST/STIS data. We present initial results from full 3D radiative transfer simulations of the interacting winds in Eta Car. We use the SimpleX algorithm to post-process the output from 3D SPH simulations and obtain the ionization fractions of hydrogen and helium assuming three different mass-loss rates for the primary star. The resultant ionization maps of both species constrain the regions where the observed forbidden emission lines can form. Including collisional ionization is necessary to achieve a better description of the ionization states, especially in the areas shielded from the secondary's radiation. We find that reducing the primary's mass-loss rate increases the volume of ionized gas, creating larger areas where the forbidden emission lines can form. We conclude that post processing 3D SPH data with SimpleX is a viable tool to create ionization maps for Eta Car.
Gouttebroze, P.
2008-09-01
Context: Time-resolved observations of loops embedded in the solar corona show the existence of motions of matter inside these structures, as well as the global motions of these objects themselves. Aims: We have developed a modeling tool for cylindrical objects inside the solar corona, including 2-dimensional (azimuth-dependent) radiative transfer effects and 3-dimensional velocity fields. Methods: We used numerical methods to simultaneously solve the equations of NLTE radiative transfer, statistical equilibrium of hydrogen level populations, and electric neutrality. The radiative transfer equations were solved using cylindrical coordinates and prescribed solar incident radiation. In addition to the effects of anisotropic incident radiation, treated in previous papers, we took into account the Doppler shifts produced by a 3-dimension velocity field. Results: The effects of different types of velocity fields on hydrogen line profiles and intensities are described. Motions include loop oscillations, rotation, and longitudinal flows, which produce different deformations of profiles. Doppler brightening and dimming effects are also observed. Conclusions: This is a new step in the diagnostic of physical conditions in coronal loops, allowing the study of dynamical phenomena.
Clementel, N; Kruip, C J H; Icke, V; Gull, T R
2014-01-01
Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions and evolution, and stellar wind-wind collisions. Recent three-dimensional (3D) simulations set the stage for understanding the highly complex 3D flows in $\\eta$ Car. Observations of different broad high- and low-ionization forbidden emission lines provide an excellent tool to constrain the orientation of the system, the primary's mass-loss rate, and the ionizing flux of the hot secondary. In this work we present the first steps towards generating synthetic observations to compare with available and future HST/STIS data. We present initial results from full 3D radiative transfer simulations of the interacting winds in $\\eta$ Car. We use the SimpleX algorithm to post-process the output from 3D SPH simulations and obtain the ionization fractions of hydrogen and helium assuming three different mass-loss rates for the primary star. The resultant ionization maps of both species constrain the regions where the observed forbidde...
High-resolution, 3D radiative transfer modeling : I. The grand-design spiral galaxy M51
De Looze, Ilse; Baes, Maarten; Bendo, George J; Cortese, Luca; Boquien, Médéric; Boselli, Alessandro; Camps, Peter; Cooray, Asantha; Cormier, Diane; Davies, Jon I; De Geyter, Gert; Hughes, Thomas M; Jones, Anthony P; Karczewski, Oskar L; Lebouteiller, Vianney; Lu, Nanyao; Madden, Suzanne C; Rémy-Ruyer, Aurélie; Spinoglio, Luigi; Smith, Matthew W L; Viaene, Sebastien; Wilson, Christine D
2014-01-01
Context: Dust reprocesses about half of the stellar radiation in galaxies. The thermal re-emission by dust of absorbed energy is considered driven merely by young stars and, consequently, often applied to trace the star formation rate in galaxies. Recent studies have argued that the old stellar population might anticipate a non-negligible fraction of the radiative dust heating. Aims: In this work, we aim to analyze the contribution of young (< 100 Myr) and old (~ 10 Gyr) stellar populations to radiative dust heating processes in the nearby grand-design spiral galaxy M51 using radiative transfer modeling. High-resolution 3D radiative transfer (RT) models are required to describe the complex morphologies of asymmetric spiral arms and clumpy star-forming regions and model the propagation of light through a dusty medium. Methods: In this paper, we present a new technique developed to model the radiative transfer effects in nearby face-on galaxies. We construct a high-resolution 3D radiative transfer model with...
Simulating 3-D radiative transfer effects over the Sierra Nevada mountains using WRF
Directory of Open Access Journals (Sweden)
Y. Gu
2012-08-01
Full Text Available A surface solar radiation parameterization based on deviations between 3-D and conventional plane-parallel radiative transfer models has been incorporated into the Weather Research and Forecasting (WRF model to understand the solar insolation over mountain/snow areas and to investigate the impact of the spatial and temporal distribution and variation of surface solar fluxes on land-surface processes. Using the Sierra Nevada in the Western United States as a testbed, we show that mountain effect could produce up to −50 to +50 W m^{−2} deviations in the surface solar fluxes over the mountain areas, resulting in a temperature increase of up to 1 °C on the sunny side. Upward surface sensible and latent heat fluxes are modulated accordingly to compensate for the change in surface solar fluxes. Snow water equivalent and surface albedo both show decreases on the sunny side of the mountains, indicating more snowmelt and hence reduced snow albedo associated with more solar insolation due to mountain effect. Soil moisture increases on the sunny side of the mountains due to enhanced snowmelt, while decreases on the shade side. Substantial differences are found in the morning hours from 8–10 a.m. and in the afternoon around 3–5 p.m., while differences around noon and in the early morning and late afternoon are comparatively smaller. Variation in the surface energy balance can also affect atmospheric processes, such as cloud fields, through the modulation of vertical thermal structure. Negative changes of up to −40 g m^{−2} are found in the cloud water path, associated with reductions in the surface insolation over the cloud region. The day-averaged deviations in the surface solar flux are positive over the mountain areas and negative in the valleys, with a range between −12~12 W m^{−2}. Changes in sensible and latent heat fluxes and surface skin temperature follow the solar insolation pattern. Differences in the
Fauchez, Thomas; Davis, Anthony B.; Cornet, Celine; Szczap, Frederic; Platnick, Steven; Dubuisson, Philippe; Thieuleux, Francois
2017-01-01
We investigate the impact of cirrus cloud heterogeneity on the direct emission by cloud or surface and on the scattering by ice particles in the thermal infrared (TIR). Realistic 3-D cirri are modeled with the 3DCLOUD code, and top-of-atmosphere radiances are simulated by the 3-D Monte Carlo radiative transfer (RT) algorithm 3DMCPOL for two (8.65 micrometers and 12.05 micrometers) channels of the Imaging Infrared Radiometer on CALIPSO. At nadir, comparisons of 1-D and 3-D RT show that 3-D radiances are larger than their 1-D counterparts for direct emission but smaller for scattered radiation. For our cirrus cases, 99% of the 3-D total radiance is computed by the third scattering order, which corresponds to 90% of the total computational effort, but larger optical thicknesses need more scattering orders. To radically accelerate the 3-D RT computations (using only few percent of 3-D RT time with a Monte Carlo code), even in the presence of large optical depths, we develop a hybrid model based on exact 3-D direct emission, the first scattering order from 1-D in each homogenized column, and an empirical adjustment linearly dependent on the optical thickness to account for higher scattering orders. Good agreement is found between the hybrid model and the exact 3-D radiances for two very different cirrus models without changing the empirical parameters. We anticipate that a future deterministic implementation of the hybrid model will be fast enough to process multiangle thermal imagery in a practical tomographic reconstruction of 3-D cirrus fields.
Semi-random simulation method for calculating 3-D radiation transfer problems in cavity
Institute of Scientific and Technical Information of China (English)
冯庭桂; 赖东显
1996-01-01
One of the most important issues in inertial confinement fusion (ICF) is to study the uniformity of the radiation field around the implosion pellet containing fuel.To this end,a numerical method linking Monte Carlo with iteration method is presented for calculating the radiation transfer problems in a cavity.The detail of the calculation scheme is described and some numerical examples are also given.
First 3D radiative transfer with scattering for domain-decomposed MHD simulations
Energy Technology Data Exchange (ETDEWEB)
Hayek, W [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston Creek ACT 2611 (Australia)], E-mail: hayek@mpa-garching.mpg.de
2008-12-15
This paper presents an implementation of the Gauss-Seidel solver for radiative transfer with scattering in the Oslo Stagger Code. It fully supports MPI parallelism through domain decomposition of the simulation box, enabling fast computation of radiative transfer at a high resolution. Continuum and line opacities are treated with either a multigroup method or opacity sampling. Line scattering probabilities are estimated using the van Regemorter approximation for de-excitation rates of electron collisions. A solar-type test simulation with continuum and line scattering exhibits a steeper temperature gradient due to decreased radiative heating above the optical surface when compared with the strict local thermodynamic equilibrium (LTE) case. The classical van Regemorter approximation may overestimate the importance of line scattering, implying that the true temperature structure will be in between the LTE case and the scattering case considered here. It is demonstrated that continuum scattering is unimportant in the case of the Sun.
First 3D radiative transfer with scattering for domain-decomposed MHD simulations
Hayek, W.
2008-12-01
This paper presents an implementation of the Gauss Seidel solver for radiative transfer with scattering in the Oslo Stagger Code. It fully supports MPI parallelism through domain decomposition of the simulation box, enabling fast computation of radiative transfer at a high resolution. Continuum and line opacities are treated with either a multigroup method or opacity sampling. Line scattering probabilities are estimated using the van Regemorter approximation for de-excitation rates of electron collisions. A solar-type test simulation with continuum and line scattering exhibits a steeper temperature gradient due to decreased radiative heating above the optical surface when compared with the strict local thermodynamic equilibrium (LTE) case. The classical van Regemorter approximation may overestimate the importance of line scattering, implying that the true temperature structure will be in between the LTE case and the scattering case considered here. It is demonstrated that continuum scattering is unimportant in the case of the Sun.
Liou, K. N.; Gu, Y.; Leung, L. R.; Lee, W. L.; Fovell, R. G.
2013-07-01
Essentially all modern climate models utilize a plane-parallel (PP) radiative transfer approach in physics parameterizations; however, the potential errors that arise from neglecting three-dimensional (3-D) interactions between radiation and mountains/snow on climate simulations have not been studied and quantified. This paper is a continuation of our efforts to investigate 3-D mountains/snow effects on solar flux distributions and their impact on surface hydrology over the Western United States, specifically the Rocky and Sierra-Nevada Mountains. We use the Weather Research and Forecasting (WRF) model applied at a 30 km grid resolution with incorporation of a 3-D radiative transfer parameterization covering a time period from 1 November 2007 to 31 May 2008 during which abundant snowfall occurred. Comparison of the 3-D WRF simulation with the observed snow water equivalent (SWE) and precipitation from Snowpack Telemetry (SNOTEL) sites shows reasonable agreement in terms of spatial patterns and daily and seasonal variability, although the simulation generally has a positive precipitation bias. We show that 3-D mountain features have a profound impact on the diurnal and monthly variation of surface radiative and heat fluxes and on the consequent elevation-dependence of snowmelt and precipitation distributions. In particular, during the winter months, large deviations (3-D-PP) of the monthly mean surface solar flux are found in the morning and afternoon hours due to shading effects for elevations below 2.5 km. During spring, positive deviations shift to earlier morning. Over the mountain tops above 3 km, positive deviations are found throughout the day, with the largest values of 40-60 W m-2 occurring at noon during the snowmelt season of April to May. The monthly SWE deviations averaged over the entire domain show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher elevation areas, positive SWE deviations
Directory of Open Access Journals (Sweden)
K. N. Liou
2013-07-01
Full Text Available Essentially all modern climate models utilize a plane-parallel (PP radiative transfer approach in physics parameterizations; however, the potential errors that arise from neglecting three-dimensional (3-D interactions between radiation and mountains/snow on climate simulations have not been studied and quantified. This paper is a continuation of our efforts to investigate 3-D mountains/snow effects on solar flux distributions and their impact on surface hydrology over the Western United States, specifically the Rocky and Sierra-Nevada Mountains. We use the Weather Research and Forecasting (WRF model applied at a 30 km grid resolution with incorporation of a 3-D radiative transfer parameterization covering a time period from 1 November 2007 to 31 May 2008 during which abundant snowfall occurred. Comparison of the 3-D WRF simulation with the observed snow water equivalent (SWE and precipitation from Snowpack Telemetry (SNOTEL sites shows reasonable agreement in terms of spatial patterns and daily and seasonal variability, although the simulation generally has a positive precipitation bias. We show that 3-D mountain features have a profound impact on the diurnal and monthly variation of surface radiative and heat fluxes and on the consequent elevation-dependence of snowmelt and precipitation distributions. In particular, during the winter months, large deviations (3-D–PP of the monthly mean surface solar flux are found in the morning and afternoon hours due to shading effects for elevations below 2.5 km. During spring, positive deviations shift to earlier morning. Over the mountain tops above 3 km, positive deviations are found throughout the day, with the largest values of 40–60 W m−2 occurring at noon during the snowmelt season of April to May. The monthly SWE deviations averaged over the entire domain show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher elevation areas
Le Hardy, D.; Favennec, Y.; Rousseau, B.; Hecht, F.
2017-04-01
The contribution of this paper relies in the development of numerical algorithms for the mathematical treatment of specular reflection on borders when dealing with the numerical solution of radiative transfer problems. The radiative transfer equation being integro-differential, the discrete ordinates method allows to write down a set of semi-discrete equations in which weights are to be calculated. The calculation of these weights is well known to be based on either a quadrature or on angular discretization, making the use of such method straightforward for the state equation. Also, the diffuse contribution of reflection on borders is usually well taken into account. However, the calculation of accurate partition ratio coefficients is much more tricky for the specular condition applied on arbitrary geometrical borders. This paper presents algorithms that calculate analytically partition ratio coefficients needed in numerical treatments. The developed algorithms, combined with a decentered finite element scheme, are validated with the help of comparisons with analytical solutions before being applied on complex geometries.
Clementel, Nicola; Kruip, Chael J H; Paardekooper, Jan-Pieter
2015-01-01
Spectral observations of the massive colliding wind binary Eta Carinae show phase-dependent variations, in intensity and velocity, of numerous helium emission and absorption lines throughout the entire 5.54-year orbit. Approaching periastron, the 3D structure of the wind-wind interaction region (WWIR) gets highly distorted due to the eccentric ($e \\sim 0.9$) binary orbit. The secondary star ($\\eta_{\\mathrm{B}}$) at these phases is located deep within the primary's dense wind photosphere. The combination of these effects is thought to be the cause of the particularly interesting features observed in the helium lines at periastron. We perform 3D radiative transfer simulations of $\\eta$ Car's interacting winds at periastron. Using the SimpleX radiative transfer algorithm, we post-process output from 3D smoothed particle hydrodynamic simulations of the inner 150 au of the $\\eta$ Car system for two different primary star mass-loss rates ($\\dot{M}_{\\eta_{\\mathrm{A}}}$). Using previous results from simulations at ap...
Modeling the physical structure of star-forming regions with LIME, a 3D radiative transfer code
Quénard, D.; Bottinelli, S.; Caux, E.
2016-05-01
The ability to predict line emission is crucial in order to make a comparison with observations. From LTE to full radiative transfer codes, the goal is always to derive the most accurately possible the physical properties of the source. Non-LTE calculations can be very time consuming but are needed in most of the cases since many studied regions are far from LTE.
Liou, K. N.; Gu, Y.; Leung, L. R.; Lee, W. L.; Fovell, R. G.
2013-12-01
We investigate 3-D mountains/snow effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and Sierra Nevada. The Weather Research and Forecasting (WRF) model, applied at a 30 km grid resolution, is used in conjunction with a 3-D radiative transfer parameterization covering a time period from 1 November 2007 to 31 May 2008, during which abundant snowfall occurred. A comparison of the 3-D WRF simulation with the observed snow water equivalent (SWE) and precipitation from Snowpack Telemetry (SNOTEL) sites shows reasonable agreement in terms of spatial patterns and daily and seasonal variability, although the simulation generally has a positive precipitation bias. We show that 3-D mountain features have a profound impact on the diurnal and monthly variation of surface radiative and heat fluxes, and on the consequent elevation-dependence of snowmelt and precipitation distributions. In particular, during the winter months, large deviations (3-D-PP, in which PP denotes the plane-parallel approach) of the monthly mean surface solar flux are found in the morning and afternoon hours due to shading effects for elevations below 2.5 km. During spring, positive deviations shift to the earlier morning. Over mountaintops higher than 3 km, positive deviations are found throughout the day, with the largest values of 40-60 W m-2 occurring at noon during the snowmelt season of April to May. The monthly SWE deviations averaged over the entire domain show an increase in lower elevations due to reduced snowmelt, which leads to a reduction in cumulative runoff. Over higher elevation areas, positive SWE deviations are found because of increased solar radiation available at the surface. Overall, this study shows that deviations of SWE due to 3-D radiation effects range from an increase of 18% at the lowest elevation range (1.5-2 km) to a decrease of 8% at the highest elevation range (above 3 km). Since lower
Jakub, Fabian; Mayer, Bernhard
2016-04-01
The recently developed 3-D TenStream radiative transfer solver was integrated into the University of California, Los Angeles large-eddy simulation (UCLA-LES) cloud-resolving model. This work documents the overall performance of the TenStream solver as well as the technical challenges of migrating from 1-D schemes to 3-D schemes. In particular the employed Monte Carlo spectral integration needed to be reexamined in conjunction with 3-D radiative transfer. Despite the fact that the spectral sampling has to be performed uniformly over the whole domain, we find that the Monte Carlo spectral integration remains valid. To understand the performance characteristics of the coupled TenStream solver, we conducted weak as well as strong-scaling experiments. In this context, we investigate two matrix preconditioner: geometric algebraic multigrid preconditioning (GAMG) and block Jacobi incomplete LU (ILU) factorization and find that algebraic multigrid preconditioning performs well for complex scenes and highly parallelized simulations. The TenStream solver is tested for up to 4096 cores and shows a parallel scaling efficiency of 80-90 % on various supercomputers. Compared to the widely employed 1-D delta-Eddington two-stream solver, the computational costs for the radiative transfer solver alone increases by a factor of 5-10.
Energy Technology Data Exchange (ETDEWEB)
Ewen, G.B.L. [Department of Atmospheric, Oceanic and Planetary Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU (United Kingdom)]. E-mail: gewen@atm.ox.ac.uk; Grainger, R.G. [Department of Atmospheric, Oceanic and Planetary Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU (United Kingdom); Lambert, A. [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Baran, A.J. [Met Office, Exeter (United Kingdom)
2005-11-15
The Monte Carlo cloud scattering forward model (McClouds{sub F}M) has been developed to simulate limb radiative transfer in the presence of cirrus clouds, for the purposes of simulating cloud contaminated measurements made by an infrared limb sounding instrument, e.g. the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). A reverse method three-dimensional Monte Carlo transfer model is combined with a line-by-line model for radiative transfer through the non-cloudy atmosphere to explicitly account for the effects of multiple scattering by the clouds. The ice cloud microphysics are characterised by a size distribution of randomly oriented ice crystals, with the single scattering properties of the distribution determined by accurate calculations accounting for non-spherical habit. A comparison of McClouds{sub F}M simulations and real MIPAS spectra of cirrus shows good agreement. Of particular interest are several noticeable spectral features (i.e. H{sub 2}O absorption lines) in the data that are replicated in the simulations: these can only be explained by upwelling tropospheric radiation scattered into the line-of-sight by the cloud ice particles.
McCauley, Alexander P; Krüger, Matthias; Johnson, Steven G
2011-01-01
We examine the non-equilibrium radiative heat transfer between a plate and finite cylinders and cones, making the first accurate theoretical predictions for the total heat transfer and the spatial heat flux profile for three-dimensional compact objects including corners or tips. We find qualitatively different scaling laws for conical shapes at small separations, and in contrast to a flat/slightly-curved object, a sharp cone exhibits a local \\emph{minimum} in the spatially resolved heat flux directly below the tip. The method we develop, in which a scattering-theory formulation of thermal transfer is combined with a boundary-element method for computing scattering matrices, can be applied to three-dimensional objects of arbitrary shape.
Gu, Y.; Liou, K.; Leung, L.; Lee, W.; Fovell, R. G.
2013-12-01
Modern climate models have used a plane-parallel (PP) radiative transfer approach in physics parameterizations; however, the potential errors that arise from neglecting three-dimensional (3D) interactions between radiation and mountains/snow on climate simulations have not been studied and quantified. We have developed a surface solar radiation parameterization based on the regression analysis of flux deviations between 3D and conventional PP radiative transfer models, which has been incorporated into the Weather Research and Forecasting (WRF) model to investigate the impact of the spatial and temporal distribution and variation of surface solar fluxes on surface hydrology. Using the Rocky and Sierra-Nevada Mountains in the Western United States as a testbed, the WRF model with the incorporation of the 3D parameterization is applied at a 30 km grid resolution covering a time period from November 1, 2007 to May 31, 2008 during which abundant snowfall occurred. Comparison of the 3D WRF simulation with the observed snow water equivalent (SWE) and precipitation from Snowpack Telemetry (SNOTEL) sites shows reasonable agreement in terms of spatial patterns and daily and seasonal variability, although the simulation generally has a positive precipitation bias. We show that 3D mountain features have a profound impact on the diurnal and monthly variation of surface radiative and heat fluxes and on the consequent elevation-dependence of snowmelt and precipitation distributions. For lower elevations, positive deviations (3D - PP) of the monthly mean surface solar flux are found in the morning and afternoon hours, while negative deviations are shown between 10 am-2 pm during the winter months, leading to reduced diurnal variations. Over the mountain tops above 3 km, positive deviations are found throughout the day, with the largest values of 40 - 60 W/m2 occurring at noon during the snowmelt season of April to May. The monthly SWE deviations averaged over the entire domain
Directory of Open Access Journals (Sweden)
F. Jakub
2015-10-01
Full Text Available The recently developed three-dimensional TenStream radiative transfer solver was integrated into the UCLA–LES cloud resolving model. This work documents the overall performance of the TenStream solver as well as the technical challenges migrating from 1-D schemes to 3-D schemes. In particular the employed Monte-Carlo-Spectral-Integration needed to be re-examined in conjunction with 3-D radiative transfer. Despite the fact that the spectral sampling has to be performed uniformly over the whole domain, we find that the Monte-Carlo-Spectral-Integration remains valid. To understand the performance characteristics of the coupled TenStream solver, we conducted weak- as well as strong-scaling experiments. In this context, we investigate two matrix-preconditioner (GAMG and block-jacobi ILU and find that algebraic multigrid preconditioning performs well for complex scenes and highly parallelized simulations. The TenStream solver is tested for up to 4096 cores and shows a parallel scaling efficiency of 80–90 % on various supercomputers. Compared to the widely employed 1-D δ-Eddington two-stream solver, the computational costs for the radiative transfer solver alone increases by a factor of five to ten.
Energy Technology Data Exchange (ETDEWEB)
Jin Yaqiu [Center for Wave Scattering and Remote Sensing, Fudan University, Shanghai 200433 (China)]. E-mail: yqjin@fundan.ac.cn; Liang Zichang [Center for Wave Scattering and Remote Sensing, Fudan University, Shanghai 200433 (China)
2005-05-15
To solve the 3D-VRT equation for the model of spatially inhomogeneous scatter media, the finite enclosure of the scatter media is geometrically divided, in both vertical z and transversal (x,y) directions, to form very thin multi-boxes. The zeroth order emission, first-order Mueller matrix of each thin box and an iterative approach of high-order radiative transfer are applied to derive high-order scattering and emission of whole inhomogeneous scatter media. Numerical results of polarized brightness temperature at microwave frequency and under different radiometer resolutions from inhomogeneous scatter model such as vegetation canopy and alien target beneath canopy are simulated and discussed.
Wireless Power Transfer in 3D Space
Directory of Open Access Journals (Sweden)
C.Bhuvaneshvari
2014-06-01
Full Text Available The main objective of this project is to develop a system of wireless power transfer in 3D space. This concept based on low frequency to high frequency conversion. High frequency power is transmit between air-core and inductor. This work presents an experiment for wireless energy transfer by using the Inductive resonant coupling (also known as resonant energy transfer phenomenon. The basic principles will be presented about this physical phenomenon, the experiment design, and the results obtained for the measurements performed on the system. The parameters measured were the efficiency of the power transfer, and the angle between emitter and receiver. We can achieve wireless power transfer up to 10watts in 3D space using high frequency through tuned circuit. The wireless power supply is motivated by simple and comfortable use of many small electric appliances with low power input.
Energy Technology Data Exchange (ETDEWEB)
Liou, Kuo-Nan [Univ. of California, Los Angeles, CA (United States)
2016-02-09
Under the support of the aforementioned DOE Grant, we have made two fundamental contributions to atmospheric and climate sciences: (1) Develop an efficient 3-D radiative transfer parameterization for application to intense and intricate inhomogeneous mountain/snow regions. (2) Innovate a stochastic parameterization for light absorption by internally mixed black carbon and dust particles in snow grains for understanding and physical insight into snow albedo reduction in climate models. With reference to item (1), we divided solar fluxes reaching mountain surfaces into five components: direct and diffuse fluxes, direct- and diffuse-reflected fluxes, and coupled mountain-mountain flux. “Exact” 3D Monte Carlo photon tracing computations can then be performed for these solar flux components to compare with those calculated from the conventional plane-parallel (PP) radiative transfer program readily available in climate models. Subsequently, Parameterizations of the deviations of 3D from PP results for five flux components are carried out by means of the multiple linear regression analysis associated with topographic information, including elevation, solar incident angle, sky view factor, and terrain configuration factor. We derived five regression equations with high statistical correlations for flux deviations and successfully incorporated this efficient parameterization into WRF model, which was used as the testbed in connection with the Fu-Liou-Gu PP radiation scheme that has been included in the WRF physics package. Incorporating this 3D parameterization program, we conducted simulations of WRF and CCSM4 to understand and evaluate the mountain/snow effect on snow albedo reduction during seasonal transition and the interannual variability for snowmelt, cloud cover, and precipitation over the Western United States presented in the final report. With reference to item (2), we developed in our previous research a geometric-optics surface-wave approach (GOS) for the
Clementel, Nicola; Kruip, Chael; Paardekooper, Jan-Pieter; Gull, Theodore R
2014-01-01
The highly eccentric binary system Eta Carinae shows numerous time-variable emission and absorption features. These observational signatures are the result of interactions between the complex three-dimensional (3D) wind-wind collision regions and photoionization by the luminous stars. Specifically, helium presents several interesting spectral features that provide important clues on the geometry and physical properties of the system and the individual stars. We use the SimpleX algorithm to post-process 3D smoothed particle hydrodynamics simulation output of the interacting winds in Eta Car in order to obtain the fractions of ionized helium assuming three different primary star mass-loss rates. The resultant ionization maps constrain the regions where helium is singly- and doubly-ionized. We find that reducing the primary's mass-loss rate increases the volume of He+. Lowering the primary mass-loss rate produces large variations in the volume of He+ in the pre-shock primary wind on the periastron side of the sy...
Min, M; Kama, M; Dominik, C
2010-01-01
The precise location of the water ice condensation front ('snow line') in the protosolar nebula has been a debate for a long time. Its importance stems from the expected substantial jump in the abundance of solids beyond the snow line, which is conducive to planet formation, and from the higher stickiness in collisions of ice-coated dust grains, which may help the process of coagulation of dust and the formation of planetesimals. In an optically thin nebula, the location of the snow line is easily calculated to be around 3 AU. However, in its first 5 to 10 million years, the solar nebula was optically thick, implying a smaller snow line radius due to shielding from direct sunlight, but also a larger radius because of viscous heating. Several models have attempted to treat these opposing effects. However, until recently treatments beyond an approximate 1+1D radiative transfer were unfeasible. We revisit the problem with a fully self-consistent 3D treatment in an axisymmetric disk model, including a density-dep...
Photon Scattering in 3D Radiative MHD Simulations
Hayek, Wolfgang
2009-09-01
Recent results from 3D time-dependent radiative hydrodynamic simulations of stellar atmospheres are presented, which include the effects of coherent scattering in the radiative transfer treatment. Rayleigh scattering and electron scattering are accounted for in the source function, requiring an iterative solution of the transfer equation. Opacities and scattering coefficients are treated in the multigroup opacity approximation. The impact of scattering on the horizontal mean temperature structure is investigated, which is an important diagnostic for model atmospheres, with implications for line formation and stellar abundance measurements. We find that continuum scattering is not important for the atmosphere of a metal-poor Sun with metailicity [Fe/H] = -3.0, similar to the previously investigated photosphere at solar metallicity.
Fathi Azarkhavarani, M. E.; Hosseini Abardeh, R.; Rahmani, M.
2015-12-01
In this study a new approach for radiation heat flux calculations by coupling the discrete ordinates method with the Leckner global model is introduced. The aim is to analyze the radiative heat transfer problem within a three-dimensional enclosure filled with non-gray gas mixture of H2O and CO2 . A computer code developed by this approach is applied to radiative calculations in three groups of well-known test cases published previously; considering homogeneous and inhomogeneous isothermal and non-isothermal participating media. All results are compared with well-known calculations based on statistical narrow band model. Also a new series of predictions for a medium with non-black walls and various mixture of H2O and CO2 is performed to demonstrate the applicability of the Leckner model. The effect of different compositions of H2O and CO2 on the radiative transfer within modern combustors is also examined. Based on the results obtained, it is believed that the discrete ordinates method coupled with the Leckner global model despite of its inherent simplicity and low computational cost is sufficiently accurate. For its convenient use, this method is suitable for a wide range of engineering calculations of participating media as well as for its link to previously written computational fluid dynamics codes.
Directory of Open Access Journals (Sweden)
Jean P. Gastellu-Etchegorry
2013-05-01
Full Text Available The need for an efficient and standard technique for optimal spectral sampling of hyperspectral data during the inversion of canopy reflectance models has been the subject of many studies. The objective of this study was to investigate the utility of the discrete wavelet transform (DWT for extracting useful features from hyperspectral data with which forest LAI can be estimated through inversion of a three dimensional radiative transfer model, the Discrete Anisotropy Radiative Transfer (DART model. DART, coupled with the leaf optical properties model PROSPECT, was inverted with AVIRIS data using a look-up-table (LUT-based inversion approach. We used AVIRIS data and in situ LAI measurements from two different hardwood forested sites in Wisconsin, USA. Prior to inversion, model-simulated and AVIRIS hyperspectral data were transformed into discrete wavelet coefficients using Haar wavelets. The LUT inversion was performed with three different datasets, the original reflectance bands, the full set of wavelet extracted features, and two wavelet subsets containing 99.99% and 99.0% of the cumulative energy of the original signal. The energy subset containing 99.99% of the cumulative signal energy provided better estimates of LAI (RMSE = 0.46, R2 = 0.77 than the original spectral bands (RMSE = 0.60, R2 = 0.47. The results indicate that the discrete wavelet transform can increase the accuracy of LAI estimates by improving the LUT-based inversion of DART (and, potentially, by implication, other terrestrial radiative transfer models using hyperspectral data. The improvement in accuracy of LAI estimates is potentially due to different properties of wavelet analysis such as multi-scale representation, dimensionality reduction, and noise removal.
Boosting infrared energy transfer in 3D nanoporous gold antennas.
Garoli, D; Calandrini, E; Bozzola, A; Ortolani, M; Cattarin, S; Barison, S; Toma, A; De Angelis, F
2017-01-05
The applications of plasmonics to energy transfer from free-space radiation to molecules are currently limited to the visible region of the electromagnetic spectrum due to the intrinsic optical properties of bulk noble metals that support strong electromagnetic field confinement only close to their plasma frequency in the visible/ultraviolet range. In this work, we show that nanoporous gold can be exploited as a plasmonic material for the mid-infrared region to obtain strong electromagnetic field confinement, co-localized with target molecules into the nanopores and resonant with their vibrational frequency. The effective optical response of the nanoporous metal enables the penetration of optical fields deep into the nanopores, where molecules can be loaded thus achieving a more efficient light-matter coupling if compared to bulk gold. In order to realize plasmonic resonators made of nanoporous gold, we develop a nanofabrication method based on polymeric templates for metal deposition and we obtain antenna arrays resonating at mid-infrared wavelengths selected by design. We then coat the antennas with a thin (3 nm) silica layer acting as the target dielectric layer for optical energy transfer. We study the strength of the light-matter coupling at the vibrational absorption frequency of silica at 1240 cm(-1) through the analysis of the experimental Fano lineshape that is benchmarked against identical structures made of bulk gold. The boost in the optical energy transfer from free-space mid-infrared radiation to molecular vibrations in nanoporous 3D nanoantenna arrays can open new application routes for plasmon-enhanced physical-chemical reactions.
3D Gray Radiative Properties of Accretion Shocks in Young Stellar Objects
Ibgui, L.; Orlando, S.; Stehlé, C.; Chièze, J.-P.; Hubeny, I.; Lanz, T.; de Sá, L.; Matsakos, T.; González, M.; Bonito, R.
2014-01-01
We address the problem of the contribution of radiation to the structure and dynamics of accretion shocks on Young Stellar Objects. Solving the 3D RTE (radiative transfer equation) under our "gray LTE approach", i.e., using appropriate mean opacities computed in local thermodynamic equilibrium, we post-process the 3D MHD (magnetohydrodynamic) structure of an accretion stream impacting the stellar chromosphere. We find a radiation flux of ten orders of magnitude larger than the accreting energy rate, which is due to a large overestimation of the radiative cooling. A gray LTE radiative transfer approximation is therefore not consistent with the given MHD structure of the shock. Further investigations are required to clarify the role of radiation, by relaxing both the gray and LTE approximations in RHD (radiation hydrodynamics) simulations. Post-processing the obtained structures through the resolution of the non-LTE monochromatic RTE will provide reference radiation quantities against which RHD approximate solutions will be compared.
Hayek, W.; Asplund, M.; Carlsson, M.; Trampedach, R.; Collet, R.; Gudiksen, B. V.; Hansteen, V. H.; Leenaarts, J.
2010-07-01
Aims: We present the implementation of a radiative transfer solver with coherent scattering in the new BIFROST code for radiative magneto-hydrodynamical (MHD) simulations of stellar surface convection. The code is fully parallelized using MPI domain decomposition, which allows for large grid sizes and improved resolution of hydrodynamical structures. We apply the code to simulate the surface granulation in a solar-type star, ignoring magnetic fields, and investigate the importance of coherent scattering for the atmospheric structure. Methods: A scattering term is added to the radiative transfer equation, requiring an iterative computation of the radiation field. We use a short-characteristics-based Gauss-Seidel acceleration scheme to compute radiative flux divergences for the energy equation. The effects of coherent scattering are tested by comparing the temperature stratification of three 3D time-dependent hydrodynamical atmosphere models of a solar-type star: without scattering, with continuum scattering only, and with both continuum and line scattering. Results: We show that continuum scattering does not have a significant impact on the photospheric temperature structure for a star like the Sun. Including scattering in line-blanketing, however, leads to a decrease of temperatures by about 350 K below log10 τ5000 ⪉ -4. The effect is opposite to that of 1D hydrostatic models in radiative equilibrium, where scattering reduces the cooling effect of strong LTE lines in the higher layers of the photosphere. Coherent line scattering also changes the temperature distribution in the high atmosphere, where we observe stronger fluctuations compared to a treatment of lines as true absorbers.
Simulation and test of 3D silicon radiation detectors
Energy Technology Data Exchange (ETDEWEB)
Fleta, C. [Department of Physics and Astronomy, University of Glasgow, Glasgow, Scotland (United Kingdom)], E-mail: c.fleta@physics.gla.ac.uk; Pennicard, D.; Bates, R.; Parkes, C. [Department of Physics and Astronomy, University of Glasgow, Glasgow, Scotland (United Kingdom); Pellegrini, G.; Lozano, M. [Centro Nacional de Microelectronica, (CNM-IMB, CSIC), Barcelona (Spain); Wright, V. [Diamond Light Source, Oxfordshire (United Kingdom); Boscardin, M.; Dalla Betta, G.-F.; Piemonte, C.; Pozza, A.; Ronchin, S.; Zorzi, N. [ITC-IRST, Trento (Italy)
2007-09-01
The work presented here is the result of the collaborative effort between the University of Glasgow, ITC-IRST (Trento) and IMB-CNM (Barcelona) in the framework of the CERN-RD50 Collaboration to produce 3D silicon radiation detectors and study their performance. This paper reports on two sets of 3D devices. IRST and CNM have fabricated a set of single-type column 3D detectors, which have columnar electrodes of the same doping type and an ohmic contact located at the backplane. Simulations of the device behaviour and electrical test results are presented. In particular, current-voltage, capacitance-voltage and charge collection efficiency measurements are reported. Other types of structures called double-sided 3D detectors are currently being fabricated at CNM. In these detectors the sets of n and p columns are made on opposite sides of the device. Electrical and technological simulations and first processing results are presented.
On Hawking Radiation of 3D Rotating Hairy Black Holes
Belhaj, A; Moumni, H EL; Masmar, K; Sedra, M B
2015-01-01
We study the Hawking radiation of 3D rotating hairy black holes. More concretely, we compute the transition probability of a bosonic and fermionic particle in such backgrounds. Thew, we show that the transition probability is independent of the nature of the particle. It is observed that the charge of the scalar hair B and the rotation parameter a control such a probability.
FlexyDos3D: a deformable anthropomorphic 3D radiation dosimeter: radiation properties
DEFF Research Database (Denmark)
De Deene, Yves; Skyt, Peter Sandegaard; Hill, Robin
2015-01-01
Three dimensional radiation dosimetry has received growing interest with the implementation of highly conformal radiotherapy treatments. The radiotherapy community faces new challenges with the commissioning of image guided and image gated radiotherapy treatments (IGRT) and deformable image...... and oxygen concentration has also been investigated. The radiophysical properties of this new dosimeter are discussed including stability, spatial integrity, temperature dependence of the dosimeter during radiation, readout and storage, dose rate dependence and tissue equivalence....
Do Fractal Models of Clouds Produces the Right 3D Radiative Effects?
Varnai, Tamas; Marshak, Alexander; Einaudi, Franco (Technical Monitor)
2001-01-01
Stochastic fractal models of clouds are often used to study 3D radiative effects and their influence on the remote sensing of cloud properties. Since it is important that the cloud models produce a correct radiative response, some researchers require the model parameters to match observed cloud properties such as scale-independent optical thickness variability. Unfortunately, matching these properties does not necessarily imply that the cloud models will cause the right 3D radiative effects. First, the matched properties alone only influence the 3D effects but do not completely determine them. Second, in many cases the retrieved cloud properties have been already biased by 3D radiative effects, and so the models may not match the true real clouds. Finally, the matched cloud properties cannot be considered independent from the scales at which they have been retrieved. This paper proposes an approach that helps ensure that fractal cloud models are realistic and produce the right 3D effects. The technique compares the results of radiative transfer simulations for the model clouds to new direct observations of 3D radiative effects in satellite images.
Effect of UV Radiation by Projectors on 3D Printing
Directory of Open Access Journals (Sweden)
Kovalenko Iaroslav
2017-01-01
Full Text Available Polymers that solidify under light radiation are commonly used in digital light processing (DLP 3D printing. A wide range of photopolymers use photoinitiators that react to radiation in range of ultraviolet (UV wavelength. In the present study we provided measurement of radiant fluence in the UV wavelength range from 280 nm to 400 nm for two data projectors and compared effect of radiation on quality of 3D printing. One projector is commonly used DLP projector with high energy lamp. Second one is an industrial projector, in which RGB light emitting diodes (LEDs are replaced by UV LEDs with wattage at the level of 3.6 % of the first one. Achieved data confirmed uneven distribution of radiant energy on illuminated area. These results validate, that undesired heating light causes internal stress inside built models that causes defects in final products.
VISRAD, 3-D Target Design and Radiation Simulation Code
Golovkin, Igor; Macfarlane, Joseph; Golovkina, Viktoriya
2016-10-01
The 3-D view factor code VISRAD is widely used in designing HEDP experiments at major laser and pulsed-power facilities, including NIF, OMEGA, OMEGA-EP, ORION, LMJ, Z, and PLX. It simulates target designs by generating a 3-D grid of surface elements, utilizing a variety of 3-D primitives and surface removal algorithms, and can be used to compute the radiation flux throughout the surface element grid by computing element-to-element view factors and solving power balance equations. Target set-up and beam pointing are facilitated by allowing users to specify positions and angular orientations using a variety of coordinates systems (e.g., that of any laser beam, target component, or diagnostic port). Analytic modeling for laser beam spatial profiles for OMEGA DPPs and NIF CPPs is used to compute laser intensity profiles throughout the grid of surface elements. We will discuss recent improvements to the software package and plans for future developments.
Thermal radiation heat transfer
Howell, John R; Siegel, Robert
2016-01-01
Further expanding on the changes made to the fifth edition, Thermal Radiation Heat Transfer, 6th Edition continues to highlight the relevance of thermal radiative transfer and focus on concepts that develop the radiative transfer equation (RTE). The book explains the fundamentals of radiative transfer, introduces the energy and radiative transfer equations, covers a variety of approaches used to gauge radiative heat exchange between different surfaces and structures, and provides solution techniques for solving the RTE.
3D measurement of absolute radiation dose in grid therapy
Energy Technology Data Exchange (ETDEWEB)
Trapp, J V [Joint Department of Physics, Institute of Cancer Research and Royal Marsden Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom); Department of Applied Physics, RMIT University, GPO Box 2476V, Melbourne 3001 (Australia); Warrington, A P [Joint Department of Physics, Institute of Cancer Research and Royal Marsden Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom); Partridge, M [Joint Department of Physics, Institute of Cancer Research and Royal Marsden Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom); Philps, A [Joint Department of Physics, Institute of Cancer Research and Royal Marsden Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom); Leach, M O [Cancer Research UK Clinical MR Research Group, Institute of Cancer Research and Royal Marsden Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom); Webb, S [Joint Department of Physics, Institute of Cancer Research and Royal Marsden Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom)
2004-01-01
Spatially fractionated radiotherapy through a grid is a concept which has a long history and was routinely used in orthovoltage radiation therapy in the middle of last century to minimize damage to the skin and subcutaneous tissue. With the advent of megavoltage radiotherapy and its skin sparing effects the use of grids in radiotherapy declined in the 1970s. However there has recently been a revival of the technique for use in palliative treatments with a single fraction of 10 to 20 Gy. In this work the absolute 3D dose distribution in a grid irradiation is measured for photons using a combination of film and gel dosimetry.
MO-B-BRD-01: Creation of 3D Printed Phantoms for Clinical Radiation Therapy
Energy Technology Data Exchange (ETDEWEB)
Ehler, E. [University of Minnesota (United States)
2015-06-15
is used to 3D print individualized physical models of patient’s unique anatomy for aid in planning complex and challenging surgical procedures. Methods, techniques and imaging requirements for 3D printing anatomic models from imaging data will be discussed. Specific applications currently being used in the radiology clinic will be detailed. Standardized phantoms for radiation therapy are abundant. However, custom phantom designs can be advantageous for both clinical tasks and research. 3D printing is a useful method of custom fabrication that allows one to construct custom objects relatively quickly. Possibilities for custom radiotherapy phantoms range from 3D printing a hollow shell and filling the shell with tissue equivalent materials to fully printing the entire phantom with materials that are tissue equivalent as well as suitable for 3D printing. A range of materials available for use in radiotherapy phantoms and in the case of phantoms for dosimetric measurements, this choice is critical. The necessary steps required will be discussed including: modalities of 3D model generation, 3D model requirements for 3D printing, generation of machine instructions from the 3D model, and 3D printing techniques, choice of phantoms material, and troubleshooting techniques for each step in the process. Case examples of 3D printed phantoms will be shown. Learning Objectives: Understand the types of 3D modeling software required to design your device, the file formats required for data transfer from design software to 3D printer, and general troubleshooting techniques for each step of the process. Learn the differences between materials and design for photons vs. electrons vs. protons. Understand the importance of material choice and design geometries for your custom phantoms. Learn specific steps of quality assurance and quality control for 3D printed beam filters and compensators for proton therapy. Learn of special 3D printing applications for imaging. Cunha: Research
3D Gray Radiative Properties of Accretion Shocks in Young Stellar Objects
Directory of Open Access Journals (Sweden)
Ibgui L.
2014-01-01
Full Text Available We address the problem of the contribution of radiation to the structure and dynamics of accretion shocks on Young Stellar Objects. Solving the 3D RTE (radiative transfer equation under our “gray LTE approach”, i.e., using appropriate mean opacities computed in local thermodynamic equilibrium, we post-process the 3D MHD (magnetohydrodynamic structure of an accretion stream impacting the stellar chromosphere. We find a radiation flux of ten orders of magnitude larger than the accreting energy rate, which is due to a large overestimation of the radiative cooling. A gray LTE radiative transfer approximation is therefore not consistent with the given MHD structure of the shock. Further investigations are required to clarify the role of radiation, by relaxing both the gray and LTE approximations in RHD (radiation hydrodynamics simulations. Post-processing the obtained structures through the resolution of the non-LTE monochromatic RTE will provide reference radiation quantities against which RHD approximate solutions will be compared.
Charge collection characterization of a 3D silicon radiation detector by using 3D simulations
Kalliopuska, J; Orava, R
2007-01-01
In 3D detectors, the electrodes are processed within the bulk of the sensor material. Therefore, the signal charge is collected independently of the wafer thickness and the collection process is faster due to shorter distances between the charge collection electrodes as compared to a planar detector structure. In this paper, 3D simulations are used to assess the performance of a 3D detector structure in terms of charge sharing, efficiency and speed of charge collection, surface charge, location of the primary interaction and the bias voltage. The measured current pulse is proposed to be delayed due to the resistance–capacitance (RC) product induced by the variation of the serial resistance of the pixel electrode depending on the depth of the primary interaction. Extensive simulations are carried out to characterize the 3D detector structures and to verify the proposed explanation for the delay of the current pulse. A method for testing the hypothesis experimentally is suggested.
Composite manufacturing: Simulation of 3-D resin transfer molding
Tan, Cheng Ping
1998-10-01
A technique was developed for simulating the resin transfer molding (RTM) process. The major feature of the technique is a computational steering system that enables the user to make changes during the simulation. Specifically, at any instance, the user can inspect the progress of the resin front. On the basis of the observed resin front position, the user can, as needed, change the port and vent locations, open and close ports and vents, adjust the inlet and exit pressures or flow rates, and reorient the mold with respect to the gravitational field. Additionally, the user can "rewind" the simulator to any previous time in the mold filling process, make any of the above changes and then continue the simulation. The technique is augmented by a computer code which has three main components, the Simulator, the Graphics User Interface (GUI), and the Global Data Storage. The Simulator is a finite element code that calculates the resin flow inside the fiber preform. The GUI serves as the interface between the user and the Simulator; it provides the commands to the Simulator and displays the results. The Global Data Storage is the module that manages the exchange of data between the GUI and the Simulator. The computer code (designated as SUPERTMsb-3D) is suitable for simulating the resin flow inside two-dimensional as well as three-dimensional fiber preforms of arbitrary shapes. The use of this computer code is illustrated through sample problems. These problems demonstrate how (with this code) the designer can establish the port and vent locations, opening and closing sequences of ports and vents such that the fiber preform is filled completely in the shortest time with the fewest number of vents.
Radiation Coupling with the FUN3D Unstructured-Grid CFD Code
Wood, William A.
2012-01-01
The HARA radiation code is fully-coupled to the FUN3D unstructured-grid CFD code for the purpose of simulating high-energy hypersonic flows. The radiation energy source terms and surface heat transfer, under the tangent slab approximation, are included within the fluid dynamic ow solver. The Fire II flight test, at the Mach-31 1643-second trajectory point, is used as a demonstration case. Comparisons are made with an existing structured-grid capability, the LAURA/HARA coupling. The radiative surface heat transfer rates from the present approach match the benchmark values within 6%. Although radiation coupling is the focus of the present work, convective surface heat transfer rates are also reported, and are seen to vary depending upon the choice of mesh connectivity and FUN3D ux reconstruction algorithm. On a tetrahedral-element mesh the convective heating matches the benchmark at the stagnation point, but under-predicts by 15% on the Fire II shoulder. Conversely, on a mixed-element mesh the convective heating over-predicts at the stagnation point by 20%, but matches the benchmark away from the stagnation region.
Stochastic Radiative transfer and real cloudiness
Energy Technology Data Exchange (ETDEWEB)
Evans, F. [Univ. of Colorado, Boulder, CO (United States)
1995-09-01
Plane-parallel radiative transfer modeling of clouds in GCMs is thought to be an inadequate representation of the effects of real cloudiness. A promising new approach for studying the effects of cloud horizontal inhomogeneity is stochastic radiative transfer, which computes the radiative effects of ensembles of cloud structures described by probability distributions. This approach is appropriate because cloud information is inherently statistical, and it is the mean radiative effect of complex 3D cloud structure that is desired. 2 refs., 1 fig.
HERO - A 3D general relativistic radiative post-processor for accretion discs around black holes
Zhu, Yucong; Narayan, Ramesh; Sadowski, Aleksander; Psaltis, Dimitrios
2015-08-01
HERO (Hybrid Evaluator for Radiative Objects) is a 3D general relativistic radiative transfer code which has been tailored to the problem of analysing radiation from simulations of relativistic accretion discs around black holes. HERO is designed to be used as a post-processor. Given some fixed fluid structure for the disc (i.e. density and velocity as a function of position from a hydrodynamic or magnetohydrodynamic simulation), the code obtains a self-consistent solution for the radiation field and for the gas temperatures using the condition of radiative equilibrium. The novel aspect of HERO is that it combines two techniques: (1) a short-characteristics (SC) solver that quickly converges to a self-consistent disc temperature and radiation field, with (2) a long-characteristics (LC) solver that provides a more accurate solution for the radiation near the photosphere and in the optically thin regions. By combining these two techniques, we gain both the computational speed of SC and the high accuracy of LC. We present tests of HERO on a range of 1D, 2D, and 3D problems in flat space and show that the results agree well with both analytical and benchmark solutions. We also test the ability of the code to handle relativistic problems in curved space. Finally, we discuss the important topic of ray defects, a major limitation of the SC method, and describe our strategy for minimizing the induced error.
Acoustic Radiation by 3D Vortex Rings in Air
Directory of Open Access Journals (Sweden)
Fedor V. Shugaev
2015-11-01
Full Text Available Acoustic radiation emitted by three-dimensional (3D vortex rings in air has been investigated on the basis of the unsteady Navier–Stokes equations. Power series expansions of the unknown functions with respect to the initial vorticity which is supposed to be small are used. In such a manner the system of the Navier–Stokes equations is reduced to a parabolic system with constant coefficients at high derivatives. The initial value problem is as follows. The vorticity is defined inside a toroid at t = 0. Other gas parameters are assumed to be constant throughout the whole space at t = 0. The solution is expressed by multiple integrals which are evaluated with the aid of the Korobov grids. Density oscillations are analyzed. The results show that the frequency band depends on the initial size of the vortex ring and its helicity. The presented data may be applied to the study of a flow in a wake region behind an aerodynamic body.
Energy Technology Data Exchange (ETDEWEB)
Talukdar, P.; Steven, M.; Issendorff, F.V.; Trimis, D. [Institute of Fluid Mechanics (LSTM), University of Erlangen-Nuremberg, Cauerstrasse 4, D 91058 Erlangen (Germany)
2005-10-01
The finite volume method of radiation is implemented for complex 3-D problems in order to use it for combined heat transfer problems in connection with CFD codes. The method is applied for a 3-D block structured grid in a radiatively participating medium. The method is implemented in non-orthogonal curvilinear coordinates so that it can handle irregular structure with a body-fitted structured grid. The multiblocking is performed with overlapping blocks to exchange the information between the blocks. Five test problems are considered in this work. In the first problem, present work is validated with the results of the literature. To check the accuracy of multiblocking, a single block is divided into four blocks and results are validated against the results of the single block simulated alone in the second problem. Complicated geometries are considered to show the applicability of the present procedure in the last three problems. Both radiative and non-radiative equilibrium situations are considered along with an absorbing, emitting and scattering medium. (author)
Thermal radiation heat transfer
Howell, John R; Mengüç, M Pinar
2011-01-01
Providing a comprehensive overview of the radiative behavior and properties of materials, the fifth edition of this classic textbook describes the physics of radiative heat transfer, development of relevant analysis methods, and associated mathematical and numerical techniques. Retaining the salient features and fundamental coverage that have made it popular, Thermal Radiation Heat Transfer, Fifth Edition has been carefully streamlined to omit superfluous material, yet enhanced to update information with extensive references. Includes four new chapters on Inverse Methods, Electromagnetic Theory, Scattering and Absorption by Particles, and Near-Field Radiative Transfer Keeping pace with significant developments, this book begins by addressing the radiative properties of blackbody and opaque materials, and how they are predicted using electromagnetic theory and obtained through measurements. It discusses radiative exchange in enclosures without any radiating medium between the surfaces-and where heat conduction...
HERO: A 3D General Relativistic Radiative Postprocessor for Accretion Discs around Black Holes
Zhu, Yucong; Sadowski, Aleksander; Psaltis, Dimitrios
2015-01-01
HERO (Hybrid Evaluator for Radiative Objects) is a 3D general relativistic radiative transfer code which has been tailored to the problem of analyzing radiation from simulations of relativistic accretion discs around black holes. HERO is designed to be used as a postprocessor. Given some fixed fluid structure for the disc (i.e. density and velocity as a function of position from a hydrodynamics or magnetohydrodynamics simulation), the code obtains a self-consistent solution for the radiation field and for the gas temperatures using the condition of radiative equilibrium. The novel aspect of HERO is that it combines two techniques: 1) a short characteristics (SC) solver that quickly converges to a self consistent disc temperature and radiation field, with 2) a long characteristics (LC) solver that provides a more accurate solution for the radiation near the photosphere and in the optically thin regions. By combining these two techniques, we gain both the computational speed of SC and the high accuracy of LC. W...
Modest, Michael F
2013-01-01
The third edition of Radiative Heat Transfer describes the basic physics of radiation heat transfer. The book provides models, methodologies, and calculations essential in solving research problems in a variety of industries, including solar and nuclear energy, nanotechnology, biomedical, and environmental. Every chapter of Radiative Heat Transfer offers uncluttered nomenclature, numerous worked examples, and a large number of problems-many based on real world situations-making it ideal for classroom use as well as for self-study. The book's 24 chapters cover the four major areas in the field: surface properties; surface transport; properties of participating media; and transfer through participating media. Within each chapter, all analytical methods are developed in substantial detail, and a number of examples show how the developed relations may be applied to practical problems. It is an extensive solution manual for adopting instructors. Features: most complete text in the field of radiative heat transfer;...
Simulation of solar radiative transfer in cumulus clouds
Energy Technology Data Exchange (ETDEWEB)
Zuev, V.E.; Titov, G.A. [Institute of Atmospheric Optics, Tomsk (Russian Federation)
1996-04-01
This work presents a 3-D model of radiative transfer which is used to study the relationship between the spatial distribution of cumulus clouds and fluxes (albedo and transmittance) of visible solar radiation.
Coupling heat conduction and radiation in complex 2D and 3D geometries
Energy Technology Data Exchange (ETDEWEB)
Peniguel, C. [Electricite de France (EDF), 78 - Chatou (France). Direction des Etudes et Recherches; Rupp, I. [SIMULOG, 78 - Guyancourt (France)
1997-12-31
Thermal radiation is a very important mode of heat transfer in most real industrial systems. A numerical approach coupling radiation (restricted to non participant medium) and conduction is presented. The code (SYRTHES) is able to handle 2D and 3D problems (including cases with symmetries and periodicity). Radiation is solved by a radiosity approach, and conduction by a finite element method. Accurate and efficient algorithms based on a mixing of analytical/numerical integration, and ray tracing techniques are used to compute the view factors. Validation has been performed on numerous test cases. A conjugate residual algorithm solves the radiosity system. An explicit interactive numerical procedure is then used to couple conduction and radiation. No stability problem has been encountered so far. One specificity of SYRTHES is that conduction and radiation are solved on independent grids. This brings much flexibility and allows to keep the number of independent radiation patches at a reasonable level. Several industrial examples are given as illustration. (author) 6 refs.
3D Gray Radiative Properties of a Radiation Hydrodynamic Model of a YSO Accretion Shock
Ibgui, L.; de Sá, L.; Stehlé, C.; Chièze, J.-P.; Orlando, S.; Hubeny, I.; Lanz, T.; Matsakos, T.; González, M.; Bonito, R.
2014-09-01
We present preliminary results of radiative properties of a 1D gray radiation hydrodynamic (RHD) model of an accretion shock on a young stellar object (YSO). This model takes into account the transition between the collisional equilibrium regime (local thermodynamic equilibrium, LTE), and the coronal equilibrium regime. Based on the 1D planar structure, we built a 3D cylindrical one. Most notably, the post-shock region obtained in our case is far less extended (by a factor of 10 000) than the typical one obtained with models that assume gray optically thin radiative losses. Moreover, we find that the column is optically thin in its longitudinal dimension, and in the transverse dimension, except over an extremely narrow region (≲ 700 m). Consequently, still under the gray assumption, the photons emitted by the hot slab can propagate through the column and escape freely in all directions, including towards the chromosphere. The radiation flux has therefore components that are perpendicular to the accretion column, which demonstrates that a multidimensional (2D or 3D) radiative model is necessary for such a cylindrical structure. This study needs to be taken forward and expanded, by improving the radiative treatment of the RHD model, through relaxation of both the gray and the LTE approximations for the calculation of opacities, in order to clarify the structure of the post-shock region, which is a major source of emission probed by observations.
Manifold Constrained Transfer of Facial Geometric Knowledge for 3D Caricature Reconstruction
Institute of Scientific and Technical Information of China (English)
Jun-Fa Liu; Wen-Jing He; Tao Chen; Yi-Qiang Chen
2013-01-01
3D caricatures are important attractive elements of the interface in virtual environment such as online game.However,very limited 3D caricatures exist in the real world.Meanwhile,creating 3D caricatures manually is rather costly,and even professional skills are needed.This paper proposes a novel and effective manifold transfer algorithm to reconstruct 3D caricatures according to their original 2D caricatures.We first manually create a small dataset with only 100 3D caricature models and use them to initialize the whole 3D dataset.After that,manifold transfer algorithm is carried out to refine the dataset.The algorithm comprises of two steps.The first is to perform manifold alignment between 2D and 3D caricatures to get a "standard" manifold map； the second is to reconstruct all the 3D caricatures based on the manifold map.The proposed approach utilizes and transfers knowledge of 2D caricatures to the target 3D caricatures well.Comparative experiments show that the approach reconstructs 3D caricatures more effectively and the results conform more to the styles of the original 2D caricatures than the Principal Components Analysis (PCA) based method.
3D radiation hydrodynamics: Interacting photo-evaporating clumps
Lim, A. J.; Mellema, G.
2003-07-01
We present the results of a new radiation hydrodynamics code called Maartje. This code describes the evolution of a flow in three spatial dimensions using an adaptive mesh, and contains a combination of a ray tracer and an atomic physics module to describe the effects of ionizing radiation. The code is parallelized using a custom threadpool library. We present an application in which we follow the ionization of two dense spherical clumps which are exposed to an ionizing radiation field from a 50 000 K black body. We study various configurations in which one of the clumps shields the other from the ionizing photons. We find that relatively long-lived filamentary structures with narrow tails are formed. This raises the possibility that cometary knots (such as are found in the Helix Nebula) may be the result of the interaction of an ionizing radiation field with an ensemble of clumps, as opposed to the identification of a single knot with a single clump. Movies are available at http://www.edpsciences.org
Schäfer, Sophia A. K.; Hogan, Robin J.; Klinger, Carolin; Chiu, J. Christine; Mayer, Bernhard
2016-07-01
Current weather and climate models neglect 3-D radiative transfer through cloud sides, which can change the cloud radiative effect (CRE) significantly. This two-part paper describes the development of the SPeedy Algorithm for Radiative TrAnsfer through CloUd Sides (SPARTACUS) to capture these effects efficiently in a two-stream radiation scheme for use in global models. The present paper concerns the longwave spectral region, where not much work has been done previously, although the limited previous work has suggested that radiative transfer through cloud sides increases the longwave surface CRE of shallow cumulus by around 30%. To assist the development of a longwave capability for SPARTACUS, we use a reference case of an isolated, isothermal, optically thick, cubic cloud in vacuum, for which 3-D effects increase CRE by exactly 200%. It is shown that for any cloud shape, the 3-D effect can be represented in SPARTACUS provided that correct account is made for (1) the effective zenith angle of diffuse radiation emitted from a cloud, (2) the spatial distribution of fluxes in the cloud, (3) cloud clustering that enhances the interception of emitted radiation by neighboring clouds, and (4) radiative smoothing leading to the effective cloud edge length being less than the measured value. We find empirically that the circumference of an ellipse fitted to a horizontal cross section through a cumulus cloud provides a good estimate of the radiatively effective cloud edge length, which provides some guidance to how cloud observations could be analyzed to extract their most important properties for radiation.
3-D Measurement of Recycling and Radiation in MST
Norval, Ryan; Goetz, John; Schmitz, Oliver
2016-10-01
The MST reversed-field pinch (RFP) can undergo spontaneous transition to a helical core state, associated with the growth of the innermost resonant magnetic mode. Currently multiple 2-D imaging cameras are in place allowing for nearly full vessel viewing and measurement of recycling and impurities fluxes. The transition from the standard to helical RFP causes an observable change in edge plasma. While in the helical state the plasma wall interaction (PWI) on MSTs poloidal limiter strongly correlates with the helicity of the core mode. PWI on the toroidal limiter overall is reduced, with the remaining PWI sites corresponding the helicity of the core mode, or the locations of diagnostic limiters and the error fields they create. EIRENE, a neutral particle code use for modeling edge plasmas, is used to compute the neutral profiles based on measured recycling fluxes. EIRENE computes the radiative and charge exchange power losses. Comparison is made between the standard and helical RFP plasmas. Bolometer measurements of total radiation are currently in progress to supplement the modeling. This work is supported by the U.S. Department of Energy.
3D modelling of coupled mass and heat transfer of a convection-oven roasting process
DEFF Research Database (Denmark)
Feyissa, Aberham Hailu; Adler-Nissen, Jens; Gernaey, Krist
2013-01-01
A 3D mathematical model of coupled heat and mass transfer describing oven roasting of meat has been developed from first principles. The proposed mechanism for the mass transfer of water is modified and based on a critical literature review of the effect of heat on meat. The model equations are b...
3D unstructured-mesh radiation transport codes
Energy Technology Data Exchange (ETDEWEB)
Morel, J. [Los Alamos National Lab., NM (United States)
1997-12-31
Three unstructured-mesh radiation transport codes are currently being developed at Los Alamos National Laboratory. The first code is ATTILA, which uses an unstructured tetrahedral mesh in conjunction with standard Sn (discrete-ordinates) angular discretization, standard multigroup energy discretization, and linear-discontinuous spatial differencing. ATTILA solves the standard first-order form of the transport equation using source iteration in conjunction with diffusion-synthetic acceleration of the within-group source iterations. DANTE is designed to run primarily on workstations. The second code is DANTE, which uses a hybrid finite-element mesh consisting of arbitrary combinations of hexahedra, wedges, pyramids, and tetrahedra. DANTE solves several second-order self-adjoint forms of the transport equation including the even-parity equation, the odd-parity equation, and a new equation called the self-adjoint angular flux equation. DANTE also offers three angular discretization options: $S{_}n$ (discrete-ordinates), $P{_}n$ (spherical harmonics), and $SP{_}n$ (simplified spherical harmonics). DANTE is designed to run primarily on massively parallel message-passing machines, such as the ASCI-Blue machines at LANL and LLNL. The third code is PERICLES, which uses the same hybrid finite-element mesh as DANTE, but solves the standard first-order form of the transport equation rather than a second-order self-adjoint form. DANTE uses a standard $S{_}n$ discretization in angle in conjunction with trilinear-discontinuous spatial differencing, and diffusion-synthetic acceleration of the within-group source iterations. PERICLES was initially designed to run on workstations, but a version for massively parallel message-passing machines will be built. The three codes will be described in detail and computational results will be presented.
Photospheric Emission of Collapsar Jet in 3D Relativistic Radiation Hydrodynamical Simulation
Ito, Hirotaka; Nagataki, Shigehiro; Warren, Donald C; Barkov, Maxim V
2015-01-01
We explore the photospheric emission from a relativistic jet breaking out from a massive stellar envelope based on relativistic hydrodynamical simulations and post-process radiation transfer calculations in three dimensions (3D). To investigate the impact of 3D dynamics on the emission, two models of injection conditions are considered for the jet at the center of the progenitor star: one with periodic precession and another without precession. We show that structures developed within the jet due to the interaction with the stellar envelope, as well as due to the precession, have a significant imprint on the resulting emission. Particularly, we find that the signature of precession activity by the central engine is not smeared out and can be directly observed in the light curve as a periodic signal. We also show non-thermal features that can account for observations of gamma-ray bursts are produced in the resulting spectra, even though only thermal photons are injected initially and the effect of non-thermal ...
Heterogeneously Assembled Metamaterials and Metadevices via 3D Modular Transfer Printing
Lee, Seungwoo; Kang, Byungsoo; Keum, Hohyun; Ahmed, Numair; Rogers, John A.; Ferreira, Placid M.; Kim, Seok; Min, Bumki
2016-06-01
Metamaterials have made the exotic control of the flow of electromagnetic waves possible, which is difficult to achieve with natural materials. In recent years, the emergence of functional metadevices has shown immense potential for the practical realization of highly efficient photonic devices. However, complex and heterogeneous architectures that enable diverse functionalities of metamaterials and metadevices have been challenging to realize because of the limited manufacturing capabilities of conventional fabrication methods. Here, we show that three-dimensional (3D) modular transfer printing can be used to construct diverse metamaterials in complex 3D architectures on universal substrates, which is attractive for achieving on-demand photonic properties. Few repetitive processing steps and rapid constructions are additional advantages of 3D modular transfer printing. Thus, this method provides a fascinating route to generate flexible and stretchable 2D/3D metamaterials and metadevices with heterogeneous material components, complex device architectures, and diverse functionalities.
Heterogeneously Assembled Metamaterials and Metadevices via 3D Modular Transfer Printing.
Lee, Seungwoo; Kang, Byungsoo; Keum, Hohyun; Ahmed, Numair; Rogers, John A; Ferreira, Placid M; Kim, Seok; Min, Bumki
2016-06-10
Metamaterials have made the exotic control of the flow of electromagnetic waves possible, which is difficult to achieve with natural materials. In recent years, the emergence of functional metadevices has shown immense potential for the practical realization of highly efficient photonic devices. However, complex and heterogeneous architectures that enable diverse functionalities of metamaterials and metadevices have been challenging to realize because of the limited manufacturing capabilities of conventional fabrication methods. Here, we show that three-dimensional (3D) modular transfer printing can be used to construct diverse metamaterials in complex 3D architectures on universal substrates, which is attractive for achieving on-demand photonic properties. Few repetitive processing steps and rapid constructions are additional advantages of 3D modular transfer printing. Thus, this method provides a fascinating route to generate flexible and stretchable 2D/3D metamaterials and metadevices with heterogeneous material components, complex device architectures, and diverse functionalities.
Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer.
Visser, Claas Willem; Pohl, Ralph; Sun, Chao; Römer, Gert-Willem; Huis in 't Veld, Bert; Lohse, Detlef
2015-07-15
3D printing of common metals is highly challenging because metals are generally solid at room conditions. Copper and gold pillars are manufactured with a resolution below 5 μm and a height up to 2 mm, using laser-induced forward transfer to create and eject liquid metal droplets. The solidified drop's shape is crucial for 3D printing and is discussed as a function of the laser energy.
Transfer printing of 3D hierarchical gold structures using a sequentially imprinted polymer stamp
Energy Technology Data Exchange (ETDEWEB)
Zhang Fengxiang; Low, Hong Yee [Institute of Materials Research and Engineering, A-STAR - Agency for Science, Technology and Research, 3 Research Link, 117602 (Singapore)], E-mail: hy-low@imre.a-star.edu.sg
2008-10-15
Complex three-dimensional (3D) hierarchical structures on polymeric materials are fabricated through a process referred to as sequential imprinting. In this work, the sequentially imprinted polystyrene film is used as a soft stamp to replicate hierarchical structures onto gold (Au) films, and the Au structures are then transferred to a substrate by transfer printing at an elevated temperature and pressure. Continuous and isolated 3D structures can be selectively fabricated with the assistance of thermo-mechanical deformation of the polymer stamp. Hierarchical Au structures are achieved without the need for a corresponding three-dimensionally patterned mold.
A study of the earth radiation budget using a 3D Monte-Carlo radiative transer code
Okata, M.; Nakajima, T.; Sato, Y.; Inoue, T.; Donovan, D. P.
2013-12-01
The purpose of this study is to evaluate the earth's radiation budget when data are available from satellite-borne active sensors, i.e. cloud profiling radar (CPR) and lidar, and a multi-spectral imager (MSI) in the project of the Earth Explorer/EarthCARE mission. For this purpose, we first developed forward and backward 3D Monte Carlo radiative transfer codes that can treat a broadband solar flux calculation including thermal infrared emission calculation by k-distribution parameters of Sekiguchi and Nakajima (2008). In order to construct the 3D cloud field, we tried the following three methods: 1) stochastic cloud generated by randomized optical thickness each layer distribution and regularly-distributed tilted clouds, 2) numerical simulations by a non-hydrostatic model with bin cloud microphysics model and 3) Minimum cloud Information Deviation Profiling Method (MIDPM) as explained later. As for the method-2 (numerical modeling method), we employed numerical simulation results of Californian summer stratus clouds simulated by a non-hydrostatic atmospheric model with a bin-type cloud microphysics model based on the JMA NHM model (Iguchi et al., 2008; Sato et al., 2009, 2012) with horizontal (vertical) grid spacing of 100m (20m) and 300m (20m) in a domain of 30km (x), 30km (y), 1.5km (z) and with a horizontally periodic lateral boundary condition. Two different cell systems were simulated depending on the cloud condensation nuclei (CCN) concentration. In the case of horizontal resolution of 100m, regionally averaged cloud optical thickness, , and standard deviation of COT, were 3.0 and 4.3 for pristine case and 8.5 and 7.4 for polluted case, respectively. In the MIDPM method, we first construct a library of pair of observed vertical profiles from active sensors and collocated imager products at the nadir footprint, i.e. spectral imager radiances, cloud optical thickness (COT), effective particle radius (RE) and cloud top temperature (Tc). We then select a best
Computer-Designed Splints for Surgical Transfer of 3D Orthognathic Planning.
Zinser, Max; Zoeller, Joachim
2015-10-01
Advances in computers and imaging have permitted the adoption of three-dimensional (3D) planning protocols in orthognathic surgery, which may allow a paradigm shift when the computer-assisted planning can be transferred properly. The purpose of this investigation was to introduce an innovative clinical protocol using computer-aided designed and computer-aided manufactured (CAD/CAM) surgical splints for surgical transfer of 3D orthognathic planning compared with the classic technique using arbitrary occlusal splints. The clinical protocols consisted of computed tomography (CT) or cone-beam CT (CBCT) maxillofacial imaging, bone segmentation, 3D diagnosis, computer-assisted surgical treatment planning, and CAD/CAM surgical splints (group A) and manufacture of arbitrary occlusal splints (group B) for intraoperative surgical planning transfer. The observed patients underwent bimaxillary osteotomies and, if necessary, an additional genioplasty. Both techniques were evaluated by applying 13 hard tissue parameters to compare the 3D orthognathic planning (T0) with the postoperative result (T1) using 3D cephalometry. The CAD/CAM splints showed significant better precision for the maxilla (ΔT orthognathic planning, which is more precise compared with the conventional arbitrary occlusal splints.
Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer
Visser, Claas Willem; Pohl, Ralph; Sun, Chao; Römer, Gert-Willem; Huis in 't Veld, Bert; Lohse, Detlef
2015-01-01
3D printing of common metals is highly challenging because metals are generally solid at room conditions. Copper and gold pillars are manufactured with a resolution below 5 μm and a height up to 2 mm, using laser-induced forward transfer to create and eject liquid metal droplets. The solidified drop
Energy Technology Data Exchange (ETDEWEB)
Chiu, Jui-Yuan [University of Reading (United Kingdom)
2015-09-14
ARM set out 20 years ago to “close” the radiation problem, that is, to improve radiation models to the point where they could routinely predict the observed spectral radiation fluxes knowing the optical properties of the surface and of gases, clouds and aerosols in the atmosphere. Only then could such radiation models form a proper springboard for global climate model (GCM) parameterizations of spectral radiation. Sustained efforts have more or less achieved that goal with regard to longwave radiation; ASR models now routinely predict ARM spectral longwave radiances to 1–2%. Similar efforts in the shortwave have achieved far less; the successes are mainly for carefully selected 1D stratiform cloud cases. Such cases amount, even with the most optimistic interpretation, to no more than 30% of all cases at SGP. The problem has not been lack of effort but lack of appropriate instruments.The new ARM stimulus-funded instruments, with their new capabilities, will dramatically improve this situation and once again make progress possible on the shortwave problem. The new shortwave spectrometers will provide a reliable, calibrated record including the near infrared – and for other climatic regimes than SGP. The new scanning radars will provide the 3D cloud view, making it possible to tackle fully 3D situations. Thus, our main theme for the project is the understanding and closure of the surface spectral shortwave radiation problem in fully 3D cloud situations by combining the new ARM scanning radars and shortwave spectrometers with the arsenal of radiative transfer tools.
Study of 3-D Numerical Simulation for Gas Transfer in the Goaf of the Coal Mining
Institute of Scientific and Technical Information of China (English)
WU Zheng-yan; JIANG Shu-guang; HE Xin-jian; WANG Lan-yun; LIN Bai-quan
2007-01-01
In order to simulate field distribution rules, mathematical models for 3-D air flows and gas transfer in the goaf of the coal mining are established, based on theories of permeability and dynamic dispersion through porous media. A gas dispersion equation in a 3-D field is calculated by use of numerical method on a weighted upstream multi-element balance. Based on data of an example with a U type ventilation mode, surface charts of air pressure distribution and gas concentration are drawn by Graphtool software. Finally, a comparison between actually measured results in the model test and the numerical simulation results is made to proves the numerical implementation feasible.
Oxygen ingress study of 3D printed gaseous radiation detector enclosures
Energy Technology Data Exchange (ETDEWEB)
Steer, Christopher A.; Durose, Aaron [AWE, Alderrnaston, Reading, Berkshire, RG7 4PR (United Kingdom)
2015-07-01
As part of our ongoing studies into the potential application of 3D printing techniques to gaseous radiation detectors, we have studied the ability of 3D printed enclosures to resist environmental oxygen ingress. A set of cuboid and hexagonal prism shaped enclosures with wall thicknesses of 4 mm, 6 mm, 8 mm and 10 mm were designed and printed in nylon using a EOSINT P 730 Selective Laser Sintering 3D printer system These test enclosures provide a comparison of different environmental gas ingress for different 3D printing techniques. The rate of change of oxygen concentration was found to be linear, decreasing as the wall thickness increases. It was also found that the hexagonal prism geometry produced a lower rate of change of oxygen concentration compared with the cuboid shaped enclosures. Possible reasons as to why these results were obtained are discussed The implications for the this study for deployable systems are also discussed (authors)
Olson, Gordon L.
2017-03-01
Gray and multigroup radiation is transported through 3D media consisting of spheres randomly placed in a uniform background. Comparisons are made between using constant radii spheres and three different distributions of sphere radii. Because of the computational cost of 3D calculations, only the lowest angle order, n=1, is tested. If the mean chord length is held constant, using different radii distributions makes little difference. This is true for both gray and multigroup solutions. 3D transport solutions are compared to 2D and 1D solutions with the same mean chord lengths. 2D disk and 3D sphere media give solutions that are nearly identical while 1D slab solutions are fundamentally different.
Low-mass gas envelopes around accreting cores embedded in radiative 3D discs
Lega, Elena; Lambrechts, Michiel
2016-10-01
Planets with a core mass larger than few Earth masses and a gaseous envelope not exceeding about 10% of the total mass budget are common. Such planets are present in the Solar System (Uranus, Neptune) and are frequently observed around other stars.Our knowledge about the evolution of gas envelopes is mainly based on 1D models. However, such models cannot investigate the complex interaction between the forming envelope and the surrounding gas disc.In this work we perform 3D hydrodynamics simulations accounting for energy transfer and radiative cooling using the FARGOCA code (Lega et al., MNRAS 440, 2014). In addition to the usually considered heatingsources, namely viscous and compressional heating, we have modeled the energy deposited by the accretion of solids.We show that the thermal evolution of the envelope of a 5 Earth mass core is mainly dominated by compressional heating for accretion rates lower than 5 Earth masses per 105 years.Additionally, we demonstrate efficient gas circulation through the envelope. Under certain conditions, the competition between gas circulation and cooling of the envelope can efficiently delay the onset of runaway accretion. This could help in explaining the population of planets with low-mass gas envelope.
DEFF Research Database (Denmark)
Cappellin, C.; Pivnenko, Sergey; Jørgensen, E.
2013-01-01
This paper focuses on three important features of the 3D reconstruction algorithm of DIATOOL: the identification of array elements improper functioning and failure, the obtainable spatial resolution of the reconstructed fields and currents, and the filtering of undesired radiation and scattering...
SKIRT: Stellar Kinematics Including Radiative Transfer
Baes, Maarten; Dejonghe, Herwig; Davies, Jonathan
2011-09-01
SKIRT is a radiative transfer code based on the Monte Carlo technique. The name SKIRT, acronym for Stellar Kinematics Including Radiative Transfer, reflects the original motivation for its creation: it has been developed to study the effects of dust absorption and scattering on the observed kinematics of dusty galaxies. In a second stage, the SKIRT code was extended with a module to self-consistently calculate the dust emission spectrum under the assumption of local thermal equilibrium. This LTE version of SKIRT has been used to model the dust extinction and emission of various types of galaxies, as well as circumstellar discs and clumpy tori around active galactic nuclei. A new, extended version of SKIRT code can perform efficient 3D radiative transfer calculations including a self-consistent calculation of the dust temperature distribution and the associated FIR/submm emission with a full incorporation of the emission of transiently heated grains and PAH molecules.
Utrecht Radiative Transfer Courses
Rutten, R. J.
2003-01-01
The Utrecht course ``The Generation and Transport of Radiation'' teaches basic radiative transfer to second-year students. It is a much-expanded version of the first chapter of Rybicki & Lightman's ``Radiative Processes in Astrophysics''. After this course, students understand why intensity is measured per steradian, have an Eddington-Barbier feel for optically thick line formation, and know that scattering upsets LTE. The text is a computer-aided translation by Ruth Peterson of my 1992 Dutch-language course. My aim is to rewrite this course in non-computer English and make it web-available at some time. In the meantime, copies of the Peterson translation are made yearly at Uppsala -- ask them, not me. Eventually it should become a textbook. The Utrecht course ``Radiative Transfer in Stellar Atmospheres'' is a 30-hour course for third-year students. It treats NLTE line formation in plane-parallel stellar atmospheres at a level intermediate between the books by Novotny and Boehm-Vitense, and Mihalas' ``Stellar Atmospheres''. After this course, students appreciate that epsilon is small, that radiation can heat or cool, and that computers have changed the field. This course is web-available since 1995 and is regularly improved -- but remains incomplete. Eventually it should become a textbook. The three Utrecht exercise sets ``Stellar Spectra A: Basic Line Formation'', ``Stellar Spectra B: LTE Line Formation'', and ``Stellar Spectra C: NLTE Line Formation'' are IDL-based computer exercises for first-year, second-year, and third-year students, respectively. They treat spectral classification, Saha-Boltzmann population statistics, the curve of growth, the FAL-C solar atmosphere model, the role of H-minus in the solar continuum, LTE formation of Fraunhofer lines, inversion tactics, the Feautrier method, classical lambda iteration, and ALI computation. The first two sets are web-available since 1998; the third will follow. Acknowledgement. Both courses owe much to previous
A transfer matrix approach to the 3D wetting and pinning problems
1983-01-01
We consider the pinning of an interface on a 3D lattice by an edge potential (semi-infinite geometry). This situation models the wetting transition occurring in such physical systems as binary fluids or adsorbed gases. The transfer matrix method is used to get exact results on strips of finite width; we propose a way of extrapolating them and of deriving the phase diagram of the infinite system. The mechanism of the transition changes when the pinning and roughening temperatures coincide.
A Comparison of Radiation Dose Between Standard and 3D Angiography in Congenital Heart Disease
Energy Technology Data Exchange (ETDEWEB)
Manica, João Luiz Langer, E-mail: joca.pesquisa@gmail.com; Borges, Mônica Scott; Medeiros, Rogério Fachel de; Fischer, Leandro dos Santos; Broetto, Gabriel; Rossi, Raul Ivo Filho [Instituto de Cardiologia / Fundação Universitária de Cardiologia, Porto Alegre, RS (Brazil)
2014-08-15
The use of three-dimensional rotational angiography (3D-RA) to assess patients with congenital heart diseases appears to be a promising technique despite the scarce literature available. The objective of this study was to describe our initial experience with 3D-RA and to compare its radiation dose to that of standard two-dimensional angiography (2D-SA). Between September 2011 and April 2012, 18 patients underwent simultaneous 3D-RA and 2D-SA during diagnostic cardiac catheterization. Radiation dose was assessed using the dose-area-product (DAP). The median patient age and weight were 12.5 years and 47.5 Kg, respectively. The median DAP of each 3D-RA acquisition was 1093µGy.m{sup 2} and 190µGy.m{sup 2} for each 2D-SA acquisition (p<0.01). In patients weighing more than 45Kg (n=7), this difference was attenuated but still significant (1525 µGy.m{sup 2} vs.413µGy.m{sup 2}, p=0.01). No difference was found between one 3D-RA and three 2D-SA (1525µGy.m{sup 2} vs.1238 µGy.m{sup 2}, p = 0.575) in this population. This difference was significantly higher in patients weighing less than 45Kg (n=9) (713µGy.m{sup 2} vs.81µGy.m{sup 2}, P = 0.008), even when comparing one 3D-RA with three 2D-SA (242µGy.m{sup 2}, respectively, p<0.008). 3D-RA was extremely useful for the assessment of conduits of univentricular hearts, tortuous branches of the pulmonary artery, and aorta relative to 2D-SA acquisitions. The radiation dose of 3D-RA used in our institution was higher than those previously reported in the literature and this difference was more evident in children. This type of assessment is of paramount importance when starting to perform 3D-RA.
Real-time 3D radiation risk assessment supporting simulation of work in nuclear environments.
Szőke, I; Louka, M N; Bryntesen, T R; Bratteli, J; Edvardsen, S T; RøEitrheim, K K; Bodor, K
2014-06-01
This paper describes the latest developments at the Institute for Energy Technology (IFE) in Norway, in the field of real-time 3D (three-dimensional) radiation risk assessment for the support of work simulation in nuclear environments. 3D computer simulation can greatly facilitate efficient work planning, briefing, and training of workers. It can also support communication within and between work teams, and with advisors, regulators, the media and public, at all the stages of a nuclear installation's lifecycle. Furthermore, it is also a beneficial tool for reviewing current work practices in order to identify possible gaps in procedures, as well as to support the updating of international recommendations, dissemination of experience, and education of the current and future generation of workers.IFE has been involved in research and development into the application of 3D computer simulation and virtual reality (VR) technology to support work in radiological environments in the nuclear sector since the mid 1990s. During this process, two significant software tools have been developed, the VRdose system and the Halden Planner, and a number of publications have been produced to contribute to improving the safety culture in the nuclear industry.This paper describes the radiation risk assessment techniques applied in earlier versions of the VRdose system and the Halden Planner, for visualising radiation fields and calculating dose, and presents new developments towards implementing a flexible and up-to-date dosimetric package in these 3D software tools, based on new developments in the field of radiation protection. The latest versions of these 3D tools are capable of more accurate risk estimation, permit more flexibility via a range of user choices, and are applicable to a wider range of irradiation situations than their predecessors.
Radiation Characteristics of 3D Resonant Cavity Antenna with Grid-Oscillator Integrated Inside
Directory of Open Access Journals (Sweden)
L. A. Haralambiev
2014-01-01
Full Text Available A three-dimensional (3D rectangular cavity antenna with an aperture size of 80 mm × 80 mm and a length of 16 mm, integrated with a four-MESFET transistor grid-oscillator, is designed and studied experimentally. It is found that the use of 3D antenna resonant cavity in case of small or medium gain microwave active cavity antenna leads to effective and stable power combining and radiation. The lack of lateral cavity diffraction and radiation helps in producing a directive gain of about 17 dB and radiation aperture efficiency bigger than 75% at a resonance frequency of 8.62 GHz. Good DC to RF oscillator efficiency of 26%, effective isotropic radiated power (EIRP of 5.2 W, and SSB spectral power density of −82 dBc/Hz are found from the measured data. The 3D antenna cavity serves also as a strong metal container for the solid-state oscillator circuitry.
Radiation hardness tests of double-sided 3D strip sensors with passing-through columns
Energy Technology Data Exchange (ETDEWEB)
Dalla Betta, Gian-Franco, E-mail: gianfranco.dallabetta@unitn.it [Dipartimento di Ingegneria Industriale, Università degli Studi di Trento, Via Sommarive 9, I-38123 Trento (Italy); INFN TIFPA, Via Sommarive 14, I-38123 Trento (Italy); Betancourt, Christopher [Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg (Germany); Boscardin, Maurizio; Giacomini, Gabriele [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive 18, I-38123 Trento (Italy); Jakobs, Karl; Kühn, Susanne [Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg (Germany); Lecini, Besnik [Dipartimento di Ingegneria Industriale, Università degli Studi di Trento, Via Sommarive 9, I-38123 Trento (Italy); Mendicino, Roberto [Dipartimento di Ingegneria Industriale, Università degli Studi di Trento, Via Sommarive 9, I-38123 Trento (Italy); INFN TIFPA, Via Sommarive 14, I-38123 Trento (Italy); Mori, Riccardo; Parzefall, Ulrich [Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg (Germany); Povoli, Marco [Dipartimento di Ingegneria Industriale, Università degli Studi di Trento, Via Sommarive 9, I-38123 Trento (Italy); Thomas, Maira [Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg (Germany); Zorzi, Nicola [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive 18, I-38123 Trento (Italy)
2014-11-21
This paper deals with a radiation hardness study performed on double-sided 3D strip sensors with passing-through columns. Selected results from the characterization of the irradiated sensors with a beta source and a laser setup are reported and compared to pre-irradiation results and to TCAD simulations. The sensor performance in terms of signal efficiency is found to be in good agreement with that of other 3D sensors irradiated at the same fluences and tested under similar experimental conditions. - Highlights: • We report results from 3D silicon strip detectors irradiated up to HL-LHC fluences. • I–V curves, noise, charge collection measurements and laser scans are shown. • In all sensors, signals are distinguished from the noise already at low voltage. • Signal efficiency is in agreement with values expected from the electrode geometry. • Efficiency and spatial uniformity would benefit from higher operation voltages.
CRASH3: cosmological radiative transfer through metals
Graziani, L; Ciardi, B
2012-01-01
Here we introduce CRASH3, the latest release of the 3D radiative transfer code CRASH. In its current implementation CRASH3 integrates into the reference algorithm the code Cloudy to evaluate the ionisation states of metals, self-consistently with the radiative transfer through H and He. The feedback of the heavy elements on the calculation of the gas temperature is also taken into account, making of CRASH3 the first 3D code for cosmological applications which treats self-consistently the radiative transfer through an inhomogeneous distribution of metal enriched gas with an arbitrary number of point sources and/or a background radiation. The code has been tested in idealized configurations, as well as in a more realistic case of multiple sources embedded in a polluted cosmic web. Through these validation tests the new method has been proven to be numerically stable and convergent. We have studied the dependence of the results on a number of physical quantities such as the source characteristics (spectral range...
SU-C-213-03: Custom 3D Printed Boluses for Radiation Therapy
Energy Technology Data Exchange (ETDEWEB)
Zhao, B; Yang, M; Yan, Y; Rahimi, A; Chopra, R; Jiang, S [UT Southwestern Medical Center, Dallas, TX (United States)
2015-06-15
Purpose: To develop a clinical workflow and to commission the process of creating custom 3d printed boluses for radiation therapy. Methods: We designed a workflow to create custom boluses using a commercial 3D printer. Contours of several patients were deformably mapped to phantoms where the test bolus contours were designed. Treatment plans were created on the phantoms following our institutional planning guideline. The DICOM file of the bolus contours were then converted to stereoLithography (stl) file for the 3d printer. The boluses were printed on a commercial 3D printer using polylactic acid (PLA) material. Custom printing parameters were optimized in order to meet the requirement of bolus composition. The workflow was tested on multiple anatomical sites such as skull, nose and chest wall. The size of boluses varies from 6×9cm2 to 12×25cm2. To commission the process, basic CT and dose properties of the printing materials were measured in photon and electron beams and compared against water and soft superflab bolus. Phantoms were then scanned to confirm the placement of custom boluses. Finally dose distributions with rescanned CTs were compared with those computer-generated boluses. Results: The relative electron density(1.08±0.006) of the printed boluses resemble those of liquid tap water(1.04±0.004). The dosimetric properties resemble those of liquid tap water(1.04±0.004). The dosimetric properties were measured at dmax with an ion chamber in electron and photon open beams. Compared with solid water and soft bolus, the output difference was within 1% for the 3D printer material. The printed boluses fit well to the phantom surfaces on CT scans. The dose distribution and DVH based on the printed boluses match well with those based on TPS generated boluses. Conclusion: 3d printing provides a cost effective and convenient solution for patient-specific boluses in radiation therapy.
3D Radiation Nonideal Magnetohydrodynamical Simulations of the Inner Rim in Protoplanetary Disks
Flock, M.; Fromang, S.; Turner, N. J.; Benisty, M.
2017-02-01
Many planets orbit within 1 au of their stars, raising questions about their origins. Particularly puzzling are the planets found near the silicate sublimation front. We investigate conditions near the front in the protostellar disk around a young intermediate-mass star, using the first global 3D radiation nonideal MHD simulations in this context. We treat the starlight heating; the silicate grains’ sublimation and deposition at the local, time-varying temperature and density; temperature-dependent ohmic dissipation; and various initial magnetic fields. The results show magnetorotational turbulence around the sublimation front at 0.5 au. The disk interior to 0.8 au is turbulent, with velocities exceeding 10% of the sound speed. Beyond 0.8 au is the dead zone, cooler than 1000 K and with turbulence orders of magnitude weaker. A local pressure maximum just inside the dead zone concentrates solid particles, favoring their growth. Over many orbits, a vortex develops at the dead zone’s inner edge, increasing the disk’s thickness locally by around 10%. We synthetically observe the results using Monte Carlo transfer calculations, finding that the sublimation front is near-infrared bright. The models with net vertical magnetic fields develop extended, magnetically supported atmospheres that reprocess extra starlight, raising the near-infrared flux 20%. The vortex throws a nonaxisymmetric shadow on the outer disk. At wavelengths > 2 μ {{m}}, the flux varies several percent on monthly timescales. The variations are more regular when the vortex is present. The vortex is directly visible as an arc at ultraviolet through near-infrared wavelengths, given sub-au spatial resolution.
Fast 3D EM scattering and radiation solvers based on MLFMA
Institute of Scientific and Technical Information of China (English)
Hu Jun; Nie Zaiping; Lei Lin; Hu Jie; Gong Xiaodong; Zhao Huapeng
2008-01-01
As the fastest integral equation solver to date, the multilevel fast multipole algorithm (MLFMA)has been applied successfully to solve electromagnetic scattering and radiation from 3D electrically large objects.But for very large-scale problems, the storage and CPU time required in MLFMA are still expensive. Fast 3D electromagnetic scattering and radiation solvers are introduced based on MLFMA. A brief review of MLFMA is first given. Then, four fast methods including higher-order MLFMA (HO-MLFMA), fast far field approximation combined with adaptive ray propagation MLFMA (FAFFA-ARP-MLFMA), local MLFMA and parallel MLFMA are introduced. Some typical numerical results demonstrate the efficiency of these fast methods.
Directory of Open Access Journals (Sweden)
Pratik Raval
2014-02-01
Full Text Available To date inductively coupled power transfer (ICPT systems have already found many practical applications including battery charging pads. In fact, current charging platforms tend to largely support only one- or two-dimensional planar movement in load. This paper proposes a new concept of extending the aspect ratios of the operating power transfer volume of ICPT systems to support arbitrary three dimensional load movements with respect to the primary coils. This is done by use of modern finite element method analysis software to propose the primary and secondary magnetic structures of such an ICPT system. Firstly, two primary magnetic structures are proposed based on contrasting modes of operation and different field directions. This includes a single-phase and multi-phase current model. Next, a secondary magnetic structure is customized to be compatible with both primary structures. The resulting system is shown to produce a 3D power transfer volume for battery cell charging applications.
3D ultrasound Nakagami imaging for radiation-induced vaginal fibrosis
Yang, Xiaofeng; Rossi, Peter; Shelton, Joseph; Bruner, Debrorah; Tridandapani, Srini; Liu, Tian
2014-03-01
Radiation-induced vaginal fibrosis is a debilitating side-effect affecting up to 80% of women receiving radiotherapy for their gynecological (GYN) malignancies. Despite the significant incidence and severity, little research has been conducted to identify the pathophysiologic changes of vaginal toxicity. In a previous study, we have demonstrated that ultrasound Nakagami shape and PDF parameters can be used to quantify radiation-induced vaginal toxicity. These Nakagami parameters are derived from the statistics of ultrasound backscattered signals to capture the physical properties (e.g., arrangement and distribution) of the biological tissues. In this paper, we propose to expand this Nakagami imaging concept from 2D to 3D to fully characterize radiation-induced changes to the vaginal wall within the radiation treatment field. A pilot study with 5 post-radiotherapy GYN patients was conducted using a clinical ultrasound scanner (6 MHz) with a mechanical stepper. A serial of 2D ultrasound images, with radio-frequency (RF) signals, were acquired at 1 mm step size. The 2D Nakagami shape and PDF parameters were calculated from the RF signal envelope with a sliding window, and then 3D Nakagami parameter images were generated from the parallel 2D images. This imaging method may be useful as we try to monitor radiation-induced vaginal injury, and address vaginal toxicities and sexual dysfunction in women after radiotherapy for GYN malignancies.
Narayan, Ramesh; Psaltis, Dimitrios; Sadowski, Aleksander
2015-01-01
We describe HEROIC, an upgraded version of the relativistic radiative post-processor code HERO described in a previous paper, but which now Includes Comptonization. HEROIC models Comptonization via the Kompaneets equation, using a quadratic approximation for the source function in the short characteristics radiation solver. It employs a simple form of accelerated lambda iteration to handle regions of high scattering opacity. In addition to solving for the radiation field, HEROIC also solves for the gas temperature by applying the condition of radiative equilibrium. We present benchmarks and tests of the Comptonization module in HEROIC with simple 1D and 3D scattering problems. We also test the ability of the code to handle various relativistic effects using model atmospheres and accretion flows in a black hole space-time. We present two applications of HEROIC to general relativistic MHD simulations of accretion discs. One application is to a thin accretion disc around a black hole. We find that the gas below ...
Heat Transfer Affected by Transverse Magnetic Field using 3D Modeling of Arc Plasma
Maeda, Yoshifumi; Tanaka, Tatsuro; Yamamoto, Shinji; Iwao, Toru
2016-10-01
Gas shielded metal arc welding is used to join the various metal because this is the high quality joining technology. Thus, this welding is used for a welding of large buildings such as bridges and LNG tanks. However, the welding defect caused by the heat transfer decrement may occur with increasing the wind velocity. This is because that the convection loss increases because the arc deflects to leeward side with increasing the wind velocity. In order to prevent from the arc deflection, it is used that the transverse magnetic field is applied to the arc. However, the arc deflection occurs with increasing the transverse magnetic field excessively. The energy balance of the arc is changed with increasing the convection loss caused by the arc deflection, and the heat transfer to the anode decreases. Therefore, the analysis including the arc and anode is necessary to elucidate the heat transfer to the anode. In this paper, the heat transfer affected by the transverse magnetic field using 3D modeling of the arc plasma is elucidated. The heat transfer to the anode is calculated by using the EMTF(electromagnetic thermal fluid) simulation with increasing the transverse magnetic field. As a result, the heat transfer decreased with increasing the transverse magnetic field.
Directory of Open Access Journals (Sweden)
Karl Gledhill
Full Text Available The current utility of 3D skin equivalents is limited by the fact that existing models fail to recapitulate the cellular complexity of human skin. They often contain few cell types and no appendages, in part because many cells found in the skin are difficult to isolate from intact tissue and cannot be expanded in culture. Induced pluripotent stem cells (iPSCs present an avenue by which we can overcome this issue due to their ability to be differentiated into multiple cell types in the body and their unlimited growth potential. We previously reported generation of the first human 3D skin equivalents from iPSC-derived fibroblasts and iPSC-derived keratinocytes, demonstrating that iPSCs can provide a foundation for modeling a complex human organ such as skin. Here, we have increased the complexity of this model by including additional iPSC-derived melanocytes. Epidermal melanocytes, which are largely responsible for skin pigmentation, represent the second most numerous cell type found in normal human epidermis and as such represent a logical next addition. We report efficient melanin production from iPSC-derived melanocytes and transfer within an entirely iPSC-derived epidermal-melanin unit and generation of the first functional human 3D skin equivalents made from iPSC-derived fibroblasts, keratinocytes and melanocytes.
Radiation in a Closed 3-D Universe Reveals its Present Geometry and its Past Evolution
Leffert, C B
2001-01-01
In previous papers, predictions of the new "Spatial Condensation (SC-)" cosmological model were presented on the (1) foundations, (2) new source of gravity, and (3) large-scale structure. In this paper predictions will include new physical features that are due mostly to the postulated geometry of our closed 3-D universe. Knowledge of the past universe is obtained from its many types of radiation that travel to our instruments on great circles of our expanding 3-sphere. Adding the fourth spatial dimension greatly increases our understanding of the concepts of emission and reception distances of the sources and 4-D trajectory of the radiation. In a closed expanding 3-D universe, most of the radiation from a distant bright source at Ze can travel halfway around the universe and be refocused as a "virtual source" at Zv ~1.5 where some of the re-diverging radiation arrives later to our instruments. With the added fourth dimension, the SC-model makes some spectacular predictions for these virtual sources. Indeed, ...
4D VMAT, gated VMAT, and 3D VMAT for stereotactic body radiation therapy in lung.
Chin, E; Loewen, S K; Nichol, A; Otto, K
2013-02-21
Four-dimensional volumetric modulated arc therapy (4D VMAT) is a treatment strategy for lung cancers that aims to exploit relative target and tissue motion to improve organ at risk (OAR) sparing. The algorithm incorporates the entire patient respiratory cycle using 4D CT data into the optimization process. Resulting treatment plans synchronize the delivery of each beam aperture to a specific phase of target motion. Stereotactic body radiation therapy treatment plans for 4D VMAT, gated VMAT, and 3D VMAT were generated on three patients with non-small cell lung cancer. Tumour motion ranged from 1.4-3.4 cm. The dose and fractionation scheme was 48 Gy in four fractions. A B-spline transformation model registered the 4D CT images. 4D dose volume histograms (4D DVH) were calculated from total dose accumulated at the maximum exhalation. For the majority of OARs, gated VMAT achieved the most radiation sparing but treatment times were 77-148% longer than 3D VMAT. 4D VMAT plan qualities were comparable to gated VMAT, but treatment times were only 11-25% longer than 3D VMAT. 4D VMAT's improvement of healthy tissue sparing can allow for further dose escalation. Future study could potentially adapt 4D VMAT to irregular patient breathing patterns.
Radiation resistance of double-type double-sided 3D pixel sensors
Fernandez, M; Lozano, M; Munoz, F.J; Pellegrini, G; Quirion, D; Rohe, T; Vila, I
2013-01-01
The proposed high-luminosity upgrade of the Large Hadron Collider is expected to increase the instantaneous luminosity at the experiments' interaction points by a factor of ten. The vertex detector will be the subsystem most affected by the luminosity increase, raising substantially their occupancy and radiation-induced damage. To preserve the vertex physics performance under these new conditions, current pixel technologies have to be improved. Hybrid pixel sensors with double-sided double-type vertical electrodes (3D sensors) are becoming a mature technology for the detector layers closest to the interaction point due to their intrinsic radiation hardness. In addition, the double-sided implementation of the 3D pixel technology provides some additional technical advantages with respect to the single-sided implementation. For this study, 3D pixel sensors manufactured at the Centro Nacional de Microelectrónica of Barcelona (IMB-CNM) have been bonded to the PSI46 readout chip currently used by the Compact Muon ...
Radiation resistance of double-type double-sided 3D pixel sensors
Energy Technology Data Exchange (ETDEWEB)
Fernandez, M.; Jaramillo, R. [Instituto de Física de Cantabria IFCA (CSIC-UC), Avd. de los Castros s/n, 39005 Santander (Spain); Lozano, M. [Centro Nacional de Microelectrónica de Barcelona IMB-CNM (CSIC), Campus Univ. Autónoma de Barcelona, 08193 Bellaterra (Spain); Munoz, F.J., E-mail: fjmunoz@ifca.unican.es [Instituto de Física de Cantabria IFCA (CSIC-UC), Avd. de los Castros s/n, 39005 Santander (Spain); Pellegrini, G.; Quirion, D. [Centro Nacional de Microelectrónica de Barcelona IMB-CNM (CSIC), Campus Univ. Autónoma de Barcelona, 08193 Bellaterra (Spain); Rohe, T. [Paul Sherrer Institute PSI, 5232 Villigen (Switzerland); Vila, I. [Instituto de Física de Cantabria IFCA (CSIC-UC), Avd. de los Castros s/n, 39005 Santander (Spain)
2013-12-21
The proposed high-luminosity upgrade of the Large Hadron Collider is expected to increase the instantaneous luminosity at the experiments' interaction points by a factor of ten. The vertex detector will be the subsystem most affected by the luminosity increase, raising substantially their occupancy and radiation-induced damage. To preserve the vertex physics performance under these new conditions, current pixel technologies have to be improved. Hybrid pixel sensors with double-sided double-type vertical electrodes (3D sensors) are becoming a mature technology for the detector layers closest to the interaction point due to their intrinsic radiation hardness. In addition, the double-sided implementation of the 3D pixel technology provides some additional technical advantages with respect to the single-sided implementation. For this study, 3D pixel sensors manufactured at the Centro Nacional de Microelectrónica of Barcelona (IMB-CNM) have been bonded to the PSI46 readout chip currently used by the Compact Muon Solenoid vertex detector. Detector performance before and after irradiation up to fluences of 5×10{sup 15}n{sub eq}/cm{sup 2} is presented.
Nogueira, L P; Braz, D; Barroso, R C; Oliveira, L F; Pinheiro, C J G; Dreossi, D; Tromba, G
2010-12-01
Conventional bone histomorphometry is an important method for quantitative evaluation of bone microstructure. X-ray computed microtomography is a non-invasive technique, which can be used to evaluate histomorphometric indices in trabecular bones (BV/TV, BS/BV, Tb.N, Tb.Th, Tb.Sp). In this technique, 3D images are used to quantify the whole sample, differently from the conventional one, in which the quantification is performed in 2D slices and extrapolated for 3D case. In this work, histomorphometric quantification using synchrotron 3D X-ray computed microtomography was performed to quantify the bone structure at different skeletal sites as well as to investigate the effects of bone diseases on quantitative understanding of bone architecture. The images were obtained at Synchrotron Radiation for MEdical Physics (SYRMEP) beamline, at ELETTRA synchrotron radiation facility, Italy. Concerning the obtained results for normal and pathological bones from same skeletal sites and individuals, from our results, a certain declining bone volume fraction was achieved. The results obtained could be used in forming the basis for comparison of the bone microarchitecture and can be a valuable tool for predicting bone fragility.
3D modelling of coupled mass and heat transfer of a convection-oven roasting process.
Feyissa, Aberham Hailu; Gernaey, Krist V; Adler-Nissen, Jens
2013-04-01
A 3D mathematical model of coupled heat and mass transfer describing oven roasting of meat has been developed from first principles. The proposed mechanism for the mass transfer of water is modified and based on a critical literature review of the effect of heat on meat. The model equations are based on a conservation of mass and energy, coupled through Darcy's equations of porous media - the water flow is mainly pressure-driven. The developed model together with theoretical and experimental assessments were used to explain the heat and water transport and the effect of the change in microstructure (permeability, water binding capacity and elastic modulus) that occur during the meat roasting process. The developed coupled partial differential equations were solved by using COMSOL Multiphysics®3.5 and state variables are predicted as functions of both position and time. The proposed mechanism was partially validated by experiments in a convection oven where temperatures were measured online.
Energy Technology Data Exchange (ETDEWEB)
Ling, Ted C.; Slater, Jerry M.; Nookala, Prashanth; Mifflin, Rachel; Grove, Roger; Ly, Anh M.; Patyal, Baldev; Slater, Jerry D.; Yang, Gary Y., E-mail: gyang@llu.edu [Department of Radiation Medicine, Loma Linda University Medical Center, 11234 Anderson Street, A875, Loma Linda, CA 92354 (United States)
2014-12-05
Background. While neoadjuvant concurrent chemoradiotherapy has improved outcomes for esophageal cancer patients, surgical complication rates remain high. The most frequent perioperative complications after trimodality therapy were cardiopulmonary in nature. The radiation modality utilized can be a strong mitigating factor of perioperative complications given the location of the esophagus and its proximity to the heart and lungs. The purpose of this study is to make a dosimetric comparison of Intensity-Modulated Radiation Therapy (IMRT), proton and 3D conformal radiotherapy (3D-CRT) with regard to reducing perioperative cardiopulmonary complications in esophageal cancer patients. Materials. Ten patients with esophageal cancer treated between 2010 and 2013 were evaluated in this study. All patients were simulated with contrast-enhanced CT imaging. Separate treatment plans using proton radiotherapy, IMRT, and 3D-CRT modalities were created for each patient. Dose-volume histograms were calculated and analyzed to compare plans between the three modalities. The organs at risk (OAR) being evaluated in this study are the heart, lungs, and spinal cord. To determine statistical significance, ANOVA and two-tailed paired t-tests were performed for all data parameters. Results. The proton plans showed decreased dose to various volumes of the heart and lungs in comparison to both the IMRT and 3D-CRT plans. There was no difference between the IMRT and 3D-CRT plans in dose delivered to the lung or heart. This finding was seen consistently across the parameters analyzed in this study. Conclusions. In patients receiving radiation therapy for esophageal cancer, proton plans are technically feasible while achieving adequate coverage with lower doses delivered to the lungs and cardiac structures. This may result in decreased cardiopulmonary toxicity and less morbidity to esophageal cancer patients.
A simulation technique for 3D MR-guided acoustic radiation force imaging
Energy Technology Data Exchange (ETDEWEB)
Payne, Allison, E-mail: apayne@ucair.med.utah.edu [Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah 84112 (United States); Bever, Josh de [Department of Computer Science, University of Utah, Salt Lake City, Utah 84112 (United States); Farrer, Alexis [Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112 (United States); Coats, Brittany [Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Parker, Dennis L. [Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah 84108 (United States); Christensen, Douglas A. [Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112 and Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States)
2015-02-15
Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation force field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison
Essentials of radiation heat transfer
Balaji
2014-01-01
Essentials of Radiation Heat Transfer is a textbook presenting the essential, fundamental information required to gain an understanding of radiation heat transfer and equips the reader with enough knowledge to be able to tackle more challenging problems. All concepts are reinforced by carefully chosen and fully worked examples, and exercise problems are provided at the end of every chapter. In a significant departure from other books on this subject, this book completely dispenses with the network method to solve problems of radiation heat transfer in surfaces. It instead presents the powerful radiosity-irradiation method and shows how this technique can be used to solve problems of radiation in enclosures made of one to any number of surfaces. The network method is not easily scalable. Secondly, the book introduces atmospheric radiation, which is now being considered as a potentially important area, in which engineers can contribute to the technology of remote sensing and atmospheric sciences in general, b...
Engineering calculations in radiative heat transfer
Gray, W A; Hopkins, D W
1974-01-01
Engineering Calculations in Radiative Heat Transfer is a six-chapter book that first explains the basic principles of thermal radiation and direct radiative transfer. Total exchange of radiation within an enclosure containing an absorbing or non-absorbing medium is then described. Subsequent chapters detail the radiative heat transfer applications and measurement of radiation and temperature.
Recent Developments in the VISRAD 3-D Target Design and Radiation Simulation Code
Macfarlane, Joseph; Woodruff, P.; Golovkin, I.
2011-10-01
The 3-D view factor code VISRAD is widely used in designing HEDP experiments at major laser and pulsed-power facilities, including NIF, OMEGA, OMEGA-EP, ORION, Z, and PLX. It simulates target designs by generating a 3-D grid of surface elements, utilizing a variety of 3-D primitives and surface removal algorithms, and can be used to compute the radiation flux throughout the surface element grid by computing element-to-element view factors and solving power balance equations. Target set-up and beam pointing are facilitated by allowing users to specify positions and angular orientations using a variety of coordinates systems (e . g . , that of any laser beam, target component, or diagnostic port). Analytic modeling for laser beam spatial profiles for OMEGA DPPs and NIF CPPs is used to compute laser intensity profiles throughout the grid of surface elements. VISRAD includes a variety of user-friendly graphics for setting up targets and displaying results, can readily display views from any point in space, and can be used to generate image sequences for animations. We will discuss recent improvements to the software package and plans for future developments.
Radiation Quality Effects on Transcriptome Profiles in 3-d Cultures After Particle Irradiation
Patel, Z. S.; Kidane, Y. H.; Huff, J. L.
2014-01-01
In this work, we evaluate the differential effects of low- and high-LET radiation on 3-D organotypic cultures in order to investigate radiation quality impacts on gene expression and cellular responses. Reducing uncertainties in current risk models requires new knowledge on the fundamental differences in biological responses (the so-called radiation quality effects) triggered by heavy ion particle radiation versus low-LET radiation associated with Earth-based exposures. We are utilizing novel 3-D organotypic human tissue models that provide a format for study of human cells within a realistic tissue framework, thereby bridging the gap between 2-D monolayer culture and animal models for risk extrapolation to humans. To identify biological pathway signatures unique to heavy ion particle exposure, functional gene set enrichment analysis (GSEA) was used with whole transcriptome profiling. GSEA has been used extensively as a method to garner biological information in a variety of model systems but has not been commonly used to analyze radiation effects. It is a powerful approach for assessing the functional significance of radiation quality-dependent changes from datasets where the changes are subtle but broad, and where single gene based analysis using rankings of fold-change may not reveal important biological information. We identified 45 statistically significant gene sets at 0.05 q-value cutoff, including 14 gene sets common to gamma and titanium irradiation, 19 gene sets specific to gamma irradiation, and 12 titanium-specific gene sets. Common gene sets largely align with DNA damage, cell cycle, early immune response, and inflammatory cytokine pathway activation. The top gene set enriched for the gamma- and titanium-irradiated samples involved KRAS pathway activation and genes activated in TNF-treated cells, respectively. Another difference noted for the high-LET samples was an apparent enrichment in gene sets involved in cycle cycle/mitotic control. It is
STEMS3D: An X-ray spectral model for magnetar persistent radiations
Gogus, Ersin; Weng, Shan-Shan
2016-07-01
Anomalous X-ray pulsars and soft gamma-ray repeaters are recognized as the most promising magnetar candidates, as indicated by their energetic bursts and rapid spin-downs. It is expected that the strong magnetic field leaves distinctive imprints on the emergent radiation both by affecting the radiative processes in atmospheres of magnetars and by scattering in the upper magnetospheres. We construct a self-consistent physical model that incorporates emission from the magnetar surface and its reprocessing in the three-dimensional twisted magnetosphere using a Monte Carlo technique. The synthetic spectra are characterized by four parameters: surface temperature kT, surface magnetic field strength B, magnetospheric twist angle Δφ, and the normalized electron velocity β. We also create a tabular model (STEMS3D) and apply it to X-ray spectra of magnetars.
Radiative transfer dynamo effect
Munirov, Vadim R.; Fisch, Nathaniel J.
2017-01-01
Magnetic fields in rotating and radiating astrophysical plasma can be produced due to a radiative interaction between plasma layers moving relative to each other. The efficiency of current drive, and with it the associated dynamo effect, is considered in a number of limits. It is shown here, however, that predictions for these generated magnetic fields can be significantly higher when kinetic effects, previously neglected, are taken into account.
Radiative transfer on discrete spaces
Preisendorfer, Rudolph W; Stark, M; Ulam, S
1965-01-01
Pure and Applied Mathematics, Volume 74: Radiative Transfer on Discrete Spaces presents the geometrical structure of natural light fields. This book describes in detail with mathematical precision the radiometric interactions of light-scattering media in terms of a few well established principles.Organized into four parts encompassing 15 chapters, this volume begins with an overview of the derivations of the practical formulas and the arrangement of formulas leading to numerical solution procedures of radiative transfer problems in plane-parallel media. This text then constructs radiative tran
Validation of Heat Transfer and Film Cooling Capabilities of the 3-D RANS Code TURBO
Shyam, Vikram; Ameri, Ali; Chen, Jen-Ping
2010-01-01
The capabilities of the 3-D unsteady RANS code TURBO have been extended to include heat transfer and film cooling applications. The results of simulations performed with the modified code are compared to experiment and to theory, where applicable. Wilcox s k-turbulence model has been implemented to close the RANS equations. Two simulations are conducted: (1) flow over a flat plate and (2) flow over an adiabatic flat plate cooled by one hole inclined at 35 to the free stream. For (1) agreement with theory is found to be excellent for heat transfer, represented by local Nusselt number, and quite good for momentum, as represented by the local skin friction coefficient. This report compares the local skin friction coefficients and Nusselt numbers on a flat plate obtained using Wilcox's k-model with the theory of Blasius. The study looks at laminar and turbulent flows over an adiabatic flat plate and over an isothermal flat plate for two different wall temperatures. It is shown that TURBO is able to accurately predict heat transfer on a flat plate. For (2) TURBO shows good qualitative agreement with film cooling experiments performed on a flat plate with one cooling hole. Quantitatively, film effectiveness is under predicted downstream of the hole.
Monitoring of resin transfer in CFRP molding using 3D-DIC technique
Chen, Dingding; Arakawa, Kazuo; Uchino, Masakazu
2014-06-01
Vacuum-assisted resin transfer molding (VARTM) is a manufacturing process that is used to make large and complex composite structures. While promising, VARTM still suffers from relatively low fiber volume fractions and high void content in the final products. The infusion step of VARTM is very important, because the quality of the final product is usually decided by this process. Consequently, a comprehensive understanding of the infusion process is essential. In this study, a three-dimensional digital image correlation (3D-DIC) testing system was set up to research the entire infusion process through the monitor of the thickness change of the laminates in this process. Two distinct VARTM processes, with and without a rigid cover mold, were designed to be studied. The 3D-DIC technique proved to be a valid method that not only can monitor the thickness evolution of isolated points but also can give a full-field distribution of the thickness change of the laminate. The results showed that, without the use of a rigid cover mold, the stack of reinforcements initially shrank and then expanded as the resin filled the cavities before closing the inlet, while when using a rigid cover mold there was an additional expansion period before the shrinkage occurred. Such an expansion stage could promote the flow of the resin, shortening the infusion time.
Microstructure analysis of the secondary pulmonary lobules by 3D synchrotron radiation CT
Fukuoka, Y.; Kawata, Y.; Niki, N.; Umetani, K.; Nakano, Y.; Ohmatsu, H.; Moriyama, N.; Itoh, H.
2014-03-01
Recognition of abnormalities related to the lobular anatomy has become increasingly important in the diagnosis and differential diagnosis of lung abnormalities at clinical routines of CT examinations. This paper aims a 3-D microstructural analysis of the pulmonary acinus with isotropic spatial resolution in the range of several micrometers by using micro CT. Previously, we demonstrated the ability of synchrotron radiation micro CT (SRμCT) using offset scan mode in microstructural analysis of the whole part of the secondary pulmonary lobule. In this paper, we present a semiautomatic method to segment the acinar and subacinar airspaces from the secondary pulmonary lobule and to track small vessels running inside alveolar walls in human acinus imaged by the SRμCT. The method beains with and segmentation of the tissues such as pleural surface, interlobular septa, alveola wall, or vessel using a threshold technique and 3-D connected component analysis. 3-D air space are then conustructed separated by tissues and represented branching patterns of airways and airspaces distal to the terminal bronchiole. A graph-partitioning approach isolated acini whose stems are interactively defined as the terminal bronchiole in the secondary pulmonary lobule. Finally, we performed vessel tracking using a non-linear sate space which captures both smoothness of the trajectories and intensity coherence along vessel orientations. Results demonstrate that the proposed method can extract several acinar airspaces from the 3-D SRμCT image of secondary pulmonary lobule and that the extracted acinar airspace enable an accurate quantitative description of the anatomy of the human acinus for interpretation of the basic unit of pulmonary structure and function.
Narayan, Ramesh; Zhu, Yucong; Psaltis, Dimitrios; Saḑowski, Aleksander
2016-03-01
We describe Hybrid Evaluator for Radiative Objects Including Comptonization (HEROIC), an upgraded version of the relativistic radiative post-processor code HERO described in a previous paper, but which now Includes Comptonization. HEROIC models Comptonization via the Kompaneets equation, using a quadratic approximation for the source function in a short characteristics radiation solver. It employs a simple form of accelerated lambda iteration to handle regions of high scattering opacity. In addition to solving for the radiation field, HEROIC also solves for the gas temperature by applying the condition of radiative equilibrium. We present benchmarks and tests of the Comptonization module in HEROIC with simple 1D and 3D scattering problems. We also test the ability of the code to handle various relativistic effects using model atmospheres and accretion flows in a black hole space-time. We present two applications of HEROIC to general relativistic magnetohydrodynamics simulations of accretion discs. One application is to a thin accretion disc around a black hole. We find that the gas below the photosphere in the multidimensional HEROIC solution is nearly isothermal, quite different from previous solutions based on 1D plane parallel atmospheres. The second application is to a geometrically thick radiation-dominated accretion disc accreting at 11 times the Eddington rate. Here, the multidimensional HEROIC solution shows that, for observers who are on axis and look down the polar funnel, the isotropic equivalent luminosity could be more than 10 times the Eddington limit, even though the spectrum might still look thermal and show no signs of relativistic beaming.
Energy Technology Data Exchange (ETDEWEB)
Affonso, Renato Raoni Werneck; Lava, Deise Diana; Borges, Diogo da Silva; Sampaio, Paulo Augusto Berquo de; Moreira, Maria de Lourdes, E-mail: raoniwa@yahoo.com.br, E-mail: deisedy@gmail.com, E-mail: diogosb@outlook.com, E-mail: sampaio@ien.gov.br, E-mail: malu@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)
2014-07-01
This paper aims to conduct a case study of the fuel rods that have the highest and the lowest average power of the EPRI-9R 3D reactor modified , for various positions of the control rods banks. For this, will be addressed the verification of computer code, comparing the results obtained with analytical solutions. This check is important so that, subsequently, it is possible use the program to understand the behavior of the fuel rods and the coolant channel of the EPRI-9R 3D reactor modified. Thus, in view of the scope of this paper, first a brief introducing on the heat transfer is done, including the rod equations and the equation of energy in the channel to allow the analysis of the results.
Directory of Open Access Journals (Sweden)
S. Gómez
2005-01-01
Full Text Available Se presenta un simulador de sombras vectoriales por radiación solar sobre objetos tridimensionales, SSV3D, una herramienta de computación gráfica desarrollada sobre la plataforma tridimensional del AUTOCAD 2004. El software simula vectorialmente la radiación solar directa, calculando y trazando los contornos de sombra sobre los planos iluminados del modelo 3D evaluado. En el desarrollo de la herramienta se comprobaron los resultados analíticos mediante su comparación con los obtenidos en las fórmulas de una hoja de cálculo, y de los resultados gráficos mediante comparación con las sombras arrojadas por simulación con un heliodón de tecnología francesa y por el Render de AUTOCAD. El simulador SSV3D respondió satisfactoriamente a las necesidades de estudio de sistemas de protección solar en investigaciones desarrolladas anteriormente.SSV3D is presented as a graphic computer tool developed on the three-dimensional platform of AUTOCAD 2004, which simulates direct solar radiation by measuring and vectorial tracing of shadow outlines on illuminated plans of the 3D model evaluated. The analytical results of this tool were tested during its' development by comparing its' results with those obtained in the formula of a calculus sheet, and graphic results were checked comparing these to the shadows obtained by simulation using physical models in a heliodon (French technology and by the Render of AUTOCAD. The SSV3D simulator responded satisfactorily to the requirements for the study of solar protection systems which had been determined in previous research.
Radiation Hard 3D Diamond Sensors for Vertex Detectors at HL-LHC
AUTHOR|(INSPIRE)INSPIRE-00336619; Grosse-Knetter, Jörn; Weingarten, Jens
Diamond is a good candidate to replace silicon as sensor material in the innermost layer of a tracking detector at HL-LHC, due to its high radiation tolerance. After particle fluences of $10^{16}\\,{\\rm protons/cm^2}$, diamond sensors are expected to achieve a higher signal to noise ratio than silicon. In order to use low grade polycrystalline diamonds as sensors, electrodes inside the diamond bulk, so called 3D electrodes, are produced. Typically, this kind of diamond material has a lower charge collection distance (CCD) than higher grade diamond, which results in a decreased signal amplitude. With 3D electrodes it is possible to achieve full charge collection even in samples with low CCDs by decoupling the spacing of the electrodes from the thickness of the diamond bulk. The electrodes are produced using a femtosecond laser, which changes the phase of the diamond material. The phase changed material is conductive and identified as nanocrystalline graphite using Raman spectroscopy. Due to a crater like struct...
Migration of Earth-size planets in 3D radiative discs
Lega, E; Bitsch, B; Morbidelli, A
2014-01-01
In this paper, we address the migration of small mass planets in 3D radiative disks. Indeed, migration of small planets is known to be too fast inwards in locally isothermal conditions. However, thermal effects could reverse its direction, potentially saving planets in the inner, optically thick parts of the protoplanetary disc. This effect has been seen for masses larger than 5 Earth masses, but the minimum mass for this to happen has never been probed numerically, although it is of crucial importance for planet formation scenarios. We have extended the hydro-dynamical code FARGO to 3D, with thermal diffusion. With this code, we perform simulations of embedded planets down to 2 Earth masses. For a set of discs parameters for which outward migration has been shown in the range of $[5, 35]$ Earth masses, we find that the transition to inward migration occurs for masses in the range $[3, 5]$ Earth masses. The transition appears to be due to an unexpected phenomenon: the formation of an asymmetric cold and dense...
Wen, Guo-Yong; Marshak, Alexander; Cahalan, Robert F.
2004-01-01
Aerosol amount in clear regions of a cloudy atmosphere is a critical parameter in studying the interaction between aerosols and clouds. Since the global cloud cover is about 50%, cloudy scenes are often encountered in any satellite images. Aerosols are more or less transparent, while clouds are extremely reflective in the visible spectrum of solar radiation. The radiative transfer in clear-cloudy condition is highly three- dimensional (3D). This paper focuses on estimating the 3D effects on aerosol optical thickness retrievals using Monte Carlo simulations. An ASTER image of cumulus cloud fields in the biomass burning region in Brazil is simulated in this study. The MODIS products (i-e., cloud optical thickness, particle effective radius, cloud top pressure, surface reflectance, etc.) are used to construct the cloud property and surface reflectance fields. To estimate the cloud 3-D effects, we assume a plane-parallel stratification of aerosol properties in the 60 km x 60 km ASTER image. The simulated solar radiation at the top of the atmosphere is compared with plane-parallel calculations. Furthermore, the 3D cloud radiative effects on aerosol optical thickness retrieval are estimated.
Time-Resolved Measurement of Radiatively Heated Iron 2p-3d Transmission Spectra
Institute of Scientific and Technical Information of China (English)
ZHAO Yang; SHANG Wan-Li; XIONG Gang; JIN Feng-Tao; HU Zhi-Min; WEI Min-Xi; YANG Guo-Hong; ZHANG Ji-Yan; YANG Jia-Min
2010-01-01
@@ An experimental measurement of radiatively heated iron plasma transmission spectra was performed on Shenguang Ⅱ laser facility.In the measurement,the self-emission spectrum,the backlighting spectrum,and the absorption spectrum were imaged with a fiat filed grating and recorded on a gated micro channel plate detector to obtain the time-resolved transmission spectra in the range 10-20 A (approximately 0.6-1.3 keV).Experimental results are compared with the calculation results of an unsolved transition array (UTA) code.The time-dependent relative shift in the positions of the 2p-3d transmission array is interpreted in terms of the plasma temperature variations.
Testa, Paola; Martinez-Sykora, Juan; Hansteen, Viggo; Carlsson, Mats
2012-01-01
Determining the temperature distribution of coronal plasmas can provide stringent constraints on coronal heating. Current observations with the Extreme ultraviolet Imaging Spectrograph onboard Hinode and the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory provide diagnostics of the emission measure distribution (EMD) of the coronal plasma. Here we test the reliability of temperature diagnostics using 3D radiative MHD simulations. We produce synthetic observables from the models, and apply the Monte Carlo Markov chain EMD diagnostic. By comparing the derived EMDs with the "true" distributions from the model we assess the limitations of the diagnostics, as a function of the plasma parameters and of the signal-to-noise of the data. We find that EMDs derived from EIS synthetic data reproduce some general characteristics of the true distributions, but usually show differences from the true EMDs that are much larger than the estimated uncertainties suggest, especially when structures with signif...
An investigation of PRESAGE® 3D dosimetry for IMRT and VMAT radiation therapy treatment verification
Jackson, Jake; Juang, Titania; Adamovics, John; Oldham, Mark
2015-03-01
The purpose of this work was to characterize three formulations of PRESAGE® dosimeters (DEA-1, DEA-2, and DX) and to identify optimal readout timing and procedures for accurate in-house 3D dosimetry. The optimal formulation and procedure was then applied for the verification of an intensity modulated radiation therapy (IMRT) and a volumetric modulated arc therapy (VMAT) treatment technique. PRESAGE® formulations were studied for their temporal stability post-irradiation, sensitivity, and linearity of dose response. Dosimeters were read out using a high-resolution optical-CT scanner. Small volumes of PRESAGE® were irradiated to investigate possible differences in sensitivity for large and small volumes (‘volume effect’). The optimal formulation and read-out technique was applied to the verification of two patient treatments: an IMRT plan and a VMAT plan. A gradual decrease in post-irradiation optical-density was observed in all formulations with DEA-1 exhibiting the best temporal stability with less than 4% variation between 2-22 h post-irradiation. A linear dose response at the 4 h time point was observed for all formulations with an R2 value >0.99. A large volume effect was observed for DEA-1 with sensitivity of the large dosimeter being ~63% less than the sensitivity of the cuvettes. For the IMRT and VMAT treatments, the 3D gamma passing rates for 3%/3 mm criteria using absolute measured dose were 99.6 and 94.5% for the IMRT and VMAT treatments, respectively. In summary, this work shows that accurate 3D dosimetry is possible with all three PRESAGE® formulations. The optimal imaging windows post-irradiation were 3-24 h, 2-6 h, and immediately for the DEA-1, DEA-2, and DX formulations, respectively. Because of the large volume effect, small volume cuvettes are not yet a reliable method for calibration of larger dosimeters to absolute dose. Finally, PRESAGE® is observed to be a useful method of 3D verification when careful consideration is given
Energy Technology Data Exchange (ETDEWEB)
Michalski, Jeff, E-mail: michalski@wustl.edu [Radiation Oncology, Washington University Medical School, St. Louis, Missouri (United States); Image-guided Therapy Center, St. Louis, Missouri (United States); Winter, Kathryn [Department of Statistics, Radiation Therapy Oncology Group, Philadelphia, Pennsylvania (United States); Roach, Mack [Radiation Oncology, University of California-San Francisco, San Francisco, California (United States); Markoe, Arnold [University of Miami, Miami, Florida (United States); Sandler, Howard M. [University of Michigan, Ann Arbor, Michigan (United States); Cedars-Sinai Medical Center, Los Angeles, California (United States); Ryu, Janice [Radiation Oncology, University of California-Davis, Davis, California (United States); Radiation Oncology Associates, Sacramento, California (United States); Parliament, Matthew [Radiation Oncology, University of Alberta, Edmonton, Alberta (Canada); Purdy, James A. [Radiation Oncology, University of California-Davis, Davis, California (United States); Image-guided Therapy Center, St. Louis, Missouri (United States); Valicenti, Richard K. [Radiation Oncology, University of California-Davis, Davis, California (United States); Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Cox, James D. [Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)
2012-07-01
Purpose: Report of clinical cancer control outcomes on Radiation Therapy Oncology Group (RTOG) 9406, a three-dimensional conformal radiation therapy (3D-CRT) dose escalation trial for localized adenocarcinoma of the prostate. Methods and Materials: RTOG 9406 is a Phase I/II multi-institutional dose escalation study of 3D-CRT for men with localized prostate cancer. Patients were registered on five sequential dose levels: 68.4 Gy, 73.8 Gy, 79.2 Gy, 74 Gy, and 78 Gy with 1.8 Gy/day (levels I-III) or 2.0 Gy/day (levels IV and V). Neoadjuvant hormone therapy (NHT) from 2 to 6 months was allowed. Protocol-specific, American Society for Therapeutic Radiation Oncology (ASTRO), and Phoenix biochemical failure definitions are reported. Results: Thirty-four institutions enrolled 1,084 patients and 1,051 patients are analyzable. Median follow-up for levels I, II, III, IV, and V was 11.7, 10.4, 11.8, 10.4, and 9.2 years, respectively. Thirty-six percent of patients received NHT. The 5-year overall survival was 90%, 87%, 88%, 89%, and 88% for dose levels I-V, respectively. The 5-year clinical disease-free survival (excluding protocol prostate-specific antigen definition) for levels I-V is 84%, 78%, 81%, 82%, and 82%, respectively. By ASTRO definition, the 5-year disease-free survivals were 57%, 59%, 52%, 64% and 75% (low risk); 46%, 52%, 54%, 56%, and 63% (intermediate risk); and 50%, 34%, 46%, 34%, and 61% (high risk) for levels I-V, respectively. By the Phoenix definition, the 5-year disease-free survivals were 68%, 73%, 67%, 84%, and 80% (low risk); 70%, 62%, 70%, 74%, and 69% (intermediate risk); and 42%, 62%, 68%, 54%, and 67% (high risk) for levels I-V, respectively. Conclusion: Dose-escalated 3D-CRT yields favorable outcomes for localized prostate cancer. This multi-institutional experience allows comparison to other experiences with modern radiation therapy.
The 1999 Izmit, Turkey, earthquake: A 3D dynamic stress transfer model of intraearthquake triggering
Harris, R.A.; Dolan, J.F.; Hartleb, R.; Day, S.M.
2002-01-01
Before the August 1999 Izmit (Kocaeli), Turkey, earthquake, theoretical studies of earthquake ruptures and geological observations had provided estimates of how far an earthquake might jump to get to a neighboring fault. Both numerical simulations and geological observations suggested that 5 km might be the upper limit if there were no transfer faults. The Izmit earthquake appears to have followed these expectations. It did not jump across any step-over wider than 5 km and was instead stopped by a narrower step-over at its eastern end and possibly by a stress shadow caused by a historic large earthquake at its western end. Our 3D spontaneous rupture simulations of the 1999 Izmit earthquake provide two new insights: (1) the west- to east-striking fault segments of this part of the North Anatolian fault are oriented so as to be low-stress faults and (2) the easternmost segment involved in the August 1999 rupture may be dipping. An interesting feature of the Izmit earthquake is that a 5-km-long gap in surface rupture and an adjacent 25° restraining bend in the fault zone did not stop the earthquake. The latter observation is a warning that significant fault bends in strike-slip faults may not arrest future earthquakes.
Study of a non-diffusing radiochromic gel dosimeter for 3D radiation dose imaging
Marsden, Craig Michael
2000-12-01
This thesis investigates the potential of a new radiation gel dosimeter, based on nitro-blue tetrazolium (NBTZ) suspended in a gelatin mold. Unlike all Fricke based gel dosimeters this dosimeter does not suffer from diffusive loss of image stability. Images are obtained by an optical tomography method. Nitro blue tetrazolium is a common biological indicator that when irradiated in an aqueous medium undergoes reduction to a highly colored formazan, which has an absorbance maximum at 525nm. Tetrazolium is water soluble while the formazan product is insoluble. The formazan product sticks to the gelatin matrix and the dose image is maintained for three months. Methods to maximize the sensitivity of the system were evaluated. It was found that a chemical detergent, Triton X-100, in combination with sodium formate, increased the dosimeter sensitivity significantly. An initial G-value of formazan production for a dosimeter composed of 1mM NBTZ, gelatin, and water was on the order of 0.2. The addition of Triton and formate produced a G-value in excess of 5.0. The effects of NBTZ, triton, formate, and gel concentration were all investigated. All the gels provided linear dose vs. absorbance plots for doses from 0 to >100 Gy. It was determined that gel concentration had minimal if any effect on sensitivity. Sensitivity increased slightly with increasing NBTZ concentration. Triton and formate individually and together provided moderate to large increases in dosimeter sensitivity. The dosimeter described in this work can provide stable 3D radiation dose images for all modalities of radiation therapy equipment. Methods to increase sensitivity are developed and discussed.
A full 3D model of fluid flow and heat transfer in an E.B. heated liquid metal bath
Matveichev, A.; Jardy, A.; Bellot, J. P.
2016-07-01
In order to study the dissolution of exogeneous inclusions in the liquid metal during processing of titanium alloys, a series of dipping experiments has been performed in an Electron Beam Melting laboratory furnace. Precise determination of the dissolution kinetics requires knowing and mastering the exact thermohydrodynamic behavior of the melt pool, which implies full 3D modeling of the process. To achieve this goal, one needs to describe momentum and heat transfer, phase change, as well as the development of flow turbulence in the liquid. EB power input, thermal radiation, heat loss through the cooling circuit, surface tension effects (i.e. Marangoni-induced flow) must also be addressed in the model. Therefore a new solver dealing with all these phenomena was implemented within OpenFOAM platform. Numerical results were compared with experimental data from actual Ti melting, showing a pretty good agreement. In the second stage, the immersion of a refractory sample rod in the liquid pool was simulated. Results of the simulations showed that the introduction of the sample slightly disturbs the flow field inside the bath. The amount of such disturbance depends on the exact location of the dipping.
SKIRT: the design of a suite of input models for Monte Carlo radiative transfer simulations
Baes, Maarten
2015-01-01
The Monte Carlo method is the most popular technique to perform radiative transfer simulations in a general 3D geometry. The algorithms behind and acceleration techniques for Monte Carlo radiative transfer are discussed extensively in the literature, and many different Monte Carlo codes are publicly available. On the contrary, the design of a suite of components that can be used for the distribution of sources and sinks in radiative transfer codes has received very little attention. The availability of such models, with different degrees of complexity, has many benefits. For example, they can serve as toy models to test new physical ingredients, or as parameterised models for inverse radiative transfer fitting. For 3D Monte Carlo codes, this requires algorithms to efficiently generate random positions from 3D density distributions. We describe the design of a flexible suite of components for the Monte Carlo radiative transfer code SKIRT. The design is based on a combination of basic building blocks (which can...
Directory of Open Access Journals (Sweden)
Tsuneo Yamashiro
Full Text Available To assess the advantages of Adaptive Iterative Dose Reduction using Three Dimensional Processing (AIDR3D for image quality improvement and dose reduction for chest computed tomography (CT.Institutional Review Boards approved this study and informed consent was obtained. Eighty-eight subjects underwent chest CT at five institutions using identical scanners and protocols. During a single visit, each subject was scanned using different tube currents: 240, 120, and 60 mA. Scan data were converted to images using AIDR3D and a conventional reconstruction mode (without AIDR3D. Using a 5-point scale from 1 (non-diagnostic to 5 (excellent, three blinded observers independently evaluated image quality for three lung zones, four patterns of lung disease (nodule/mass, emphysema, bronchiolitis, and diffuse lung disease, and three mediastinal measurements (small structure visibility, streak artifacts, and shoulder artifacts. Differences in these scores were assessed by Scheffe's test.At each tube current, scans using AIDR3D had higher scores than those without AIDR3D, which were significant for lung zones (p<0.0001 and all mediastinal measurements (p<0.01. For lung diseases, significant improvements with AIDR3D were frequently observed at 120 and 60 mA. Scans with AIDR3D at 120 mA had significantly higher scores than those without AIDR3D at 240 mA for lung zones and mediastinal streak artifacts (p<0.0001, and slightly higher or equal scores for all other measurements. Scans with AIDR3D at 60 mA were also judged superior or equivalent to those without AIDR3D at 120 mA.For chest CT, AIDR3D provides better image quality and can reduce radiation exposure by 50%.
ARTIST: Adaptable Radiative Transfer Innovations for Submillimeter Telescopes
Jørgensen, Jes; Brinch, Christian; Girart, Josep Miquel; Padovani, Marco; Frau, Pau; Schaaf, Reinhold; Kuiper, Rolf; Bertoldi, Frank; Hogerheijde, Michiel; Juhasz, Attila; Vlemmings, Wouter
2014-02-01
ARTIST is a suite of tools for comprehensive multi-dimensional radiative transfer calculations of dust and line emission, as well as their polarization, to help interpret observations from submillimeter telescopes. The ARTIST package consists of LIME, a radiative transfer code that uses adaptive gridding allowing simulations of sources with arbitrary multi-dimensional (1D, 2D, 3D) and time-dependent structures, thus ensuring rapid convergence; the DustPol and LinePol tools for modeling the polarization of the line and dust emission; and an interface run from Python scripts that manages the interaction between a general model library and LIME, and a graphical interface to simulate images.
Three-Dimensional Radiation Transfer in Young Stellar Objects
Whitney, B A; Bjorkman, J E; Dong, R; Wolff, M J; Wood, K; Honor, J
2013-01-01
We have updated our publicly available dust radiative transfer code (HOCHUNK3D) to include new emission processes and various 3-D geometries appropriate for forming stars. The 3-D geometries include warps and spirals in disks, accretion hotspots on the central star, fractal clumping density enhancements, and misaligned inner disks. Additional axisymmetric (2-D) features include gaps in disks and envelopes, "puffed-up inner rims" in disks, multiple bipolar cavity walls, and iteration of disk vertical structure assuming hydrostatic equilibrium. We include the option for simple power-law envelope geometry, which combined with fractal clumping, and bipolar cavities, can be used to model evolved stars as well as protostars. We include non-thermal emission from PAHs and very small grains, and external illumination from the interstellar radiation field. The grid structure was modified to allow multiple dust species in each cell; based on this, a simple prescription is implemented to model dust stratification. We des...
Radiation and Polarization Signatures of 3D Multi-zone Time-dependent Hadronic Blazar Model
Zhang, Haocheng; Böttcher, Markus
2016-01-01
We present a newly developed time-dependent three-dimensional multi-zone hadronic blazar emission model. By coupling a Fokker-Planck based lepto-hadronic particle evolution code 3DHad with a polarization-dependent radiation transfer code, 3DPol, we are able to study the time-dependent radiation and polarization signatures of a hadronic blazar model for the first time. Our current code is limited to parameter regimes in which the hadronic $\\gamma$-ray output is dominated by proton synchrotron emission, neglecting pion production. Our results demonstrate that the time-dependent flux and polarization signatures are generally dominated by the relation between the synchrotron cooling and the light crossing time scale, which is largely independent of the exact model parameters. We find that unlike the low-energy polarization signatures, which can vary rapidly in time, the high-energy polarization signatures appear stable. As a result, future high-energy polarimeters may be able to distinguish such signatures from t...
3D radiative hydrodynamic simulations of protostellar collapse with H-C-O dynamical chemistry
Dzyurkevich, Natalia; Lesaffre, Pierre; Semenov, Dimitry
2016-01-01
Combining the co-evolving chemistry, hydrodynamics and radiative transfer is an important step for star formation studies. It allows both a better link to observations and a self-consistent monitoring of the magnetic dissipation in the collapsing core. Our aim is to follow a chemo-dynamical evolution of collapsing dense cores with a reduced gas-grain chemical network. We present the results of radiative hydrodynamic (RHD) simulations of 1 M$_\\odot$ isolated dense core collapse. The physical setup includes RHD and dynamical evolution of a chemical network. To perform those simulations, we merged the multi-dimensional adaptive-mesh-refinement code RAMSES and the thermo-chemistry Paris-Durham shock code. We simulate the formation of the first hydro-static core (FHSC) and the co-evolution of 56 species describing mainly H-C-O chemistry. Accurate benchmarking is performed, testing the reduced chemical network against a well-establiched complex network. We show that by using a compact set of reactions, one can matc...
Development of enhanced double-sided 3D radiation sensors for pixel detector upgrades at HL-LHC
Povoli, Marco
The upgrades of High Energy Physics (HEP) experiments at the Large Hadron Collider (LHC) will call for new radiation hard technologies to be applied in the next generations of tracking devices that will be required to withstand extremely high radiation doses. In this sense, one of the most promising approaches to silicon detectors, is the so called 3D technology. This technology realizes columnar electrodes penetrating vertically into the silicon bulk thus decoupling the active volume from the inter-electrode distance. 3D detectors were first proposed by S. Parker and collaborators in the mid ’90s as a new sensor geometry intended to mitigate the effects of radiation damage in silicon. 3D sensors are currently attracting growing interest in the field of High Energy Physics, despite their more complex and expensive fabrication, because of the much lower operating voltages and enhanced radiation hardness. 3D technology was also investigated in other laboratories, with the intent of reducing the fabrication co...
Qin, Yuming; Zhang, Jianlin
2016-12-01
In this paper, we establish the global existence, uniqueness and asymptotic behavior of cylindrically symmetric solutions for the 3D infrarelativistic model with radiation in H^i× (H^i)^3× H^i× H^{i+1}(i=1,2,4) . The key point is that the smallness of initial data is not needed.
Energy Technology Data Exchange (ETDEWEB)
Wiscombe, Warren [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); Marshak, Alexander [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); Knyazikhin, Yuri [Boston Univ., MA (United States); Chiu, Christine [Univ. of Maryland Baltimore County (UMBC), Baltimore, MD (United States)
2007-05-04
We have basically completed all the goals stated in the previous proposal and published or submitted journal papers thereon, the only exception being First-Principles Monte Carlo which has taken more time than expected. We finally finished the comprehensive book on 3D cloud radiative transfer (edited by Marshak and Davis and published by Springer), with many contributions by ARM scientists; this book was highlighted in the 2005 ARM Annual Report. We have also completed (for now) our pioneering work on new models of cloud drop clustering based on ARM aircraft FSSP data, with applications both to radiative transfer and to rainfall. This clustering work was highlighted in the FY07 “Our Changing Planet” (annual report of the US Climate Change Science Program). Our group published 22 papers, one book, and 5 chapters in that book, during this proposal period. All are listed at the end of this section. Below, we give brief highlights of some of those papers.
2D and 3D interconnect fabrication by picosecond Laser Induced Forward Transfer
Oosterhuis, G.; Huis in 't veld, A.J.; Chall, P.
2011-01-01
Interconnects are an important cost driver in advanced 3D chip packaging. This holds for Through Silicon Vias (TSV) for chip stacking, but also for other integrated Si-technology. Especially in applications with a low number (<100 mm-2) of relatively large (10-2- um diameter), high aspect ratio (1:5
Growth and Transfer of Seamless 3D Graphene-Nanotube Hybrids.
Kim, Nam Dong; Li, Yilun; Wang, Gunuk; Fan, Xiujun; Jiang, Jinlong; Li, Lei; Ji, Yongsung; Ruan, Gedeng; Hauge, Robert H; Tour, James M
2016-02-10
Seamlessly connected graphene and carbon nanotube hybrids (GCNTs) have great potential as carbon platform structures in electronics due to their high conductivity and high surface area. Here, we introduce a facile method for making patterned GCNTs and their intact transfer onto other substrates. The mechanism for selective growth of vertically aligned CNTs (VA-CNTs) on the patterned graphene is discussed. The complete transfer of the GCNT pattern onto other substrates is possible because of the mechanical strength of the GCNT hybrids. Electrical conductivity measurements of the transferred GCNT structures show Ohmic contact through the VA-CNTs to graphene--evidence of its integrity after the transfer process.
Energy Technology Data Exchange (ETDEWEB)
Jenkins, C; Xing, L [Stanford University, Stanford, CA (United States)
2015-06-15
Purpose The rapid proliferation of affordable 3D printing techniques has enabled the custom fabrication of items ranging from paper weights to medical implants. This study investigates the feasibility of utilizing the technology for developing novel phantoms for use in radiation therapy quality assurance (QA) procedures. Methods A phantom for measuring the geometric parameters of linear accelerator (LINAC) on-board imaging (OBI) systems was designed using SolidWorks. The design was transferred to a 3D printer and fabricated using a fused deposition modeling (FDM) technique. Fiducials were embedded in the phantom by placing 1.6 mm diameter steel balls in predefined holes and securing them with silicone. Several MV and kV images of the phantom were collected and the visibility and geometric accuracy were evaluated. A second phantom, for use in the experimental evaluation of a high dose rate (HDR) brachytherapy dosimeter, was designed to secure several applicator needles in water. The applicator was fabricated in the same 3D printer and used for experiments. Results The general accuracy of printed parts was determined to be 0.1 mm. The cost of materials for the imaging and QA phantoms were $22 and $5 respectively. Both the plastic structure and fiducial markers of the imaging phantom were visible in MV and kV images. Fiducial marker locations were determined to be within 1mm of desired locations, with the discrepancy being attributed to the fiducial attachment process. The HDR phantom secured the applicators within 0.5 mm of the desired locations. Conclusion 3D printing offers an inexpensive method for fabricating custom phantoms for use in radiation therapy quality assurance. While the geometric accuracy of such parts is limited compared to more expensive methods, the phantoms are still highly functional and provide a unique opportunity for rapid fabrication of custom phantoms for use in radiation therapy QA and research.
3D finite element model for writing long-period fiber gratings by CO2 laser radiation.
Coelho, João M P; Nespereira, Marta; Abreu, Manuel; Rebordão, José
2013-08-12
In the last years, mid-infrared radiation emitted by CO2 lasers has become increasing popular as a tool in the development of long-period fiber gratings. However, although the development and characterization of the resulting sensing devices have progressed quickly, further research is still necessary to consolidate functional models, especially regarding the interaction between laser radiation and the fiber's material. In this paper, a 3D finite element model is presented to simulate the interaction between laser radiation and an optical fiber and to determine the resulting refractive index change. Dependence with temperature of the main parameters of the optical fiber materials (with special focus on the absorption of incident laser radiation) is considered, as well as convection and radiation losses. Thermal and residual stress analyses are made for a standard single mode fiber, and experimental results are presented.
3D Finite Element Model for Writing Long-Period Fiber Gratings by CO2 Laser Radiation
Directory of Open Access Journals (Sweden)
José Rebordão
2013-08-01
Full Text Available In the last years, mid-infrared radiation emitted by CO2 lasers has become increasing popular as a tool in the development of long-period fiber gratings. However, although the development and characterization of the resulting sensing devices have progressed quickly, further research is still necessary to consolidate functional models, especially regarding the interaction between laser radiation and the fiber’s material. In this paper, a 3D finite element model is presented to simulate the interaction between laser radiation and an optical fiber and to determine the resulting refractive index change. Dependence with temperature of the main parameters of the optical fiber materials (with special focus on the absorption of incident laser radiation is considered, as well as convection and radiation losses. Thermal and residual stress analyses are made for a standard single mode fiber, and experimental results are presented.
Energy Technology Data Exchange (ETDEWEB)
Filippi, Andrea Riccardo, E-mail: andreariccardo.filippi@unito.it [Department of Oncology, University of Torino, Torino (Italy); Ciammella, Patrizia [Radiation Therapy Unit, Department of Oncology and Advanced Technology, ASMN Hospital IRCCS, Reggio Emilia (Italy); Piva, Cristina; Ragona, Riccardo [Department of Oncology, University of Torino, Torino (Italy); Botto, Barbara [Hematology, Città della Salute e della Scienza, Torino (Italy); Gavarotti, Paolo [Hematology, University of Torino and Città della Salute e della Scienza, Torino (Italy); Merli, Francesco [Hematology Unit, ASMN Hospital IRCCS, Reggio Emilia (Italy); Vitolo, Umberto [Hematology, Città della Salute e della Scienza, Torino (Italy); Iotti, Cinzia [Radiation Therapy Unit, Department of Oncology and Advanced Technology, ASMN Hospital IRCCS, Reggio Emilia (Italy); Ricardi, Umberto [Department of Oncology, University of Torino, Torino (Italy)
2014-06-01
Purpose: Image-guided intensity modulated radiation therapy (IG-IMRT) allows for margin reduction and highly conformal dose distribution, with consistent advantages in sparing of normal tissues. The purpose of this retrospective study was to compare involved-site IG-IMRT with involved-site 3D conformal RT (3D-CRT) in the treatment of early stage Hodgkin lymphoma (HL) involving the mediastinum, with efficacy and toxicity as primary clinical endpoints. Methods and Materials: We analyzed 90 stage IIA HL patients treated with either involved-site 3D-CRT or IG-IMRT between 2005 and 2012 in 2 different institutions. Inclusion criteria were favorable or unfavorable disease (according to European Organization for Research and Treatment of Cancer criteria), complete response after 3 to 4 cycles of an adriamycin- bleomycin-vinblastine-dacarbazine (ABVD) regimen plus 30 Gy as total radiation dose. Exclusion criteria were chemotherapy other than ABVD, partial response after ABVD, total radiation dose other than 30 Gy. Clinical endpoints were relapse-free survival (RFS) and acute toxicity. Results: Forty-nine patients were treated with 3D-CRT (54.4%) and 41 with IG-IMRT (45.6%). Median follow-up time was 54.2 months for 3D-CRT and 24.1 months for IG-IMRT. No differences in RFS were observed between the 2 groups, with 1 relapse each. Three-year RFS was 98.7% for 3D-CRT and 100% for IG-IMRT. Grade 2 toxicity events, mainly mucositis, were recorded in 32.7% of 3D-CRT patients (16 of 49) and in 9.8% of IG-IMRT patients (4 of 41). IG-IMRT was significantly associated with a lower incidence of grade 2 acute toxicity (P=.043). Conclusions: RFS rates at 3 years were extremely high in both groups, albeit the median follow-up time is different. Acute tolerance profiles were better for IG-IMRT than for 3D-CRT. Our preliminary results support the clinical safety and efficacy of advanced RT planning and delivery techniques in patients affected with early stage HL, achieving complete
Tran-Gia, Johannes; Schlögl, Susanne; Lassmann, Michael
2016-12-01
Currently, the validation of multimodal quantitative imaging and absorbed dose measurements is impeded by the lack of suitable, commercially available anthropomorphic phantoms of variable sizes and shapes. To demonstrate the potential of 3-dimensional (3D) printing techniques for quantitative SPECT/CT imaging, a set of kidney dosimetry phantoms and their spherical counterparts was designed and manufactured with a fused-deposition-modeling 3D printer. Nuclide-dependent SPECT/CT calibration factors were determined to assess the accuracy of quantitative imaging for internal renal dosimetry.
Reactor Dosimetry Applications Using RAPTOR-M3G:. a New Parallel 3-D Radiation Transport Code
Longoni, Gianluca; Anderson, Stanwood L.
2009-08-01
The numerical solution of the Linearized Boltzmann Equation (LBE) via the Discrete Ordinates method (SN) requires extensive computational resources for large 3-D neutron and gamma transport applications due to the concurrent discretization of the angular, spatial, and energy domains. This paper will discuss the development RAPTOR-M3G (RApid Parallel Transport Of Radiation - Multiple 3D Geometries), a new 3-D parallel radiation transport code, and its application to the calculation of ex-vessel neutron dosimetry responses in the cavity of a commercial 2-loop Pressurized Water Reactor (PWR). RAPTOR-M3G is based domain decomposition algorithms, where the spatial and angular domains are allocated and processed on multi-processor computer architectures. As compared to traditional single-processor applications, this approach reduces the computational load as well as the memory requirement per processor, yielding an efficient solution methodology for large 3-D problems. Measured neutron dosimetry responses in the reactor cavity air gap will be compared to the RAPTOR-M3G predictions. This paper is organized as follows: Section 1 discusses the RAPTOR-M3G methodology; Section 2 describes the 2-loop PWR model and the numerical results obtained. Section 3 addresses the parallel performance of the code, and Section 4 concludes this paper with final remarks and future work.
Directory of Open Access Journals (Sweden)
Foroudi Farshad
2012-07-01
Full Text Available Abstract Background To compare 3 Dimensional Conformal radiotherapy (3D-CRT with Intensity Modulated Radiotherapy (IMRT with Volumetric-Modulated Arc Therapy (VMAT for bladder cancer. Methods Radiotherapy plans for 15 patients with T2-T4N0M0 bladder cancer were prospectively developed for 3-DCRT, IMRT and VMAT using Varian Eclipse planning system. The same radiation therapist carried out all planning and the same clinical dosimetric constraints were used. 10 of the patients with well localised tumours had a simultaneous infield boost (SIB of the primary tumour planned for both IMRT and VMAT. Tumour control probabilities and normal tissue complication probabilities were calculated. Results Mean planning time for 3D-CRT, IMRT and VMAT was 30.0, 49.3, and 141.0 minutes respectively. The mean PTV conformity (CI index for 3D-CRT was 1.32, for IMRT 1.05, and for VMAT 1.05. The PTV Homogeneity (HI index was 0.080 for 3D-CRT, 0.073 for IMRT and 0.086 for VMAT. Tumour control and normal tissue complication probabilities were similar for 3D-CRT, IMRT and VMAT. The mean monitor units were 267 (range 250–293 for 3D-CRT; 824 (range 641–1083 for IMRT; and 403 (range 333–489 for VMAT (P Conclusions VMAT is associated with similar dosimetric advantages as IMRT over 3D-CRT for muscle invasive bladder cancer. VMAT is associated with faster delivery times and less number of mean monitor units than IMRT. SIB is feasible in selected patients with localized tumours.
Directory of Open Access Journals (Sweden)
Su-Ping Liu
Full Text Available We evaluate the outcomes of irradiation by using three-dimensional radiation therapy (3D-RT or intensity-modulated radiotherapy (IMRT for recurrent and metastatic cervical cancer. Between 2007 and 2010, 50 patients with recurrent and metastatic cervical cancer were treated using 3D-RT or IMRT. The median time interval between the initial treatment and the start of irradiation was 12 (6-51 months. Salvage surgery was performed before irradiation in 5 patients, and 38 patients received concurrent chemotherapy. Sixteen patients underwent 3D-RT, and 34 patients received IMRT. Median follow-up for all the patients was 18.3 months. Three-year overall survival and locoregional control were 56.1% and 59.7%, respectively. Three-year progression-free survival and disease-free survival were 65.3% and 64.3%, respectively. Nine patients developed grade 3 leukopenia. Grade 5 acute toxicity was not observed in any of the patients; however, 2 patients developed Grade 3 late toxicity. 3D-RT or IMRT is effective for the treatment of recurrent and metastatic cervical cancer, with the 3-year overall survival of 56.1%, and its complications are acceptable. Long-term follow-up and further studies are needed to confirm the role of 3D-RT or IMRT in the multimodality management of the disease.
Domestic comparison of radiation treatment techniques for breast cancer: 3D-CRT, IMRT and VMAT
Energy Technology Data Exchange (ETDEWEB)
Lee, Bo Ram; Yoon, Myong Geun [Dept. of Bio-convergence Engineering, College of Health Science, Korea University, Seoul (Korea, Republic of); Lee, Sun Young [Dept. of Radiation Oncology, Yusung Sun Medical Center, Daejeon (Korea, Republic of)
2013-09-15
The purpose of this study is to compare method in the treatment of breast cancer using dose index. And, it is to find the optimized treatment technique to the patient. The phantom filled with tissue-equivalent material were used simulation and treatment as techniques of 3D-CRT, IMRT, VMAT was planned using Eclipse v10. By using HI(homogeneity index), CI(Conformity index), OE (Organ equivalent dose), EAR(Excess Absolute Risk), were assessed for each treatment plans. HI and CI of 3D-CRT, IMRT, VMAT were calculated 16.89, 11.21, 9.55 and 0.59, 0.61, 0.83. The organ average doses of Lt lung, Rt lung, liver, heart, esophagus, cord, Lt breast, trachea and stomach were 0.01 ∼ 2.02 Gy, 0.36 ∼ 5.01 Gy, 0.25 ∼ 2.49 Gy, 0.14 ∼ 6.92 Gy, 0.03 ∼ 2.02 Gy, 0.01 ∼ 1.06 Gy, 0.25 ∼ 6.08 Gy, 0.08 ∼ 0.59 Gy, 0.01 ∼ 1.34 Gy, respectively. The OED, EAR of the IMRT and VMAT show higher than 3D-CRT. As the result of this study, we could confirm being higher dose index(HI, CI) in IMRT and VMAT than 3D-CRT, but doses of around normal organs was higher IMRT, VMAT than 3D-CRT.
IRIS: A Generic Three-Dimensional Radiative Transfer Code
Ibgui, L; Lanz, T; Stehlé, C
2012-01-01
We present IRIS, a new generic three-dimensional (3D) spectral radiative transfer code that generates synthetic spectra, or images. It can be used as a diagnostic tool for comparison with astrophysical observations or laboratory astrophysics experiments. We have developed a 3D short-characteristic solver that works with a 3D nonuniform Cartesian grid. We have implemented a piecewise cubic, locally monotonic, interpolation technique that dramatically reduces the numerical diffusion effect. The code takes into account the velocity gradient effect resulting in gradual Doppler shifts of photon frequencies and subsequent alterations of spectral line profiles. It can also handle periodic boundary conditions. This first version of the code assumes Local Thermodynamic Equilibrium (LTE) and no scattering. The opacities and source functions are specified by the user. In the near future, the capabilities of IRIS will be extended to allow for non-LTE and scattering modeling. IRIS has been validated through a number of te...
Radiative transfer in silylidene molecule
Directory of Open Access Journals (Sweden)
Sharma M.
2014-01-01
Full Text Available In order to search for silylidene (H2CSi in the interstellar medium, Izuha et al. (1996 recorded microwave spectrum of H2CSi in laboratory and made an unsuccessful attempt of its identification in IRC +10216, Ori KL, Sgr B2, through its 717-616 transition at 222.055 GHz. For finding out if there are other transitions of H2CSi which may help in its identification in the interstellar medium, we have considered 25 rotational levels of ortho-H2CSi connected by collisional transitions and 35 radiative transitions, and solved radiative transfer problem using the LVG approximation. We have found that the brightness temperatures of 919-818, 918-817, 101,10-919, 1019-918, 111,11-101,10, 111,10-1019 and 121,12-111,11 transition are larger than that of 717-616 transition. Thus, these transitions may help in detection of H2CSi in the interstellar medium.
Energy Technology Data Exchange (ETDEWEB)
Cavinato, Christianne C.; Campos, Leticia L., E-mail: ccavinato@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (DIRF/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Gerencia de Metrologia das Radiacoes; Souza, Benedito H.; Carrete Junior, Henrique; Daros, Kellen A.C.; Medeiros, Regina B. [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil). Dept. de Diagnostico por Imagens; Giordani, Adelmo J. [Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP (Brazil). Servico de Radioterapia
2011-07-01
The complex cancer treatment techniques require rigorous quality control (QC). The Fricke xylenol gel (FXG) dosimeter has been studied to be applied as a three-dimensional (3D) dosimeter since it is possible to produce 3D FXG phantoms of various shapes and sizes. In this preliminary study, the performance of the FXG spherical phantom developed at IPEN, prepared using 270 Bloom gelatin from porcine skin made in Brazil, was evaluated using magnetic resonance imaging technique, aiming to use this phantom to 3D conformal radiotherapy (3DCRT) with multiple radiation fields and clinical photon beams. The obtained results indicate that for all magnetic resonance images of the FXG phantom irradiated with 6 MV clinical photon beam can be observed clearly the target volume and, in the case of coronal image, can also be observed the radiation beam projection and the overlap of different radiation fields used. The Fricke xylenol gel phantom presented satisfactory results for 3DCRT and clinical photon beams in this preliminary study. These results encourage the additional tests using complex treatment techniques and indicate the viability of applying the phantom studied to routine quality control measurements and in 3DCRT and intensity modulated radiotherapy treatment planning. (author)
Energy Technology Data Exchange (ETDEWEB)
Lee, Seu Ran; Lee, Min Young; Kim, Min Joo; Park, So Hyun; Song Ji Hye; Suh, Tae Suk [Dept. of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of); Sohn, Jason W. [Dept. of Radiation Oncology, College of Medicine, Case Western Reserve University, Cleveland (United States)
2015-10-15
The purpose of this study is to verify dosimetric accuracy of delivered dose in spine SBRT as highly precise radiotherapy depending on cancer position using dedicated spine phantom based on 3D printer. Radiation therapy oncology group (RTOG) 0631 suggest different planning method in spine stereotactic body radiation therapy (SBRT) according to location of cancer owing to its distinct shape. The developed phantom especially using DLP method can be utilized as spine SBRT dosimetry research. Our study was able to confirm that the phantom was indeed similar with HU value of human spine as well as its shape.
DEFF Research Database (Denmark)
Høye, Ellen Marie; Skyt, Peter Sandegaard; Balling, Peter
2017-01-01
the observed quenching in proton beams. The dependency of dose response on linear energy transfer, as calculated through Monte Carlo simulations of the dosimeter, was investigated in 60 MeV proton beams. We found that the amount of quenching varied with the chemical composition: peak-to-plateau ratios (1cm...... chemical compositions of the dosimeter showed dose-rate dependency; however this was not dependent on the linear energy transfer. Track-structure theory was used to explain the observed quenching effects. In conclusion, this study shows that the silicone-based dosimeter has potential for use in measuring 3...
3D Space Radiation Transport in a Shielded ICRU Tissue Sphere
Wilson, John W.; Slaba, Tony C.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.
2014-01-01
A computationally efficient 3DHZETRN code capable of simulating High Charge (Z) and Energy (HZE) and light ions (including neutrons) under space-like boundary conditions with enhanced neutron and light ion propagation was recently developed for a simple homogeneous shield object. Monte Carlo benchmarks were used to verify the methodology in slab and spherical geometry, and the 3D corrections were shown to provide significant improvement over the straight-ahead approximation in some cases. In the present report, the new algorithms with well-defined convergence criteria are extended to inhomogeneous media within a shielded tissue slab and a shielded tissue sphere and tested against Monte Carlo simulation to verify the solution methods. The 3D corrections are again found to more accurately describe the neutron and light ion fluence spectra as compared to the straight-ahead approximation. These computationally efficient methods provide a basis for software capable of space shield analysis and optimization.
Printing Functional 3D Microdevices by Laser-Induced Forward Transfer
Luo, Jun; Pohl, Ralph; Qi, Lehua; Römer, Gert-Willem; Sun, Chao; Lohse, Detlef; Visser, Claas Willem
2017-01-01
Slender, out-of-plane metal microdevices are made in a new spatial domain, by using laser-induced forward transfer (LIFT) of metals. Here, a thermocouple with a thickness of 10 µm and a height of 250 µm, consisting of platinum and gold pillars is demonstrated. Multimaterial LIFT enables manufacturin
Internal load transfer and damage evolution in a 3D interpenetrating metal/ceramic composite
Energy Technology Data Exchange (ETDEWEB)
Roy, Siddhartha, E-mail: siddhartha.roy@kit.edu [Institute for Applied Materials, Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany); Gibmeier, Jens; Kostov, Vladimir; Weidenmann, Kay Andre [Institute for Applied Materials, Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany); Nagel, Alwin [Hochschule Aalen, Beethovenstr. 1, 73430 Aalen (Germany); Wanner, Alexander [Institute for Applied Materials, Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany)
2012-08-15
Highlights: Black-Right-Pointing-Pointer Internal load transfer and compressive damage in an interpenetrating composite is studied. Black-Right-Pointing-Pointer Unloading and reloading in tension initiates damage in alumina phase. Black-Right-Pointing-Pointer Load reversal causes Bauschinger effect in aluminium solid solution. Black-Right-Pointing-Pointer Compressive damage occurs by cracks at 45 Degree-Sign through the ceramic rich regions. - Abstract: The internal load transfer and compressive damage evolution in an interpenetrating Al{sub 2}O{sub 3}/AlSi12 composite have been studied in this work. The composite was fabricated by squeeze-casting eutectic aluminium-silicon alloy melt in a porous alumina preform. The preform was fabricated from a mixture of cellulose fibres and alumina particles via cold pressing and sintering. In an earlier work we reported the internal load transfer in the same composite material under monotonic compression and tension studied using energy dispersive synchrotron X-ray diffraction . The current work is a continuation of this earlier study, aimed at obtaining further understanding about load transfer occurring during load reversal and damage behaviour during external compression. The micromechanical load partitioning between the three phases present in the composite is studied during one load cycle starting in compression followed by unloading and reloading in tension until failure. Average strain and stress value in each phase is calculated from several diffraction planes of each phase and as a result the reported strain and stress are representative of the bulk material behaviour. The load transfer results allow identifying the occurrence of a substantial Bauschinger effect in the Al solid solution phase and progressive damage evolution within the alumina phase. In situ compression test inside a scanning electron microscope showed that failure of the composite occurred by propagation of cracks through the ceramic rich regions
Exploring Rotations Due to Radiation Pressure: 2-D to 3-D Transition Is Interesting!
Waxman, Michael A.
2010-01-01
Radiation pressure is an important topic within a standard physics course (see, in particular, Refs. 1 and 2). The physics of radiation pressure is described, the magnitude of it is derived, both for the case of a perfectly absorbing surface and of a perfect reflector, and various applications of this interesting effect are discussed, such as…
Radiative transfer and molecular data for astrochemistry
Tak, Floris van der
2011-01-01
The estimation of molecular abundances in interstellar clouds from spectroscopic observations requires radiative transfer calculations, which depend on basic molecular input data. This paper reviews recent developments in the fields of molecular data and radiative transfer. The first part is an over
Energy Technology Data Exchange (ETDEWEB)
Lambros, Maria Polikandritou, E-mail: mlambros@westernu.edu [Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766 (United States); Parsa, Cyrus [Department of Clinical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766 (United States); Mulamalla, HariChandana [Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766 (United States); Orlando, Robert [Department of Clinical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766 (United States); Lau, Bernard [Center for Advancement of Drug Research and Evaluation (CADRE), Western University of Health Sciences, Pomona, CA 91766 (United States); Huang, Ying [Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766 (United States); Center for Advancement of Drug Research and Evaluation (CADRE), Western University of Health Sciences, Pomona, CA 91766 (United States); Pon, Doreen [Department of Pharmacy Practice and Administration, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766 (United States); Chow, Moses [Department of Pharmacy Practice and Administration, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766 (United States); Center for Advancement of Drug Research and Evaluation (CADRE), Western University of Health Sciences, Pomona, CA 91766 (United States)
2011-02-04
Research highlights: {yields} We irradiated a 3-D human oral cell culture of keratinocytes and fibroblasts with 12 and 2 Gy. {yields} 6 h after irradiation the histopathology and apoptosis of the 3-D culture were evaluated. Microarrays were used to assess the gene expression in the irradiated 3-D tissue. {yields} 12 Gy induced significant histopathologic changes and cellular apoptosis. {yields} 12 Gy significantly affected genes of the NF-kB pathway, inflammatory cytokines and DAMPs. -- Abstract: Mucositis is a debilitating adverse effect of chemotherapy and radiation treatment. It is important to develop a simple and reliable in vitro model, which can routinely be used to screen new drugs for prevention and treatment of mucositis. Furthermore, identifying cell and molecular stresses especially in the initiation phase of mucositis in this model will help towards this end. We evaluated a three-dimensional (3-D) human oral cell culture that consisted of oral keratinocytes and fibroblasts as a model of oral mucositis. The 3-D cell culture model was irradiated with 12 or 2 Gy. Six hours after the irradiation we evaluated microscopic sections of the cell culture for evidence of morphologic changes including apoptosis. We used microarrays to compare the expression of several genes from the irradiated tissue with identical genes from tissue that was not irradiated. We found that irradiation with 12 Gy induced significant histopathologic effects including cellular apoptosis. Irradiation significantly affected the expression of several genes of the NF-kB pathway and several inflammatory cytokines, such as IL-1B, 1L-8, NF-kB1, and FOS compared to tissue that was not irradiated. We identified significant upregulation of several genes that belong to damage-associated molecular patterns (DAMPs) such as HMB1, S100A13, SA10014, and SA10016 in the 3-D tissues that received 12 Gy but not in tissues that received 2 Gy. In conclusion, this model quantifies radiation damage and this
New transfer functions for probing 3-D mantle conductivity from ground and sea
DEFF Research Database (Denmark)
Püthe, C.; Kuvshinov, A.; Olsen, Nils
2014-01-01
source. We investigate the variability of C-responses due to non-P10 contributions to the source. We show that this variability, which we denote as 'source effect' (as opposed to the well-known ocean effect), is significant and persists at all periods. If inverting estimated C-responses for mantle...... conductivity, this source effect will inevitably be mistaken for conductivity anomalies. To overcome the problem connected with the assumptions for deriving C-responses, we introduce new transfer functions that relate the local vertical component of the magnetic variation to different spherical harmonic...... of geomagnetic observatories, we demonstrate that the new transfer functions exhibit a significant increase in coherence compared to C-responses, especially at high latitudes. The concept is easily extended to other data types. For example, by relating the voltage variations in abandoned submarine...
3D printer generated thorax phantom with mobile tumor for radiation dosimetry
Energy Technology Data Exchange (ETDEWEB)
Mayer, Rulon [Henry Jackson Foundation, Bethesda, Maryland 20817 (United States); Liacouras, Peter [Walter Reed National Military Medical Center, Bethesda, Maryland 20899 (United States); Thomas, Andrew [ATC Healthcare, Washington, District of Columbia 20006 (United States); Kang, Minglei; Lin, Liyong; Simone, Charles B. [Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)
2015-07-15
This article describes the design, construction, and properties of an anthropomorphic thorax phantom with a moving surrogate tumor. This novel phantom permits detection of dose both inside and outside a moving tumor and within the substitute lung tissue material. A 3D printer generated the thorax shell composed of a chest wall, spinal column, and posterior regions of the phantom. Images of a computed tomography scan of the thorax from a patient with lung cancer provided the template for the 3D printing. The plastic phantom is segmented into two materials representing the muscle and bones, and its geometry closely matches a patient. A surrogate spherical plastic tumor controlled by a 3D linear stage simulates a lung tumor’s trajectory during normal breathing. Sawdust emulates the lung tissue in terms of average and distribution in Hounsfield numbers. The sawdust also provides a forgiving medium that permits tumor motion and sandwiching of radiochromic film inside the mobile surrogate plastic tumor for dosimetry. A custom cork casing shields the film and tumor and eliminates film bending during extended scans. The phantom, lung tissue surrogate, and radiochromic film are exposed to a seven field plan based on an ECLIPSE plan for 6 MV photons from a Trilogy machine delivering 230 cGy to the isocenter. The dose collected in a sagittal plane is compared to the calculated plan. Gamma analysis finds 8.8% and 5.5% gamma failure rates for measurements of large amplitude trajectory and static measurements relative to the large amplitude plan, respectively. These particular gamma analysis results were achieved using parameters of 3% dose and 3 mm, for regions receiving doses >150 cGy. The plan assumes a stationary detection grid unlike the moving radiochromic film and tissues. This difference was experimentally observed and motivated calculated dose distributions that incorporated the phase of the tumor periodic motion. These calculations modestly improve agreement between
3D printer generated thorax phantom with mobile tumor for radiation dosimetry.
Mayer, Rulon; Liacouras, Peter; Thomas, Andrew; Kang, Minglei; Lin, Liyong; Simone, Charles B
2015-07-01
This article describes the design, construction, and properties of an anthropomorphic thorax phantom with a moving surrogate tumor. This novel phantom permits detection of dose both inside and outside a moving tumor and within the substitute lung tissue material. A 3D printer generated the thorax shell composed of a chest wall, spinal column, and posterior regions of the phantom. Images of a computed tomography scan of the thorax from a patient with lung cancer provided the template for the 3D printing. The plastic phantom is segmented into two materials representing the muscle and bones, and its geometry closely matches a patient. A surrogate spherical plastic tumor controlled by a 3D linear stage simulates a lung tumor's trajectory during normal breathing. Sawdust emulates the lung tissue in terms of average and distribution in Hounsfield numbers. The sawdust also provides a forgiving medium that permits tumor motion and sandwiching of radiochromic film inside the mobile surrogate plastic tumor for dosimetry. A custom cork casing shields the film and tumor and eliminates film bending during extended scans. The phantom, lung tissue surrogate, and radiochromic film are exposed to a seven field plan based on an ECLIPSE plan for 6 MV photons from a Trilogy machine delivering 230 cGy to the isocenter. The dose collected in a sagittal plane is compared to the calculated plan. Gamma analysis finds 8.8% and 5.5% gamma failure rates for measurements of large amplitude trajectory and static measurements relative to the large amplitude plan, respectively. These particular gamma analysis results were achieved using parameters of 3% dose and 3 mm, for regions receiving doses >150 cGy. The plan assumes a stationary detection grid unlike the moving radiochromic film and tissues. This difference was experimentally observed and motivated calculated dose distributions that incorporated the phase of the tumor periodic motion. These calculations modestly improve agreement between
3D printer generated thorax phantom with mobile tumor for radiation dosimetry
Mayer, Rulon; Liacouras, Peter; Thomas, Andrew; Kang, Minglei; Lin, Liyong; Simone, Charles B.
2015-07-01
This article describes the design, construction, and properties of an anthropomorphic thorax phantom with a moving surrogate tumor. This novel phantom permits detection of dose both inside and outside a moving tumor and within the substitute lung tissue material. A 3D printer generated the thorax shell composed of a chest wall, spinal column, and posterior regions of the phantom. Images of a computed tomography scan of the thorax from a patient with lung cancer provided the template for the 3D printing. The plastic phantom is segmented into two materials representing the muscle and bones, and its geometry closely matches a patient. A surrogate spherical plastic tumor controlled by a 3D linear stage simulates a lung tumor's trajectory during normal breathing. Sawdust emulates the lung tissue in terms of average and distribution in Hounsfield numbers. The sawdust also provides a forgiving medium that permits tumor motion and sandwiching of radiochromic film inside the mobile surrogate plastic tumor for dosimetry. A custom cork casing shields the film and tumor and eliminates film bending during extended scans. The phantom, lung tissue surrogate, and radiochromic film are exposed to a seven field plan based on an ECLIPSE plan for 6 MV photons from a Trilogy machine delivering 230 cGy to the isocenter. The dose collected in a sagittal plane is compared to the calculated plan. Gamma analysis finds 8.8% and 5.5% gamma failure rates for measurements of large amplitude trajectory and static measurements relative to the large amplitude plan, respectively. These particular gamma analysis results were achieved using parameters of 3% dose and 3 mm, for regions receiving doses >150 cGy. The plan assumes a stationary detection grid unlike the moving radiochromic film and tissues. This difference was experimentally observed and motivated calculated dose distributions that incorporated the phase of the tumor periodic motion. These calculations modestly improve agreement between
Focusing optics of a parallel beam CCD optical tomography apparatus for 3D radiation gel dosimetry.
Krstajić, Nikola; Doran, Simon J
2006-04-21
Optical tomography of gel dosimeters is a promising and cost-effective avenue for quality control of radiotherapy treatments such as intensity-modulated radiotherapy (IMRT). Systems based on a laser coupled to a photodiode have so far shown the best results within the context of optical scanning of radiosensitive gels, but are very slow ( approximately 9 min per slice) and poorly suited to measurements that require many slices. Here, we describe a fast, three-dimensional (3D) optical computed tomography (optical-CT) apparatus, based on a broad, collimated beam, obtained from a high power LED and detected by a charged coupled detector (CCD). The main advantages of such a system are (i) an acquisition speed approximately two orders of magnitude higher than a laser-based system when 3D data are required, and (ii) a greater simplicity of design. This paper advances our previous work by introducing a new design of focusing optics, which take information from a suitably positioned focal plane and project an image onto the CCD. An analysis of the ray optics is presented, which explains the roles of telecentricity, focusing, acceptance angle and depth-of-field (DOF) in the formation of projections. A discussion of the approximation involved in measuring the line integrals required for filtered backprojection reconstruction is given. Experimental results demonstrate (i) the effect on projections of changing the position of the focal plane of the apparatus, (ii) how to measure the acceptance angle of the optics, and (iii) the ability of the new scanner to image both absorbing and scattering gel phantoms. The quality of reconstructed images is very promising and suggests that the new apparatus may be useful in a clinical setting for fast and accurate 3D dosimetry.
Energy Technology Data Exchange (ETDEWEB)
Pang Yuxi; Zeng Lei; Kurochkin, Alexander V.; Zuiderweg, Erik R.P. [University of Michigan, Biophysics Research Division (United States)
1998-02-15
A new triple-resonance pulse sequence, 3D HNHCACO, is introduced and discussed, which identifies sequential correlations of the backbone nuclei (H{alpha}(i-1), C{alpha}(i-1), C'(i-1), NH(i)) of doubly labeled proteins in H2O. The three-dimensional (3D) method utilizes a recording of 15N and 13C resonances in a single indirect time domain, the 13C' resonance in another indirect time domain, and detects both NH and H{alpha} protons. A bidirectional coherence transfer (NH(i) {r_reversible} N(i) {r_reversible} C'(i-1) {r_reversible} C{alpha}(i-1) {r_reversible} H{alpha}(i-1)) is effectuated, resulting in a single high-resolution 3D spectrum that contains the frequencies of all five backbone nuclei. The experiment was applied to the 12.3 kDa ribonuclease from Bacillus intermedius (Binase)
High pressure induced charge transfer in 3d-4f bimetallic photomagnetic materials.
Wu, Lai-Chin; Nielsen, Morten Bormann; Bremholm, Martin; Madsen, Solveig Røgild; Overgaard, Jacob; Newville, Matt; Chen, Yu-Sheng; Iversen, Bo Brummerstedt
2015-05-25
Pressure-induced crystal color change of photo-magnetic materials [Ln(DMF)4(H2O)3(μ-CN)M(CN)5]·H2O, Ln = Y, M = Fe (1), Ln = Y, M = Co (2), Ln = Nd, M = Fe (3) (DMF = N,N-dimethyl formamide) are investigated using variable pressure X-ray Absorption Near-Edge Structure (XANES) spectroscopy and X-ray diffraction. For 1 the effect is caused by ligand-to-metal charge transfer (LMCT) on the iron site.
Song, Sung-Jin; Kim, Chang-Hwan
2002-05-01
Phased array transducers are quite often mounted on solid wedges with specific angles in many practical ultrasonic inspections of thin plates phased array techniques with testing set-up, it is essential to have thorough understanding on the characteristics of radiation beam pattern produced in the interrogated medium. To address such a need, this paper proposes a systematic way to calculate full 3-D radiation beam patterns produced in the interrogated solid medium by phased array transducers mounted on a solid wedge. In order to investigate the characteristics of radiation beam patterns in steel, simulation is carried out for 7.5 MHz array transducers mounted on an acrylic wedge with the angle of 15.45 degrees with various of steering angles and/or focal planes.
Numerical methods in multidimensional radiative transfer
Meinköhn, Erik
2008-01-01
Offers an overview of the numerical modelling of radiation fields in multidimensional geometries. This book covers advances and problems in the mathematical treatment of the radiative transfer equation, a partial integro-differential equation of high dimension that describes the propagation of the radiation in various fields.
González-Rodríguez, Pedro; Ilan, Boaz; Kim, Arnold D.
2016-06-01
We introduce the one-way radiative transfer equation (RTE) for modeling the transmission of a light beam incident normally on a slab composed of a uniform forward-peaked scattering medium. Unlike the RTE, which is formulated as a boundary value problem, the one-way RTE is formulated as an initial value problem. Consequently, the one-way RTE is much easier to solve. We discuss the relation of the one-way RTE to the Fokker-Planck, small-angle, and Fermi pencil beam approximations. Then, we validate the one-way RTE through systematic comparisons with RTE simulations for both the Henyey-Greenstein and screened Rutherford scattering phase functions over a broad range of albedo, anisotropy factor, optical thickness, and refractive index values. We find that the one-way RTE gives very good approximations for a broad range of optical property values for thin to moderately thick media that have moderately to sharply forward-peaked scattering. Specifically, we show that the error made by the one-way RTE decreases monotonically as the anisotropic factor increases and as the albedo increases. On the other hand, the error increases monotonically as the optical thickness increases and the refractive index mismatch at the boundary increases.
SPHRAY: A Smoothed Particle Hydrodynamics Ray Tracer for Radiative Transfer
Altay, Gabriel; Pelupessy, Inti
2008-01-01
We introduce SPHRAY, a Smoothed Particle Hydrodynamics (SPH) ray tracer designed to solve the 3D, time dependent, radiative transfer (RT) equations for arbitrary density fields. The SPH nature of SPHRAY makes the incorporation of separate hydrodynamics and gravity solvers very natural. SPHRAY relies on a Monte Carlo (MC) ray tracing scheme that does not interpolate the SPH particles onto a grid but instead integrates directly through the SPH kernels. Given initial conditions and a description of the sources of ionizing radiation, the code will calculate the non-equilibrium ionization state (HI, HII, HeI, HeII, HeIII, e) and temperature (internal energy/entropy) of each SPH particle. The sources of radiation can include point like objects, diffuse recombination radiation, and a background field from outside the computational volume. The MC ray tracing implementation allows for the quick introduction of new physics and is parallelization friendly. A quick Axis Aligned Bounding Box (AABB) test taken from compute...
Energy Technology Data Exchange (ETDEWEB)
Zhu, X; Driewer, J; Lei, Y; Zheng, D; Li, S; Zhang, Q; Zhang, M; Zhou, S [University of Nebraska Medical Center, Omaha, NE (United States); Cullip, T; Chang, S [UNC Hospitals, Chapel Hill, NC (United States)
2015-06-15
Purpose: Grid therapy has promising applications in the radiation treatment of bulky and large tumors. However, research and applications of grid therapy is limited by the accessibility of the specialized blocks that produce the grid of pencil-like radiation beams. In this study, a Cerrobend grid block was fabricated using a 3D printing technique. Methods: A grid block mold was designed with divergent tubes following beam central rays. The mold was printed using a resin with the working temperature below 230 °C. The melted Cerrobend liquid at 120°oC was cast into the resin mold to yield a block with a thickness of 7.4 cm. The grid had a hexagonal pattern, with each pencil beam diameter of 1.4 cm at the iso-center plane; the distance between the beam centers was 2 cm. The dosimetric properties of the grid block were studied using radiographic film and small field dosimeters. Results: the grid block was fabricated to be mounted at the third accessory mount of a Siemens Oncor linear accelerator. Fabricating a grid block using 3D printing is similar to making cutouts for traditional radiotherapy photon blocks, with the difference being that the mold was created by a 3D printer rather than foam. In this study, the valley-to-peak ratio for a 6MV photon grid beam was 20% at dmax, and 30% at 10 cm depth, respectively. Conclusion: We have demonstrated a novel process for implementing grid radiotherapy using 3D printing techniques. Compared to existing approaches, our technique combines reduced cost, accessibility, and flexibility in customization with efficient delivery. This lays the groundwork for future studies to improve our understanding of the efficacy of grid therapy and apply it to improve cancer treatment.
Modeling induction heating and 3-D heat transfer for growth of rectangular crystals using FIDAP
Atherton, L. J.; Martin, R. W.
1988-09-01
We are developing a process to grow large rectangular crystals for use as solid state lasers by a Bridgman-like method. The process is based on induction heating of two graphite susceptors which transfer energy to an ampoule containing the melt and crystal. The induction heating version of FIDAP developed by Gresho and Derby is applied to this system to determine the power deposition profile in electrically conducting regions. The calculated power is subsequently used as a source term in the heat equation to calculate the temperature profile. Results are presented which examine the sensitivity of the system to electrical and thermal conductivities, and design modifications are illustrated which could improve the temperature field for crystal growth applications.
Hu, X.; Zhang, Y.
2007-05-01
The Weather Research and Forecast/Chemistry Model (WRF/Chem) that simulates chemistry simultaneously with meteorology has recently been developed for real-time forecasting by the U.S. National Center for Atmospheric Research (NCAR) and National Oceanic & Atmospheric Administration (NOAA). As one of the six air quality models, WRF/Chem with a modal aerosol module has been applied for ozone and PM2.5 ensemble forecasts over eastern North America as part of the 2004 New England Air Quality Study (NEAQS) program (NEAQS-2004). Significant differences exist in the partitioning of volatile species (e.g., ammonium and nitrate) simulated by the six models. Model biases are partially attributed to the equilibrium assumption used in the gas/particles mass transfer approach in some models. Development of a more accurate, yet computationally- efficient gas/particle mass transfer approach for three-dimensional (3-D) applications, in particular, real-time forecasting, is therefore warranted. Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID) has been implemented into WRF/Chem (referred to as WRF/Chem-MADRID). WRF/Chem-MADRID offers three gas/particle partitioning treatments: equilibrium, kinetic, and hybrid approaches. The equilibrium approach is computationally-efficient and commonly used in 3-D air quality models but less accurate under certain conditions (e.g., in the presence of coarse, reactive particles such as PM containing sea-salts in the coastal areas). The kinetic approach is accurate but computationally-expensive, limiting its 3-D applications. The hybrid approach attempts to provide a compromise between merits and drawbacks of the two approaches by treating fine PM (typically MADRID has recently been developed for 3-D applications based on an Analytical Predictor of Condensation (referred to as kinetic/APC). In this study, WRF/Chem-MADRID with the kinetic/APC approach will be further evaluated along with the equilibrium and hybrid approaches
Influence of 3D Radiative Effects on Satellite Retrievals of Cloud Properties
Varnai, Tamas; Marshak, Alexander; Einaudi, Franco (Technical Monitor)
2001-01-01
When cloud properties are retrieved from satellite observations, the calculations apply 1D theory to the 3D world: they only consider vertical structures and ignore horizontal cloud variability. This presentation discusses how big the resulting errors can be in the operational retrievals of cloud optical thickness. A new technique was developed to estimate the magnitude of potential errors by analyzing the spatial patterns of visible and infrared images. The proposed technique was used to set error bars for optical depths retrieved from new MODIS measurements. Initial results indicate that the 1 km resolution retrievals are subject to abundant uncertainties. Averaging over 50 by 50 km areas reduces the errors, but does not remove them completely; even in the relatively simple case of high sun (30 degree zenith angle), about a fifth of the examined areas had biases larger than ten percent. As expected, errors increase substantially for more oblique illumination.
Modification of blowdown heat transfer models for RELAP5-3D in accordance with appendix K of 10CFR50
Energy Technology Data Exchange (ETDEWEB)
Chin-Jang, Chang; Liang, T.K.S. [Nuclear Engineering Div. Institute of Nuclear Energy Research, Lung-Tan, Taiwan (China); Huan-Jen, Hung; Wang, L.C. [Power Research Institute, Taiwan Power Company (China)
2001-07-01
The objective of this paper is to implement the blowdown heat transfer models accepted by Appendix K of 10CFR50 into RELAP5-3D and to rename it as RELAP5-3D/K. Modifications of critical heat flux (CHF) model, post-CHF model, and the heat transfer logic for nucleate and transition boiling lockout are included. Also the assessments against separate-effect experiments were evaluated for RELAP 5-3D/K. From calculation results, the conservative predictions of surface peak temperatures using RELAP5-3D/K are obtained. It demonstrated that the blowdown heat transfer models were successfully modified and implemented into RELAP5-3D in accordance with Appendix K of 10CFR50. (authors)
TU-CD-207-04: Radiation Exposure Comparisons of CESM with 2D FFDM and 3D Tomosynthesis Mammography
Energy Technology Data Exchange (ETDEWEB)
James, J; Boltz, T; Pavlicek, W [Mayo Clinic Arizona, Scottsdale, AZ (United States)
2015-06-15
Purpose: While mammography is considered the standard for front-line breast cancer screening, image sensitivity and specificity can be affected by factors like dense breast tissue. Contrast-enhanced spectral mammography (CESM) shows promising initial results for dense breasts but comes at the cost of increased dose compared with full-field-digital-mammography (FFDM). The goal of this study is to quantitatively assess the dose increase of CESM in comparison with 2D-FFDM and 3D-Tomo at varying breast thickness. Methods: The experiments were conducted on a Hologic-Selenia-Dimensions system that performed 2D-FFDM, 3D-Tomo and CESM (high and low energies) on regular (50/50) and dense (70/30) breast tissue-mimicking phantoms. Both the phantoms had 6, 1-cm thick slabs (total thickness 6cm), compressed at 20-lbs using an 18×24 paddle. A single exposure was performed for each of the 3 mammo techniques with the following settings: AEC-Auto; Focal Spot-Large; kVp-Auto; mAs- Auto, Target/Filter combination-Auto; AEC Sensor/Exposure compensation Step-2/0. Average glandular dose (AGD) in mGy was obtained and compared as a function of breast thickness (1 – 6 cm) for both the phantom types. Results: The study shows that dose from the total CESM from 50/50 phantom at a breast thickness of a) 4.5 cm was 37.5% higher than 2D-FFDM and 30% higher than 3D-Tomo, b) 6 cm was 36.2% higher than 2D-FFDM and 41% higher than 3D-Tomo. For a dense breast tissue of 70/30 phantom, it was found that CESM dose at a breast thickness of: a) 4.5 cm was 33.3% higher than 2D-FFDM and 28.8% higher than 3D-Tomo, b) 6 cm was 35.4% higher than 2D-FFDM and 48.0% higher than 3D-Tomo. The overall CESM dose for the dense breast phantom was 12.5% higher at 4.5cm and 35% higher at 6 cm compared to the 50/50 phantom. Conclusion: This quantitative comparison study showed that CESM technique has an increased radiation dose compared to conventional 2D-FFDM and 3D-Tomo.
Radiative heat transfer in porous uranium dioxide
Energy Technology Data Exchange (ETDEWEB)
Hayes, S.L. [Texas A and M Univ., College Station, TX (United States)
1992-12-01
Due to low thermal conductivity and high emissivity of UO{sub 2}, it has been suggested that radiative heat transfer may play a significant role in heat transfer through pores of UO{sub 2} fuel. This possibility was computationally investigated and contribution of radiative heat transfer within pores to overall heat transport in porous UO{sub 2} quantified. A repeating unit cell was developed to model approximately a porous UO{sub 2} fuel system, and the heat transfer through unit cells representing a wide variety of fuel conditions was calculated using a finite element computer program. Conduction through solid fuel matrix as wekk as pore gas, and radiative exchange at pore surface was incorporated. A variety of pore compositions were investigated: porosity, pore size, shape and orientation, temperature, and temperature gradient. Calculations were made in which pore surface radiation was both modeled and neglected. The difference between yielding the integral contribution of radiative heat transfer mechanism to overall heat transport. Results indicate that radiative component of heat transfer within pores is small for conditions representative of light water reactor fuel, typically less than 1% of total heat transport. It is much larger, however, for conditions present in liquid metal fast breeder reactor fuel; during restructuring of this fuel type early in life, the radiative heat transfer mode was shown to contribute as much as 10-20% of total heat transport in hottest regions of fuel.
3D numerical study on flow structure and heat transfer in a circular tube with V-baffles☆
Institute of Scientific and Technical Information of China (English)
Withada Jedsadaratanachai; Nuthvipa Jayranaiwachira; Pongjet Promvonge
2015-01-01
A 3D numerical investigation has been carried out to examine periodic laminar flow and heat transfer character-istics in a circular tube with 45° V-baffles with isothermal wal . The computations are based on the finite volume method (FVM), and the SIMPLE algorithm has been implemented. The fluid flow and heat transfer characteristics are presented for Reynolds numbers ranging from 100 to 2000. To generate main longitudinal vortex flows through the tested section, V-baffles with an attack angle of 45° are mounted in tandem and in-line arrangement on the opposite positions of the circular tube. Effects of tube blockage ratio, flow direction on heat transfer and pressure drop in the tube are studied. It is apparent that a pair of longitudinal twisted vortices (P-vortex) created by a V-baffle can induce impingement on a wal of the inter-baffle cavity and lead a drastic increase in heat trans-fer rate at tube wall. In addition, the larger blockage ratio results in the higher Nusselt number and friction factor values. The computational results show that the optimum thermal enhancement factor is around 3.20 at baffle height of B=0.20 and B=0.25 times of the tube diameter for the V-upstream and V-downstream, respectively. © 2014 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. Al rights reserved.
Shin, Dongho; Yoon, Myonggeun; Park, Sung Yong; Park, Dong Hyun; Lee, Se Byeong; Kim, Dae Yong; Cho, Kwan Ho
2007-01-01
Intensity-modulated radiation therapy (IMRT) is one of the most complex applications of radiotherapy that requires patient-specific quality assurance (QA). Here, we describe a novel method of 3-dimensional (3D) dose-verification using 12 acrylic slabs in a 3D phantom (30 x 30 x 12 cm(3)) with extended dose rate (EDR2) films, which is both faster than conventionally used methods, and clinically useful. With custom-written software modules written in Microsoft Excel Visual Basic Application, the measured and planned dose distributions for the axial, coronal, and sagittal planes were superimposed by matching their origins, and the point doses were compared at all matched positions. Then, an optimization algorithm was used to correct the detected setup errors. The results show that this optimization method significantly reduces the average maximum dose difference by 7.73% and the number of points showing dose differences of more than 5% by 8.82% relative to the dose differences without an optimization. Our results indicate that the dose difference was significantly decreased with optimization and this optimization method is statistically reliable and effective. The results of 3D optimization are discussed in terms of various patient-specific QA data obtained from statistical analyses.
3D modelling of the colliding winds in Eta Carinae - evidence for radiative inhibition
Parkin, E R; Corcoran, M F; Hamaguchi, K; Stevens, I R
2009-01-01
The X-ray emission from the super-massive star Eta Carinae is simulated using a three dimensional model of the wind-wind collision. In the model the intrinsic X-ray emission is spatially extended and energy dependent. Absorption due to the unshocked stellar winds and the cooled postshock material from the primary LBV star is calculated as the intrinsic emission is ray-traced along multiple sightlines through the 3D spiral structure of the circumstellar environment. The observable emission is then compared to available X-ray data, including the lightcurve observed by the Rossi X-ray Timing Explorer (RXTE) and spectra observed by XMM-Newton. The orientation and eccentricity of the orbit are explored, as are the wind parameters of the stars and the nature and physics of their close approach. Our modelling supports a viewing angle with an inclination of ~ 42 degrees, consistent with the polar axis of the Homunculus nebula (Smith 2006), and the projection of the observer's line-of-sight onto the orbital plane has ...
Transfer of polarized line radiation in 2D cylindrical geometry
Milić, I.
2013-07-01
Aims: This paper deals with multidimensional NLTE polarized radiative transfer in the case of two level atom in the absence of lower level polarization. We aim to develop an efficient and robust method for 2D cylindrical geometry and to apply it to various axi-symmetrical astrophysical objects such as rings, disks, rotating stars, and solar prominences. Methods: We review the methods of short characteristics and Jacobi iteration applied to axisymmetric geometry. Then we demonstrate how to use a reduced basis for polarized intensity and polarized source function to self-consistently solve the coupled equations of radiative transfer and statistical equilibrium for linearly polarized radiation. We discuss some peculiarities that do not appear in Cartesian geometry, such as angular interpolation in performing the formal solution. We also show how to account for two different types of illuminating radiation. Results: The proposed method is tested on homogeneous, self-emitting cylinders to compare the results with those in 1D geometries. We demonstrate a possible astrophysical application on a very simple model of circumstellar ring illuminated by a host star where we show that such a disk can introduce a significant amount of scattering polarization in the system. Conclusions: This method is found to converge properly and, apparently, to allow for substantial time saving compared to 3D Cartesian geometry. We also discuss the advantages and disadvantages of this approach in multidimensional radiative transfer modeling.
Light scattering reviews 8 radiative transfer and light scattering
Kokhanovsky, Alexander A
2013-01-01
Light scattering review (vol 8) is aimed at the presentation of recent advances in radiative transfer and light scattering optics. The topics to be covered include: scattering of light by irregularly shaped particles suspended in atmosphere (dust, ice crystals), light scattering by particles much larger as compared the wavelength of incident radiation, atmospheric radiative forcing, astrophysical radiative transfer, radiative transfer and optical imaging in biological media, radiative transfer of polarized light, numerical aspects of radiative transfer.
Kim, Kyung-Chan; Shprits, Yuri; Subbotin, Dmitriy; Ni, Binbin
2012-08-01
Understanding the dynamics of relativistic electron acceleration, loss, and transport in the Earth's radiation belt during magnetic storms is a challenging task. The U.S. National Science Foundation's Geospace Environment Modeling (GEM) has identified five magnetic storms for in-depth study that occurred during the second half of the Combined Release and Radiation Effects Satellite (CRRES) mission in the year 1991. In this study, we show the responses of relativistic radiation belt electrons to the magnetic storms by comparing the time-dependent 3-D Versatile Electron Radiation Belt (VERB) simulations with the CRRES MEA 1 MeV electron observations in order to investigate the relative roles of the competing effects of previously proposed scattering mechanisms at different storm phases, as well as to examine the extent to which the simulations can reproduce observations. The major scattering processes in our model are radial transport due to Ultra Low Frequency (ULF) electromagnetic fluctuations, pitch angle and energy diffusion including mixed diffusion by whistler mode chorus waves outside the plasmasphere, and pitch angle scattering by plasmaspheric hiss inside the plasmasphere. The 3-D VERB simulations show that during the storm main phase and early recovery phase the estimated plasmapause is located deep in the inner region, indicating that pitch angle scattering by chorus waves can be a dominant loss process in the outer belt. We have also confirmed the important role played by mixed energy-pitch angle diffusion by chorus waves, which tends to reduce the fluxes enhanced by local acceleration, resulting in comparable levels of computed and measured fluxes. However, we cannot reproduce the more pronounced flux dropout near the boundary of our simulations during the main phase, which indicates that non-adiabatic losses may extend toL-shells lower than our simulation boundary. We also provide a detailed description of simulations for each of the GEM storm events.
Development and Validation of a Polarimetric-MCScene 3D Atmospheric Radiation Model
Energy Technology Data Exchange (ETDEWEB)
Berk, Alexander [Spectral Sciences, Inc., Burlington, MA (United States); Hawes, Frederick [Spectral Sciences, Inc., Burlington, MA (United States); Fox, Marsha [Spectral Sciences, Inc., Burlington, MA (United States)
2016-03-15
Polarimetric measurements can substantially enhance the ability of both spectrally resolved and single band imagery to detect the proliferation of weapons of mass destruction, providing data for locating and identifying facilities, materials, and processes of undeclared and proliferant nuclear weapons programs worldwide. Unfortunately, models do not exist that efficiently and accurately predict spectral polarized signatures for the materials of interest embedded in complex 3D environments. Having such a model would enable one to test hypotheses and optimize both the enhancement of scene contrast and the signal processing for spectral signature extraction. The Phase I set the groundwork for development of fully validated polarimetric spectral signature and scene simulation models. This has been accomplished 1. by (a) identifying and downloading state-of-the-art surface and atmospheric polarimetric data sources, (b) implementing tools for generating custom polarimetric data, and (c) identifying and requesting US Government funded field measurement data for use in validation; 2. by formulating an approach for upgrading the radiometric spectral signature model MODTRAN to generate polarimetric intensities through (a) ingestion of the polarimetric data, (b) polarimetric vectorization of existing MODTRAN modules, and (c) integration of a newly developed algorithm for computing polarimetric multiple scattering contributions; 3. by generating an initial polarimetric model that demonstrates calculation of polarimetric solar and lunar single scatter intensities arising from the interaction of incoming irradiances with molecules and aerosols; 4. by developing a design and implementation plan to (a) automate polarimetric scene construction and (b) efficiently sample polarimetric scattering and reflection events, for use in a to be developed polarimetric version of the existing first-principles synthetic scene simulation model, MCScene; and 5. by planning a validation field
Lee, Wonho; Wehe, David
2004-09-01
Portable γ-ray imaging systems operating from 100keV to 3MeV are used in nuclear medicine, astrophysics and industrial applications. 2D images of γ-rays are common in many fields using radiation-detection systems (Appl. Opt. 17 (3) (1978) 337; IEEE Trans. Nucl. Sci. Ns- 31 (1984) 771; IEEE Trans. Nucl. Sci. NS- 44 (3) (1997) 911). In this work, the 3D position of a radiation source is determined by a portable gamma-ray imaging system. 2D gamma-ray images were obtained from different positions of the gamma camera and the third dimension, the distance between the detector and the radiation source, was calculated using triangulation. The imaging system consists of a 4×4 array of CsI(Tl) detectors coupled to photodiode detectors that are mounted on an automated table which can precisely position the angular axis of the camera. Lead shields the detector array from the background radiation. Additionally, a CCD camera is attached to the top of the gamma camera and provides coincident 2D visual information. The inferred distances from the center of the two measurement points and a radiation source had less than a 3% error within a range of 3m. The radiation image from the gamma camera and the visual image from CCD camera are superimposed into one combined image using a maximum-likelihood (ML) algorithm to make the image more precise. The response functions for the ML algorithm depend on the energy of incident radiation, and are obtained from both experiments and simulations. The energy-dependent response functions are shown to yield better imaging performance compared with the fixed energy response function commonly used previously.
Lemus-Mondaca, Roberto A.; Vega-Gálvez, Antonio; Zambra, Carlos E.; Moraga, Nelson O.
2017-01-01
A 3D model considering heat and mass transfer for food dehydration inside a direct contact dryer is studied. The k- ɛ model is used to describe turbulent air flow. The samples thermophysical properties as density, specific heat, and thermal conductivity are assumed to vary non-linearly with temperature. FVM, SIMPLE algorithm based on a FORTRAN code are used. Results unsteady velocity, temperature, moisture, kinetic energy and dissipation rate for the air flow are presented, whilst temperature and moisture values for the food also are presented. The validation procedure includes a comparison with experimental and numerical temperature and moisture content results obtained from experimental data, reaching a deviation 7-10 %. In addition, this turbulent k- ɛ model provided a better understanding of the transport phenomenon inside the dryer and sample.
Lemus-Mondaca, Roberto A.; Vega-Gálvez, Antonio; Zambra, Carlos E.; Moraga, Nelson O.
2016-03-01
A 3D model considering heat and mass transfer for food dehydration inside a direct contact dryer is studied. The k- ɛ model is used to describe turbulent air flow. The samples thermophysical properties as density, specific heat, and thermal conductivity are assumed to vary non-linearly with temperature. FVM, SIMPLE algorithm based on a FORTRAN code are used. Results unsteady velocity, temperature, moisture, kinetic energy and dissipation rate for the air flow are presented, whilst temperature and moisture values for the food also are presented. The validation procedure includes a comparison with experimental and numerical temperature and moisture content results obtained from experimental data, reaching a deviation 7-10 %. In addition, this turbulent k- ɛ model provided a better understanding of the transport phenomenon inside the dryer and sample.
Radiation heat transfer shapefactors for combustion systems
Emery, A. F.; Johansson, O.; Abrous, A.
1987-01-01
The computation of radiation heat transfer through absorbing media is commonly done through the zoning method which relies upon values of the geometric mean transmittance and absorptance. The computation of these values is difficult and expensive, particularly if many spectral bands are used. This paper describes the extension of a scan line algorithm, based upon surface-surface radiation, to the computation of surface-gas and gas-gas radiation transmittances.
Radiative Equilibrium and Temperature Correction in Monte Carlo Radiation Transfer
Bjorkman, J. E.; Wood, Kenneth
2001-01-01
We describe a general radiative equilibrium and temperature correction procedure for use in Monte Carlo radiation transfer codes with sources of temperature-independent opacity, such as astrophysical dust. The technique utilizes the fact that Monte Carlo simulations track individual photon packets, so we may easily determine where their energy is absorbed. When a packet is absorbed, it heats a particular cell within the envelope, raising its temperature. To enforce radiative equilibrium, the ...
3D unmanned aerial vehicle radiation mapping for assessing contaminant distribution and mobility
Martin, P. G.; Kwong, S.; Smith, N. T.; Yamashiki, Y.; Payton, O. D.; Russell-Pavier, F. S.; Fardoulis, J. S.; Richards, D. A.; Scott, T. B.
2016-10-01
Following the events of March 2011 at the Fukushima Daiichi Nuclear Power Plant, significant quantities of radioactive material were released into the local and wider global environment. At five years since the incident, much expense is being currently devoted to the remediation of a large portion of eastern Japan contaminated primarily by radiocesium, yet further significant expenditure will be required over the succeeding decades to complete this clean-up. People displaced from their homes by the incident are now increasingly keen to return, making it more important than ever to provide accurate quantification and representation of any residual radiological contamination. Presented here is the use of an unmanned aerial vehicle equipped with a laser rangefinder unit to generate a three dimensional point-cloud of an area onto which a radiation contamination map, also obtained concurrently via the unmanned aerial platform, can be rendered. An exemplar site of an un-remediated farm consisting of multiple stepped rice paddy fields with a dedicated irrigation system was used for this work. The results obtained show that heightened radiological contamination exists around the site within the drainage network where material is observed to have collected, having been transported by transient water runoff events. These results obtained in May 2014 suggest that a proportion of the fallout material is highly mobile within the natural environment and is likely to be transported further through the system over the succeeding years.
Radiative heat transfer between metallic nanoparticles
Chapuis, Pierre-Olivier; Laroche, Marine; Volz, Sebastian; Greffet, Jean-Jacques
2008-01-01
International audience; In this letter, we study the radiative heat transfer between two nanoparticles in the near field and in the far field. We find that the heat transfer is dominated by the electric dipole-dipole interaction for dielectric particles and by the magnetic dipole-dipole interaction for metallic nanoparticles. We introduce polarizabilities formulas valid for arbitrary values of the skin depth. While the heat transfer mechanism is different for metallic and dielectric nanoparti...
Directory of Open Access Journals (Sweden)
Gomez Daniel
2010-08-01
Full Text Available Abstract Introduction Intensity modulated radiation therapy (IMRT has been incorporated at several institutions for early stage laryngeal cancer (T1/T2N0M0, but its utility is controversial. Methods In three representative patients, multiple plans were generated: 1 Conventional 2D planning, with the posterior border placed at either the anterior aspect ("tight" plan or the mid-vertebral body ("loose" plan, 2 3D planning, utilizing both 1.0 and 0.5 cm margins for the planning target volume (PTV, and 3 IMRT planning, utilizing the same margins as the 3D plans. A dosimetric comparison was performed for the target volume, spinal cord, arytenoids, and carotid arteries. The prescription dose was 6300 cGy (225 cGy fractions, and the 3D and IMRT plans were normalized to this dose. Results For PTV margins of 1.0 cm and 0.5 cm, the D95 of the 2D tight/loose plans were 3781/5437 cGy and 5372/5869 cGy, respectively (IMRT/3D plans both 6300 cGy. With a PTV margin of 1.0 cm, the mean carotid artery dose was 2483/5671/5777/4049 cGy in the 2D tight, 2D loose, 3D, and IMRT plans, respectively. When the PTV was reduced to 0.5 cm, the the mean carotid artery dose was 2483/5671/6466/2577 cGy to the above four plans, respectively. The arytenoid doses were similar between the four plans, and spinal cord doses were well below tolerance. Conclusions IMRT provides a more ideal dose distribution compared to 2D treatment and 3D planning in regards to mean carotid dose. We therefore recommend IMRT in select cases when the treating physician is confident with the GTV.
Line radiative transfer and statistical equilibrium*
Directory of Open Access Journals (Sweden)
Kamp Inga
2015-01-01
Full Text Available Atomic and molecular line emission from protoplanetary disks contains key information of their detailed physical and chemical structures. To unravel those structures, we need to understand line radiative transfer in dusty media and the statistical equilibrium, especially of molecules. I describe here the basic principles of statistical equilibrium and illustrate them through the two-level atom. In a second part, the fundamentals of line radiative transfer are introduced along with the various broadening mechanisms. I explain general solution methods with their drawbacks and also specific difficulties encountered in solving the line radiative transfer equation in disks (e.g. velocity gradients. I am closing with a few special cases of line emission from disks: Radiative pumping, masers and resonance scattering.
Energy Technology Data Exchange (ETDEWEB)
Asuni, G; Beek, T van; Van Utyven, E [Medical Physics Department, CancerCare Manitoba, Winnipeg, Manitoba (Canada); McCowan, P [Medical Physics Department, CancerCare Manitoba, Winnipeg, Manitoba (Canada); Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba (Canada); McCurdy, B.M.C. [Medical Physics Department, CancerCare Manitoba, Winnipeg, Manitoba (Canada); Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba (Canada); Department of Radiology, University of Manitoba, Winnipeg Manitoba (Canada)
2014-08-15
Radical treatment techniques such as stereotactic body radiation therapy (SBRT) are becoming popular and they involve delivery of large doses in fewer fractions. Due to this feature of SBRT, a high-resolution, pre-treatment dose verification method that makes use of a 3D patient representation would be appropriate. Such a technique will provide additional information about dose delivered to the target volume(s) and organs-at-risk (OARs) in the patient volume compared to 2D verification methods. In this work, we investigate an electronic portal imaging device (EPID) based pre-treatment QA method which provides an accurate reconstruction of the 3D-dose distribution in the patient model. Customized patient plans are delivered ‘in air’ and the portal images are collected using the EPID in cine mode. The images are then analysed to determine an estimate of the incident energy fluence. This is then passed to a collapsed-cone convolution dose algorithm which reconstructs a 3D patient dose estimate on the CT imaging dataset. To date, the method has been applied to 5 SBRT patient plans. Reconstructed doses were compared to those calculated by the TPS. Reconstructed mean doses were mostly within 3% of those in the TPS. DVHs of target volumes and OARs compared well. The Chi pass rates using 3%/3mm in the high dose region are greater than 97% in all cases. These initial results demonstrate clinical feasibility and utility of a robust, efficient, effective and convenient pre-treatment QA method using EPID. Research sponsored in part by Varian Medical Systems.
SPHRAY: A Smoothed Particle Hydrodynamics Ray Tracer for Radiative Transfer
Altay, Gabriel; Croft, Rupert A. C.; Pelupessy, Inti
2011-03-01
SPHRAY, a Smoothed Particle Hydrodynamics (SPH) ray tracer, is designed to solve the 3D, time dependent, radiative transfer (RT) equations for arbitrary density fields. The SPH nature of SPHRAY makes the incorporation of separate hydrodynamics and gravity solvers very natural. SPHRAY relies on a Monte Carlo (MC) ray tracing scheme that does not interpolate the SPH particles onto a grid but instead integrates directly through the SPH kernels. Given initial conditions and a description of the sources of ionizing radiation, the code will calculate the non-equilibrium ionization state (HI, HII, HeI, HeII, HeIII, e) and temperature (internal energy/entropy) of each SPH particle. The sources of radiation can include point like objects, diffuse recombination radiation, and a background field from outside the computational volume. The MC ray tracing implementation allows for the quick introduction of new physics and is parallelization friendly. A quick Axis Aligned Bounding Box (AABB) test taken from computer graphics applications allows for the acceleration of the raytracing component. We present the algorithms used in SPHRAY and verify the code by performing all the test problems detailed in the recent Radiative Transfer Comparison Project of Iliev et. al. The Fortran 90 source code for SPHRAY and example SPH density fields are made available online.
Institute of Scientific and Technical Information of China (English)
洪宇翔; 邓先和; 张连山
2012-01-01
The paper presents a 3D numerical simulation of turbulent heat transfer and flow characteristics in converging-diverging tubes （CDs） and converging-diverg）ng tubes.equi.pped with twin counter-swirling twisted tapes （CDTs）. The effects of Reynolds number （Re= 10000-20000）, pitch length （P= 11.25, 22.5 mm）, rib height （e = 0.5, 0.8, 1.1 ram）, pitch ratio （8= 1 ＂ 8, 5 ＂ 4, 8 ＂ 1）, gap distance between twin t）visted tapes （b = 0.5, 4.5, 8.5 mm） and tape number （n = 2, 3, 4, 5, 6） on Nusselt number （Nu）, Iriction tactor 0＇） and thermal enhancement factor （r/） are investigated under uniform heat flux conditions,using water as working fluid. In order to illustrate the heat transter and tlu~d tlow mechamsms, flow structures m ~StJs and ~SDIs are presented. The obtained results reveal that all geometric parameters have important effects on the thermal performance of CD and CDT, and both CD and CDT show better thermal performance than plain tube at the constant pumping power. It is also found that the increases in the Nusselt number and friction factor for CDT are, respectively, up to 6.3%-35.7% and 1.75-5.3 times of thecorresponding bare CD. All CDTs have good thermal perbrmance with greater than 1 which indicates that the compound heat transfer technique of CDT is commendable for the maximum enhanced heat transfer rate.
Campanyà, Joan; Ogaya, Xènia; Jones, Alan G.; Rath, Volker; Vozar, Jan; Meqbel, Naser
2016-12-01
As a consequence of measuring time variations of the electric and the magnetic field, which are related to current flow and charge distribution, magnetotelluric (MT) data in 2-D and 3-D environments are not only sensitive to the geoelectrical structures below the measuring points but also to any lateral anomalies surrounding the acquisition site. This behaviour complicates the characterization of the electrical resistivity distribution of the subsurface, particularly in complex areas. In this manuscript we assess the main advantages of complementing the standard MT impedance tensor (Z) data with interstation horizontal magnetic tensor (H) and geomagnetic transfer function (T) data in constraining the subsurface in a 3-D environment beneath a MT profile. Our analysis was performed using synthetic responses with added normally distributed and scattered random noise. The sensitivity of each type of data to different resistivity anomalies was evaluated, showing that the degree to which each site and each period is affected by the same anomaly depends on the type of data. A dimensionality analysis, using Z, H and T data, identified the presence of the 3-D anomalies close to the profile, suggesting a 3-D approach for recovering the electrical resistivity values of the subsurface. Finally, the capacity for recovering the geoelectrical structures of the subsurface was evaluated by performing joint inversion using different data combinations, quantifying the differences between the true synthetic model and the models from inversion process. Four main improvements were observed when performing joint inversion of Z, H and T data: (1) superior precision and accuracy at characterizing the electrical resistivity values of the anomalies below and outside the profile; (2) the potential to recover high electrical resistivity anomalies that are poorly recovered using Z data alone; (3) improvement in the characterization of the bottom and lateral boundaries of the anomalies with low
Radiative transfer effects in primordial hydrogen recombination
Ali-Haïmoud, Yacine; Hirata, Christopher M
2010-01-01
The calculation of a highly accurate cosmological recombination history has been the object of particular attention recently, as it constitutes the major theoretical uncertainty when predicting the angular power spectrum of Cosmic Microwave Background anisotropies. Lyman transitions, in particular the Lyman-alpha line, have long been recognized as one of the bottlenecks of recombination, due to their very low escape probabilities. The Sobolev approximation does not describe radiative transfer in the vicinity of Lyman lines to a sufficient degree of accuracy, and several corrections have already been computed in other works. In this paper, the impact of some previously ignored radiative transfer effects is calculated. First, the effect of Thomson scattering in the vicinity of the Lyman-alpha line is evaluated, using a full redistribution kernel incorporated into a radiative transfer code. The effect of feedback of distortions generated by the optically thick deuterium Lyman-alpha line blueward of the hydrogen ...
Smart detectors for Monte Carlo radiative transfer
Baes, Maarten
2008-01-01
Many optimization techniques have been invented to reduce the noise that is inherent in Monte Carlo radiative transfer simulations. As the typical detectors used in Monte Carlo simulations do not take into account all the information contained in the impacting photon packages, there is still room to optimize this detection process and the corresponding estimate of the surface brightness distributions. We want to investigate how all the information contained in the distribution of impacting photon packages can be optimally used to decrease the noise in the surface brightness distributions and hence to increase the efficiency of Monte Carlo radiative transfer simulations. We demonstrate that the estimate of the surface brightness distribution in a Monte Carlo radiative transfer simulation is similar to the estimate of the density distribution in an SPH simulation. Based on this similarity, a recipe is constructed for smart detectors that take full advantage of the exact location of the impact of the photon pack...
Energy Technology Data Exchange (ETDEWEB)
Tebikachew, Behabtu; Magina, Sandra [CICECO, Department of Chemistry, University of Aveiro (Portugal); Mata, Diogo; Oliveira, Filipe J.; Silva, Rui F. [CICECO, Department of Materials and Ceramic Engineering, University of Aveiro (Portugal); Barros-Timmons, Ana, E-mail: anabarros@ua.pt [CICECO, Department of Chemistry, University of Aveiro (Portugal)
2015-01-15
Vertically aligned carbon nanotubes (VACNTs) synthesized by Thermal Chemical Vapour Deposition (TCVD) were modified using an Ar:O{sub 2} (97:3) plasma to generate oxygen-containing functional groups on the surface for subsequent modification. X-ray photo-emission spectroscopy (XPS) and micro-Raman analyses confirmed the grafting of those functional groups onto the surface of the nanotubes as well as the removal of amorphous carbon produced and deposited on the VACNT forests during the CVD process. The plasma treated VACNT forests were further modified with 2-bromo-2-methylpropionyl bromide, an atom transfer radical polymerization (ATRP) initiator, to grow poly(methyl methacrylate) (PMMA) chains from the forests via ATRP. Scanning transmission electron microscopy (STEM) of the ensuing VACNT/PMMA composites confirmed the coating of the nanotube forests with the PMMA polymer. 3D scaffolds of polymeric composites with honeycomb like structure were then obtained. Compressive tests have shown that the VACNT/PMMA composite has higher compressive strength than the pristine forest. - Highlights: • Vertically aligned carbon nanotubes (VACNTs) were synthesized and plasma modified. • X-ray photo-emission and Raman spectroscopies confirmed the VACNTs modification. • Poly(methyl methacrylate) chains were grown via ATRP from the VACNTs. • STEM of the VACNT/PMMA composites confirmed that PMMA surrounds the nanotubes. • VACNT/PMMA composite has higher compressive strength compared to the pristine forest.
Energy Technology Data Exchange (ETDEWEB)
Reddy, Nandanuri M. S.; Nori, Dattatreyudu; Chang, Hyesook; Lange, Christopher S.; Ravi, Akkamma [Department of Radiation Oncology, New York Hospital Queens, Flushing, New York 11355 (United States); Department of Radiation Oncology, State University of New York Downstate Medical Center, Brooklyn, New York 11203 (United States); Department of Radiation Oncology, New York Hospital Queens, Flushing, New York 11355 (United States)
2010-07-15
Purpose: The purpose of this article was to determine the suitability of the prostate and seminal vesicle volumes as factors to consider patients for treatment with image-guided 3D-conformal radiation therapy (3D-CRT) or intensity-modulated radiation therapy (IMRT), using common dosimetry parameters as comparison tools. Methods: Dosimetry of 3D and IMRT plans for 48 patients was compared. Volumes of prostate, SV, rectum, and bladder, and prescriptions were the same for both plans. For both 3D and IMRT plans, expansion margins to prostate+SV (CTV) and prostate were 0.5 cm posterior and superior and 1 cm in other dimensions to create PTV and CDPTV, respectively. Six-field 3D plans were prepared retrospectively. For 3D plans, an additional 0.5 cm margin was added to PTV and CDPTV. Prescription for both 3D and IMRT plans was the same: 45 Gy to CTV followed by a 36 Gy boost to prostate. Dosimetry parameters common to 3D and IMRT plans were used for comparison: Mean doses to prostate, CDPTV, SV, rectum, bladder, and femurs; percent volume of rectum and bladder receiving 30 (V30), 50 (V50), and 70 Gy (V70), dose to 30% of rectum and bladder, minimum and maximum point dose to CDPTV, and prescription dose covering 95% of CDPTV (D95). Results: When the data for all patients were combined, mean dose to prostate and CDPTV was higher with 3D than IMRT plans (P<0.01). Mean D95 to CDPTV was the same for 3D and IMRT plans (P>0.2). On average, among all cases, the minimum point dose was less for 3D-CRT plans and the maximum point dose was greater for 3D-CRT than for IMRT (P<0.01). Mean dose to 30% rectum with 3D and IMRT plans was comparable (P>0.1). V30 was less (P<0.01), V50 was the same (P>0.2), and V70 was more (P<0.01) for rectum with 3D than IMRT plans. Mean dose to bladder was less with 3D than IMRT plans (P<0.01). V30 for bladder with 3D plans was less than that of IMRT plans (P<0.01). V50 and V70 for 3D plans were the same for 3D and IMRT plans (P>0.2). Mean dose to femurs
Directory of Open Access Journals (Sweden)
Elena Gaberman
Full Text Available Exposure to high lethal dose of ionizing radiation results in acute radiation syndrome with deleterious systemic effects to different organs. A primary target is the highly sensitive bone marrow and the hematopoietic system. In the current study C3H/HeN mice were total body irradiated by 7.7 Gy. Twenty four hrs and 5 days after irradiation 2×10(6 cells from different preparations of human derived 3D expanded adherent placental stromal cells (PLX were injected intramuscularly. Treatment with batches consisting of pure maternal cell preparations (PLX-Mat increased the survival of the irradiated mice from ∼27% to 68% (P<0.001, while cell preparations with a mixture of maternal and fetal derived cells (PLX-RAD increased the survival to ∼98% (P<0.0001. The dose modifying factor of this treatment for both 50% and 37% survival (DMF50 and DMF37 was∼1.23. Initiation of the more effective treatment with PLX-RAD injection could be delayed for up to 48 hrs after irradiation with similar effect. A delayed treatment by 72 hrs had lower, but still significantly effect (p<0.05. A faster recovery of the BM and improved reconstitution of all blood cell lineages in the PLX-RAD treated mice during the follow-up explains the increased survival of the cells treated irradiated mice. The number of CD45+/SCA1+ hematopoietic progenitor cells within the fast recovering population of nucleated BM cells in the irradiated mice was also elevated in the PLX-RAD treated mice. Our study suggests that IM treatment with PLX-RAD cells may serve as a highly effective "off the shelf" therapy to treat BM failure following total body exposure to high doses of radiation. The results suggest that similar treatments may be beneficial also for clinical conditions associated with severe BM aplasia and pancytopenia.
Sci—Thur AM: YIS - 07: Design and production of 3D printed bolus for electron radiation therapy
Energy Technology Data Exchange (ETDEWEB)
Su, Shiqin [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia (Canada); Moran, Kathryn [Queen Elizabeth II Health Sciences Centre, Nova Scotia Cancer Centre, Halifax, Nova Scotia (Canada); Robar, James L. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia (Canada); Department of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia (Canada)
2014-08-15
This is a proof-of-concept study demonstrating the capacity for modulated electron radiation therapy (MERT) using 3D printed bolus. Previous reports have involved bolus design using an electron pencil beam model and fabrication using a milling machine. In this study, an in-house algorithm is presented that optimizes the dose distribution with regard to dose coverage, conformity and homogeneity within planning target volume (PTV). The algorithm uses calculated result of a commercial electron Monte Carlo dose calculation as input. Distances along ray lines from distal side of 90% isodose to distal surface of PTV are used to estimate the bolus thickness. Inhomogeneities within the calculation volume are accounted for using coefficient of equivalent thickness method. Several regional modulation operators are applied to improve dose coverage and uniformity. The process is iterated (usually twice) until an acceptable MERT plan is realized, and the final bolus is printed using solid polylactic acid. The method is evaluated with regular geometric phantoms, anthropomorphic phantoms and a clinical rhabdomyosarcoma pediatric case. In all cases the dose conformity is improved compared to that with uniform bolus. The printed boluses conform well to the surface of complex anthropomorphic phantoms. For the rhabdomyosarcoma patient, the MERT plan yields a reduction of mean dose by 38.2% in left kidney relative to uniform bolus. MERT using 3D printed bolus appears to be a practical, low cost approach to generating optimized bolus for electron therapy. The method is effective in improving conformity of prescription isodose surface and in sparing immediately adjacent normal tissues.
Radiative heat transfer between metallic nanoparticles
Chapuis, Pierre-Olivier; Volz, Sebastian; Greffet, Jean-Jacques
2008-01-01
In this letter, we study the radiative heat transfer between two nanoparticles in the near field and in the far field. We find that the heat transfer is dominated by the electric dipole-dipole interaction for dielectric particles and by the magnetic dipole-dipole interaction for metallic nanoparticles. We introduce polarizabilities formulas valid for arbitrary values of the skin depth. While the heat transfer mechanism is different for metallic and dielectric nanoparticles, we show that the distance dependence is the same. However, the dependence of the heat flux on the particle radius is different.
IRIS: a generic three-dimensional radiative transfer code
Ibgui, L.; Hubeny, I.; Lanz, T.; Stehlé, C.
2013-01-01
Context. For most astronomical objects, radiation is the only probe of their physical properties. Therefore, it is important to have the most elaborate theoretical tool to interpret observed spectra or images, thus providing invaluable information to build theoretical models of the physical nature, the structure, and the evolution of the studied objects. Aims: We present IRIS, a new generic three-dimensional (3D) spectral radiative transfer code that generates synthetic spectra, or images. It can be used as a diagnostic tool for comparison with astrophysical observations or laboratory astrophysics experiments. Methods: We have developed a 3D short-characteristic solver that works with a 3D nonuniform Cartesian grid. We have implemented a piecewise cubic, locally monotonic, interpolation technique that dramatically reduces the numerical diffusion effect. The code takes into account the velocity gradient effect resulting in gradual Doppler shifts of photon frequencies and subsequent alterations of spectral line profiles. It can also handle periodic boundary conditions. This first version of the code assumes local thermodynamic equilibrium (LTE) and no scattering. The opacities and source functions are specified by the user. In the near future, the capabilities of IRIS will be extended to allow for non-LTE and scattering modeling. Results: IRIS has been validated through a number of tests. We provide the results for the most relevant ones, in particular a searchlight beam test, a comparison with a 1D plane-parallel model, and a test of the velocity gradient effect. Conclusions: IRIS is a generic code to address a wide variety of astrophysical issues applied to different objects or structures, such as accretion shocks, jets in young stellar objects, stellar atmospheres, exoplanet atmospheres, accretion disks, rotating stellar winds, cosmological structures. It can also be applied to model laboratory astrophysics experiments, such as radiative shocks produced with high
Energy Technology Data Exchange (ETDEWEB)
Bernui de V, Maria Giselle; Cardenas, Augusto; Vargas, Carlos [Hospital Nacional Carlos Alberto Seguin Escobedo (ESSALUD), Arequipa (Peru). Servicio de Radioterapia
2009-07-01
The purpose of this work was to compare the dosimetry in 3D Conformal Radiotherapy with Intensity Modulated Radiation Therapy (IMRT) in a treatment of stomach cancer. For this comparison we selected a patient who underwent subtotal gastrectomy and D2 dissection for a T3N3 adenocarcinoma Mx ECIIIB receiving treatment under the scheme Quimio INT 0116 - in adjuvant radiotherapy. In the treatment plan was contouring the Clinical Target Volume (CTV) and the Planning Target Volume (PTV) was generated from the expansion of 1cm of the CTV, the risky organs contouring were: the liver, kidneys and spinal cord, according to the consensus definition of volumes in gastric cancer. The 3D Conformal Radiotherapy planning is carried out using 6 half beams following the Leong Trevol technique; for the IMRT plan was used 8 fields, the delivery technique is step-and-shoot. In both cases the fields were coplanar, isocentric and the energy used was 18 MV. Intensity Modulated Radiation Therapy (IMRT), in this case has proved to be a good treatment alternative to the technique of 3D Conformal Radiotherapy; the dose distributions with IMRT have better coverage of PTV and positions of the hot spots, as well as the kidneys volume that received higher doses to 2000 cGy is lower, but the decrease in dose to the kidneys is at the expense of increased dose in other organs like the liver. (author)
Energy Technology Data Exchange (ETDEWEB)
Merker, G.P.; Lettmann, H.
2003-05-01
A phenomenological wall heat transfer model was developed for diesel engines, enhanced for application of the 3D-CFC code KIVA-3V, and implemented in the code. Further, the heat flow was measurement near the cylinder head, bushel and piston of a DI one-cylinder experimental diesel engine. The influence of soot radiation and convective heat transfer on the wall are modelled separately. The insulating effect of soot deposits on the walls during engine operation is taken into acount as well. The multizone model and the 3D model are in good agreement with the models by Han and Reitz (1997) and with experimental findings. The spatial resolution of heat flow at the wall further shows that both the radiative and convective heat flow are strongly locally dependent. The model presents a physically correct description of the heat flow at the wall of a diesel engine combustion chamber. [German] Im Rahmen des gesamten Forschungsvorhabens wurden ein phaenomenologisches Wandwaermeuebergangsmodell fuer Dieselmotoren entwickelt, dieses wurde fuer die Anwendung in den 3D-CFD-Code KIVA-3V erweitert und in den Code implementiert. Zusaetzlich sind Waermestrommessungen im Brennraum an Zylinderkopf, Laufbuchse und Kolben durchgefuehrt worden. Dafuer stand ein direkteinspritzender Einzylinder-Versuchsdieselmotor zur Verfuegung. Das im Rahmen dieses Vorhabens entwickelte Waermeuebergangsmodell bildet den Einfluss der Russstrahlung und des konvektiven Wandwaermeueberganges separat ab. Die isolierende Wirkung von Russwandablagerungen waehrend des gefeuerten Motorbetriebes wird dabei ebenfalls beruecksichtigt. Das Mehrzonenmodell sowie das 3D-Modell zeigen sehr gute Uebereinstimmungen des raeumlich gemittelten Wandwaermestroms mit den Modellen von Han und Reitz (1997) und den experimentellen Ergebnissen. Die raeumliche Aufloesung der Wandwaermestroeme zeigt weiter, dass auf der Brennraumoberflaeche die Strahlungswaermestroeme und die konvektiven Waermestroeme stark ortsabhaengig sind. Damit
Energy Technology Data Exchange (ETDEWEB)
Pannala, S; D' Azevedo, E; Zacharia, T
2002-02-26
The goal of the radiation modeling effort was to develop and implement a radiation algorithm that is fast and accurate for the underhood environment. As part of this CRADA, a net-radiation model was chosen to simulate radiative heat transfer in an underhood of a car. The assumptions (diffuse-gray and uniform radiative properties in each element) reduce the problem tremendously and all the view factors for radiation thermal calculations can be calculated once and for all at the beginning of the simulation. The cost for online integration of heat exchanges due to radiation is found to be less than 15% of the baseline CHAD code and thus very manageable. The off-line view factor calculation is constructed to be very modular and has been completely integrated to read CHAD grid files and the output from this code can be read into the latest version of CHAD. Further integration has to be performed to accomplish the same with STAR-CD. The main outcome of this effort is to obtain a highly scalable and portable simulation capability to model view factors for underhood environment (for e.g. a view factor calculation which took 14 hours on a single processor only took 14 minutes on 64 processors). The code has also been validated using a simple test case where analytical solutions are available. This simulation capability gives underhood designers in the automotive companies the ability to account for thermal radiation - which usually is critical in the underhood environment and also turns out to be one of the most computationally expensive components of underhood simulations. This report starts off with the original work plan as elucidated in the proposal in section B. This is followed by Technical work plan to accomplish the goals of the project in section C. In section D, background to the current work is provided with references to the previous efforts this project leverages on. The results are discussed in section 1E. This report ends with conclusions and future scope of
Tests of Exoplanet Atmospheric Radiative Transfer Codes
Harrington, Joseph; Challener, Ryan; DeLarme, Emerson; Cubillos, Patricio; Blecic, Jasmina; Foster, Austin; Garland, Justin
2016-10-01
Atmospheric radiative transfer codes are used both to predict planetary spectra and in retrieval algorithms to interpret data. Observational plans, theoretical models, and scientific results thus depend on the correctness of these calculations. Yet, the calculations are complex and the codes implementing them are often written without modern software-verification techniques. In the process of writing our own code, we became aware of several others with artifacts of unknown origin and even outright errors in their spectra. We present a series of tests to verify atmospheric radiative-transfer codes. These include: simple, single-line line lists that, when combined with delta-function abundance profiles, should produce a broadened line that can be verified easily; isothermal atmospheres that should produce analytically-verifiable blackbody spectra at the input temperatures; and model atmospheres with a range of complexities that can be compared to the output of other codes. We apply the tests to our own code, Bayesian Atmospheric Radiative Transfer (BART) and to several other codes. The test suite is open-source software. We propose this test suite as a standard for verifying current and future radiative transfer codes, analogous to the Held-Suarez test for general circulation models. This work was supported by NASA Planetary Atmospheres grant NX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G.
Groups in the radiative transfer theory
Nikoghossian, Arthur
2016-11-01
The paper presents a group-theoretical description of radiation transfer in inhomogeneous and multi-component atmospheres with the plane-parallel geometry. It summarizes and generalizes the results obtained recently by the author for some standard transfer problems of astrophysical interest with allowance of the angle and frequency distributions of the radiation field. We introduce the concept of composition groups for media with different optical and physical properties. Group representations are derived for two possible cases of illumination of a composite finite atmosphere. An algorithm for determining the reflectance and transmittance of inhomogeneous and multi-component atmospheres is described. The group theory is applied also to determining the field of radiation inside an inhomogeneous atmosphere. The concept of a group of optical depth translations is introduced. The developed theory is illustrated with the problem of radiation diffusion with partial frequency distribution assuming that the inhomogeneity is due to depth-variation of the scattering coefficient. It is shown that once reflectance and transmittance of a medium are determined, the internal field of radiation in the source-free atmosphere is found without solving any new equations. The transfer problems for a semi-infinite atmosphere and an atmosphere with internal sources of energy are discussed. The developed theory allows to derive summation laws for the mean number of scattering events underwent by the photons in the course of diffusion in the atmosphere.
Rodrigues, Dario B.; Maccarini, Paolo F.; Salahi, Sara; Colebeck, Erin; Topsakal, Erdem; Pereira, Pedro J. S.; Limão-Vieira, Paulo; Stauffer, Paul R.
2013-02-01
Background: Brown adipose tissue (BAT) plays an important role in whole body metabolism and could potentially mediate weight gain and insulin sensitivity. Although some imaging techniques allow BAT detection, there are currently no viable methods for continuous acquisition of BAT energy expenditure. We present a non-invasive technique for long term monitoring of BAT metabolism using microwave radiometry. Methods: A multilayer 3D computational model was created in HFSSTM with 1.5 mm skin, 3-10 mm subcutaneous fat, 200 mm muscle and a BAT region (2-6 cm3) located between fat and muscle. Based on this model, a log-spiral antenna was designed and optimized to maximize reception of thermal emissions from the target (BAT). The power absorption patterns calculated in HFSSTM were combined with simulated thermal distributions computed in COMSOL® to predict radiometric signal measured from an ultra-low-noise microwave radiometer. The power received by the antenna was characterized as a function of different levels of BAT metabolism under cold and noradrenergic stimulation. Results: The optimized frequency band was 1.5-2.2 GHz, with averaged antenna efficiency of 19%. The simulated power received by the radiometric antenna increased 2-9 mdBm (noradrenergic stimulus) and 4-15 mdBm (cold stimulus) corresponding to increased 15-fold BAT metabolism. Conclusions: Results demonstrated the ability to detect thermal radiation from small volumes (2-6 cm3) of BAT located up to 12 mm deep and to monitor small changes (0.5 °C) in BAT metabolism. As such, the developed miniature radiometric antenna sensor appears suitable for non-invasive long term monitoring of BAT metabolism.
Composite biasing in Monte Carlo radiative transfer
Baes, Maarten; Lunttila, Tuomas; Bianchi, Simone; Camps, Peter; Juvela, Mika; Kuiper, Rolf
2016-01-01
Biasing or importance sampling is a powerful technique in Monte Carlo radiative transfer, and can be applied in different forms to increase the accuracy and efficiency of simulations. One of the drawbacks of the use of biasing is the potential introduction of large weight factors. We discuss a general strategy, composite biasing, to suppress the appearance of large weight factors. We use this composite biasing approach for two different problems faced by current state-of-the-art Monte Carlo radiative transfer codes: the generation of photon packages from multiple components, and the penetration of radiation through high optical depth barriers. In both cases, the implementation of the relevant algorithms is trivial and does not interfere with any other optimisation techniques. Through simple test models, we demonstrate the general applicability, accuracy and efficiency of the composite biasing approach. In particular, for the penetration of high optical depths, the gain in efficiency is spectacular for the spe...
Energy Technology Data Exchange (ETDEWEB)
Ehler, E; Sterling, D; Higgins, P [University of Minnesota, Minneapolis, MN (United States)
2015-06-15
Purpose: 3D printed phantoms constructed of multiple tissue approximating materials could be useful in both clinical and research aspects of radiotherapy. This work describes a 3D printed phantom constructed with tissue substitute plastics for both bone and soft tissue; air cavities were included as well. Methods: 3D models of an anonymized nasopharynx patient were generated for air cavities, soft tissues, and bone, which were segmented by Hounsfield Unit (HU) thresholds. HU thresholds were chosen to define air-to-soft tissue boundaries of 0.65 g/cc and soft tissue-to-bone boundaries of 1.18 g/cc based on clinical HU to density tables. After evaluation of several composite plastics, a bone tissue substitute was identified as an acceptable material for typical radiotherapy x-ray energies, composed of iron and PLA plastic. PET plastic was determined to be an acceptable soft tissue substitute. 3D printing was performed on a consumer grade dual extrusion fused deposition model 3D printer. Results: MVCT scans of the 3D printed heterogeneous phantom were acquired. Rigid image registration of the patient and the 3D printed phantom scans was performed. The average physical density of the soft tissue and bone regions was 1.02 ± 0.08 g/cc and 1.39 ± 0.14 g/cc, respectively, for the patient kVCT scan. In the 3D printed phantom MVCT scan, the average density of the soft tissue and bone was 1.01 ± 0.09 g/cc and 1.44 ± 0.12 g/cc, respectively. Conclusion: A patient specific phantom, constructed of heterogeneous tissue substitute materials was constructed by 3D printing. MVCT of the 3D printed phantom showed realistic tissue densities were recreated by the 3D printing materials. Funding provided by intra-department grant by University of Minnesota Department of Radiation Oncology.
Viktor V. Sobolev and radiative transfer theory
Nagirner, Dmitrij I.
2016-11-01
Invited review A detailed review of V.V. Sobolev's contributions to the theory of radiative transfer is presented. First, the basic problems of the theory of monochromatic scattering are formulated, which were introduced and solved approximately by the founders of the theory (E. Milne, A. Eddington, and others). Then the fundamental contribution by academician V.A. Ambartsumian, Sobolev's scientific adviser, to the analytical radiative transfer theory is summarized. Academician V.V. Sobolev continued and profoundly developed this theory. He pioneered new areas of the theory of multiple light scattering: the scattering of polarized radiation; the theory of a time-dependent radiation field; and the scattering in inhomogeneous media, in plane-parallel media with reflecting boundaries, and in media expanding with a velocity gradient. He proposed new approximate methods for solving the problems of anisotropic monochromatic scattering as well as scattering in spectral lines in stationary and expanding media which are still in use today. The most important Sobolev's contribution was to the exact analytical theory of radiative transfer. He proposed the probability method to solve radiative transfer problems and the probabilistic treatment of scattering processes; he introduced and justified the approximation of CFR in spectral lines; he developed the resolvent method for the exact solution to the basic integral equation describing monochromatic scattering and scattering in spectral lines; and he developed the theory of anisotropic scattering to analytic perfection. V.V. Sobolev applied these solutions to the interpretation of observation data for many astrophysical objects: photometric, polarimetric, and spectral characteristics of planetary atmospheres; spectra of stationary and non-stationary stars; and polarization of X-ray sources and quasars. V.V. Sobolev coauthored several papers with his students. The publications by Sobolev's disciples that continued his research
Enhancing radiative energy transfer through thermal extraction
Directory of Open Access Journals (Sweden)
Tan Yixuan
2016-06-01
Full Text Available Thermal radiation plays an increasingly important role in many emerging energy technologies, such as thermophotovoltaics, passive radiative cooling and wearable cooling clothes [1]. One of the fundamental constraints in thermal radiation is the Stefan-Boltzmann law, which limits the maximum power of far-field radiation to P0 = σT4S, where σ is the Boltzmann constant, S and T are the area and the temperature of the emitter, respectively (Fig. 1a. In order to overcome this limit, it has been shown that near-field radiations could have an energy density that is orders of magnitude greater than the Stefan-Boltzmann law [2-7]. Unfortunately, such near-field radiation transfer is spatially confined and cannot carry radiative heat to the far field. Recently, a new concept of thermal extraction was proposed [8] to enhance far-field thermal emission, which, conceptually, operates on a principle similar to oil immersion lenses and light extraction in light-emitting diodes using solid immersion lens to increase light output [62].Thermal extraction allows a blackbody to radiate more energy to the far field than the apparent limit of the Stefan-Boltzmann law without breaking the second law of thermodynamics.
Pakal: A Three-dimensional Model to Solve the Radiative Transfer Equation
De la Luz, Victor; Mendoza-Torres, J E; Selhorst, Caius L; 10.1088/0067-0049/188/2/437
2011-01-01
We present a new numerical model called "Pakal" intended to solve the radiative transfer equation in a three-dimensional (3D) geometry, using the approximation for a locally plane-parallel atmosphere. Pakal uses pre-calculated radial profiles of density and temperature (based on hydrostatic, hydrodynamic, or MHD models) to compute the emission from 3D source structures with high spatial resolution. Then, Pakal solves the radiative transfer equation in a set of (3D) ray paths, going from the source to the observer. Pakal uses a new algorithm to compute the radiative transfer equation by using an intelligent system consisting of three structures: a cellular automaton; an expert system; and a program coordinator. The code outputs can be either two-dimensional maps or one-dimensional profiles, which reproduce the observations with high accuracy, giving detailed physical information about the environment where the radiation was generated and/or transmitted. We present the model applied to a 3D solar radial geometr...
Energy Technology Data Exchange (ETDEWEB)
Ma, C; Yin, Y [Shandong Tumor Hospital, Jinan, Shandong Provice (China)
2015-06-15
Purpose: The purpose of this work was to determine the dosimetric benefit to normal tissues by tracking liver tumor dose in four dimensional radiation therapy (4DRT) on ten phases of four dimensional computer tomagraphy(4DCT) images. Methods: Target tracking each phase with the beam aperture for ten liver cancer patients were converted to cumulative plan and compared to the 3D plan with a merged target volume based on 4DCT image in radiation treatment planning system (TPS). The change in normal tissue dose was evaluated in the plan by using the parameters V5, V10, V15, V20,V25, V30, V35 and V40 (volumes receiving 5, 10, 15, 20, 25, 30, 35 and 40Gy, respectively) in the dose-volume histogram for the liver; mean dose for the following structures: liver, left kidney and right kidney; and maximum dose for the following structures: bowel, duodenum, esophagus, stomach and heart. Results: There was significant difference between 4D PTV(average 115.71cm3 )and ITV(169.86 cm3). When the planning objective is 95% volume of PTV covered by the prescription dose, the mean dose for the liver, left kidney and right kidney have an average decrease 23.13%, 49.51%, and 54.38%, respectively. The maximum dose for bowel, duodenum,esophagus, stomach and heart have an average decrease 16.77%, 28.07%, 24.28%, 4.89%, and 4.45%, respectively. Compared to 3D RT, radiation volume for the liver V5, V10, V15, V20, V25, V30, V35 and V40 by using the 4D plans have a significant decrease(P≤0.05). Conclusion: The 4D plan method creates plans that permit better sparing of the normal structures than the commonly used ITV method, which delivers the same dosimetric effects to the target.
RRTM: A rapid radiative transfer model
Energy Technology Data Exchange (ETDEWEB)
Mlawer, E.J.; Taubman, S.J.; Clough, S.A. [Atmospheric and Environmental Research, Inc., Cambridge, MA (United States)
1996-04-01
A rapid radiative transfer model (RRTM) for the calculation of longwave clear-sky fluxes and cooling rates has been developed. The model, which uses the correlated-k method, is both accurate and computationally fast. The foundation for RRTM is the line-by-line radiative transfer model (LBLRTM) from which the relevant k-distributions are obtained. LBLRTM, which has been extensively validated against spectral observations e.g., the high-resolution sounder and the Atmospheric Emitted Radiance Interferometer, is used to validate the flux and cooling rate results from RRTM. Validations of RRTM`s results have been performed for the tropical, midlatitude summer, and midlatitude winter atmospheres, as well as for the four Intercomparison of Radiation Codes in Climate Models (ICRCCM) cases from the Spectral Radiance Experiment (SPECTRE). Details of some of these validations are presented below. RRTM has the identical atmospheric input module as LBLRTM, facilitating intercomparisons with LBLRTM and application of the model at the Atmospheric Radiation Measurement Cloud and Radiation Testbed sites.
THREE-DIMENSIONAL RADIATION TRANSFER IN YOUNG STELLAR OBJECTS
Energy Technology Data Exchange (ETDEWEB)
Whitney, B. A.; Honor, J. [University of Wisconsin, 475 N. Charter St., Madison, WI 53706 (United States); Robitaille, T. P. [Max-Planck-Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Bjorkman, J. E. [Ritter Observatory, MS 113, Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606-3390 (United States); Dong, R. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Wolff, M. J. [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States); Wood, K., E-mail: bwhitney@astro.wisc.edu [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9AD (United Kingdom)
2013-08-15
We have updated our publicly available dust radiative transfer code (HOCHUNK3D) to include new emission processes and various three-dimensional (3D) geometries appropriate for forming stars. The 3D geometries include warps and spirals in disks, accretion hotspots on the central star, fractal clumping density enhancements, and misaligned inner disks. Additional axisymmetric (2D) features include gaps in disks and envelopes, ''puffed-up inner rims'' in disks, multiple bipolar cavity walls, and iteration of disk vertical structure assuming hydrostatic equilibrium (HSEQ). We include the option for simple power-law envelope geometry, which, combined with fractal clumping and bipolar cavities, can be used to model evolved stars as well as protostars. We include non-thermal emission from polycyclic aromatic hydrocarbons (PAHs) and very small grains, and external illumination from the interstellar radiation field. The grid structure was modified to allow multiple dust species in each cell; based on this, a simple prescription is implemented to model dust stratification. We describe these features in detail, and show example calculations of each. Some of the more interesting results include the following: (1) outflow cavities may be more clumpy than infalling envelopes. (2) PAH emission in high-mass stars may be a better indicator of evolutionary stage than the broadband spectral energy distribution slope; and related to this, (3) externally illuminated clumps and high-mass stars in optically thin clouds can masquerade as young stellar objects. (4) Our HSEQ models suggest that dust settling is likely ubiquitous in T Tauri disks, in agreement with previous observations.
Three-dimensional Radiation Transfer in Young Stellar Objects
Whitney, B. A.; Robitaille, T. P.; Bjorkman, J. E.; Dong, R.; Wolff, M. J.; Wood, K.; Honor, J.
2013-08-01
We have updated our publicly available dust radiative transfer code (HOCHUNK3D) to include new emission processes and various three-dimensional (3D) geometries appropriate for forming stars. The 3D geometries include warps and spirals in disks, accretion hotspots on the central star, fractal clumping density enhancements, and misaligned inner disks. Additional axisymmetric (2D) features include gaps in disks and envelopes, "puffed-up inner rims" in disks, multiple bipolar cavity walls, and iteration of disk vertical structure assuming hydrostatic equilibrium (HSEQ). We include the option for simple power-law envelope geometry, which, combined with fractal clumping and bipolar cavities, can be used to model evolved stars as well as protostars. We include non-thermal emission from polycyclic aromatic hydrocarbons (PAHs) and very small grains, and external illumination from the interstellar radiation field. The grid structure was modified to allow multiple dust species in each cell; based on this, a simple prescription is implemented to model dust stratification. We describe these features in detail, and show example calculations of each. Some of the more interesting results include the following: (1) outflow cavities may be more clumpy than infalling envelopes. (2) PAH emission in high-mass stars may be a better indicator of evolutionary stage than the broadband spectral energy distribution slope; and related to this, (3) externally illuminated clumps and high-mass stars in optically thin clouds can masquerade as young stellar objects. (4) Our HSEQ models suggest that dust settling is likely ubiquitous in T Tauri disks, in agreement with previous observations.
Westerveld, W.J.; Urbach, H.P.; Yousefi, M.
2011-01-01
We present an accurate and fast 3-D simulation scheme for out-of-plane grating couplers, based on 2-D rigorous [finite difference time domain (FDTD)] grating simulations, the effective index method, and the RayleighSommerfeld diffraction formula. In comparison with full 3-D FDTD simulations, the rms
Enhancing radiative energy transfer through thermal extraction
Tan, Yixuan; Liu, Baoan; Shen, Sheng; Yu, Zongfu
2016-06-01
Thermal radiation plays an increasingly important role in many emerging energy technologies, such as thermophotovoltaics, passive radiative cooling and wearable cooling clothes [1]. One of the fundamental constraints in thermal radiation is the Stefan-Boltzmann law, which limits the maximum power of far-field radiation to P0 = σT4S, where σ is the Boltzmann constant, S and T are the area and the temperature of the emitter, respectively (Fig. 1a). In order to overcome this limit, it has been shown that near-field radiations could have an energy density that is orders of magnitude greater than the Stefan-Boltzmann law [2-7]. Unfortunately, such near-field radiation transfer is spatially confined and cannot carry radiative heat to the far field. Recently, a new concept of thermal extraction was proposed [8] to enhance far-field thermal emission, which, conceptually, operates on a principle similar to oil immersion lenses and light extraction in light-emitting diodes using solid immersion lens to increase light output [62].Thermal extraction allows a blackbody to radiate more energy to the far field than the apparent limit of the Stefan-Boltzmann law without breaking the second law of thermodynamics. Thermal extraction works by using a specially designed thermal extractor to convert and guide the near-field energy to the far field, as shown in Fig. 1b. The same blackbody as shown in Fig. 1a is placed closely below the thermal extractor with a spacing smaller than the thermal wavelength. The near-field coupling transfers radiative energy with a density greater than σT4. The thermal extractor, made from transparent and high-index or structured materials, does not emit or absorb any radiation. It transforms the near-field energy and sends it toward the far field. As a result, the total amount of far-field radiative heat dissipated by the same blackbody is greatly enhanced above SσT4, where S is the area of the emitter. This paper will review the progress in thermal
Radiative transfer on decretion discs of Be binaries
Panoglou, Despina; Carciofi, Alex C; Okazaki, Atsuo T; Rivinius, Thomas
2016-01-01
In this work we explore the effect of binarity in the decretion disc of Be stars, in order to explain their variability. To this aim, we performed smoothed particle hydrodynamics (SPH) simulations on Be binary systems, following the matter ejected isotropically from the equator of the Be star towards the base of an isothermal decretion disc. We let the system evolve for time long enough to be considered at steady state, and focus on the effect of viscosity for coplanar prograde binary orbits. The disc structure is found to be locked to the orbital phase, exhibiting also a dependence on the azimuthal angle. Additionally, we present the first results from detailed non-local thermodynamic equilibrium (non-LTE) radiative transfer calculations of the disc structure computed with the SPH code. This is achieved by the use of the three-dimensional (3D) Monte Carlo code HDUST, which can produce predictions with respect to a series of observables.
Hybrid MV-kV 3D respiratory motion tracking during radiation therapy with low imaging dose
Yan, Huagang; Li, Haiyun; Liu, Zhixiang; Nath, Ravinder; Liu, Wu
2012-12-01
A novel real-time adaptive MV-kV imaging framework for image-guided radiation therapy is developed to reduce the thoracic and abdominal tumor targeting uncertainty caused by respiration-induced intrafraction motion with ultra-low patient imaging dose. In our method, continuous stereoscopic MV-kV imaging is used at the beginning of a radiation therapy delivery for several seconds to measure the implanted marker positions. After this stereoscopic imaging period, the kV imager is switched off except for the times when no fiducial marker is detected in the cine-MV images. The 3D time-varying marker positions are estimated by combining the MV 2D projection data and the motion correlations between directional components of marker motion established from the stereoscopic imaging period and updated afterwards; in particular, the most likely position is assumed to be the position on the projection line that has the shortest distance to the first principal component line segment constructed from previous trajectory points. An adaptive windowed auto-regressive prediction is utilized to predict the marker position a short time later (310 ms and 460 ms in this study) to allow for tracking system latency. To demonstrate the feasibility and evaluate the accuracy of the proposed method, computer simulations were performed for both arc and fixed-gantry deliveries using 66 h of retrospective tumor motion data from 42 patients treated for thoracic or abdominal cancers. The simulations reveal that using our hybrid approach, a smaller than 1.2 mm or 1.5 mm root-mean-square tracking error can be achieved at a system latency of 310 ms or 460 ms, respectively. Because the kV imaging is only used for a short period of time in our method, extra patient imaging dose can be reduced by an order of magnitude compared to continuous MV-kV imaging, while the clinical tumor targeting accuracy for thoracic or abdominal cancers is maintained. Furthermore, no additional hardware is required with the
Radiative transfer model for Solar System ices
Andrieu, F.; Schmidt, F.; Douté, S.; Schmitt, B.; Brissaud, O.
2015-10-01
We developed a radiative transfer model [1] that simulates the bidirectional reflectance of a contaminated slab layer of ice overlaying a granular medium, under geometrical optics conditions. Designed for planetary studies, this model has a fast computer implementation and thus is suitable for planetary high spatial/spectral resolution hyperspectral data analysis. We will present here its principles, its numerical and experimental validations and its possible applications.
Boundary conditions for NLTE polarized radiative transfer with incident radiation
Faurobert, Marianne; Atanackovic, Olga
2013-01-01
Polarized NLTE radiative transfer in the presence of scattering in spectral lines and/or in continua may be cast in a so-called reduced form for six reduced components of the radiation field. In this formalism the six components of the reduced source function are angle-independent quantities. It thus reduces drastically the storage requirement of numerical codes. This approach encounters a fundamental problem when the medium is illuminated by a polarized incident radiation, because there is a priori no way of relating the known (and measurable) Stokes parameters of the incident radiation to boundary conditions for the reduced equations. The origin of this problem is that there is no unique way of deriving the radiation reduced components from its Stokes parameters (only the inverse operation is clearly defined). The method proposed here aims at enabling to work with arbitrary incident radiation field (polarized or unpolarized). In previous works an ad-hoc treatment of the boundary conditions, applying to case...
Relativistic radiative transfer in relativistic spherical flows
Fukue, Jun
2017-02-01
Relativistic radiative transfer in relativistic spherical flows is numerically examined under the fully special relativistic treatment. We first derive relativistic formal solutions for the relativistic radiative transfer equation in relativistic spherical flows. We then iteratively solve the relativistic radiative transfer equation, using an impact parameter method/tangent ray method, and obtain specific intensities in the inertial and comoving frames, as well as moment quantities, and the Eddington factor. We consider several cases; a scattering wind with a luminous central core, an isothermal wind without a core, a scattering accretion on to a luminous core, and an adiabatic accretion on to a dark core. In the typical wind case with a luminous core, the emergent intensity is enhanced at the center due to the Doppler boost, while it reduces at the outskirts due to the transverse Doppler effect. In contrast to the plane-parallel case, the behavior of the Eddington factor is rather complicated in each case, since the Eddington factor depends on the optical depth, the flow velocity, and other parameters.
Berger, Thomas; Burmeister, Sönke; Matthiä, Daniel; Przybyla, Bartos; Reitz, Günther; Bilski, Pawel; Hajek, Michael; Sihver, Lembit; Szabo, Julianna; Ambrozova, Iva; Vanhavere, Filip; Gaza, Ramona; Semones, Edward; Yukihara, Eduardo G.; Benton, Eric R.; Uchihori, Yukio; Kodaira, Satoshi; Kitamura, Hisashi; Boehme, Matthias
2017-03-01
The natural radiation environment in Low Earth Orbit (LEO) differs significantly in composition and energy from that found on Earth. The space radiation field consists of high energetic protons and heavier ions from Galactic Cosmic Radiation (GCR), as well as of protons and electrons trapped in the Earth's radiation belts (Van Allen belts). Protons and some heavier particles ejected in occasional Solar Particle Events (SPEs) might in addition contribute to the radiation exposure in LEO. All sources of radiation are modulated by the solar cycle. During solar maximum conditions SPEs occur more frequently with higher particle intensities. Since the radiation exposure in LEO exceeds exposure limits for radiation workers on Earth, the radiation exposure in space has been recognized as a main health concern for humans in space missions from the beginning of the space age on. Monitoring of the radiation environment is therefore an inevitable task in human spaceflight. Since mission profiles are always different and each spacecraft provides different shielding distributions, modifying the radiation environment measurements needs to be done for each mission. The experiments "Dose Distribution within the ISS (DOSIS)" (2009-2011) and "Dose Distribution within the ISS 3D (DOSIS 3D)" (2012-onwards) onboard the Columbus Laboratory of the International Space Station (ISS) use a detector suite consisting of two silicon detector telescopes (DOSimetry TELescope = DOSTEL) and passive radiation detector packages (PDP) and are designed for the determination of the temporal and spatial variation of the radiation environment. With the DOSTEL instruments' changes of the radiation composition and the related exposure levels in dependence of the solar cycle, the altitude of the ISS and the influence of attitude changes of the ISS during Space Shuttle dockings inside the Columbus Laboratory have been monitored. The absorbed doses measured at the end of May 2016 reached up to 286
Finite element analysis for radiative heat transfer in multidimensional participating media
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A finite element model is developed to simulate the radiative transfer in 2D and 3D complex-geometric enclosure filled with absorbing and scattering media. This model is based on the discrete ordinates method and finite element theory. The finite element formulations and detailed steps of numerical calculation are given.The discrepancy of the results produced by different space and solid angle discretization is also investigated and compared. The effect of the six-node quadric element on the accuracy is analyzed by a 2D rectangular enclosure. These results indicate that the present model can simulate radiative transfer in multidimensional complexgeometric enclosure with participating media effectively and accurately.
Energy Technology Data Exchange (ETDEWEB)
Reardon, Kelli A.; Read, Paul W.; Morris, Monica M. [Department of Radiation Oncology, University of Virginia, Charlottesville, VA (United States); Reardon, Michael A. [Department of Radiology, University of Virginia, Charlottesville, VA (United States); Geesey, Constance [Department of Radiation Oncology, University of Virginia, Charlottesville, VA (United States); Wijesooriya, Krishni, E-mail: kw5wx@hscmail.mcc.virginia.edu [Department of Radiation Oncology, University of Virginia, Charlottesville, VA (United States)
2013-07-01
Patients undergoing radiation for left-sided breast cancer have increased rates of coronary artery disease. Free-breathing intensity-modulated radiation therapy (FB-IMRT) and 3-dimensional conformal deep inspiratory–breath hold (3D-DIBH) reduce cardiac irradiation. The purpose of this study is to compare the dose to organs at risk in FB-IMRT vs 3D-DIBH for patients with left-sided breast cancer. Ten patients with left-sided breast cancer had 2 computed tomography scans: free breathing and voluntary DIBH. Optimization of the IMRT plan was performed on the free-breathing scan using 6 noncoplanar tangential beams. The 3D-DIBH plan was optimized on the DIBH scan and used standard tangents. Mean volumes of the heart, the left anterior descending coronary artery (LAD), the total lung, and the right breast receiving 5% to 95% (5% increments) of the prescription dose were calculated. Mean volumes of the heart and the LAD were lower (p<0.05) in 3D-DIBH for volumes receiving 5% to 80% of the prescription dose for the heart and 5% for the LAD. Mean dose to the LAD and heart were lower in 3D-DIBH (p≤0.01). Mean volumes of the total lung were lower in FB-IMRT for dose levels 20% to 75% (p<0.05), but mean dose was not different. Mean volumes of the right breast were not different for any dose; however, mean dose was lower for 3D-DIBH (p = 0.04). 3D-DIBH is an alternative approach to FB-IMRT that provides a clinically equivalent treatment for patients with left-sided breast cancer while sparing organs at risk with increased ease of implementation.
EMMA: an AMR cosmological simulation code with radiative transfer
Aubert, Dominique; Ocvirk, Pierre
2015-01-01
EMMA is a cosmological simulation code aimed at investigating the reionization epoch. It handles simultaneously collisionless and gas dynamics, as well as radiative transfer physics using a moment-based description with the M1 approximation. Field quantities are stored and computed on an adaptive 3D mesh and the spatial resolution can be dynamically modified based on physically-motivated criteria. Physical processes can be coupled at all spatial and temporal scales. We also introduce a new and optional approximation to handle radiation : the light is transported at the resolution of the non-refined grid and only once the dynamics have been fully updated, whereas thermo-chemical processes are still tracked on the refined elements. Such an approximation reduces the overheads induced by the treatment of radiation physics. A suite of standard tests are presented and passed by EMMA, providing a validation for its future use in studies of the reionization epoch. The code is parallel and is able to use graphics proc...
Pötter, Richard; Haie-Meder, Christine; Van Limbergen, Erik; Barillot, Isabelle; De Brabandere, Marisol; Dimopoulos, Johannes; Dumas, Isabelle; Erickson, Beth; Lang, Stefan; Nulens, An; Petrow, Peter; Rownd, Jason; Kirisits, Christian
2006-01-01
The second part of the GYN GEC ESTRO working group recommendations is focused on 3D dose-volume parameters for brachytherapy of cervical carcinoma. Methods and parameters have been developed and validated from dosimetric, imaging and clinical experience from different institutions (University of Vienna, IGR Paris, University of Leuven). Cumulative dose volume histograms (DVH) are recommended for evaluation of the complex dose heterogeneity. DVH parameters for GTV, HR CTV and IR CTV are the minimum dose delivered to 90 and 100% of the respective volume: D90, D100. The volume, which is enclosed by 150 or 200% of the prescribed dose (V150, V200), is recommended for overall assessment of high dose volumes. V100 is recommended for quality assessment only within a given treatment schedule. For Organs at Risk (OAR) the minimum dose in the most irradiated tissue volume is recommended for reporting: 0.1, 1, and 2 cm3; optional 5 and 10 cm3. Underlying assumptions are: full dose of external beam therapy in the volume of interest, identical location during fractionated brachytherapy, contiguous volumes and contouring of organ walls for >2 cm3. Dose values are reported as absorbed dose and also taking into account different dose rates. The linear-quadratic radiobiological model-equivalent dose (EQD2)-is applied for brachytherapy and is also used for calculating dose from external beam therapy. This formalism allows systematic assessment within one patient, one centre and comparison between different centres with analysis of dose volume relations for GTV, CTV, and OAR. Recommendations for the transition period from traditional to 3D image-based cervix cancer brachytherapy are formulated. Supplementary data (available in the electronic version of this paper) deals with aspects of 3D imaging, radiation physics, radiation biology, dose at reference points and dimensions and volumes for the GTV and CTV (adding to [Haie-Meder C, Pötter R, Van Limbergen E et al. Recommendations from
Patel, Z. S.; Cucinotta, F. A.; Huff, J. L.
2011-01-01
Risk estimation for radiation-induced cancer relies heavily on human epidemiology data obtained from terrestrial irradiation incidents from sources such as medical and occupational exposures as well as from the atomic bomb survivors. No such data exists for exposures to the types and doses of high-LET radiation that will be encountered during space travel; therefore, risk assessment for space radiation requires the use of data derived from cell culture and animal models. The use of experimental models that most accurately replicate the response of human tissues is critical for precision in risk projections. This work compares the genotoxic effects of radiation on normal human epithelial cells grown in standard 2-D monolayer culture compared to 3-D organotypic co-culture conditions. These 3-D organotypic models mimic the morphological features, differentiation markers, and growth characteristics of fully-differentiated normal human tissue and are reproducible using defined components. Cultures were irradiated with 2 Gy low-LET gamma rays or varying doses of high-LET particle radiation and genotoxic damage was measured using a modified cytokinesis block micronucleus assay. Our results revealed a 2-fold increase in residual damage in 2 Gy gamma irradiated cells grown under organotypic culture conditions compared to monolayer culture. Irradiation with high-LET particle radiation gave similar results, while background levels of damage were comparable under both scenarios. These observations may be related to the phenomenon of "multicellular resistance" where cancer cells grown as 3-D spheroids or in vivo exhibit an increased resistance to killing by chemotherapeutic agents compared to the same cells grown in 2-D culture. A variety of factors are likely involved in mediating this process, including increased cell-cell communication, microenvironment influences, and changes in cell cycle kinetics that may promote survival of damaged cells in 3-D culture that would
Oldham, Mark
2015-01-01
Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.
Jiang, Qiu
2016-09-08
By employing 3D current collectors, hybrid coplanar microsupercapacitors are fabricated. These devices show excellent energy density of 200 μW h cm−2 compared to the state-of-the-art microsupercapacitors (1–40 μW h cm−2), and superior power density (4.4 mW cm−2) compared to thin film batteries and microbatteries at comparable energy density.
Radiative transfer in closely packed realistic regoliths
Directory of Open Access Journals (Sweden)
S. Vahidinia
2011-09-01
Full Text Available We have developed a regolith radiative transfer model (RRT based on a first-principles approach to regolith modeling that is essential for near-to-far infrared observations of grainy surfaces, and is readily configured to answer fundamental questions about popular models with which all remote observations of all airless solar system bodies with granular surfaces are currently interpreted. Our model accounts for wavelength-size regolith particles which are closely packed and can be heterogeneous in composition and arbitrarily shaped. Here we present preliminary results showing the role of porosity on layer reflectivity.
Energy Technology Data Exchange (ETDEWEB)
Wortel, Ruud C.; Incrocci, Luca [Department of Radiation Oncology, Erasmus Medical Center Cancer Institute, Rotterdam (Netherlands); Pos, Floris J.; Lebesque, Joos V.; Witte, Marnix G.; Heide, Uulke A. van der; Herk, Marcel van [Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam (Netherlands); Heemsbergen, Wilma D., E-mail: w.heemsbergen@nki.nl [Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam (Netherlands)
2015-03-15
Purpose: Image-guided intensity modulated radiation therapy (IG-IMRT) allows significant dose reductions to organs at risk in prostate cancer patients. However, clinical data identifying the benefits of IG-IMRT in daily practice are scarce. The purpose of this study was to compare dose distributions to organs at risk and acute gastrointestinal (GI) and genitourinary (GU) toxicity levels of patients treated to 78 Gy with either IG-IMRT or 3D-CRT. Methods and Materials: Patients treated with 3D-CRT (n=215) and IG-IMRT (n=260) receiving 78 Gy in 39 fractions within 2 randomized trials were selected. Dose surface histograms of anorectum, anal canal, and bladder were calculated. Identical toxicity questionnaires were distributed at baseline, prior to fraction 20 and 30 and at 90 days after treatment. Radiation Therapy Oncology Group (RTOG) grade ≥1, ≥2, and ≥3 endpoints were derived directly from questionnaires. Univariate and multivariate binary logistic regression analyses were applied. Results: The median volumes receiving 5 to 75 Gy were significantly lower (all P<.001) with IG-IMRT for anorectum, anal canal, and bladder. The mean dose to the anorectum was 34.4 Gy versus 47.3 Gy (P<.001), 23.6 Gy versus 44.6 Gy for the anal canal (P<.001), and 33.1 Gy versus 43.2 Gy for the bladder (P<.001). Significantly lower grade ≥2 toxicity was observed for proctitis, stool frequency ≥6/day, and urinary frequency ≥12/day. IG-IMRT resulted in significantly lower overall RTOG grade ≥2 GI toxicity (29% vs 49%, respectively, P=.002) and overall GU grade ≥2 toxicity (38% vs 48%, respectively, P=.009). Conclusions: A clinically meaningful reduction in dose to organs at risk and acute toxicity levels was observed in IG-IMRT patients, as a result of improved technique and tighter margins. Therefore reduced late toxicity levels can be expected as well; additional research is needed to quantify such reductions.
Westerveld, W J; Yousefi, M
2015-01-01
We present an accurate and fast 3D simulation scheme for out-of-plane grating couplers, based on two dimensional rigorous (finite difference time domain) grating simulations, the effective index method (EIM), and the Rayleigh-Sommerfeld diffraction formula. In comparison with full 3D FDTD simulations, the rms difference in electric field is below 5% and the difference in power flux is below 3%. A grating coupler for coupling from a silicon-on-insulator photonic integrated circuit to an optical fiber positioned 0.1 mm above the circuit is designed as example.
Institute of Scientific and Technical Information of China (English)
Saad El Din I; Abd El AAl H; Makaar W; Mashhour K; El Beih D; Hashem W
2013-01-01
Objective:The work is a comparative study between two modalities of radiation therapy, the aim of which is to compare 3D conformal radiation therapy (3D-CRT) and intensity modulated radiation therapy (IMRT) in treating posterior fossa boost in children with high risk medul oblastoma;dosimetrical y evaluating and comparing both techniques as regard target coverage and doses to organs at risk (OAR). Methods:Twenty patients with high risk medul oblastoma were treated by 3D-CRT technique. A dosimetric comparison was done by performing two plans for the posterior fossa boost, 3D-CRT and IMRT plans, for the same patient using Eclipse planning system (version 8.6). Results:IMRT had a better conformity index compared to 3D-CRT plans (P value of 0.000). As for the dose homogeneity it was also better in the IMRT plans, yet it hasn’t reached the statistical significant value. Also, doses received by the cochleae, brainstem and spinal cord were significantly less in the IMRT plans than those of 3D-CRT (P value<0.05). Conclusion:IMRT technique was clearly able to improve conformity and homogeneity index, spare the cochleae, reduce dose to the brainstem and spinal cord in comparison to 3D-CRT technique.
Detecting Radiation-Induced Injury Using Rapid 3D Variogram Analysis of CT Images of Rat Lungs
Energy Technology Data Exchange (ETDEWEB)
Jacob, Rick E.; Murphy, Mark K.; Creim, Jeffrey A.; Carson, James P.
2013-10-01
A new heterogeneity analysis approach to discern radiation-induced lung damage was tested on CT images of irradiated rats. The method, combining octree decomposition with variogram analysis, demonstrated a significant correlation with radiation exposure levels, whereas conventional measurements and pulmonary function tests did not. The results suggest the new approach may be highly sensitive for assessing even subtle radiation-induced changes
Generation of a cold pulsed beam of Rb atoms by transfer from a 3D magneto-optic trap
Chanu, Sapam Ranjita; Natarajan, Vasant
2016-01-01
We demonstrate a technique for producing a cold pulsed beam of atoms by transferring a cloud of atoms trapped in a three dimensional magneto-optic trap (MOT). The MOT is loaded by heating a getter source of Rb atoms. We show that it is advantageous to transfer with two beams (with a small angle between them) compared to a single beam, because the atoms stop interacting with the beams in the two-beam technique, which results in a Gaussian velocity distribution. The atoms are further cooled in optical molasses by turning off the MOT magnetic field before the transfer beams are turned on.
Directory of Open Access Journals (Sweden)
Berger Thomas
2017-01-01
Full Text Available The natural radiation environment in Low Earth Orbit (LEO differs significantly in composition and energy from that found on Earth. The space radiation field consists of high energetic protons and heavier ions from Galactic Cosmic Radiation (GCR, as well as of protons and electrons trapped in the Earth’s radiation belts (Van Allen belts. Protons and some heavier particles ejected in occasional Solar Particle Events (SPEs might in addition contribute to the radiation exposure in LEO. All sources of radiation are modulated by the solar cycle. During solar maximum conditions SPEs occur more frequently with higher particle intensities. Since the radiation exposure in LEO exceeds exposure limits for radiation workers on Earth, the radiation exposure in space has been recognized as a main health concern for humans in space missions from the beginning of the space age on. Monitoring of the radiation environment is therefore an inevitable task in human spaceflight. Since mission profiles are always different and each spacecraft provides different shielding distributions, modifying the radiation environment measurements needs to be done for each mission. The experiments “Dose Distribution within the ISS (DOSIS” (2009–2011 and “Dose Distribution within the ISS 3D (DOSIS 3D” (2012–onwards onboard the Columbus Laboratory of the International Space Station (ISS use a detector suite consisting of two silicon detector telescopes (DOSimetry TELescope = DOSTEL and passive radiation detector packages (PDP and are designed for the determination of the temporal and spatial variation of the radiation environment. With the DOSTEL instruments’ changes of the radiation composition and the related exposure levels in dependence of the solar cycle, the altitude of the ISS and the influence of attitude changes of the ISS during Space Shuttle dockings inside the Columbus Laboratory have been monitored. The absorbed doses measured at the end of May 2016
Radiative Transfer and Retrievals in EOF Domain
Liu, Xu; Zhou, Daniel K.; Larar, Allen; Smith, William L.; Schluessel, Peter
2008-01-01
The Infrared Atmospheric Sounding Interferometer (IASI) is a hyperspectral sensor with 8461 spectral channels and a nominal spectral resolution of 0.25 cm(sup -1). It is computationally intensive to perform radiative transfer calculations and inversions using all these channels. We will present a Principal Component-based Radiative Transfer Model (PCRTM) and a retrieval algorithm which perform all the necessary calculations in EOF domain. Since the EOFs are orthogonal to each other, only about 100 principal components are needed to represent the information content of the 8461 channels. The PCRTM provides the EOF coefficients and associated derivatives with respect to atmospheric and surface parameters needed by the inversion algorithm. The inversion algorithm is based on a non-linear Levenberg-Marquardt method with climatology covariance and a priori information as constraints. The retrieved parameters include atmospheric temperature, moisture and ozone profiles, cloud parameters, surface skin temperature, and surface emissivities. To make the retrieval system even more compact and stable. The atmospheric vertical profiles are compressed into the EOF space as well. The surface emissivities are also compressed into EOF space.
Radiation energy transfer in RNA polymers
Kempner, E. S.; Salovey, R.; Bernstein, S. L.
1996-11-01
Ribozymes are a special class of polyribonucleotide (RNA) molecules which possess intrinsic catalytic activity, capable of cleaving nucleic acid substrates. RNA molecules were synthesized containing a hammerhead ribozyme moiety of 52 nucleotides linked to an inactive leader sequence, for total lengths of either 262 or 1226 nucleotides. These RNAs were frozen and irradiated with high energy electrons. Surviving ribozyme activity was determined, using the ability of the irradiated ribozymes to cleave a labeled substrate. From the same irradiated samples, the amount of intact RNA remaining was determined following denaturing gel electrophoresis. Radiation target analyses of these data revealed a structural target size of 80 kDa and a ribozyme activity target size of 15 kDa for the smaller ribozyme, and 319 and 16 kDa, respectively, for the larger ribozyme. The disparity in target size for activity vs structure indicates that, in contrast to proteins, there is no spread of radiation damage far from the primary site of ionization in RNA molecules. The smaller target size for activity indicates that only primary ionizations occurring in the specific active region are effective. This is similar to the case for oligosaccharides. It is concluded that the presence of the ribose sugar in the polymer chain restricts radiation damage to a small region and prevents major energy transfer throughout the molecule.
Radiative energy transfer in molecular gases
Tiwari, Surendra N.
1992-01-01
Basic formulations, analyses, and numerical procedures are presented to study radiative interactions in gray as well as nongray gases under different physical and flow conditions. After preliminary fluid-dynamical considerations, essential governing equations for radiative transport are presented that are applicable under local and nonlocal thermodynamic equilibrium conditions. Auxiliary relations for relaxation times and spectral absorption models are also provided. For specific applications, several simple gaseous systems are analyzed. The first system considered consists of a gas bounded by two parallel plates having the same temperature. Within the gas there is a uniform heat source per unit volume. For this system, both vibrational nonequilibrium effects and radiation conduction interactions are studied. The second system consists of fully developed laminar flow and heat transfer in a parallel plate duct under the boundary condition of a uniform surface heat flux. For this system, effects of gray surface emittance are studied. With the single exception of a circular geometry, the third system is considered identical to the second system. Here, the influence of nongray walls is also studied.
Flare loop radiative hydrodynamics. III - Nonlocal radiative transfer effects
Canfield, R. C.; Fisher, G. H.; Mcclymont, A. N.
1983-01-01
The study has three goals. The first is to demonstrate that processes exist whose intrinsic nonlocal nature cannot be represented by local approximations. The second is to elucidate the physical nature and origins of these nonlocal processes. The third is to suggest that the methods and results described here may prove useful in constructing semiempirical models of the chromosphere by means more efficient than trial and error. Matrices are computed that describe the effect of a temperature perturbation at an arbitrary point in the loop on density, hydrogen ionized fraction, total radiative loss rate, and radiative loss rate of selected hydrogen lines and continua at all other points. It is found that the dominant nonlocal radiative transfer effects can be separated into flux divergence coefficient effects and upper level population effects. The former are most important when the perturbation takes place in a region of significant opacity. Upper level population effects arise in both optically thick and thin regions in response to nonlocal density, ionization, and interlocking effects.
Indian Academy of Sciences (India)
Praveen Krishnan; K Srinivasa Ramanujam; C Balaji
2012-08-01
The first step in developing any algorithm to retrieve the atmospheric temperature and humidity parameters at various pressure levels is the simulation of the top of the atmosphere radiances that can be measured by the satellite. This study reports the results of radiative transfer simulations for the multichannel infrared sounder of the proposed Indian satellite INSAT-3D due to be launched shortly. Here, the widely used community software k Compressed Atmospheric Radiative Transfer Algorithm (kCARTA) is employed for performing the radiative transfer simulations. Though well established and benchmarked, kCARTA is a line-by-line solver and hence takes enormous computational time and effort for simulating the multispectral radiances for a given atmospheric scene. This necessitates the development of a much faster and at the same time, equally accurate RT model that can drive a real-time retrieval algorithm. In the present study, a fast radiative transfer model using neural networks is proposed to simulate radiances corresponding to the wavenumbers of INSAT-3D. Realistic atmospheric temperature and humidity profiles have been used for training the network. Spectral response functions of GOES-13, a satellite similar in construction, purpose and design and already in use are used. The fast RT model is able to simulate the radiances for 1200 profiles in 18 ms for a 15-channel GOES profile, with a correlation coefficient of over 99%. Finally, the robustness of the model is tested using additional synthetic profiles generated using empirical orthogonal functions (EOF).
Using 1D theory to understand 3D stagnation of a wire-array Z pinch in the absence of radiation
Yu, Edmund
2015-11-01
Many high-energy-density systems implode towards the axis of symmetry, where it collides on itself, forming a hot plasma. However, experiments show these imploding plasmas develop three-dimensional (3D) structures. As a result, the plasma cannot completely dissipate its kinetic energy at stagnation, instead retaining significant 3D flow. A useful tool for understanding the effects of this residual flow is 3D simulation, but the amount and complexity of information can be daunting. To address this problem, we explore the connection between 3D simulation and one-dimensional (1D) theory. Such a connection, if it exists, is mutually beneficial: 1D theory can provide a clear picture of the underlying dynamics of 3D stagnation. On the other hand, deviations between theory and simulation suggest how 1D theory must be modified to account for 3D effects. In this work, we focus on a 3D, magnetohydrodynamic simulation of a compact wire-array Z pinch. To provide a simpler background against which to test our ideas, we artificially turn off radiation during the stagnation phase. Examination of the initial accumulation of mass on axis reveals oblique collision between jets, shock accretion, and vortex formation. Despite evidence for shock-dominated stagnation, a 1D shockless stagnation solution is more appropriate for describing the global dynamics, in that it reproduces the increase of on-axis density with time. However, the 1D solution must be modified to account for 3D effects: the flows suggest enhanced thermal transport as well as centrifugal force. Upon reaching peak compression, the stagnation transitions to a second phase, in which the high-pressure core on axis expands outward into the remaining imploding plasma. During this phase, a 1D shock solution describes the growth of the shock accretion region, as well as the decrease of on-axis density with time. However, the effect of 3D flows is still present: the on-axis temperature does not cool during expansion, which
Plasma effects in high frequency radiative transfer
Alonso, C. T.
1981-02-01
A survey of collective plasma processes which can affect the transfer of high frequency radiation in a hot dense plasma is given. For pedagogical reasons plasma processes are examined by relating them to a particular reference plasma which consists of fully ionized carbon at a temperature kT = 1 KeV (ten million degrees Kelvin) and an electron density N = 3 x 10 to the 23rd power/cu cm, (which corresponds to a mass density rho = 1 gm/cu cm) and an ion density N sub i = 5 x 10 to the 22nd power/cu cm. The transport of photons, ranging from 1 eV to 1 KeV in energy, in such plasmas is considered. Such photons are to be used as diagnostic probes of hot dense laboratory plasmas.
Radiative Transfer in spheres I. Analytical Solutions
Aboughantous, C
2001-01-01
A nonsingular analytical solution for the transfer equation in a pure absorber is obtained in central symmetry and in a monochromatic radiation field. The native regular singularity of the equation is removed by applying a linear transformation to the frame of reference. Two different ap-proaches are used to carry out the solution. In the first approach the angular derivative is interpreted in an original way that made it possible to discard this derivative from the equation for all black body media without upsetting the conservation of energy. In this approach the analytic solution is expressible in terms of exponential integrals without approximations but for practical considerations the solution is presented in the form of Gauss-Legendre quadrature for quantitative evaluation of the solutions. In the second approach the angular derivative is approximated by a new set of discrete ordinates that guarantees the closer of the set of equations and the conservation of energy. The solutions from the two approache...
Optical CT scanner for in-air readout of gels for external radiation beam 3D dosimetry.
Ramm, Daniel; Rutten, Thomas P; Shepherd, Justin; Bezak, Eva
2012-06-21
Optical CT scanners for a 3D readout of externally irradiated radiosensitive hydrogels currently require the use of a refractive index (RI) matching liquid bath to obtain suitable optical ray paths through the gel sample to the detector. The requirement for a RI matching liquid bath has been negated by the design of a plastic cylindrical gel container that provides parallel beam geometry through the gel sample for the majority of the projection. The design method can be used for various hydrogels. Preliminary test results for the prototype laser beam scanner with ferrous xylenol-orange gel show geometric distortion of 0.2 mm maximum, spatial resolution limited to beam spot size of about 0.4 mm and 0.8% noise (1 SD) for a uniform irradiation. Reconstruction of a star pattern irradiated through the cylinder walls demonstrates the suitability for external beam applications. The extremely simple and cost-effective construction of this optical CT scanner, together with the simplicity of scanning gel samples without RI matching fluid increases the feasibility of using 3D gel dosimetry for clinical external beam dose verifications.
Hata, Maki; Uyeshima, Makoto; Handa, Shun; Shimoizumi, Masashi; Tanaka, Yoshikazu; Hashimoto, Takeshi; Kagiyama, Tsuneomi; Utada, Hisashi; Munekane, Hiroshi; Ichiki, Masahiro; Fuji-ta, Kiyoshi
2017-01-01
Our 3-D electrical resistivity model clearly detects particular subsurface features for magmatism associated with subduction of the Philippine Sea Plate (PSP) in three regions: a southern and a northern volcanic region, and a nonvolcanic region on the island of Kyushu. We apply 3-D inversion analyses for geomagnetic transfer function data of a short-period band, in combination with results of a previous 3-D model that was determined by using Network-Magnetotelluric response function data of a longer-period band as an initial model in the present inversion to improve resolution at shallow depths; specifically, a two-stage inversion is used instead of a joint inversion. In contrast to the previous model, the presented model clearly reveals a conductive block on the back-arc side of Kirishima volcano at shallow depths of 50 km; the block is associated with hydrothermal fluids and hydrothermal alteration zones related to the formation of epithermal gold deposits. A second feature revealed by the model is another conductive block regarded as upwelling fluids, extending from the upper surface of the PSP in the mantle under Kirishima volcano in the southern volcanic region. Third, a resistive crustal layer, which confines the conductive block in the mantle, is distributed beneath the nonvolcanic region. Fourth, our model reveals a significant resistive block, which extends below the continental Moho at the fore-arc side of the volcanic front and extends into the nonvolcanic region in central Kyushu.
Wong, Cheuk-Ping; Sit, Wai-Yu
2014-01-01
Using the helicity formalism, we calculate the combined angular distribution function of the two gamma photons ($\\gamma_1$ and $\\gamma_2$) and the electron ($e^-$) in the triple cascade process $\\bar{p}p\\rightarrow{}^3D_3\\rightarrow{}^3P_2+\\gamma_1\\rightarrow(\\psi+\\gamma_2) +\\gamma_1 \\rightarrow (e^- + e^+) +\\gamma_2 +\\gamma_1$, when $\\bar{p}$ and $p$ are arbitrarily polarized. We also derive six different partially integrated angular distribution functions which give the angular distributions of one or two particles in the final state. Our results show that by measuring the two-particle angular distribution of $\\gamma_1$ and $\\gamma_2$ and that of $\\gamma_2$ and $e^-$, one can determine the relative magnitudes as well as the relative phases of all the helicity amplitudes in the two charmonium radiative transitions ${}^3D_3\\rightarrow{}^3P_2+\\gamma_1$ and $^3P_2\\rightarrow \\psi+\\gamma_2$.
Energy Technology Data Exchange (ETDEWEB)
Vitzthum, L; Ehler, E; Sterling, D; Reynolds, T; Higgins, P; Dusenbery, K [University of Minnesota, Minneapolis, MN (United States)
2015-06-15
Purpose: To evaluate a novel 3D printed bolus fabricated from a copper-plastic composite as a thin flexible, custom fitting device that can replicate doses achieved with conventional bolus techniques. Methods: Two models of bolus were created on a 3D printer using a composite copper-PLA/PHA. Firstly, boluses were constructed at thicknesses of 0.4, 0.6 and 0.8 mm. Relative dose measurements were performed under the bolus with an Attix Chamber as well as with radiochromic film. Results were compared to superficial Attix Chamber measurements in a water equivalent material to determine the dosimetric water equivalence of the copper-PLA/PHA plastic. Secondly, CT images of a RANDO phantom were used to create a custom fitting bolus across the anterolateral scalp. Surface dose with the bolus placed on the RANDO phantom was measured with radiochromic film at tangential angles with 6, 10, 10 flattening filter free (FFF) and 18 MV photon beams. Results: Mean surface doses for 6, 10, 10FFF and 18 MV were measured as a percent of Dmax for the flat bolus devices of each thickness. The 0.4 mm thickness bolus was determined to be near equivalent to 2.5 mm depth in water for all four energies. Surface doses ranged from 59–63% without bolus and 85–90% with the custom 0.4 mm copper-plastic bolus relative to the prescribed dose for an oblique tangential beam arrangement on the RANDO phantom. Conclusion: Sub-millimeter thickness, 3D printed composite copper-PLA/PHA bolus can provide a build-up effect equivalent to conventional bolus. At this thickness, the 3D printed bolus allows a level of flexure that may provide more patient comfort than current 3D printing materials used in bolus fabrication while still retaining the CT based custom patient shape. Funding provided by an intra-department grant of the University of Minnesota Department of Radiation Oncology.
Debebe, Senait A.; Franquiz, Juan; McGoron, Anthony J.
2015-03-01
Selective Internal Radiation Therapy (SIRT) is a common way to treat liver cancer that cannot be treated surgically. SIRT involves administration of Yttrium - 90 (90Y) microspheres via the hepatic artery after a diagnostic procedure using 99mTechnetium (Tc)-macroaggregated albumin (MAA) to detect extrahepatic shunting to the lung or the gastrointestinal tract. Accurate quantification of radionuclide administered to patients and radiation dose absorbed by different organs is of importance in SIRT. Accurate dosimetry for SIRT allows optimization of dose delivery to the target tumor and may allow for the ability to assess the efficacy of the treatment. In this study, we proposed a method that can efficiently estimate radiation absorbed dose from 90Y bremsstrahlung SPECT/CT images of liver and the surrounding organs. Bremsstrahlung radiation from 90Y was simulated using the Compton window of 99mTc (78keV at 57%). 99mTc images acquired at the photopeak energy window were used as a standard to examine the accuracy of dosimetry prediction by the simulated bremsstrahlung images. A Liqui-Phil abdominal phantom with liver, stomach and two tumor inserts was imaged using a Philips SPECT/CT scanner. The Dose Point Kernel convolution method was used to find the radiation absorbed dose at a voxel level for a three dimensional dose distribution. This method will allow for a complete estimate of the distribution of radiation absorbed dose by tumors, liver, stomach and other surrounding organs at the voxel level. The method provides a quantitative predictive method for SIRT treatment outcome and administered dose response for patients who undergo the treatment.
Camus, Victoria L; Stewart, Grant; Nailon, William H; McLaren, Duncan B; Campbell, Colin J
2016-08-15
Multicellular tumour spheroids (MTS) are three-dimensional cell cultures that possess their own microenvironments and provide a more meaningful model of tumour biology than monolayer cultures. As a result, MTS are becoming increasingly used as tumor models when measuring the efficiency of therapies. Monitoring the viability of live MTS is complicated by their 3D nature and conventional approaches such as fluorescence often require fixation and sectioning. In this paper we detail the use of Surface Enhanced Raman Spectroscopy (SERS) to measure the viability of MTS grown from prostate cancer (PC3) cells. Our results show that we can monitor loss of viability by measuring pH and redox potential in MTS and furthermore we demonstrate that SERS can be used to measure the effects of fractionation of a dose of radiotherapy in a way that has potential to inform treatment planning.
Energy Technology Data Exchange (ETDEWEB)
Hayes, J C; Norman, M
1999-10-28
This report details an investigation into the efficacy of two approaches to solving the radiation diffusion equation within a radiation hydrodynamic simulation. Because leading-edge scientific computing platforms have evolved from large single-node vector processors to parallel aggregates containing tens to thousands of individual CPU's, the ability of an algorithm to maintain high compute efficiency when distributed over a large array of nodes is critically important. The viability of an algorithm thus hinges upon the tripartite question of numerical accuracy, total time to solution, and parallel efficiency.
Determination of time of death in forensic science via a 3-D whole body heat transfer model.
Bartgis, Catherine; LeBrun, Alexander M; Ma, Ronghui; Zhu, Liang
2016-12-01
This study is focused on developing a whole body heat transfer model to accurately simulate temperature decay in a body postmortem. The initial steady state temperature field is simulated first and the calculated weighted average body temperature is used to determine the overall heat transfer coefficient at the skin surface, based on thermal equilibrium before death. The transient temperature field postmortem is then simulated using the same boundary condition and the temperature decay curves at several body locations are generated for a time frame of 24h. For practical purposes, curve fitting techniques are used to replace the simulations with a proposed exponential formula with an initial time delay. It is shown that the obtained temperature field in the human body agrees very well with that in the literature. The proposed exponential formula provides an excellent fit with an R(2) value larger than 0.998. For the brain and internal organ sites, the initial time delay varies from 1.6 to 2.9h, when the temperature at the measuring site does not change significantly from its original value. The curve-fitted time constant provides the measurement window after death to be between 8h and 31h if the brain site is used, while it increases 60-95% at the internal organ site. The time constant is larger when the body is exposed to colder air, since a person usually wears more clothing when it is cold outside to keep the body warm and comfortable. We conclude that a one-size-fits-all approach would lead to incorrect estimation of time of death and it is crucial to generate a database of cooling curves taking into consideration all the important factors such as body size and shape, environmental conditions, etc., therefore, leading to accurate determination of time of death.
Polar firn layering in radiative transfer models
Linow, Stefanie; Hoerhold, Maria
2016-04-01
For many applications in the geosciences, remote sensing is the only feasible method of obtaining data from large areas with limited accessibility. This is especially true for the cryosphere, where light conditions and cloud coverage additionally limit the use of optical sensors. Here, instruments operating at microwave frequencies become important, for instance in polar snow parameters / SWE (snow water equivalent) mapping. However, the interaction between snow and microwave radiation is a complex process and still not fully understood. RT (radiative transfer) models to simulate snow-microwave interaction are available, but they require a number of input parameters such as microstructure and density, which are partly ill-constrained. The layering of snow and firn introduces an additional degree of complexity, as all snow parameters show a strong variability with depth. Many studies on RT modeling of polar firn deal with layer variability by using statistical properties derived from previous measurements, such as the standard deviations of density and microstructure, to configure model input. Here, the variability of microstructure parameters, such as density and particle size, are usually assumed to be independent of each other. However, in the case of the firn pack of the polar ice sheets, we observe that microstructure evolution depends on environmental parameters, such as temperature and snow deposition. Accordingly, density and microstructure evolve together within the snow and firn. Based on CT (computer tomography) microstructure measurements of antarctic firn, we can show that: first, the variability of density and effective grain size are linked and can thus be implemented in the RT models as a coupled set of parameters. Second, the magnitude of layering is captured by the measured standard deviation. Based on high-resolution density measurements of an Antarctic firn core, we study the effect of firn layering at different microwave wavelengths. By means of
Energy Technology Data Exchange (ETDEWEB)
Li, Q [Duke University, Durham, NC (United States); Juang, T; Bache, S [Durham, NC (United States); Chang, S [UNC School of Medicine, Chapel Hill, NC (United States); Oldham, M [Duke University Medical Center, Durham, NC (United States)
2014-06-15
Purpose: The feasibility of MRT has recently been demonstrated utilizing a new technology of Carbon-Nano-Tube(CNT) field emission x-ray sources.This approach can deliver very high dose(10's of Gy) in narrow stripes(sub-mm) of radiation which enables the study of novel radiation treatment approaches. Here we investigate the application of highresolution (50um isotropic) PRESAGE/Optical-CT 3D dosimetry techniques to characterize the radiation delivered in this extremely dosimetrically challenging scenario. Methods: The CNT field emission x-ray source irradiator comprises of a linear cathode array and a novel collimator alignment system. This allows a precise delivery of high-energy small beams up to 160 kVp. A cylindrical dosimeter (∼2.2cm in height ∼2.5cm in diameter) was irradiated by CNT MRT delivering 3 strips of radiation with a nominal entrance dose of 32 Gy.A second dosimeter was irradiated with similar entrance dose, with a regular x-ray irradiator collimated to microscopical strip-beams. 50um (isotropic) 3D dosimetry was performed using an in-house optical-CT system designed and optimized for high resolution imaging (including a stray light deconvolution correction).The percentage depth dose (PDD), peak-to-valley ratio (PVR) and beam width (FWHM) data were obtained and analyzed in both cases. Results: High resolution 3D images were successfully achieved with the prototype system, enabling extraction of PDD and dose profiles. The PDDs for the CNT irradiation showed pronounced attenuation, but less build-up effect than that from the multibeam irradiation. The beam spacing between the three strips has an average value of 0.9mm while that for the 13 strips is 1.5 mm at a depth of 16.5 mm. The stray light corrected image shows line profiles with reduced noise and consistent PVR values. Conclusion: MRT dosimetry is extremely challenging due to the ultra small fields involved.This preliminary application of a novel, ultra-high resolution, optical-CT 3D
Dubousset, Jean; Charpak, Georges; Dorion, Irène; Skalli, Wafa; Lavaste, François; Deguise, Jacques; Kalifa, Gabriel; Ferey, Solène
2005-02-01
Close collaboration between multidisciplinary specialists (physicists, biomecanical engineers, medical radiologists and pediatric orthopedic surgeons) has led to the development of a new low-dose radiation device named EOS. EOS has three main advantages: The use of a gaseous X-ray detector, invented by Georges Charpak (Nobel Prizewinner 1992), the dose necessary to obtain a 2D image of the skeletal system has been reduced by 8 to 10 times, while that required to obtain a 3D reconstruction from CT slices has fallen by a factor of 800 to 1000. The accuracy of the 3D reconstruction obtained with EOS is as good as that obtained with CT. The patient is examined in the standing (or seated) position, and is scanned simultaneously from head to feet, both frontally and laterally. This is a major advantage over conventional CT which requires the patient to be placed horizontally. -The 3D reconstructions of each element of the osteo-articular system are as precise as those obtained by conventional CT. EOS is also rapid, taking only 15 to 30 minutes to image the entire spine.
Radiative heat transfer in the extreme near field.
Kim, Kyeongtae; Song, Bai; Fernández-Hurtado, Víctor; Lee, Woochul; Jeong, Wonho; Cui, Longji; Thompson, Dakotah; Feist, Johannes; Reid, M T Homer; García-Vidal, Francisco J; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod
2015-12-17
Radiative transfer of energy at the nanometre length scale is of great importance to a variety of technologies including heat-assisted magnetic recording, near-field thermophotovoltaics and lithography. Although experimental advances have enabled elucidation of near-field radiative heat transfer in gaps as small as 20-30 nanometres (refs 4-6), quantitative analysis in the extreme near field (less than 10 nanometres) has been greatly limited by experimental challenges. Moreover, the results of pioneering measurements differed from theoretical predictions by orders of magnitude. Here we use custom-fabricated scanning probes with embedded thermocouples, in conjunction with new microdevices capable of periodic temperature modulation, to measure radiative heat transfer down to gaps as small as two nanometres. For our experiments we deposited suitably chosen metal or dielectric layers on the scanning probes and microdevices, enabling direct study of extreme near-field radiation between silica-silica, silicon nitride-silicon nitride and gold-gold surfaces to reveal marked, gap-size-dependent enhancements of radiative heat transfer. Furthermore, our state-of-the-art calculations of radiative heat transfer, performed within the theoretical framework of fluctuational electrodynamics, are in excellent agreement with our experimental results, providing unambiguous evidence that confirms the validity of this theory for modelling radiative heat transfer in gaps as small as a few nanometres. This work lays the foundations required for the rational design of novel technologies that leverage nanoscale radiative heat transfer.
Yifat, Jonathan; Gannot, Israel
2015-03-01
Early detection of malignant tumors plays a crucial role in the survivability chances of the patient. Therefore, new and innovative tumor detection methods are constantly searched for. Tumor-specific magnetic-core nano-particles can be used with an alternating magnetic field to detect and treat tumors by hyperthermia. For the analysis of the method effectiveness, the bio-heat transfer between the nanoparticles and the tissue must be carefully studied. Heat diffusion in biological tissue is usually analyzed using the Pennes Bio-Heat Equation, where blood perfusion plays an important role. Malignant tumors are known to initiate an angiogenesis process, where endothelial cell migration from neighboring vasculature eventually leads to the formation of a thick blood capillary network around them. This process allows the tumor to receive its extensive nutrition demands and evolve into a more progressive and potentially fatal tumor. In order to assess the effect of angiogenesis on the bio-heat transfer problem, we have developed a discrete stochastic 3D model & simulation of tumor-induced angiogenesis. The model elaborates other angiogenesis models by providing high resolution 3D stochastic simulation, capturing of fine angiogenesis morphological features, effects of dynamic sprout thickness functions, and stochastic parent vessel generator. We show that the angiogenesis realizations produced are well suited for numerical bio-heat transfer analysis. Statistical study on the angiogenesis characteristics was derived using Monte Carlo simulations. According to the statistical analysis, we provide analytical expression for the blood perfusion coefficient in the Pennes equation, as a function of several parameters. This updated form of the Pennes equation could be used for numerical and analytical analyses of the proposed detection and treatment method.
Energy Technology Data Exchange (ETDEWEB)
Grant Hawkes; James E. O' Brien
2008-10-01
A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in a new novel integrated planar porous-tube supported solid oxide electrolysis cell (SOEC). The model is of several integrated planar cells attached to a ceramic support tube. This design is being evaluated with modeling at the Idaho National Laboratory. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, activation over-potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Mean per-cell area-specific-resistance (ASR) values decrease with increasing current density. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Effects of variations in operating temperature, gas flow rate, cathode and anode exchange current density, and contact resistance from the base case are presented. Contour plots of local electrolyte temperature, current density, and Nernst potential indicated the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Results are discussed for using this design in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal efficiency, cell electrical efficiency, and Gibbs free energy are discussed and reported herein.
Directory of Open Access Journals (Sweden)
S. Gimeno García
2012-02-01
Full Text Available To handle complexity to the smallest detail in atmospheric radiative transfer models is in practice unfeasible. On the one hand, the properties of the interacting medium, i.e. the atmosphere and the surface, are only available at a limited spatial resolution. On the other hand, the computational cost of accurate radiation models accounting for three-dimensional heterogeneous media are prohibitive for some applications, esp. for climate modeling and operational remote sensing algorithms. Hence, it is still common practice to use simplified models for atmospheric radiation applications.
Three-dimensional radiation models can deal with much more complexity than the one-dimensional ones providing a more accurate solution of the radiative transfer. In turn, one-dimensional models introduce biases to the radiation results.
With the help of stochastic models that consider the multi-fractal nature of clouds, it is possible to scale cloud properties given at a coarse spatial resolution down to a finer resolution. Performing the radiative transfer within the spatially fine-resolved cloud fields noticeably helps to improve the radiation results.
In the framework of this paper, we aim at characterizing cloud heterogeneity effects on radiances and broadband flux densities, namely: the errors due to unresolved variability (the so-called plane parallel homogeneous, PPH, bias and the errors due to the neglect of transversal photon displacements (independent pixel approximation, IPA, bias. First, we study the effect of the missing cloud variability on reflectivities. We will show that the generation of subscale variability by means of stochastic methods greatly reduce or nearly eliminate the reflectivity biases. Secondly, three-dimensional broadband flux densities in the presence of realistic inhomogeneous cloud fields sampled at fine spatial resolutions are calculated and compared to their one-dimensional counterparts at coarser
Lamprecht, Andreas; Lakämper, Stefan; Baasch, Thierry; Schaap, Iwan A T; Dual, Jurg
2016-07-01
Acoustic particle manipulation in microfluidic channels is becoming a powerful tool in microfluidics to control micrometer sized objects in medical, chemical and biological applications. By creating a standing acoustic wave in the channel, the resulting pressure field can be employed to trap or sort particles. To design efficient and reproducible devices, it is important to characterize the pressure field throughout the volume of the microfluidic device. Here, we used an optically trapped particle as probe to measure the forces in all three dimensions. By moving the probe through the volume of the channel, we imaged spatial variations in the pressure field. In the direction of the standing wave this revealed a periodic energy landscape for 2 μm beads, resulting in an effective stiffness of 2.6 nN m(-1) for the acoustic trap. We found that multiple fabricated devices showed consistent pressure fields. Surprisingly, forces perpendicular to the direction of the standing wave reached values of up to 20% of the main-axis-values. To separate the direct acoustic force from secondary effects, we performed experiments with different bead sizes, which attributed some of the perpendicular forces to acoustic streaming. This method to image acoustically generated forces in 3D can be used to either minimize perpendicular forces or to employ them for specific applications in novel acoustofluidic designs.
Sonnik, Deborah; Selvaraj, Raj N; Faul, Clare; Gerszten, Kristina; Heron, Dwight E; King, Gwendolyn C
2007-01-01
Breast, chest wall, and regional nodal irradiation have been associated with an improved outcome in high-risk breast cancer patients. Complex treatment planning is often utilized to ensure complete coverage of the target volume while minimizing the dose to surrounding normal tissues. The 2 techniques evaluated in this report are the partially wide tangent fields (PWTFs) and the 4-field photon/electron combination (the modified "Kuske Technique"). These 2 techniques were evaluated in 10 consecutive breast cancer patients. All patients had computerized tomographic (CT) scans for 3D planning supine on a breast board. The breast was defined clinically by the physician and confirmed radiographically with radiopaque bebes. The resulting dose-volume histograms (DVHs) of normal and target tissues were then compared. The deep tangent field with blocks resulted in optimal coverage of the target and the upper internal mammary chain (IMC) while sparing of critical and nontarget tissues. The wide tangent technique required less treatment planning and delivery time. We compared the 2 techniques and their resultant DVHs and feasibility in a busy clinic.
Directory of Open Access Journals (Sweden)
S. Gimeno García
2012-09-01
Full Text Available Handling complexity to the smallest detail in atmospheric radiative transfer models is unfeasible in practice. On the one hand, the properties of the interacting medium, i.e., the atmosphere and the surface, are only available at a limited spatial resolution. On the other hand, the computational cost of accurate radiation models accounting for three-dimensional heterogeneous media are prohibitive for some applications, especially for climate modelling and operational remote-sensing algorithms. Hence, it is still common practice to use simplified models for atmospheric radiation applications.
Three-dimensional radiation models can deal with complex scenarios providing an accurate solution to the radiative transfer. In contrast, one-dimensional models are computationally more efficient, but introduce biases to the radiation results.
With the help of stochastic models that consider the multi-fractal nature of clouds, it is possible to scale cloud properties given at a coarse spatial resolution down to a higher resolution. Performing the radiative transfer within the cloud fields at higher spatial resolution noticeably helps to improve the radiation results.
We present a new Monte Carlo model, MoCaRT, that computes the radiative transfer in three-dimensional inhomogeneous atmospheres. The MoCaRT model is validated by comparison with the consensus results of the Intercomparison of Three-Dimensional Radiation Codes (I3RC project.
In the framework of this paper, we aim at characterising cloud heterogeneity effects on radiances and broadband fluxes, namely: the errors due to unresolved variability (the so-called plane parallel homogeneous, PPH, bias and the errors due to the neglect of transversal photon displacements (independent pixel approximation, IPA, bias. First, we study the effect of the missing cloud variability on reflectivities. We will show that the generation of subscale variability by means of stochastic
GLERL Radiation Transfer Through Freshwater Ice
National Oceanic and Atmospheric Administration, Department of Commerce — Radiation transmittance (ratio of transmitted to incident radiation) through clear ice, refrozen slush ice and brash ice, from ice surface to ice-water interface in...
Deridder, Sander; Desmet, Gert
2012-03-02
Numerical calculations of the mobile zone mass transfer rate in a variety of ordered 2D and 3D structures are presented. These calculations are in line with earlier theoretical and experimental findings made in the field of chemical engineering and suggest that the Sherwood-number (Sh(m)) appearing in the mobile phase mass transfer term of the general plate height expression of liquid chromatography is not correctly predicted by the Wilson-Geankoplis--or the Kataoka--or the penetration model expression that have been used up to now to in the field of LC, and that at least more research is needed before these expressions can be continued to be used with confidence. The aforementioned expressions were obtained by neglecting the effect of axial dispersion on the mass transfer process, and it seems that they therefore underestimate the true Sh(m)-number by a factor of 2-5 around the minimum of the van Deemter-curve. New correlations describing the variation of the Sh(m)-coefficient as a function of the reduced velocity for a number of other packing geometries (tetrahedral monolith, 2D pillar array) are proposed. These correlations are in agreement with earlier theoretical and experimental studies showing that at low velocities the local-driving force-based Sh(m)-value is of the order of 10-20 in a packed bed column with an external porosity on the order of 35-40%.
Radiative transfer in atmosphere-sea ice-ocean system
Energy Technology Data Exchange (ETDEWEB)
Jin, Z.; Stamnes, K.; Weeks, W.F. [Univ. of Alaska, Fairbanks, AK (United States); Tsay, S.C. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)
1996-04-01
Radiative energy is critical in controlling the heat and mass balance of sea ice, which significantly affects the polar climate. In the polar oceans, light transmission through the atmosphere and sea ice is essential to the growth of plankton and algae and, consequently, to the microbial community both in the ice and in the ocean. Therefore, the study of radiative transfer in the polar atmosphere, sea ice, and ocean system is of particular importance. Lacking a properly coupled radiative transfer model for the atmosphere-sea ice-ocean system, a consistent study of the radiative transfer in the polar atmosphere, snow, sea ice, and ocean system has not been undertaken before. The radiative transfer processes in the atmosphere and in the ice and ocean have been treated separately. Because the radiation processes in the atmosphere, sea ice, and ocean depend on each other, this separate treatment is inconsistent. To study the radiative interaction between the atmosphere, clouds, snow, sea ice, and ocean, a radiative transfer model with consistent treatment of radiation in the coupled system is needed and is under development.
Subgrid-scale model for radiative transfer in turbulent participating media
Soucasse, L.; Rivière, Ph.; Soufiani, A.
2014-01-01
The simulation of turbulent flows of radiating gases, taking into account all turbulence length scales with an accurate radiation transport solver, is computationally prohibitive for high Reynolds or Rayleigh numbers. This is particularly the case when the small structures are not optically thin. We develop in this paper a radiative transfer subgrid model suitable for the coupling with direct numerical simulations of turbulent radiating fluid flows. Owing to the linearity of the Radiative Transfer Equation (RTE), the emission source term is spatially filtered to define large-scale and subgrid-scale radiation intensities. The large-scale or filtered intensity is computed with a standard ray tracing method on a coarse grid, and the subgrid intensity is obtained analytically (in Fourier space) from the Fourier transform of the subgrid emission source term. A huge saving of computational time is obtained in comparison with direct ray tracing applied on the fine mesh. Model accuracy is checked for three 3D fluctuating temperature fields. The first field is stochastically generated and allows us to discuss the effects of the filtering level and of the optical thicknesses of the whole medium, of the integral length scale, and of the cutoff wave length. The second and third cases correspond respectively to turbulent natural convection of humid air in a cubical box, and to the flow of hot combustion products inside a channel. In all cases, the achieved accuracy on radiative powers and wall fluxes is about a few percents.
Bejarano Buele, Ana Isabel
The treatment regimen for breast cancer patients typically involves Whole Breast Irradiation (WBI). The coverage and extent of the radiation treatment is dictated by location of tumor mass, breast tissue distribution, involvement of lymph nodes, and other factors. The current standard treatment approach used at our institution is a 3D tangential beam geometry, which involves two fields irradiating the breast, or a four field beam arrangement covering the whole breast and involved nodes, while decreasing the dose to organs as risk (OARs) such as the lung and heart. The coverage of these targets can be difficult to achieve in patients with unfavorable thoracic geometries, especially in those cases in which the planning target volume (PTV) is extended to the chest wall. It is a well-known fact that exposure of the heart to ionizing radiation has been proved to increase the subsequent rate of ischemic heart disease. In these cases, inverse planned treatments have become a proven alternative to the 3D approach. The goal of this research project is to evaluate the factors that affect our current techniques as well as to adapt the development of inverse modulated techniques for our clinic, in which breast cancer patients are one of the largest populations treated. For this purpose, a dosimetric comparison along with the evaluation of immobilization devices was necessary. Radiation treatment plans were designed and dosimetrically compared for 5 patients in both, supine and prone positions. For 8 patients, VMAT and IMRT plans were created and evaluated in the supine position. Skin flash incorporation for inverse modulated plans required measurement of the surface dose as well as an evaluation of breast volume changes during a treatment course. It was found that prone 3D conformal plans as well as the VMAT and IMRT plans are generally superior in sparing OARs to supine plans with comparable PTV coverage. Prone setup leads to larger shifts in breast volume as well as in
Braghiere, Renato; Quaife, Tristan; Black, Emily
2016-04-01
Incoming shortwave radiation is the primary source of energy driving the majority of the Earth's climate system. The partitioning of shortwave radiation by vegetation into absorbed, reflected, and transmitted terms is important for most of biogeophysical processes, including leaf temperature changes and photosynthesis, and it is currently calculated by most of land surface schemes (LSS) of climate and/or numerical weather prediction models. The most commonly used radiative transfer scheme in LSS is the two-stream approximation, however it does not explicitly account for vegetation architectural effects on shortwave radiation partitioning. Detailed three-dimensional (3D) canopy radiative transfer schemes have been developed, but they are too computationally expensive to address large-scale related studies over long time periods. Using a straightforward one-dimensional (1D) parameterisation proposed by Pinty et al. (2006), we modified a two-stream radiative transfer scheme by including a simple function of Sun zenith angle, so-called "structure factor", which does not require an explicit description and understanding of the complex phenomena arising from the presence of vegetation heterogeneous architecture, and it guarantees accurate simulations of the radiative balance consistently with 3D representations. In order to evaluate the ability of the proposed parameterisation in accurately represent the radiative balance of more complex 3D schemes, a comparison between the modified two-stream approximation with the "structure factor" parameterisation and state-of-art 3D radiative transfer schemes was conducted, following a set of virtual scenarios described in the RAMI4PILPS experiment. These experiments have been evaluating the radiative balance of several models under perfectly controlled conditions in order to eliminate uncertainties arising from an incomplete or erroneous knowledge of the structural, spectral and illumination related canopy characteristics typical
Magee, N. B.; Boaggio, K.; Bancroft, L.; Bandamede, M.
2015-12-01
Recent work has highlighted micro-scale roughness on the surfaces of ice crystals grown and imaged in-situ within the chambers of environmental scanning electron microscopes (ESEM). These observations appear to align with theoretical and satellite observations that suggest a prevalence of rough ice in cirrus clouds. However, the atmospheric application of the lab observations are indeterminate because the observations have been based only on crystals grown on substrates and in pure-water vapor environments. In this work, we present details and results from the development of a transfer technique which allows natural and lab-grown ice and snow crystals to be captured, preserved, and transferred into the ESEM for 3D imaging. Ice crystals were gathered from 1) natural snow, 2) a balloon-borne cirrus particle capture device, and 3) lab-grown ice crystals from a diffusion chamber. Ice crystals were captured in a pre-conditioned small-volume (~1 cm3) cryo-containment cell. The cell was then sealed closed and transferred to a specially-designed cryogenic dewer (filled with liquid nitrogen or crushed dry ice) for transport to a new Hitachi Field Emission, Variable Pressure SEM (SU-5000). The cryo-cell was then removed from the dewer and quickly placed onto the pre-conditioned cryo transfer stage attached to the ESEM (Quorum 3010T). Quantitative 3D topographical digital elevation models of ice surfaces are reported from SEM for the first time, including a variety of objective measures of statistical surface roughness. The surfaces of the transported crystals clearly exhibit signatures of mesoscopic roughening that are similar to examples of roughness seen in ESEM-grown crystals. For most transported crystals, the habits and crystal edges are more intricate that those observed for ice grown directly on substrates within the ESEM chamber. Portions of some crystals do appear smooth even at magnification greater than 1000x, a rare observation in our ESEM-grown crystals. The
Simulation of 3-D Ultraviolet Radiation from Liquid Rocket Engine Plume%液体火箭发动机羽烟三维紫外辐射仿真研究
Institute of Scientific and Technical Information of China (English)
国爱燕; 唐义; 白廷柱; 黄刚
2012-01-01
针对液体火箭发动机羽烟紫外辐射的空间分布问题,建立三维数值计算模型.该模型采用标准κ-ε湍流模型和PDF模型仿真羽烟流场的状态参数,根据HITRAN数据库计算流场内吸收系数分布,并利用离散坐标法求解辐射传输方程,计算三维空间的紫外辐射分布.测试结果表明:三维紫外辐射模型的计算结果与实验数据一致,能够反应不同视角下液体火箭发动机羽烟紫外辐射强度的空间变化.%To analyze the spacial distribution of UV radiation from liquid rocket engine plume, a 3-D numerical model has been built. The standard κ -e model and probability density function (PDF) model were adopted to compute the flow-field properties of the plume. Combined with HITRAN database, the distribution of absorption coefficient was calculated, and the radiation transfer equation could be solved by the discrete ordinate method. Test results show that the 3-D computation model can provide numerical data that agree well with measured experimental data. It also could reflect the spacial distribution of UV radiation from the hydrogen-oxygen rocket engine plume at different angles of view.
Advances in Studies of Cloud Overlap and Its Radiative Transfer in Climate Models
Institute of Scientific and Technical Information of China (English)
张华; 荆现文
2016-01-01
The latest advances in studies on the treatment of cloud overlap and its radiative transfer in global climate models are summarized. Developments with respect to this internationally challenging problem are described from aspects such as the design of cloud overlap assumptions, the realization of cloud overlap assumptions within climate models, and the data and methods used to obtain consistent observations of cloud overlap structure and radiative transfer in overlapping clouds. To date, there has been an appreciable level of achievement in studies on cloud overlap in climate models, demonstrated by the development of scientific assumptions (e.g., e-folding overlap) to describe cloud overlap, the invention and broad application of the fast radiative transfer method for overlapped clouds (Monte Carlo Independent Column Approximation), and the emergence of continuous 3D cloud satellite observation (e.g., CloudSat/CALIPSO) and cloud-resolving models, which provide numerous data valuable for the exact description of cloud overlap structure in climate models. However, present treatments of cloud overlap and its radiative transfer process are far from complete, and there remain many unsettled problems that need to be explored in the future.
Directory of Open Access Journals (Sweden)
Mats E Eriksson
Full Text Available The Cambrian 'Orsten' fauna comprises exceptionally preserved and phosphatised microscopic arthropods. The external morphology of these fossils is well known, but their internal soft-tissue anatomy has remained virtually unknown. Here, we report the first non-biomineralised tissues from a juvenile polymerid trilobite, represented by digestive structures, glands, and connective strands harboured in a hypostome from the Swedish 'Orsten' fauna. Synchrotron-radiation X-ray tomographic microscopy enabled three-dimensional internal recordings at sub-micrometre resolution. The specimen provides the first unambiguous evidence for a J-shaped anterior gut and the presence of a crop with a constricted alimentary tract in the Trilobita. Moreover, the gut is Y-shaped in cross section, probably due to a collapsed lumen of that shape, another feature which has not previously been observed in trilobites. The combination of anatomical features suggests that the trilobite hypostome is functionally analogous to the labrum of euarthropods and that it was a sophisticated element closely integrated with the digestive system. This study also briefly addresses the preservational bias of the 'Orsten' fauna, particularly the near-absence of polymerid trilobites, and the taphonomy of the soft-tissue-harbouring hypostome.
Investigation of radiative heat transfer in fixed bed biomass furnaces
Energy Technology Data Exchange (ETDEWEB)
T. Klason; X.S. Bai; M. Bahador; T.K. Nilsson; B. Sunden [Lund Institute of Technology, Lund (Sweden). Division of Fluid Mechanics
2008-08-15
This paper presents an investigation of the radiative heat transfer process in two fixed bed furnaces firing biomass fuels and the performance of several widely used models for calculation of radiative heat transfer in the free-room of fixed bed furnaces. The effective mean grey gas absorption coefficients are calculated using an optimised version of the exponential wide band model (EWBM) based on an optical mean beam length. Fly-ash and char particles are taken into account using Mie scattering. In the investigated updraft small-scale fixed bed furnace radiative transfer carries heat from the bed to the free-room, whereas in the cross-current bed large-scale industry furnace, radiative transfer brings heat from the hot zones in the free-room to the drying zone of the bed. Not all the investigated models can predict these heat transfer trends, and the sensitivity of results to model parameters is fairly different in the two furnaces. In the small-scale furnace, the gas absorption coefficient predicted by using different optical lengths has great impact on the predicted temperature field. In the large-scale furnaces, the predicted temperature field is less sensitive to the optical length. In both furnaces, with the same radiative properties, the low-computational-cost P1 model predicts a temperature field in the free-room similar to that by the more time consuming SLW model. In general, the radiative heat transfer rates to the fuel bed are not very sensitive to the radiative properties, but they are sensitive to the different radiative heat transfer models. For a realistic prediction of the radiative heat transfer rate to the fuel bed or to the walls, more computationally demanding models such as the FGG or SLW models should be used. 37 refs., 7 figs., 2 tabs.
Georgakopoulos, A; Georgiou, E
2016-01-01
A new dynamic system approach to the problem of radiative transfer inside scattering and absorbing media is presented, directly based on firsthand physical principles. This method, the Dynamic Radiative Transfer System (DRTS), calculates accurately the time evolution of photon propagation in media of complex structure and shape. DRTS employs a dynamical system formality using a global sparse matrix which characterizes the physical, optical and geometrical properties of the material volume of interest. The new system state vector is generated by the above time-independent matrix, using simple matrix vector multiplication addition for each subsequent time step. DRTS simulation results are presented for 3D light propagation in different optical media, demonstrating greatly reduced computational cost and resource requirements compared to other methods. Flexibility of the method allows the integration of time-dependent sources, boundary conditions, different media and several optical phenomena like reflection and ...
Herrassi, Mohamed Yassine; Bentayeb, Farida; Malisan, Maria Rosa
2013-04-01
For the head-and-neck cancer bilateral irradiation, intensity-modulated radiation therapy (IMRT) is the most reported technique as it enables both target dose coverage and organ-at-risk (OAR) sparing. However, during the last 20 years, three-dimensional conformal radiotherapy (3DCRT) techniques have been introduced, which are tailored to improve the classic shrinking field technique, as regards both planning target volume (PTV) dose conformality and sparing of OAR's, such as parotid glands and spinal cord. In this study, we tested experimentally in a sample of 13 patients, four of these advanced 3DCRT techniques, all using photon beams only and a unique isocentre, namely Bellinzona, Forward-Planned Multisegments (FPMS), ConPas, and field-in-field (FIF) techniques. Statistical analysis of the main dosimetric parameters of PTV and OAR's DVH's as well as of homogeneity and conformity indexes was carried out in order to compare the performance of each technique. The results show that the PTV dose coverage is adequate for all the techniques, with the FPMS techniques providing the highest value for D95%; on the other hand, the best sparing of parotid glands is achieved using the FIF and ConPas techniques, with a mean dose of 26 Gy to parotid glands for a PTV prescription dose of 54 Gy. After taking into account both PTV coverage and parotid sparing, the best global performance was achieved by the FIF technique with results comparable to that of IMRT plans. This technique can be proposed as a valid alternative when IMRT equipment is not available or patient is not suitable for IMRT treatment.
Radiative Transfer Model for Translucent Slab Ice on Mars
Andrieu, F.; Schmidt, F.; Douté, S.; Schmitt, B.; Brissaud, O.
2016-09-01
We developed a radiative transfer model that simulates in VIS/NIR the bidirectional reflectance of a contaminated slab layer of ice overlaying a granular medium, under geometrical optics conditions to study martian ices.
Near-field radiative heat transfer between metasurfaces
DEFF Research Database (Denmark)
Dai, Jin; Dyakov, Sergey A.; Bozhevolnyi, Sergey I.
2016-01-01
Metamaterials possess artificial bulk and surface electromagnetic states. Tamed dispersion properties of surface waves allow one to achieve a controllable super-Planckian radiative heat transfer (RHT) process between two closely spaced objects. We numerically demonstrate enhanced RHT between two...
O.B. Wijers (Oda)
2002-01-01
textabstractIn The Netherlands. head and neck cancer (3.9%) ranks the eighth most frequemly diagnoscd malignant tumor. Radiation therapy (IIT) plays an important role in the treatmem of patients with head and neck cancer, as they constitute approximately 6% of those treated in a routine radiation th
Nickel, Michael; Hammel, Jörg U.; Herzen, Julia; Bullinger, Eric; Beckmann, Felix
2008-08-01
Zoological sciences widely rely on morphological data to reconstruct and understand body structures of animals. The best suitable methods like tomography allow for a direct representation of 3D-structures. In recent years, synchrotron radiation based x-ray microtomography (SR μCT) placed high resolutions to the disposal of morphologists. With the development of highly brilliant and collimated third generation synchrotron sources, phase contrast SR μCT became widely available. A number of scientific contributions stressed the superiority of phase contrast over absorption contrast. However, here we demonstrate the power of high density resolution methods based on absorption-contrast SRμCT for quantitative 3D-measurements of tissues and other delicate bio-structures in zoological sciences. We used beamline BW2 at DORIS III (DESY, Hamburg, Germany) to perform microtomography on tissue and mineral skeletons of marine sponges (Porifera) which were shock frozen and/or fixed in a glutamate osmium tetroxide solution, followed by critical point drying. High density resolution tomographic reconstructions allowed running quantitative 3D-image analyses in Matlab and ImageJ. By applying contrast and shape rule based algorithms we semi-automatically extracted and measured sponge body structures like mineral spicules, elements of the canal system or tissue structures. This lead to a better understanding of sponge biology: from skeleton functional morphology and internal water flow regimes to body contractility. Our high density resolution based quantitative approach can be applied to a wide variety of biological structures. However, two prerequisites apply: (1) maximum density resolution is necessary; (2) edge effects as seen for example in phase outline contrast SR μCT must not be present. As a consequence, to allow biological sciences to fully exploit the power of SR μCT further increase of density resolution in absorption contrast methods is desirable.
Discrete diffusion Monte Carlo for frequency-dependent radiative transfer
Energy Technology Data Exchange (ETDEWEB)
Densmore, Jeffrey D [Los Alamos National Laboratory; Kelly, Thompson G [Los Alamos National Laboratory; Urbatish, Todd J [Los Alamos National Laboratory
2010-11-17
Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations. In this paper, we develop an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency-integrated diffusion equation for frequencies below a specified threshold. Above this threshold we employ standard Monte Carlo. With a frequency-dependent test problem, we confirm the increased efficiency of our new DDMC technique.
Galerkin method for solving combined radiative and conductive heat transfer
Ghattassi, Mohamed; Roche, Jean Rodolphe; Asllanaj, Fatmir; Boutayeb, Mohamed
2016-01-01
International audience; This article deals with a numerical solution for combined radiation and conduction heat transfer in a grey absorbing and emitting medium applied to a two-dimensional domain using triangular meshes. The radiative transfer equation was solved using the high order Discontinuous Galerkin method with an upwind numerical flux. The energy equation was discretized using a high order finite element method. Stability and error analysis were performed for the Discontinuous Galerk...
Institute of Scientific and Technical Information of China (English)
TianYu Xi; JianHua Ding; Hong Jin
2014-01-01
Piloti is commonly used in tropical and subtropical climate zones to get high wind velocity and create shadowed areas in order to optimize the living environment of residential blocks, but there are few studies to reveal the influence of piloti on the radiant environment of residential blocks systematically. Taking the city of Guangzhou as an example, using 3-D Unsteady State Heat Balance Radiation Calculation Method, this paper shows that the mean radiant temperature ( MRT) under piloti area increases with the increase of piloti ratio, and especially when piloti ratio is equal to 100%, the MRT increase trend becomes sharp. The MRT of exposed area decreases with the increase of piloti ratio, especially when piloti ratio reaches 100%, the decrease trend of MRT becomes sharp, which offers the reference for the study on piloti design in subtropical climate zones and further research on living environment by CFD simulation in residential blocks.
Thermal radiation heat transfer (3rd revised and enlarged edition)
Siegel, Robert; Howell, John R.
1992-01-01
This book first reviews the overall aspects and background information related to thermal radiation heat transfer and incorporates new general information, advances in analytical and computational techniques, and new reference material. Coverage focuses on radiation from opaque surfaces, radiation interchange between various types of surfaces enclosing a vacuum or transparent medium, and radiation including the effects of partially transmitting media, such as combustion gases, soot, or windows. Boundary conditions and multiple layers are discussed with information on radiation in materials with nonunity refractive indices.
A study of Monte Carlo radiative transfer through fractal clouds
Energy Technology Data Exchange (ETDEWEB)
Gautier, C.; Lavallec, D.; O`Hirok, W.; Ricchiazzi, P. [Univ. of California, Santa Barbara, CA (United States)] [and others
1996-04-01
An understanding of radiation transport (RT) through clouds is fundamental to studies of the earth`s radiation budget and climate dynamics. The transmission through horizontally homogeneous clouds has been studied thoroughly using accurate, discreet ordinates radiative transfer models. However, the applicability of these results to general problems of global radiation budget is limited by the plane parallel assumption and the fact that real clouds fields show variability, both vertically and horizontally, on all size scales. To understand how radiation interacts with realistic clouds, we have used a Monte Carlo radiative transfer model to compute the details of the photon-cloud interaction on synthetic cloud fields. Synthetic cloud fields, generated by a cascade model, reproduce the scaling behavior, as well as the cloud variability observed and estimated from cloud satellite data.
Enhanced radiative heat transfer between nanostructured gold plates
Guérout, R; Rosa, F S S; Hugonin, J -P; Dalvit, D A R; Greffet, J -J; Lambrecht, A; Reynaud, S
2012-01-01
We compute the radiative heat transfer between nanostructured gold plates in the framework of the scattering theory. We predict an enhancement of the heat transfer as we increase the depth of the corrugations while keeping the distance of closest approach fixed. We interpret this effect in terms of the evolution of plasmonic and guided modes as a function of the grating's geometry.
Light-Cone Effect of Radiation Fields in Cosmological Radiative Transfer Simulations
Ahn, Kyungjin
2015-01-01
We present a novel method to implement time-delayed propagation of radiation fields in cosmological radiative transfer simulations. Time-delayed propagation of radiation fields requires construction of retarded-time fields by tracking the location and lifetime of radiation sources along the corresponding light-cones. Cosmological radiative transfer simulations have, until now, ignored this "light-cone effect" or implemented ray-tracing methods that are computationally demanding. We show that radiative transfer calculation of the time-delayed fields can be easily achieved in numerical simulations when periodic boundary conditions are used, by calculating the time-discretized retarded-time Green's function using the Fast Fourier Transform (FFT) method and convolving it with the source distribution. We also present a direct application of this method to the long-range radiation field of Lyman-Werner band photons, which is important in the high-redshift astrophysics with first stars.
Beane, Andy
2012-01-01
The essential fundamentals of 3D animation for aspiring 3D artists 3D is everywhere--video games, movie and television special effects, mobile devices, etc. Many aspiring artists and animators have grown up with 3D and computers, and naturally gravitate to this field as their area of interest. Bringing a blend of studio and classroom experience to offer you thorough coverage of the 3D animation industry, this must-have book shows you what it takes to create compelling and realistic 3D imagery. Serves as the first step to understanding the language of 3D and computer graphics (CG)Covers 3D anim
Lucas, Laurent; Loscos, Céline
2013-01-01
While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century.The chapters in this book cover a large spectrum of areas connected to 3D video, which are presented both theoretically and technologically, while taking into account both physiological and perceptual aspects. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide th
Discontinuous finite element method for vector radiative transfer
Wang, Cun-Hai; Yi, Hong-Liang; Tan, He-Ping
2017-03-01
The discontinuous finite element method (DFEM) is applied to solve the vector radiative transfer in participating media. The derivation in a discrete form of the vector radiation governing equations is presented, in which the angular space is discretized by the discrete-ordinates approach with a local refined modification, and the spatial domain is discretized into finite non-overlapped discontinuous elements. The elements in the whole solution domain are connected by modelling the boundary numerical flux between adjacent elements, which makes the DFEM numerically stable for solving radiative transfer equations. Several various problems of vector radiative transfer are tested to verify the performance of the developed DFEM, including vector radiative transfer in a one-dimensional parallel slab containing a Mie/Rayleigh/strong forward scattering medium and a two-dimensional square medium. The fact that DFEM results agree very well with the benchmark solutions in published references shows that the developed DFEM in this paper is accurate and effective for solving vector radiative transfer problems.
Energy Technology Data Exchange (ETDEWEB)
Scheirer, R.
2001-07-01
A most profound knowledge about the radiative characteristics of clouds is required for the development of realistic atmospheric circulation models and cloud remote sensing algorithms. At present, cloud fields are treated extremely simplified in both application areas. Cloud radiative flux parameterizations in atmospheric circulation models as well as the correlation between radiance and cloud properties as required for remote sensing algorithm are usually based on the assumption of plane-parallel homogeneous (PPHOM) clouds. Compared to realistically 3D cloud fields, this simplification leads to large systematic errors. In order to quantify these errors a Monte Carlo radiative transfer model has been developed and applied to 3D cloud fields. The latter origin from the non-hydrostatic 3D atmospheric model GESIMA. Absorption and scattering properties of the cloud particles have been calculated by means of Mie-theory for spherical water droplets and a ray-tracing code for non-spherical ice, rain, and snow particles. Line by line calculations have been used to obtain the absorption properties of the relevant atmospheric gases. (orig.) [German] Die Erstellung realistischer Zirkulationsmodelle der Atmosphaere erfordert unter Anderem eine moeglichst genaue Kenntnis der Strahlungseigenschaften von Wolken. Auch fuer Ableitung und Korrektur von Fernerkundungsalgorithmen sind die Einfluesse der Wolken auf die zu messenden Strahldichten von grosser Bedeutung. In den beiden genannten Anwendungen werden Wolkenfelder zur Zeit nur in stark vereinfachter Weise beruecksichtigt. Parameterisierungen der Strahlungsfluesse bei bewoelkter Atmosphaere in atmosphaerischen Zirkulationsmodellen, sowie die Ableitung der Zusammenhaenge zwischen Strahldichten und optischen Wolkeneigenschaften basieren auf der Annahme von planparallelen und horizontal homogenen Wolken (PPHOM). Diese Approximation kann gegenueber der dreidimensionalen Strahlungstransportberechnung (3D) zu erheblichen Fehlern
Radiative heat transfer in low-dimensional systems -- microscopic mode
Woods, Lilia; Phan, Anh; Drosdoff, David
2013-03-01
Radiative heat transfer between objects can increase dramatically at sub-wavelength scales. Exploring ways to modulate such transport between nano-systems is a key issue from fundamental and applied points of view. We advance the theoretical understanding of radiative heat transfer between nano-objects by introducing a microscopic model, which takes into account the individual atoms and their atomic polarizabilities. This approach is especially useful to investigate nano-objects with various geometries and give a detailed description of the heat transfer distribution. We employ this model to study the heat exchange in graphene nanoribbon/substrate systems. Our results for the distance separations, substrates, and presence of extended or localized defects enable making predictions for tailoring the radiative heat transfer at the nanoscale. Financial support from the Department of Energy under Contract No. DE-FG02-06ER46297 is acknowledged.
Planetary Torque in 3D Isentropic Disks
Fung, Jeffrey; Lega, Elena; Velasco, David
2016-01-01
Planet migration is inherently a three-dimensional (3D) problem, because Earth-size planetary cores are deeply embedded in protoplanetary disks. Simulations of these 3D disks remain challenging due to the steep requirement in resolution. Using two different hydrodynamics code, FARGO3D and PEnGUIn, we simulate disk-planet interaction for a 1 to 5 Earth-mass planet embedded in an isentropic disk. We measure the torque on the planet and ensure that the measurements are converged both in resolution and between the two codes. We find that the torque is independent of the smoothing length of the planet's potential ($r_{\\rm s}$), and that it has a weak dependence on the adiabatic index of the gaseous disk ($\\gamma$). The torque values correspond to an inward migration rate qualitatively similar to previous linear calculations. We perform additional simulations with explicit radiative transfer using FARGOCA, and again find agreement between 3D simulations and existing torque formulae. We also present the flow pattern...
Planetary Torque in 3D Isentropic Disks
Fung, Jeffrey; Masset, Frédéric; Lega, Elena; Velasco, David
2017-03-01
Planetary migration is inherently a three-dimensional (3D) problem, because Earth-size planetary cores are deeply embedded in protoplanetary disks. Simulations of these 3D disks remain challenging due to the steep resolution requirements. Using two different hydrodynamics codes, FARGO3D and PEnGUIn, we simulate disk–planet interaction for a one to five Earth-mass planet embedded in an isentropic disk. We measure the torque on the planet and ensure that the measurements are converged both in resolution and between the two codes. We find that the torque is independent of the smoothing length of the planet’s potential (r s), and that it has a weak dependence on the adiabatic index of the gaseous disk (γ). The torque values correspond to an inward migration rate qualitatively similar to previous linear calculations. We perform additional simulations with explicit radiative transfer using FARGOCA, and again find agreement between 3D simulations and existing torque formulae. We also present the flow pattern around the planets that show active flow is present within the planet’s Hill sphere, and meridional vortices are shed downstream. The vertical flow speed near the planet is faster for a smaller r s or γ, up to supersonic speeds for the smallest r s and γ in our study.
Forsberg, F; Mooser, R; Arnold, M; Hack, E; Wyss, P
2008-12-01
A micro-scale three-point-bending experiment with a wood specimen was carried out and monitored by synchrotron radiation micro-computed tomography. The full three-dimensional wood structure of the 1.57x3.42x0.75mm(3) specimen was reconstructed at cellular level in different loading states. Furthermore, the full three-dimensional deformation field of the loaded wood specimen was determined by digital volume correlation, applied to the reconstructed data at successive loading states. Results from two selected regions within the wood specimen are presented as continuous displacement and strain fields in both 2D and 3D. The applied combination of synchrotron radiation micro-computed tomography and digital volume correlation for the deformation analysis of wood under bending stress is a novel application in wood material science. The method offers the potential for the simultaneous observation of structural changes and quantified deformations during in situ micro-mechanical experiments. Moreover, the high spatial resolution allows studying the influence of anatomical features on the fracture behaviour of wood. Possible applications of this method range from bio-mechanical observations in fresh plant tissue to fracture mechanics aspects in structural timber.
User's Manual: Routines for Radiative Heat Transfer and Thermometry
Risch, Timothy K.
2016-01-01
Determining the intensity and spectral distribution of radiation emanating from a heated surface has applications in many areas of science and engineering. Areas of research in which the quantification of spectral radiation is used routinely include thermal radiation heat transfer, infrared signature analysis, and radiation thermometry. In the analysis of radiation, it is helpful to be able to predict the radiative intensity and the spectral distribution of the emitted energy. Presented in this report is a set of routines written in Microsoft Visual Basic for Applications (VBA) (Microsoft Corporation, Redmond, Washington) and incorporating functions specific to Microsoft Excel (Microsoft Corporation, Redmond, Washington) that are useful for predicting the radiative behavior of heated surfaces. These routines include functions for calculating quantities of primary importance to engineers and scientists. In addition, the routines also provide the capability to use such information to determine surface temperatures from spectral intensities and for calculating the sensitivity of the surface temperature measurements to unknowns in the input parameters.
Jauer, P. R.; Gonzalez, W. D.; de Souza Costa, C. L.; Souza, V. M.
2013-12-01
The interaction, transport and conversion of energy between the solar wind and Earth's magnetosphere have been studied for decades through in situ measurements and Magnetohydrodynamics simulation, (MHD). Nevertheless, due to the vast regions of space and nonlinearities of the physical processes there are many questions that still remain without conclusive answers. Currently, the MHD simulation is a powerful tool that helps other means of already existing research, even within its theoretical limitation; it provides information of the space regions where in situ measurements are rare or nonexistent. The aim of this work is the study of energy transfer from the solar wind through the calculation of the divergence of the Poynting vector for the inner regions of the Earth's magnetosphere, especially the magneto tail using 3D global MHD numerical code Space Weather Modelling Framework (SWMF) / (Block Adaptive Tree Solar wind Roe Upwind Scheme) (BATS-R-US), developed by the University of Michigan. We conducted a simulation study for the event that occurred on September 21-27, 1999, for which the peak value of the interplanetary magnetic field was -22 nT, and gave rise to an intense magnetic storm with peak Dst of -160 nT. Furthermore, we compare the results of the power estimated by the model - through the integration of the Poynting vector in rectangular region of the tail, with a domain -130 powerful tool to reproduce the observations with a good degree of reliability.
Aucejo, M.; Totaro, N.; Guyader, J.-L.
2010-08-01
In noise control, identification of the source velocity field remains a major problem open to investigation. Consequently, methods such as nearfield acoustical holography (NAH), principal source projection, the inverse frequency response function and hybrid NAH have been developed. However, these methods require free field conditions that are often difficult to achieve in practice. This article presents an alternative method known as inverse patch transfer functions, designed to identify source velocities and developed in the framework of the European SILENCE project. This method is based on the definition of a virtual cavity, the double measurement of the pressure and particle velocity fields on the aperture surfaces of this volume, divided into elementary areas called patches and the inversion of impedances matrices, numerically computed from a modal basis obtained by FEM. Theoretically, the method is applicable to sources with complex 3D geometries and measurements can be carried out in a non-anechoic environment even in the presence of other stationary sources outside the virtual cavity. In the present paper, the theoretical background of the iPTF method is described and the results (numerical and experimental) for a source with simple geometry (two baffled pistons driven in antiphase) are presented and discussed.
Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael
2009-01-01
This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308
Radiative Transfer Model for Contaminated Rough Surfaces
2013-02-01
plot of Figure 8 shows three sharp spectral features (in the LWIR region) that were used for calibration . 1000 1500 2000 2500 3000 3500 0 0.1 0.2...transfer, reflectance, rough surface, BRDF, Kramers-Kronig, penetration depth, fill factor, infrared, LWIR , MWIR, absorption coefficient, scattering...and the calibrated α are plotted in red, and green, respectively
Directory of Open Access Journals (Sweden)
Jean-Philippe Gastellu-Etchegorry
2015-02-01
Full Text Available Satellite and airborne optical sensors are increasingly used by scientists, and policy makers, and managers for studying and managing forests, agriculture crops, and urban areas. Their data acquired with given instrumental specifications (spectral resolution, viewing direction, sensor field-of-view, etc. and for a specific experimental configuration (surface and atmosphere conditions, sun direction, etc. are commonly translated into qualitative and quantitative Earth surface parameters. However, atmosphere properties and Earth surface 3D architecture often confound their interpretation. Radiative transfer models capable of simulating the Earth and atmosphere complexity are, therefore, ideal tools for linking remotely sensed data to the surface parameters. Still, many existing models are oversimplifying the Earth-atmosphere system interactions and their parameterization of sensor specifications is often neglected or poorly considered. The Discrete Anisotropic Radiative Transfer (DART model is one of the most comprehensive physically based 3D models simulating the Earth-atmosphere radiation interaction from visible to thermal infrared wavelengths. It has been developed since 1992. It models optical signals at the entrance of imaging radiometers and laser scanners on board of satellites and airplanes, as well as the 3D radiative budget, of urban and natural landscapes for any experimental configuration and instrumental specification. It is freely distributed for research and teaching activities. This paper presents DART physical bases and its latest functionality for simulating imaging spectroscopy of natural and urban landscapes with atmosphere, including the perspective projection of airborne acquisitions and LIght Detection And Ranging (LIDAR waveform and photon counting signals.
Directory of Open Access Journals (Sweden)
SONG Ming-zhe
2015-01-01
Full Text Available Absorbed dose to water in 60Co γ radiation is the basic physics quantity in the quantitative value system of radiation therapy, it is very necessary for radiation therapy. The study on the quantitative value transfer method of absorbed dose to water in 60Co γ Radiation could provide important technical support to the establishment of Chinese absorbed dose to water quantity system. Based on PTW-30013 ionization chamber, PMMA water phantom and 3D mobile platform, quantitative value transfer standard instrument was established, combined with the requirement of IAEA-TRS398, developed preliminary study of 60Co absorbed dose to water quantity value transfer method. After the quantity value transfer, the expanded uncertainty of absorbed dose to water calibration factor of PTW-30013 was 0.90% (k=2, the expanded uncertainty of absorbed dose to water of 60Co γ reference radiation in Radiation Metrology Center (SSDL of IAEA was 1.4% (k=2. The results showed that, this value transfer method can reduce the uncertainty of 60Co absorbed dose to water effectively in Secondary Standard Dosimetry Laboratory.
Campanyà, Joan; Ogaya, Xènia; Jones, Alan G.; Rath, Volker; Vozar, Jan; Meqbel, Naser
2016-09-01
As a consequence of measuring time variations of the electric and the magnetic field, which are related to current flow and charge distribution, magnetotelluric (MT) data in two dimensional (2-D) and three dimensional (3-D) environments are not only sensitive to the geoelectrical structures below the measuring points but also to any lateral anomalies surrounding the acquisition site. This behaviour complicates the characterisation of the electrical resistivity distribution of the subsurface, particularly in complex areas. In this manuscript we assess the main advantages of complementing the standard MT impedance tensor (Z) data with inter-station horizontal magnetic tensor (H) and geomagnetic transfer function (T) data in constraining the subsurface in a 3-D environment beneath a MT profile. Our analysis was performed using synthetic responses with added normally distributed and scattered random noise. The sensitivity of each type of data to different resistivity anomalies is evaluated, showing that the degree to which each site and each period is affected by the same anomaly depends on the type of data. A dimensionality analysis, using Z, H and T data, identifies the presence of the 3-D anomalies close to the profile, suggesting a 3-D approach for recovering the electrical resistivity values of the subsurface. Finally, the capacity for recovering the geoelectrical structures of the subsurface is evaluated by performing joint inversion using different data combinations, quantifying the differences between the true synthetic model and the models from inversion process. Four main improvements are observed when performing joint inversion of Z, H and T data: (1) superior precision and accuracy at characterising the electrical resistivity values of the anomalies below and outside the profile; (2) the potential to recover high electrical resistivity anomalies that are poorly recovered using Z data alone; (3) improvement in the characterization of the bottom and lateral
Energy Technology Data Exchange (ETDEWEB)
Mindiola, Daniel J.
2014-05-07
Our work over the past three years has resulted in the development of electron rich and low-coordinate vanadium fragments, molecular nitrides of vanadium and parent imide systems of titanium, and the synthesis of phosphorus containing molecules of the 3d transition metal series. Likewise, with financial support from BES Division in DOE (DE-FG02-07ER15893), we now completed the full characterization of the first single molecular magnet (SMM) of Fe(III). We demonstrated that this monomeric form of Fe(III) has an unusual slow relaxation of the magnetization under zero applied field. To make matters more interesting, this system also undergoes a rare example of an intermediate to high-spin transition (an S = 3/2 to S = 5/2 transition). In 2010 we reported the synthesis of the first neutral and low-coordinate vanadium complexes having the terminal nitride functionality. We have now completed a full study to understand formation of the nitride ligand from the metastable azide precursor, and have also explored the reactivity of the nitride ligand in the context of incomplete and complete N-atom transfer. During the 2010-2013 period we also discovered a facile approach to assemble low-coordinate and low-valent vanadium(II) complexes and exploit their multielectron chemistry ranging from 1-3 electrons. Consequently, we can now access 3d ligand frameworks such as cyclo-P3 (and its corresponding radical anion), nitride radical anions and cations, low-coordinate vanadium oxo’s, and the first example of a vanadium thionitrosyl complex. A cis-divacant iron(IV) imido having some ligand centered radical has been also discovered, and we are in the process of elucidating its electronic structure (in particular the sign of zero field splitting and the origin of its magnitude), bonding and reactivity. We have also revisited some paramagnetic and classic metallocene compounds with S >1/2 ground states in order to understand their reactivity patterns and electronic structure. Lastly
A Simplified Scheme of the Generalized Layered Radiative Transfer Model
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
In this paper, firstly, a simplified version (SGRTM) of the generalized layered radiative transfer model (GRTM) within the canopy, developed by us, is presented. It reduces the information requirement of inputted sky diffuse radiation, as well as of canopy morphology, and in turn saves computer resources. Results from the SGRTM agree perfectly with those of the GRTM. Secondly, by applying the linear superposition principle of the optics and by using the basic solutions of the GRTM for radiative transfer within the canopy under the condition of assumed zero soil reflectance, two sets of explicit analytical solutions of radiative transfer within the canopy with any soil reflectance magnitude are derived: one for incident diffuse, and the other for direct beam radiation. The explicit analytical solutions need two sets of basic solutions of canopy reflectance and transmittance under zero soil reflectance, run by the model for both diffuse and direct beam radiation. One set of basic solutions is the canopy reflectance αf (written as α1 for direct beam radiation) and transmittance βf (written as β1 for direction beam radiation) with zero soil reflectance for the downward radiation from above the canopy (i.e. sky), and the other set is the canopy reflectance (αb) and transmittanceβb for the upward radiation from below the canopy (i.e., ground). Under the condition of the same plant architecture in the vertical layers, and the same leaf adaxial and abaxial optical properties in the canopies for the uniform diffuse radiation, the explicit solutions need only one set of basic solutions, because under this condition the two basic solutions are equal, i.e., αf = αb and βf = βb. Using the explicit analytical solutions, the fractions of any kind of incident solar radiation reflected from (defined as surface albedo, or canopy reflectance),transmitted through (defined as canopy transmittance), and absorbed by (defined as canopy absorptance)the canopy and other properties
Radiation Heat Transfer Procedures for Space-Related Applications
Chai, John C.
2000-01-01
Over the last contract year, a numerical procedure for combined conduction-radiation heat transfer using unstructured grids has been developed. As a result of this research, one paper has been published in the Numerical Heat Transfer Journal. One paper has been accepted for presentation at the International Center for Heat and Mass Transfer's International Symposium on Computational Heat Transfer to be held in Australia next year. A journal paper is under review by my NASA's contact. A conference paper for the ASME National Heat Transfer conference is under preparation. In summary, a total of four (4) papers (two journal and two conference) have been published, accepted or are under preparation. There are two (2) to three (3) more papers to be written for the project. In addition to the above publications, one book chapter, one journal paper and six conference papers have been published as a result of this project. Over the last contract year, the research project resulted in one Ph.D. thesis and partially supported another Ph.D. student. My NASA contact and myself have formulated radiation heat transfer procedures for materials with different indices of refraction and for combined conduction-radiation heat transfer. We are trying to find other applications for the procedures developed under this grant.
Radiative heat transfer by the Monte Carlo method
Hartnett †, James P; Cho, Young I; Greene, George A; Taniguchi, Hiroshi; Yang, Wen-Jei; Kudo, Kazuhiko
1995-01-01
This book presents the basic principles and applications of radiative heat transfer used in energy, space, and geo-environmental engineering, and can serve as a reference book for engineers and scientists in researchand development. A PC disk containing software for numerical analyses by the Monte Carlo method is included to provide hands-on practice in analyzing actual radiative heat transfer problems.Advances in Heat Transfer is designed to fill the information gap between regularly scheduled journals and university level textbooks by providing in-depth review articles over a broader scope than journals or texts usually allow.Key Features* Offers solution methods for integro-differential formulation to help avoid difficulties* Includes a computer disk for numerical analyses by PC* Discusses energy absorption by gas and scattering effects by particles* Treats non-gray radiative gases* Provides example problems for direct applications in energy, space, and geo-environmental engineering
Radiative transfer theory for polarimetric remote sensing of pine forest
Hsu, C. C.; Han, H. C.; Shin, Robert T.; Kong, Jin AU; Beaudoin, A.; Letoan, T.
1992-01-01
The radiative transfer theory is applied to interpret polarimetric radar backscatter from pine forest with clustered vegetation structures. To take into account the clustered structures with the radiative transfer theory, the scattering function of each cluster is calculated by incorporating the phase interference of scattered fields from each component. Subsequently, the resulting phase matrix is used in the radiative transfer equations to evaluate the polarimetric backscattering coefficients from random medium layers embedded with vegetation clusters. Upon including the multi-scale structures, namely, trunks, primary and secondary branches, as well as needles, we interpret and simulate the polarimetric radar responses from pine forest for different frequencies and looking angles. The preliminary results are shown to be in good agreement with the measured backscattering coefficients at the Landes maritime pine forest during the MAESTRO-1 experiment.
A modified Henyey method for computing radiative transfer hydrodynamics
Karp, A. H.
1975-01-01
The implicit hydrodynamic code of Kutter and Sparks (1972), which is limited to optically thick regions and employs the diffusion approximation for radiative transfer, is modified to include radiative transfer effects in the optically thin regions of a model star. A modified Henyey method is used to include the solution of the radiative transfer equation in this implicit code, and the convergence properties of this method are proven. A comparison is made between two hydrodynamic models of a classical Cepheid with a 12-day period, one of which was computed with the diffusion approximation and the other with the modified Henyey method. It is found that the two models produce nearly identical light and velocity curves, but differ in the fact that the former never has temperature inversions in the atmosphere while the latter does when sufficiently strong shocks are present.
Introduction of Parallel GPGPU Acceleration Algorithms for the Solution of Radiative Transfer
Godoy, William F.; Liu, Xu
2011-01-01
General-purpose computing on graphics processing units (GPGPU) is a recent technique that allows the parallel graphics processing unit (GPU) to accelerate calculations performed sequentially by the central processing unit (CPU). To introduce GPGPU to radiative transfer, the Gauss-Seidel solution of the well-known expressions for 1-D and 3-D homogeneous, isotropic media is selected as a test case. Different algorithms are introduced to balance memory and GPU-CPU communication, critical aspects of GPGPU. Results show that speed-ups of one to two orders of magnitude are obtained when compared to sequential solutions. The underlying value of GPGPU is its potential extension in radiative solvers (e.g., Monte Carlo, discrete ordinates) at a minimal learning curve.
Generalized source Finite Volume Method for radiative transfer equation in participating media
Zhang, Biao; Xu, Chuan-Long; Wang, Shi-Min
2017-03-01
Temperature monitoring is very important in a combustion system. In recent years, non-intrusive temperature reconstruction has been explored intensively on the basis of calculating arbitrary directional radiative intensities. In this paper, a new method named Generalized Source Finite Volume Method (GSFVM) was proposed. It was based on radiative transfer equation and Finite Volume Method (FVM). This method can be used to calculate arbitrary directional radiative intensities and is proven to be accurate and efficient. To verify the performance of this method, six test cases of 1D, 2D, and 3D radiative transfer problems were investigated. The numerical results show that the efficiency of this method is close to the radial basis function interpolation method, but the accuracy and stability is higher than that of the interpolation method. The accuracy of the GSFVM is similar to that of the Backward Monte Carlo (BMC) algorithm, while the time required by the GSFVM is much shorter than that of the BMC algorithm. Therefore, the GSFVM can be used in temperature reconstruction and improvement on the accuracy of the FVM.
DEFF Research Database (Denmark)
Harder, Stine; Paulsen, Rasmus Reinhold; Larsen, Martin
2016-01-01
of a three-dimensional (3D) head model for acquisition of individual HRTFs. Two aspects were investigated; whether a 3D-printed model can replace measurements on a human listener and whether numerical simulations can replace acoustic measurements. For this purpose, HRTFs were acoustically measured for four...... human listeners and for a 3D printed head model of one of these listeners. Further, HRTFs were simulated by applying the finite element method to the 3D head model. The monaural spectral features and spectral distortions were very similar between re-measurements and between human and printed...... measurements, however larger deviations were observed between measurement and simulation. The binaural cues were in agreement among all HRTFs of the same listener, indicating that the 3D model is able to provide localization cues potentially accessible to HAD users. Hence, the pipeline of geometry acquisition...
Radiative heat transfer as a Landauer-Büttiker problem
Yap, Han Hoe; Wang, Jian-Sheng
2017-01-01
We study the radiative heat transfer between two semi-infinite half-spaces, bounded by conductive surfaces in contact with vacuum. This setup is interpreted as a four-terminal mesoscopic transport problem. The slabs and interfaces are viewed as bosonic reservoirs, coupled perfectly to a scattering center consisting of the two planes and vacuum. Using Rytov's fluctuational electrodynamics and assuming Kirchhoff's circuital law, we calculate the heat flow in each bath. This allows for explicit evaluation of a conductance matrix, from which one readily verifies Büttiker symmetry. Thus, radiative heat transfer in layered media with conductive interfaces becomes a Landauer-Büttiker transport problem.
Computation of Radiation Heat Transfer in Aeroengine Combustors
Patankar, S. V.
1996-01-01
In this report the highlights of the research completed for the NASA are summarized. This research has been completed in the form of two Ph.D. theses by Chai (1994) and Parthasarathy (1996). Readers are referred to these theses for a complete details of the work and lists of references. In the following sections, first objectives of this research are introduced, then the finite-volume method for radiation heat transfer is described, and finally computations of radiative heat transfer in non-gray participating media is presented.
Radiative Transfer Effects during Photoheating of the Intergalactic Medium
Abel, T; Abel, Tom; Haehnelt, Martin G.
1999-01-01
The thermal history of the intergalactic medium (IGM) after reionization is to a large extent determined by photoheating. Here we demonstrate that calculations of the photoheating rate which neglect radiative transfer effects substantially underestimate the energy input during and after reionization. The neglect of radiative transfer effects results in temperatures of the IGM which are too low by a factor of two after HeII reionization. We briefly discuss implications for the absorption properties of the IGM and the distribution of baryons in shallow potential wells.
Soil-Vegetation-Atmosphere Radiative Transfer Model in Microwave Region
Institute of Scientific and Technical Information of China (English)
JIA Yuanyuan; LI Zhaoliang
2008-01-01
The radiative transfer is one of the significant theories that describe the processes of scattering,emission,and absorption of electromagnetic radiant intensity through scattering medium.It is the basis of the study on the quantitative remote sensing.In this paper,the radiative characteristics of soil,vegetation,and atmosphere were described respectively.The numerical solution of radiative transfer was accomplished by Successive Orders of Scattering (SOS).A radiative transfer model for simulating microwave brightness temperature over land surfaces was constructed,designed,and implemented.Analyzing the database generated from soil-vegetation-atmosphere radiative transfer model under Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) configuration showed that the atmospheric effects on microwave brightness temperature should not be neglected,particularly for higher frequency,and can be parameterized.At the same time,the relationship between the emissivities of the different channels was developed.The study results will promote the development of algorithm to retrieve geophysical parameters from microwave remotely sensed data.
Energy Technology Data Exchange (ETDEWEB)
Dyrboel, Susanne
1998-05-01
Fibrous materials are some of the most widely used materials for thermal insulation. In this project the focus of interest has been on fibrous materials for building application. Interest in improving the thermal properties of insulation materials is increasing as legislation is being tightened to reduce the overall energy consumption. A knowledge of the individual heat transfer mechanisms - whereby heat is transferred within a particular material is an essential tool to improve continuously the thermal properties of the material. Heat is transferred in fibrous materials by four different transfer mechanisms: conduction through air, conduction through fibres, thermal radiation and convection. In a particular temperature range the conduction through air can be regarded as a constant, and conduction through fibres is an insignificant part of the total heat transfer. Radiation, however, constitutes 25-40% of the total heat transfer in light fibrous materials. In Denmark and a number of other countries convection in fibrous materials is considered as non-existent when calculating heat transmission as well as when designing building structures. Two heat transfer mechanisms have been the focus of the current project: radiation heat transfer and convection. The radiation analysis serves to develop a model that can be used in further work to gain a wider knowledge of the way in which the morphology of the fibrous material, i.e. fibre diameter distribution, fibre orientation distribution etc., influences the radiation heat transfer under different conditions. The convection investigation serves to examine whether considering convection as non-existent is a fair assumption to use in present and future building structures. The assumption applied in practically is that convection makes a notable difference only in very thick insulation, at external temperatures below -20 deg. C, and at very low densities. For lager thickness dimensions the resulting heat transfer through the
Radiative heat transfer between nanoparticles enhanced by intermediate particle
Energy Technology Data Exchange (ETDEWEB)
Wang, Yanhong; Wu, Jingzhi, E-mail: jzwu@live.nuc.edu.cn [Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, Shanxi (China)
2016-02-15
Radiative heat transfer between two polar nanostructures at different temperatures can be enhanced by resonant tunneling of surface polaritons. Here we show that the heat transfer between two nanoparticles is strongly varied by the interactions with a third nanoparticle. By controlling the size of the third particle, the time scale of thermalization toward the thermal bath temperature can be modified over 5 orders of magnitude. This effect provides control of temperature distribution in nanoparticle aggregation and facilitates thermal management at nanoscale.
Yin, Xian-Zhen; Xiao, Ti-Qiao; Nangia, Ashwini; Yang, Shuo; Lu, Xiao-Long; Li, Hai-Yan; Shao, Qun; He, You; York, Peter; Zhang, Ji-Wen
2016-04-01
Polymorphism denotes the existence of more than one crystal structure of a substance, and great practical and theoretical interest for the chemical and pharmaceutical industries. In many cases, it is challenging to produce a pure crystal form and establish a sensitive detection method for the identification of crystal form in a mixture of polymorphs. In this study, an accurate and sensitive method based on synchrotron radiation X-ray computed microtomography (SR-μCT) was devised to identify the polymorphs of clopidogrel bisulphate (CLP). After 3D reconstruction, crystal particles were extracted and dozens of structural parameters were calculated. Whilst, the particle shapes of the two crystal forms were all irregular, the surface of CLP II was found to be rougher than CLP I. In order to classify the crystal form based on the quantitative morphological property of particles, Volume Bias Percentage based on Surface Smoothing (VBP) was defined and a new method based on VBP was successfully developed, with a total matching rate of 99.91% for 4544 particles and a lowest detectable limit of 1%. More important for the mixtures in solid pharmaceutical formulations, the interference of excipients can be avoided, a feature cannot achieved by other available analytical methods.
2 types of spicules "observed" in 3D realistic models
Martínez-Sykora, Juan
2010-01-01
Realistic numerical 3D models of the outer solar atmosphere show two different kind of spicule-like phenomena, as also observed on the solar limb. The numerical models are calculated using the 2 types of spicules "observed" in 3D realistic models Oslo Staggered Code (OSC) to solve the full MHD equations with non-grey and NLTE radiative transfer and thermal conduction along the magnetic field lines. The two types of spicules arise as a natural result of the dynamical evolution in the models. We discuss the different properties of these two types of spicules, their differences from observed spicules and what needs to be improved in the models.
Jin, Shengye; Tamura, Masayuki
2013-10-01
Monte Carlo Ray Tracing (MCRT) method is a versatile application for simulating radiative transfer regime of the Solar - Atmosphere - Landscape system. Moreover, it can be used to compute the radiation distribution over a complex landscape configuration, as an example like a forest area. Due to its robustness to the complexity of the 3-D scene altering, MCRT method is also employed for simulating canopy radiative transfer regime as the validation source of other radiative transfer models. In MCRT modeling within vegetation, one basic step is the canopy scene set up. 3-D scanning application was used for representing canopy structure as accurately as possible, but it is time consuming. Botanical growth function can be used to model the single tree growth, but cannot be used to express the impaction among trees. L-System is also a functional controlled tree growth simulation model, but it costs large computing memory. Additionally, it only models the current tree patterns rather than tree growth during we simulate the radiative transfer regime. Therefore, it is much more constructive to use regular solid pattern like ellipsoidal, cone, cylinder etc. to indicate single canopy. Considering the allelopathy phenomenon in some open forest optical images, each tree in its own `domain' repels other trees. According to this assumption a stochastic circle packing algorithm is developed to generate the 3-D canopy scene in this study. The canopy coverage (%) and the tree amount (N) of the 3-D scene are declared at first, similar to the random open forest image. Accordingly, we randomly generate each canopy radius (rc). Then we set the circle central coordinate on XY-plane as well as to keep circles separate from each other by the circle packing algorithm. To model the individual tree, we employ the Ishikawa's tree growth regressive model to set the tree parameters including DBH (dt), tree height (H). However, the relationship between canopy height (Hc) and trunk height (Ht) is
Fractional integration and radiative transfer in a multifractal atmosphere
Energy Technology Data Exchange (ETDEWEB)
Naud, C.; Schertzer, D. [Universite Pierre et Marie Curie, Paris (France); Lovejoy, S. [McGill Univ., Montreal (Canada)
1996-04-01
Recently, Cess et al. (1995) and Ramathan et al. (1995) cited observations which exhibit an anomalous absorption of cloudy skies in comparison with the value predicted by usual models and which thus introduce large uncertainties for climatic change assessments. These observation raise questions concerning the way general circulation models have been tuned for decades, relying on classical methods, of both radiative transfer and dynamical modeling. The observations also tend to demonstrate that homogeneous models are simply not relevant in relating the highly variable properties of clouds and radiation fields. However smoothed, the intensity of cloud`s multi-scattered radiation fields reflect this extreme variability.
Simulation of solar radiation during a total eclipse: a challenge for radiative transfer
Directory of Open Access Journals (Sweden)
C. Emde
2007-01-01
Full Text Available A solar eclipse is a rare but spectacular natural phenomenon and furthermore it is a challenge for radiative transfer modelling. Whereas a simple one-dimensional radiative transfer model with reduced solar irradiance at the top of the atmosphere can be used to calculate the brightness during partial eclipses a much more sophisticated model is required to calculate the brightness (i.e. the diffuse radiation during the total eclipse. The reason is that radiation reaching a detector in the shadow gets there exclusively by horizontal transport of photons in a spherical shell atmosphere, which requires a three-dimensional radiative transfer model. In this study the first fully three-dimensional simulations for a solar eclipse are presented exemplified by the solar eclipse at 29 March 2006. Using a backward Monte Carlo model we calculated the diffuse radiation in the umbra and simulated the changing colours of the sky. Radiance and irradiance are decreased by 3 to 4 orders of magnitude, depending on wavelength. We found that aerosol has a comparatively small impact on the radiation in the umbra. We also estimated the contribution of the solar corona to the radiation under the umbra and found that it is negligible compared to the diffuse solar radiation in the wavelength region from 310 to 500 nm.
Mesoscopic near-field radiative heat transfer at low temperatures
Maasilta, Ilari; Geng, Zhuoran; Chaudhuri, Saumyadip; Koppinen, Panu
2015-03-01
Near-field radiative heat transfer has mostly been discussed at room temperatures and/or macroscopic scale geometries. Here, we discuss our recent theoretical and experimental advances in understanding near-field transfer at ultra-low temperatures below 1K. As the thermal wavelengths increase with lowering temperature, we show that with sensitive tunnel junction bolometers it is possible to study near-field transfer up to distances ~ 10 μm currently, even though the power levels are low. In addition, these type of experiments correspond to the extreme near-field limit, as the near-field region starts at ~ mm distances at 0.1 K, and could have theoretical power enhancement factors of the order of 1010. Preliminary results on heat transfer between two parallel metallic wires are presented. We also comment on possible areas were such heat transfer might be relevant, such as densely packed arrays of low-temperature detectors.
Fast and simple model for atmospheric radiative transfer
Seidel, F.C.; Kokhanovsky, A.A.; Schaepman, M.E.
2010-01-01
Radiative transfer models (RTMs) are of utmost importance for quantitative remote sensing, especially for compensating atmospheric perturbation. A persistent trade-off exists between approaches that prefer accuracy at the cost of computational complexity, versus those favouring simplicity at the cos
Radiative transfer simulations of magnetar flare beaming
van Putten, T.; Watts, A. L.; Baring, M. G.; Wijers, R. A. M. J.
2016-09-01
Magnetar giant flares show oscillatory modulations in the tails of their light curves, which can only be explained via some form of beaming. The fireball model for magnetar bursts has been used successfully to fit the phase-averaged light curves of the tails of giant flares, but so far no attempts have been made to fit the pulsations. We present a relatively simple numerical model to simulate beaming of magnetar flare emission. In our simulations, radiation escapes from the base of a fireball trapped in a dipolar magnetic field, and is scattered through the optically thick magnetosphere of the magnetar until it escapes. Beaming is provided by the presence of a relativistic outflow, as well as by the geometry of the system. We find that a simple picture for the relativistic outflow is enough to create the pulse fraction and sharp peaks observed in pulse profiles of magnetar flares, while without a relativistic outflow the beaming is insufficient to explain giant flare rotational modulations.
Radiative transfer simulations of magnetar flare beaming
van Putten, T; Baring, M G; Wijers, R A M J
2016-01-01
Magnetar giant flares show oscillatory modulations in the tails of their light curves, which can only be explained via some form of beaming. The fireball model for magnetar bursts has been used successfully to fit the phase-averaged light curves of the tails of giant flares, but so far no attempts have been made to fit the pulsations. We present a relatively simple numerical model to simulate beaming of magnetar flare emission. In our simulations, radiation escapes from the base of a fireball trapped in a dipolar magnetic field, and is scattered through the optically thick magnetosphere of the magnetar until it escapes. Beaming is provided by the presence of a relativistic outflow, as well as by the geometry of the system. We find that a simple picture for the relativistic outflow is enough to create the pulse fraction and sharp peaks observed in pulse profiles of magnetar flares, while without a relativistic outflow the beaming is insufficient to explain giant flare rotational modulations.
Altaç, Zekeriya; Sert, Zerrin
2017-01-01
Alternative synthetic kernel (ASKN) approximation, just as the standard SKN method, is derived from the radiative integral transfer equations in full 3D generality. The direct and diffuse terms of thermal radiation appear explicitly in the radiative integral transfer equations as surface and volume integrals, respectively. In standard SKN method, the approximation is employed to the diffuse terms while direct terms are evaluated analytically. The alternative formulation differs from the standard one in that the direct radiation wall contributions are also approximated with the same spirit of the synthetic kernel approximation. This alternative formulation also yields a set of coupled partial differential-the ASKN-equations which could be solved using finite volume methods. This approximation is applied to radiative transfer calculations in regular and irregular two-dimensional absorbing, emitting and isotropically scattering media. Four benchmark problems-one rectangular and three irregular media-are considered, and the net radiative flux and/or incident energy solutions along the boundaries are compared with available exact, standard discrete ordinates S4 and S12, modified discrete ordinates S4, Monte Carlo and collocation spectral method to assess the accuracy of the method. The ASKN approximation yields ray effect free incident energy and radiative flux distributions, and low order ASKN solutions are generally better than those of the high order standard discrete ordinates method.
The radiative transfer of synchrotron radiation through a compressed random magnetic field
Cawthorne, T V
2014-01-01
This paper examines the radiative transfer of synchrotron radiation in the presence of a magnetic field configuration resulting from the compression of a highly disordered magnetic field. It is shown that, provided Faraday rotation and circular polarization can be neglected, the radiative transfer equations for synchrotron radiation separate for this configuration, and the intensities and polarization values for sources that are uniform on large scales can be found straightforwardly in the case where opacity is significant. Although the emission and absorption coefficients must, in general, be obtained numerically, the process is much simpler than a full numerical solution to the transfer equations. Some illustrative results are given and an interesting effect, whereby the polarization increases while the magnetic field distribution becomes less strongly confined to the plane of compression, is discussed. The results are of importance for the interpretation of polarization near the edges of lobes in radio gal...
Viaene, S; Tamm, A; Tempel, E; Bendo, G; Blommaert, J A D L; Boquien, M; Boselli, A; Camps, P; Cooray, A; De Looze, I; De Vis, P; Fernandez-Ontiveros, J A; Fritz, J; Galametz, M; Gentile, G; Madden, S; Smith, M W L; Spinoglio, L; Verstocken, S
2016-01-01
The radiation of stars heats dust grains in the diffuse interstellar medium and in star-forming regions in galaxies. Modelling this interaction provides information on dust in galaxies, a vital ingredient for their evolution. It is not straightforward to identify the stellar populations heating the dust, and to link attenuation to emission on a sub-galactic scale. Radiative transfer models are able to simulate this dust-starlight interaction in a realistic, three-dimensional setting. We investigate the dust heating mechanisms on a local and global galactic scale, using the Andromeda galaxy (M31) as our laboratory. We perform a series of panchromatic radiative transfer simulations of Andromeda with our code SKIRT. The high inclination angle of M31 complicates the 3D modelling and causes projection effects. However, the observed morphology and flux density are reproduced fairly well from UV to sub-millimeter wavelengths. Our model reveals a realistic attenuation curve, compatible with previous, observational es...
Brdnik, Lovro
2015-01-01
Diplomsko delo analizira trenutno stanje 3D tiskalnikov na trgu. Prikazan je razvoj in principi delovanja 3D tiskalnikov. Predstavljeni so tipi 3D tiskalnikov, njihove prednosti in slabosti. Podrobneje je predstavljena zgradba in delovanje koračnih motorjev. Opravljene so meritve koračnih motorjev. Opisana je programska oprema za rokovanje s 3D tiskalniki in komponente, ki jih potrebujemo za izdelavo. Diploma se oklepa vprašanja, ali je izdelava 3D tiskalnika bolj ekonomična kot pa naložba v ...
A thermokinetic approach to radiative heat transfer at the nanoscale.
Pérez-Madrid, Agustín; Lapas, Luciano C; Rubí, J Miguel
2013-01-01
Radiative heat exchange at the nanoscale presents a challenge for several areas due to its scope and nature. Here, we provide a thermokinetic description of microscale radiative energy transfer including phonon-photon coupling manifested through a non-Debye relaxation behavior. We show that a lognormal-like distribution of modes of relaxation accounts for this non-Debye relaxation behavior leading to the thermal conductance. We also discuss the validity of the fluctuation-dissipation theorem. The general expression for the thermal conductance we obtain fits existing experimental results with remarkable accuracy. Accordingly, our approach offers an overall explanation of radiative energy transfer through micrometric gaps regardless of geometrical configurations and distances.
A thermokinetic approach to radiative heat transfer at the nanoscale.
Directory of Open Access Journals (Sweden)
Agustín Pérez-Madrid
Full Text Available Radiative heat exchange at the nanoscale presents a challenge for several areas due to its scope and nature. Here, we provide a thermokinetic description of microscale radiative energy transfer including phonon-photon coupling manifested through a non-Debye relaxation behavior. We show that a lognormal-like distribution of modes of relaxation accounts for this non-Debye relaxation behavior leading to the thermal conductance. We also discuss the validity of the fluctuation-dissipation theorem. The general expression for the thermal conductance we obtain fits existing experimental results with remarkable accuracy. Accordingly, our approach offers an overall explanation of radiative energy transfer through micrometric gaps regardless of geometrical configurations and distances.
Radiative transfer in a polluted urban planetary boundary layer
Viskanta, R.; Johnson, R. O.; Bergstrom, R. W.
1977-01-01
Radiative transfer in a polluted urban atmosphere is studied using a dynamic model. The diurnal nature of radiative transfer for summer conditions is simulated for an urban area 40 km in extent and the effects of various parameters arising in the problem are investigated. The results of numerical computations show that air pollution has the potential of playing a major role in the radiative regime of the urban area. Absorption of solar energy by aerosols in realistic models of urban atmosphere are of the same order of magnitude as that due to water vapor. The predicted effect of the air pollution aerosol in the city is to warm the earth-atmosphere system, and the net effect of gaseous pollutant is to warm the surface and cool the planetary boundary layer, particularly near the top.
Roberts, Emily D.
The Marcellus Shale has become an important unconventional gas reservoir in the oil and gas industry. Fractures within this organic-rich black shale serve as an important component of porosity and permeability useful in enhancing production. Horizontal drilling is the primary approach for extracting hydrocarbons in the Marcellus Shale. Typically, wells are drilled perpendicular to natural fractures in an attempt to intersect fractures for effective hydraulic stimulation. If the fractures are contained within the shale, then hydraulic fracturing can enhance permeability by further breaking the already weakened rock. However, natural fractures can affect hydraulic stimulations by absorbing and/or redirecting the energy away from the wellbore, causing a decreased efficiency in gas recovery, as has been the case for the Clearfield County, Pennsylvania study area. Estimating appropriate distances away from faults and fractures, which may limit hydrocarbon recovery, is essential to reducing the risk of injection fluid migration along these faults. In an attempt to mitigate the negative influences of natural fractures on hydrocarbon extraction within the Marcellus Shale, fractures were analyzed through the aid of both traditional and advanced seismic attributes including variance, curvature, ant tracking, and waveform model regression. Through the integration of well log interpretations and seismic data, a detailed assessment of structural discontinuities that may decrease the recovery efficiency of hydrocarbons was conducted. High-quality 3D seismic data in Central Pennsylvania show regional folds and thrusts above the major detachment interval of the Salina Salt. In addition to the regional detachment folds and thrusts, cross-regional, northwest-trending lineaments were mapped. These lineaments may pose a threat to hydrocarbon productivity and recovery efficiency due to faults and fractures acting as paths of least resistance for induced hydraulic stimulation fluids
Energy Technology Data Exchange (ETDEWEB)
Liou, Kuo-Nan [Univ. of California, Los Angeles, CA (United States); Ou, S. C. [Univ. of California, Los Angeles, CA (United States); Gu, Y. [Univ. of California, Los Angeles, CA (United States); Takano, Y. [Univ. of California, Los Angeles, CA (United States)
2016-02-22
+ b ln(IWC) + c ((ln(IWC))2, where a, b, and c are fitting coefficients and are functions of three regions. We demonstrated that this correlation can be effectively incorporated in GCMs and climate models that predict IWC - a significant advance in ice microphysics parameterization for interactive cloud-radiation analysis and feedback. Substantial July mean differences are shown in the OLR (W/m2) and precipitation (mm/day) patterns between UCLA GCM simulations based on Des determined from the De-IWC correlations and the control run using a fixed ice crystal size. Third, in order to improve the computation of spectral radiative transfer processes in the WRF model, we developed a consistent and efficient radiation scheme that can better resolve the spectral bands, determine the cloud optical properties, and provide more reliable and accurate radiative heating fields. In the newly developed radiation module, we have implemented in WRF a modified and improved version referred to as the Fu-Liou-Gu scheme, which includes a combination of delta-four-stream and delta-two-stream approximations for solar and IR flux calculations, respectively. This combination has been proven to be computationally efficient and at the same time to produce a high degree of accuracy. The incorporation of nongray gaseous absorption in multiple scattering atmospheres was based on the correlated k-distribution method. The solar and IR spectra are divided into 6 and 12 bands, respectively, according to the location of absorption bands of H2O, CO2, O3, CH4, N2O, and CFCs. We further included absorption by the water vapor continuum and a number of minor absorbers in the solar spectrum leading to an additional absorption of solar flux in a clear atmosphere on the order of 1-3 W/m2. Additionally, we incorporated the ice microphysics parameterization that includes an interactive mean effective ice crystal size in association with radiation parameterizations. The Fu-Liou-Gu scheme is an ideal tool for the
2013-09-30
etc. This study will serve as the genesis to the future evolution of an inversion algorithm whereby one could reconstruct images that have been...monitor osteoporosis in humans. c) We have completed a lengthy review article titled “Genesis and Evolution of Polarization of Light in the Ocean...to use as input to our codes in our MURI study of cephalopods . REFERENCES 1. G. W. Kattawar and G. N. Plass, “Asymptotic Radiance and
Meulien Ohlmann, Odile
2013-02-01
Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?
The influence of frequency-dependent radiative transfer on the structures of radiative shocks
Vaytet, N; Audit, E; Chabrier, G
2013-01-01
Radiative shocks are shocks in a gas where the radiative energy and flux coming from the very hot post-shock material are non-negligible in the shock's total energy budget, and are often large enough to heat the material ahead of the shock. Many simulations of radiative shocks, both in the contexts of astrophysics and laboratory experiments, use a grey treatment of radiative transfer coupled to the hydrodynamics. However, the opacities of the gas show large variations as a function of frequency and this needs to be taken into account if one wishes to reproduce the relevant physics. We have performed radiation hydrodynamics simulations of radiative shocks in Ar using multigroup (frequency dependent) radiative transfer with the HERACLES code. The opacities were taken from the ODALISC database. We show the influence of the number of frequency groups used on the dynamics and morphologies of subcritical and supercritical radiative shocks in Ar gas, and in particular on the extent of the radiative precursor. We fin...
Preliminary results of a three-dimensional radiative transfer model
Energy Technology Data Exchange (ETDEWEB)
O`Hirok, W. [Univ. of California, Santa Barbara, CA (United States)
1995-09-01
Clouds act as the primary modulator of the Earth`s radiation at the top of the atmosphere, within the atmospheric column, and at the Earth`s surface. They interact with both shortwave and longwave radiation, but it is primarily in the case of shortwave where most of the uncertainty lies because of the difficulties in treating scattered solar radiation. To understand cloud-radiative interactions, radiative transfer models portray clouds as plane-parallel homogeneous entities to ease the computational physics. Unfortunately, clouds are far from being homogeneous, and large differences between measurement and theory point to a stronger need to understand and model cloud macrophysical properties. In an attempt to better comprehend the role of cloud morphology on the 3-dimensional radiation field, a Monte Carlo model has been developed. This model can simulate broadband shortwave radiation fluxes while incorporating all of the major atmospheric constituents. The model is used to investigate the cloud absorption anomaly where cloud absorption measurements exceed theoretical estimates and to examine the efficacy of ERBE measurements and cloud field experiments. 3 figs.
Kolar, Nataša
2016-01-01
Diplomsko delo predstavi razvoj tiskanja skozi čas. Podrobneje so opisani 3D tiskalniki, ki uporabljajo različne tehnologije 3D tiskanja. Predstavljene so različne tehnologije 3D tiskanja, njihova uporaba in narejeni prototipi oz. končni izdelki. Diplomsko delo opiše celoten postopek, od zamisli, priprave podatkov in tiskalnika do izdelave prototipa oz. končnega izdelka.
Directory of Open Access Journals (Sweden)
F. Spada
2006-02-01
Full Text Available A new multiple-scattering Monte Carlo 3-D radiative transfer model named McSCIA (Monte Carlo for SCIAmachy is presented. The backward technique is used to efficiently simulate narrow field of view instruments. The McSCIA algorithm has been formulated as a function of the Earth's radius, and can thus perform simulations for both plane-parallel and spherical atmospheres. The latter geometry is essential for the interpretation of limb satellite measurements, as performed by SCIAMACHY on board of ESA's Envisat. The model can simulate UV-vis-NIR radiation.
First the ray-tracing algorithm is presented in detail, and then successfully validated against literature references, both in plane-parallel and in spherical geometry. A simple 1-D model is used to explain two different ways of treating absorption. One method uses the single scattering albedo while the other uses the equivalence theorem. The equivalence theorem is based on a separation of absorption and scattering. It is shown that both methods give, in a statistical way, identical results for a wide variety of scenarios. Both absorption methods are included in McSCIA, and it is shown that also for a 3-D case both formulations give identical results. McSCIA limb profiles for atmospheres with and without absorption compare well with the one of the state of the art Monte Carlo radiative transfer model MCC++.
A simplification of the photon statistics may lead to very fast calculations of absorption features in the atmosphere. However, these simplifications potentially introduce biases in the results. McSCIA does not use simplifications and is therefore a relatively slow implementation of the equivalence theorem. For the first time, however, the validity of the equivalence theorem is demonstrated in a spherical 3-D radiative transfer model.
Fire Intensity Data for Validation of the Radiative Transfer Equation
Energy Technology Data Exchange (ETDEWEB)
Blanchat, Thomas K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jernigan, Dann A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-01-01
A set of experiments and test data are outlined in this report that provides radiation intensity data for the validation of models for the radiative transfer equation. The experiments were performed with lightly-sooting liquid hydrocarbon fuels that yielded fully turbulent fires 2 m diameter). In addition, supplemental measurements of air flow and temperature, fuel temperature and burn rate, and flame surface emissive power, wall heat, and flame height and width provide a complete set of boundary condition data needed for validation of models used in fire simulations.
Analytical Heat Transfer Modeling of a New Radiation Calorimeter
Ndong, Elysée Obame; Aitken, Frédéric
2016-01-01
This paper deals with an analytical modeling of heat transfers simulating a new radiation calorimeter operating in a temperature range from -50 {\\deg}C to 150 {\\deg}C. The aim of this modeling is the evaluation of the feasibility and performance of the calorimeter by assessing the measurement of power losses of some electrical devices by radiation, the influence of the geometry and materials. Finally a theoretical sensibility of the new apparatus is estimated at ~1 mW. From these results the calorimeter has been successfully implemented and patented.
Retaining space and time coherence in radiative transfer models.
Rosato, J
2015-05-01
A recent model for radiative transfer that accounts for spatial coherence is extended in such a way as to retain temporal coherence. The method employs Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy techniques. Both spatial and temporal coherence are shown to affect the formation of atomic line spectra. Calculations of Lyman α radiation transport in optically thick divertor plasma conditions are reported as an illustration of the model. A possible extension of the formalism to dense media involving correlations between atoms is discussed in an appendix. A link to partial frequency redistribution modeling is also discussed.
Advanced Computational Methods for Thermal Radiative Heat Transfer.
Energy Technology Data Exchange (ETDEWEB)
Tencer, John; Carlberg, Kevin Thomas; Larsen, Marvin E.; Hogan, Roy E.,
2016-10-01
Participating media radiation (PMR) in weapon safety calculations for abnormal thermal environments are too costly to do routinely. This cost may be s ubstantially reduced by applying reduced order modeling (ROM) techniques. The application of ROM to PMR is a new and unique approach for this class of problems. This approach was investigated by the authors and shown to provide significant reductions in the computational expense associated with typical PMR simulations. Once this technology is migrated into production heat transfer analysis codes this capability will enable the routine use of PMR heat transfer in higher - fidelity simulations of weapon resp onse in fire environments.
Radiative heat transfer between nanoparticles enhanced by intermediate particle
Directory of Open Access Journals (Sweden)
Yanhong Wang
2016-02-01
Full Text Available Radiative heat transfer between two polar nanostructures at different temperatures can be enhanced by resonant tunneling of surface polaritons. Here we show that the heat transfer between two nanoparticles is strongly varied by the interactions with a third nanoparticle. By controlling the size of the third particle, the time scale of thermalization toward the thermal bath temperature can be modified over 5 orders of magnitude. This effect provides control of temperature distribution in nanoparticle aggregation and facilitates thermal management at nanoscale.
Advanced Computational Methods for Thermal Radiative Heat Transfer
Energy Technology Data Exchange (ETDEWEB)
Tencer, John; Carlberg, Kevin Thomas; Larsen, Marvin E.; Hogan, Roy E.,
2016-10-01
Participating media radiation (PMR) in weapon safety calculations for abnormal thermal environments are too costly to do routinely. This cost may be s ubstantially reduced by applying reduced order modeling (ROM) techniques. The application of ROM to PMR is a new and unique approach for this class of problems. This approach was investigated by the authors and shown to provide significant reductions in the computational expense associated with typical PMR simulations. Once this technology is migrated into production heat transfer analysis codes this capability will enable the routine use of PMR heat transfer in higher - fidelity simulations of weapon resp onse in fire environments.
Radiative Heat Transfer and Turbulence-Radiation Interactions in a Heavy-Duty Diesel Engine
Paul, C.; Sircar, A.; Ferreyro, S.; Imren, A.; Haworth, D. C.; Roy, S.; Ge, W.; Modest, M. F.
2016-11-01
Radiation in piston engines has received relatively little attention to date. Recently, it is being revisited in light of current trends towards higher operating pressures and higher levels of exhaust-gas recirculation, both of which enhance molecular gas radiation. Advanced high-efficiency engines also are expected to function closer to the limits of stable operation, where even small perturbations to the energy balance can have a large influence on system behavior. Here several different spectral radiation property models and radiative transfer equation (RTE) solvers have been implemented in an OpenFOAM-based engine CFD code, and simulations have been performed for a heavy-duty diesel engine. Differences in computed temperature fields, NO and soot levels, and wall heat transfer rates are shown for different combinations of spectral models and RTE solvers. The relative importance of molecular gas radiation versus soot radiation is examined. And the influence of turbulence-radiation interactions is determined by comparing results obtained using local mean values of composition and temperature to compute radiative emission and absorption with those obtained using a particle-based transported probability density function method. DOE, NSF.
Simulation of solar radiation during a total solar eclipse: a challenge for radiative transfer
Directory of Open Access Journals (Sweden)
C. Emde
2007-01-01
Full Text Available A solar eclipse is a rare but spectacular natural phenomenon and furthermore it is a challenge for radiative transfer modeling. Whereas a simple one-dimensional radiative transfer model with reduced solar irradiance at the top of the atmosphere can be used to calculate the brightness during partial eclipses a much more sophisticated model is required to calculate the brightness (i.e. the diffuse radiation during the total eclipse. The reason is that radiation reaching a detector in the shadow gets there exclusively by horizontal (three-dimensional transport of photons in a spherical shell atmosphere. In this study the first accurate simulations are presented examplified by the solar eclipse at 29 March 2006. Using a backward Monte Carlo model we calculated the diffuse radiation in the umbra and simulated the changing colors of the sky. Radiance and irradiance are decreased by 3 to 4 orders of magnitude, depending on wavelength. We found that aerosol has a comparatively small impact on the radiation in the umbra. We also estimated the contribution of the solar corona to the radiation under the umbra and found that it is negligible compared to the diffuse solar radiation in most parts of the spectrum. Spectrally resolved measurements in the umbra are not yet available. They are challenging due to the low intensity and therefore need careful planning. The new model may be used to support measurements during future solar eclipses.
Radiative charge transfer in collisions of C with He+
Babb, James F.; McLaughlin, B. M.
2017-02-01
Radiative charge exchange collisions between a carbon atom {{C}}({}3P) and a helium ion {{He}}+({}2S), both in their ground state, are investigated theoretically. Detailed quantum chemistry calculations are carried out to obtain potential energy curves and transition dipole matrix elements for doublet and quartet molecular states of the HeC+ cation. Radiative charge transfer cross sections and rate coefficients are calculated and are found at thermal and lower energies to be large compared to those for direct charge transfer. The present results might be applicable to modelling the complex interplay of [{{C}} {{II}}] (or {{{C}}}+), {{C}}, and {CO} at the boundaries of interstellar photon dominated regions and in x-ray dominated regions, where the abundance of {{He}}+ affects the abundance of {CO}.
Rabacus: A Python Package for Analytic Cosmological Radiative Transfer Calculations
Altay, Gabriel
2015-01-01
We describe Rabacus, a Python package for calculating the transfer of hydrogen ionizing radiation in simplified geometries relevant to astronomy and cosmology. We present example solutions for three specific cases: 1) a semi-infinite slab gas distribution in a homogeneous isotropic background, 2) a spherically symmetric gas distribution with a point source at the center, and 3) a spherically symmetric gas distribution in a homogeneous isotropic background. All problems can accommodate arbitrary spectra and density profiles as input. The solutions include a treatment of both hydrogen and helium, a self-consistent calculation of equilibrium temperatures, and the transfer of recombination radiation. The core routines are written in Fortran 90 and then wrapped in Python leading to execution speeds thousands of times faster than equivalent routines written in pure Python. In addition, all variables have associated units for ease of analysis. The software is part of the Python Package Index and the source code is a...
Radiative charge transfer in collisions of C with He+
Babb, James F
2016-01-01
Radiative charge exchange collisions between a carbon atom C(${}^3$P) and a helium ion He+, both in their ground state, are investigated theoretically. Detailed quantum chemistry calculations are carried out to obtain potential energy curves and transition dipole matrix elements for doublet and quartet molecular states of the HeC+ cation. Radiative charge transfer cross sections and rate coefficients are calculated and are found at thermal and lower energies to be large compared to those for direct charge transfer. The present results might be applicable to modelling the complex interplay of [C II] (or C+), C, and CO at the boundaries of photon dominated regions (PDRs) and in xray dominated regions (XDRs), where the abundance of He+ affects the abundance of CO.
Simulations of recoiling black holes: adaptive mesh refinement and radiative transfer
Meliani, Zakaria; Olivares, Hector; Porth, Oliver; Rezzolla, Luciano; Younsi, Ziri
2016-01-01
(Abridged) We here continue our effort to model the behaviour of matter when orbiting or accreting onto a generic black hole by developing a new numerical code employing advanced techniques geared solve the equations of in general-relativistic hydrodynamics. The new code employs a number of high-resolution shock-capturing Riemann-solvers and reconstruction algorithms, exploiting the enhanced accuracy and the reduced computational cost of AMR techniques. In addition, the code makes use of sophisticated ray-tracing libraries that, coupled with general-relativistic radiation-transfer calculations, allow us to compute accurately the electromagnetic emissions from such accretion flows. We validate the new code by presenting an extensive series of stationary accretion flows either in spherical or axial symmetry and performed either in 2D or 3D. In addition, we consider the highly nonlinear scenario of a recoiling black hole produced in the merger of a supermassive black hole binary interacting with the surrounding ...
Energy Technology Data Exchange (ETDEWEB)
Parzefall, Ulrich [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany)], E-mail: ulrich.parzefall@physik.uni-freiburg.de; Bates, Richard [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Boscardin, Maurizio [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Dalla Betta, Gian-Franco [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Eckert, Simon [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Eklund, Lars; Fleta, Celeste [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Jakobs, Karl; Kuehn, Susanne [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Lozano, Manuel [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pahn, Gregor [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Parkes, Chris [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Pellegrini, Giulio [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pennicard, David [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Piemonte, Claudio; Ronchin, Sabina [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Szumlak, Tomasz [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Zoboli, Andrea [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Zorzi, Nicola [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy)
2009-06-01
While the Large Hadron Collider (LHC) at CERN has started operation in autumn 2008, plans for a luminosity upgrade to the Super-LHC (sLHC) have already been developed for several years. This projected luminosity increase by an order of magnitude gives rise to a challenging radiation environment for tracking detectors at the LHC experiments. Significant improvements in radiation hardness are required with respect to the LHC. Using a strawman layout for the new tracker of the ATLAS experiment as an example, silicon strip detectors (SSDs) with short strips of 2-3 cm length are foreseen to cover the region from 28 to 60 cm distance to the beam. These SSD will be exposed to radiation levels up to 10{sup 15}N{sub eq}/cm{sup 2}, which makes radiation resistance a major concern for the upgraded ATLAS tracker. Several approaches to increasing the radiation hardness of silicon detectors exist. In this article, it is proposed to combine the radiation hard 3D-design originally conceived for pixel-style applications with the benefits of the established planar technology for strip detectors by using SSDs that have regularly spaced doped columns extending into the silicon bulk under the detector strips. The first 3D SSDs to become available for testing were made in the Single Type Column (STC) design, a technological simplification of the original 3D design. With such 3D SSDs, a small number of prototype sLHC detector modules with LHC-speed front-end electronics as used in the semiconductor tracking systems of present LHC experiments were built. Modules were tested before and after irradiation to fluences of 10{sup 15}N{sub eq}/cm{sup 2}. The tests were performed with three systems: a highly focused IR-laser with 5{mu}m spot size to make position-resolved scans of the charge collection efficiency, an Sr{sup 90}{beta}-source set-up to measure the signal levels for a minimum ionizing particle (MIP), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of
Energy Technology Data Exchange (ETDEWEB)
Liou, Kuo-Nan [Univ. of California, Los Angeles, CA (United States); Ou, S. C. [Univ. of California, Los Angeles, CA (United States); Gu, Y. [Univ. of California, Los Angeles, CA (United States); Takano, Y. [Univ. of California, Los Angeles, CA (United States)
2016-02-22
+ b ln(IWC) + c ((ln(IWC))2, where a, b, and c are fitting coefficients and are functions of three regions. We demonstrated that this correlation can be effectively incorporated in GCMs and climate models that predict IWC - a significant advance in ice microphysics parameterization for interactive cloud-radiation analysis and feedback. Substantial July mean differences are shown in the OLR (W/m2) and precipitation (mm/day) patterns between UCLA GCM simulations based on Des determined from the De-IWC correlations and the control run using a fixed ice crystal size. Third, in order to improve the computation of spectral radiative transfer processes in the WRF model, we developed a consistent and efficient radiation scheme that can better resolve the spectral bands, determine the cloud optical properties, and provide more reliable and accurate radiative heating fields. In the newly developed radiation module, we have implemented in WRF a modified and improved version referred to as the Fu-Liou-Gu scheme, which includes a combination of delta-four-stream and delta-two-stream approximations for solar and IR flux calculations, respectively. This combination has been proven to be computationally efficient and at the same time to produce a high degree of accuracy. The incorporation of nongray gaseous absorption in multiple scattering atmospheres was based on the correlated k-distribution method. The solar and IR spectra are divided into 6 and 12 bands, respectively, according to the location of absorption bands of H2O, CO2, O3, CH4, N2O, and CFCs. We further included absorption by the water vapor continuum and a number of minor absorbers in the solar spectrum leading to an additional absorption of solar flux in a clear atmosphere on the order of 1-3 W/m2. Additionally, we incorporated the ice microphysics parameterization that includes an interactive mean effective ice crystal size in association with radiation parameterizations. The Fu-Liou-Gu scheme is an ideal tool for the
DEFF Research Database (Denmark)
Tournay, Bruno; Rüdiger, Bjarne
2006-01-01
3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s.......3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s....
A theoretical approach to room acoustic simulations based on a radiative transfer model
DEFF Research Database (Denmark)
Ruiz-Navarro, Juan-Miguel; Jacobsen, Finn; Escolano, José;
2010-01-01
A theoretical approach to room acoustic simulations based on a radiative transfer model is developed by adapting the classical radiative transfer theory from optics to acoustics. The proposed acoustic radiative transfer model expands classical geometrical room acoustic modeling algorithms by inco...
Energy Technology Data Exchange (ETDEWEB)
Balny, F.; Farman-Ara, B.; Talbot, J.N.; Petegnief, Y. [Hopital Tenon, Service de Medecine Nucleaire, 75 - Paris (France); Azli, T.; Sylvain, I. [Hopital Beaujon, Service de Medecine Nucleaire, 92 - Clichy (France)
2003-07-01
The aim of this study was to evaluate by EPD Mk2 (APVL) electronic dosimeters the equivalent dose delivered to the Nuclear Medicine technicians, for the different steps of ({sup 18}F)-FDG examinations on 3D PET (Positron Emission Tomography) and 2D CDET (Coincidence Detection Positron Emission Tomography) cameras. Whole body doses, normalized by the injected activity (nSv/MBq), measured in 7 technicians, with a minimum of 12 measures for each step, were: Reception of containers: 0.20 {+-} 0.14 3D PET (average {+-} s) 0.20 {+-} 0.14 2D CDET (average {+-} s); Injection preparation: 2.56 {+-} 1.60 3D PET (average {+-} s) 4.34 {+-} 2.47 2D CDET (average {+-} s); Injection with leaded shedding: 1.39 {+-} 0.47 3D PET (average {+-} s) 1.20 {+-} 0.32 2D CDET (average {+-} s); Un-perfusion with leaded shedding: 1.03 {+-} 0.22 3D PET (average {+-} s) 0.86 {+-} 0.19 2D CDET (average {+-} s); Patient accompaniment and positioning: 5.08 {+-} 1.90 3D PET (average {+-} s) 4.84 {+-} 4.38 2D CDET (average {+-} s); Total for an examination 10.06 {+-} 2.54 3D PET (average {+-} s) 11.24 {+-} 5.04 2D CDET (average {+-} s). Thus, for a patient of 70 kg, a technician could receive an average equivalent dose of 1.4 {mu}Sv for 3D PET (with the injection of 2 MBq/kg), and 3.9 {mu}Sv for 2D CDET (with the injection of 5 MBq/kg). Moreover, the technician's daily dose value for PET and for 5 patients was 12.7 {mu}Sv/day. Given the fact that examinations on new generation PET cameras (including PET-CT) require the injection of activities comparable to 5 MBq/kg and that a higher work-flow leads to an increased number of studies carried out each day, the use of adequate radiation protection devices and the electronic dosimeters will become essential. (authors)
SPAMCART: a code for smoothed particle Monte Carlo radiative transfer
Lomax, O.; Whitworth, A. P.
2016-10-01
We present a code for generating synthetic spectral energy distributions and intensity maps from smoothed particle hydrodynamics simulation snapshots. The code is based on the Lucy Monte Carlo radiative transfer method, i.e. it follows discrete luminosity packets as they propagate through a density field, and then uses their trajectories to compute the radiative equilibrium temperature of the ambient dust. The sources can be extended and/or embedded, and discrete and/or diffuse. The density is not mapped on to a grid, and therefore the calculation is performed at exactly the same resolution as the hydrodynamics. We present two example calculations using this method. First, we demonstrate that the code strictly adheres to Kirchhoff's law of radiation. Secondly, we present synthetic intensity maps and spectra of an embedded protostellar multiple system. The algorithm uses data structures that are already constructed for other purposes in modern particle codes. It is therefore relatively simple to implement.
A Radiation Transfer Solver for Athena using Short Characteristics
Davis, Shane W; Jiang, Yan-Fei
2012-01-01
We describe the implementation of a module for the Athena magnetohydrodynamics (MHD) code which solves the time-independent, multi-frequency radiative transfer (RT) equation on multidimensional Cartesian simulation domains, including scattering and non-LTE effects. The module is based on well-known and well-tested algorithms developed for modeling stellar atmospheres, including the method of short characteristics to solve the RT equation, accelerated Lambda iteration to handle scattering and non-LTE effects, and parallelization via domain decomposition. The module serves several purposes: it can be used to generate spectra and images, to compute a variable Eddington tensor (VET) for full radiation MHD simulations, and to calculate the heating and cooling source terms in the MHD equations in flows where radiation pressure is small compared with gas pressure. For the latter case, the module is combined with the standard MHD integrators using operator-splitting and we describe this approach in detail. Implementa...
SPAMCART: a code for smoothed particle Monte Carlo radiative transfer
Lomax, O
2016-01-01
We present a code for generating synthetic SEDs and intensity maps from Smoothed Particle Hydrodynamics simulation snapshots. The code is based on the Lucy (1999) Monte Carlo Radiative Transfer method, i.e. it follows discrete luminosity packets, emitted from external and/or embedded sources, as they propagate through a density field, and then uses their trajectories to compute the radiative equilibrium temperature of the ambient dust. The density is not mapped onto a grid, and therefore the calculation is performed at exactly the same resolution as the hydrodynamics. We present two example calculations using this method. First, we demonstrate that the code strictly adheres to Kirchhoff's law of radiation. Second, we present synthetic intensity maps and spectra of an embedded protostellar multiple system. The algorithm uses data structures that are already constructed for other purposes in modern particle codes. It is therefore relatively simple to implement.
Directory of Open Access Journals (Sweden)
A. Paulmier
2011-04-01
Full Text Available As regions of high primary production and being often associated to Oxygen Minimum Zones (OMZs, Eastern Boundary Upwelling Systems (EBUS represent key regions for the oceanic nitrogen (N cycle. Indeed, by exporting the Organic Matter (OM and nutrients produced in the coastal region to the open ocean, EBUS can play an important role in sustaining primary production in subtropical gyres. Losses of fixed inorganic N, through denitrification and anammox processes and through nitrous oxide (N2O emissions to the atmosphere, take place in oxygen depleted environments such as EBUS, and alleviate the role of these regions as a source of N. In the present study, we developed a 3-D coupled physical/biogeochemical (ROMS/BioBUS model for investigating the full N budget in the Namibian sub-system of the Benguela Upwelling System (BUS. The different state variables of a climatological experiment have been compared to different data sets (satellite and in situ observations and show that the model is able to represent this biogeochemical oceanic region. The N transfer is investigated in the Namibian upwelling system using this coupled model, especially in the Walvis Bay area between 22° S and 24° S where the OMZ is well developed (O2 2 l−1. The upwelling process advects 24.2 × 1010 mol N yr−1 of nitrate enriched waters over the first 100 m over the slope and over the continental shelf. The meridional advection by the alongshore Benguela current brings also nutrient-rich waters with 21.1 × 1010 mol N yr−1. 10.5 × 1010 mol N yr−1 of OM are exported outside of the continental shelf (between 0 and 100-m depth. 32.4% and 18.1% of this OM are exported by advection in the form of Dissolved and Particulate Organic Matters (DOM and POM, respectively, however vertical sinking of POM represents the main contributor (49.5% to OM export outside of the first 100-m depth of the water column on the continental shelf. The continental slope also represents a net N
Institute of Scientific and Technical Information of China (English)
ZHAO Jing-de; LIU Ni; ZHONG Ke
2006-01-01
The soft measurement technology of flame temperature field is an efficient method to learn the combustion status in furnace. Generally, it reconstructs the temperature field in furnace through the image of flame, which is a process to solve radiative inverse problem. In this paper, the flame of pulverized coal is considered as 3-D, absorbing, emitting,and anisotropically scattering non-gray medium. Through the study on inverse problem of radiative heat transfer, the temperature field in this kind of medium has been reconstructed. The mechanism of 3-D radiative heat transfer in a rectangular media, which is 2 m × 3 m × 5 m and full of CO2, N2 and carbon particles, is studied with Monte Carlo method. The 3-D temperature field in this rectangular space is reconstructed and the influence of particles density profile is discussed.
Valenza, Enrico
2015-01-01
This book is aimed at the professionals that already have good 3D CGI experience with commercial packages and have now decided to try the open source Blender and want to experiment with something more complex than the average tutorials on the web. However, it's also aimed at the intermediate Blender users who simply want to go some steps further.It's taken for granted that you already know how to move inside the Blender interface, that you already have 3D modeling knowledge, and also that of basic 3D modeling and rendering concepts, for example, edge-loops, n-gons, or samples. In any case, it'
Greenhouse effect from the point of view of radiative transfer
Barcza, Szabolcs
2016-01-01
Radiative power balance of a planet in the solar system is delineated. The terrestrial powers are transformed to average global flux in an effective atmospheric column (EAC) approximation, its components are delineated. The estimated and measured secular changes of the average global flux are compared to the fluxes derived from the Stefan-Boltzmann law using the observed global annual temperatures in the decades between 1880 and 2010. The conclusion of this procedure is that the radiative contribution of the greenhouse gas ${\\rm CO}_2$ is some $21\\pm 7$~\\% to the observed global warming from the end of the XIXth century excluding the feedback mechanisms playing determining role in the climate system. Stationary radiative flux transfer is treated in an air column as a function of the column density of the absorbent. Upper and lower limit of radiative forcing is given by assuming true absorption and coherent scatter of the monochromatic radiation. An integral formula is given for the outgoing long wave radiatio...
Application of entransy dissipation extremum principle in radiative heat transfer optimization
Institute of Scientific and Technical Information of China (English)
WU Jing; LIANG XinGang
2008-01-01
The concepts of entransy flux and entransy dissipation in radiative heat transfer were introduced based on the analogy with heat conduction and heat convection processes. Entransy will be partially dissipated during the radiative heat transfer processes due to the irreversibility. The extremum principle of entransy dissipation was developed for optimizing radiative heat transfer processes. This principle states that for a fixed boundary temperature the radiative heat transfer is optimized when the entransy dissipation is maximized, while for a fixed boundary heat flux the radiative heat transfer process is optimized when the entransy dissipation is minimized. Finally, examples for the application of the entransy dissipation extre-mum principle are presented.
Application of entransy dissipation extremum principle in radiative heat transfer optimization
Institute of Scientific and Technical Information of China (English)
2008-01-01
The concepts of entransy flux and entransy dissipation in radiative heat transfer were introduced based on the analogy with heat conduction and heat convection processes. Entransy will be partially dissipated during the radiative heat transfer processes due to the irreversibility. The extremum principle of entransy dissipation was developed for optimizing radiative heat transfer processes. This principle states that for a fixed boundary temperature the radiative heat transfer is optimized when the entransy dissipation is maximized, while for a fixed boundary heat flux the radiative heat transfer process is optimized when the entransy dissipation is minimized. Finally, examples for the application of the entransy dissipation extre- mum principle are presented.
DEFF Research Database (Denmark)
Hundebøl, Jesper
wave of new building information modelling tools demands further investigation, not least because of industry representatives' somewhat coarse parlance: Now the word is spreading -3D digital modelling is nothing less than a revolution, a shift of paradigm, a new alphabet... Research qeustions. Based...... on empirical probes (interviews, observations, written inscriptions) within the Danish construction industry this paper explores the organizational and managerial dynamics of 3D Digital Modelling. The paper intends to - Illustrate how the network of (non-)human actors engaged in the promotion (and arrest) of 3......D Modelling (in Denmark) stabilizes - Examine how 3D Modelling manifests itself in the early design phases of a construction project with a view to discuss the effects hereof for i.a. the management of the building process. Structure. The paper introduces a few, basic methodological concepts...
Radiative Transfer meets Bayesian statistics: where does your Galaxy's [CII] come from?
Accurso, Gioacchino; Bisbas, Thomas G; Viti, Serena
2016-01-01
The [CII] 158$\\mu$m emission line can arise in all phases of the ISM, therefore being able to disentangle the different contributions is an important yet unresolved problem when undertaking galaxy-wide, integrated [CII] observations. We present a new multi-phase 3D radiative transfer interface that couples Starburst99, a stellar spectrophotometric code, with the photoionisation and astrochemistry codes Mocassin and 3D-PDR. We model entire star forming regions, including the ionised, atomic and molecular phases of the ISM, and apply a Bayesian inference methodology to parametrise how the fraction of the [CII] emission originating from molecular regions, $f_{[CII],mol}$, varies as a function of typical integrated properties of galaxies in the local Universe. The main parameters responsible for the variations of $f_{[CII],mol}$ are specific star formation rate (sSFR), gas phase metallicity, HII region electron number density ($n_e$), and dust mass fraction. For example, $f_{[CII],mol}$ can increase from 60% to 8...
Radiation transfer in stratus clouds at the BSRN Payerne site
Directory of Open Access Journals (Sweden)
D. Nowak
2008-06-01
Full Text Available Clouds represent a major source of uncertainty in understanding climate change, because potential changes in the way they affect the atmospheric and surface energy budget are difficult to predict. It is therefore important to determine how clouds affect radiation. Stratiform clouds in particular have an important effect on climate as they cover large areas. This article presents results of radiation transfer calculations with MODTRAN^{TM} for well-defined stratus cloud cases detected at the meteorological station of Payerne, Switzerland. These stratus situations are selected in a data set covering the years from 2000 to 2005 with a method using data widely available at national meteorological observing stations. For 18 single layer stratus situations the shortwave radiation fluxes calculated with MODTRAN^{TM} are compared to surface observations from the Baseline Surface Radiation Network (BSRN site at Payerne and top of atmosphere (TOA observations from the Clouds and the Earth's Radiant Energy System (CERES experiment. A median bias on the order of 20 Wm^{−2} (<9% was found for the differences between modeled and observed reflected solar radiation at TOA. At the surface, good agreement is obtained by adjusting the vertical extinction in the modeled cloud layer within reasonable limits for a stratus cloud: The median bias of modeled minus observed shortwave downward radiation is well within instrument precision (<1%. The simultaneous agreement of modeled and observed radiation fluxes at the surface and TOA confirmed that radiation transfer in the atmosphere including a single cloud layer can be well simulated with MODTRAN^{TM}. Based on the present results, the absorbance was calculated within the stratus cloud layer (cloud base to cloud top. For the 18 single stratus layer situations the median absorbance is 0.07 [minimum 0.04, maximum 0.1], the median transmittance is 0.29 [0.15 0.39], and the median
Comparison of physical quality assurance between Scanora 3D and 3D Accuitomo 80 dental CT scanners
Directory of Open Access Journals (Sweden)
Ahmed S. Ali
2015-06-01
Full Text Available Background: The use of cone beam computed tomography (CBCT in dentistry has proven to be useful in the diagnosis and treatment planning of several oral and maxillofacial diseases. The quality of the resulting image is dictated by many factors related to the patient, unit, and operator. Materials and methods: In this work, two dental CBCT units, namely Scanora 3D and 3D Accuitomo 80, were assessed and compared in terms of quantitative effective dose delivered to specific locations in a dosimetry phantom. Resolution and contrast were evaluated in only 3D Accuitomo 80 using special quality assurance phantoms. Results: Scanora 3D, with less radiation time, showed less dosing values compared to 3D Accuitomo 80 (mean 0.33 mSv, SD±0.16 vs. 0.18 mSv, SD±0.1. Using paired t-test, no significant difference was found in Accuitomo two scan sessions (p>0.05, while it was highly significant in Scanora (p>0.05. The modulation transfer function value (at 2 lp/mm, in both measurements, was found to be 4.4%. The contrast assessment of 3D Accuitomo 80 in the two measurements showed few differences, for example, the grayscale values were the same (SD=0 while the noise level was slightly different (SD=0 and 0.67, respectively. Conclusions: The radiation dose values in these two CBCT units are significantly less than those encountered in systemic CT scans. However, the dose seems to be affected more by changing the field of view rather than the voltage or amperage. The low doses were at the expense of the image quality produced, which was still acceptable. Although the spatial resolution and contrast were inferior to the medical images produced in systemic CT units, the present results recommend adopting CBCTs in maxillofacial imaging because of low radiation dose and adequate image quality.
DEFF Research Database (Denmark)
Schmitz, Susanne; Möller, Andreas; Wilke, Max
2009-01-01
A confocal set-up for three-dimensional (3D) micro X-ray fluorescence (micro-XRF) was used at the mySpot beamline at BESSY II, which allows compositional depth profiling for various applications. We present results obtained with a confocal 3D micro-XRF set-up for chemical age dating using the U, Th......-XRF set-up is suitable for dating of minerals with low Pb concentrations as long as all Pb is radiogenic, allowing spatial resolution comparable to ion microprobe or laser ablation techniques. The set-up was tested on monazites that are well characterized by isotopic techniques and have a wide range...... of ages, varying from 20 Ma to 1.82 Ga. Reference materials (GM3, F6, 3345) can be reproduced within error. The spread in the ages of all points determined by 3D micro-XRF is within 8 % of the isotopic reference value. The average 3D micro-XRF dates reproduce the reference ages with discrepancies between...
Lively, Michael
2010-01-01
Professional Papervision3D describes how Papervision3D works and how real world applications are built, with a clear look at essential topics such as building websites and games, creating virtual tours, and Adobe's Flash 10. Readers learn important techniques through hands-on applications, and build on those skills as the book progresses. The companion website contains all code examples, video step-by-step explanations, and a collada repository.
Energy Technology Data Exchange (ETDEWEB)
2016-06-20
AE3D solves for the shear Alfven eigenmodes and eigenfrequencies in a torodal magnetic fusion confinement device. The configuration can be either 2D (e.g. tokamak, reversed field pinch) or 3D (e.g. stellarator, helical reversed field pinch, tokamak with ripple). The equations solved are based on a reduced MHD model and sound wave coupling effects are not currently included.
Radiative heat transfer modelling in a PWR severe accident sequence
Energy Technology Data Exchange (ETDEWEB)
Magali Zabiego; Florian Fichot [Institut de Radioprotection et de Surete Nucleaire - BP 3 - 13115 Saint-paul-Lez-Durance (France); Pablo Rubiolo [Westinghouse Science and Technology - 1344 Beulah Road - Pittsburgh - PA 15235 (United States)
2005-07-01
Full text of publication follows: The present study is devoted to the estimation of the radiative heat transfers during a severe accident sequence in a Pressurized Water Reactor. In such a situation, the residual nuclear power released by the fuel rods can not be evacuated and heats up the core. As a result, the cylindrical rods and the structures initially composing the core undergo a degradation process: swelling, breaking or melting of the rods and structures and eventual collapse to form a heap of fragments called a debris bed. As the solid matrix loses its original shape, the core geometry continuously evolves from standing, regularly-spaced cylinders to a non-homogeneous system including deformed remaining rods and structures and debris particles. To predict this type of sequence, the ICARE/CATHARE software [1] is developed by IRSN. Since the temperatures can reach values greater than 3000 K, it was of major interest to provide the code with an accurate radiative transfer model usable whatever the geometry of the system. Considering the size of a reactor core compared to the mean penetration length of radiation, the core can be seen as an optically thick medium. This observation led us to use the diffusion approximation to treat the radiation propagation. In this approach, the radiative flux is calculated in a way similar to thermal conduction: q{sub r} = [K{sub e}].{nabla}T where [K{sub e}] is the equivalent conductivity tensor of the system accounting for thermal and radiative transfer. An homogenization technique is applied to estimate the equivalent conductivity. Given the temperature level, the radiative contribution to the equivalent conductivity tensor quickly becomes dominant. This model was described earlier in [2] in which it was shown that an equivalent conductivity can be continuously calculated in the system when the geometry evolves from standing regular cylinder rods to swollen or broken ones, surrounded or not by a film of liquid materials, to
Energy Technology Data Exchange (ETDEWEB)
Giaddui, T; Yu, J; Xiao, Y [Thomas Jefferson University, Philadelphia, PA (United States); Jacobs, P [MIM Software, Inc, Cleavland, Ohio (United States); Manfredi, D; Linnemann, N [IROC Philadelphia, RTQA Center, Philadelphia, PA (United States)
2015-06-15
Purpose: 2D-2D kV image guided radiation therapy (IGRT) credentialing evaluation for clinical trial qualification was historically qualitative through submitting screen captures of the fusion process. However, as quantitative DICOM 2D-2D and 2D-3D image registration tools are implemented in clinical practice for better precision, especially in centers that treat patients with protons, better IGRT credentialing techniques are needed. The aim of this work is to establish methodologies for quantitatively reviewing IGRT submissions based on DICOM 2D-2D and 2D-3D image registration and to test the methodologies in reviewing 2D-2D and 2D-3D IGRT submissions for RTOG/NRG Oncology clinical trials qualifications. Methods: DICOM 2D-2D and 2D-3D automated and manual image registration have been tested using the Harmony tool in MIM software. 2D kV orthogonal portal images are fused with the reference digital reconstructed radiographs (DRR) in the 2D-2D registration while the 2D portal images are fused with DICOM planning CT image in the 2D-3D registration. The Harmony tool allows alignment of the two images used in the registration process and also calculates the required shifts. Shifts calculated using MIM are compared with those submitted by institutions for IGRT credentialing. Reported shifts are considered to be acceptable if differences are less than 3mm. Results: Several tests have been performed on the 2D-2D and 2D-3D registration. The results indicated good agreement between submitted and calculated shifts. A workflow for reviewing these IGRT submissions has been developed and will eventually be used to review IGRT submissions. Conclusion: The IROC Philadelphia RTQA center has developed and tested a new workflow for reviewing DICOM 2D-2D and 2D-3D IGRT credentialing submissions made by different cancer clinical centers, especially proton centers. NRG Center for Innovation in Radiation Oncology (CIRO) and IROC RTQA center continue their collaborative efforts to enhance
Schäfer, Dirk; Wiegert, Jens; Bertram, Matthias
2007-03-01
It is well known that rotational C-arm systems are capable of providing 3D tomographic X-ray images with much higher spatial resolution than conventional CT systems. Using flat X-ray detectors, the pixel size of the detector typically is in the range of the size of the test objects. Therefore, the finite extent of the "point" source cannot be neglected for the determination of the MTF. A practical algorithm has been developed that includes bias estimation and subtraction, averaging in the spatial domain, and correction for the frequency content of the imaged bead or wire. Using this algorithm, the wire and the bead method are analyzed for flat detector based 3D X-ray systems with the use of standard CT performance phantoms. Results on both experimental and simulated data are presented. It is found that the approximation of applying the analysis of the wire method to a bead measurement is justified within 3% accuracy up to the first zero of the MTF.
A field test of a simple stochastic radiative transfer model
Energy Technology Data Exchange (ETDEWEB)
Byrne, N. [Science Applications International Corp., San Diego, CA (United States)
1995-09-01
The problem of determining the effect of clouds on the radiative energy balance of the globe is of well-recognized importance. One can in principle solve the problem for any given configuration of clouds using numerical techniques. This knowledge is not useful however, because of the amount of input data and computer resources required. Besides, we need only the average of the resulting solution over the grid scale of a general circulation model (GCM). Therefore, we are interested in estimating the average of the solutions of such fine-grained problems using only coarse grained data, a science or art called stochastic radiation transfer. Results of the described field test indicate that the stochastic description is a somewhat better fit to the data than is a fractional cloud cover model, but more data are needed. 1 ref., 3 figs.
Estimation of presampling modulation transfer function in synchrotron radiation microtomography
Mizutani, Ryuta; Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio
2016-01-01
The spatial resolution achieved by recent synchrotron radiation microtomographs should be estimated from the modulation transfer function (MTF) on the micrometer scale. Step response functions of a synchrotron radiation microtomograph were determined by the slanted edge method by using high-precision surfaces of diamond crystal and ion-milled aluminum wire. Tilted reconstruction was introduced to enable any edge to be used as the slanted edge by defining the reconstruction pixel matrix in an arbitrary orientation. MTFs were estimated from the step response functions of the slanted edges. The obtained MTFs coincided with MTF values estimated from square-wave patterns milled on the aluminum surface. Although x-ray refraction influences should be taken into account to evaluate MTFs, any flat surfaces with nanometer roughness can be used to determine the spatial resolutions of microtomographs.
Radiative Transfer Code: Application to the calculation of PAR
Indian Academy of Sciences (India)
D Emmanuel; D Phillippe; C Malik
2000-12-01
The production of carbon in the ocean, the so-called primary production, depends on various physico- biological parameters: the biomass and nutrient amounts in oceans, the salinity and temperature of the water and the light available in the water column. We focus on the visible spectrum of the solar radiation defined as the Photosynthetically Active Radiation (PAR). We developed a model (Chami et al. 1997) to simulate the behavior of the solar beam in the atmosphere and the ocean. We first describe the theoretical basis of the code and the method we used to solve the radiative transfer equation (RTE): the successive orders of scattering (SO). The second part deals with a sensitivity study of the PAR just above and below the sea surface for various atmospheric conditions. In a cloudy sky, we computed a ratio between vector fluxes just above the sea surface and spherical fluxes just beneath the sea surface. When the optical thickness of the cloud increases this ratio remains constant and around 1.29. This parameter is convenient to convert vector flux at the sea surface as retrieved from satellite to PAR. Subsequently, we show how solar radiation as vector flux rather than PAR leads to an underestimate of the primary production up to 40% for extreme cases.
Odyssey: Ray tracing and radiative transfer in Kerr spacetime
Pu, Hung-Yi; Yun, Kiyun; Younsi, Ziri; Yoon, Suk-Jin
2016-01-01
Odyssey is a GPU-based General Relativistic Radiative Transfer (GRRT) code for computing images and/or spectra in Kerr metric describing the spacetime around a rotating black hole. Odyssey is implemented in CUDA C/C++. For flexibility, the namespace structure in C++ is used for different tasks; the two default tasks presented in the source code are the redshift of a Keplerian disk and the image of a Keplerian rotating shell at 340GHz. Odyssey_Edu, an educational software package for visualizing the ray trajectories in the Kerr spacetime that uses Odyssey, is also available.
A multilevel method for conductive-radiative heat transfer
Energy Technology Data Exchange (ETDEWEB)
Banoczi, J.M.; Kelley, C.T. [North Carolina State Univ., Raleigh, NC (United States)
1996-12-31
We present a fast multilevel algorithm for the solution of a system of nonlinear integro-differential equations that model steady-state combined radiative-conductive heat transfer. The equations can be formulated as a compact fixed point problem with a fixed point map that requires both a solution of the linear transport equation and the linear heat equation for its evaluation. We use fast transport solvers developed by the second author, to construct an efficient evaluation of the fixed point map and then apply the Atkinson-Brakhage, method, with Newton-GMRES as the coarse mesh solver, to the full nonlinear system.
Introduction of acoustical diffraction in the radiative transfer method
Reboul, Emeline; Le Bot, Alain; Perret-Liaudet, Joël
2004-07-01
This Note presents an original approach to include diffraction in the radiative transfer method when applied to acoustics. This approach leads to a better spatial description of the acoustical energy. An energetic diffraction coefficient and some diffraction sources are introduced to model the diffraction phenomena. The amplitudes of these sources are determined by solving a linear sytem of equations resulting from the power balance between all acoustical sources. The approach is applied on bidimensional examples and gives good results except at geometrical boundaries. To cite this article: E. Reboul et al., C. R. Mecanique 332 (2004).
Numerical Radiative Transfer and the Hydrogen Reionization of the Universe
Petkova, M.
2011-03-01
One of the most interesting questions in cosmology is to understand how the Universe evolved from its nearly uniform and simple state briefly after the Big Bang to the complex state we see around us today. In particular, we would like to explain how galaxies have formed, and why they have the properties that we observe in the local Universe. Computer simulations play a highly important role in studying these questions, because they allow one to follow the dynamical equations of gravity and hydrodynamics well into the non-linear regime of the growth of cosmic structures. The current generation of simulation codes for cosmological structure formation calculates the self-gravity of dark matter and cosmic gas, and the fluid dynamics of the cosmic gas, but radiation processes are typically not taken into account, or only at the level of a spatially uniform, externally imposed background field. However, we know that the radiation field has been highly inhomogeneous during certain phases of the growth of structure, and may have in fact provided important feedback effects for galaxy formation. In particular, it is well established that the diffuse gas in the universe was nearly fully neutral after recombination at very high redshift, but today this gas is highly ionized. Sometime during the evolution, a transition to the ionized state must have occurred, a process we refer to as reionization. The UV radiation responsible for this reionization is now permeating the universe and may in part explain why small dwarf galaxies have so low luminosities. It is therefore clear that accurate and self-consistent studies of galaxy formation and of the dynamics of the reionization process should ideally be done with simulation codes that directly include a treatment of radiative transfer, and that account for all relevant source and sink terms of the radiation. We present a novel numerical implementation of radiative transfer in the cosmological smoothed particle hydrodynamics (SPH
3D Spectroscopic Instrumentation
Bershady, Matthew A
2009-01-01
In this Chapter we review the challenges of, and opportunities for, 3D spectroscopy, and how these have lead to new and different approaches to sampling astronomical information. We describe and categorize existing instruments on 4m and 10m telescopes. Our primary focus is on grating-dispersed spectrographs. We discuss how to optimize dispersive elements, such as VPH gratings, to achieve adequate spectral resolution, high throughput, and efficient data packing to maximize spatial sampling for 3D spectroscopy. We review and compare the various coupling methods that make these spectrographs ``3D,'' including fibers, lenslets, slicers, and filtered multi-slits. We also describe Fabry-Perot and spatial-heterodyne interferometers, pointing out their advantages as field-widened systems relative to conventional, grating-dispersed spectrographs. We explore the parameter space all these instruments sample, highlighting regimes open for exploitation. Present instruments provide a foil for future development. We give an...
DEFF Research Database (Denmark)
Halskov, Kim; Johansen, Stine Liv; Bach Mikkelsen, Michelle
2014-01-01
Three-dimensional projection installations are particular kinds of augmented spaces in which a digital 3-D model is projected onto a physical three-dimensional object, thereby fusing the digital content and the physical object. Based on interaction design research and media studies, this article...... contributes to the understanding of the distinctive characteristics of such a new medium, and identifies three strategies for designing 3-D projection installations: establishing space; interplay between the digital and the physical; and transformation of materiality. The principal empirical case, From...... Fingerplan to Loop City, is a 3-D projection installation presenting the history and future of city planning for the Copenhagen area in Denmark. The installation was presented as part of the 12th Architecture Biennale in Venice in 2010....
Non-LTE line formation of Fe in late-type stars - III. 3D non-LTE analysis of metal-poor stars
DEFF Research Database (Denmark)
Amarsi, A. M.; Lind, K.; Asplund, M.;
2016-01-01
As one of the most important elements in astronomy, iron abundance determinations need to be as accurate as possible. We investigate the accuracy of spectroscopic iron abundance analyses using archetypal metal-poor stars. We perform detailed 3D non-LTE radiative transfer calculations based on 3D...
DEFF Research Database (Denmark)
Villaume, René Domine; Ørstrup, Finn Rude
2002-01-01
Projektet undersøger potentialet for interaktiv 3D design via Internettet. Arkitekt Jørn Utzons projekt til Espansiva blev udviklet som et byggesystem med det mål, at kunne skabe mangfoldige planmuligheder og mangfoldige facade- og rumudformninger. Systemets bygningskomponenter er digitaliseret som...... 3D elementer og gjort tilgængelige. Via Internettet er det nu muligt at sammenstille og afprøve en uendelig række bygningstyper som systemet blev tænkt og udviklet til....
Evaluation of isocenter reproducibility in telemedicine of 3D-radiotherapy treatment planning
Energy Technology Data Exchange (ETDEWEB)
Hirota, Saeko; Tsujino, Kayoko; Kimura, Kouji; Takada, Yoshiki; Hishikawa, Yoshio; Kono, Michio [Hyogo Medical Center for Adults, Akashi (Japan); Soejima, Toshinori; Kodama, Akihisa
2000-09-01
To evaluate the utility in telemedicine of Three-Dimensional Radiotherapy Treatment Planning (tele-3D-RTP) and to examine the accuracy of isocenter reproducibility in its offline trial. CT data of phantoms and patients in the satellite hospital were transferred to our hospital via floppy-disk and 3D-radiotherapy plans were generated by 3D-RTP computer in our hospital. Profile data of CT and treatment beams in the satellite hospital were pre-installed into the computer. Tele-3D-RTPs were performed in 3 phantom plans and 14 clinical plans for 13 patients. Planned isocenters were well reproduced, especially in the immobilized head and neck/brain tumor cases, whose 3D-vector of aberration was 1.96{+-}1.38 (SD) mm. This teletherapy system is well applicable for practical use and can provides cost-reduction through sharing the resources of expensive equipment and radiation oncologists. (author)
Radiative transfer model for contaminated slabs : experimental validations
Andrieu, François; Schmitt, Bernard; Douté, Sylvain; Brissaud, Olivier
2015-01-01
This article presents a set of spectro-goniometric measurements of different water ice samples and the comparison with an approximated radiative transfer model. The experiments were done using the spectro-radiogoniometer described in Brissaud et al. (2004). The radiative transfer model assumes an isotropization of the flux after the second interface and is fully described in Andrieu et al. (2015). Two kind of experiments were conducted. First, the specular spot was closely investigated, at high angular resolution, at the wavelength of $1.5\\,\\mbox{\\mu m}$, where ice behaves as a very absorbing media. Second, the bidirectional reflectance was sampled at various geometries, including low phase angles on 61 wavelengths ranging from $0.8\\,\\mbox{\\mu m}$ to $2.0\\,\\mbox{\\mu m}$. In order to validate the model, we made a qualitative test to demonstrate the relative isotropization of the flux. We also conducted quantitative assessments by using a bayesian inversion method in order to estimate the parameters (e.g. sampl...
Fast and simple model for atmospheric radiative transfer
Directory of Open Access Journals (Sweden)
F. C. Seidel
2010-05-01
Full Text Available Radiative transfer models (RTMs are of utmost importance for quantitative remote sensing, especially for compensating atmospheric perturbation. A persistent trade-off exists between approaches that prefer accuracy at the cost of computational complexity, versus those favouring simplicity at the cost of reduced accuracy. We propose an approach in the latter category, using analytical equations, parameterizations and a correction factor to efficiently estimate the effect of molecular multiple scattering. We discuss the approximations together with an analysis of the resulting performance and accuracy. The proposed Simple Model for Atmospheric Radiative Transfer (SMART decreases the calculation time by a factor of more than 25 in comparison to the benchmark RTM~6S on the same infrastructure. The approximative computation of the atmospheric reflectance factor by SMART has an uncertainty ranging from about 5% to 10% for nadir spaceborne and airborne observational conditions. The combination of a large solar zenith angle (SZA with high aerosol optical depth (AOD at low wavelengths lead to uncertainties of up to 15%. SMART can be used to simulate the hemispherical conical reflectance factor (HCRF for spaceborne and airborne sensors, as well as for the retrieval of columnar AOD.
Non--local radiative transfer in strongly inverted masers
Daniel, F
2013-01-01
Maser transitions are commonly observed in media exhibiting a large range of densities and temperatures. They can be used to obtain information on the dynamics and physical conditions of the observed regions. In order to obtain reliable constraints on the physical conditions prevailing in the masing regions, it is necessary to model the excitation mechanisms of the energy levels of the observed molecules. We present a numerical method that enables us to obtain self-consistent solutions for both the statistical equilibrium and radiative transfer equations. Using the standard maser theory, the method of Short Characteristics is extended to obtain the solution of the integro-differential radiative transfer equation, appropriate to the case of intense masing lines. We have applied our method to the maser lines of the H2O molecule and we compare with the results obtained with a less accurate approach. In the regime of large maser opacities we find large differences in the intensity of the maser lines that could be...
X-ray enabled MOCASSIN: a 3D code for photoionized media
Ercolano, Barbara; Drake, Jeremy J; Raymond, John C
2007-01-01
We present a new version of the fully 3D photoionization and dust radiative transfer code, MOCASSIN, that uses a Monte Carlo approach for the transfer of radiation. The X-ray enabled MOCASSIN allows a fully geometry independent description of low-density gaseous environments strongly photoionized by a radiation field extending from radio to gamma rays. The code has been thoroughly benchmarked against other established codes routinely used in the literature, using simple plane parallel models designed to test performance under standard conditions. We show the results of our benchmarking exercise and discuss applicability and limitations of the new code, which should be of guidance for future astrophysical studies with MOCASSIN.
Irwan, Roy; Russel, Inis K.; Sijens, Paul E.
2006-01-01
A magnetic resonance sequence for high-resolution imaging of coronary arteries in a very short acquisition time is presented. The technique is based on fast low-angle shot and uses fat saturation and magnetization transfer contrast Prepulses to improve image contrast. GeneRalized Autocalibrating Par
Transient radiation-conductive heat transfer problems: ``The quadrupole method''
Degiovanni, Alain; Remy, Benjamin; Andre, Stéphane
2002-11-01
This paper presents a statement of the works performed in L.E.M.T.A by the members of the thermal and mechanical heterogeneous media research group during the last six years concerning the solving of coupled conductive and radiative heat transfers within a multilayer and semi-transparent “wall”. Out of the authors, this paper allows to take inspiration from the works of D. Maillet, M. Lazard and V. Manias[19, 20, 21]. The aim of these works is to represent in a macroscopic way, with the minimum number of thermophysical parameters, the heat transfers in a plane system composed of semi-transparent media. The approach we propose is semi-analytic (Kernel substitution technique, Laplace transformation) and allow to obtain in the Laplace domain an analytical solution that can be easily used. This method can be applied in two main scopes of applications: the estimation of thermophysical properties (phononic conductivity, optical thickness, Planck number for instance) of semi-transparent materials (glasses, crystals, glass wool, semi-conductors, synthetic diamonds, vitroceramics and so on) and the modelling of processes with semitransparent walls (for instance bottles forming, flat glass production, drying of paper). The method will be first presented and validated and two examples of applications will be then given. This method can be applied to semitransparent walls that emit, absorb and scatter the radiant energy (participating medium). It appears from the principle of a Kernel substitution technique applied to the radiative flux expression and initially introduced by Lick[1] that allows to change the character of the governing heat equation from the integro-differential form to a purely differential one. In the case of limiting cases of purely scattering and purely absorbing media, the solution of the radiative transfer equation is exact. In the general case, we make a two-flux approximation. In all cases, we assume a linear transfer and use the Laplace transform
DEFF Research Database (Denmark)
Hejlesen, Aske K.; Ovesen, Nis
2012-01-01
This paper presents an experimental approach to teaching 3D modelling techniques in an Industrial Design programme. The approach includes the use of tangible free form models as tools for improving the overall learning. The paper is based on lecturer and student experiences obtained through...
DEFF Research Database (Denmark)
Stenholt, Rasmus; Madsen, Claus B.
2011-01-01
Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data...
DEFF Research Database (Denmark)
Jordi, Moréton; F, Escribano; J. L., Farias
This document is a general report on the implementation of gamification in 3D Wire 2015 event. As the second gamification experience in this event, we have delved deeply in the previous objectives (attracting public areas less frequented exhibition in previous years and enhance networking) and ha......, improves socialization and networking, improves media impact, improves fun factor and improves encouragement of the production team....
Energy Technology Data Exchange (ETDEWEB)
Papadakis, A E; Maris, T G; Zacharakis, G; Ripoll, J; Varveris, C; Damilakis, J, E-mail: apapadak@edu.med.uoc.g
2010-11-01
We present initial results on the comparison of the dose readout from a three dimensional polymer gel dosimeter using two different optical-CT systems; i) a common wide field and a wide area detector optical-CT system and ii) a new 'laser-line' and wide area detector based optical-CT system. The findings presented herein highlight the advantage of the laser based over the wide field optical-CT concept for the readout of scattering 3D dosimeters. Moreover, the new 'laser-line' based optical-CT system overcomes the disadvantage of the long acquisition times required by the existing laser-based instruments.
Carson, Jeffrey J. L.; Roumeliotis, Michael; Chaudhary, Govind; Stodilka, Robert Z.; Anastasio, Mark A.
2010-06-01
Our group has concentrated on development of a 3D photoacoustic imaging system for biomedical imaging research. The technology employs a sparse parallel detection scheme and specialized reconstruction software to obtain 3D optical images using a single laser pulse. With the technology we have been able to capture 3D movies of translating point targets and rotating line targets. The current limitation of our 3D photoacoustic imaging approach is its inability ability to reconstruct complex objects in the field of view. This is primarily due to the relatively small number of projections used to reconstruct objects. However, in many photoacoustic imaging situations, only a few objects may be present in the field of view and these objects may have very high contrast compared to background. That is, the objects have sparse properties. Therefore, our work had two objectives: (i) to utilize mathematical tools to evaluate 3D photoacoustic imaging performance, and (ii) to test image reconstruction algorithms that prefer sparseness in the reconstructed images. Our approach was to utilize singular value decomposition techniques to study the imaging operator of the system and evaluate the complexity of objects that could potentially be reconstructed. We also compared the performance of two image reconstruction algorithms (algebraic reconstruction and l1-norm techniques) at reconstructing objects of increasing sparseness. We observed that for a 15-element detection scheme, the number of measureable singular vectors representative of the imaging operator was consistent with the demonstrated ability to reconstruct point and line targets in the field of view. We also observed that the l1-norm reconstruction technique, which is known to prefer sparseness in reconstructed images, was superior to the algebraic reconstruction technique. Based on these findings, we concluded (i) that singular value decomposition of the imaging operator provides valuable insight into the capabilities of
Radiative transfer model for contaminated slabs: experimental validations
Andrieu, F.; Schmidt, F.; Schmitt, B.; Douté, S.; Brissaud, O.
2015-09-01
This article presents a set of spectro-goniometric measurements of different water ice samples and the comparison with an approximated radiative transfer model. The experiments were done using the spectro-radiogoniometer described in Brissaud et al. (2004). The radiative transfer model assumes an isotropization of the flux after the second interface and is fully described in Andrieu et al. (2015). Two kinds of experiments were conducted. First, the specular spot was closely investigated, at high angular resolution, at the wavelength of 1.5 μm, where ice behaves as a very absorbing media. Second, the bidirectional reflectance was sampled at various geometries, including low phase angles on 61 wavelengths ranging from 0.8 to 2.0 μm. In order to validate the model, we made qualitative tests to demonstrate the relative isotropization of the flux. We also conducted quantitative assessments by using a Bayesian inversion method in order to estimate the parameters (e.g., sample thickness, surface roughness) from the radiative measurements only. A simple comparison between the retrieved parameters and the direct independent measurements allowed us to validate the model. We developed an innovative Bayesian inversion approach to quantitatively estimate the uncertainties in the parameters avoiding the usual slow Monte Carlo approach. First we built lookup tables, and then we searched the best fits and calculated a posteriori density probability functions. The results show that the model is able to reproduce the geometrical energy distribution in the specular spot, as well as the spectral behavior of water ice slabs. In addition, the different parameters of the model are compatible with independent measurements.
Energy Technology Data Exchange (ETDEWEB)
Ma, C; Yin, Y [Shandong Tumor Hospital, Jinan, Shandong Provice (China)
2015-06-15
Purpose: A method using four-dimensional(4D) PET/CT in design of radiation treatment planning was proposed and the target volume and radiation dose distribution changes relative to standard three-dimensional (3D) PET/CT were examined. Methods: A target deformable registration method was used by which the whole patient’s respiration process was considered and the effect of respiration motion was minimized when designing radiotherapy planning. The gross tumor volume of a non-small-cell lung cancer was contoured on the 4D FDG-PET/CT and 3D PET/CT scans by use of two different techniques: manual contouring by an experienced radiation oncologist using a predetermined protocol; another technique using a constant threshold of standardized uptake value (SUV) greater than 2.5. The target volume and radiotherapy dose distribution between VOL3D and VOL4D were analyzed. Results: For all phases, the average automatic and manually GTV volume was 18.61 cm3 (range, 16.39–22.03 cm3) and 31.29 cm3 (range, 30.11–35.55 cm3), respectively. The automatic and manually volume of merged IGTV were 27.82 cm3 and 49.37 cm3, respectively. For the manual contour, compared to 3D plan the mean dose for the left, right, and total lung of 4D plan have an average decrease 21.55%, 15.17% and 15.86%, respectively. The maximum dose of spinal cord has an average decrease 2.35%. For the automatic contour, the mean dose for the left, right, and total lung have an average decrease 23.48%, 16.84% and 17.44%, respectively. The maximum dose of spinal cord has an average decrease 1.68%. Conclusion: In comparison to 3D PET/CT, 4D PET/CT may better define the extent of moving tumors and reduce the contouring tumor volume thereby optimize radiation treatment planning for lung tumors.
Hydrodynamic and hydromagnetic stability of black holes with radiative transfer
Indian Academy of Sciences (India)
Roger Blandford; Jonathan C Mckinney; Nadia Zakamska
2011-07-01
Subrahmanyan Chandrasekhar (Chandra) was just eight years old when the ﬁrst astrophysical jet was discovered in M87. Since then, jets have been uncovered with a wide variety of sources including accretion disks orbiting stellar and massive black holes, neutron stars, isolated pulsars, -ray bursts, protostars and planetary nebulae. This talk will be primarily concerned with collimated hydromagnetic outﬂows associated with spinning, massive black holes in active galactic nuclei. Jets exhibit physical processes central to three of the major research themes in Chandrasekhar’s research career – radiative transfer, magnetohydrodynamics and black holes. Relativistic jets can be thought of as `exhausts’ from both the hole and its orbiting accretion disk, carrying away the energy liberated by the rotating spacetime and the accreting gas that is not radiated. However, no aspect of jet formation, propagation and radiation can be regarded as understood in detail. The combination of new -ray, radio and optical observations together with impressive advances in numerical simulation make this a good time to settle some long-standing debates.
Energy Technology Data Exchange (ETDEWEB)
Muller, J. [IRSID, Institut de Recherches Siderurgie, 57 - Maizieres-les-Metz (France)
1996-12-31
Radiant heat transfer is the main solution retained in many iron and steel metallurgy installations (re-heating and annealing furnaces etc..). Today, it has become important to dispose of performing radiant heat transfer models in heat transfer and fluid mechanics simulation softwares, and well adapted to multidimensional industrial problems. This work presents the discrete ordinate radiant heat transfer model developed at the IRSID (the French institute of research in iron and steel metallurgy) and coupled with the PHOENICS heat transfer-fluid mechanics software. Three modeling approaches are presented concerning the radiative properties of gases (H{sub 2}O-CO{sub 2}). A ``weighted grey gases sum`` model gives satisfactory results for several 1-D validation cases. (J.S.) 20 refs.
Fabrication of 3D Silicon Sensors
Energy Technology Data Exchange (ETDEWEB)
Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; /SINTEF, Oslo; Kenney, C.; Hasi, J.; /SLAC; Da Via, C.; /Manchester U.; Parker, S.I.; /Hawaii U.
2012-06-06
Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.
Bhardwaj, Lakshya
2016-01-01
This paper generalizes two facts about oriented 3d TFTs to the unoriented case. On one hand, it is known that oriented 3d TFTs having a topological boundary condition admit a state-sum construction known as the Turaev-Viro construction. This is related to the string-net construction of fermionic phases of matter. We show how Turaev-Viro construction can be generalized to unoriented 3d TFTs. On the other hand, it is known that the "fermionic" versions of oriented TFTs, known as Spin-TFTs, can be constructed in terms of "shadow" TFTs which are ordinary oriented TFTs with an anomalous Z_2 1-form symmetry. We generalize this correspondence to Pin+ TFTs by showing that they can be constructed in terms of ordinary unoriented TFTs with anomalous Z_2 1-form symmetry having a mixed anomaly with time-reversal symmetry. The corresponding Pin+ TFT does not have any anomaly for time-reversal symmetry however and hence it can be unambiguously defined on a non-orientable manifold. In case a Pin+ TFT admits a topological bou...
Radiative Transfer of HCN: Interpreting observations of hyperfine anomalies
Mullins, A M; Redman, M P; Wiles, B; Guegan, N; Barrett, J; Keto, E R
2016-01-01
Molecules with hyperfine splitting of their rotational line spectra are useful probes of optical depth, via the relative line strengths of their hyperfine components.The hyperfine splitting is particularly advantageous in interpreting the physical conditions of the emitting gas because with a second rotational transition, both gas density and temperature can be derived. For HCN however, the relative strengths of the hyperfine lines are anomalous. They appear in ratios which can vary significantly from source to source, and are inconsistent with local thermodynamic equilibrium. This is the HCN hyperfine anomaly, and it prevents the use of simple LTE models of HCN emission to derive reliable optical depths. In this paper we demonstrate how to model HCN hyperfine line emission, and derive accurate line ratios, spectral line shapes and optical depths. We show that by carrying out radiative transfer calculations over each hyperfine level individually, as opposed to summing them over each rotational level, the anom...
Near field radiative heat transfer between two nonlocal dielectrics
Singer, F; Joulain, Karl
2015-01-01
We explore in the present work the near-field radiative heat transfer between two semi-infinite parallel nonlocal dielectric planes by means of fluctuational electrodynamics. We use atheory for the nonlocal dielectric permittivityfunction proposed byHalevi and Fuchs. This theory has the advantage to includedifferent models performed in the literature. According to this theory, the nonlocal dielectric function is described by a Lorenz-Drude like single oscillator model, in which the spatial dispersion effects are represented by an additional term depending on the square of the total wavevector k. The theory takes into account the scattering of the electromagneticexcitation at the surface of the dielectric material, which leads to the need of additional boundary conditions in order to solve Maxwell's equations and treat the electromagnetic transmission problem. The additional boundary conditions appear as additional surface scattering parameters in the expressions of the surface impedances. It is shown that the...
Inversion of the radiative transfer equation for polarized light
Iniesta, Jose Carlos del Toro
2016-01-01
Since the early 1970s, inversion techniques have become the most useful tool for inferring the magnetic, dynamic, and thermodynamic properties of the solar atmosphere. The intrinsic model dependence makes it necessary to formulate specific means that include the physics in a properly quantitative way. The core of this physics lies in the radiative transfer equation (RTE), where the properties of the atmosphere are assumed to be known while the unknowns are the four Stokes profiles. The solution of the (differential) RTE is known as the direct or forward problem. From an observational point of view, the problem is rather the opposite: the data are made up of the observed Stokes profiles and the unknowns are the solar physical quantities. Inverting the RTE is therefore mandatory. Indeed, the formal solution of this equation can be considered an integral equation. The solution of such an integral equation is called the inverse problem. Inversion techniques are automated codes aimed at solving the inverse problem...
Radiative Transfer Theory Verified by Controlled Laboratory Experiments
Mishchenko, Michael I.; Goldstein, Dennis H.; Chowdhary, Jacek; Lompado, Arthur
2013-01-01
We report the results of high-accuracy controlled laboratory measurements of the Stokes reflection matrix for suspensions of submicrometer-sized latex particles in water and compare them with the results of a numerically exact computer solution of the vector radiative transfer equation (VRTE). The quantitative performance of the VRTE is monitored by increasing the volume packing density of the latex particles from 2 to 10. Our results indicate that the VRTE can be applied safely to random particulate media with packing densities up to 2. VRTE results for packing densities of the order of 5 should be taken with caution, whereas the polarized bidirectional reflectivity of suspensions with larger packing densities cannot be accurately predicted. We demonstrate that a simple modification of the phase matrix entering the VRTE based on the so-called static structure factor can be a promising remedy that deserves further examination.
Directory of Open Access Journals (Sweden)
Christine Higby
2016-09-01
Conclusions: VMAT is a valuable technique for treatment of large mediastinal HL. VMAT spares the lung and heart compared to 3DCRT using ISRT in select HL cases. VMAT allows dose escalation for post-chemotherapy residual disease with minimal dose to OARs. VMAT low radiation dose (V5 to the normal tissues, and the increased integral dose should be considered.
Martian Radiative Transfer Modeling Using the Optimal Spectral Sampling Method
Eluszkiewicz, J.; Cady-Pereira, K.; Uymin, G.; Moncet, J.-L.
2005-01-01
The large volume of existing and planned infrared observations of Mars have prompted the development of a new martian radiative transfer model that could be used in the retrievals of atmospheric and surface properties. The model is based on the Optimal Spectral Sampling (OSS) method [1]. The method is a fast and accurate monochromatic technique applicable to a wide range of remote sensing platforms (from microwave to UV) and was originally developed for the real-time processing of infrared and microwave data acquired by instruments aboard the satellites forming part of the next-generation global weather satellite system NPOESS (National Polarorbiting Operational Satellite System) [2]. As part of our on-going research related to the radiative properties of the martian polar caps, we have begun the development of a martian OSS model with the goal of using it to perform self-consistent atmospheric corrections necessary to retrieve caps emissivity from the Thermal Emission Spectrometer (TES) spectra. While the caps will provide the initial focus area for applying the new model, it is hoped that the model will be of interest to the wider Mars remote sensing community.
Radiative transfer of HCN: interpreting observations of hyperfine anomalies
Mullins, A. M.; Loughnane, R. M.; Redman, M. P.; Wiles, B.; Guegan, N.; Barrett, J.; Keto, E. R.
2016-07-01
Molecules with hyperfine splitting of their rotational line spectra are useful probes of optical depth, via the relative line strengths of their hyperfine components. The hyperfine splitting is particularly advantageous in interpreting the physical conditions of the emitting gas because with a second rotational transition, both gas density and temperature can be derived. For HCN however, the relative strengths of the hyperfine lines are anomalous. They appear in ratios which can vary significantly from source to source, and are inconsistent with local thermodynamic equilibrium (LTE). This is the HCN hyperfine anomaly, and it prevents the use of simple LTE models of HCN emission to derive reliable optical depths. In this paper, we demonstrate how to model HCN hyperfine line emission, and derive accurate line ratios, spectral line shapes and optical depths. We show that by carrying out radiative transfer calculations over each hyperfine level individually, as opposed to summing them over each rotational level, the anomalous hyperfine emission emerges naturally. To do this requires not only accurate radiative rates between hyperfine states, but also accurate collisional rates. We investigate the effects of different sets of hyperfine collisional rates, derived via the proportional method and through direct recoupling calculations. Through an extensive parameter sweep over typical low-mass star-forming conditions, we show the HCN line ratios to be highly variable to optical depth. We also reproduce an observed effect whereby the red-blue asymmetry of the hyperfine lines (an infall signature) switches sense within a single rotational transition.
Transient radiative heat transfer in an inhomogeneous participating medium with Fresnel’s surfaces
Institute of Scientific and Technical Information of China (English)
2008-01-01
This paper studies the radiative heat transfer within an inhomogeneous and isot- ropically scattering medium with reflecting Fresnel’s surfaces. Thermal radiation transfers in a curve inside a medium with an inhomogeneous distribution of a re- fractive index. The inhomogenous medium is divided into n homogenous isother- mal sub-layers and in each sub-layer the radiation transfers in a straight line. By adopting a multilayer radiative transfer model and using a ray-tracing/nodal- ana- lyzing method, a radiative transfer model is built for the inhomogenous participat- ing medium. In the multilayer model, a criterion for refraction / total reflection at the interfaces between neighboring sub-layers is introduced, avoiding the integral singularity and reflection at physically inexistent interfaces (only the total reflection is considered). Transient thermal behavior is examined when the parameters of the radiative properties such as refractive indexes, extinction coefficients, and sin- gle-scattering albedoes vary continually along the thickness direction.
Radiative transfer meets Bayesian statistics: where does a galaxy's [C II] emission come from?
Accurso, G.; Saintonge, A.; Bisbas, T. G.; Viti, S.
2017-01-01
The [C II] 158 μm emission line can arise in all phases of the interstellar medium (ISM), therefore being able to disentangle the different contributions is an important yet unresolved problem when undertaking galaxy-wide, integrated [C II] observations. We present a new multiphase 3D radiative transfer interface that couples STARBURST99, a stellar spectrophotometric code, with the photoionization and astrochemistry codes MOCASSIN and 3D-PDR. We model entire star-forming regions, including the ionized, atomic, and molecular phases of the ISM, and apply a Bayesian inference methodology to parametrize how the fraction of the [C II] emission originating from molecular regions, f_{[C II],mol}, varies as a function of typical integrated properties of galaxies in the local Universe. The main parameters responsible for the variations of f_{[C II],mol} are specific star formation rate (SSFR), gas phase metallicity, H II region electron number density (ne), and dust mass fraction. For example, f_{[C II],mol} can increase from 60 to 80 per cent when either ne increases from 101.5 to 102.5 cm-3, or SSFR decreases from 10-9.6 to 10-10.6 yr-1. Our model predicts for the Milky Way that f_{[C II],mol} = 75.8 ± 5.9 per cent, in agreement with the measured value of 75 per cent. When applying the new prescription to a complete sample of galaxies from the Herschel Reference Survey, we find that anywhere from 60 to 80 per cent of the total integrated [C II] emission arises from molecular regions.
Energy Technology Data Exchange (ETDEWEB)
Wieners, G.; Pech, M.; Beck, A.; Wust, P.; Felix, R.; Schroeder, R.J. [Klinik fuer Strahlenheilkunde, Charite, Univ. Berlin (Germany); Koenig, B.; Erdmenger, U.; Stoeckle, U. [Klinik fuer Unfallchirurgie, Charite, Univ. Berlin (Germany)
2005-02-01
Purpose: to compare the image quality of 16-slice computed tomography with the image quality of Siremobil-IsoC{sup 3D} of the pelvic region and to measure simultaneously the radiation dose before and after implantation of a sacroiliac screw (SI-screw) Materials and methods: the pelvic region of 8 human cadavers was examined in the Siremobil-IsoC{sup 3D} at five different levels. We used a standard protocol for the 16-slice CT of the complete pelvic region before and after insertion of a pelvic screw, followed by stepwise reduction of the tube current to find the tube current that equalizes the image quality of both modalities. We controlled the image quality by judging important structures such as neuroforamen, nerves, sacroiliacal joint space, intervertebral space, osteophytes, iliopsoas muscle, acetabular surface, fovea centralis, hip joint and os pubis. The image quality was judged by three radiologists and three trauma surgeons using a ranking from 1 to 5. The dose was measured with an endorectally placed NOMEX Dosimeter, to obtain the gonadal dose. Results: the medium score for all viewers of the Siremobil-IsoC{sup 3D} examinations was between 3 and 4.3. The medium score for all CT-examinations with a tube current of 250 mA was between 1.3 and 2.2. The reduction of tube current down to 80 mA hardly influenced the marks for the analyzed structures. Under 80 mA, bony structures, even after implantation of a SI-screw, were still marked as good, but soft tissue differentiation was getting worse. For the examination of the pelvis, the average dose-length product for the IsoC{sup 3D} was 41.2 mGy x cm. The medium dose-length product for CT was 389 mGy x cm for 250 mA, 125 mGy x cm for 80 mA and 82 mGy x cm for 60 mA. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Fanelli, Cristiano V. [Sapienza Univ. of Rome (Italy)
2015-03-01
In this thesis work, results of the analysis of the polarization transfers measured in real Compton scattering (RCS) by the Collaboration E07-002 at the Je fferson Lab Hall-C are presented. The data were collected at large scattering angle (theta_cm = 70deg) and with a polarized incident photon beam at an average energy of 3.8 GeV. Such a kind of experiments allows one to understand more deeply the reaction mechanism, that involves a real photon, by extracting both Compton form factors and Generalized Parton Distributions (GPDs) (also relevant for possibly shedding light on the total angular momentum of the nucleon). The obtained results for the longitudinal and transverse polarization transfers K_LL and K_LT, are of crucial importance, since they confirm unambiguously the disagreement between experimental data and pQCD prediction, as it was found in E99-114 experiment, and favor the Handbag mechanism. The E99-114 and E07-002 results can contribute to attract new interest on the great yield of the Compton scattering by a nucleon target, as demonstrated by the recent approval of an experimental proposal submitted to the Jefferson Lab PAC 42 for a Wide-angle Compton Scattering experiment, at 8 and 10 GeV Photon Energies. The new experiments approved to run with the updated 12 GeV electron beam at JLab, are characterized by much higher luminosities, and a new GEM tracker is under development to tackle the challenging backgrounds. Within this context, we present a new multistep tracking algorithm, based on (i) a Neural Network (NN) designed for a fast and efficient association of the hits measured by the GEM detector which allows the track identification, and (ii) the application of both a Kalman filter and Rauch-Tung-Striebel smoother to further improve the track reconstruction. The full procedure, i.e. NN and filtering, appears very promising, with high performances in terms of both association effciency and reconstruction accuracy, and these preliminary results will
Directory of Open Access Journals (Sweden)
Vishruta A. Dumane
2014-01-01
Full Text Available We compared 3D conformal planning, static field intensity modulated radiation therapy (IMRT, and volumetric modulated arc therapy (VMAT to investigate the suitable treatment plan and delivery method for a right-sided reconstructed chest wall and nodal case. The dose prescribed for the reconstructed chest wall and regional nodes was 50.4 Gy. Plans were compared for target coverage and doses of the lungs, heart, contralateral breast, and healthy tissue. All plans achieved acceptable coverage of the target and IMNs. The best right lung sparing achieved with 3D was a V20 Gy of 31.09%. Compared to it, VMAT reduced the same by 10.85% and improved the CI and HI over 3D by 18.75% and 2%, respectively. The ipsilateral lung V5 Gy to V20 Gy decreased with VMAT over IMRT by as high as 17.1%. The contralateral lung V5 Gy was also lowered with VMAT compared to IMRT by 16.22%. The MU and treatment beams were lowered with VMAT over IMRT by 30% and 10, respectively, decreasing the treatment time by >50%. VMAT was the treatment plan and delivery method of choice for this case due to a combination of improved lung sparing and reduced treatment time without compromising target coverage.
Fung, Y. C.
1995-05-01
This conference on physiology and function covers a wide range of subjects, including the vasculature and blood flow, the flow of gas, water, and blood in the lung, the neurological structure and function, the modeling, and the motion and mechanics of organs. Many technologies are discussed. I believe that the list would include a robotic photographer, to hold the optical equipment in a precisely controlled way to obtain the images for the user. Why are 3D images needed? They are to achieve certain objectives through measurements of some objects. For example, in order to improve performance in sports or beauty of a person, we measure the form, dimensions, appearance, and movements.
Tritel: 3D silicon detector telescope used for space dosimetry
Energy Technology Data Exchange (ETDEWEB)
Pazmandi, T.; Hirn, A.; Deme, S.; Apathy, I.; Csoke, A. [KFKI Atomic Energy Research Institute, Budapest (Hungary); Bodnar, L. [BL-Electronics, Solymar (Hungary)
2006-07-01
One of the many risks of long-duration space flights is the excessive exposure to cosmic radiation, which has great importance particularly during solar flares and higher solar activity. Radiation weighting factor, which is a function of the linear energy transfer of the radiation, is used to convert absorbed dose to equivalent dose. Since space radiation mainly consists of charged heavy particles, the equivalent dose differs significantly from the absorbed dose. The objectives of this project are to develop and manufacture a three-axis silicon detector telescope (Tritel), and to develop software for data evaluation of the measured energy deposition spectra. The 3 D silicon telescope should be the first such device used for measuring the dose astronauts are subjected to. Research and development began in the K.F.K.I. Atomic Energy Research Institute several years ago. The geometric parameters of the 3 D silicon Let telescope were defined, results of previous measurements were used as a benchmark. Features of various types and sizes of telescopes were analyzed. Elements of the Tritel telescope system, issues of the electronic block diagram, requirements for the mechanical construction and possibilities of data handling and data evaluation are analyzed in this paper. First results of the calibrations are presented as well. (authors)
Stepan, Jiri
2013-01-01
The interpretation of the intensity and polarization of the spectral line radiation produced in the atmosphere of the Sun and of other stars requires solving a radiative transfer problem that can be very complex, especially when the main interest lies in modeling the spectral line polarization produced by scattering processes and the Hanle and Zeeman effects. One of the difficulties is due to the fact that the plasma of a stellar atmosphere can be highly inhomogeneous and dynamic, which implies the need to solve the non-equilibrium problem of the generation and transfer of polarized radiation in realistic three-dimensional (3D) stellar atmospheric models. Here we present PORTA, an efficient multilevel radiative transfer code we have developed for doing simulations of the spectral line polarization caused by scattering processes and the Hanle and Zeeman effects in 3D models of stellar atmospheres. The numerical method of solution is based on the non-linear multigrid iterative method and on a novel short-charac...
Irwan, Roy; Rüssel, Iris K; Sijens, Paul E
2006-09-01
A magnetic resonance sequence for high-resolution imaging of coronary arteries in a very short acquisition time is presented. The technique is based on fast low-angle shot and uses fat saturation and magnetization transfer contrast prepulses to improve image contrast. GeneRalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) is implemented to shorten acquisition time. The sequence was tested on a moving anthropomorphic silicone heart phantom where the coronary arteries were filled with a gadolinium contrast agent solution, and imaging was performed at varying heart rates using GRAPPA. The clinical relevance of the phantom was validated by comparing the myocardial relaxation times of the phantom's homogeneous silicone cardiac wall to those of humans. Signal-to-noise ratio and contrast-to-noise ratio were higher when parallel imaging was used, possibly benefiting from the acquisition of one partition per heartbeat. Another advantage of parallel imaging for visualizing the coronary arteries is that the entire heart can be imaged within a few breath-holds.
Directory of Open Access Journals (Sweden)
Ms. Swapnali R. Ghadge
2013-08-01
Full Text Available In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot of discussions. Basically, one can look into this matter from a few different perspectives: visualization and representation of information, and creation and transportation of information, among others. All of them still constitute research challenges, as no products or services are yet available or foreseen for the near future. Nevertheless, one can try to envisage the directions that can be taken towards achieving this goal. People who take part in virtual worlds stay online longer with a heightened level of interest. To take advantage of that interest, diverse businesses and organizations have claimed an early stake in this fast-growing market. They include technology leaders such as IBM, Microsoft, and Cisco, companies such as BMW, Toyota, Circuit City, Coca Cola, and Calvin Klein, and scores of universities, including Harvard, Stanford and Penn State.
Directory of Open Access Journals (Sweden)
Hesheng Cheng
2016-01-01
Full Text Available A metamaterial-inspired efficient electrically small antenna is proposed, firstly. And then several improving power transfer efficiency (PTE methods for wireless power transfer (WPT systems composed of the proposed antenna in the radiating near-field region are investigated. Method one is using a proposed antenna as a power retriever. This WPT system consisted of three proposed antennas: a transmitter, a receiver, and a retriever. The system is fed by only one power source. At a fixed distance from receiver to transmitter, the distance between the transmitter and the retriever is turned to maximize power transfer from the transmitter to the receiver. Method two is using two proposed antennas as transmitters and one antenna as receiver. The receiver is placed between the two transmitters. In this system, two power sources are used to feed the two transmitters, respectively. By adjusting the phase difference between the two feeding sources, the maximum PTE can be obtained at the optimal phase difference. Using the same configuration as method two, method three, where the maximum PTE can be increased by regulating the voltage (or power ratio of the two feeding sources, is proposed. In addition, we combine the proposed methods to construct another two schemes, which improve the PTE at different extent than classical WPT system.
Ciernik, I Frank; Brown, Derek W; Schmid, Daniel; Hany, Thomas; Egli, Peter; Davis, J Bernard
2007-02-01
Volumetric assessment of PET signals becomes increasingly relevant for radiotherapy (RT) planning. Here, we investigate the utility of 18F-choline PET signals to serve as a structure for semi-automatic segmentation for forward treatment planning of prostate cancer. 18F-choline PET and CT scans of ten patients with histologically proven prostate cancer without extracapsular growth were acquired using a combined PET/CT scanner. Target volumes were manually delineated on CT images using standard software. Volumes were also obtained from 18F-choline PET images using an asymmetrical segmentation algorithm. PTVs were derived from CT 18F-choline PET based clinical target volumes (CTVs) by automatic expansion and comparative planning was performed. As a read-out for dose given to non-target structures, dose to the rectal wall was assessed. Planning target volumes (PTVs) derived from CT and 18F-choline PET yielded comparable results. Optimal matching of CT and 18F-choline PET derived volumes in the lateral and cranial-caudal directions was obtained using a background-subtracted signal thresholds of 23.0+/-2.6%. In antero-posterior direction, where adaptation compensating for rectal signal overflow was required, optimal matching was achieved with a threshold of 49.5+/-4.6%. 3D-conformal planning with CT or 18F-choline PET resulted in comparable doses to the rectal wall. Choline PET signals of the prostate provide adequate spatial information amendable to standardized asymmetrical region growing algorithms for PET-based target volume definition for external beam RT.
MO-B-BRD-02: 3D Printing in the Clinic
Energy Technology Data Exchange (ETDEWEB)
Remmes, N. [Mayo Clinic (United States)
2015-06-15
is used to 3D print individualized physical models of patient’s unique anatomy for aid in planning complex and challenging surgical procedures. Methods, techniques and imaging requirements for 3D printing anatomic models from imaging data will be discussed. Specific applications currently being used in the radiology clinic will be detailed. Standardized phantoms for radiation therapy are abundant. However, custom phantom designs can be advantageous for both clinical tasks and research. 3D printing is a useful method of custom fabrication that allows one to construct custom objects relatively quickly. Possibilities for custom radiotherapy phantoms range from 3D printing a hollow shell and filling the shell with tissue equivalent materials to fully printing the entire phantom with materials that are tissue equivalent as well as suitable for 3D printing. A range of materials available for use in radiotherapy phantoms and in the case of phantoms for dosimetric measurements, this choice is critical. The necessary steps required will be discussed including: modalities of 3D model generation, 3D model requirements for 3D printing, generation of machine instructions from the 3D model, and 3D printing techniques, choice of phantoms material, and troubleshooting techniques for each step in the process. Case examples of 3D printed phantoms will be shown. Learning Objectives: Understand the types of 3D modeling software required to design your device, the file formats required for data transfer from design software to 3D printer, and general troubleshooting techniques for each step of the process. Learn the differences between materials and design for photons vs. electrons vs. protons. Understand the importance of material choice and design geometries for your custom phantoms. Learn specific steps of quality assurance and quality control for 3D printed beam filters and compensators for proton therapy. Learn of special 3D printing applications for imaging. Cunha: Research
MO-B-BRD-04: Sterilization for 3D Printed Brachytherapy Applicators
Energy Technology Data Exchange (ETDEWEB)
Cunha, J. [UC San Francisco (United States)
2015-06-15
is used to 3D print individualized physical models of patient’s unique anatomy for aid in planning complex and challenging surgical procedures. Methods, techniques and imaging requirements for 3D printing anatomic models from imaging data will be discussed. Specific applications currently being used in the radiology clinic will be detailed. Standardized phantoms for radiation therapy are abundant. However, custom phantom designs can be advantageous for both clinical tasks and research. 3D printing is a useful method of custom fabrication that allows one to construct custom objects relatively quickly. Possibilities for custom radiotherapy phantoms range from 3D printing a hollow shell and filling the shell with tissue equivalent materials to fully printing the entire phantom with materials that are tissue equivalent as well as suitable for 3D printing. A range of materials available for use in radiotherapy phantoms and in the case of phantoms for dosimetric measurements, this choice is critical. The necessary steps required will be discussed including: modalities of 3D model generation, 3D model requirements for 3D printing, generation of machine instructions from the 3D model, and 3D printing techniques, choice of phantoms material, and troubleshooting techniques for each step in the process. Case examples of 3D printed phantoms will be shown. Learning Objectives: Understand the types of 3D modeling software required to design your device, the file formats required for data transfer from design software to 3D printer, and general troubleshooting techniques for each step of the process. Learn the differences between materials and design for photons vs. electrons vs. protons. Understand the importance of material choice and design geometries for your custom phantoms. Learn specific steps of quality assurance and quality control for 3D printed beam filters and compensators for proton therapy. Learn of special 3D printing applications for imaging. Cunha: Research
MO-B-BRD-00: Clinical Applications of 3D Printing
Energy Technology Data Exchange (ETDEWEB)
NONE
2015-06-15
is used to 3D print individualized physical models of patient’s unique anatomy for aid in planning complex and challenging surgical procedures. Methods, techniques and imaging requirements for 3D printing anatomic models from imaging data will be discussed. Specific applications currently being used in the radiology clinic will be detailed. Standardized phantoms for radiation therapy are abundant. However, custom phantom designs can be advantageous for both clinical tasks and research. 3D printing is a useful method of custom fabrication that allows one to construct custom objects relatively quickly. Possibilities for custom radiotherapy phantoms range from 3D printing a hollow shell and filling the shell with tissue equivalent materials to fully printing the entire phantom with materials that are tissue equivalent as well as suitable for 3D printing. A range of materials available for use in radiotherapy phantoms and in the case of phantoms for dosimetric measurements, this choice is critical. The necessary steps required will be discussed including: modalities of 3D model generation, 3D model requirements for 3D printing, generation of machine instructions from the 3D model, and 3D printing techniques, choice of phantoms material, and troubleshooting techniques for each step in the process. Case examples of 3D printed phantoms will be shown. Learning Objectives: Understand the types of 3D modeling software required to design your device, the file formats required for data transfer from design software to 3D printer, and general troubleshooting techniques for each step of the process. Learn the differences between materials and design for photons vs. electrons vs. protons. Understand the importance of material choice and design geometries for your custom phantoms. Learn specific steps of quality assurance and quality control for 3D printed beam filters and compensators for proton therapy. Learn of special 3D printing applications for imaging. Cunha: Research
Radiative heat transfer at nanoscale mediated by surface plasmons for highly doped silicon.
Rousseau, Emmanuel; Laroche, Marine; Greffet, Jean-Jacques
2009-01-01
International audience; In this letter, we revisit the role of surface plasmons for nanoscale radiative heat transfer between doped silicon surfaces. We derive a new accurate and closed-form expression of the radiative near-field heat transfer. We also analyse the flux and find that there is a doping level that maximizes the heat flux.
Simovski, Constantin; Maslovski, Stanislav; Nefedov, Igor; Tretyakov, Sergei
2013-06-17
Using our recently developed method we analyze the radiative heat transfer in micron-thick multilayer stacks of metamaterials with hyperbolic dispersion. The metamaterials are especially designed for prospective thermophotovoltaic systems. We show that the huge transfer of near-infrared thermal radiation across micron layers of metamaterials is achievable and can be optimized. We suggest an approach to the optimal design of such metamaterials taking into account high temperatures of the emitting medium and the heating of the photovoltaic medium by the low-frequency part of the radiation spectrum. We show that both huge values and frequency selectivity are achievable for the radiative heat transfer in hyperbolic multilayer stacks.
Dai, Jin; Bozhevolnyi, Sergey I; Yan, Min
2016-01-01
We demonstrate the possibility of ultrabroadband super-Planckian radiative heat transfer be- tween two metal plates patterned with tapered hyperbolic metamaterial arrays. It is shown that, by employing profile-patterned hyperbolic media, one can design photonic bands to populate a desired thermal radiation window, with a spectral density of modes much higher than what can be achieved with unstructured media. For nanometer-sized gaps between two plates, the modes occupy states both inside and outside the light cone, giving rise to ultrabroadband super-Planckian radiative heat transfer. Our study reveals that structured hyperbolic metamaterial offers unprecedented potential in achieving a controllable super-Planckian radiative heat transfer.
Radiative transfer in cylindrical threads with incident radiation VII. Multi-thread models
Labrosse, N
2016-01-01
We solved the radiative transfer and statistical equilibrium equations in a two-dimensional cross-section of a cylindrical structure oriented horizontally and lying above the solar surface. The cylinder is filled with a mixture of hydrogen and helium and is illuminated at a given altitude from the solar disc. We constructed simple models made from a single thread or from an ensemble of several threads along the line of sight. This first use of two-dimensional, multi-thread fine structure modelling combining hydrogen and helium radiative transfer allowed us to compute synthetic emergent spectra from cylindrical structures and to study the effect of line-of-sight integration of an ensemble of threads under a range of physical conditions. We analysed the effects of variations in temperature distribution and in gas pressure. We considered the effect of multi-thread structures within a given field of view and the effect of peculiar velocities between the structures in a multi-thread model. We compared these new mo...
Dust Radiative Transfer Modeling of the Infrared Ring around the Magnetar SGR 1900+14
Natale, G.; Rea, N.; Lazzati, D.; Perna, R.; Torres, D. F.; Girart, J. M.
2017-03-01
A peculiar infrared ring-like structure was discovered by Spitzer around the strongly magnetized neutron star SGR 1900+14. This infrared (IR) structure was suggested to be due to a dust-free cavity, produced by the Soft Gamma-ray Repeaters (SGRs) Giant Flare occurring in 1998, and kept illuminated by surrounding stars. Using a 3D dust radiative transfer code, we aimed to reproduce the emission morphology and the integrated emission flux of this structure assuming different spatial distributions and densities for the dust, and different positions for the illuminating stars. We found that a dust-free ellipsoidal cavity can reproduce the shape, flux, and spectrum of the ring-like IR emission, provided that the illuminating stars are inside the cavity and that the interstellar medium has high gas density (n H ∼ 1000 cm‑3). We further constrain the emitting region to have a sharp inner boundary and to be significantly extended in the radial direction, possibly even just a cavity in a smooth molecular cloud. We discuss possible scenarios for the formation of the dustless cavity and the particular geometry that allows it to be IR-bright.
Energy Technology Data Exchange (ETDEWEB)
Su, M [Mount Sinai School of Medicine, Elmhurst, NY (United States); Sura, S
2014-06-01
Purpose: To evaluate dosimetric impact of two axillary nodes (AX) boost techniques: (1) posterior-oblique optimized field boost (POB), (2) traditional posterior-anterior boost (PAB) with field optimization (O-PAB), for a postmastectomy breast patient with positive axillary lymph nodes. Methods: Five patients, 3 left and 2 right chest walls, were included in this study. All patients were simulated in 5mm CT slice thickness. Supraclavicular (SC) and level I/II/III AX were contoured based on the RTOG atlas guideline. Five treatment plans, (1) tangential chest wall, (2) oblique SC including AX, (3) PAB, O-PAB and POB, were created for each patient. Three plan sums (PS) were generated by sum one of (3) plan with plan (1) and (2). The field optimization was done through PS dose distribution, which included a field adjustment, a fractional dose, a calculation location and a gantry angle selection for POB. A dosimetric impact was evaluated by comparing a SC and AX coverage, a PS maximum dose, an irradiated area percentage volume received dose over 105% prescription dose (V105), an ipsi-laterial mean lung dose (MLD), an ipsi-laterial mean humeral head dose (MHHD), a mean heart dose (MHD) (for left case only) and their DVH amount these three technique. Results: O-PAB, POB and PAB dosimetric results showed that there was no significant different on SC and AX coverage (p>0.43) and MHD (p>0.16). The benefit of sparing lung irradiation from PAB to O-PAB to POB was significant (p<0.004). PAB showed a highest PS maximum dose (p<0.005), V105 (p<0.023) and MLD (compared with OPAB, p=0.055). MHHD showed very sensitive to the patient arm positioning and anatomy. O-PAB convinced a lower MHHD than PAB (p=0.03). Conclusion: 3D CT contouring plays main role in accuracy radiotherapy. Dosimetric advantage of POB and O-PAB was observed for a better normal tissue irradiation sparing.
Pittard, J M
2009-01-01
The X-ray emission from the wind-wind collision in short-period massive O+O-star binaries is investigated. The emission is calculated from three-dimensional hydrodynamical models which incorporate gravity, the driving of the winds, orbital motion of the stars, and radiative cooling of the shocked plasma. Changes in the amount of stellar occultation and circumstellar attenuation introduce phase-dependent X-ray variability in systems with circular orbits, while strong variations in the intrinsic emission also occur in systems with eccentric orbits. The X-ray emission in eccentric systems can display strong hysteresis, with the emission softer after periastron than at corresponding orbital phases prior to periastron, reflecting the physical state of the shocked plasma at these times. Furthermore, the rise of the luminosity to maximum does not necessarily follow a 1/D law. Our models further demonstrate that the effective circumstellar column can be highly energy dependent. We simulate Chandra and Suzaku observat...
Delcov, A.; Hodenkov, A.; Zhuikov, D.
2015-10-01
This paper covered the problem of assessing the effectiveness of the section of the fin-tube radiator of space thermal control system. The task of calculating the conjugate radiation-convective heat transfer is presented. The results of numerical simulation are described.
Scott Carnell, Lisa A. (Inventor)
2017-01-01
An apparatus and method that utilizes a radiation source and a simulated microgravity to provide combined stressors. The response of cells/bacteria/viruses and/or other living matter to the combined stressors can be evaluated to predict the effects of extended space missions. The apparatus and method can also be utilized to study diseases and to develop new treatments and vaccinations.
Radiative heat transfer in turbulent combustion systems theory and applications
Modest, Michael F
2016-01-01
This introduction reviews why combustion and radiation are important, as well as the technical challenges posed by radiation. Emphasis is on interactions among turbulence, chemistry and radiation (turbulence-chemistry-radiation interactions – TCRI) in Reynolds-averaged and large-eddy simulations. Subsequent chapters cover: chemically reacting turbulent flows; radiation properties, Reynolds transport equation (RTE) solution methods, and TCRI; radiation effects in laminar flames; TCRI in turbulent flames; and high-pressure combustion systems. This Brief presents integrated approach that includes radiation at the outset, rather than as an afterthought. It stands as the most recent developments in physical modeling, numerical algorithms, and applications collected in one monograph.
Energy Technology Data Exchange (ETDEWEB)
Lagerlöf, Jakob H., E-mail: Jakob@radfys.gu.se [Department of Radiation Physics, Göteborg University, Göteborg 41345 (Sweden); Kindblom, Jon [Department of Oncology, Sahlgrenska University Hospital, Göteborg 41345 (Sweden); Bernhardt, Peter [Department of Radiation Physics, Göteborg University, Göteborg 41345, Sweden and Department of Nuclear Medicine, Sahlgrenska University Hospital, Göteborg 41345 (Sweden)
2014-04-15
Purpose: Oxygen distribution models have been used to analyze the influences of oxygen tensions on tissue response after radiotherapy. These distributions are often generated assuming constant oxygen tension in the blood vessels. However, as red blood cells progress through the vessels, oxygen is continuously released into the plasma and the surrounding tissue, resulting in longitudinally varying oxygen levels in the blood vessels. In the present study, the authors investigated whether a tumor oxygenation model that incorporated longitudinally varying oxygen levels would provide different predictions of necrotic fractions and radiosensitivity compared to commonly used models with a constant oxygen pressure. Methods: Our models simulated oxygen diffusion based on a Green's function approach and oxygen consumption according to the Michaelis-Menten equation. The authors constructed tumor models with different vascular fractions (VFs), from which they generated depth oxygenation curves and a look-up table of oxygen pressure gradients. The authors evaluated models of spherical tumors of various sizes, from 1 to 10{sup 4} mg. The authors compared the results from a model with constant vessel oxygen (CVO) pressure to those from models with longitudinal variations in oxygen saturation and either a constant VF (CVF) or variable VF (VVF) within the tumor tissue. The authors monitored the necrotic fractions, defined as tumor regions with an oxygen pressure below 1 mmHg. Tumor radiation sensitivity was expressed as D{sub 99,} the homogeneous radiation dose required for a tumor control probability of 0.99. Results: In the CVO saturation model, no necrosis was observed, and decreasing the VF could only decrease the D{sub 99} by up to 10%. Furthermore, the D{sub 99} vs VF dependence was similar for different tumor masses. Compared to the CVO model, the extended CVF and VVF models provided clearly different results, including pronounced effects of VF and tumor size on the
Ultraviolet Radiative Transfer Modeling of Nearby Galaxies with Extraplanar Dusts
Shinn, Jong-Ho
2015-01-01
In order to examine their relation to the host galaxy, the extraplanar dust of six nearby galaxies are modeled, employing a three dimensional Monte Carlo radiative transfer code. The targets are from the highly-inclined galaxies that show dust-scattered ultraviolet halos, and the archival Galaxy Evolution Explorer FUV band images were fitted with the model. The observed images are in general well reproduced by two dust layers and one light-source layer, whose vertical and radial distributions have exponential profiles. We obtained several important physical parameters, such as star formation rate (SFR_UV), face-on optical depth, and scale-heights. Three galaxies (NGC 891, NGC 3628, and UGC 11794) show clear evidence for the existence of extraplanar dust layer. However, it is found that the rest three targets (IC 5249, NGC 24, and NGC 4173) do not necessarily need a thick dust disk to model the ultraviolet (UV) halo, because its contribution is too small and the UV halo may be caused by the wing part of the GA...
Verification of snowpack radiation transfer models using actinometry
Phillips, Gavin J.; Simpson, William R.
2005-04-01
Actinometric measurements of photolysis rate coefficients within artificial snow have been used to test calculations of these coefficients by two radiative transfer models. The models used were based upon the delta-Eddington method or the discrete ordinate method, as implemented in the tropospheric ultraviolet and visible snow model, and were constrained by irradiance measurements and light attenuation profiles within the artificial snow. Actinometric measurements of the photolysis rate coefficient were made by observing the unimolecular conversion of 2-nitrobenzaldehyde (NBA) to its photoproduct under ultraviolet irradiation. A control experiment using liquid solutions of NBA determined that the quantum yield for conversion was ϕ = 0.41 ± 0.04 (±2σ). Measured photolysis rate coefficients in the artificial snow are enhanced in the near-surface layer, as predicted in the model calculations. The two models yielded essentially identical results for the depth-integrated photolysis rate coefficient of NBA, and their results quantitatively agreed with the actinometric measurements within the experimental precision of the measurement (±10%, ±2σ). The study shows that these models accurately determine snowpack actinic fluxes. To calculate in-snow photolysis rates for a molecule of interest, one must also have knowledge of the absorption spectrum and quantum yield for the specific photoprocess in addition to the actinic flux. Having demonstrated that the actinic flux is well determined by these models, we find that the major remaining uncertainty in prediction of snowpack photochemical rates is the measurement of these molecular photophysical properties.
SRTC++: a New Monte Carlo Radiative Transfer Model for Titan
Barnes, Jason W.; MacKenzie, Shannon; Young, Eliot F.
2016-10-01
Titan's vertically extended and highly scattering atmosphere poses a challenge to interpreting near-infrared observations of its surface. Not only does Titan's extended atmosphere often require accommodation of its spherical geometry, it is also difficult to separate surface albedos from scattering or absorption within low-altitude atmospheric layers. One way to disentangle the surface and atmosphere is to combine observations in which terrain on Titan is imaged from a range of viewing geometries. To address this type of problem, we have developed a new algorithm, Spherical Radiative Transfer in C++ or SRTC++.This code is written from scratch in fast C++ and designed from the ground up to run efficiently in parallel. We see SRTC++ as complementary to existing plane-parallel codes, not in competition with them as the first problems that we seek to address will be spatial in nature. For example, we will be able to investigate spatial resolution limits in the various spectral windows, discrimination of vertical atmospheric layers, the adjacency effect, and indirect illumination past Titan's terminator.
Testing Quasar Unification: Radiative Transfer in Clumpy Winds
Matthews, James H; Long, Knox S; Sim, Stuart A; Higginbottom, Nick; Mangham, Sam W
2016-01-01
Various unification schemes interpret the complex phenomenology of quasars and luminous active galactic nuclei (AGN) in terms of a simple picture involving a central black hole, an accretion disc and an associated outflow. Here, we continue our tests of this paradigm by comparing quasar spectra to synthetic spectra of biconical disc wind models, produced with our state-of-the-art Monte Carlo radiative transfer code. Previously, we have shown that we could produce synthetic spectra resembling those of observed broad absorption line (BAL) quasars, but only if the X-ray luminosity was limited to $10^{43}$ erg s$^{-1}$. Here, we introduce a simple treatment of clumping, and find that a filling factor of $\\sim0.01$ moderates the ionization state sufficiently for BAL features to form in the rest-frame UV at more realistic X-ray luminosities. Our fiducial model shows good agreement with AGN X-ray properties and the wind produces strong line emission in, e.g., Ly \\alpha\\ and CIV 1550\\AA\\ at low inclinations. At high ...
Radiative transfer modelling of parsec-scale dusty warped discs
Jud, H; Mould, J; Burtscher, L; Tristram, K R W
2016-01-01
Warped discs have been found on (sub-)parsec scale in some nearby Seyfert nuclei, identified by their maser emission. Using dust radiative transfer simulations we explore their observational signatures in the infrared in order to find out whether they can partly replace the molecular torus. Strong variations of the brightness distributions are found, depending on the orientation of the warp with respect to the line of sight. Whereas images at short wavelengths typically show a disc-like and a point source component, the warp itself only becomes visible at far-infrared wavelengths. A similar variety is visible in the shapes of the spectral energy distributions. Especially for close to edge-on views, the models show silicate feature strengths ranging from deep absorption to strong emission for variations of the lines of sight towards the warp. To test the applicability of our model, we use the case of the Circinus galaxy, where infrared interferometry has revealed a highly elongated emission component matching ...
Test plan for validation of the radiative transfer equation.
Energy Technology Data Exchange (ETDEWEB)
Ricks, Allen Joseph; Grasser, Thomas W.; Kearney, Sean Patrick; Jernigan, Dann A.; Blanchat, Thomas K.
2010-09-01
As the capabilities of numerical simulations increase, decision makers are increasingly relying upon simulations rather than experiments to assess risks across a wide variety of accident scenarios including fires. There are still, however, many aspects of fires that are either not well understood or are difficult to treat from first principles due to the computational expense. For a simulation to be truly predictive and to provide decision makers with information which can be reliably used for risk assessment the remaining physical processes must be studied and suitable models developed for the effects of the physics. A set of experiments are outlined in this report which will provide soot volume fraction/temperature data and heat flux (intensity) data for the validation of models for the radiative transfer equation. In addition, a complete set of boundary condition measurements will be taken to allow full fire predictions for validation of the entire fire model. The experiments will be performed with a lightly-sooting liquid hydrocarbon fuel fire in the fully turbulent scale range (2 m diameter).
Radiation Transfer Model for Aerosol Events in the Earth Atmosphere
Mukai, Sonoyo; Yokomae, Takuma; Nakata, Makiko; Sano, Itaru
Recently large scale-forest fire, which damages the Earth environment as biomass burning and emission of carbonaceous particles, frequently occurs due to the unstable climate and/or global warming tendency. It is also known that the heavy soil dust is transported from the China continent to Japan on westerly winds, especially in spring. Furthermore the increasing emis-sions of anthropogenic particles associated with continuing economic growth scatter serious air pollutants. Thus atmospheric aerosols, especially in Asia, are very complex and heavy loading, which is called aerosol event. In the case of aerosol events, it is rather difficult to do the sun/sky photometry from the ground, however satellite observation is an effective for aerosol monitoring. Here the detection algorithms from space for such aerosol events as dust storm or biomass burn-ing are dealt with multispectral satellite data as ADEOS-2/GLI, Terra/Aqua/MODIS and/or GOSAT/CAI first. And then aerosol retrieval algorithms are examined based on new radiation transfer code for semi-infinite atmosphere model. The derived space-based results are validated with ground-based measurements and/or model simulations. Namely the space-or surface-based measurements, multiple scattering calculations and model simulations are synthesized together for aerosol retrieval in this work.
Enabling Radiative Transfer on AMR grids in CRASH
Hariharan, N.; Graziani, L.; Ciardi, B.; Miniati, F.; Bungartz, H.-J.
2017-01-01
We introduce CRASH-AMR, a new version of the cosmological Radiative Transfer (RT) code CRASH, enabled to use refined grids. This new feature allows us to attain higher resolution in our RT simulations and thus to describe more accurately ionisation and temperature patterns in high density regions. We have tested CRASH-AMR by simulating the evolution of an ionised region produced by a single source embedded in gas at constant density, as well as by a more realistic configuration of multiple sources in an inhomogeneous density field. While we find an excellent agreement with the previous version of CRASH when the AMR feature is disabled, showing that no numerical artifact has been introduced in CRASH-AMR, when additional refinement levels are used the code can simulate more accurately the physics of ionised gas in high density regions. This result has been attained at no computational loss, as RT simulations on AMR grids with maximum resolution equivalent to that of a uniform cartesian grid can be run with a gain of up to 60% in computational time.
3D Convection-pulsation Simulations with the HERACLES Code
Felix, S.; Audit, E.; Dintrans, B.
2015-10-01
We present 3D simulations of the coupling between surface convection and pulsations due to the κ-mechanism in classical Cepheids of the red edge of Hertzsprung-Russell diagram's instability strip. We show that 3D convection is less powerful than 2D convection and does not quench the radiative pulsations, leading to an efficient 3D κ-mechanism. Thus, the 3D instability strip is closer to the observed one than the 1D or 2D were.
Wireless Power Transfer by Means of Electromagnetic Radiation Within an Enclosed Space
Moffatt, Robert A
2016-01-01
In this paper, wireless power transfer by means of electromagnetic radiation is investigated. Formulas are derived for the efficiency of the power transfer in free space, in the presence of reflecting surfaces, and within enclosed spaces. It is found that the presence of reflecting surfaces has the capacity to substantially enhance the efficiency of power transfer at long range. An upper limit is also found for the transferred power when constraints are imposed on certain forms of undesired absorption. For the sake of simplicity, only the efficiency of the radiative power transfer is considered. Losses due to resistance in the antenna structures or inefficiencies in RF to DC conversion are neglected.
Dynamic mineral clouds on HD 189733b I. 3D RHD with kinetic, non-equilibrium cloud formation
Lee, G; Helling, Ch; Bognar, K; Woitke, P
2016-01-01
3D modelling of cloud formation in atmospheres of extrasolar planets coupled to the atmospheric radiative, hydrodynamic and thermo-chemical properties has long been an open challenge. We present a 3D radiative-hydrodynamic (RHD) atmosphere model of HD 189733b fully coupled to a kinetic, microphysical mineral cloud formation model. We include the feedback effects of cloud advection and settling, gas phase element advection and depletion/replenishment and include the radiative effects of cloud and gas opacity. The 3D Navier-Stokes equations are solved consistently with a two-stream radiative transfer scheme coupled with the cloud moment conservation equations. We model the cloud particles as a mix of mineral materials which change in size and composition as they travel through atmospheric thermo-chemical environments. The local cloud properties such as number density, grain size and material composition are time-dependently calculated. Gas phase element depletion as a result of cloud formation are calculated an...
3D Printed Terahertz Focusing Grating Couplers
Jahn, David; Weidenbach, Marcel; Lehr, Jannik; Becker, Leonard; Beltrán-Mejía, Felipe; Busch, Stefan F.; Balzer, Jan C.; Koch, Martin
2017-02-01
We have designed, constructed and characterized a grating that focuses electromagnetic radiation at specific frequencies out of a dielectric waveguide. A simple theoretical model predicts the focusing behaviour of these chirped gratings, along with numerical results that support our assumptions and improved the grating geometry. The leaky waveguide was 3D printed and characterized at 120 GHz demonstrating its potential for manipulating terahertz waves.
Hausman, Kalani Kirk
2014-01-01
Get started printing out 3D objects quickly and inexpensively! 3D printing is no longer just a figment of your imagination. This remarkable technology is coming to the masses with the growing availability of 3D printers. 3D printers create 3-dimensional layered models and they allow users to create prototypes that use multiple materials and colors. This friendly-but-straightforward guide examines each type of 3D printing technology available today and gives artists, entrepreneurs, engineers, and hobbyists insight into the amazing things 3D printing has to offer. You'll discover methods for
Kühmstedt, Peter; Bräuer-Burchardt, Christian; Munkelt, Christoph; Heinze, Matthias; Palme, Martin; Schmidt, Ingo; Hintersehr, Josef; Notni, Gunther
2007-09-01
Here a new set-up of a 3D-scanning system for CAD/CAM in dental industry is proposed. The system is designed for direct scanning of the dental preparations within the mouth. The measuring process is based on phase correlation technique in combination with fast fringe projection in a stereo arrangement. The novelty in the approach is characterized by the following features: A phase correlation between the phase values of the images of two cameras is used for the co-ordinate calculation. This works contrary to the usage of only phase values (phasogrammetry) or classical triangulation (phase values and camera image co-ordinate values) for the determination of the co-ordinates. The main advantage of the method is that the absolute value of the phase at each point does not directly determine the coordinate. Thus errors in the determination of the co-ordinates are prevented. Furthermore, using the epipolar geometry of the stereo-like arrangement the phase unwrapping problem of fringe analysis can be solved. The endoscope like measurement system contains one projection and two camera channels for illumination and observation of the object, respectively. The new system has a measurement field of nearly 25mm × 15mm. The user can measure two or three teeth at one time. So the system can by used for scanning of single tooth up to bridges preparations. In the paper the first realization of the intraoral scanner is described.
1997-01-01
This area of terrain near the Sagan Memorial Station was taken on Sol 3 by the Imager for Mars Pathfinder (IMP). 3D glasses are necessary to identify surface detail.The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
Shi, Li-Wan; Lai, You-Qun; Lin, Qin; Ha, Hui-Ming; Fu, Li-Rong
2015-07-01
Flattening filter free (FFF) may affect outcome measures of radiotherapy. The objective of this study is to compare the dosimetric parameters in three types of radiotherapy plans, three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT), with or without the flattening filter (FF), developed for the treatment of metastatic brain tumors from non-small cell lung cancer (NSCLC). From July 2013 to October 2013, 3D-CRT, IMRT, and VMAT treatment plans were designed using 6 MV and 10 MV, with and without FF, for 10 patients with brain metastasis from NSCLC. The evaluation of the treatment plans included homogeneity index (HI), conformity index (CI), monitor units (MU), mean dose (Dmean), treatment time, and the influence of FFF on volumes. There was no difference in CI or HI between FFF and FF models with 3D-CRT, IMRT, and VMAT plans. At 6 MV, a lower Dmean was seen in the FFF model of 3D-CRT and in the VMAT plan at 10 MV. In the IMRT 6 MV, IMRT 10 MV, and VMAT 10 MV plans, higher MUs were seen in the FFF models. FFF treatments are similar in quality to FF plans, generally lead to more monitor units, and are associated with shorter treatment times. FFF plans ranked by the order of superiority in terms of a time advantage are VMAT, 3D-CRT, and IMRT.
Energy Technology Data Exchange (ETDEWEB)
Ferrari, Mahila E.; Cremonesi, Marta; Di Dia, Amalia; Botta, Francesca; Pedroli, Guido [European Institute of Oncology, Division of Medical Physics, Milan (Italy); De Cicco, Concetta; Calabrese, Michele; Paganelli, Giovanni [European Institute of Oncology, Division of Nuclear Medicine, Milan (Italy); Sarnelli, Anna [IRCCS Istituto Romagnolo per lo Studio e la Cura dei Tumori, Medical Physics Unit, Meldola, FC (Italy); Pedicini, Piernicola [Centro Regionale Oncologico Basilicata (IRCCS-CROB), Department of Radiation Oncology, Rionero in Vulture, PZ (Italy); Orecchia, Roberto [European Institute of Oncology, Division of Radiotherapy, Milan (Italy)
2012-11-15
Intraoperative Avidination for Radionuclide Therapy (IART {sup registered}) is a novel targeted radionuclide therapy recently used in patients with early breast cancer. It is a radionuclide approach with {sup 90}Y-biotin combined with external beam radiotherapy (EBRT) to release a boost of radiation in the tumour bed. Two previous clinical trials using dosimetry based on the calculation of mean absorbed dose values with the hypothesis of uniform activity distribution (MIRD 16 method) assessed the feasibility and safety of IART {sup registered}. In the present retrospective study, a voxel dosimetry analysis was performed to investigate heterogeneity in distribution of the absorbed dose. The aim of this work was to compare dosimetric and radiobiological evaluations derived from average absorbed dose vs. voxel absorbed dose approaches. We evaluated 14 patients who were injected with avidin into the tumour bed after conservative surgery and 1 day later received an intravenous injection of 3.7 GBq of {sup 90}Y-biotin (together with 185 MBq {sup 111}In-biotin for imaging). Sequential images were used to estimate the absorbed dose in the target region according to the standard dosimetry method (SDM) and the voxel dosimetry method (VDM). The biologically effective dose (BED) distribution was also evaluated. Dose/volume and BED volume histograms were generated to derive equivalent uniform BED (EUBED) and equivalent uniform dose (EUD) values. No ''cold spots'' were highlighted by voxel dosimetry. The median absorbed-dose in the target region was 20 Gy (range 15-27 Gy) by SDM, and the median EUD was 20.4 Gy (range 16.5-29.4 Gy) by the VDM; SDM and VDM estimates differed by about 6 %. The EUD/mean voxel absorbed dose ratio was >0.9 in all patients, indicative of acceptable uniformity in the target. The median BED and EUBED values were 21.8 Gy (range 15.9-29.3 Gy) and 22.8 Gy (range 17.3-31.8 Gy), respectively. VDM highlighted the absence of significant
Scalable 3D GIS environment managed by 3D-XML-based modeling
Shi, Beiqi; Rui, Jianxun; Chen, Neng
2008-10-01
Nowadays, the namely 3D GIS technologies become a key factor in establishing and maintaining large-scale 3D geoinformation services. However, with the rapidly increasing size and complexity of the 3D models being acquired, a pressing needed for suitable data management solutions has become apparent. This paper outlines that storage and exchange of geospatial data between databases and different front ends like 3D models, GIS or internet browsers require a standardized format which is capable to represent instances of 3D GIS models, to minimize loss of information during data transfer and to reduce interface development efforts. After a review of previous methods for spatial 3D data management, a universal lightweight XML-based format for quick and easy sharing of 3D GIS data is presented. 3D data management based on XML is a solution meeting the requirements as stated, which can provide an efficient means for opening a new standard way to create an arbitrary data structure and share it over the Internet. To manage reality-based 3D models, this paper uses 3DXML produced by Dassault Systemes. 3DXML uses opening XML schemas to communicate product geometry, structure and graphical display properties. It can be read, written and enriched by standard tools; and allows users to add extensions based on their own specific requirements. The paper concludes with the presentation of projects from application areas which will benefit from the functionality presented above.
High-order solution methods for grey discrete ordinates thermal radiative transfer
Maginot, Peter G.; Ragusa, Jean C.; Morel, Jim E.
2016-12-01
This work presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge-Kutta time integration techniques. Iterative convergence of the radiation equation is accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.
Heng, Kevin; Lee, Jaemin
2014-01-01
We present a comprehensive analytical study of radiative transfer using the method of moments and include the effects of non-isotropic scattering in the coherent limit. Within this unified formalism, we derive the governing equations and solutions describing two-stream radiative transfer (which approximates the passage of radiation as a pair of outgoing and incoming fluxes), flux-limited diffusion (which describes radiative transfer in the deep interior) and solutions for the temperature-pressure profiles. Generally, the problem is mathematically under-determined unless a set of closures (Eddington coefficients) is specified. We demonstrate that the hemispheric (or hemi-isotropic) closure naturally derives from the radiative transfer equation if energy conservation is obeyed, while the Eddington closure produces spurious enhancements of both reflected light and thermal emission. We further demonstrate that traditional non-isothermal treatments of each atmospheric layer lead to unphysical contributions to the ...
Xin, Q.; Gong, P.; Li, W.
2015-02-01
Modeling vegetation photosynthesis is essential for understanding carbon exchanges between terrestrial ecosystems and the atmosphere. The radiative transfer process within plant canopies is one of the key drivers that regulate canopy photosynthesis. Most vegetation cover consists of discrete plant crowns, of which the physical observation departs from the underlying assumption of a homogenous and uniform medium in classic radiative transfer theory. Here we advance the Geometric Optical Radiative Transfer (GORT) model to simulate photosynthesis activities for discontinuous plant canopies. We separate radiation absorption into two components that are absorbed by sunlit and shaded leaves, and derive analytical solutions by integrating over the canopy layer. To model leaf-level and canopy-level photosynthesis, leaf light absorption is then linked to the biochemical process of gas diffusion through leaf stomata. The canopy gap probability derived from GORT differs from classic radiative transfer theory, especially when the leaf area index is high, due to leaf clumping effects. Tree characteristics such as tree density, crown shape, and canopy length affect leaf clumping and regulate radiation interception. Modeled gross primary production (GPP) for two deciduous forest stands could explain more than 80% of the variance of flux tower measurements at both near hourly and daily time scales. We also demonstrate that the ambient CO2 concentration influences daytime vegetation photosynthesis, which needs to be considered in state-of-the-art biogeochemical models. The proposed model is complementary to classic radiative transfer theory and shows promise in modeling the radiative transfer process and photosynthetic activities over discontinuous forest canopies.
Aboufadel, Edward F.
2014-01-01
The purpose of this short paper is to describe a project to manufacture a regular octohedron on a 3D printer. We assume that the reader is familiar with the basics of 3D printing. In the project, we use fundamental ideas to calculate the vertices and faces of an octohedron. Then, we utilize the OPENSCAD program to create a virtual 3D model and an STereoLithography (.stl) file that can be used by a 3D printer.
Larsson, Richard; Rayer, Peter; Saunders, Roger; Bell, William; Booton, Anna; Buehler, Stefan A.; Eriksson, Patrick; John, Viju
2015-04-01
Channels 19-22 of the Special Sensor Microwave Imager/Sounder (SSMIS) on the DMSP satellite are simulated using a diverse atmospheric temperature profile dataset. These channels all measure the absorption spectra of the main isotope of molecular oxygen, and have pass-bands that are close in frequency to the center frequencies of four of the spectral lines. As a consequence, the channels measure high up in the atmosphere. The sensitivity of some channels even peak above the present upper levels of numerical weather prediction models at 80 km. The high altitude of the measurements in turn means that the molecular oxygen spectroscopy is noticeably affected by the Zeeman effect; this splits a line into frequency-separated polarized components as a function of the external magnetic field. The simulations have been performed using both ARTS and RTTOV as forward radiative transfer simulators. ARTS uses a line-by-line approach to radiative transfer. For the Zeeman effect calculations, ARTS can read line data and 3D magnetism directly from databases and then performs the splitting and polarization for each finite layer to calculate polarized absorption that is input to the radiative transfer equation. RTTOV uses a fast approach to radiative transfer, pre-calculating scalar effective transmission predictors for a set of atmospheric scenarios for each channel. For the Zeeman effect calculations, an altitude independent magnetic field is required as input for the layered transmission for the radiative transfer equation. Our results show that the differences between the models are small compared to sensor noise for all channels. The mean difference between models is larger for the lower altitude channels 21 and 22, but the standard deviation is small between the models. The mean simulated brightness temperatures of ARTS are closer to SSMIS than the RTTOV values, but it is not possible to tell which model is more accurate as temperature errors in the profiles are expected to be
Salient Local 3D Features for 3D Shape Retrieval
Godil, Afzal
2011-01-01
In this paper we describe a new formulation for the 3D salient local features based on the voxel grid inspired by the Scale Invariant Feature Transform (SIFT). We use it to identify the salient keypoints (invariant points) on a 3D voxelized model and calculate invariant 3D local feature descriptors at these keypoints. We then use the bag of words approach on the 3D local features to represent the 3D models for shape retrieval. The advantages of the method are that it can be applied to rigid as well as to articulated and deformable 3D models. Finally, this approach is applied for 3D Shape Retrieval on the McGill articulated shape benchmark and then the retrieval results are presented and compared to other methods.
Investigation of spectral radiation heat transfer and NO{sub x} emission in a glass furnace
Energy Technology Data Exchange (ETDEWEB)
Golchert, B.; Zhou, C. Q.; Chang, S. L.; Petrick, M.
2000-08-02
A comprehensive radiation heat transfer model and a reduced NOx kinetics model were coupled with a computational fluid dynamics (CFD) code and then used to investigate the radiation heat transfer, pollutant formation and flow characteristics in a glass furnace. The radiation model solves the spectral radiative transport equation in the combustion space of emitting and absorbing media, i.e., CO{sub 2}, H{sub 2}O, and soot and emission/reflection from the furnace crown. The advanced numerical scheme for calculating the radiation heat transfer is extremely effective in conserving energy between radiation emission and absorption. A parametric study was conducted to investigate the impact of operating conditions on the furnace performance with emphasis on the investigation into the formation of NOx.
Close-range environmental remote sensing with 3D hyperspectral technologies
Nevalainen, O.; Honkavaara, E.; Hakala, T.; Kaasalainen, Sanna; Viljanen, N.; Rosnell, T.; Khoramshahi, E.; Näsi, R.
2016-10-01
Estimation of the essential climate variables (ECVs), such as photosynthetically active radiation (FAPAR) and the leaf area index (LAI), is largely based on satellite-based remote sensing and the subsequent inversion of radiative transfer (RT) models. In order to build models that accurately describe the radiative transfer within and below the canopy, detailed 3D structural (geometrical) and spectral (radiometrical) information of the canopy is needed. Close-range remote sensing, such as terrestrial remote sensing and UAV-based 3D spectral measurements, offers significant opportunity to improve the RT modelling and ECV estimation of forests. Finnish Geospatial Research Institute (FGI) has been developing active and passive high resolution 3D hyperspectral measurement technologies that provide reflectance, anisotropy and 3D structure information of forests (i.e. hyperspectral point clouds). Technologies include hyperspectral imaging from unmanned airborne vehicle (UAV), terrestrial hyperspectral lidar (HSL) and terrestrial hyperspectral stereoscopic imaging. A measurement campaign to demonstrate these technologies in ECV estimation with uncertainty propagation was carried out in the Wytham Woods, Oxford, UK, in June 2015. Our objective is to develop traceable processing procedures for generating hyperspectral point clouds with geometric and radiometric uncertainty propagation using hyperspectral aerial and terrestrial imaging and hyperspectral terrestrial laser scanning. The article and presentation will present the methodology, instrumentation and first results of our study.
Non-local thermodynamic equilibrium inversions from a 3D MHD chromospheric model
Rodríguez, Jaime de la Cruz; Carlsson, Mats; Leenaarts, Jorrit
2012-01-01
The structure of the solar chromosphere is believed to be governed by magnetic fields, even in quiet-Sun regions that have a relatively weak photospheric field. During the past decade inversion methods have emerged as powerful tools for analyzing the chromosphere of active regions. The applicability of inversions to infer the stratification of the physical conditions in a dynamic 3D solar chromosphere has not yet been studied in detail. This study aims to establish the diagnostic capabilities of non-local thermodynamical equilibrium (NLTE) inversion techniques of Stokes profiles induced by the Zeeman effect in the Ca II 8542 line. We computed the Ca II atomic level populations in a snapshot from a 3D radiation-MHD simulation of the quiet solar atmosphere in non-LTE using the 3D radiative transfer code Multi3d. These populations were used to compute synthetic full-Stokes profiles in the Ca II 8542 line using 1.5D radiative transfer and the inversion code Nicole. The profiles were then spectrally degraded to ac...
Recent Progress on 3D Silicon Detectors
Lange, Jörn
2015-01-01
3D silicon detectors, in which the electrodes penetrate the sensor bulk perpendicular to the surface, have recently undergone a rapid development from R\\&D over industrialisation to their first installation in a real high-energy-physics experiment. Since June 2015, the ATLAS Insertable B-Layer is taking first collision data with 3D pixel detectors. At the same time, preparations are advancing to install 3D pixel detectors in forward trackers such as the ATLAS Forward Proton detector or the CMS-TOTEM Proton Precision Spectrometer. For those experiments, the main requirements are a slim edge and the ability to cope with non-uniform irradiation. Both have been shown to be fulfilled by 3D pixel detectors. For the High-Luminosity LHC pixel upgrades of the major experiments, 3D detectors are promising candidates for the innermost pixel layers to cope with harsh radiation environments up to fluences of $2\\times10^{16}$\\,n$_{eq}$/cm$^2$ thanks to their excellent radiation hardness at low operational voltages and ...
Testing quasar unification: radiative transfer in clumpy winds
Matthews, J. H.; Knigge, C.; Long, K. S.; Sim, S. A.; Higginbottom, N.; Mangham, S. W.
2016-05-01
Various unification schemes interpret the complex phenomenology of quasars and luminous active galactic nuclei (AGN) in terms of a simple picture involving a central black hole, an accretion disc and an associated outflow. Here, we continue our tests of this paradigm by comparing quasar spectra to synthetic spectra of biconical disc wind models, produced with our state-of-the-art Monte Carlo radiative transfer code. Previously, we have shown that we could produce synthetic spectra resembling those of observed broad absorption line (BAL) quasars, but only if the X-ray luminosity was limited to 1043 erg s-1. Here, we introduce a simple treatment of clumping, and find that a filling factor of ˜0.01 moderates the ionization state sufficiently for BAL features to form in the rest-frame UV at more realistic X-ray luminosities. Our fiducial model shows good agreement with AGN X-ray properties and the wind produces strong line emission in, e.g., Lyα and C IV 1550 Å at low inclinations. At high inclinations, the spectra possess prominent LoBAL features. Despite these successes, we cannot reproduce all emission lines seen in quasar spectra with the correct equivalent-width ratios, and we find an angular dependence of emission line equivalent width despite the similarities in the observed emission line properties of BAL and non-BAL quasars. Overall, our work suggests that biconical winds can reproduce much of the qualitative behaviour expected from a unified model, but we cannot yet provide quantitative matches with quasar properties at all viewing angles. Whether disc winds can successfully unify quasars is therefore still an open question.
ULTRAVIOLET RADIATIVE TRANSFER MODELING OF NEARBY GALAXIES WITH EXTRAPLANAR DUSTS
Energy Technology Data Exchange (ETDEWEB)
Shinn, Jong-Ho; Seon, Kwang-Il, E-mail: jhshinn@kasi.re.kr [Korea Astronomy and Space Science Institute, 776 Daeduk-daero, Yuseong-gu, Daejeon, 305-348 (Korea, Republic of)
2015-12-20
In order to examine their relation to the host galaxy, the extraplanar dusts of six nearby galaxies are modeled, employing a three-dimensional Monte Carlo radiative transfer code. The targets are from the highly inclined galaxies that show dust-scattered ultraviolet halos, and the archival Galaxy Evolution Explorer FUV band images were fitted with the model. The observed images are generally well-reproduced by two dust layers and one light source layer, whose vertical and radial distributions have exponential profiles. We obtained several important physical parameters, such as star formation rate (SFR{sub UV}), face-on optical depth, and scale-heights. Three galaxies (NGC 891, NGC 3628, and UGC 11794) show clear evidence for the existence of an extraplanar dust layer. However, it is found that the remaining three targets (IC 5249, NGC 24, and NGC 4173) do not necessarily need a thick dust disk to model the ultraviolet (UV) halo, because its contribution is too small and the UV halo may be caused by the wing part of the GALEX point spread function. This indicates that the galaxy samples reported to have UV halos may be contaminated by galaxies with negligible extraplanar (halo) dust. The galaxies showing evidence of an extraplanar dust layer fall within a narrow range on the scatter plots between physical parameters such as SFR{sub UV} and extraplanar dust mass. Several mechanisms that could possibly produce the extraplanar dust are discussed. We also found a hint that the extraplanar dust scale-height might not be much different from the polycyclic aromatic hydrocarbon emission characteristic height.
Petkova, Margarita
2010-01-01
We carry out hydrodynamical simulations of galaxy formation that simultaneously follow radiative transfer of hydrogen-ionising photons, based on the optically-thin variable Eddinton tensor approximation as implemented in the {\\small GADGET} code. We consider only star-forming galaxies as sources and examine to what extent they can yield a reasonable reionisation history and thermal state of the intergalactic medium at redshifts around $z\\sim 3$. This serves as an important benchmark for our self-consistent methodology to simulate galaxy formation and reionisation, and for future improvements through accounting of other sources and other wavelength ranges. We find that star formation alone is sufficient for reionising the Universe by redshift $z\\sim6$. For a suitable choice of the escape fraction and the heating efficiency, our models are approximately able to account at the same time for the one-point function and the power spectrum of the Lyman-$\\alpha$ forest. The radiation field has an important impact on ...
Radiative Transfer and Radiative driving of Outflows in AGN and Starbursts
Novak, G S; Ciotti, L
2012-01-01
To facilitate the study of black hole fueling, star formation, and feedback in galaxies, we outline a method for treating the radial forces on interstellar gas due to absorption of photons by dust grains. The method gives the correct behavior in all of the relevant limits (dominated by the central point source; dominated by the distributed isotropic source; optically thin; optically thick to UV/optical; optically thick to IR) and reasonably interpolates between the limits when necessary. The method is explicitly energy conserving so that UV/optical photons that are absorbed are not lost, but are rather redistributed to the IR where they may scatter out of the galaxy. We implement the radiative transfer algorithm in a two-dimensional hydrodynamical code designed to study feedback processes in the context of early-type galaxies. We find that the dynamics and final state of simulations are measurably but only moderately affected by radiative forces on dust, even when assumptions about the dust-to-gas ratio are v...
Beier, J
2001-01-01
This book deals with substantial subjects of postprocessing and analysis of radiological image data, a particular emphasis was put on pulmonary themes. For a multitude of purposes the developed methods and procedures can directly be transferred to other non-pulmonary applications. The work presented here is structured in 14 chapters, each describing a selected complex of research. The chapter order reflects the sequence of the processing steps starting from artefact reduction, segmentation, visualization, analysis, therapy planning and image fusion up to multimedia archiving. In particular, this includes virtual endoscopy with three different scene viewers (Chap. 6), visualizations of the lung disease bronchiectasis (Chap. 7), surface structure analysis of pulmonary tumors (Chap. 8), quantification of contrast medium dynamics from temporal 2D and 3D image sequences (Chap. 9) as well as multimodality image fusion of arbitrary tomographical data using several visualization techniques (Chap. 12). Thus, the softw...
Nuclear 3D organization and radiosensitivity
Eidelman, Y. A.; Slanina, S. V.; Aleshchenko, A. V.; Sen’ko, O. V.; Kononkova, A. D.; Andreev, S. G.
2017-01-01
Current mechanisms of radiation-induced chromosomal aberration (CA) formation suggest misrepair of chromosomal lesions being in spatial proximity. In this case CAs have to depend on pattern of chromosomal contacts and on chromosome spatial organization in a cell nucleus. We were interested in whether variation of nucleus 3D organization results in difference of radiation induced CA formation frequency. Experimental data available do not provide information sufficient for definite conclusions. To have more deep insight in this issue we developed the biophysical modeling technique taking into account different levels of chromosome/nuclear organization and radiation damage of DNA and chromosomes. Computer experiments on gamma irradiation were carried out for two types of cells with different 3D organization of nuclei, preferentially peripheral and internal. CA frequencies were found to depend on spatial positioning of chromosomes within a nucleus which determines a pattern of interchromosomal contacts. For individual chromosomes this effect can be more pronounced than for genome averaged. Since significant part of aberrations, for example dicentrics, results in cell death, the proposed technique is capable of evaluating radiosensitivity of cells, both normal and cancer, with the incorporation of 3D genome information. This predictive technology allows to reduce uncertainties of prognosis of biological effects of radiation compared to phenomenological methods and may have variety of biomedical applications, in particular, in cancer radiation therapy.
Institute of Scientific and Technical Information of China (English)
2007-01-01
A vector radiative transfer numerical model of the coupled ocean-atmosphere system is developed based on the matrix-operator method, which is named PCOART. Using the Fourier analysis, the vector radiative transfer equation (VRTE) is separated into a set of equations depending only on the observa-tion zenith angle. Using the Gaussian-Quadrature method, VRTE is finally transferred into the matrix equation solved by the adding-doubling method. According to the reflective and refractive properties of the ocean-atmosphere interface, the vector radiative transfer numerical model of the ocean and at-mosphere is coupled in PCOART. Compared with the exact Rayleigh scattering look-up tables of MODIS (Moderate-resolution Imaging Spectroradiometer), it is shown that PCOART is an exactly numerical model, and the processing methods of the multi-scattering and polarization are correct. Also, validated with the standard problems of the radiative transfer in water, it is shown that PCOART can be used to calculate the underwater radiative transfer problems. Therefore, PCOART is a useful tool for exactly calculating the vector radiative transfer of the coupled ocean-atmosphere system, which can be used to study the polarization properties of the radiance in the whole ocean-atmosphere system and the remote sensing of the atmosphere and ocean.
Institute of Scientific and Technical Information of China (English)
HE XianQiang; PAN DeLu; BAI Yan; ZHU QianKun; GONG Fang
2007-01-01
A vector radiative transfer numerical model of the coupled ocean-atmosphere system is developed based on the matrix-operator method,which is named PCOART.Using the Fourier analysis,the vector radiative transfer equation (VRTE) is separated into a set of equations depending only on the observation zenith angle.Using the Gaussian-Quadrature method,VRTE is finally transferred into the matrix equation solved by the adding-doubling method.According to the reflective and refractive properties of the ocean-atmosphere interface,the vector radiative transfer numerical model of the ocean and atmosphere is coupled in PCOART.Compared with the exact Rayleigh scattering look-up tables of MODIS (Moderate-resolution Imaging Spectroradiometer),it is shown that PCOART is an exactly numerical model,and the processing methods of the multi-scattering and polarization are correct.Also,validated with the standard problems of the radiative transfer in water,it is shown that PCOART can be used to calculate