PIXIE3D: An efficient, fully implicit, parallel, 3D extended MHD code for fusion plasma modeling
International Nuclear Information System (INIS)
PIXIE3D is a modern, parallel, state-of-the-art extended MHD code that employs fully implicit methods for efficiency and accuracy. It features a general geometry formulation, and is therefore suitable for the study of many magnetic fusion configurations of interest. PIXIE3D advances the state of the art in extended MHD modeling in two fundamental ways. Firstly, it employs a novel conservative finite volume scheme which is remarkably robust and stable, and demands very small physical and/or numerical dissipation. This is a fundamental requirement when one wants to study fusion plasmas with realistic conductivities. Secondly, PIXIE3D features fully-implicit time stepping, employing Newton-Krylov methods for inverting the associated nonlinear systems. These methods have been shown to be scalable and efficient when preconditioned properly. Novel preconditioned ideas (so-called physics based), which were prototypes in the context of reduced MHD, have been adapted for 3D primitive-variable resistive MHD in PIXIE3D, and are currently being extended to Hall MHD. PIXIE3D is fully parallel, employing PETSc for parallelism. PIXIE3D has been thoroughly benchmarked against linear theory and against other available extended MHD codes on nonlinear test problems (such as the GEM reconnection challenge). We are currently in the process of extending such comparisons to fusion-relevant problems in realistic geometries. In this talk, we will describe both the spatial discretization approach and the preconditioning strategy employed for extended MHD in PIXIE3D. We will report on recent benchmarking studies between PIXIE3D and other 3D extended MHD codes, and will demonstrate its usefulness in a variety of fusion-relevant configurations such as Tokamaks and Reversed Field Pinches. (Author)
Novel Kinetic 3D MHD Algorithm for High Performance Parallel Computing Systems
Chetverushkin, B; Saveliev, V
2013-01-01
The impressive progress of the kinetic schemes in the solution of gas dynamics problems and the development of effective parallel algorithms for modern high performance parallel computing systems led to the development of advanced methods for the solution of the magnetohydrodynamics problem in the important area of plasma physics. The novel feature of the method is the formulation of the complex Boltzmann-like distribution function of kinetic method with the implementation of electromagnetic interaction terms. The numerical method is based on the explicit schemes. Due to logical simplicity and its efficiency, the algorithm is easily adapted to modern high performance parallel computer systems including hybrid computing systems with graphic processors.
3-D Relativistic MHD Simulations
Nishikawa, K.-I.; Frank, J.; Koide, S.; Sakai, J.-I.; Christodoulou, D. M.; Sol, H.; Mutel, R. L.
1998-12-01
We present 3-D numerical simulations of moderately hot, supersonic jets propagating initially along or obliquely to the field lines of a denser magnetized background medium with Lorentz factors of W = 4.56 and evolving in a four-dimensional spacetime. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently in the simulations. This effect is analogous to pushing Japanese ``noren'' or vertical Venetian blinds out of the way while the slats are allowed to bend in 3-D space rather than as a 2-D slab structure.
3D simulation studies of tokamak plasmas using MHD and extended-MHD models
International Nuclear Information System (INIS)
The M3D (Multi-level 3D) tokamak simulation project aims at the simulation of tokamak plasmas using a multi-level tokamak code package. Several current applications using MHD and Extended-MHD models are presented; high-β disruption studies in reversed shear plasmas using the MHD level MH3D code, ω*i stabilization and nonlinear island saturation of TAE mode using the hybrid particle/MHD level MH3D-K code, and unstructured mesh MH3D++ code studies. In particular, three internal mode disruption mechanisms are identified from simulation results which agree which agree well with experimental data
3D simulation studies of tokamak plasmas using MHD and extended-MHD models
International Nuclear Information System (INIS)
The M3D (Multi-level 3D) tokamak simulation project aims at the simulation of tokamak plasmas using a multi-level tokamak code package. Several current applications using MHD and Extended-MHD models are presented; high-β disruption studies in reversed shear plasmas using the MHD level MH3D code, ω*i stabilization and nonlinear island rotation studies using the two-fluid level MH3D-T code, studies of nonlinear saturation of TAE modes using the hybrid particle/MHD level MH3D-K code, and unstructured mesh MH3D++ code studies. In particular, three internal mode disruption mechanisms are identified from simulation results which agree well with experimental data
3D simulation studies of tokamak plasmas using MHD and extended-MHD models
International Nuclear Information System (INIS)
The M3D (Multi-level 3D) tokamak simulation project aims at the simulation of tokamak plasmas using a multi-level tokamak code package. Several current applications using MHD and Extended-MHD models are presented: high-β disruption studies in reversed shear plasmas using the MHD level MH3D code; ω*i stabilization and nonlinear island rotation studies using the two-fluid level MH3D-T code; studies of nonlinear saturation of TAE modes using the hybrid particle/MHD level MH3D-K code; and unstructured mesh MH3D++ code studies. In particular, three internal mode disruption mechanisms are identified from simulation results which agree well with experimental data. (author). 18 refs, 5 figs
3D MHD Flux emergence experiments
DEFF Research Database (Denmark)
Hood, A.W.; Archontis, V.; Mactaggart, David
2012-01-01
This paper reviews some of the many 3D numerical experiments of the emergence of magnetic fields from the solar interior and the subsequent interaction with the pre-existing coronal magnetic field. The models described here are idealised, in the sense that the internal energy equation only involv...
Suppression of Magnetic Flux Diffusion in Reduced 3D MHD
Bayliss, A.; Ware, A. S.; Diamond, P. H.; Kim, E.-J.
1999-11-01
The important impact of small scale magnetic fields on self-organization (i.e., dynamo) in MHD turbulence was originally pin-pointed by the observation that magnetic flux diffusion (anomalous resistivity) is drastically reduced in 2D MHD turbulence. This reduction is a consequence of mean square magnetic potential in two dimensions. It is natural, then, to investigate magnetic flux diffusion in 3D reduced MHD; since in that system conservation is broken only by linear field line bending (symptomatic of Alfvén wave propagation along B_z), and resistive dissipation. In particular, the Ohm's Law nonlinearity conserves . Not surprisingly, it is possible to derive an exact constraint upon the spatial flux of magnetic potential from the condition of balance. This expression may then be used to simplify the calculation of the turbulent resistivity, which is found to be suppressed, as in 2D MHD, up to corrections resulting from hat z-direction Alfvén wave propagation effects. These corrections vanish in the limit of unity magnetic Prandtl number. Work on understanding the self-consistent alpha effect in reduced MHD is ongoing and will be discussed.
Implementation of a 3-D nonlinear MHD [magnetohydrodynamics] calculation on the Intel hypercube
International Nuclear Information System (INIS)
The optimization of numerical schemes and increasing computer capabilities in the last ten years have improved the efficiency of 3-D nonlinear resistive MHD calculations by about two to three orders of magnitude. However, we are still very limited in performing these types of calculations. Hypercubes have a large number of processors with only local memory and bidirectional links among neighbors. The Intel Hypercube at Oak Ridge has 64 processors with 0.5 megabytes of memory per processor. The multiplicity of processors opens new possibilities for the treatment of such computations. The constraint on time and resources favored the approach of using the existing RSF code which solves as an initial value problem the reduced set of MHD equations for a periodic cylindrical geometry. This code includes minimal physics and geometry, but contains the basic three dimensionality and nonlinear structure of the equations. The code solves the reduced set of MHD equations by Fourier expansion in two angular coordinates and finite differences in the radial one. Due to the continuing interest in these calculations and the likelihood that future supercomputers will take greater advantage of parallelism, the present study was initiated by the ORNL Exploratory Studies Committee and funded entirely by Laboratory Discretionary Funds. The objectives of the study were: to ascertain the suitability of MHD calculation for parallel computation, to design and implement a parallel algorithm to perform the computations, and to evaluate the hypercube, and in particular, ORNL's Intel iPSC, for use in MHD computations
3D MHD simulation of polarized emission in SN 1006
Schneiter, E M; Reynoso, E M; Esquivel, A; De Colle, F
2015-01-01
We use three dimensional magnetohydrodynamic (MHD) simulations to model the supernova remnant SN 1006. From our numerical results, we have carried out a polarization study, obtaining synthetic maps of the polarized intensity, the Stokes parameter $Q$, and the polar-referenced angle, which can be compared with observational results. Synthetic maps were computed considering two possible particle acceleration mechanisms: quasi-parallel and quasi-perpendicular. The comparison of synthetic maps of the Stokes parameter $Q$ maps with observations proves to be a valuable tool to discern unambiguously which mechanism is taking place in the remnant of SN 1006, giving strong support to the quasi-parallel model.
Testing Observational Techniques with 3D MHD Jets in Clusters
Mendygral, Peter J; Jones, Tom W
2009-01-01
Observations of X-ray cavities formed by powerful jets from AGN in galaxy cluster cores are commonly used to estimate the mechanical luminosity of these sources. We test the reliability of observationally measuring this power with synthetic X-ray observations of 3-D MHD simulations of jets in a galaxy cluster environment. We address the role that factors such as jet intermittency and orientation of the jets on the sky have on the reliability of observational measurements of cavity enthalpy and age. An estimate of the errors in these quantities can be made by directly comparing ``observationally'' derived values with values from the simulations. In our tests, cavity enthalpy, age and mechanical luminosity derived from observations are within a factor of two of the simulation values.
FARGO3D: A new GPU-oriented MHD code
Benítez-Llambay, Pablo
2016-01-01
We present the FARGO3D code, recently publicly released. It is a magnetohydrodynamics code developed with special emphasis on protoplanetary disks physics and planet-disk interactions, and parallelized with MPI. The hydrodynamics algorithms are based on finite difference upwind, dimensionally split methods. The magnetohydrodynamics algorithms consist of the constrained transport method to preserve the divergence-free property of the magnetic field to machine accuracy, coupled to a method of characteristics for the evaluation of electromotive forces and Lorentz forces. Orbital advection is implemented, and an N-body solver is included to simulate planets or stars interacting with the gas. We present our implementation in detail and present a number of widely known tests for comparison purposes. One strength of FARGO3D is that it can run on both "Graphical Processing Units" (GPUs) or "Central Processing unit" (CPUs), achieving large speed up with respect to CPU cores. We describe our implementation choices, whi...
3-D Relativistic MHD Simulations of Extragalactic Jets
Nishikawa, K.-I.; Koide, S.; Sakai, J.-I.; Frank, J.; Christodoulou, D. M.; Sol, H.; Mutel, R. L.
1997-12-01
We present the numerical simulations of relativistic jets propagating initially oblique to the field lines of a magnetized ambient medium. Our simulations incorporate relativistic MHD in a four-dimensional spacetime and clearly show that (a) relatively weak, oblique fields (at 1/16 of the equipartition value) have only a negligible influence on the propagating jet and they are passively pushed away by the relativistically moving head; (b) oblique fields in equipartition with the ambient plasma provide more resistance and cause bending at the jet head, but the magnitude of this deflection and the associated backflow are small compared to those identified by previous studies with a 2-D slab model. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently during the simulations. The effect is analogous to pushing Japanese ``noren'' or vertical Venetian blinds out of the way while the slats are allowed to bend in 3-D space rather than as a 2-D slab structure. Applied to relativistic extragalactic jets from blazars, the new results are encouraging since superluminal outflows exhibit bending near their sources and their environments are profoundly magnetized---but observations do not provide support for irregular kinematics such as large-scale vortical motions and pronounced reverse flows near the points of origin.
FARGO3D: A New GPU-oriented MHD Code
Benítez-Llambay, Pablo; Masset, Frédéric S.
2016-03-01
We present the FARGO3D code, recently publicly released. It is a magnetohydrodynamics code developed with special emphasis on the physics of protoplanetary disks and planet-disk interactions, and parallelized with MPI. The hydrodynamics algorithms are based on finite-difference upwind, dimensionally split methods. The magnetohydrodynamics algorithms consist of the constrained transport method to preserve the divergence-free property of the magnetic field to machine accuracy, coupled to a method of characteristics for the evaluation of electromotive forces and Lorentz forces. Orbital advection is implemented, and an N-body solver is included to simulate planets or stars interacting with the gas. We present our implementation in detail and present a number of widely known tests for comparison purposes. One strength of FARGO3D is that it can run on either graphical processing units (GPUs) or central processing units (CPUs), achieving large speed-up with respect to CPU cores. We describe our implementation choices, which allow a user with no prior knowledge of GPU programming to develop new routines for CPUs, and have them translated automatically for GPUs.
Parallel Simulations in Turbulent MHD
International Nuclear Information System (INIS)
The large-scale dynamics of plasma flows can often be described within a fluidistic approximation known as one-fluid magnetohydrodynamics. Complex flows such as those corresponding to turbulent regimes are ubiquitous in laboratory plasmas and in astrophysics, because of their typically very large Reynolds numbers. Numerical simulations have become a powerful tool for the study of complex plasma flows in recent years. The aim of the present paper is to introduce the reader to some of the standard numerical approximations used for the integration of the magnetohydrodynamic equations. In particular, we focus on pseudo-spectral methods and on how to develop parallel codes to speed up large Reynolds number simulations. We show the results arising from numerical simulations of astrophysical interest such as the development of turbulent flows in reduced magnetohydrodynamics and the generation of magnetic fields by dynamo mechanisms in three dimensional magnetohydrodynamics
Parallel Simulations in Turbulent MHD
Energy Technology Data Exchange (ETDEWEB)
Gomez, Daniel O. [C. Universitaria, Buenos Aires (Argentina). Dept. of Physics, Pabellon I; Mininni, Pablo D. [National Center for Atmospheric Research, Boulder, CO (United States). Advanced Study Program; Dmitruk, Pablo [Univ. of Delaware, Newark (United States). Bartol Research Inst.
2005-04-01
The large-scale dynamics of plasma flows can often be described within a fluidistic approximation known as one-fluid magnetohydrodynamics. Complex flows such as those corresponding to turbulent regimes are ubiquitous in laboratory plasmas and in astrophysics, because of their typically very large Reynolds numbers. Numerical simulations have become a powerful tool for the study of complex plasma flows in recent years. The aim of the present paper is to introduce the reader to some of the standard numerical approximations used for the integration of the magnetohydrodynamic equations. In particular, we focus on pseudo-spectral methods and on how to develop parallel codes to speed up large Reynolds number simulations. We show the results arising from numerical simulations of astrophysical interest such as the development of turbulent flows in reduced magnetohydrodynamics and the generation of magnetic fields by dynamo mechanisms in three dimensional magnetohydrodynamics.
Hayek, W; Carlsson, M; Trampedach, R; Collet, R; Gudiksen, B V; Hansteen, V H; Leenaarts, J
2010-01-01
We present the implementation of a radiative transfer solver with coherent scattering in the new BIFROST code for radiative magneto-hydrodynamical (MHD) simulations of stellar surface convection. The code is fully parallelized using MPI domain decomposition, which allows for large grid sizes and improved resolution of hydrodynamical structures. We apply the code to simulate the surface granulation in a solar-type star, ignoring magnetic fields, and investigate the importance of coherent scattering for the atmospheric structure. A scattering term is added to the radiative transfer equation, requiring an iterative computation of the radiation field. We use a short-characteristics-based Gauss-Seidel acceleration scheme to compute radiative flux divergences for the energy equation. The effects of coherent scattering are tested by comparing the temperature stratification of three 3D time-dependent hydrodynamical atmosphere models of a solar-type star: without scattering, with continuum scattering only, and with bo...
3D MHD simulations of pellet injection and disruptions in tokamak plasmas
International Nuclear Information System (INIS)
Nonlinear MHD simulation results of pellet injection show that MHD forces can accelerate large pellets, injected on the high field side of a tokamak, to the plasma center. Magnetic reconnection can produce a reverse shear q profile. Ballooning instability caused by pellets is also reduced by high field side injection. Studies are also reported of the current quench phase of disruptions, which can cause 3D halo currents and runaway electrons. (author)
3-D MHD Numerical Simulations of Cloud-Wind Interactions
Gregori, G.; Miniati, Francesco; Ryu, Dongsu; Jones, T. W.
2000-01-01
We present results from three-dimensional (3-D) numerical simulations investigating the magnetohydrodynamics of cloud-wind interactions. The initial cloud is spherical while the magnetic field is uniform and transverse to the cloud motion. A simplified analytical model that describes the magnetic energy evolution in front of the cloud is developed and compared with simulation results. In addition, it is found the interaction of the cloud with a magnetized interstellar medium (ISM) results in ...
Study of magnetic island using a 3D MHD equilibrium calculation code
International Nuclear Information System (INIS)
Coupling the magnetic diagnostics and a 3D MHD equilibrium calculation code, the magnetic island is studied in the Large Helical Device (LHD) experiment. In an experiment, the collapse in the plasma core was observed in a configuration, which has large magnetic island produced by external perturbation coils. At the collapse, the temperature profile was flattened. This suggests the magnetic island evolved. The magnetic island was observed by the magnetic diagnostics. The magnetic diagnostics also suggests evolving the magnetic island. A 3D MHD equilibrium is calculated by the 3D MHD equilibrium code then signals of the magnetic diagnostics are simulated. Since the comparison of observed and calculated signals is comparable, the magnetic island in calculated equilibrium is similar to one of the experiment. (author)
3D MHD modeling of twisted coronal loops
Reale, F; Guarrasi, M; Mignone, A; Peres, G; Hood, A W; Priest, E R
2016-01-01
We perform MHD modeling of a single bright coronal loop to include the interaction with a non-uniform magnetic field. The field is stressed by random footpoint rotation in the central region and its energy is dissipated into heating by growing currents through anomalous magnetic diffusivity that switches on in the corona above a current density threshold. We model an entire single magnetic flux tube, in the solar atmosphere extending from the high-beta chromosphere to the low-beta corona through the steep transition region. The magnetic field expands from the chromosphere to the corona. The maximum resolution is ~30 km. We obtain an overall evolution typical of loop models and realistic loop emission in the EUV and X-ray bands. The plasma confined in the flux tube is heated to active region temperatures (~3 MK) after ~2/3 hr. Upflows from the chromosphere up to ~100 km/s fill the core of the flux tube to densities above 10^9 cm^-3. More heating is released in the low corona than the high corona and is finely ...
3D modelling of edge parallel flow asymmetries
International Nuclear Information System (INIS)
The issue of parallel flows asymmetries in the edge plasma is tackled with a new first principle transport and turbulence code. TOKAM-3D is a 3D full-torus fluid code that can be used both in diffusive and turbulent regimes and covers either exclusively closed flux surfaces or both open and closed field lines in limiter geometry. Two independent mechanisms susceptible to lead to large amplitude asymmetric parallel flows are evidenced. Global ExB drifts coupled with the presence of the limiter break the poloidal symmetry and can generate large amplitude parallel flows even with poloidally uniform transport coefficients. On the other hand, turbulent transport in the edge exhibits a strong ballooning of the radial particle flux generating an up-down m = 1, n = 0 structure on the parallel velocity. The combination of both mechanisms in complete simulations leads to a poloidal and radial distribution of the parallel velocity comparable to experimental results.
3-D MHD Numerical Simulations of Cloud-Wind Interactions
Gregori, G; Ryu, D; Jones, T W; Miniati, Francesco; Ryu, Dongsu
2000-01-01
We present results from three-dimensional (3-D) numerical simulations investigating the magnetohydrodynamics of cloud-wind interactions. The initial cloud is spherical while the magnetic field is uniform and transverse to the cloud motion. A simplified analytical model that describes the magnetic energy evolution in front of the cloud is developed and compared with simulation results. In addition, it is found the interaction of the cloud with a magnetized interstellar medium (ISM) results in the formation of a highly structured magnetotail. The magnetic flux in the wake of the cloud organizes into flux ropes and a reconnection, current sheet is developed, as field lines of opposite polarity are brought close together near the symmetry axis. At the same time, magnetic pressure is strongly enhanced at the leading edge of the cloud from the stretching of the field lines that occurs there. This has an important dynamical effect on the subsequent evolution of the cloud, since some unstable modes tend to be strongl...
Parallel Processor for 3D Recovery from Optical Flow
Directory of Open Access Journals (Sweden)
Jose Hugo Barron-Zambrano
2009-01-01
Full Text Available 3D recovery from motion has received a major effort in computer vision systems in the recent years. The main problem lies in the number of operations and memory accesses to be performed by the majority of the existing techniques when translated to hardware or software implementations. This paper proposes a parallel processor for 3D recovery from optical flow. Its main feature is the maximum reuse of data and the low number of clock cycles to calculate the optical flow, along with the precision with which 3D recovery is achieved. The results of the proposed architecture as well as those from processor synthesis are presented.
Shared Memory Parallelism for 3D Cartesian Discrete Ordinates Solver
Moustafa, Salli; Dutka Malen, Ivan; Plagne, Laurent; Ponçot, Angélique; Ramet, Pierre
2014-01-01
This paper describes the design and the performance of DOMINO, a 3D Cartesian SN solver that implements two nested levels of parallelism (multicore+SIMD) on shared memory computation nodes. DOMINO is written in C++, a multi-paradigm programming language that enables the use of powerful and generic parallel programming tools such as Intel TBB and Eigen. These two libraries allow us to combine multi-thread parallelism with vector operations in an efficient and yet portable way. As a result, DOM...
Parallel 3-D SN performance for DANTSYS/MPI on the Cray T3D
International Nuclear Information System (INIS)
A data parallel version of the 3-D transport solver in DANTSYS has been in use on the SIMD CM-200's at LANL since 1994. This version typically obtains grind times of 150--200 nanoseconds on a 2,048 PE CM-200. The authors have now implemented a new message passing parallel version of DANTSYS, referred to as DANTSYS/MPI, on the 512 PE Cray T3D at Los Alamos. By taking advantage of the SPMD architecture of the Cray T3D, as well as its low latency communications network, they have managed to achieve grind times of less than 10 nanoseconds on real problems. DANTSYS/MPI is fully accelerated using DSA on both the inner and outer iterations. This paper describes the implementation of DANTSYS/MPI on the Cray T3D, and presents two simple performance models for the transport sweep which accurately predict the grind time as a function of the number of PE's and problem size, or scalability
3D hybrid and MHD/particle simulations of field-reversed configurations
International Nuclear Information System (INIS)
A nonlinear 3D code in cylindrical geometry is being developed for the stability studies of FRC. Two numerical schemes have been implemented: a hybrid scheme with particle ions and fluid electrons, and MHD/particle scheme in which the background plasma is described by MHD equations. And energetic ions are treated via particle simulations. The MHD equations are advanced on a finite-difference mesh in a cylindrical coordinate system, while particle pushing is done on 3D Cartesian grids. Full ion dynamics is retained in order to include large-orbit effects (with s∼1), which are important for the tilt mode stabilization in FRC. Also, in contrast to the previous work, δf method is utilized to reduce numerical noise in the simulations. The code has been benchmarked against previous MHD simulation of tilting instability in FRC. It was found that rigid rotation reduces the growth rate, but does not stabilize the mode even for rotation rates equal to the Alfven time. Sheared rotation is found to be destabilizing for the velocity profile considered. Simulations with a fast ion beam with 1 % of the bulk ion density and s∼3 did not show a reduction in growth rate of the tilting instability. (author)
Trapping Solids at the Inner Edge of the Dead Zone: 3-D Global MHD Simulations
Dzyurkevich, Natalia; Flock, Mario; Turner, Neal J.; Klahr, Hubert; Henning, Thomas
2010-01-01
The poorly-ionized interior of the protoplanetary disk is the location where dust coagulation processes may be most efficient. However even here, planetesimal formation may be limited by the loss of solid material through radial drift, and by collisional fragmentation of the particles. Our aim is to investigate the possibility that solid particles are trapped at local pressure maxima in the dynamically evolving disk. We perform the first 3-D global non-ideal MHD calculations of the disk treat...
Parallel Optimization of 3D Cardiac Electrophysiological Model Using GPU
Directory of Open Access Journals (Sweden)
Yong Xia
2015-01-01
Full Text Available Large-scale 3D virtual heart model simulations are highly demanding in computational resources. This imposes a big challenge to the traditional computation resources based on CPU environment, which already cannot meet the requirement of the whole computation demands or are not easily available due to expensive costs. GPU as a parallel computing environment therefore provides an alternative to solve the large-scale computational problems of whole heart modeling. In this study, using a 3D sheep atrial model as a test bed, we developed a GPU-based simulation algorithm to simulate the conduction of electrical excitation waves in the 3D atria. In the GPU algorithm, a multicellular tissue model was split into two components: one is the single cell model (ordinary differential equation and the other is the diffusion term of the monodomain model (partial differential equation. Such a decoupling enabled realization of the GPU parallel algorithm. Furthermore, several optimization strategies were proposed based on the features of the virtual heart model, which enabled a 200-fold speedup as compared to a CPU implementation. In conclusion, an optimized GPU algorithm has been developed that provides an economic and powerful platform for 3D whole heart simulations.
A parallel sweeping preconditioner for heterogeneous 3D Helmholtz equations
Poulson, Jack; Engquist, Björn; Li, Siwei; Ying, Lexing
2012-01-01
A parallelization of a sweeping preconditioner for 3D Helmholtz equations without large cavities is introduced and benchmarked for several challenging velocity models. The setup and application costs of the sequential preconditioner are shown to be O({\\gamma}^2 N^{4/3}) and O({\\gamma} N log N), where {\\gamma}({\\omega}) denotes the modestly frequency-dependent number of grid points per Perfectly Matched Layer. Several computational and memory improvements are introduced relative to using black...
3D MHD Jet in a Non-Uniform Magnetic Field
Institute of Scientific and Technical Information of China (English)
Huang Hulin; Han Dong
2005-01-01
The purpose of this paper is to present a two-phase 3D magnetohydrodynamics (MHD) flow model that combines the volume of fluid (VOF) method with the technique derived from induced-magnetic-field equations for liquid metal free surface MHD-jet-flow. Analogy between the induced-magnetic-filed equation and the conventional computational fluid dynamics (CFD) equation is made, so that the equation can be conveniently accounted for by CFD. A penalty factor numerical method is introduced in order to force the local divergence-free condition of the magnetic fields and an extension of the void insulating calculation domain is applied to ensure that the induced-magnetic field at its boundaries is null. These simulation results for lithium liquid metal jets under magnetic field configurations of Magnetic Torus (Mtor) and National Spherical Torus Experiment (NSTX) outboard divertor have shown that three dimensional jet can not be annihilated by magnetic braking and its cross-section will deform in such a way that the momentum flux of the jet is conserved. 3D MHD effects from a magnetic field gradient cause return currents to interact with applied magnetic fields and produce unfavorable Lorentz forces.Under 3D applied non-uniform magnetic fields of the divertor, unfavorable Lorentz forces lead to a substantial change in flow pattern and a reduction in flow velocity, with the jet cross-section moving to one side of the jet space. These critical phenomena can not be revealed by 2D models.
Parallel acquisition of 3D-HA(CA)NH and 3D-HACACO spectra
Energy Technology Data Exchange (ETDEWEB)
Reddy, Jithender G.; Hosur, Ramakrishna V., E-mail: hosur@tifr.res.in [Tata Institute of Fundamental Research, Department of Chemical Sciences (India)
2013-06-15
We present here an NMR pulse sequence with 5 independent incrementable time delays within the frame of a 3-dimensional experiment, by incorporating polarization sharing and dual receiver concepts. This has been applied to directly record 3D-HA(CA)NH and 3D-HACACO spectra of proteins simultaneously using parallel detection of {sup 1}H and {sup 13}C nuclei. While both the experiments display intra-residue backbone correlations, the 3D-HA(CA)NH provides also sequential 'i - 1 {yields} i' correlation along the {sup 1}H{alpha} dimension. Both the spectra contain special peak patterns at glycine locations which serve as check points during the sequential assignment process. The 3D-HACACO spectrum contains, in addition, information on prolines and side chains of residues having H-C-CO network (i.e., {sup 1}H{beta}, {sup 13}C{beta} and {sup 13}CO{gamma} of Asp and Asn, and {sup 1}H{gamma}, {sup 13}C{gamma} and {sup 13}CO{delta} of Glu and Gln), which are generally absent in most conventional proton detected experiments.
Parallel acquisition of 3D-HA(CA)NH and 3D-HACACO spectra
International Nuclear Information System (INIS)
We present here an NMR pulse sequence with 5 independent incrementable time delays within the frame of a 3-dimensional experiment, by incorporating polarization sharing and dual receiver concepts. This has been applied to directly record 3D-HA(CA)NH and 3D-HACACO spectra of proteins simultaneously using parallel detection of 1H and 13C nuclei. While both the experiments display intra-residue backbone correlations, the 3D-HA(CA)NH provides also sequential ‘i − 1 → i’ correlation along the 1Hα dimension. Both the spectra contain special peak patterns at glycine locations which serve as check points during the sequential assignment process. The 3D-HACACO spectrum contains, in addition, information on prolines and side chains of residues having H–C–CO network (i.e., 1Hβ, 13Cβ and 13COγ of Asp and Asn, and 1Hγ, 13Cγ and 13COδ of Glu and Gln), which are generally absent in most conventional proton detected experiments.
FISH: A 3D parallel MHD code for astrophysical applications
Kaeppeli, R; Scheidegger, S; Pen, U -L; Liebendörfer, M
2009-01-01
FISH is a fast and simple ideal magneto-hydrodynamics code that scales to ~10 000 processes for a Cartesian computational domain of ~1000^3 cells. The simplicity of FISH has been achieved by the rigorous application of the operator splitting technique, while second order accuracy is maintained by the symmetric ordering of the operators. Between directional sweeps, the three-dimensional data is rotated in memory so that the sweep is always performed in a cache-efficient way along the direction of contiguous memory. Hence, the code only requires a one-dimensional description of the conservation equations to be solved. This approach also enable an elegant novel parallelisation of the code that is based on persistent communications with MPI for cubic domain decomposition on machines with distributed memory. This scheme is then combined with an additional OpenMP parallelisation of different sweeps that can take advantage of clusters of shared memory. We document the detailed implementation of a second order TVD ad...
3D MHD free surface fluid flow simulation based on magnetic-field induction equations
International Nuclear Information System (INIS)
The purpose of this paper is to present our recent efforts on 3D MHD model development and our results based on the technique derived from induced-magnetic-field equations. Two important features are utilized in our numerical method to obtain convergent solutions. First, a penalty factor is introduced in order to force the local divergence free condition of the magnetic fields. The second is that we extend the insulating wall thickness to ensure that the induced magnetic field at its boundaries is null. These simulation results for lithium film free surface flows under NSTX outboard mid-plane magnetic field configurations have shown that 3D MHD effects from a surface normal field gradient cause return currents to interact with surface normal fields and produce unfavorable MHD forces. This leads to a substantial change in flow pattern and a reduction in flow velocity, with most of the flow spilling over one side of the chute. These critical phenomena can not be revealed by 2D models. Additionally, a design which overcomes these undesired flow characteristics is obtained
Parallel PAB3D: Experiences with a Prototype in MPI
Guerinoni, Fabio; Abdol-Hamid, Khaled S.; Pao, S. Paul
1998-01-01
PAB3D is a three-dimensional Navier Stokes solver that has gained acceptance in the research and industrial communities. It takes as computational domain, a set disjoint blocks covering the physical domain. This is the first report on the implementation of PAB3D using the Message Passing Interface (MPI), a standard for parallel processing. We discuss briefly the characteristics of tile code and define a prototype for testing. The principal data structure used for communication is derived from preprocessing "patching". We describe a simple interface (COMMSYS) for MPI communication, and some general techniques likely to be encountered when working on problems of this nature. Last, we identify levels of improvement from the current version and outline future work.
Shared memory parallelism for 3D cartesian discrete ordinates solver
International Nuclear Information System (INIS)
This paper describes the design and the performance of DOMINO, a 3D Cartesian SN solver that implements two nested levels of parallelism (multi-core + SIMD - Single Instruction on Multiple Data) on shared memory computation nodes. DOMINO is written in C++, a multi-paradigm programming language that enables the use of powerful and generic parallel programming tools such as Intel TBB and Eigen. These two libraries allow us to combine multi-thread parallelism with vector operations in an efficient and yet portable way. As a result, DOMINO can exploit the full power of modern multi-core processors and is able to tackle very large simulations, that usually require large HPC clusters, using a single computing node. For example, DOMINO solves a 3D full core PWR eigenvalue problem involving 26 energy groups, 288 angular directions (S16), 46*106 spatial cells and 1*1012 DoFs within 11 hours on a single 32-core SMP node. This represents a sustained performance of 235 GFlops and 40.74% of the SMP node peak performance for the DOMINO sweep implementation. The very high Flops/Watt ratio of DOMINO makes it a very interesting building block for a future many-nodes nuclear simulation tool. (authors)
Parallel FEM simulation of 3-D crack propagation
International Nuclear Information System (INIS)
Full text: Crack propagation simulation is an important topic in many fields, e.g., aeronautical engineering, material sciences, and geophysics. This type of simulation requires a high computational power, mainly at three-dimensional mesh generation and structural analysis steps. These steps usually spend a large amount of computing time and machine resources. The main objective of this work is to provide a fast and accurate system for crack growth simulation in three-dimensional models. The main idea of the methodology presented is to parallelize mesh generation and structural analysis procedures, and to integrate these procedures into a computational environment able to perform automatic arbitrary crack propagation. A parallel mesh generation algorithm has been developed. This algorithm is capable of generating three-dimensional meshes of tetrahedral elements in arbitrary domains with one or multiple embedded cracks. A finite element method program called FEMOOP has been adapted to implement the parallel features. The parallel strategy to solve the set of linear equations is based on an element-by-element scheme in conjunction with a gradient iterative solution. A program called FRANC3D, which is completely integrated with other components of the system, performs crack propagation and geometry updates. The entire system is described in details and a set of parallel simulations of crack propagation are presented to show the reliability of the system. Refs. 4 (author)
3D Simulations of MHD Jet Propagation Through Uniform and Stratified External Environments
O'Neill, S. M.; Tregillis, I. L.; Jones, T. W.; Ryu, Dongsu
2005-01-01
We present a set of high-resolution 3D MHD simulations of steady light, supersonic jets, exploring the influence of jet Mach number and the ambient medium on jet propagation and energy deposition over long distances. The results are compared to simple self-similar scaling relations for the morphological evolution of jet-driven structures and to previously published 2D simulations. For this study we simulated the propagation of light jets with internal Mach numbers 3 and 12 to lengths exceedin...
Nanoflare statistics in an active region 3D MHD coronal model
Bingert, Sven
2012-01-01
Context. We investigate the statistics of the spatial and temporal distribution of the coronal heating in a three-dimensional magneto- hydrodynamical (3D MHD) model. The model describes the temporal evolution of the corona above an observed active region. The model is driven by photospheric granular motions which braid the magnetic field lines. This induces currents and their dissipation heats the plasma. We evaluate the transient heating as subsequent heating events and analyze their statistics. The results are then interpreted in the context of observed flare statistics and coronal heating mechanisms. Methods. To conduct the numerical experiment we use a high order finite difference code which solves the partial differential equations for the conservation of mass, the momentum and energy balance, and the induction equation. The energy balance includes the Spitzer heat conduction and the optical thin radiative loss in the corona. Results. The temporal and spatial distribution of the Ohmic heating in the 3D M...
Effect of magnetic perturbations on the 3D MHD self-organization of shaped tokamak plasmas
Bonfiglio, D; Veranda, M; Chacón, L; Escande, D F
2016-01-01
The effect of magnetic perturbations (MPs) on the helical self-organization of shaped tokamak plasmas is discussed in the framework of the nonlinear 3D MHD model. Numerical simulations performed in toroidal geometry with the \\textsc{pixie3d} code [L. Chac\\'on, Phys. Plasmas {\\bf 15}, 056103 (2008)] show that $n=1$ MPs significantly affect the spontaneous quasi-periodic sawtoothing activity of such plasmas. In particular, the mitigation of sawtooth oscillations is induced by $m/n=1/1$ and $2/1$ MPs. These numerical findings provide a confirmation of previous circular tokamak simulations, and are in agreement with tokamak experiments in the RFX-mod and DIII-D devices. Sawtooth mitigation via MPs has also been observed in reversed-field pinch simulations and experiments. The effect of MPs on the stochastization of the edge magnetic field is also discussed.
Capabilities of a Global 3D MHD Model for Monitoring Extremely Fast CMEs
Wu, C. C.; Plunkett, S. P.; Liou, K.; Socker, D. G.; Wu, S. T.; Wang, Y. M.
2015-12-01
Since the start of the space era, spacecraft have recorded many extremely fast coronal mass ejections (CMEs) which have resulted in severe geomagnetic storms. Accurate and timely forecasting of the space weather effects of these events is important for protecting expensive space assets and astronauts and avoiding communications interruptions. Here, we will introduce a newly developed global, three-dimensional (3D) magnetohydrodynamic (MHD) model (G3DMHD). The model takes the solar magnetic field maps at 2.5 solar radii (Rs) and intepolates the solar wind plasma and field out to 18 Rs using the algorithm of Wang and Sheeley (1990, JGR). The output is used as the inner boundary condition for a 3D MHD model. The G3DMHD model is capable of simulating (i) extremely fast CME events with propagation speeds faster than 2500 km/s; and (ii) multiple CME events in sequence or simultaneously. We will demonstrate the simulation results (and comparison with in-situ observation) for the fastest CME in record on 23 July 2012, the shortest transit time in March 1976, and the well-known historic Carrington 1859 event.
HPC parallel programming model for gyrokinetic MHD simulation
International Nuclear Information System (INIS)
The 3-dimensional gyrokinetic PIC (particle-in-cell) code for MHD simulation, Gpic-MHD, was installed on SR16000 (“Plasma Simulator”), which is a scalar cluster system consisting of 8,192 logical cores. The Gpic-MHD code advances particle and field quantities in time. In order to distribute calculations over large number of logical cores, the total simulation domain in cylindrical geometry was broken up into NDD-r × NDD-z (number of radial decomposition times number of axial decomposition) small domains including approximately the same number of particles. The axial direction was uniformly decomposed, while the radial direction was non-uniformly decomposed. NRP replicas (copies) of each decomposed domain were used (“particle decomposition”). The hybrid parallelization model of multi-threads and multi-processes was employed: threads were parallelized by the auto-parallelization and NDD-r × NDD-z × NRP processes were parallelized by MPI (message-passing interface). The parallelization performance of Gpic-MHD was investigated for the medium size system of Nr × Nθ × Nz = 1025 × 128 × 128 mesh with 4.196 or 8.192 billion particles. The highest speed for the fixed number of logical cores was obtained for two threads, the maximum number of NDD-z, and optimum combination of NDD-r and NRP. The observed optimum speeds demonstrated good scaling up to 8,192 logical cores. (author)
Introducing ZEUS-MP A 3D, Parallel, Multiphysics Code for Astrophysical Fluid Dynamics
Norman, M L
2000-01-01
We describe ZEUS-MP: a Multi-Physics, Massively-Parallel, Message-Passing code for astrophysical fluid dynamics simulations in 3 dimensions. ZEUS-MP is a follow-on to the sequential ZEUS-2D and ZEUS-3D codes developed and disseminated by the Laboratory for Computational Astrophysics (lca.ncsa.uiuc.edu) at NCSA. V1.0 released 1/1/2000 includes the following physics modules: ideal hydrodynamics, ideal MHD, and self-gravity. Future releases will include flux-limited radiation diffusion, thermal heat conduction, two-temperature plasma, and heating and cooling functions. The covariant equations are cast on a moving Eulerian grid with Cartesian, cylindrical, and spherical polar coordinates currently supported. Parallelization is done by domain decomposition and implemented in F77 and MPI. The code is portable across a wide range of platforms from networks of workstations to massively parallel processors. Some parallel performance results are presented as well as an application to turbulent star formation.
3D Neutronic Analysis in MHD Calculations at ARIES-ST Fusion Reactors Systems
Hançerliogulları, Aybaba; Cini, Mesut
2013-10-01
In this study, we developed new models for liquid wall (FW) state at ARIES-ST fusion reactor systems. ARIES-ST is a 1,000 MWe fusion reactor system based on a low aspect ratio ST plasma. In this article, we analyzed the characteristic properties of magnetohydrodynamics (MHD) and heat transfer conditions by using Monte-Carlo simulation methods (ARIES Team et al. in Fusion Eng Des 49-50:689-695, 2000; Tillack et al. in Fusion Eng Des 65:215-261, 2003) . In fusion applications, liquid metals are traditionally considered to be the best working fluids. The working liquid must be a lithium-containing medium in order to provide adequate tritium that the plasma is self-sustained and that the fusion is a renewable energy source. As for Flibe free surface flows, the MHD effects caused by interaction with the mean flow is negligible, while a fairly uniform flow of thick can be maintained throughout the reactor based on 3-D MHD calculations. In this study, neutronic parameters, that is to say, energy multiplication factor radiation, heat flux and fissile fuel breeding were researched for fusion reactor with various thorium and uranium molten salts. Sufficient tritium amount is needed for the reactor to work itself. In the tritium breeding ratio (TBR) >1.05 ARIES-ST fusion model TBR is >1.1 so that tritium self-sufficiency is maintained for DT fusion systems (Starke et al. in Fusion Energ Des 84:1794-1798, 2009; Najmabadi et al. in Fusion Energ Des 80:3-23, 2006).
A novel code for numerical 3-D MHD studies of CME expansion
Directory of Open Access Journals (Sweden)
J. Kleimann
2009-03-01
Full Text Available A recent third-order, essentially non-oscillatory central scheme to advance the equations of single-fluid magnetohydrodynamics (MHD in time has been implemented into a new numerical code. This code operates on a 3-D Cartesian, non-staggered grid, and is able to handle shock-like gradients without producing spurious oscillations.
To demonstrate the suitability of our code for the simulation of coronal mass ejections (CMEs and similar heliospheric transients, we present selected results from test cases and perform studies of the solar wind expansion during phases of minimum solar activity. We can demonstrate convergence of the system into a stable Parker-like steady state for both hydrodynamic and MHD winds. The model is subsequently applied to expansion studies of CME-like plasma bubbles, and their evolution is monitored until a stationary state similar to the initial one is achieved. In spite of the model's (current simplicity, we can confirm the CME's nearly self-similar evolution close to the Sun, thus highlighting the importance of detailed modelling especially at small heliospheric radii.
Additionally, alternative methods to implement boundary conditions at the coronal base, as well as strategies to ensure a solenoidal magnetic field, are discussed and evaluated.
Quasi 3D ECE imaging system for study of MHD instabilities in KSTAR.
Yun, G S; Lee, W; Choi, M J; Lee, J; Kim, M; Leem, J; Nam, Y; Choe, G H; Park, H K; Park, H; Woo, D S; Kim, K W; Domier, C W; Luhmann, N C; Ito, N; Mase, A; Lee, S G
2014-11-01
A second electron cyclotron emission imaging (ECEI) system has been installed on the KSTAR tokamak, toroidally separated by 1/16th of the torus from the first ECEI system. For the first time, the dynamical evolutions of MHD instabilities from the plasma core to the edge have been visualized in quasi-3D for a wide range of the KSTAR operation (B0 = 1.7∼3.5 T). This flexible diagnostic capability has been realized by substantial improvements in large-aperture quasi-optical microwave components including the development of broad-band polarization rotators for imaging of the fundamental ordinary ECE as well as the usual 2nd harmonic extraordinary ECE. PMID:25430233
Quasi 3D ECE imaging system for study of MHD instabilities in KSTAR
Energy Technology Data Exchange (ETDEWEB)
Yun, G. S., E-mail: gunsu@postech.ac.kr; Choi, M. J.; Lee, J.; Kim, M.; Leem, J.; Nam, Y.; Choe, G. H. [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Lee, W.; Park, H. K. [Ulsan National Institute of Science and Technology, Ulsan 689-798 (Korea, Republic of); Park, H.; Woo, D. S.; Kim, K. W. [School of Electrical Engineering, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Domier, C. W.; Luhmann, N. C. [Department of Electrical and Computer Engineering, University of California, Davis, California 95616 (United States); Ito, N. [KASTEC, Kyushu University, Kasuga-shi, Fukuoka 812-8581 (Japan); Mase, A. [Ube National College of Technology, Ube-shi, Yamaguchi 755-8555 (Japan); Lee, S. G. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of)
2014-11-15
A second electron cyclotron emission imaging (ECEI) system has been installed on the KSTAR tokamak, toroidally separated by 1/16th of the torus from the first ECEI system. For the first time, the dynamical evolutions of MHD instabilities from the plasma core to the edge have been visualized in quasi-3D for a wide range of the KSTAR operation (B{sub 0} = 1.7∼3.5 T). This flexible diagnostic capability has been realized by substantial improvements in large-aperture quasi-optical microwave components including the development of broad-band polarization rotators for imaging of the fundamental ordinary ECE as well as the usual 2nd harmonic extraordinary ECE.
DPGL: The Direct3D9-based Parallel Graphics Library for Multi-display Environment
Institute of Scientific and Technical Information of China (English)
Zhen Liu; Jiao-Ying Shi
2007-01-01
The emergence of high performance 3D graphics cards has opened the way to PC clusters for high performance multidisplay environment. In order to exploit the rendering ability of PC clusters, we should design appropriate parallel rendering algorithms and parallel graphics library interfaces. Due to the rapid development of Direct3D, we bring forward DPGL, the Direct3D9-based parallel graphics library in D3DPR parallel rendering system, which implements Direct3D9 interfaces to support existing Direct3D9 application parallelization with no modification. Based on the parallelism analysis of Direct3D9 rendering pipeline, we briefly introduce D3DPR parallel rendering system. DPGL is the fundamental component of D3DPR. After presenting DPGL three layers architecture,we discuss the rendering resource interception and management. Finally, we describe the design and implementation of DPGL in detail,including rendering command interception layer, rendering command interpretation layer and rendering resource parallelization layer.
Scaling laws of coronal loops compared to a 3D MHD model of an Active Region
Bourdin, Philippe-A; Peter, Hardi
2016-01-01
Context. The structure and heating of coronal loops are investigated since decades. Established scaling laws relate fundamental quantities like the loop apex temperature, pressure, length, and the coronal heating. Aims. We test such scaling laws against a large-scale 3D MHD model of the Solar corona, which became feasible with nowadays high-performance computing. Methods. We drive an active region simulation a with photospheric observations and found strong similarities to the observed coronal loops in X-rays and EUV wavelength. A 3D reconstruction of stereoscopic observations showed that our model loops have a realistic spatial structure. We compare scaling laws to our model data extracted along an ensemble of field lines. Finally, we fit a new scaling law that represents well hot loops and also cooler structures, which was not possible before only based on observations. Results. Our model data gives some support for scaling laws that were established for hot and EUV-emissive coronal loops. For the RTV scali...
Skála, J.; Baruffa, F.; Büchner, J.; Rampp, M.
2015-08-01
Context. The numerical simulation of turbulence and flows in almost ideal astrophysical plasmas with large Reynolds numbers motivates the implementation of magnetohydrodynamical (MHD) computer codes with low resistivity. They need to be computationally efficient and scale well with large numbers of CPU cores, allow obtaining a high grid resolution over large simulation domains, and be easily and modularly extensible, for instance, to new initial and boundary conditions. Aims: Our aims are the implementation, optimization, and verification of a computationally efficient, highly scalable, and easily extensible low-dissipative MHD simulation code for the numerical investigation of the dynamics of astrophysical plasmas with large Reynolds numbers in three dimensions (3D). Methods: The new GOEMHD3 code discretizes the ideal part of the MHD equations using a fast and efficient leap-frog scheme that is second-order accurate in space and time and whose initial and boundary conditions can easily be modified. For the investigation of diffusive and dissipative processes the corresponding terms are discretized by a DuFort-Frankel scheme. To always fulfill the Courant-Friedrichs-Lewy stability criterion, the time step of the code is adapted dynamically. Numerically induced local oscillations are suppressed by explicit, externally controlled diffusion terms. Non-equidistant grids are implemented, which enhance the spatial resolution, where needed. GOEMHD3 is parallelized based on the hybrid MPI-OpenMP programing paradigm, adopting a standard two-dimensional domain-decomposition approach. Results: The ideal part of the equation solver is verified by performing numerical tests of the evolution of the well-understood Kelvin-Helmholtz instability and of Orszag-Tang vortices. The accuracy of solving the (resistive) induction equation is tested by simulating the decay of a cylindrical current column. Furthermore, we show that the computational performance of the code scales very
Flock, M.; Dzyurkevich, N.; Klahr, H.; Mignone, A.
2010-06-01
We assess the suitability of various numerical MHD algorithms for astrophysical accretion disk simulations with the PLUTO code. The well-studied linear growth of the magneto-rotational instability is used as the benchmark test for a comparison between the implementations within PLUTO and against the ZeusMP code. The results demonstrate the importance of using an upwind reconstruction of the electro-motive force (EMF) in the context of a constrained transport scheme, which is consistent with plane-parallel, grid-aligned flows. In contrast, constructing the EMF from the simple average of the Godunov fluxes leads to a numerical instability and the unphysical growth of the magnetic energy. We compare the results from 3D global calculations using different MHD methods against the analytical solution for the linear growth of the MRI, and discuss the effect of numerical dissipation. The comparison identifies a robust and accurate code configuration that is vital for realistic modeling of accretion disk processes.
3D relaxation MHD modeling with FOI-PERFECT code for electromagnetically driven HED systems
Wang, Ganghua; Duan, Shuchao; Xie, Weiping; Kan, Mingxian; Institute of Fluid Physics Collaboration
2015-11-01
One of the challenges in numerical simulations of electromagnetically driven high energy density (HED) systems is the existence of vacuum region. The electromagnetic part of the conventional model adopts the magnetic diffusion approximation (magnetic induction model). The vacuum region is approximated by artificially increasing the resistivity. On one hand the phase/group velocity is superluminal and hence non-physical in the vacuum region, on the other hand a diffusion equation with large diffusion coefficient can only be solved by implicit scheme. Implicit method is usually difficult to parallelize and converge. A better alternative is to solve the full electromagnetic equations for the electromagnetic part. Maxwell's equations coupled with the constitutive equation, generalized Ohm's law, constitute a relaxation model. The dispersion relation is given to show its transition from electromagnetic propagation in vacuum to resistive MHD in plasma in a natural way. The phase and group velocities are finite for this system. A better time stepping is adopted to give a 3rd full order convergence in time domain without the stiff relaxation term restriction. Therefore it is convenient for explicit & parallel computations. Some numerical results of FOI-PERFECT code are also given. Project supported by the National Natural Science Foundation of China (Grant No. 11172277,11205145).
Cooper, W. A.; Graves, J. P.; Duval, B. P.; Porte, L.; Reimerdes, H.; Sauter, O.; Tran, T.-M.
2015-12-01
> Novel free boundary magnetohydrodynamic equilibrium states with spontaneous three-dimensional (3-D) deformations of the plasma-vacuum interface are computed. The structures obtained look like saturated ideal external kink/peeling modes. Large edge pressure gradients yield toroidal mode number distortions when the edge bootstrap current is large and higher corrugations when this current is small. Linear ideal MHD stability analyses confirm the nonlinear saturated ideal kink equilibrium states produced and we can identify the Pfirsch-Schlüter current as the main linear instability driving mechanism when the edge pressure gradient is large. The dominant non-axisymmetric component of this Pfirsch-Schlüter current drives a near resonant helical parallel current density ribbon that aligns with the near vanishing magnetic shear region caused by the edge bootstrap current. This current ribbon is a manifestation of the outer mode previously found on JET (Solano 2010). We claim that the equilibrium corrugations describe structures that are commonly observed in quiescent H-mode tokamak discharges.
Radiative 3D MHD simulations of the spontaneous small-scale eruptions in the solar atmosphere
Kitiashvili, Irina N.
2015-08-01
Studying non-linear turbulent dynamics of the solar atmosphere is important for understanding mechanism of the solar and stellar brightness variations. High-resolution observations of the quiet Sun reveal ubiquitous distributions of high-speed jets, which are transport mass and energy into the solar corona and feeding the solar wind. However, the origin of these eruption events is still unknown. Using 3D realistic MHD numerical simulations we find that small-scale eruptions are produced by ubiquitous magnetized vortex tubes generated by the Sun's turbulent convection in subsurface layers. The swirling vortex tubes (resembling tornadoes) penetrate into the solar atmosphere, capture and stretch background magnetic field, and push the surrounding material up, generating shocks. Our simulations reveal complicated high-speed flow patterns and thermodynamic and magnetic structure in the erupting vortex tubes and shows that the eruptions are initiated in the subsurface layers and are driven by high-pressure gradients in the subphotosphere and photosphere and by the Lorentz force in the higher atmosphere layers. I will discuss about properties of these eruptions, their effects on brightness and spectral variations and comparison with observations.
Linearly perturbed MHD equilibria and 3D eddy current coupling via the control surface method
Portone, A.; Villone, F.; Liu, Y.; Albanese, R.; Rubinacci, G.
2008-08-01
In this paper, a coupling strategy based on the control surface concept is used to self-consistently couple linear MHD solvers to 3D codes for the eddy current computation of eddy currents in the metallic structures surrounding the plasma. The coupling is performed by assuming that the plasma inertia (and, with it, all Alfven wave-like phenomena) can be neglected on the time scale of interest, which is dictated by the relevant electromagnetic time of the metallic structures. As is shown, plasma coupling with the metallic structures results in perturbations to the inductance matrix operator. In particular, by adopting the Fourier decomposition in poloidal and toroidal modes, it turns out that each toroidal mode can be associated with a matrix (additively) perturbing the inductance matrix that commonly describes the magnetic coupling of currents in vacuum. In this way, the treatment of resistive wall modes instabilities of various toroidal mode numbers and their possible cross-talk through the currents induced in the metallic structures can be easily studied.
Turbulence and Steady Flows in 3D Global Stratified MHD Simulations of Accretion Disks
Flock, M; Klahr, H; Turner, N J; Henning, Th
2011-01-01
We present full 2 Pi global 3-D stratified MHD simulations of accretion disks. We interpret our results in the context of proto-planetary disks. We investigate the turbulence driven by the magneto-rotational instability (MRI) using the PLUTO Godunov code in spherical coordinates with the accurate and robust HLLD Riemann solver. We follow the turbulence for more than 1500 orbits at the innermost radius of the domain to measure the overall strength of turbulent motions and the detailed accretion flow pattern. We find that regions within two scale heights of the midplane have a turbulent Mach number of about 0.1 and a magnetic pressure two to three orders of magnitude less than the gas pressure, while outside three scale heights the magnetic pressure equals or exceeds the gas pressure and the turbulence is transonic, leading to large density fluctuations. The strongest large-scale density disturbances are spiral density waves, and the strongest of these waves has m=5. No clear meridional circulation appears in t...
3D MHD Simulations of Planet Migration in Turbulent Stratified Disks
Uribe, Ana; Flock, Mario; Henning, Thomas
2011-01-01
We performed 3D MHD simulations of planet migration in stratified disks using the Godunov code PLUTO, where the disk is turbulent due to the magnetorotational instability. We study the migration for planets with different planet-star mass ratios $q=M_{p}/M_{s}$. In agreement with previous studies, for the low-mass planet cases ($q=5\\times10^{-6}$ and $10^{-5}$), migration is dominated by random fluctuations in the torque. For a Jupiter-mass planet $(q=M_{p}/M_{s}=10^{-3}$ for $M_{s}=1M_{\\odot})$, we find a reduction of the magnetic stress inside the orbit of the planet and around the gap region. After an initial stage where the torque on the planet is positive, it reverses and we recover migration rates similar to those found in disks where the turbulent viscosity is modelled by an $\\alpha$ viscosity. For the intermediate-mass planets ($q=5\\times10^{-5}, 10^{-4}$ and $2\\times10^{-4}$) we find a new and so far unexpected behavior. In some cases they experience sustained and systematic outwards migration for th...
Trapping Solids at the Inner Edge of the Dead Zone: 3-D Global MHD Simulations
Dzyurkevich, Natalia; Turner, Neal J; Klahr, Hubert; Henning, Thomas
2010-01-01
The poorly-ionized interior of the protoplanetary disk is the location where dust coagulation processes may be most efficient. However even here, planetesimal formation may be limited by the loss of solid material through radial drift, and by collisional fragmentation of the particles. Our aim is to investigate the possibility that solid particles are trapped at local pressure maxima in the dynamically evolving disk. We perform the first 3-D global non-ideal MHD calculations of the disk treating the turbulence driven by the magneto-rotational instability. The domain contains an inner MRI-active region near the young star and an outer midplane dead zone, with the transition between the two modeled by a sharp increase in the magnetic diffusivity. The azimuthal magnetic fields generated in the active zone oscillate over time, changing sign about every 150 years. We thus observe the radial structure of the `butterfly pattern' seen previously in local shearing-box simulations. The mean magnetic field diffuses from...
Coronal energy input and dissipation in a solar active region 3D MHD model
Bourdin, Philippe-A; Peter, Hardi
2015-01-01
Context. We have conducted a 3D MHD simulation of the solar corona above an active region in full scale and high resolution, which shows coronal loops, and plasma flows within them, similar to observations. Aims. We want to find the connection between the photospheric energy input by field-line braiding with the coronal energy conversion by Ohmic dissipation of induced currents. Methods. To this end we compare the coronal energy input and dissipation within our simulation domain above different fields of view, e.g. for a small loops system in the active region (AR) core. We also choose an ensemble of field lines to compare, e.g., the magnetic energy input to the heating per particle along these field lines. Results. We find an enhanced Ohmic dissipation of currents in the corona above areas that also have enhanced upwards-directed Poynting flux. These regions coincide with the regions where hot coronal loops within the AR core are observed. The coronal density plays a role in estimating the coronal temperatur...
3D-MHD simulations of an accretion disk with star-disk boundary layer
Steinacker, A; Steinacker, Adriane; Papaloizou, John C.B.
2002-01-01
We present global 3D MHD simulations of geometrically thin but unstratified accretion disks in which a near Keplerian disk rotates between two bounding regions with initial rotation profiles that are stable to the MRI. The inner region models the boundary layer between the disk and an assumed more slowly rotating central, non magnetic star. We investigate the dynamical evolution of this system in response to initial vertical and toroidal fields imposed in a variety of domains contained within the near Keplerian disk. Cases with both non zero and zero net magnetic flux are considered and sustained dynamo activity found in runs for up to fifty orbital periods at the outer boundary of the near Keplerian disk. Simulations starting from fields with small radial scale and with zero net flux lead to the lowest levels of turbulence and smoothest variation of disk mean state variables. For our computational set up, average values of the Shakura & Sunyaev (1973) $\\alpha$ parameter in the Keplerian disk are typicall...
3D Tomography of MHD Fluctuations in the H-1NF Heliac
Haskey, S R; Seiwald, B; Howard, J
2014-01-01
A 3D tomographic reconstruction technique which does not rely on a set of radial basis functions is described for inversion of a set of limited-angle high-resolution 2D visible light emission projections (extended in the vertical and toroidal directions) of global MHD eigenmodes in the H-1NF heliac. This paper deals with some of the features and challenges that will arise in the application of tomographic imaging systems to fusion reactors, especially the strong shaping of optimised stellarator/heliotron configurations, and limited access in all types. The fluctuations are represented as a finite sum of Fourier modes characterised by toroidal and poloidal mode numbers having fixed amplitude and phase in a set of nested cylindrical flux volumes in Boozer space. The amplitudes and phases are calculated using iterative tomographic inversion techniques such as ART, SIRT and standard linear least-squares methods. The tomography is applied to synchronous camera images of singly charged carbon impurity ion emission ...
Parallel Hall effect from 3D single-component metamaterials
Kern, Christian; Kadic, Muamer; Wegener, Martin
2015-01-01
We propose a class of three-dimensional metamaterial architectures composed of a single doped semiconductor (e.g., n-Si) in air or vacuum that lead to unusual effective behavior of the classical Hall effect. Using an anisotropic structure, we numerically demonstrate a Hall voltage that is parallel---rather than orthogonal---to the external static magnetic-field vector ("parallel Hall effect"). The sign of this parallel Hall voltage can be determined by a structure parameter. Together with the...
Parallel Simulation of 3-D Turbulent Flow Through Hydraulic Machinery
Institute of Scientific and Technical Information of China (English)
徐宇; 吴玉林
2003-01-01
Parallel calculational methods were used to analyze incompressible turbulent flow through hydraulic machinery. Two parallel methods were used to simulate the complex flow field. The space decomposition method divides the computational domain into several sub-ranges. Parallel discrete event simulation divides the whole task into several parts according to their functions. The simulation results were compared with the serial simulation results and particle image velocimetry (PIV) experimental results. The results give the distribution and configuration of the complex vortices and illustrate the effectiveness of the parallel algorithms for numerical simulation of turbulent flows.
Parallel Hall effect from 3D single-component metamaterials
Kern, Christian; Wegener, Martin
2015-01-01
We propose a class of three-dimensional metamaterial architectures composed of a single doped semiconductor (e.g., n-Si) in air or vacuum that lead to unusual effective behavior of the classical Hall effect. Using an anisotropic structure, we numerically demonstrate a Hall voltage that is parallel---rather than orthogonal---to the external static magnetic-field vector ("parallel Hall effect"). The sign of this parallel Hall voltage can be determined by a structure parameter. Together with the previously demonstrated positive or negative orthogonal Hall voltage, we demonstrate four different sign combinations
Trapping solids at the inner edge of the dead zone: 3-D global MHD simulations
Dzyurkevich, N.; Flock, M.; Turner, N. J.; Klahr, H.; Henning, Th.
2010-06-01
Context. The poorly-ionized interior of the protoplanetary disk or “dead zone” is the location where dust coagulation processes may be most efficient. However even here, planetesimal formation may be limited by the loss of solid material through radial drift, and by collisional fragmentation of the particles. Both depend on the turbulent properties of the gas. Aims: Our aim here is to investigate the possibility that solid particles are trapped at local pressure maxima in the dynamically evolving disk. We perform the first 3-D global non-ideal magnetohydrodynamical (MHD) calculations of a section of the disk treating the turbulence driven by the magneto-rotational instability (MRI). Methods: We use the ZeusMP code with a fixed Ohmic resistivity distribution. The domain contains an inner MRI-active region near the young star and an outer midplane dead zone, with the transition between the two modeled by a sharp increase in the magnetic diffusivity. Results: The azimuthal magnetic fields generated in the active zone oscillate over time, changing sign about every 150 years. We thus observe the radial structure of the “butterfly pattern” seen previously in local shearing-box simulations. The mean magnetic field diffuses from the active zone into the dead zone, where the Reynolds stress nevertheless dominates, giving a residual α between 10-4 and 10-3. The greater total accretion stress in the active zone leads to a net reduction in the surface density, so that after 800 years an approximate steady state is reached in which a local radial maximum in the midplane pressure lies near the transition radius. We also observe the formation of density ridges within the active zone. Conclusions: The dead zone in our models possesses a mean magnetic field, significant Reynolds stresses and a steady local pressure maximum at the inner edge, where the outward migration of planetary embryos and the efficient trapping of solid material are possible.
A Parallel Sweeping Preconditioner for Heterogeneous 3D Helmholtz Equations
Poulson, Jack
2013-05-02
A parallelization of a sweeping preconditioner for three-dimensional Helmholtz equations without large cavities is introduced and benchmarked for several challenging velocity models. The setup and application costs of the sequential preconditioner are shown to be O(γ2N4/3) and O(γN logN), where γ(ω) denotes the modestly frequency-dependent number of grid points per perfectly matched layer. Several computational and memory improvements are introduced relative to using black-box sparse-direct solvers for the auxiliary problems, and competitive runtimes and iteration counts are reported for high-frequency problems distributed over thousands of cores. Two open-source packages are released along with this paper: Parallel Sweeping Preconditioner (PSP) and the underlying distributed multifrontal solver, Clique. © 2013 Society for Industrial and Applied Mathematics.
Parallel deterministic neutronics with AMR in 3D
Energy Technology Data Exchange (ETDEWEB)
Clouse, C.; Ferguson, J.; Hendrickson, C. [Lawrence Livermore National Lab., CA (United States)
1997-12-31
AMTRAN, a three dimensional Sn neutronics code with adaptive mesh refinement (AMR) has been parallelized over spatial domains and energy groups and runs on the Meiko CS-2 with MPI message passing. Block refined AMR is used with linear finite element representations for the fluxes, which allows for a straight forward interpretation of fluxes at block interfaces with zoning differences. The load balancing algorithm assumes 8 spatial domains, which minimizes idle time among processors.
3-D resistive MHD calculations for tokamak plasmas: beyond the simple reduced set of equations
International Nuclear Information System (INIS)
Numerical studies of the resistive stability of tokamak plasmas in cylindrical geometry have been performed using: (1) the full set of resistive Magnetohydrodynamic (MHD) equations and (2) an extended version of the reduced set of resistive MHD equations including diamagnetic and electron temperature effects. In particular, the nonlinear interaction of tearing modes of many helicities has been investigated. The numerical results confirm many of the features uncovered previously using the simple reduced equations. (author)
Energy Technology Data Exchange (ETDEWEB)
Malapaka, Shiva Kumar; Mueller, Wolf-Christian [Max-Planck Institute for Plasma Physics, Boltzmannstrasse 2, D-85748 Garching bei Muenchen (Germany)
2013-09-01
Statistical properties of the Sun's photospheric turbulent magnetic field, especially those of the active regions (ARs), have been studied using the line-of-sight data from magnetograms taken by the Solar and Heliospheric Observatory and several other instruments. This includes structure functions and their exponents, flatness curves, and correlation functions. In these works, the dependence of structure function exponents ({zeta}{sub p}) of the order of the structure functions (p) was modeled using a non-intermittent K41 model. It is now well known that the ARs are highly turbulent and are associated with strong intermittent events. In this paper, we compare some of the observations from Abramenko et al. with the log-Poisson model used for modeling intermittent MHD turbulent flows. Next, we analyze the structure function data obtained from the direct numerical simulations (DNS) of homogeneous, incompressible 3D-MHD turbulence in three cases: sustained by forcing, freely decaying, and a flow initially driven and later allowed to decay (case 3). The respective DNS replicate the properties seen in the plots of {zeta}{sub p} against p of ARs. We also reproduce the trends and changes observed in intermittency in flatness and correlation functions of ARs. It is suggested from this analysis that an AR in the onset phase of a flare can be treated as a forced 3D-MHD turbulent system in its simplest form and that the flaring stage is representative of decaying 3D-MHD turbulence. It is also inferred that significant changes in intermittency from the initial onset phase of a flare to its final peak flaring phase are related to the time taken by the system to reach the initial onset phase.
International Nuclear Information System (INIS)
Statistical properties of the Sun's photospheric turbulent magnetic field, especially those of the active regions (ARs), have been studied using the line-of-sight data from magnetograms taken by the Solar and Heliospheric Observatory and several other instruments. This includes structure functions and their exponents, flatness curves, and correlation functions. In these works, the dependence of structure function exponents (ζp) of the order of the structure functions (p) was modeled using a non-intermittent K41 model. It is now well known that the ARs are highly turbulent and are associated with strong intermittent events. In this paper, we compare some of the observations from Abramenko et al. with the log-Poisson model used for modeling intermittent MHD turbulent flows. Next, we analyze the structure function data obtained from the direct numerical simulations (DNS) of homogeneous, incompressible 3D-MHD turbulence in three cases: sustained by forcing, freely decaying, and a flow initially driven and later allowed to decay (case 3). The respective DNS replicate the properties seen in the plots of ζp against p of ARs. We also reproduce the trends and changes observed in intermittency in flatness and correlation functions of ARs. It is suggested from this analysis that an AR in the onset phase of a flare can be treated as a forced 3D-MHD turbulent system in its simplest form and that the flaring stage is representative of decaying 3D-MHD turbulence. It is also inferred that significant changes in intermittency from the initial onset phase of a flare to its final peak flaring phase are related to the time taken by the system to reach the initial onset phase
Parallel processing for efficient 3D slope stability modelling
Marchesini, Ivan; Mergili, Martin; Alvioli, Massimiliano; Metz, Markus; Schneider-Muntau, Barbara; Rossi, Mauro; Guzzetti, Fausto
2014-05-01
We test the performance of the GIS-based, three-dimensional slope stability model r.slope.stability. The model was developed as a C- and python-based raster module of the GRASS GIS software. It considers the three-dimensional geometry of the sliding surface, adopting a modification of the model proposed by Hovland (1977), and revised and extended by Xie and co-workers (2006). Given a terrain elevation map and a set of relevant thematic layers, the model evaluates the stability of slopes for a large number of randomly selected potential slip surfaces, ellipsoidal or truncated in shape. Any single raster cell may be intersected by multiple sliding surfaces, each associated with a value of the factor of safety, FS. For each pixel, the minimum value of FS and the depth of the associated slip surface are stored. This information is used to obtain a spatial overview of the potentially unstable slopes in the study area. We test the model in the Collazzone area, Umbria, central Italy, an area known to be susceptible to landslides of different type and size. Availability of a comprehensive and detailed landslide inventory map allowed for a critical evaluation of the model results. The r.slope.stability code automatically splits the study area into a defined number of tiles, with proper overlap in order to provide the same statistical significance for the entire study area. The tiles are then processed in parallel by a given number of processors, exploiting a multi-purpose computing environment at CNR IRPI, Perugia. The map of the FS is obtained collecting the individual results, taking the minimum values on the overlapping cells. This procedure significantly reduces the processing time. We show how the gain in terms of processing time depends on the tile dimensions and on the number of cores.
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
An asynchronous and parallel time-marching method for three-dimensional (3D) time-dependent magnetohydrodynamic (MHD) simulation is used for large-scale solar wind simulation. It uses different local time steps in the corona and the heliosphere according to the local Courant-Friedrichs-Levy (CFL) conditions. The solar wind background with observed solar photospheric magnetic field as input is first presented. The simulation time for the background solar wind by using the asynchronous method is <1/6 of that by using the normal synchronous time-marching method with the same computation precision. Then, we choose the coronal mass ejection (CME) event of 13 November, 2003 as a test case. The time-dependent variations of the pressure and the velocity configured from a CME model at the inner boundary are applied to generate transient structures in order to study the dynamical interaction of a CME with the background solar wind flow between 1 and 230 Rs. This time-marching method is very effective in terms of computation time for large-scale 3D time-dependent numerical MHD problem. In this validation study, we find that this 3D MHD model, with the asynchronous and parallel time-marching method, provides a relatively satisfactory comparison with the ACE spacecraft obser- vations at L1 point.
Willensdorfer, M; Strumberger, E; Suttrop, W; Vanovac, B; Brida, D; Cavedon, M; Classen, I; Dunne, M; Fietz, S; Fischer, R; Kirk, A; Laggner, F M; Liu, Y Q; Odstrcil, T; Ryan, D A; Viezzer, E; Zohm, H; Luhmann, I C
2016-01-01
The plasma response from an external n = 2 magnetic perturbation field in ASDEX Upgrade has been measured using mainly electron cyclotron emission (ECE) diagnostics and a rigid rotating field. To interpret ECE and ECE-imaging (ECE-I) measurements accurately, forward modeling of the radiation transport has been combined with ray tracing. The measured data is compared to synthetic ECE data generated from a 3D ideal magnetohydrodynamics (MHD) equilibrium calculated by VMEC. The measured amplitudes of the helical displacement in the midplane are in reasonable agreement with the one from the synthetic VMEC diagnostics. Both exceed the vacuum field calculations and indicate the presence of an amplified kink response at the edge. Although the calculated magnetic structure of this edge kink peaks at poloidal mode numbers larger than the resonant components |m| > |nq|, the displacement measured by ECE-I is almost resonant |m| ~ |nq|. This is expected from ideal MHD in the proximity of rational surfaces. VMEC and MARS-...
A parallel multigrid-based preconditioner for the 3D heterogeneous high-frequency Helmholtz equation
International Nuclear Information System (INIS)
We investigate the parallel performance of an iterative solver for 3D heterogeneous Helmholtz problems related to applications in seismic wave propagation. For large 3D problems, the computation is no longer feasible on a single processor, and the memory requirements increase rapidly. Therefore, parallelization of the solver is needed. We employ a complex shifted-Laplace preconditioner combined with the Bi-CGSTAB iterative method and use a multigrid method to approximate the inverse of the resulting preconditioning operator. A 3D multigrid method with 2D semi-coarsening is employed. We show numerical results for large problems arising in geophysical applications
Fast implementations of 3D PET reconstruction using vector and parallel programming techniques
International Nuclear Information System (INIS)
Computationally intensive techniques that offer potential clinical use have arisen in nuclear medicine. Examples include iterative reconstruction, 3D PET data acquisition and reconstruction, and 3D image volume manipulation including image registration. One obstacle in achieving clinical acceptance of these techniques is the computational time required. This study focuses on methods to reduce the computation time for 3D PET reconstruction through the use of fast computer hardware, vector and parallel programming techniques, and algorithm optimization. The strengths and weaknesses of i860 microprocessor based workstation accelerator boards are investigated in implementations of 3D PET reconstruction
A Novel High-Order, Entropy Stable, 3D AMR MHD Solver with Guaranteed Positive Pressure
Derigs, Dominik; Gassner, Gregor J; Walch, Stefanie
2016-01-01
We describe a high-order numerical magnetohydrodynamics (MHD) solver built upon a novel non-linear entropy stable numerical flux function that supports eight travelling wave solutions. By construction the solver conserves mass, momentum, and energy and is entropy stable. The method is designed to treat the divergence-free constraint on the magnetic field in a similar fashion to a hyperbolic divergence cleaning technique. The solver described herein is especially well-suited for flows involving strong discontinuities. Furthermore, we present a new formulation to guarantee positivity of the pressure. We present the underlying theory and implementation of the new solver into the multi-physics, multi-scale adaptive mesh refinement (AMR) simulation code $\\texttt{FLASH}$ (http://flash.uchicago.edu). The accuracy, robustness and computational efficiency is demonstrated with a number of tests, including comparisons to available MHD implementations in $\\texttt{FLASH}$.
Virial theorem analysis of 3D numerical simulations of MHD self-gravitating turbulence
Shadmehri, Mohsen; Vazquez-Semadeni, Enrique; Ballesteros-Paredes, Javier
2001-01-01
We discuss the virial balance of all members of a cloud ensemble in numerical simulations of self-gravitating MHD turbulence. We first discuss the choice of reference frame for evaluating the terms entering the virial theorem (VT), concluding that the balance of each cloud should be measured in its own reference frame. We then report preliminary results suggesting that a) the clouds are far from virial equilibrium, with the ``geometric'' (time derivative) terms dominating the VT. b) The surfa...
A comparative study on 3-D solar wind structure observed by Ulysses and MHD simulation
Institute of Scientific and Technical Information of China (English)
FENG Xueshang; XIANG Changqing; ZHONG Dingkun; FAN Quanlin
2005-01-01
During Ulysses' first rapid pole-to-pole transit from September 1994 to June 1995, its observations showed that middle- or high-speed solar winds covered all latitudes except those between -20° and +20° near the ecliptic plane,where the velocity was 300-450 km/s. At poleward 40°,however, only fast solar winds at the speed of 700-870 km/s were observed. In addition, the transitions from low-speed wind to high-speed wind or vice versa were abrupt. In this paper, the large-scale structure of solar wind observed by Ulysses near solar minimum is simulated by using the three-dimensional numerical MHD model. The model combines TVD Lax-Friedrich scheme and MacCormack Ⅱ scheme and decomposes the calculation region into two regions: one from 1 to 22 Rs and the other from 18 Rs to 1 AU.Based on the observations of the solar photospheric magnetic field and an addition of the volumetric heating to MHD equations, the large-scale solar wind structure mentioned above is reproduced by using the three-dimensional MHD model and the numerical results are roughly consistent with Ulysses' observations. Our simulation shows that the initial magnetic field topology and the addition of volume heating may govern the bimodal structure of solar wind observed by Ulysses and also demonstrates that the three-dimensional MHD numerical model used here is efficient in modeling the large-scale solar wind structure.
Institute of Scientific and Technical Information of China (English)
ZHANG XianGuo; PU ZuYin; MA ZhiWei; ZHOU XuZhi
2008-01-01
A three-dimensional (3-D) Hall MHD simulation is carried out to study the roles of initial current carrier in the topology of magnetic field,the generation and distribuering the contribution of ions to the initial current,the topology of the obtained magnetic field turns to be more complex. In some cases,it is found that not only the traditional By quadrupole structure but also a reversal By quadrupole structure appears in the simulation box. This can explain the observational features near the diffusion region,which are inconsistent with the Hall MHD theory with the total initial current carried by electrons. Several other interesting features are also emerged. First,motions of electrons and ions are decoupled from each other in the small plasma region (Hall effect region) with a scale less than or comparable with the ion inertial length or ion skin depth di=c/ωp. In the non-Hall effect region,the global magnetic structure is shifted in +y direction under the influence of ions with initial y directional motion. However,in the Hall effect region,magnetic field lines are bent in -y direction,mainly controlled by the motion of electrons,then By is generated. Second,FACs emerge as a result of the appearance of By. Compared with the prior Hall MHD simulation results,the generated FACs shift in +y direction,
An Arbitrary Lagrangian-Eulerian Discretization of MHD on 3D Unstructured Grids
Energy Technology Data Exchange (ETDEWEB)
Rieben, R N; White, D A; Wallin, B K; Solberg, J M
2006-06-12
We present an arbitrary Lagrangian-Eulerian (ALE) discretization of the equations of resistive magnetohydrodynamics (MHD) on unstructured hexahedral grids. The method is formulated using an operator-split approach with three distinct phases: electromagnetic diffusion, Lagrangian motion, and Eulerian advection. The resistive magnetic dynamo equation is discretized using a compatible mixed finite element method with a 2nd order accurate implicit time differencing scheme which preserves the divergence-free nature of the magnetic field. At each discrete time step, electromagnetic force and heat terms are calculated and coupled to the hydrodynamic equations to compute the Lagrangian motion of the conducting materials. By virtue of the compatible discretization method used, the invariants of Lagrangian MHD motion are preserved in a discrete sense. When the Lagrangian motion of the mesh causes significant distortion, that distortion is corrected with a relaxation of the mesh, followed by a 2nd order monotonic remap of the electromagnetic state variables. The remap is equivalent to Eulerian advection of the magnetic flux density with a fictitious mesh relaxation velocity. The magnetic advection is performed using a novel variant of constrained transport (CT) that is valid for unstructured hexahedral grids with arbitrary mesh velocities. The advection method maintains the divergence free nature of the magnetic field and is second order accurate in regions where the solution is sufficiently smooth. For regions in which the magnetic field is discontinuous (e.g. MHD shocks) the method is limited using a novel variant of algebraic flux correction (AFC) which is local extremum diminishing (LED) and divergence preserving. Finally, we verify each stage of the discretization via a set of numerical experiments.
DANTSYS/MPI- a system for 3-D deterministic transport on parallel architectures
International Nuclear Information System (INIS)
A data parallel version of the 3-D transport solver in DANTSYS has been in use on the SIMD CM-200s at LANL since 1994. This version typically obtains grind times of 150-200 nanoseconds on a 2048 PE CM-200. A new message passing parallel version of DANTSYS has been implemented referred to as DANTSYS/MPI, on the 512 PE Cray T3D at Los Alamos. By taking advantage of the SPMD architecture of the Cray T3D, as well as its low latency communications network, we have managed to achieve grind times of less than 10 nanoseconds on real problems. DANTSYS/MPI is fully accelerated using DSA on both the inner and outer iterations. The implementation is described of DANTSYS/MPI on the Cray T3D, and presents a simple performance model which accurately predicts the grind time as a function of the number of PE's and problem size, or scalableness. (author)
A novel high-order, entropy stable, 3D AMR MHD solver with guaranteed positive pressure
Derigs, Dominik; Winters, Andrew R.; Gassner, Gregor J.; Walch, Stefanie
2016-07-01
We describe a high-order numerical magnetohydrodynamics (MHD) solver built upon a novel non-linear entropy stable numerical flux function that supports eight travelling wave solutions. By construction the solver conserves mass, momentum, and energy and is entropy stable. The method is designed to treat the divergence-free constraint on the magnetic field in a similar fashion to a hyperbolic divergence cleaning technique. The solver described herein is especially well-suited for flows involving strong discontinuities. Furthermore, we present a new formulation to guarantee positivity of the pressure. We present the underlying theory and implementation of the new solver into the multi-physics, multi-scale adaptive mesh refinement (AMR) simulation code FLASH (http://flash.uchicago.edu)
A novel high-order, entropy stable, 3D AMR MHD solver with guaranteed positive pressure
Derigs, Dominik; Winters, Andrew R.; Gassner, Gregor J.; Walch, Stefanie
2016-07-01
We describe a high-order numerical magnetohydrodynamics (MHD) solver built upon a novel non-linear entropy stable numerical flux function that supports eight travelling wave solutions. By construction the solver conserves mass, momentum, and energy and is entropy stable. The method is designed to treat the divergence-free constraint on the magnetic field in a similar fashion to a hyperbolic divergence cleaning technique. The solver described herein is especially well-suited for flows involving strong discontinuities. Furthermore, we present a new formulation to guarantee positivity of the pressure. We present the underlying theory and implementation of the new solver into the multi-physics, multi-scale adaptive mesh refinement (AMR) simulation code FLASH (http://flash.uchicago.edu).
Parallel Isosurface Extraction for 3D Data Analysis Workflows in Distributed Environments
D'Agostino, Daniele; Clematis, Andrea; Gianuzzi, Vittoria
2011-01-01
Abstract In this paper we discuss the issues related to the development of efficient parallel implementations of the Marching Cubes algorithm, one of the most used methods for isosurface extraction, which is a fundamental operation for 3D data analysis and visualization. We present three possible parallelization strategies and we outline pros and cons of each of them, considering isosurface extraction as stand-alone operation or as part of a dynamic workflow. Our analysis shows tha...
Institute of Scientific and Technical Information of China (English)
2008-01-01
A three-dimensional (3-D) Hall MHD simulation is carried out to study the roles of initial current carrier in the topology of magnetic field, the generation and distribu- tion of field aligned currents (FACs), and the appearance of Alfvén waves. Consid- ering the contribution of ions to the initial current, the topology of the obtained magnetic field turns to be more complex. In some cases, it is found that not only the traditional By quadrupole structure but also a reversal By quadrupole structure appears in the simulation box. This can explain the observational features near the diffusion region, which are inconsistent with the Hall MHD theory with the total ini- tial current carried by electrons. Several other interesting features are also emerged. First, motions of electrons and ions are decoupled from each other in the small plasma region (Hall effect region) with a scale less than or comparable with the ion inertial length or ion skin depth di=c/ωp. In the non-Hall effect region, the global magnetic structure is shifted in +y direction under the influence of ions with initial y directional motion. However, in the Hall effect region, magnetic field lines are bent in ?y direction, mainly controlled by the motion of electrons, then By is generated. Second, FACs emerge as a result of the appearance of By. Compared with the prior Hall MHD simulation results, the generated FACs shift in +y direction, and hence the dawn-dusk symmetry is broken. Third, the Walén relation in our simulations is consistent with the Walén relation in Hall plasma, thus the presence of Alfvén wave is confirmed.
MHD and deep mixing in evolved stars. 1. 2D and 3D analytical models for the AGB
Nucci, M C
2014-01-01
The advection of thermonuclear ashes by magnetized domains emerging from near the H-shell was suggested to explain AGB star abundances. Here we verify this idea quantitatively through exact MHD models. Starting with a simple 2D geometry and in an inertia frame, we study plasma equilibria avoiding the complications of numerical simulations. We show that, below the convective envelope of an AGB star, variable magnetic fields induce a natural expansion, permitted by the almost ideal MHD conditions, in which the radial velocity grows as the second power of the radius. We then study the convective envelope, where the complexity of macro-turbulence allows only for a schematic analytical treatment. Here the radial velocity depends on the square root of the radius. We then verify the robustness of our results with 3D calculations for the velocity, showing that, for both the studied regions, the solution previously found can be seen as a planar section of a more complex behavior, in which anyway the average radial vel...
Non-twist map bifurcation of drift-lines and drift-island formation in saturated 3D MHD equilibria
Pfefferle, David; Cooper, Wilfred A.; Graves, Jonathan P.
2015-11-01
Based on non-canonical perturbation theory, guiding-centre drift equations are identified as perturbed magnetic field-line equations. The topology of passing-particle orbits, called drift-lines, is completely determined by the magnetic configuration. In axisymmetric tokamak fields, drift-lines lie on shifted flux-surfaces, called drift-surfaces. Field-lines and drift-lines are subject to island structures at rational surfaces only when a non-axisymmetric component is added. The picture is different in the case of 3D saturated MHD equilibrium like the helical core associated with a non-resonant internal kink mode. In assuming nested flux-surfaces, these bifurcated states, expected for a reversed q-profile with qmin close yet above unity and conveniently obtained in VMEC, feature integrable field-lines. The helical drift-lines however become resonant with the axisymmetric component in the region of qmin and spontaneously generate drift-islands. Due to the locally reversed sheared q-profile, the drift-island structure follows the bifurcation/reconnection mechanism of non-twist maps. This result provides a theoretical interpretation of NBI fast ion helical hot-spots in Long-Lived Modes as well as snake-like impurity density accumulation in internal MHD activity.
Rotation symmetry axes and the quality index in a 3D octahedral parallel robot manipulator system
Tanev, T. K.; Rooney, J.
2002-01-01
The geometry of a 3D octahedral parallel robot manipulator system is specified in terms of two rigid octahedral structures (the fixed and moving platforms) and six actuation legs. The symmetry of the system is exploited to determine the behaviour of (a new version of) the quality index for various motions. The main results are presented graphically.
A burnup corrected 3-D nodal depletion method for vector and parallel computer architectures
International Nuclear Information System (INIS)
The 2- and 3-D nodal depletion code NOMAD-BC was parallelized and vectorized (3-D only). A 3-D, 2-cycle depletion problem was devised and successfully solved with the NOMAD-BC code in less than 35 seconds on two CPUs of a Cray X-MP/48. This shows a combined vectorization and parallelization speedup of 8.6. The same problem was solved on a 2-CPU 16 MHz SGI workstation in less than one hour, exhibiting a 1.78 speedup over the single processor solution on the same machine. It is shown in this work that complex and detailed burnup computations can be successfully optimized. In addition, the performance achieved demonstrates the possibility of obtaining results within very reasonable times, even on inexpensive workstations. Finally, the small CPU time requirements should make possible the routine evaluation of fuel cycles at great savings of the engineer's time. (author)
3D Multifluid MHD simulation for Uranus and Neptune: the seasonal variations of their magnetosphere
Cao, X.; Paty, C. S.
2015-12-01
The interaction between Uranus' intrinsic magnetic field and the solar wind is quite different from the magnetospheric interactions of other planets. Uranus' large obliquity, coupled with the fact that its dipole moment is off-centered and highly tilted relative to the rotation axis, leads to unique and seasonally dependent interaction geometries with the solar wind. We present results from adapting a multifluid MHD simulation to examine these seasonally dependent geometries in terms of the global magnetospheric structure, magnetopause and bow shock location, and magnetotail configuration. The Voyager 2 spacecraft encountered Uranus near solstice, and was able to observe the magnetic field structure and plasma characteristics of a twisted magnetotail [Behannon et al., 1987]. We use such magnetometer and plasma observations as a basis for benchmarking our simulations for the solstice scenario. Auroral observations made by the Hubble Space Telescope during equinox [Lamy et al.,2012] give some indication of the magnetospheric interaction with the solar wind. We also demonstrate the structural difference of the magnetosphere between solstice and equinox seasons. The magnetosphere at equinox is quite distinct due to the orientation and rotation of the magnetic axis relative to the solar wind direction.
A parallel algorithm for 3D particle tracking and Lagrangian trajectory reconstruction
International Nuclear Information System (INIS)
Particle-tracking methods are widely used in fluid mechanics and multi-target tracking research because of their unique ability to reconstruct long trajectories with high spatial and temporal resolution. Researchers have recently demonstrated 3D tracking of several objects in real time, but as the number of objects is increased, real-time tracking becomes impossible due to data transfer and processing bottlenecks. This problem may be solved by using parallel processing. In this paper, a parallel-processing framework has been developed based on frame decomposition and is programmed using the asynchronous object-oriented Charm++ paradigm. This framework can be a key step in achieving a scalable Lagrangian measurement system for particle-tracking velocimetry and may lead to real-time measurement capabilities. The parallel tracking algorithm was evaluated with three data sets including the particle image velocimetry standard 3D images data set #352, a uniform data set for optimal parallel performance and a computational-fluid-dynamics-generated non-uniform data set to test trajectory reconstruction accuracy, consistency with the sequential version and scalability to more than 500 processors. The algorithm showed strong scaling up to 512 processors and no inherent limits of scalability were seen. Ultimately, up to a 200-fold speedup is observed compared to the serial algorithm when 256 processors were used. The parallel algorithm is adaptable and could be easily modified to use any sequential tracking algorithm, which inputs frames of 3D particle location data and outputs particle trajectories
3D Dynamics of Magnetopause Reconnection Using Hall-MHD Global Simulations
Maynard, K.; Germaschewski, K.; Raeder, J.; Bhattacharjee, A.
2011-12-01
Magnetic reconnection at Earth's magnetopause and in the magnetotail is of crucial importance for the dynamics of the global magnetosphere and space weather. Even though the plasma conditions in the magnetosphere are largely in the collisionless regime, most of the existing research using global computational models employ single-fluid magnetohydrodynamics (MHD) with artificial resistivity. Studies of reconnection in simplified, two-dimensional geometries have established that two-fluid and kinetic effects can dramatically alter dynamics and reconnection rates when compared with single-fluid models. These enhanced models also introduce particular signatures, for example a quadrupolar out-of-plane magnetic field component that has already been observed in space by satellite measurements. However, results from simplified geometries cannot be translated directly to the dynamics of three-dimensional magnetospheric reconnection. For instance, magnetic flux originating from the solar wind and arriving at the magnetopause can either reconnect or be advected around the magnetosphere. In this study, we use a new version of the OpenGGCM code that incorporates the Hall term in a Generalized Ohm's Law to study magnetopause reconnection under synthetic solar wind conditions and investigate how reconnection rates and dynamics of flux transfer events depend on the strength of the Hall term. The OpenGGCM, a global model of Earth's magnetosphere, has recently been ported to exploit modern computing architectures like the Cell processor and SIMD capabilities of conventional processors using an automatic code generator. These enhancements provide us with the performance needed to include the computationally expensive Hall physics.
Reiman, Allan H.
2016-07-01
In toroidal, magnetically confined plasmas, the heat and particle transport is strongly anisotropic, with transport along the field lines sufficiently strong relative to cross-field transport that the equilibrium pressure can generally be regarded as constant on the flux surfaces in much of the plasma. The regions near small magnetic islands, and those near the X-lines of larger islands, are exceptions, having a significant variation of the pressure within the flux surfaces. It is shown here that the variation of the equilibrium pressure within the flux surfaces in those regions has significant consequences for the pressure driven currents. It is further shown that the consequences are strongly affected by the symmetry of the magnetic field if the field is invariant under combined reflection in the poloidal and toroidal angles. (This symmetry property is called "stellarator symmetry.") In non-stellarator-symmetric equilibria, the pressure-driven currents have logarithmic singularities at the X-lines. In stellarator-symmetric MHD equilibria, the singular components of the pressure-driven currents vanish. These equilibria are to be contrasted with equilibria having B ṡ∇p =0 , where the singular components of the pressure-driven currents vanish regardless of the symmetry. They are also to be contrasted with 3D MHD equilibrium solutions that are constrained to have simply nested flux surfaces, where the pressure-driven current goes like 1 /x near rational surfaces, where x is the distance from the rational surface, except in the case of quasi-symmetric flux surfaces. For the purpose of calculating the pressure-driven currents near magnetic islands, we work with a closed subset of the MHD equilibrium equations that involves only perpendicular force balance, and is decoupled from parallel force balance. It is not correct to use the parallel component of the conventional MHD force balance equation, B ṡ∇p =0 , near magnetic islands. Small but nonzero values of B
Relativistic MHD simulations of core-collapse GRB jets: 3D instabilities and magnetic dissipation
Bromberg, Omer
2015-01-01
Relativistic jets naturally occur in astrophysical systems that involve accretion onto compact objects, such as core collapse of massive stars in gamma-ray bursts (GRBs) and accretion onto supermassive black holes in active galactic nuclei (AGN). It is generally accepted that these jets are powered electromagnetically, by the magnetised rotation of a central compact object. However, how they produce the observed emission and survive the propagation for many orders of magnitude in distance without being disrupted by current-driven non-axisymmetric instabilities is the subject of active debate. We carry out time-dependent 3D relativistic magnetohydrodynamic simulations of relativistic, Poynting flux dominated jets. The jets are launched self-consistently by the rotation of a strongly magnetised central compact object. This determines the natural degree of azimuthal magnetic field winding, a crucial factor that controls jet stability. We find that the jets are susceptible to two types of instability: (i) a globa...
An exact solution for the 3D MHD stagnation-point flow of a micropolar fluid
Borrelli, A.; Giantesio, G.; Patria, M. C.
2015-01-01
The influence of a non-uniform external magnetic field on the steady three dimensional stagnation-point flow of a micropolar fluid over a rigid uncharged dielectric at rest is studied. The total magnetic field is parallel to the velocity at infinity. It is proved that this flow is possible only in the axisymmetric case. The governing nonlinear partial differential equations are reduced to a system of ordinary differential equations by a similarity transformation, before being solved numerically. The effects of the governing parameters on the fluid flow and on the magnetic field are illustrated graphically and discussed.
Behaviour of magnetic islands in 3D MHD equilibria of helical devices
International Nuclear Information System (INIS)
Magnetic island formation in 3D finite-β equilibria in the H-1 Heliac is studied by using the HINT code. It is found that the size of a dangerous island should increase with β but that destruction of the equilibrium at low β is avoided because the rotational transform evolves to exclude the rational surface concerned. At higher β there is evidence of near-resonant flux surface deformations which may lead to an equilibrium limit. A reconnected equilibrium at still higher β exhibits a double island structure which is similar to homoclinic phase portraits which have been observed after separatrix reconnection in Hamiltonian systems. The physical mechanisms of island formation in finite-β helical equilibria have been investigated. The HINT code predicts that the global effect to the Pfirsch-Schlueter currents can lead to self-healing of magnetic islands independent of whether or not the plasma is stable to resistive interchange modes. This result has been compared with the predictions of a boundary-layer analysis which has been extended to consider configurations with islands in the vacuum magnetic field. (author). 5 refs, 1 fig
Li, Yong Gang; Yang, Yang; Short, Michael P.; Ding, Ze Jun; Zeng, Zhi; Li, Ju
2015-12-01
SRIM-like codes have limitations in describing general 3D geometries, for modeling radiation displacements and damage in nanostructured materials. A universal, computationally efficient and massively parallel 3D Monte Carlo code, IM3D, has been developed with excellent parallel scaling performance. IM3D is based on fast indexing of scattering integrals and the SRIM stopping power database, and allows the user a choice of Constructive Solid Geometry (CSG) or Finite Element Triangle Mesh (FETM) method for constructing 3D shapes and microstructures. For 2D films and multilayers, IM3D perfectly reproduces SRIM results, and can be ∼102 times faster in serial execution and > 104 times faster using parallel computation. For 3D problems, it provides a fast approach for analyzing the spatial distributions of primary displacements and defect generation under ion irradiation. Herein we also provide a detailed discussion of our open-source collision cascade physics engine, revealing the true meaning and limitations of the “Quick Kinchin-Pease” and “Full Cascades” options. The issues of femtosecond to picosecond timescales in defining displacement versus damage, the limitation of the displacements per atom (DPA) unit in quantifying radiation damage (such as inadequacy in quantifying degree of chemical mixing), are discussed.
Gust Acoustics Computation with a Space-Time CE/SE Parallel 3D Solver
Wang, X. Y.; Himansu, A.; Chang, S. C.; Jorgenson, P. C. E.; Reddy, D. R. (Technical Monitor)
2002-01-01
The benchmark Problem 2 in Category 3 of the Third Computational Aero-Acoustics (CAA) Workshop is solved using the space-time conservation element and solution element (CE/SE) method. This problem concerns the unsteady response of an isolated finite-span swept flat-plate airfoil bounded by two parallel walls to an incident gust. The acoustic field generated by the interaction of the gust with the flat-plate airfoil is computed by solving the 3D (three-dimensional) Euler equations in the time domain using a parallel version of a 3D CE/SE solver. The effect of the gust orientation on the far-field directivity is studied. Numerical solutions are presented and compared with analytical solutions, showing a reasonable agreement.
Stiffness Analysis of 3-d.o.f. Overconstrained Translational Parallel Manipulators
Pashkevich, Anatoly; Wenger, Philippe
2008-01-01
The paper presents a new stiffness modelling method for overconstrained parallel manipulators, which is applied to 3-d.o.f. translational mechanisms. It is based on a multidimensional lumped-parameter model that replaces the link flexibility by localized 6-d.o.f. virtual springs. In contrast to other works, the method includes a FEA-based link stiffness evaluation and employs a new solution strategy of the kinetostatic equations, which allows computing the stiffness matrix for the overconstrained architectures and for the singular manipulator postures. The advantages of the developed technique are confirmed by application examples, which deal with comparative stiffness analysis of two translational parallel manipulators.
3D magnetospheric parallel hybrid multi-grid method applied to planet-plasma interactions
Leclercq, Ludivine; Modolo, Ronan; Leblanc, François; Hess, Sebastien; Mancini, Marco
2016-01-01
We present a new method to exploit multiple refinement levels within a 3D parallel hybrid model, developed to study planet-plasma interactions. This model is based on the hybrid formalism: ions are kinetically treated whereas electrons are considered as a inertia-less fluid. Generally, ions are represented by numerical particles whose size equals the volume of the cells. Particles that leave a coarse grid subsequently entering a refined region are split into particles whose volume corresponds...
A Parallel Implementation of the Mortar Element Method in 2D and 3D
Directory of Open Access Journals (Sweden)
Samake A.
2013-12-01
Full Text Available We present here the generic parallel computational framework in C++called Feel++for the mortar finite element method with the arbitrary number of subdomain partitions in 2D and 3D. An iterative method with block-diagonal preconditioners is used for solving the algebraic saddle-point problem arising from the finite element discretization. Finally we present a scalability study and the numerical results obtained using Feel++ library.
Edge-based electric field formulation in 3D CSEM simulations: A parallel approach
Castillo-Reyes, Octavio; de la Puente, Josep; Puzyrev, Vladimir; Cela, José M.
2015-01-01
This paper presents a parallel computing scheme for the data computation that arise when applying one of the most popular electromagnetic methods in exploration geophysics, namely, controlled-source electromagnetic (CSEM). The computational approach is based on linear edge finite element method in 3D isotropic domains. The total electromagnetic field is decomposed into primary and secondary electromagnetic field. The primary field is calculated analytically using an horizontal layered-e...
Spatial Parallelism of a 3D Finite Difference, Velocity-Stress Elastic Wave Propagation Code
Energy Technology Data Exchange (ETDEWEB)
MINKOFF,SUSAN E.
1999-12-09
Finite difference methods for solving the wave equation more accurately capture the physics of waves propagating through the earth than asymptotic solution methods. Unfortunately. finite difference simulations for 3D elastic wave propagation are expensive. We model waves in a 3D isotropic elastic earth. The wave equation solution consists of three velocity components and six stresses. The partial derivatives are discretized using 2nd-order in time and 4th-order in space staggered finite difference operators. Staggered schemes allow one to obtain additional accuracy (via centered finite differences) without requiring additional storage. The serial code is most unique in its ability to model a number of different types of seismic sources. The parallel implementation uses the MP1 library, thus allowing for portability between platforms. Spatial parallelism provides a highly efficient strategy for parallelizing finite difference simulations. In this implementation, one can decompose the global problem domain into one-, two-, and three-dimensional processor decompositions with 3D decompositions generally producing the best parallel speed up. Because i/o is handled largely outside of the time-step loop (the most expensive part of the simulation) we have opted for straight-forward broadcast and reduce operations to handle i/o. The majority of the communication in the code consists of passing subdomain face information to neighboring processors for use as ''ghost cells''. When this communication is balanced against computation by allocating subdomains of reasonable size, we observe excellent scaled speed up. Allocating subdomains of size 25 x 25 x 25 on each node, we achieve efficiencies of 94% on 128 processors. Numerical examples for both a layered earth model and a homogeneous medium with a high-velocity blocky inclusion illustrate the accuracy of the parallel code.
DANTSYS/MPI: a system for 3-D deterministic transport on parallel architectures
Energy Technology Data Exchange (ETDEWEB)
Baker, R.S.; Alcouffe, R.E.
1996-12-31
Since 1994, we have been using a data parallel form of our deterministic transport code DANTSYS to perform time-independent fixed source and eigenvalue calculations on the CM-200`s at Los Alamos National Laboratory (LANL). Parallelization of the transport sweep is obtained by using a 2-D spatial decomposition which retains the ability to invert the source iteration equation in a single iteration (i.e., the diagonal plane sweep). We have now implemented a message passing version of DANTSYS, referred to as DANTSYS/MPI, on the Cray T3D installed at Los Alamos in 1995. By taking advantage of the SPMD (Single Program, Multiple Data) architecture of the Cray T3D, as well as its low latency communications network, we have managed to achieve grind times (time to solve a single cell in phase space) of less than 10 nanoseconds on the 512 PE (Processing Element) T3D, as opposed to typical grind times of 150-200 nanoseconds on a 2048 PE CM-200, or 300-400 nanoseconds on a single PE of a Cray Y-MP. In addition, we have also parallelized the Diffusion Synthetic Accelerator (DSA) equations which are used to accelerate the convergence of the transport equation. DANTSYS/MPI currently runs on traditional Cray PVP`s and the Cray T3D, and it`s computational kernel (Sweep3D) has been ported to and tested on an array of SGI SMP`s (Symmetric Memory Processors), a network of IBM 590 workstations, an IBM SP2, and the Intel TFLOPs machine at Sandia National Laboratory. This paper describes the implementation of DANTSYS/MPI on the Cray T3D, and presents a simple performance model which accurately predicts the grind time as a function of the number of PE`s and problem size, or scalability. This paper also describes the parallel implementation and performance of the elliptic solver used in DANTSYS/MPI for solving the synthetic acceleration equations.
New adaptive differencing strategy in the PENTRAN 3-d parallel Sn code
International Nuclear Information System (INIS)
It is known that three-dimensional (3-D) discrete ordinates (Sn) transport problems require an immense amount of storage and computational effort to solve. For this reason, parallel codes that offer a capability to completely decompose the angular, energy, and spatial domains among a distributed network of processors are required. One such code recently developed is PENTRAN, which iteratively solves 3-D multi-group, anisotropic Sn problems on distributed-memory platforms, such as the IBM-SP2. Because large problems typically contain several different material zones with various properties, available differencing schemes should automatically adapt to the transport physics in each material zone. To minimize the memory and message-passing overhead required for massively parallel Sn applications, available differencing schemes in an adaptive strategy should also offer reasonable accuracy and positivity, yet require only the zeroth spatial moment of the transport equation; differencing schemes based on higher spatial moments, in spite of their greater accuracy, require at least twice the amount of storage and communication cost for implementation in a massively parallel transport code. This paper discusses a new adaptive differencing strategy that uses increasingly accurate schemes with low parallel memory and communication overhead. This strategy, implemented in PENTRAN, includes a new scheme, exponential directional averaged (EDA) differencing
3-D electromagnetic plasma particle simulations on the Intel Delta parallel computer
International Nuclear Information System (INIS)
A three-dimensional electromagnetic PIC code has been developed on the 512 node Intel Touchstone Delta MIMD parallel computer. This code is based on the General Concurrent PIC algorithm which uses a domain decomposition to divide the computation among the processors. The 3D simulation domain can be partitioned into 1-, 2-, or 3-dimensional sub-domains. Particles must be exchanged between processors as they move among the subdomains. The Intel Delta allows one to use this code for very-large-scale simulations (i.e. over 108 particles and 106 grid cells). The parallel efficiency of this code is measured, and the overall code performance on the Delta is compared with that on Cray supercomputers. It is shown that their code runs with a high parallel efficiency of ≥ 95% for large size problems. The particle push time achieved is 115 nsecs/particle/time step for 162 million particles on 512 nodes. Comparing with the performance on a single processor Cray C90, this represents a factor of 58 speedup. The code uses a finite-difference leap frog method for field solve which is significantly more efficient than fast fourier transforms on parallel computers. The performance of this code on the 128 node Cray T3D will also be discussed
Haberreiter, M; McIntosh, S; Wedemeyer-Boehm, S
2010-01-01
From the analysis of Dopplergrams in the K I 7699 A and Na I 5890 A spectral lines observed with the Magneto-Optical filter at Two Heights (MOTH) experiment during the austral summer in 2002-03 we find upward traveling waves in magnetic regions. Our analysis shows that the dispersion relation of these waves strongly depends on whether the wave is detected in the low-beta or high-beta regime. Moreover, the observed dispersion relation does not show the expected decrease of the acoustic cut-off frequency for the field guided slow magnetic wave. Instead, we detected an increase of the travel times below the acoustic cut-off frequency and at the same time a decrease of the travel time above it. To study the formation height of the spectral lines employed by MOTH in greater detail we are currently in the process of employing 3D MHD simulations carried out with CO5BOLD to perform NLTE spectral synthesis.
Description of a parallel, 3D, finite element, hydrodynamics-diffusion code
International Nuclear Information System (INIS)
We describe a parallel, 3D, unstructured grid finite element, hydrodynamic diffusion code for inertial confinement fusion (ICF) applications and the ancillary software used to run it. The code system is divided into two entities, a controller and a stand-alone physics code. The code system may reside on different computers; the controller on the user s workstation and the physics code on a supercomputer. The physics code is composed of separate hydrodynamic, equation-of-state, laser energy deposition, heat conduction, and radiation transport packages and is parallelized for distributed memory architectures. For parallelization, a SPMD model is adopted; the domain is decomposed into a disjoint collection of sub-domains, one per processing element (PE). The PEs communicate using MPI. The code is used to simulate the hydrodynamic implosion of a spherical bubble
Parallel computation of 3-D Navier-Stokes flowfields for supersonic vehicles
Ryan, James S.; Weeratunga, Sisira
1993-01-01
Multidisciplinary design optimization of aircraft will require unprecedented capabilities of both analysis software and computer hardware. The speed and accuracy of the analysis will depend heavily on the computational fluid dynamics (CFD) module which is used. A new CFD module has been developed to combine the robust accuracy of conventional codes with the ability to run on parallel architectures. This is achieved by parallelizing the ARC3D algorithm, a central-differenced Navier-Stokes method, on the Intel iPSC/860. The computed solutions are identical to those from conventional machines. Computational speed on 64 processors is comparable to the rate on one Cray Y-MP processor and will increase as new generations of parallel computers become available.
Energy Technology Data Exchange (ETDEWEB)
Kolotilina, L.; Nikishin, A.; Yeremin, A. [and others
1994-12-31
The solution of large systems of linear equations is a crucial bottleneck when performing 3D finite element analysis of structures. Also, in many cases the reliability and robustness of iterative solution strategies, and their efficiency when exploiting hardware resources, fully determine the scope of industrial applications which can be solved on a particular computer platform. This is especially true for modern vector/parallel supercomputers with large vector length and for modern massively parallel supercomputers. Preconditioned iterative methods have been successfully applied to industrial class finite element analysis of structures. The construction and application of high quality preconditioners constitutes a high percentage of the total solution time. Parallel implementation of high quality preconditioners on such architectures is a formidable challenge. Two common types of existing preconditioners are the implicit preconditioners and the explicit preconditioners. The implicit preconditioners (e.g. incomplete factorizations of several types) are generally high quality but require solution of lower and upper triangular systems of equations per iteration which are difficult to parallelize without deteriorating the convergence rate. The explicit type of preconditionings (e.g. polynomial preconditioners or Jacobi-like preconditioners) require sparse matrix-vector multiplications and can be parallelized but their preconditioning qualities are less than desirable. The authors present results of numerical experiments with Factorized Sparse Approximate Inverses (FSAI) for symmetric positive definite linear systems. These are high quality preconditioners that possess a large resource of parallelism by construction without increasing the serial complexity.
Advanced quadratures and periodic boundary conditions in parallel 3D S{sub n} transport
Energy Technology Data Exchange (ETDEWEB)
Manalo, K.; Yi, C.; Huang, M.; Sjoden, G. [Nuclear and Radiological Engineering Program, G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 770 State Street, Atlanta, GA 30332-0745 (United States)
2013-07-01
Significant updates in numerical quadratures have warranted investigation with 3D Sn discrete ordinates transport. We show new applications of quadrature departing from level symmetric (S{sub 2}o). investigating 3 recently developed quadratures: Even-Odd (EO), Linear-Discontinuous Finite Element - Surface Area (LDFE-SA), and the non-symmetric Icosahedral Quadrature (IC). We discuss implementation changes to 3D Sn codes (applied to Hybrid MOC-Sn TITAN and 3D parallel PENTRAN) that can be performed to accommodate Icosahedral Quadrature, as this quadrature is not 90-degree rotation invariant. In particular, as demonstrated using PENTRAN, the properties of Icosahedral Quadrature are suitable for trivial application using periodic BCs versus that of reflective BCs. In addition to implementing periodic BCs for 3D Sn PENTRAN, we implemented a technique termed 'angular re-sweep' which properly conditions periodic BCs for outer eigenvalue iterative loop convergence. As demonstrated by two simple transport problems (3-group fixed source and 3-group reflected/periodic eigenvalue pin cell), we remark that all of the quadratures we investigated are generally superior to level symmetric quadrature, with Icosahedral Quadrature performing the most efficiently for problems tested. (authors)
Energy Technology Data Exchange (ETDEWEB)
Schultz, Anthony [Nouvel Hopital Civil, Strasbourg University Hospital, Radiology Department, Strasbourg Cedex (France); Nouvel Hopital Civil, Service de Radiologie, Strasbourg Cedex (France); Caspar, Thibault [Nouvel Hopital Civil, Strasbourg University Hospital, Cardiology Department, Strasbourg Cedex (France); Schaeffer, Mickael [Nouvel Hopital Civil, Strasbourg University Hospital, Public Health and Biostatistics Department, Strasbourg Cedex (France); Labani, Aissam; Jeung, Mi-Young; El Ghannudi, Soraya; Roy, Catherine [Nouvel Hopital Civil, Strasbourg University Hospital, Radiology Department, Strasbourg Cedex (France); Ohana, Mickael [Nouvel Hopital Civil, Strasbourg University Hospital, Radiology Department, Strasbourg Cedex (France); Universite de Strasbourg / CNRS, UMR 7357, iCube Laboratory, Illkirch (France)
2016-06-15
To qualitatively and quantitatively compare different late gadolinium enhancement (LGE) sequences acquired at 3T with a parallel RF transmission technique. One hundred and sixty participants prospectively enrolled underwent a 3T cardiac MRI with 3 different LGE sequences: 3D Phase-Sensitive Inversion-Recovery (3D-PSIR) acquired 5 minutes after injection, 3D Inversion-Recovery (3D-IR) at 9 minutes and 3D-PSIR at 13 minutes. All LGE-positive patients were qualitatively evaluated both independently and blindly by two radiologists using a 4-level scale, and quantitatively assessed with measurement of contrast-to-noise ratio and LGE maximal surface. Statistical analyses were calculated under a Bayesian paradigm using MCMC methods. Fifty patients (70 % men, 56yo ± 19) exhibited LGE (62 % were post-ischemic, 30 % related to cardiomyopathy and 8 % post-myocarditis). Early and late 3D-PSIR were superior to 3D-IR sequences (global quality, estimated coefficient IR > early-PSIR: -2.37 CI = [-3.46; -1.38], prob(coef > 0) = 0 % and late-PSIR > IR: 3.12 CI = [0.62; 4.41], prob(coef > 0) = 100 %), LGE surface estimated coefficient IR > early-PSIR: -0.09 CI = [-1.11; -0.74], prob(coef > 0) = 0 % and late-PSIR > IR: 0.96 CI = [0.77; 1.15], prob(coef > 0) = 100 %. Probabilities for late PSIR being superior to early PSIR concerning global quality and CNR were over 90 %, regardless of the aetiological subgroup. In 3T cardiac MRI acquired with parallel RF transmission technique, 3D-PSIR is qualitatively and quantitatively superior to 3D-IR. (orig.)
Comparison of 3-D Synthetic Aperture Phased-Array Ultrasound Imaging and Parallel Beamforming
DEFF Research Database (Denmark)
Rasmussen, Morten Fischer; Jensen, Jørgen Arendt
2014-01-01
This paper demonstrates that synthetic apertureimaging (SAI) can be used to achieve real-time 3-D ultra-sound phased-array imaging. It investigates whether SAI in-creases the image quality compared with the parallel beam-forming (PB) technique for real-time 3-D imaging. Data areobtained using both...... simulations and measurements with anultrasound research scanner and a commercially available 3.5-MHz 1024-element 2-D transducer array. To limit the probecable thickness, 256 active elements are used in transmit andreceive for both techniques. The two imaging techniques weredesigned for cardiac imaging, which...... requires sequences de-signed for imaging down to 15cm of depth and a frame rateof at least 20Hz. The imaging quality of the two techniquesis investigated through simulations as a function of depth andangle. SAI improved the full-width at half-maximum (FWHM) at low steering angles by 35%, and the 20-d...
Parallel Imaging of 3D Surface Profile with Space-Division Multiplexing
Directory of Open Access Journals (Sweden)
Hyung Seok Lee
2016-01-01
Full Text Available We have developed a modified optical frequency domain imaging (OFDI system that performs parallel imaging of three-dimensional (3D surface profiles by using the space division multiplexing (SDM method with dual-area swept sourced beams. We have also demonstrated that 3D surface information for two different areas could be well obtained in a same time with only one camera by our method. In this study, double field of views (FOVs of 11.16 mm × 5.92 mm were achieved within 0.5 s. Height range for each FOV was 460 µm and axial and transverse resolutions were 3.6 and 5.52 µm, respectively.
Parallel Imaging of 3D Surface Profile with Space-Division Multiplexing
Lee, Hyung Seok; Cho, Soon-Woo; Kim, Gyeong Hun; Jeong, Myung Yung; Won, Young Jae; Kim, Chang-Seok
2016-01-01
We have developed a modified optical frequency domain imaging (OFDI) system that performs parallel imaging of three-dimensional (3D) surface profiles by using the space division multiplexing (SDM) method with dual-area swept sourced beams. We have also demonstrated that 3D surface information for two different areas could be well obtained in a same time with only one camera by our method. In this study, double field of views (FOVs) of 11.16 mm × 5.92 mm were achieved within 0.5 s. Height range for each FOV was 460 µm and axial and transverse resolutions were 3.6 and 5.52 µm, respectively. PMID:26805840
A Parallelized 3D Particle-In-Cell Method With Magnetostatic Field Solver And Its Applications
Hsu, Kuo-Hsien; Chen, Yen-Sen; Wu, Men-Zan Bill; Wu, Jong-Shinn
2008-10-01
A parallelized 3D self-consistent electrostatic particle-in-cell finite element (PIC-FEM) code using an unstructured tetrahedral mesh was developed. For simulating some applications with external permanent magnet set, the distribution of the magnetostatic field usually also need to be considered and determined accurately. In this paper, we will firstly present the development of a 3D magnetostatic field solver with an unstructured mesh for the flexibility of modeling objects with complex geometry. The vector Poisson equation for magnetostatic field is formulated using the Galerkin nodal finite element method and the resulting matrix is solved by parallel conjugate gradient method. A parallel adaptive mesh refinement module is coupled to this solver for better resolution. Completed solver is then verified by simulating a permanent magnet array with results comparable to previous experimental observations and simulations. By taking the advantage of the same unstructured grid format of this solver, the developed PIC-FEM code could directly and easily read the magnetostatic field for particle simulation. In the upcoming conference, magnetron is simulated and presented for demonstrating the capability of this code.
Jung, Jaewoon; Kobayashi, Chigusa; Imamura, Toshiyuki; Sugita, Yuji
2016-03-01
Three-dimensional Fast Fourier Transform (3D FFT) plays an important role in a wide variety of computer simulations and data analyses, including molecular dynamics (MD) simulations. In this study, we develop hybrid (MPI+OpenMP) parallelization schemes of 3D FFT based on two new volumetric decompositions, mainly for the particle mesh Ewald (PME) calculation in MD simulations. In one scheme, (1d_Alltoall), five all-to-all communications in one dimension are carried out, and in the other, (2d_Alltoall), one two-dimensional all-to-all communication is combined with two all-to-all communications in one dimension. 2d_Alltoall is similar to the conventional volumetric decomposition scheme. We performed benchmark tests of 3D FFT for the systems with different grid sizes using a large number of processors on the K computer in RIKEN AICS. The two schemes show comparable performances, and are better than existing 3D FFTs. The performances of 1d_Alltoall and 2d_Alltoall depend on the supercomputer network system and number of processors in each dimension. There is enough leeway for users to optimize performance for their conditions. In the PME method, short-range real-space interactions as well as long-range reciprocal-space interactions are calculated. Our volumetric decomposition schemes are particularly useful when used in conjunction with the recently developed midpoint cell method for short-range interactions, due to the same decompositions of real and reciprocal spaces. The 1d_Alltoall scheme of 3D FFT takes 4.7 ms to simulate one MD cycle for a virus system containing more than 1 million atoms using 32,768 cores on the K computer.
A parallel sweeping preconditioner for high frequency heterogeneous 3D Helmholtz equations
Poulson, Jack; Fomel, Sergey; Li, Siwei; Ying, Lexing
2012-01-01
A parallelization of a recently introduced sweeping preconditioner for high frequency heterogeneous Helmholtz equations is presented along with experimental results for the full SEG/EAGE Overthrust seismic model at 30 Hz, using eight grid points per characteristic wavelength; to the best of our knowledge, this is the largest 3D Helmholtz calculation to date, and our algorithm only required fifteen minutes to complete on 8192 cores. While the setup and application costs of the sweeping preconditioner are trivially $\\Theta(N^{4/3})$ and $\\Theta(N \\log N)$, this paper provides strong empirical evidence that the number of iterations required for the convergence of GMRES equipped with the sweeping preconditioner is essentially independent of the frequency of the problem. Generalizations to time-harmonic Maxwell and linear-elastic wave equations are also briefly discussed since the techniques behind our parallelization are not specific to the Helmholtz equation.
Parallel 3D Finite Element Particle-in-Cell Simulations with Pic3P
Energy Technology Data Exchange (ETDEWEB)
Candel, A.; Kabel, A.; Lee, L.; Li, Z.; Ng, C.; Schussman, G.; Ko, K.; /SLAC; Ben-Zvi, I.; Kewisch, J.; /Brookhaven
2009-06-19
SLAC's Advanced Computations Department (ACD) has developed the parallel 3D Finite Element electromagnetic Particle-In-Cell code Pic3P. Designed for simulations of beam-cavity interactions dominated by space charge effects, Pic3P solves the complete set of Maxwell-Lorentz equations self-consistently and includes space-charge, retardation and boundary effects from first principles. Higher-order Finite Element methods with adaptive refinement on conformal unstructured meshes lead to highly efficient use of computational resources. Massively parallel processing with dynamic load balancing enables large-scale modeling of photoinjectors with unprecedented accuracy, aiding the design and operation of next-generation accelerator facilities. Applications include the LCLS RF gun and the BNL polarized SRF gun.
Three-dimensional parallel UNIPIC-3D code for simulations of high-power microwave devices
Wang, Jianguo; Chen, Zaigao; Wang, Yue; Zhang, Dianhui; Liu, Chunliang; Li, Yongdong; Wang, Hongguang; Qiao, Hailiang; Fu, Meiyan; Yuan, Yuan
2010-07-01
This paper introduces a self-developed, three-dimensional parallel fully electromagnetic particle simulation code UNIPIC-3D. In this code, the electromagnetic fields are updated using the second-order, finite-difference time-domain method, and the particles are moved using the relativistic Newton-Lorentz force equation. The electromagnetic field and particles are coupled through the current term in Maxwell's equations. Two numerical examples are used to verify the algorithms adopted in this code, numerical results agree well with theoretical ones. This code can be used to simulate the high-power microwave (HPM) devices, such as the relativistic backward wave oscillator, coaxial vircator, and magnetically insulated line oscillator, etc. UNIPIC-3D is written in the object-oriented C++ language and can be run on a variety of platforms including WINDOWS, LINUX, and UNIX. Users can use the graphical user's interface to create the complex geometric structures of the simulated HPM devices, which can be automatically meshed by UNIPIC-3D code. This code has a powerful postprocessor which can display the electric field, magnetic field, current, voltage, power, spectrum, momentum of particles, etc. For the sake of comparison, the results computed by using the two-and-a-half-dimensional UNIPIC code are also provided for the same parameters of HPM devices, the numerical results computed from these two codes agree well with each other.
3D Body Scanning Measurement System Associated with RF Imaging, Zero-padding and Parallel Processing
Directory of Open Access Journals (Sweden)
Kim Hyung Tae
2016-04-01
Full Text Available This work presents a novel signal processing method for high-speed 3D body measurements using millimeter waves with a general processing unit (GPU and zero-padding fast Fourier transform (ZPFFT. The proposed measurement system consists of a radio-frequency (RF antenna array for a penetrable measurement, a high-speed analog-to-digital converter (ADC for significant data acquisition, and a general processing unit for fast signal processing. The RF waves of the transmitter and the receiver are converted to real and imaginary signals that are sampled by a high-speed ADC and synchronized with the kinematic positions of the scanner. Because the distance between the surface and the antenna is related to the peak frequency of the conjugate signals, a fast Fourier transform (FFT is applied to the signal processing after the sampling. The sampling time is finite owing to a short scanning time, and the physical resolution needs to be increased; further, zero-padding is applied to interpolate the spectra of the sampled signals to consider a 1/m floating point frequency. The GPU and parallel algorithm are applied to accelerate the speed of the ZPFFT because of the large number of additional mathematical operations of the ZPFFT. 3D body images are finally obtained by spectrograms that are the arrangement of the ZPFFT in a 3D space.
3D Navier-Stokes Time Accurate Solutions Using Multipartitioning Parallel Computation Methodology
Zha, Ge-Cheng
1998-01-01
A parallel CFD code solving 3D time accurate Navier-Stokes equations with multipartitioning parallel Methodology is being developed in collaboration with Ohio State University within the Air Vehicle Directorate, at Wright Patterson Air Force Base. The advantage of the multipartitioning parallel method is that the domain decomposition will not introduce domain boundaries for the implicit operators. A ring structure data communication is employed so that the implicit time accurate method can be implemented for multi-processors with the same accuracy as for the single processor. No sub-iteration is needed at the domain boundaries. The code has been validated for some typical unsteady flows, which include Coutte Flow, flow passing a cylinder. The code now is being employed for a large scale time accurate wall jet transient flow computation. 'ne preliminary results are promising. The mesh has been refined to capture more details of the flow field. The mesh refinement computation is in progress and would be difficult to successfully implement without the parallel computation techniques used. A modified version of the code with more efficient inversion of the diagonalized block matrix is currently being tested.
Parallel CAE system for large-scale 3-D finite element analyses
International Nuclear Information System (INIS)
This paper describes a new pre- and post-processing system for the automation of large-scale 3D finite element analyses. In the pre-processing stage, a geometry model lo be analyzed is defined by a user through an interactive operation with a 3D graphics editor. The analysis model is constructed by adding analysis conditions and a mesh refinement information lo the geometry model. The mesh refinement information, i.e. a nodal density distribution over the whole analysis domain is initially defined by superposing several locally optimum nodal patterns stored in the nodal pattern database of the system. Nodes and tetrahedral elements are generated using some computational geometry techniques whose processing speed is almost proportional to the total number of nodes. In the post-processing stage, scalar and vector values are evaluated at arbitrary points in the analysis domain, and displayed as equi-contours, vector lines, iso-surfaces, particle plots and realtime animation by means of scientific visualization techniques. The present system is also capable of mesh optimization. A posteriori error distribution over the whole analysis domain is obtained based on the simple error estimator proposed by Zienkiewicz and Zhu. The nodal density distribution to be used for mesh generation is optimized referring the obtained error distribution. Finally nodes and tetrahedral elements are re-generated. The present remeshing method is one of the global hr-version mesh adaptation methods. To deal with large-scale 3D finite element analyses in a reasonable computational time and memory requirement, a distributed/parallel processing technique is applied to some part of the present system. Fundamental performances of the present system are clearly demonstrated through 3D thermal conduction analyses. (author)
Design and verification of an ultra-precision 3D-coordinate measuring machine with parallel drives
Bos, Edwin; Moers, Ton; van Riel, Martijn
2015-08-01
An ultra-precision 3D coordinate measuring machine (CMM), the TriNano N100, has been developed. In our design, the workpiece is mounted on a 3D stage, which is driven by three parallel drives that are mutually orthogonal. The linear drives support the 3D stage using vacuum preloaded (VPL) air bearings, whereby each drive determines the position of the 3D stage along one translation direction only. An exactly constrained design results in highly repeatable machine behavior. Furthermore, the machine complies with the Abbé principle over its full measurement range and the application of parallel drives allows for excellent dynamic behavior. The design allows a 3D measurement uncertainty of 100 nanometers in a measurement range of 200 cubic centimeters. Verification measurements using a Gannen XP 3D tactile probing system on a spherical artifact show a standard deviation in single point repeatability of around 2 nm in each direction.
Recent progress in 3D EM/EM-PIC simulation with ARGUS and parallel ARGUS
International Nuclear Information System (INIS)
ARGUS is an integrated, 3-D, volumetric simulation model for systems involving electric and magnetic fields and charged particles, including materials embedded in the simulation region. The code offers the capability to carry out time domain and frequency domain electromagnetic simulations of complex physical systems. ARGUS offers a boolean solid model structure input capability that can include essentially arbitrary structures on the computational domain, and a modular architecture that allows multiple physics packages to access the same data structure and to share common code utilities. Physics modules are in place to compute electrostatic and electromagnetic fields, the normal modes of RF structures, and self-consistent particle-in-cell (PIC) simulation in either a time dependent mode or a steady state mode. The PIC modules include multiple particle species, the Lorentz equations of motion, and algorithms for the creation of particles by emission from material surfaces, injection onto the grid, and ionization. In this paper, we present an updated overview of ARGUS, with particular emphasis given in recent algorithmic and computational advances. These include a completely rewritten frequency domain solver which efficiently treats lossy materials and periodic structures, a parallel version of ARGUS with support for both shared memory parallel vector (i.e. CRAY) machines and distributed memory massively parallel MIMD systems, and numerous new applications of the code
3-D readout-electronics packaging for high-bandwidth massively paralleled imager
Kwiatkowski, Kris; Lyke, James
2007-12-18
Dense, massively parallel signal processing electronics are co-packaged behind associated sensor pixels. Microchips containing a linear or bilinear arrangement of photo-sensors, together with associated complex electronics, are integrated into a simple 3-D structure (a "mirror cube"). An array of photo-sensitive cells are disposed on a stacked CMOS chip's surface at a 45.degree. angle from light reflecting mirror surfaces formed on a neighboring CMOS chip surface. Image processing electronics are held within the stacked CMOS chip layers. Electrical connections couple each of said stacked CMOS chip layers and a distribution grid, the connections for distributing power and signals to components associated with each stacked CSMO chip layer.
The new Exponential Directional Iterative (EDI) 3-D Sn scheme for parallel adaptive differencing
International Nuclear Information System (INIS)
The new Exponential Directional Iterative (EDI) discrete ordinates (Sn) scheme for 3-D Cartesian Coordinates is presented. The EDI scheme is a logical extension of the positive, efficient Exponential Directional Weighted (EDW) Sn scheme currently used as the third level of the adaptive spatial differencing algorithm in the PENTRAN parallel discrete ordinates solver. Here, the derivation and advantages of the EDI scheme are presented; EDI uses EDW-rendered exponential coefficients as initial starting values to begin a fixed point iteration of the exponential coefficients. One issue that required evaluation was an iterative cutoff criterion to prevent the application of an unstable fixed point iteration; although this was needed in some cases, it was readily treated with a default to EDW. Iterative refinement of the exponential coefficients in EDI typically converged in fewer than four fixed point iterations. Moreover, EDI yielded more accurate angular fluxes compared to the other schemes tested, particularly in streaming conditions. Overall, it was found that the EDI scheme was up to an order of magnitude more accurate than the EDW scheme on a given mesh interval in streaming cases, and is potentially a good candidate as a fourth-level differencing scheme in the PENTRAN adaptive differencing sequence. The 3-D Cartesian computational cost of EDI was only about 20% more than the EDW scheme, and about 40% more than Diamond Zero (DZ). More evaluation and testing are required to determine suitable upgrade metrics for EDI to be fully integrated into the current adaptive spatial differencing sequence in PENTRAN. (author)
Rastogi, Richa; Srivastava, Abhishek; Khonde, Kiran; Sirasala, Kirannmayi M.; Londhe, Ashutosh; Chavhan, Hitesh
2015-07-01
This paper presents an efficient parallel 3D Kirchhoff depth migration algorithm suitable for current class of multicore architecture. The fundamental Kirchhoff depth migration algorithm exhibits inherent parallelism however, when it comes to 3D data migration, as the data size increases the resource requirement of the algorithm also increases. This challenges its practical implementation even on current generation high performance computing systems. Therefore a smart parallelization approach is essential to handle 3D data for migration. The most compute intensive part of Kirchhoff depth migration algorithm is the calculation of traveltime tables due to its resource requirements such as memory/storage and I/O. In the current research work, we target this area and develop a competent parallel algorithm for post and prestack 3D Kirchhoff depth migration, using hybrid MPI+OpenMP programming techniques. We introduce a concept of flexi-depth iterations while depth migrating data in parallel imaging space, using optimized traveltime table computations. This concept provides flexibility to the algorithm by migrating data in a number of depth iterations, which depends upon the available node memory and the size of data to be migrated during runtime. Furthermore, it minimizes the requirements of storage, I/O and inter-node communication, thus making it advantageous over the conventional parallelization approaches. The developed parallel algorithm is demonstrated and analysed on Yuva II, a PARAM series of supercomputers. Optimization, performance and scalability experiment results along with the migration outcome show the effectiveness of the parallel algorithm.
In situ patterned micro 3D liver constructs for parallel toxicology testing in a fluidic device.
Skardal, Aleksander; Devarasetty, Mahesh; Soker, Shay; Hall, Adam R
2015-09-01
3D tissue models are increasingly being implemented for drug and toxicology testing. However, the creation of tissue-engineered constructs for this purpose often relies on complex biofabrication techniques that are time consuming, expensive, and difficult to scale up. Here, we describe a strategy for realizing multiple tissue constructs in a parallel microfluidic platform using an approach that is simple and can be easily scaled for high-throughput formats. Liver cells mixed with a UV-crosslinkable hydrogel solution are introduced into parallel channels of a sealed microfluidic device and photopatterned to produce stable tissue constructs in situ. The remaining uncrosslinked material is washed away, leaving the structures in place. By using a hydrogel that specifically mimics the properties of the natural extracellular matrix, we closely emulate native tissue, resulting in constructs that remain stable and functional in the device during a 7-day culture time course under recirculating media flow. As proof of principle for toxicology analysis, we expose the constructs to ethyl alcohol (0-500 mM) and show that the cell viability and the secretion of urea and albumin decrease with increasing alcohol exposure, while markers for cell damage increase. PMID:26355538
Flock, M; Klahr, H; Mignone, A
2009-01-01
We employ the PLUTO code for computational astrophysics to assess and compare the validity of different numerical algorithms on simulations of the magneto-rotational instability in 3D accretion disks. In particular we stress on the importance of using a consistent upwind reconstruction of the electro-motive force (EMF) when using the constrained transport (CT) method to avoid the onset of numerical instabilities. We show that the electro-motive force (EMF) reconstruction in the classical constrained transport (CT) method for Godunov schemes drives a numerical instability. The well-studied linear growth of magneto-rotational instability (MRI) is used as a benchmark for an inter-code comparison of PLUTO and ZeusMP. We reproduce the analytical results for linear MRI growth in 3D global MHD simulations and present a robust and accurate Godunov code which can be used for 3D accretion disk simulations in curvilinear coordinate systems.
Jiang, Chaowei; Wu, S T; Hu, Qiang
2012-01-01
We apply a data-driven MHD model to investigate the three-dimensional (3D) magnetic field of NOAA active region (AR) 11117 around the time of a C-class confined flare occurred on 2010 October 25. The MHD model, based on the spacetime conservation-element and solution-element (CESE) scheme, is designed to focus on the magnetic-field evolution and to consider a simplified solar atomsphere with finite plasma $\\beta$. Magnetic vector-field data derived from the observations at the photoshpere is inputted directly to constrain the model. Assuming that the dynamic evolution of the coronal magnetic field can be approximated by successive equilibria, we solve a time sequence of MHD equilibria basing on a set of vector magnetograms for AR 11117 taken by the Helioseismic and Magnetic Imager (HMI) on board the {\\it Solar Dynamic Observatory (SDO)} around the time of flare. The model qualitatively reproduces the basic structures of the 3D magnetic field, as supported by the visual similarity between the field lines and t...
Application of the SDD-CMFD acceleration method to parallel 3-D MOC transport
International Nuclear Information System (INIS)
In this paper the spatial domain decomposed coarse mesh finite difference (SDD-CMFD) method is applied as an acceleration technique to a parallel implementation of the 3-D method of characteristics (MOC) for a series of problems to assess the effectiveness of the method for practical applications. The SDD-CMFD method assumes the problem domain is divided into independent parallelizable sweep regions globally linked within the framework of a CMFD-like system. Results obtained with the MPACT code are examined for three problems. The first analysis is of multi-dimensional, 1-group, infinite homogeneous media problems that compare the numerically-measured rate of convergence to that predicted by the 1-D Fourier analysis performed in previous work. It is observed that the rate of convergence of the numerical experiments has similar behavior to that predicted by the Fourier analysis for variations of optical thickness in the coarse cell and spatial subdomain. However, the rate of convergence is measured to be slightly less than that predicted by Fourier analysis. The algorithm is applied to the Takeda 3-D neutron transport benchmark, and compared to a standard source iteration. In the analysis of this problem, the method is observed to speed up convergence, significantly reducing the number of outer iterations by a factor of nearly 20x and reducing the overall run time by a factor of about 10x. Finally, the method is applied to a realistic PWR assembly, which is observed to converge in 7 outer iterations, a factor of 150x less than source iteration, using the SDD-CMFD acceleration method, and have an estimated speedup of ∼34x over conventional source iteration. (author)
3D magnetospheric parallel hybrid multi-grid method applied to planet-plasma interactions
Leclercq, L.; Modolo, R.; Leblanc, F.; Hess, S.; Mancini, M.
2016-03-01
We present a new method to exploit multiple refinement levels within a 3D parallel hybrid model, developed to study planet-plasma interactions. This model is based on the hybrid formalism: ions are kinetically treated whereas electrons are considered as a inertia-less fluid. Generally, ions are represented by numerical particles whose size equals the volume of the cells. Particles that leave a coarse grid subsequently entering a refined region are split into particles whose volume corresponds to the volume of the refined cells. The number of refined particles created from a coarse particle depends on the grid refinement rate. In order to conserve velocity distribution functions and to avoid calculations of average velocities, particles are not coalesced. Moreover, to ensure the constancy of particles' shape function sizes, the hybrid method is adapted to allow refined particles to move within a coarse region. Another innovation of this approach is the method developed to compute grid moments at interfaces between two refinement levels. Indeed, the hybrid method is adapted to accurately account for the special grid structure at the interfaces, avoiding any overlapping grid considerations. Some fundamental test runs were performed to validate our approach (e.g. quiet plasma flow, Alfven wave propagation). Lastly, we also show a planetary application of the model, simulating the interaction between Jupiter's moon Ganymede and the Jovian plasma.
Chien-Lun Hou; Hao-Ting Lin; Mao-Hsiung Chiang
2011-01-01
In this paper, a stereo vision 3D position measurement system for a three-axial pneumatic parallel mechanism robot arm is presented. The stereo vision 3D position measurement system aims to measure the 3D trajectories of the end-effector of the robot arm. To track the end-effector of the robot arm, the circle detection algorithm is used to detect the desired target and the SAD algorithm is used to track the moving target and to search the corresponding target location along the conjugate epip...
Hao-Ting Lin; Mao-Hsiung Chiang
2011-01-01
This study aimed to develop a novel 3D parallel mechanism robot driven by three vertical-axial pneumatic actuators with a stereo vision system for path tracking control. The mechanical system and the control system are the primary novel parts for developing a 3D parallel mechanism robot. In the mechanical system, a 3D parallel mechanism robot contains three serial chains, a fixed base, a movable platform and a pneumatic servo system. The parallel mechanism are designed and analyzed first for ...
Wakefield Simulation of CLIC PETS Structure Using Parallel 3D Finite Element Time-Domain Solver T3P
Energy Technology Data Exchange (ETDEWEB)
Candel, A.; Kabel, A.; Lee, L.; Li, Z.; Ng, C.; Schussman, G.; Ko, K.; /SLAC; Syratchev, I.; /CERN
2009-06-19
In recent years, SLAC's Advanced Computations Department (ACD) has developed the parallel 3D Finite Element electromagnetic time-domain code T3P. Higher-order Finite Element methods on conformal unstructured meshes and massively parallel processing allow unprecedented simulation accuracy for wakefield computations and simulations of transient effects in realistic accelerator structures. Applications include simulation of wakefield damping in the Compact Linear Collider (CLIC) power extraction and transfer structure (PETS).
Design and verification of an ultra-precision 3D-coordinate measuring machine with parallel drives
International Nuclear Information System (INIS)
An ultra-precision 3D coordinate measuring machine (CMM), the TriNano N100, has been developed. In our design, the workpiece is mounted on a 3D stage, which is driven by three parallel drives that are mutually orthogonal. The linear drives support the 3D stage using vacuum preloaded (VPL) air bearings, whereby each drive determines the position of the 3D stage along one translation direction only. An exactly constrained design results in highly repeatable machine behavior. Furthermore, the machine complies with the Abbé principle over its full measurement range and the application of parallel drives allows for excellent dynamic behavior. The design allows a 3D measurement uncertainty of 100 nanometers in a measurement range of 200 cubic centimeters. Verification measurements using a Gannen XP 3D tactile probing system on a spherical artifact show a standard deviation in single point repeatability of around 2 nm in each direction. (paper)
Dharmaraj, Christopher D; Thadikonda, Kishan; Fletcher, Anthony R; Doan, Phuc N; Devasahayam, Nallathamby; Matsumoto, Shingo; Johnson, Calvin A; Cook, John A; Mitchell, James B; Subramanian, Sankaran; Krishna, Murali C
2009-01-01
Three-dimensional Oximetric Electron Paramagnetic Resonance Imaging using the Single Point Imaging modality generates unpaired spin density and oxygen images that can readily distinguish between normal and tumor tissues in small animals. It is also possible with fast imaging to track the changes in tissue oxygenation in response to the oxygen content in the breathing air. However, this involves dealing with gigabytes of data for each 3D oximetric imaging experiment involving digital band pass filtering and background noise subtraction, followed by 3D Fourier reconstruction. This process is rather slow in a conventional uniprocessor system. This paper presents a parallelization framework using OpenMP runtime support and parallel MATLAB to execute such computationally intensive programs. The Intel compiler is used to develop a parallel C++ code based on OpenMP. The code is executed on four Dual-Core AMD Opteron shared memory processors, to reduce the computational burden of the filtration task significantly. The results show that the parallel code for filtration has achieved a speed up factor of 46.66 as against the equivalent serial MATLAB code. In addition, a parallel MATLAB code has been developed to perform 3D Fourier reconstruction. Speedup factors of 4.57 and 4.25 have been achieved during the reconstruction process and oximetry computation, for a data set with 23 x 23 x 23 gradient steps. The execution time has been computed for both the serial and parallel implementations using different dimensions of the data and presented for comparison. The reported system has been designed to be easily accessible even from low-cost personal computers through local internet (NIHnet). The experimental results demonstrate that the parallel computing provides a source of high computational power to obtain biophysical parameters from 3D EPR oximetric imaging, almost in real-time. PMID:19672315
Directory of Open Access Journals (Sweden)
Christopher D. Dharmaraj
2009-01-01
Full Text Available Three-dimensional Oximetric Electron Paramagnetic Resonance Imaging using the Single Point Imaging modality generates unpaired spin density and oxygen images that can readily distinguish between normal and tumor tissues in small animals. It is also possible with fast imaging to track the changes in tissue oxygenation in response to the oxygen content in the breathing air. However, this involves dealing with gigabytes of data for each 3D oximetric imaging experiment involving digital band pass filtering and background noise subtraction, followed by 3D Fourier reconstruction. This process is rather slow in a conventional uniprocessor system. This paper presents a parallelization framework using OpenMP runtime support and parallel MATLAB to execute such computationally intensive programs. The Intel compiler is used to develop a parallel C++ code based on OpenMP. The code is executed on four Dual-Core AMD Opteron shared memory processors, to reduce the computational burden of the filtration task significantly. The results show that the parallel code for filtration has achieved a speed up factor of 46.66 as against the equivalent serial MATLAB code. In addition, a parallel MATLAB code has been developed to perform 3D Fourier reconstruction. Speedup factors of 4.57 and 4.25 have been achieved during the reconstruction process and oximetry computation, for a data set with 23×23×23 gradient steps. The execution time has been computed for both the serial and parallel implementations using different dimensions of the data and presented for comparison. The reported system has been designed to be easily accessible even from low-cost personal computers through local internet (NIHnet. The experimental results demonstrate that the parallel computing provides a source of high computational power to obtain biophysical parameters from 3D EPR oximetric imaging, almost in real-time.
Energy Technology Data Exchange (ETDEWEB)
Sofronov, I.D.; Voronin, B.L.; Butnev, O.I. [VNIIEF (Russian Federation)] [and others
1997-12-31
The aim of the work performed is to develop a 3D parallel program for numerical calculation of gas dynamics problem with heat conductivity on distributed memory computational systems (CS), satisfying the condition of numerical result independence from the number of processors involved. Two basically different approaches to the structure of massive parallel computations have been developed. The first approach uses the 3D data matrix decomposition reconstructed at temporal cycle and is a development of parallelization algorithms for multiprocessor CS with shareable memory. The second approach is based on using a 3D data matrix decomposition not reconstructed during a temporal cycle. The program was developed on 8-processor CS MP-3 made in VNIIEF and was adapted to a massive parallel CS Meiko-2 in LLNL by joint efforts of VNIIEF and LLNL staffs. A large number of numerical experiments has been carried out with different number of processors up to 256 and the efficiency of parallelization has been evaluated in dependence on processor number and their parameters.
Directory of Open Access Journals (Sweden)
Chien-Lun Hou
2011-02-01
Full Text Available In this paper, a stereo vision 3D position measurement system for a three-axial pneumatic parallel mechanism robot arm is presented. The stereo vision 3D position measurement system aims to measure the 3D trajectories of the end-effector of the robot arm. To track the end-effector of the robot arm, the circle detection algorithm is used to detect the desired target and the SAD algorithm is used to track the moving target and to search the corresponding target location along the conjugate epipolar line in the stereo pair. After camera calibration, both intrinsic and extrinsic parameters of the stereo rig can be obtained, so images can be rectified according to the camera parameters. Thus, through the epipolar rectification, the stereo matching process is reduced to a horizontal search along the conjugate epipolar line. Finally, 3D trajectories of the end-effector are computed by stereo triangulation. The experimental results show that the stereo vision 3D position measurement system proposed in this paper can successfully track and measure the fifth-order polynomial trajectory and sinusoidal trajectory of the end-effector of the three- axial pneumatic parallel mechanism robot arm.
Bristeau, Marie-Odile; Glowinski, Roland; Périaux, Jacques; Rossi, Tuomo
1999-01-01
We consider the scattering problem for 3-D electromagnetic harmonic waves. The time-domain Maxwell's equations are solved and Exact Controllability methods improve the convergence of the solutions to the time-periodic ones for nonconvex obstacles. A least-squares formulation solved by a preconditioned conjugate gradient is introduced. The discretization is achieved in time by a centered finite difference scheme and in space by Lagrange finite elements. Numerical results for 3-D nonconvex scat...
ud-Doula, Asif; Owocki, Stanley P; Petit, Veronique; Townsend, Richard H D
2012-01-01
We present the first fully 3D MHD simulation for magnetic channeling and confinement of a radiatively driven, massive-star wind. The specific parameters are chosen to represent the prototypical slowly rotating magnetic O star \\theta^1 Ori C, for which centrifugal and other dynamical effects of rotation are negligible. The computed global structure in latitude and radius resembles that found in previous 2D simulations, with unimpeded outflow along open field lines near the magnetic poles, and a complex equatorial belt of inner wind trapping by closed loops near the stellar surface, giving way to outflow above the Alfv\\'{e}n radius. In contrast to this previous 2D work, the 3D simulation described here now also shows how this complex structure fragments in azimuth, forming distinct clumps of closed loop infall within the Alfv\\'{e}n radius, transitioning in the outer wind to radial spokes of enhanced density with characteristic azimuthal separation of $15-20 \\degr$. Applying these results in a 3D code for line r...
Haberreiter, M.; Guerreiro, N.; Hansteen, V. H.; Schmutz, W. K.
2015-12-01
The physical mechanism that heats the solar corona is one of the still open science questions in solar physics. One of the proposed mechanism for coronal heating are nanoflares. To investigate their role in coronal heating we study the properties of the small-scale heating events in the solar atmosphere using 3D MHD simulations. We present a method to identify and track these heating events in time which allows us to study their life time, energy, and spectral signatures. These spectal signatures will be compared with available spectrosopic observations obtained with IRIS and SUMER. Ultimately, these results will be important for the coordinated scientific exploitation of SPICE and EUI along with other instruments onboard Solar Orbiter to address the coronal heating problem.
Characterization of a parallel-beam CCD optical-CT apparatus for 3D radiation dosimetry
Krstajic, Nikola; Doran, Simon J.
2007-07-01
3D measurement of optical attenuation is of interest in a variety of fields of biomedical importance, including spectrophotometry, optical projection tomography (OPT) and analysis of 3D radiation dosimeters. Accurate, precise and economical 3D measurements of optical density (OD) are a crucial step in enabling 3D radiation dosimeters to enter wider use in clinics. Polymer gels and Fricke gels, as well as dosimeters not based around gels, have been characterized for 3D dosimetry over the last two decades. A separate problem is the verification of the best readout method. A number of different imaging modalities (magnetic resonance imaging (MRI), optical CT, x-ray CT and ultrasound) have been suggested for the readout of information from 3D dosimeters. To date only MRI and laser-based optical CT have been characterized in detail. This paper describes some initial steps we have taken in establishing charge coupled device (CCD)-based optical CT as a viable alternative to MRI for readout of 3D radiation dosimeters. The main advantage of CCD-based optical CT over traditional laser-based optical CT is a speed increase of at least an order of magnitude, while the simplicity of its architecture would lend itself to cheaper implementation than both MRI and laser-based optical CT if the camera itself were inexpensive enough. Specifically, we study the following aspects of optical metrology, using high quality test targets: (i) calibration and quality of absorbance measurements and the camera requirements for 3D dosimetry; (ii) the modulation transfer function (MTF) of individual projections; (iii) signal-to-noise ratio (SNR) in the projection and reconstruction domains; (iv) distortion in the projection domain, depth-of-field (DOF) and telecentricity. The principal results for our current apparatus are as follows: (i) SNR of optical absorbance in projections is better than 120:1 for uniform phantoms in absorbance range 0.3 to 1.6 (and better than 200:1 for absorbances 1.0 to
Signatures of small-scale heating events in EUV spectral lines as modeled from 3D MHD simulations
Guerreiro, Nuno; Haberreiter, Margit; Hansteen, Viggo; Curdt, Werner; Schmutz, Werner
2014-05-01
We aim at understanding the implications of small scale heating events in the solar atmosphere for the variations of the solar spectral irradiance. We present a technique for identification and characterization of these events in 3D simulations of the solar atmosphere. An accurate property determination of these events in time and space will help us to understand how spectral lines, in particular in the EUV, respond to them and which kind of spectral signatures one would expect to find in observations as from SOHO/SUMER and eventually from future space missions, as for example observations by SPICE on board Solar Orbiter.
Parallel Adaptive Computation of Blood Flow in a 3D ``Whole'' Body Model
Zhou, M.; Figueroa, C. A.; Taylor, C. A.; Sahni, O.; Jansen, K. E.
2008-11-01
Accurate numerical simulations of vascular trauma require the consideration of a larger portion of the vasculature than previously considered, due to the systemic nature of the human body's response. A patient-specific 3D model composed of 78 connected arterial branches extending from the neck to the lower legs is constructed to effectively represent the entire body. Recently developed outflow boundary conditions that appropriately represent the downstream vasculature bed which is not included in the 3D computational domain are applied at 78 outlets. In this work, the pulsatile blood flow simulations are started on a fairly uniform, unstructured mesh that is subsequently adapted using a solution-based approach to efficiently resolve the flow features. The adapted mesh contains non-uniform, anisotropic elements resulting in resolution that conforms with the physical length scales present in the problem. The effects of the mesh resolution on the flow field are studied, specifically on relevant quantities of pressure, velocity and wall shear stress.
A first 3D parallel diffusion solver based on a mixed dual finite element approximation
International Nuclear Information System (INIS)
This paper presents a new extension of the mixed dual finite element approximation of the diffusion equation in rectangular geometry. The mixed dual formulation has been extended in order to take into account discontinuity conditions. The iterative method is based on an alternating direction method which uses the current as unknown. This method is parallelizable and have very fast convergence properties. Some results for a 3D calculation on the CRAY computer are presented. (orig.)
Compensation of errors in robot machining with a parallel 3D-piezo compensation mechanism
Schneider, Ulrich; Drust, Manuel; Puzik, Arnold; Verl, Alexander
2013-01-01
This paper proposes an approach for a 3D-Piezo Compensation Mechanism unit that is capable of fast and accurate adaption of the spindle position to enhance machining by robots. The mechanical design is explained which focuses on low mass, good stiffness and high bandwidth in order to allow compensating for errors beyond the bandwidth of the robot. In addition to previous works [7] and [9], an advanced actuation design is presented enabling movements in three translational axes allowing a work...
BioFVM: an efficient, parallelized diffusive transport solver for 3-D biological simulations
Ghaffarizadeh, Ahmadreza; Friedman, Samuel H.; Macklin, Paul
2015-01-01
Motivation: Computational models of multicellular systems require solving systems of PDEs for release, uptake, decay and diffusion of multiple substrates in 3D, particularly when incorporating the impact of drugs, growth substrates and signaling factors on cell receptors and subcellular systems biology. Results: We introduce BioFVM, a diffusive transport solver tailored to biological problems. BioFVM can simulate release and uptake of many substrates by cell and bulk sources, diffusion and de...
Wang, S.; De Hoop, M. V.; Xia, J.; Li, X.
2011-12-01
We consider the modeling of elastic seismic wave propagation on a rectangular domain via the discretization and solution of the inhomogeneous coupled Helmholtz equation in 3D, by exploiting a parallel multifrontal sparse direct solver equipped with Hierarchically Semi-Separable (HSS) structure to reduce the computational complexity and storage. In particular, we are concerned with solving this equation on a large domain, for a large number of different forcing terms in the context of seismic problems in general, and modeling in particular. We resort to a parsimonious mixed grid finite differences scheme for discretizing the Helmholtz operator and Perfect Matched Layer boundaries, resulting in a non-Hermitian matrix. We make use of a nested dissection based domain decomposition, and introduce an approximate direct solver by developing a parallel HSS matrix compression, factorization, and solution approach. We cast our massive parallelization in the framework of the multifrontal method. The assembly tree is partitioned into local trees and a global tree. The local trees are eliminated independently in each processor, while the global tree is eliminated through massive communication. The solver for the inhomogeneous equation is a parallel hybrid between multifrontal and HSS structure. The computational complexity associated with the factorization is almost linear with the size of the Helmholtz matrix. Our numerical approach can be compared with the spectral element method in 3D seismic applications.
Parallel load balancing strategy for Volume-of-Fluid methods on 3-D unstructured meshes
Jofre, Lluís; Borrell, Ricard; Lehmkuhl, Oriol; Oliva, Assensi
2015-02-01
Volume-of-Fluid (VOF) is one of the methods of choice to reproduce the interface motion in the simulation of multi-fluid flows. One of its main strengths is its accuracy in capturing sharp interface geometries, although requiring for it a number of geometric calculations. Under these circumstances, achieving parallel performance on current supercomputers is a must. The main obstacle for the parallelization is that the computing costs are concentrated only in the discrete elements that lie on the interface between fluids. Consequently, if the interface is not homogeneously distributed throughout the domain, standard domain decomposition (DD) strategies lead to imbalanced workload distributions. In this paper, we present a new parallelization strategy for general unstructured VOF solvers, based on a dynamic load balancing process complementary to the underlying DD. Its parallel efficiency has been analyzed and compared to the DD one using up to 1024 CPU-cores on an Intel SandyBridge based supercomputer. The results obtained on the solution of several artificially generated test cases show a speedup of up to ∼12× with respect to the standard DD, depending on the interface size, the initial distribution and the number of parallel processes engaged. Moreover, the new parallelization strategy presented is of general purpose, therefore, it could be used to parallelize any VOF solver without requiring changes on the coupled flow solver. Finally, note that although designed for the VOF method, our approach could be easily adapted to other interface-capturing methods, such as the Level-Set, which may present similar workload imbalances.
Parallel 3-D particle-in-cell modelling of charged ultrarelativistic beam dynamics
Boronina, Marina A.; Vshivkov, Vitaly A.
2015-12-01
> ) in supercolliders. We use the 3-D set of Maxwell's equations for the electromagnetic fields, and the Vlasov equation for the distribution function of the beam particles. The model incorporates automatically the longitudinal effects, which can play a significant role in the cases of super-high densities. We present numerical results for the dynamics of two focused ultrarelativistic beams with a size ratio 10:1:100. The results demonstrate high efficiency of the proposed computational methods and algorithms, which are applicable to a variety of problems in relativistic plasma physics.
Schultz, A.
2010-12-01
3D forward solvers lie at the core of inverse formulations used to image the variation of electrical conductivity within the Earth's interior. This property is associated with variations in temperature, composition, phase, presence of volatiles, and in specific settings, the presence of groundwater, geothermal resources, oil/gas or minerals. The high cost of 3D solutions has been a stumbling block to wider adoption of 3D methods. Parallel algorithms for modeling frequency domain 3D EM problems have not achieved wide scale adoption, with emphasis on fairly coarse grained parallelism using MPI and similar approaches. The communications bandwidth as well as the latency required to send and receive network communication packets is a limiting factor in implementing fine grained parallel strategies, inhibiting wide adoption of these algorithms. Leading Graphics Processor Unit (GPU) companies now produce GPUs with hundreds of GPU processor cores per die. The footprint, in silicon, of the GPU's restricted instruction set is much smaller than the general purpose instruction set required of a CPU. Consequently, the density of processor cores on a GPU can be much greater than on a CPU. GPUs also have local memory, registers and high speed communication with host CPUs, usually through PCIe type interconnects. The extremely low cost and high computational power of GPUs provides the EM geophysics community with an opportunity to achieve fine grained (i.e. massive) parallelization of codes on low cost hardware. The current generation of GPUs (e.g. NVidia Fermi) provides 3 billion transistors per chip die, with nearly 500 processor cores and up to 6 GB of fast (DDR5) GPU memory. This latest generation of GPU supports fast hardware double precision (64 bit) floating point operations of the type required for frequency domain EM forward solutions. Each Fermi GPU board can sustain nearly 1 TFLOP in double precision, and multiple boards can be installed in the host computer system. We
Simulation of the 3D viscoelastic free surface flow by a parallel corrected particle scheme
Jin-Lian, Ren; Tao, Jiang
2016-02-01
In this work, the behavior of the three-dimensional (3D) jet coiling based on the viscoelastic Oldroyd-B model is investigated by a corrected particle scheme, which is named the smoothed particle hydrodynamics with corrected symmetric kernel gradient and shifting particle technique (SPH_CS_SP) method. The accuracy and stability of SPH_CS_SP method is first tested by solving Poiseuille flow and Taylor-Green flow. Then the capacity for the SPH_CS_SP method to solve the viscoelastic fluid is verified by the polymer flow through a periodic array of cylinders. Moreover, the convergence of the SPH_CS_SP method is also investigated. Finally, the proposed method is further applied to the 3D viscoelastic jet coiling problem, and the influences of macroscopic parameters on the jet coiling are discussed. The numerical results show that the SPH_CS_SP method has higher accuracy and better stability than the traditional SPH method and other corrected SPH method, and can improve the tensile instability. Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20130436 and BK20150436) and the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (Grant No. 15KJB110025).
Wei-Fan Chen; Hsin-Yi Lai; Cha'o-Kuang Chen
2012-01-01
The velocity profile and pressure gradient of an unsteady state unidirectional MHD flow of Voigt fluids moving between two parallel surfaces under magnetic field effects are solved by the Laplace transform method. The flow motion between parallel surfaces is induced by a prescribed inlet volume flow rate that varies with time. Four cases of different inlet volume flow rates are considered in this study including (1) constant acceleration piston motion, (2) suddenly started flow, (3) linear ac...
Chu, Chunlei
2009-01-01
The major performance bottleneck of the parallel Fourier method on distributed memory systems is the network communication cost. In this study, we investigate the potential of using non‐blocking all‐to‐all communications to solve this problem by overlapping computation and communication. We present the runtime comparison of a 3D seismic modeling problem with the Fourier method using non‐blocking and blocking calls, respectively, on a Linux cluster. The data demonstrate that a performance improvement of up to 40% can be achieved by simply changing blocking all‐to‐all communication calls to non‐blocking ones to introduce the overlapping capability. A 3D reverse‐time migration result is also presented as an extension to the modeling work based on non‐blocking collective communications.
High-Performance Computation of Distributed-Memory Parallel 3D Voronoi and Delaunay Tessellation
Energy Technology Data Exchange (ETDEWEB)
Peterka, Tom; Morozov, Dmitriy; Phillips, Carolyn
2014-11-14
Computing a Voronoi or Delaunay tessellation from a set of points is a core part of the analysis of many simulated and measured datasets: N-body simulations, molecular dynamics codes, and LIDAR point clouds are just a few examples. Such computational geometry methods are common in data analysis and visualization; but as the scale of simulations and observations surpasses billions of particles, the existing serial and shared-memory algorithms no longer suffice. A distributed-memory scalable parallel algorithm is the only feasible approach. The primary contribution of this paper is a new parallel Delaunay and Voronoi tessellation algorithm that automatically determines which neighbor points need to be exchanged among the subdomains of a spatial decomposition. Other contributions include periodic and wall boundary conditions, comparison of our method using two popular serial libraries, and application to numerous science datasets.
Large-scale Parallel Unstructured Mesh Computations for 3D High-lift Analysis
Mavriplis, Dimitri J.; Pirzadeh, S.
1999-01-01
A complete "geometry to drag-polar" analysis capability for the three-dimensional high-lift configurations is described. The approach is based on the use of unstructured meshes in order to enable rapid turnaround for complicated geometries that arise in high-lift configurations. Special attention is devoted to creating a capability for enabling analyses on highly resolved grids. Unstructured meshes of several million vertices are initially generated on a work-station, and subsequently refined on a supercomputer. The flow is solved on these refined meshes on large parallel computers using an unstructured agglomeration multigrid algorithm. Good prediction of lift and drag throughout the range of incidences is demonstrated on a transport take-off configuration using up to 24.7 million grid points. The feasibility of using this approach in a production environment on existing parallel machines is demonstrated, as well as the scalability of the solver on machines using up to 1450 processors.
Calibration of 3-d.o.f. Translational Parallel Manipulators Using Leg Observations
Pashkevich, Anatoly; Wenger, Philippe; Gomolitsky, Roman
2009-01-01
The paper proposes a novel approach for the geometrical model calibration of quasi-isotropic parallel kinematic mechanisms of the Orthoglide family. It is based on the observations of the manipulator leg parallelism during motions between the specific test postures and employs a low-cost measuring system composed of standard comparator indicators attached to the universal magnetic stands. They are sequentially used for measuring the deviation of the relevant leg location while the manipulator moves the TCP along the Cartesian axes. Using the measured differences, the developed algorithm estimates the joint offsets and the leg lengths that are treated as the most essential parameters. Validity of the proposed calibration technique is confirmed by the experimental results.
Multiscale simulation of mixing processes using 3D-parallel, fluid-structure interaction techniques
Valette, Rudy; Vergnes, Bruno; Coupez, Thierry
2008-01-01
International audience This work focuses on the development of a general finite element code, called Ximex®, devoted to the three-dimensional direct simulation of mixing processes of complex fluids. The code is based on a simplified fictitious domain method coupled with a "level-set" approach to represent the rigid moving boundaries, such as screws and rotors, as well as free surfaces. These techniques, combined with the use of parallel computing, allow computing the time-dependent flow of...
A new ray-tracing scheme for 3D diffuse radiation transfer on highly parallel architectures
Tanaka, Satoshi; Okamoto, Takashi; Hasegawa, Kenji
2014-01-01
We present a new numerical scheme to solve the transfer of diffuse radiation on three-dimensional mesh grids which is efficient on processors with highly parallel architecture such as recently popular GPUs and CPUs with multi- and many-core architectures. The scheme is based on the ray-tracing method and the computational cost is proportional to $N_{\\rm m}^{5/3}$ where $N_{\\rm m}$ is the number of mesh grids, and is devised to compute the radiation transfer along each light-ray completely in parallel with appropriate grouping of the light-rays. We find that the performance of our scheme scales well with the number of adopted CPU cores and GPUs, and also that our scheme is nicely parallelized on a multi-node system by adopting the multiple wave front scheme, and the performance scales well with the amount of the computational resources. As numerical tests to validate our scheme and to give a physical criterion for the angular resolution of our ray-tracing scheme, we perform several numerical simulations of the...
Hybrid shared/distributed parallelism for 3D characteristics transport solvers
International Nuclear Information System (INIS)
In this paper, we will present a new hybrid parallel model for solving large-scale 3-dimensional neutron transport problems used in nuclear reactor simulations. Large heterogeneous reactor problems, like the ones that occurs when simulating Candu cores, have remained computationally intensive and impractical for routine applications on single-node or even vector computers. Based on the characteristics method, this new model is designed to solve the transport equation after distributing the calculation load on a network of shared memory multi-processors. The tracks are either generated on the fly at each characteristics sweep or stored in sequential files. The load balancing is taken into account by estimating the calculation load of tracks and by distributing batches of uniform load on each node of the network. Moreover, the communication overhead can be predicted after benchmarking the latency and bandwidth using appropriate network test suite. These models are useful for predicting the performance of the parallel applications and to analyze the scalability of the parallel systems. (authors)
Task-parallel implementation of 3D shortest path raytracing for geophysical applications
Giroux, Bernard; Larouche, Benoît
2013-04-01
This paper discusses two variants of the shortest path method and their parallel implementation on a shared-memory system. One variant is designed to perform raytracing in models with stepwise distributions of interval velocity while the other is better suited for continuous velocity models. Both rely on a discretization scheme where primary nodes are located at the corners of cuboid cells and where secondary nodes are found on the edges and sides of the cells. The parallel implementations allow raytracing concurrently for different sources, providing an attractive framework for ray-based tomography. The accuracy and performance of the implementations were measured by comparison with the analytic solution for a layered model and for a vertical gradient model. Mean relative error less than 0.2% was obtained with 5 secondary nodes for the layered model and 9 secondary nodes for the gradient model. Parallel performance depends on the level of discretization refinement, on the number of threads, and on the problem size, with the most determinant variable being the level of discretization refinement (number of secondary nodes). The results indicate that a good trade-off between speed and accuracy is achieved with the number of secondary nodes equal to 5. The programs are written in C++ and rely on the Standard Template Library and OpenMP.
A new ray-tracing scheme for 3D diffuse radiation transfer on highly parallel architectures
Tanaka, Satoshi; Yoshikawa, Kohji; Okamoto, Takashi; HASEGAWA, Kenji
2014-01-01
We present a new numerical scheme to solve the transfer of diffuse radiation on three-dimensional mesh grids which is efficient on processors with highly parallel architecture such as recently popular GPUs and CPUs with multi- and many-core architectures. The scheme is based on the ray-tracing method and the computational cost is proportional to $N_{\\rm m}^{5/3}$ where $N_{\\rm m}$ is the number of mesh grids, and is devised to compute the radiation transfer along each light-ray completely in ...
3D parallel-detection microwave tomography for clinical breast imaging
Energy Technology Data Exchange (ETDEWEB)
Epstein, N. R., E-mail: nepstein@ucalgary.ca [Schulich School of Engineering, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4 (Canada); Meaney, P. M. [Thayer School of Engineering, Dartmouth College, 14 Engineering Dr., Hanover, New Hampshire 03755 (United States); Paulsen, K. D. [Thayer School of Engineering, Dartmouth College, 14 Engineering Dr., Hanover, New Hampshire 03755 (United States); Department of Radiology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire 03755 (United States); Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire 03756 (United States); Advanced Surgical Center, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire 03756 (United States)
2014-12-15
A biomedical microwave tomography system with 3D-imaging capabilities has been constructed and translated to the clinic. Updates to the hardware and reconfiguration of the electronic-network layouts in a more compartmentalized construct have streamlined system packaging. Upgrades to the data acquisition and microwave components have increased data-acquisition speeds and improved system performance. By incorporating analog-to-digital boards that accommodate the linear amplification and dynamic-range coverage our system requires, a complete set of data (for a fixed array position at a single frequency) is now acquired in 5.8 s. Replacement of key components (e.g., switches and power dividers) by devices with improved operational bandwidths has enhanced system response over a wider frequency range. High-integrity, low-power signals are routinely measured down to −130 dBm for frequencies ranging from 500 to 2300 MHz. Adequate inter-channel isolation has been maintained, and a dynamic range >110 dB has been achieved for the full operating frequency range (500–2900 MHz). For our primary band of interest, the associated measurement deviations are less than 0.33% and 0.5° for signal amplitude and phase values, respectively. A modified monopole antenna array (composed of two interwoven eight-element sub-arrays), in conjunction with an updated motion-control system capable of independently moving the sub-arrays to various in-plane and cross-plane positions within the illumination chamber, has been configured in the new design for full volumetric data acquisition. Signal-to-noise ratios (SNRs) are more than adequate for all transmit/receive antenna pairs over the full frequency range and for the variety of in-plane and cross-plane configurations. For proximal receivers, in-plane SNRs greater than 80 dB are observed up to 2900 MHz, while cross-plane SNRs greater than 80 dB are seen for 6 cm sub-array spacing (for frequencies up to 1500 MHz). We demonstrate accurate
International Nuclear Information System (INIS)
The linear Boltzmann transport equation (BTE) is an integro-differential equation arising in deterministic models of neutral and charged particle transport. In slab (one-dimensional Cartesian) geometry and certain higher-dimensional cases, Diffusion Synthetic Acceleration (DSA) is known to be an effective algorithm for the iterative solution of the discretized BTE. Fourier and asymptotic analyses have been applied to various idealizations (e.g., problems on infinite domains with constant coefficients) to obtain sharp bounds on the convergence rate of DSA in such cases. While DSA has been shown to be a highly effective acceleration (or preconditioning) technique in one-dimensional problems, it has been observed to be less effective in higher dimensions. This is due in part to the expense of solving the related diffusion linear system. We investigate here the effectiveness of a parallel semicoarsening multigrid (SMG) solution approach to DSA preconditioning in several three dimensional problems. In particular, we consider the algorithmic and implementation scalability of a parallel SMG-DSA preconditioner on several types of test problems
Parallel unstructured mesh optimisation for 3D radiation transport and fluids modelling
International Nuclear Information System (INIS)
In this paper we describe the theory and application of a parallel mesh optimisation procedure to obtain self-adapting finite element solutions on unstructured tetrahedral grids. The optimisation procedure adapts the tetrahedral mesh to the solution of a radiation transport or fluid flow problem without sacrificing the integrity of the boundary (geometry), or internal boundaries (regions) of the domain. The objective is to obtain a mesh which has both a uniform interpolation error in any direction and the element shapes are of good quality. This is accomplished with use of a non-Euclidean (anisotropic) metric which is related to the Hessian of the solution field. Appropriate scaling of the metric enables the resolution of multi-scale phenomena as encountered in transient incompressible fluids and multigroup transport calculations. The resulting metric is used to calculate element size and shape quality. The mesh optimisation method is based on a series of mesh connectivity and node position searches of the landscape defining mesh quality which is gauged by a functional. The mesh modification thus fits the solution field(s) in an optimal manner. The parallel mesh optimisation/adaptivity procedure presented in this paper is of general applicability. We illustrate this by applying it to a transient CFD (computational fluid dynamics) problem. Incompressible flow past a cylinder at moderate Reynolds numbers is modelled to demonstrate that the mesh can follow transient flow features. (authors)
International Nuclear Information System (INIS)
A spherical harmonics research code (DANTE) has been developed which is compatible with parallel computer architectures. DANTE provides 3-D, multi-material, deterministic, transport capabilities using an arbitrary finite element mesh. The linearized Boltzmann transport equation is solved in a second order self-adjoint form utilizing a Galerkin finite element spatial differencing scheme. The core solver utilizes a preconditioned conjugate gradient algorithm. Other distinguishing features of the code include options for discrete-ordinates and simplified spherical harmonics angular differencing, an exact Marshak boundary treatment for arbitrarily oriented boundary faces, in-line matrix construction techniques to minimize memory consumption, and an effective diffusion based preconditioner for scattering dominated problems. Algorithm efficiency is demonstrated for a massively parallel SIMD architecture (CM-5), and compatibility with MPP multiprocessor platforms or workstation clusters is anticipated
3D interconnect architecture for high-bandwidth massively paralleled imager
International Nuclear Information System (INIS)
The proton radiography group at LANL is developing a fast (5x106 frames/s or 5 megaframe/s) multi-frame imager for use in dynamic radiographic experiments with high-energy protons. The mega-pixel imager will acquire and process a burst of 32 frames captured at inter-frame time ∼200 ns. Real time signal processing and storage requirements for entire frames, of rapidly acquired pixels impose severe demands on the space available for the electronics in a standard monolithic approach. As such, a 3D arrangement of detector and circuit elements is under development. In this scheme, the readout integrated circuits (ROICs) are stacked vertically (like playing cards) into a cube configuration. Another die, a fully depleted pixel photo-diode focal plane array (FPA), is bump bonded to one of the edge surfaces formed by the resulting ROIC cube. Recently, an assembly of the proof-of-principle test cube and sensor has been completed
3D interconnect architecture for high-bandwidth massively paralleled imager
Energy Technology Data Exchange (ETDEWEB)
Kwiatkowski, K. E-mail: krisk@lanl.gov; Lyke, J.C.; Wojnarowski, R.J.; Beche, J.-F.; Fillion, R.; Kapusta, C.; Millaud, J.; Saia, R.; Wilke, M.D
2003-08-21
The proton radiography group at LANL is developing a fast (5x10{sup 6} frames/s or 5 megaframe/s) multi-frame imager for use in dynamic radiographic experiments with high-energy protons. The mega-pixel imager will acquire and process a burst of 32 frames captured at inter-frame time {approx}200 ns. Real time signal processing and storage requirements for entire frames, of rapidly acquired pixels impose severe demands on the space available for the electronics in a standard monolithic approach. As such, a 3D arrangement of detector and circuit elements is under development. In this scheme, the readout integrated circuits (ROICs) are stacked vertically (like playing cards) into a cube configuration. Another die, a fully depleted pixel photo-diode focal plane array (FPA), is bump bonded to one of the edge surfaces formed by the resulting ROIC cube. Recently, an assembly of the proof-of-principle test cube and sensor has been completed.
Awatsuji, Yasuhiro; Xia, Peng; Wang, Yexin; Matoba, Osamu
2016-03-01
Digital holography is a technique of 3D measurement of object. The technique uses an image sensor to record the interference fringe image containing the complex amplitude of object, and numerically reconstructs the complex amplitude by computer. Parallel phase-shifting digital holography is capable of accurate 3D measurement of dynamic object. This is because this technique can reconstruct the complex amplitude of object, on which the undesired images are not superimposed, form a single hologram. The undesired images are the non-diffraction wave and the conjugate image which are associated with holography. In parallel phase-shifting digital holography, a hologram, whose phase of the reference wave is spatially and periodically shifted every other pixel, is recorded to obtain complex amplitude of object by single-shot exposure. The recorded hologram is decomposed into multiple holograms required for phase-shifting digital holography. The complex amplitude of the object is free from the undesired images is reconstructed from the multiple holograms. To validate parallel phase-shifting digital holography, a high-speed parallel phase-shifting digital holography system was constructed. The system consists of a Mach-Zehnder interferometer, a continuous-wave laser, and a high-speed polarization imaging camera. Phase motion picture of dynamic air flow sprayed from a nozzle was recorded at 180,000 frames per second (FPS) have been recorded by the system. Also phase motion picture of dynamic air induced by discharge between two electrodes has been recorded at 1,000,000 FPS, when high voltage was applied between the electrodes.
International Nuclear Information System (INIS)
This paper deals with 3D MHD modelling of the behaviour of a tetrafluoromethane (CF4) plasma arc in a batch reactor under peculiar conditions of low current (0.35 A) and very high pressure (50 atm). The first part of the manuscript presents results for a horizontal configuration of the reactor, as is undertaken experimentally. The model has led to the understanding of the instabilities observed experimentally for such unusual operating conditions. The curved shape of the arc and the sliding of the anodic arc root along the electrode have been revealed to be the source of the experimental instabilities. The latter part of the manuscript investigates the effect of two vertical configurations of the reactor; with a cathode at the top and cathode at the bottom to overcome the instabilities. In these reactor configurations, the arc is much more stable and stays centred in the middle of the electrodes. These configurations are more suitable for the stability of the arc discharge, but have to be verified experimentally. (paper)
A Case Study of a Hybrid Parallel 3D Surface Rendering Graphics Architecture
DEFF Research Database (Denmark)
Holten-Lund, Hans Erik; Madsen, Jan; Pedersen, Steen
1997-01-01
This paper presents a case study in the design strategy used inbuilding a graphics computer, for drawing very complex 3Dgeometric surfaces. The goal is to build a PC based computer systemcapable of handling surfaces built from about 2 million triangles, andto be able to render a perspective view...... of these on a computer displayat interactive frame rates, i.e. processing around 50 milliontriangles per second. The paper presents a hardware/softwarearchitecture called HPGA (Hybrid Parallel Graphics Architecture) whichis likely to be able to carry out this task. The case study focuses ontechniques to increase...... the clock frequency as well as the parallelismof the system. This paper focuses on the back-end graphics pipeline,which is responsible for rasterizing triangles.%with a practically linear increase in performance. A pure software implementation of the proposed architecture iscurrently able to process 300...
Implementation of a 3D plasma particle-in-cell code on a MIMD parallel computer
International Nuclear Information System (INIS)
A three-dimensional plasma particle-in-cell (PIC) code has been implemented on the Intel Delta MIMD parallel supercomputer using the General Concurrent PIC algorithm. The GCPIC algorithm uses a domain decomposition to divide the computation among the processors: A processor is assigned a subdomain and all the particles in it. Particles must be exchanged between processors as they move. Results are presented comparing the efficiency for 1-, 2- and 3-dimensional partitions of the three dimensional domain. This algorithm has been found to be very efficient even when a large fraction (e.g. 30%) of the particles must be exchanged at every time step. On the 512-node Intel Delta, up to 125 million particles have been pushed with an electrostatic push time of under 500 nsec/particle/time step
Parallel CFD simulation of flow in a 3D model of vibrating human vocal folds
Czech Academy of Sciences Publication Activity Database
Šidlof, Petr; Horáček, Jaromír; Řidký, V.
2013-01-01
Roč. 80, č. 1 (2013), s. 290-300. ISSN 0045-7930 R&D Projects: GA ČR(CZ) GAP101/11/0207 Institutional research plan: CEZ:AV0Z20760514 Keywords : numerical simulation * vocal folds * glottal airflow * inite volume method * parallel CFD Subject RIV: BI - Acoustics Impact factor: 1.532, year: 2013 http://www.sciencedirect.com/science?_ob=ArticleListURL&_method=list&_ArticleListID=-268060849&_sort=r&_st=13&view=c&_acct=C000034318&_version=1&_urlVersion=0&_userid=640952&md5=7c5b5539857ee9a02af5e690585b3126&searchtype=a
Hybrid Characteristics: 3D radiative transfer for parallel adaptive mesh refinement hydrodynamics
Rijkhorst, E J; Dubey, A; Mellema, G R; Rijkhorst, Erik-Jan; Plewa, Tomasz; Dubey, Anshu; Mellema, Garrelt
2005-01-01
We have developed a three-dimensional radiative transfer method designed specifically for use with parallel adaptive mesh refinement hydrodynamics codes. This new algorithm, which we call hybrid characteristics, introduces a novel form of ray tracing that can neither be classified as long, nor as short characteristics, but which applies the underlying principles, i.e. efficient execution through interpolation and parallelizability, of both. Primary applications of the hybrid characteristics method are radiation hydrodynamics problems that take into account the effects of photoionization and heating due to point sources of radiation. The method is implemented in the hydrodynamics package FLASH. The ionization, heating, and cooling processes are modelled using the DORIC ionization package. Upon comparison with the long characteristics method, we find that our method calculates the column density with a similarly high accuracy and produces sharp and well defined shadows. We show the quality of the new algorithm ...
3D Profile Filter Algorithm Based on Parallel Generalized B-spline Approximating Gaussian
Institute of Scientific and Technical Information of China (English)
REN Zhiying; GAO Chenghui; SHEN Ding
2015-01-01
Currently, the approximation methods of the Gaussian filter by some other spline filters have been developed. However, these methods are only suitable for the study of one-dimensional filtering, when these methods are used for three-dimensional filtering, it is found that a rounding error and quantization error would be passed to the next in every part. In this paper, a new and high-precision implementation approach for Gaussian filter is described, which is suitable for three-dimensional reference filtering. Based on the theory of generalized B-spline function and the variational principle, the transmission characteristics of a digital filter can be changed through the sensitivity of the parameters (t1, t2), and which can also reduce the rounding error and quantization error by the filter in a parallel form instead of the cascade form. Finally, the approximation filter of Gaussian filter is obtained. In order to verify the feasibility of the new algorithm, the reference extraction of the conventional methods are also used and compared. The experiments are conducted on the measured optical surface, and the results show that the total calculation by the new algorithm only requires 0.07 s for 480´480 data points;the amplitude deviation between the reference of the parallel form filter and the Gaussian filter is smaller;the new method is closer to the characteristic of the Gaussian filter through the analysis of three-dimensional roughness parameters, comparing with the cascade generalized B-spline approximating Gaussian. So the new algorithm is also efficient and accurate for the implementation of Gaussian filter in the application of surface roughness measurement.
A parallel block multi-level preconditioner for the 3D incompressible Navier-Stokes equations
International Nuclear Information System (INIS)
The development of robust and efficient algorithms for both steady-state simulations and fully implicit time integration of the Navier-Stokes equations is an active research topic. To be effective, the linear subproblems generated by these methods require solution techniques that exhibit robust and rapid convergence. In particular, they should be insensitive to parameters in the problem such as mesh size, time step, and Reynolds number. In this context, we explore a parallel preconditioner based on a block factorization of the coefficient matrix generated in an Oseen nonlinear iteration for the primitive variable formulation of the system. The key to this preconditioner is the approximation of a certain Schur complement operator by a technique first proposed by Kay, Loghin, and Wathen [SIAM J. Sci. Comput., 2002] and Silvester, Elman, Kay, and Wathen [J. Comput. Appl. Math. 128 (2001) 261]. The resulting operator entails subsidiary computations (solutions of pressure Poisson and convection-diffusion subproblems) that are similar to those required for decoupled solution methods; however, in this case these solutions are applied as preconditioners to the coupled Oseen system. One important aspect of this approach is that the convection-diffusion and Poisson subproblems are significantly easier to solve than the entire coupled system, and a solver can be built using tools developed for the subproblems. In this paper, we apply smoothed aggregation algebraic multigrid to both subproblems. Previous work has focused on demonstrating the optimality of these preconditioners with respect to mesh size on serial, two-dimensional, steady-state computations employing geometric multi-grid methods; we focus on extending these methods to large-scale, parallel, three-dimensional, transient and steady-state simulations employing algebraic multigrid (AMG) methods. Our results display nearly optimal convergence rates for steady-state solutions as well as for transient solutions over a
A 3D MPI-Parallel GPU-accelerated framework for simulating ocean wave energy converters
Pathak, Ashish; Raessi, Mehdi
2015-11-01
We present an MPI-parallel GPU-accelerated computational framework for studying the interaction between ocean waves and wave energy converters (WECs). The computational framework captures the viscous effects, nonlinear fluid-structure interaction (FSI), and breaking of waves around the structure, which cannot be captured in many potential flow solvers commonly used for WEC simulations. The full Navier-Stokes equations are solved using the two-step projection method, which is accelerated by porting the pressure Poisson equation to GPUs. The FSI is captured using the numerically stable fictitious domain method. A novel three-phase interface reconstruction algorithm is used to resolve three phases in a VOF-PLIC context. A consistent mass and momentum transport approach enables simulations at high density ratios. The accuracy of the overall framework is demonstrated via an array of test cases. Numerical simulations of the interaction between ocean waves and WECs are presented. Funding from the National Science Foundation CBET-1236462 grant is gratefully acknowledged.
Borazjani, Iman; Ge, Liang; Le, Trung; Sotiropoulos, Fotis
2013-04-01
We develop an overset-curvilinear immersed boundary (overset-CURVIB) method in a general non-inertial frame of reference to simulate a wide range of challenging biological flow problems. The method incorporates overset-curvilinear grids to efficiently handle multi-connected geometries and increase the resolution locally near immersed boundaries. Complex bodies undergoing arbitrarily large deformations may be embedded within the overset-curvilinear background grid and treated as sharp interfaces using the curvilinear immersed boundary (CURVIB) method (Ge and Sotiropoulos, Journal of Computational Physics, 2007). The incompressible flow equations are formulated in a general non-inertial frame of reference to enhance the overall versatility and efficiency of the numerical approach. Efficient search algorithms to identify areas requiring blanking, donor cells, and interpolation coefficients for constructing the boundary conditions at grid interfaces of the overset grid are developed and implemented using efficient parallel computing communication strategies to transfer information among sub-domains. The governing equations are discretized using a second-order accurate finite-volume approach and integrated in time via an efficient fractional-step method. Various strategies for ensuring globally conservative interpolation at grid interfaces suitable for incompressible flow fractional step methods are implemented and evaluated. The method is verified and validated against experimental data, and its capabilities are demonstrated by simulating the flow past multiple aquatic swimmers and the systolic flow in an anatomic left ventricle with a mechanical heart valve implanted in the aortic position. PMID:23833331
Koldan, Jelena; Puzyrev, Vladimir; de la Puente, Josep; Houzeaux, Guillaume; Cela, José María
2014-06-01
We present an elaborate preconditioning scheme for Krylov subspace methods which has been developed to improve the performance and reduce the execution time of parallel node-based finite-element (FE) solvers for 3-D electromagnetic (EM) numerical modelling in exploration geophysics. This new preconditioner is based on algebraic multigrid (AMG) that uses different basic relaxation methods, such as Jacobi, symmetric successive over-relaxation (SSOR) and Gauss-Seidel, as smoothers and the wave front algorithm to create groups, which are used for a coarse-level generation. We have implemented and tested this new preconditioner within our parallel nodal FE solver for 3-D forward problems in EM induction geophysics. We have performed series of experiments for several models with different conductivity structures and characteristics to test the performance of our AMG preconditioning technique when combined with biconjugate gradient stabilized method. The results have shown that, the more challenging the problem is in terms of conductivity contrasts, ratio between the sizes of grid elements and/or frequency, the more benefit is obtained by using this preconditioner. Compared to other preconditioning schemes, such as diagonal, SSOR and truncated approximate inverse, the AMG preconditioner greatly improves the convergence of the iterative solver for all tested models. Also, when it comes to cases in which other preconditioners succeed to converge to a desired precision, AMG is able to considerably reduce the total execution time of the forward-problem code-up to an order of magnitude. Furthermore, the tests have confirmed that our AMG scheme ensures grid-independent rate of convergence, as well as improvement in convergence regardless of how big local mesh refinements are. In addition, AMG is designed to be a black-box preconditioner, which makes it easy to use and combine with different iterative methods. Finally, it has proved to be very practical and efficient in the
Gainullin, I. K.; Sonkin, M. A.
2015-03-01
A parallelized three-dimensional (3D) time-dependent Schrodinger equation (TDSE) solver for one-electron systems is presented in this paper. The TDSE Solver is based on the finite-difference method (FDM) in Cartesian coordinates and uses a simple and explicit leap-frog numerical scheme. The simplicity of the numerical method provides very efficient parallelization and high performance of calculations using Graphics Processing Units (GPUs). For example, calculation of 106 time-steps on the 1000ṡ1000ṡ1000 numerical grid (109 points) takes only 16 hours on 16 Tesla M2090 GPUs. The TDSE Solver demonstrates scalability (parallel efficiency) close to 100% with some limitations on the problem size. The TDSE Solver is validated by calculation of energy eigenstates of the hydrogen atom (13.55 eV) and affinity level of H- ion (0.75 eV). The comparison with other TDSE solvers shows that a GPU-based TDSE Solver is 3 times faster for the problems of the same size and with the same cost of computational resources. The usage of a non-regular Cartesian grid or problem-specific non-Cartesian coordinates increases this benefit up to 10 times. The TDSE Solver was applied to the calculation of the resonant charge transfer (RCT) in nanosystems, including several related physical problems, such as electron capture during H+-H0 collision and electron tunneling between H- ion and thin metallic island film.
Odelu Ojjela; Naresh Kumar, N.
2016-01-01
The objective of the present study is to investigate the first-order chemical reaction and Soret and Dufour effects on an incompressible MHD combined free and forced convection heat and mass transfer of a micropolar fluid through a porous medium between two parallel plates. Assume that there are a periodic injection and suction at the lower and upper plates. The nonuniform temperature and concentration of the plates are assumed to be varying periodically with time. A suitable similarity trans...
Ma, Yingliang; Saetzler, Kurt
2008-01-01
In this paper we describe a novel 3D subdivision strategy to extract the surface of binary image data. This iterative approach generates a series of surface meshes that capture different levels of detail of the underlying structure. At the highest level of detail, the resulting surface mesh generated by our approach uses only about 10% of the triangles in comparison to the marching cube algorithm (MC) even in settings were almost no image noise is present. Our approach also eliminates the so-called "staircase effect" which voxel based algorithms like the MC are likely to show, particularly if non-uniformly sampled images are processed. Finally, we show how the presented algorithm can be parallelized by subdividing 3D image space into rectilinear blocks of subimages. As the algorithm scales very well with an increasing number of processors in a multi-threaded setting, this approach is suited to process large image data sets of several gigabytes. Although the presented work is still computationally more expensive than simple voxel-based algorithms, it produces fewer surface triangles while capturing the same level of detail, is more robust towards image noise and eliminates the above-mentioned "staircase" effect in anisotropic settings. These properties make it particularly useful for biomedical applications, where these conditions are often encountered. PMID:17993710
Directory of Open Access Journals (Sweden)
Wei-Fan Chen
2012-01-01
Full Text Available The velocity profile and pressure gradient of an unsteady state unidirectional MHD flow of Voigt fluids moving between two parallel surfaces under magnetic field effects are solved by the Laplace transform method. The flow motion between parallel surfaces is induced by a prescribed inlet volume flow rate that varies with time. Four cases of different inlet volume flow rates are considered in this study including (1 constant acceleration piston motion, (2 suddenly started flow, (3 linear acceleration piston motion, and (4 oscillatory piston motion. The solution for each case is elaborately derived, and the results of associated velocity profile and pressure gradients are presented in analytical forms.
Jia, Xuanji; Zhou, Yong
2015-09-01
We prove that a weak solution (u, b) to the MHD equations is smooth on (0, T ] if \\text{M}\\in {{L}α}≤ft(0,T;{{L}γ}≤ft({{{R}}3}\\right)\\right) with 2/α +3/γ =2 , 1≤slant α definition below). As we will explain later, this kind of regularity criteria is more likely to capture the nature of the coupling effects between the fluid velocity and the magnetic field in the evolution of the MHD flows. Moreover, the condition on \\text{M} is scaling invariant, i.e. it is of Ladyzhenskaya-Prodi-Serrin type.
International Nuclear Information System (INIS)
1 - Description of program or function: PARTISN (Parallel, Time-Dependent SN) is the evolutionary successor to CCC-0547/DANTSYS. User input and cross section formats are very similar to that of DANTSYS. The linear Boltzmann transport equation is solved for neutral particles using the deterministic (SN) method. Both the static (fixed source or eigenvalue) and time-dependent forms of the transport equation are solved in forward or adjoint mode. Vacuum, reflective, periodic, white, or inhomogeneous boundary conditions are solved. General anisotropic scattering and inhomogeneous sources are permitted. PARTISN solves the transport equation on orthogonal (single level or block-structured AMR) grids in 1-D (slab, two-angle slab, cylindrical, or spherical), 2-D (X-Y, R-Z, or R-T) and 3-D (X-Y-Z or R-Z-T) geometries. 2 - Methods:PARTISN numerically solves the multigroup form of the neutral-particle Boltzmann transport equation. The discrete-ordinates form of approximation is used for treating the angular variation of the particle distribution. For curvilinear geometries, diamond differencing is used for angular discretization. The spatial discretizations may be either low-order (diamond difference or Adaptive Weighted Diamond Difference (AWDD)) or higher-order (linear discontinuous or exponential discontinuous). Negative fluxes are eliminated by a local set-to-zero-and-correct algorithm for the diamond case (DD/STZ). Time differencing is Crank-Nicholson (diamond), also with a set-to-zero fix-up scheme. Both inner and outer iterations can be accelerated using the diffusion synthetic acceleration method, or transport synthetic acceleration can be used to accelerate the inner iterations. The diffusion solver uses either the conjugate gradient or multigrid method. Chebyshev acceleration of the fission source is used. The angular source terms may be treated either via standard PN expansions or Galerkin scattering. An option is provided for strictly positive scattering sources
Koldan, Jelena
2013-01-01
The growing significance, technical development and employment of electromagnetic (EM) methods in exploration geophysics have led to the increasing need for reliable and fast techniques of interpretation of 3-D EM data sets acquired in complex geological environments. The first and most important step to creating an inversion method is the development of a solver for the forward problem. In order to create an efficient, reliable and practical 3-D EM inversion, it is necessary to have a 3-D EM...
Large Scale Earth’s Bow Shock with Northern IMF as Simulated by PIC Code in Parallel with MHD Model
Indian Academy of Sciences (India)
Suleiman Baraka
2016-06-01
In this paper, we propose a 3D kinetic model (particle-in-cell,PIC) for the description of the large scale Earth’s bow shock. Theproposed version is stable and does not require huge or extensive computerresources. Because PIC simulations work with scaled plasma andfield parameters, we also propose to validate our code by comparing itsresults with the available MHD simulations under same scaled solar wind(SW) and (IMF) conditions. We report new results from the two models.In both codes the Earth’s bow shock position is found to be $\\approx 14.8 R_{E} $along the Sun–Earth line, and $\\approx 29 R_{E} $ on the dusk side. Those findingsare consistent with past in \\textit{situ} observations. Both simulations reproducethe theoretical jump conditions at the shock. However, the PIC codedensity and temperature distributions are inflated and slightly shifted sunwardwhen compared to the MHD results. Kinetic electron motions andreflected ions upstream may cause this sunward shift. Species distributionsin the foreshock region are depicted within the transition of theshock (measured $ \\approx $ 2 $ c/\\omega_{pi} $ for $ \\Theta_{Bn}=90^{o}$ and $M_{MS}=4.7 $) and in thedownstream. The size of the foot jump in the magnetic field at the shock ismeasured to be ($1.7 c/ \\omega_{pi} $). In the foreshocked region, the thermal velocityis found equal to 213 km s^{−1} at 15R_{E} and is equal to 63 km s^{-1} at12 R_{E} (magnetosheath region). Despite the large cell size of the currentversion of the PIC code, it is powerful to retain macrostructure of planetsmagnetospheres in very short time, thus it can be used for pedagogicaltest purposes. It is also likely complementary with MHD to deepen ourunderstanding of the large scale magnetosphere.
Large Scale Earth's Bow Shock with Northern IMF as Simulated by PIC Code in Parallel with MHD Model
Baraka, Suleiman
2016-06-01
In this paper, we propose a 3D kinetic model (particle-in-cell, PIC) for the description of the large scale Earth's bow shock. The proposed version is stable and does not require huge or extensive computer resources. Because PIC simulations work with scaled plasma and field parameters, we also propose to validate our code by comparing its results with the available MHD simulations under same scaled solar wind (SW) and (IMF) conditions. We report new results from the two models. In both codes the Earth's bow shock position is found to be ≈14.8 R E along the Sun-Earth line, and ≈29 R E on the dusk side. Those findings are consistent with past in situ observations. Both simulations reproduce the theoretical jump conditions at the shock. However, the PIC code density and temperature distributions are inflated and slightly shifted sunward when compared to the MHD results. Kinetic electron motions and reflected ions upstream may cause this sunward shift. Species distributions in the foreshock region are depicted within the transition of the shock (measured ≈2 c/ ω pi for Θ Bn = 90° and M MS = 4.7) and in the downstream. The size of the foot jump in the magnetic field at the shock is measured to be (1.7 c/ ω pi ). In the foreshocked region, the thermal velocity is found equal to 213 km s-1 at 15 R E and is equal to 63 km s -1 at 12 R E (magnetosheath region). Despite the large cell size of the current version of the PIC code, it is powerful to retain macrostructure of planets magnetospheres in very short time, thus it can be used for pedagogical test purposes. It is also likely complementary with MHD to deepen our understanding of the large scale magnetosphere.
Large Scale Earth's Bow Shock with Northern IMF as simulated by PIC code in parallel with MHD model
Baraka, Suleiman M
2016-01-01
In this paper, we propose a 3D kinetic model (Particle-in-Cell PIC ) for the description of the large scale Earth's bow shock. The proposed version is stable and does not require huge or extensive computer resources. Because PIC simulations work with scaled plasma and field parameters, we also propose to validate our code by comparing its results with the available MHD simulations under same scaled Solar wind ( SW ) and ( IMF ) conditions. We report new results from the two models. In both codes the Earth's bow shock position is found to be ~14.8 RE along the Sun-Earth line, and ~ 29 RE on the dusk side. Those findings are consistent with past in situ observations. Both simulations reproduce the theoretical jump conditions at the shock. However, the PIC code density and temperature distributions are inflated and slightly shifted sunward when compared to the MHD results. Kinetic electron motions and reflected ions upstream may cause this sunward shift. Species distributions in the foreshock region are depicted...
3D Equilibrium Reconstructions in DIII-D
Lao, L. L.; Ferraro, N. W.; Strait, E. J.; Turnbull, A. D.; King, J. D.; Hirshman, H. P.; Lazarus, E. A.; Sontag, A. C.; Hanson, J.; Trevisan, G.
2013-10-01
Accurate and efficient 3D equilibrium reconstruction is needed in tokamaks for study of 3D magnetic field effects on experimentally reconstructed equilibrium and for analysis of MHD stability experiments with externally imposed magnetic perturbations. A large number of new magnetic probes have been recently installed in DIII-D to improve 3D equilibrium measurements and to facilitate 3D reconstructions. The V3FIT code has been in use in DIII-D to support 3D reconstruction and the new magnetic diagnostic design. V3FIT is based on the 3D equilibrium code VMEC that assumes nested magnetic surfaces. V3FIT uses a pseudo-Newton least-square algorithm to search for the solution vector. In parallel, the EFIT equilibrium reconstruction code is being extended to allow for 3D effects using a perturbation approach based on an expansion of the MHD equations. EFIT uses the cylindrical coordinate system and can include the magnetic island and stochastic effects. Algorithms are being developed to allow EFIT to reconstruct 3D perturbed equilibria directly making use of plasma response to 3D perturbations from the GATO, MARS-F, or M3D-C1 MHD codes. DIII-D 3D reconstruction examples using EFIT and V3FIT and the new 3D magnetic data will be presented. Work supported in part by US DOE under DE-FC02-04ER54698, DE-FG02-95ER54309 and DE-AC05-06OR23100.
MHD flow and heat transfer in a rarefied gas in a rotating parallel plate channel
International Nuclear Information System (INIS)
An exact analysis of MHD flow of a rarefied gas in a rotating plane channel is presented for the velocity field, induced magnetic field and temperature field. Axial and transverse components of the velocity field, induced magnetic field and the function affecting the temperature field are shown on graphs. The numerical values of the axial and transverse skin-friction components, axial and transverse components of the mass flux and the function affecting the rate of heat transfer are entered in Tables. The results are discussed. (Auth.)
Directory of Open Access Journals (Sweden)
Odelu Ojjela
2016-01-01
Full Text Available The objective of the present study is to investigate the first-order chemical reaction and Soret and Dufour effects on an incompressible MHD combined free and forced convection heat and mass transfer of a micropolar fluid through a porous medium between two parallel plates. Assume that there are a periodic injection and suction at the lower and upper plates. The nonuniform temperature and concentration of the plates are assumed to be varying periodically with time. A suitable similarity transformation is used to reduce the governing partial differential equations into nonlinear ordinary differential equations and then solved numerically by the quasilinearization method. The fluid flow and heat and mass transfer characteristics for various parameters are analyzed in detail and shown in the form of graphs. It is observed that the concentration of the fluid decreases whereas the temperature of the fluid enhances with the increasing of chemical reaction and Soret and Dufour parameters.
Directory of Open Access Journals (Sweden)
Ishak Hashim
2013-11-01
Full Text Available The present study examines embedded open parallel microchannels within a micropatterned permeable surface for reducing entropy generation in MHD fluid flow in microscale systems. A local similarity solution for the transformed governing equations is obtained. The governing partial differential equations along with the boundary conditions are first cast into a dimensionless form and then the reduced ordinary differential equations are solved numerically via the Dormand-Prince pair and shooting method. The dimensionless entropy generation number is formulated by an integral of the local rate of entropy generation along the width of the surface based on an equal number of microchannels and no-slip gaps interspersed between those microchannels. Finally, the entropy generation numbers, as well as the Bejan number, are investigated. It is seen that surface-embedded microchannels can successfully reduce entropy generation in the presence of an applied magnetic field.
Directory of Open Access Journals (Sweden)
Alireza AZIMI
2014-07-01
Full Text Available In this paper the velocity fields associated with the two-dimensional unsteady magnetohydrodynamic (MHD flow of a viscous fluid between moving parallel plates have been investigated. The governing Navier-Stokes equations for the flow are reduced to a fourth order nonlinear ordinary differential equation. The Homotopy Perturbation Method (HPM and Reconstruction of Variational Iteration Method (RVIM have been used to achieve analytical solutions. The obtained approximate results have been compared with numerical ones and results from pervious works in some cases. It has been shown that the current study is accurate and validated and can be used for other nonlinear cases.doi:10.14456/WJST.2014.70
Directory of Open Access Journals (Sweden)
Mohammad H. Yazdi
2011-12-01
Full Text Available This paper presents a new design of open parallel microchannels embedded within a permeable continuous moving surface due to reduction of exergy losses in magnetohydrodynamic (MHD flow at a prescribed surface temperature (PST. The entropy generation number is formulated by an integral of the local rate of entropy generation along the width of the surface based on an equal number of microchannels and no-slip gaps interspersed between those microchannels. The velocity, the temperature, the velocity gradient and the temperature gradient adjacent to the wall are substituted into this equation resulting from the momentum and energy equations obtained numerically by an explicit Runge-Kutta (4, 5 formula, the Dormand-Prince pair and shooting method. The entropy generation number, as well as the Bejan number, for various values of the involved parameters of the problem are also presented and discussed in detail.
Parallel GRISYS/Power Challenge System Version 1.0 and 3D Prestack Depth Migration Package
Institute of Scientific and Technical Information of China (English)
Zhao Zhenwen
1995-01-01
@@ Based on the achievements and experience of seismic data parallel processing made in the past years by Beijing Global Software Corporation (GS) of CNPC, Parallel GRISYS/Power Challenge seismic data processing system version 1.0 has been cooperatively developed and integrated on the Power Challenge computer by GS, SGI (USA) and Shuangyuan Company of Academia Sinica.
Directory of Open Access Journals (Sweden)
Gabriele Jost
2010-01-01
Full Text Available Today most systems in high-performance computing (HPC feature a hierarchical hardware design: shared-memory nodes with several multi-core CPUs are connected via a network infrastructure. When parallelizing an application for these architectures it seems natural to employ a hierarchical programming model such as combining MPI and OpenMP. Nevertheless, there is the general lore that pure MPI outperforms the hybrid MPI/OpenMP approach. In this paper, we describe the hybrid MPI/OpenMP parallelization of IR3D (Incompressible Realistic 3-D code, a full-scale real-world application, which simulates the environmental effects on the evolution of vortices trailing behind control surfaces of underwater vehicles. We discuss performance, scalability and limitations of the pure MPI version of the code on a variety of hardware platforms and show how the hybrid approach can help to overcome certain limitations.
Kaldestad, Knut B.; Haddadin, Sami; Belder, Rico; Hovland, Geir; Anisi, David A.
2014-01-01
In this paper we present an experimental study on real-time collision avoidance with potential ﬁelds that are based on 3D point cloud data and processed on the Graphics Processing Unit (GPU). The virtual forces from the potential ﬁelds serve two purposes. First, they are used for changing the reference trajectory. Second they are projected to and applied on torque control level for generating according nullspace behavior together with a Cartesian impedance main control ...
International Nuclear Information System (INIS)
The author's goal is to provide a physical understanding of the ideal MHD model which includes: (1) a basic description of the model, (2) a derivation starting from a more fundamental kinetic model, and (3) a discussion of its range of validity. The ideal MHD model is a single-fluid model that describes the effects of magnetic geometry on the macroscopic equilibrium and stability properties of fusion plasmas. The model is derived in a straight forward manner by forming the mass, momentum, and energy moments of the Boltzmann equation. The moment equations reduce to ideal MHD with the introduction of three critical assumptions: high collisionality, small ion gyro radius, and small resistivity. An analysis of the validity conditions shows that the collision-dominated assumption is never satisfied in plasmas of fusion interest. The remaining two conditions are satisfied by a wide margin. A careful examination of the collision-dominated assumption shows that those particular parts of ideal MHD treated inaccurately (i.e., the parallel momentum and energy equations), play little, if any practical role in MHD equilibrium and stability. These equations primarily describe compression and expansion of a plasma whereas most MHD instabilities involve incompressible motions. The model is incorrect only where it does not matter. This realization leads to the introduction of a modified MHD model known as collisionless MHD which makes predictions nearly identical to collision-dominated assumption. It is thus valid for plasmas of fusion interest. The derivation follows from an analysis of single-particle guiding center motion in a collisionless plasma and the subsequent closure of the system by the heuristic assumption that the motions of interest are incompressible
Hybrid MPI+OpenMP parallelization of an FFT-based 3D Poisson solver with one periodic direction
Gorobets, Andrei; Trias Miquel, Francesc Xavier; Borrell Pol, Ricard; Lehmkuhl Barba, Oriol; Oliva Llena, Asensio
2011-01-01
This work is devoted to the development of efficient parallel algorithms for the direct numerical simulation (DNS) of incompressible flows on modern supercomputers. In doing so, a Poisson equation needs to be solved at each time-step to project the velocity field onto a divergence-free space. Due to the non-local nature of its solution, this elliptic system is the part of the algorithm that is most difficult to parallelize. The Poisson solver presented here is restricted to problems with o...
International Nuclear Information System (INIS)
The finite element-based Continuum Damage Mechanics (CDM) software DAMAGE XXX has been developed: to model high-temperature creep damage initiation, evolution and crack growth in 3-D engineering components; and, to run on parallel computer architectures. The driver has been to achieve computational speed through computer parallelism. The development and verification of the software have been carried out using uni-axial crosswelded testpieces in which the plane of symmetry of the V-weld preparation is orthogonal to the tensile loading axis. The welds were manufactured using 0.5Cr-0.5Mo-0.25V ferritic parent steel, and a matching 2.25Cr-1Mo ferritic steel weld filler metal. The Heat Affected Zones (HAZ) of welds were assumed to be divided into three sub-regions: Coarse grained-HAZ (CG-HAZ); Refined grained-HAZ (R-HAZ); and, the inter-critical HAZ regions (Type IV-HAZ). Constitutive equations and associated parameters are summarised for weld, CG-HAZ, R-HAZ, Type IV-HAZ, and parent materials, at 575, 590, and 600 deg. C. These are used to make finite element-based predictions of crossweld testpiece lifetimes and failure modes using the newly developed 3-D parallel computer software, and independent 2-D serial software, at an average minimum cross-section stress of 69.5 MPa. Crossweld testpiece analyses, done using the newly developed 3-D parallel software, have been verified using independent results of 2-D serial software; and, of laboratory experiments.
International Nuclear Information System (INIS)
Recent 3D hybrid simulation of a plasma current-carrying column revealed two regimes of sausage and kink instability development. In the first regime, with small Hall parameter, development of instabilities leads to appearance of large-scale axial perturbations and eventually to the bending of the plasma column. In the second regime, with five times larger Hall parameter, small-scale perturbations dominated and no bending of the plasma column was observed. Simulation results are compared to recent experimental data, including laser probing, x-ray spectroscopy and time-gated x-ray imaging during wire array implosions at NTF
Castillo-Reyes, Octavio; de la Puente, Josep; Puzyrev, Vladimir; Cela, José M.
2015-01-01
This paper deals with the most relevant parallel and numerical issues that arise when applying the Edge Element Method in the solution of electromagnetic problems in exploration geophysics. In this sense, in recent years the application of land and marine controlled-source electromagnetic (CSEM) surveys has gained tremendous interest among the offshore exploration community. This method is especially significant in detecting hydrocarbon in shallow/deep waters. On the other hand, in Finite Ele...
Koldan, Jelena; Puzyrev, Vladimir; de la Puente, Josep; Houzeaux, Guillaume; José M. Cela
2014-01-01
We present an elaborate preconditioning scheme for Krylov subspace methods which has been developed to improve the performance and reduce the execution time of parallel node-based finite-element solvers for three-dimensional electromagnetic numerical modelling in exploration geophysics. This new preconditioner is based on algebraic multigrid that uses different basic relaxation methods, such as Jacobi, symmetric successive over-relaxation and Gauss-Seidel, as smoothers and the wav...
Bulovyatov, Alexander
2010-01-01
The band structure computation turns into solving a family of Maxwell eigenvalue problems on the periodicity domain. The discretization is done by the finite element method with special higher order H(curl)- and H1-conforming modified elements. The eigenvalue problem is solved by a preconditioned iterative eigenvalue solver with a projection onto the divergence-free vector fields. As a preconditioner we use the parallel multigrid method with a special Hiptmair smoother.
Aftosmis, M. J.; Berger, M. J.; Murman, S. M.; Kwak, Dochan (Technical Monitor)
2002-01-01
The proposed paper will present recent extensions in the development of an efficient Euler solver for adaptively-refined Cartesian meshes with embedded boundaries. The paper will focus on extensions of the basic method to include solution adaptation, time-dependent flow simulation, and arbitrary rigid domain motion. The parallel multilevel method makes use of on-the-fly parallel domain decomposition to achieve extremely good scalability on large numbers of processors, and is coupled with an automatic coarse mesh generation algorithm for efficient processing by a multigrid smoother. Numerical results are presented demonstrating parallel speed-ups of up to 435 on 512 processors. Solution-based adaptation may be keyed off truncation error estimates using tau-extrapolation or a variety of feature detection based refinement parameters. The multigrid method is extended to for time-dependent flows through the use of a dual-time approach. The extension to rigid domain motion uses an Arbitrary Lagrangian-Eulerlarian (ALE) formulation, and results will be presented for a variety of two- and three-dimensional example problems with both simple and complex geometry.
Kressler, Bryan; Spincemaille, Pascal; Prince, Martin R; Wang, Yi
2006-09-01
Time-resolved 3D MRI with high spatial and temporal resolution can be achieved using spiral sampling and sliding-window reconstruction. Image reconstruction is computationally intensive because of the need for data regridding, a large number of temporal phases, and multiple RF receiver coils. Inhomogeneity blurring correction for spiral sampling further increases the computational work load by an order of magnitude, hindering the clinical utility of spiral trajectories. In this work the reconstruction time is reduced by a factor of >40 compared to reconstruction using a single processor. This is achieved by using a cluster of 32 commercial off-the-shelf computers, commodity networking hardware, and readily available software. The reconstruction system is demonstrated for time-resolved spiral contrast-enhanced (CE) peripheral MR angiography (MRA), and a reduction of reconstruction time from 80 min to 1.8 min is achieved. PMID:16892189
Sohail NADEEM; Masood, Sadaf; Mehmood, Rashid; Sadiq, Muhammad Adil
2015-01-01
The present analysis deals with flow and heat transfer aspects of a micropolar nanofluid between two horizontal parallel plates in a rotating system. The governing partial differential equations for momentum, energy, micro rotation and nano-particles concentration are presented. Similarity transformations are utilized to convert the system of partial differential equations into system of ordinary differential equations. The reduced equations are solved analytically with the help of optimal ho...
Heat Transfer on Steady MHD rotating flow through porous medium in a parallel plate channel
Dr. G. Prabhakara Rao,; M. Naga Sasikala
2015-01-01
We discussed the combined effects of radiative heat transfer and a transverse magnetic field on steady rotating flow of an electrically conducting optically thin fluid through a porous medium in a parallel plate channel and non-uniform temperatures at the walls. The analytical solutions are obtained from coupled nonlinear partial differential equations for the problem. The computational results are discussed quantitatively with the aid of the dimensionless parameters entering in t...
Heat Transfer on Steady MHD rotating flow through porous medium in a parallel plate channel
Directory of Open Access Journals (Sweden)
Dr. G. Prabhakara Rao,
2015-04-01
Full Text Available We discussed the combined effects of radiative heat transfer and a transverse magnetic field on steady rotating flow of an electrically conducting optically thin fluid through a porous medium in a parallel plate channel and non-uniform temperatures at the walls. The analytical solutions are obtained from coupled nonlinear partial differential equations for the problem. The computational results are discussed quantitatively with the aid of the dimensionless parameters entering in the solution.
Sung, Chul
2013-08-01
Accurate estimation of neuronal count and distribution is central to the understanding of the organization and layout of cortical maps in the brain, and changes in the cell population induced by brain disorders. High-throughput 3D microscopy techniques such as Knife-Edge Scanning Microscopy (KESM) are enabling whole-brain survey of neuronal distributions. Data from such techniques pose serious challenges to quantitative analysis due to the massive, growing, and sparsely labeled nature of the data. In this paper, we present a scalable, incremental learning algorithm for cell body detection that can address these issues. Our algorithm is computationally efficient (linear mapping, non-iterative) and does not require retraining (unlike gradient-based approaches) or retention of old raw data (unlike instance-based learning). We tested our algorithm on our rat brain Nissl data set, showing superior performance compared to an artificial neural network-based benchmark, and also demonstrated robust performance in a scenario where the data set is rapidly growing in size. Our algorithm is also highly parallelizable due to its incremental nature, and we demonstrated this empirically using a MapReduce-based implementation of the algorithm. We expect our scalable, incremental learning approach to be widely applicable to medical imaging domains where there is a constant flux of new data. © 2013 IEEE.
Ervik, Åsmund; Müller, Bernhard
2014-01-01
To leverage the last two decades' transition in High-Performance Computing (HPC) towards clusters of compute nodes bound together with fast interconnects, a modern scalable CFD code must be able to efficiently distribute work amongst several nodes using the Message Passing Interface (MPI). MPI can enable very large simulations running on very large clusters, but it is necessary that the bulk of the CFD code be written with MPI in mind, an obstacle to parallelizing an existing serial code. In this work we present the results of extending an existing two-phase 3D Navier-Stokes solver, which was completely serial, to a parallel execution model using MPI. The 3D Navier-Stokes equations for two immiscible incompressible fluids are solved by the continuum surface force method, while the location of the interface is determined by the level-set method. We employ the Portable Extensible Toolkit for Scientific Computing (PETSc) for domain decomposition (DD) in a framework where only a fraction of the code needs to be a...
A 3D point-kernel multiple scatter model for parallel-beam SPECT based on a gamma-ray buildup factor
International Nuclear Information System (INIS)
A three-dimensional (3D) point-kernel multiple scatter model for point spread function (PSF) determination in parallel-beam single-photon emission computed tomography (SPECT), based on a dose gamma-ray buildup factor, is proposed. This model embraces nonuniform attenuation in a voxelized object of imaging (patient body) and multiple scattering that is treated as in the point-kernel integration gamma-ray shielding problems. First-order Compton scattering is done by means of the Klein-Nishina formula, but the multiple scattering is accounted for by making use of a dose buildup factor. An asset of the present model is the possibility of generating a complete two-dimensional (2D) PSF that can be used for 3D SPECT reconstruction by means of iterative algorithms. The proposed model is convenient in those situations where more exact techniques are not economical. For the proposed model's testing purpose calculations (for the point source in a nonuniform scattering object for parallel beam collimator geometry), the multiple-order scatter PSF generated by means of the proposed model matched well with those using Monte Carlo (MC) simulations. Discrepancies are observed only at the exponential tails mostly due to the high statistic uncertainty of MC simulations in this area, but not because of the inappropriateness of the model
A 3D point-kernel multiple scatter model for parallel-beam SPECT based on a gamma-ray buildup factor
Marinkovic, Predrag; Ilic, Radovan; Spaic, Rajko
2007-09-01
A three-dimensional (3D) point-kernel multiple scatter model for point spread function (PSF) determination in parallel-beam single-photon emission computed tomography (SPECT), based on a dose gamma-ray buildup factor, is proposed. This model embraces nonuniform attenuation in a voxelized object of imaging (patient body) and multiple scattering that is treated as in the point-kernel integration gamma-ray shielding problems. First-order Compton scattering is done by means of the Klein-Nishina formula, but the multiple scattering is accounted for by making use of a dose buildup factor. An asset of the present model is the possibility of generating a complete two-dimensional (2D) PSF that can be used for 3D SPECT reconstruction by means of iterative algorithms. The proposed model is convenient in those situations where more exact techniques are not economical. For the proposed model's testing purpose calculations (for the point source in a nonuniform scattering object for parallel beam collimator geometry), the multiple-order scatter PSF generated by means of the proposed model matched well with those using Monte Carlo (MC) simulations. Discrepancies are observed only at the exponential tails mostly due to the high statistic uncertainty of MC simulations in this area, but not because of the inappropriateness of the model.
Nadeem, Sohail; Masood, Sadaf; Mehmood, Rashid; Sadiq, Muhammad Adil
2015-01-01
The present analysis deals with flow and heat transfer aspects of a micropolar nanofluid between two horizontal parallel plates in a rotating system. The governing partial differential equations for momentum, energy, micro rotation and nano-particles concentration are presented. Similarity transformations are utilized to convert the system of partial differential equations into system of ordinary differential equations. The reduced equations are solved analytically with the help of optimal homotopy analysis method (OHAM). Analytical solutions for velocity, temperature, micro-rotation and concentration profiles are expressed graphically against various emerging physical parameters. Physical quantities of interest such as skin friction co-efficient, local heat and local mass fluxes are also computed both analytically and numerically through mid-point integration scheme. It is found that both the solutions are in excellent agreement. Local skin friction coefficient is found to be higher for the case of strong concentration i.e. n=0, as compared to the case of weak concentration n=0.50. Influence of strong and weak concentration on Nusselt and Sherwood number appear to be similar in a quantitative sense. PMID:26046637
Directory of Open Access Journals (Sweden)
Sohail Nadeem
Full Text Available The present analysis deals with flow and heat transfer aspects of a micropolar nanofluid between two horizontal parallel plates in a rotating system. The governing partial differential equations for momentum, energy, micro rotation and nano-particles concentration are presented. Similarity transformations are utilized to convert the system of partial differential equations into system of ordinary differential equations. The reduced equations are solved analytically with the help of optimal homotopy analysis method (OHAM. Analytical solutions for velocity, temperature, micro-rotation and concentration profiles are expressed graphically against various emerging physical parameters. Physical quantities of interest such as skin friction co-efficient, local heat and local mass fluxes are also computed both analytically and numerically through mid-point integration scheme. It is found that both the solutions are in excellent agreement. Local skin friction coefficient is found to be higher for the case of strong concentration i.e. n=0, as compared to the case of weak concentration n=0.50. Influence of strong and weak concentration on Nusselt and Sherwood number appear to be similar in a quantitative sense.
Dong, C.; Bougher, S. W.; Ma, Y.; Toth, G.; Lee, Y.; Nagy, A. F.; Tenishev, V.; Pawlowski, D. J.; Meng, X.; Combi, M. R.
2013-12-01
The study of the solar wind interaction with Mars upper atmosphere/ionosphere has triggered a great of interest in recent years. Among the large number of topics in this research area, the investigation of ion escape fluxes has become increasingly important due to its potential impact on the long-term evolution of Mars atmosphere (e.g., loss of water) over its history. In the present work, we adopt the 3-D Mars cold neutral atmosphere profiles (0~300 km) from the newly developed and validated Mars Global Ionosphere Thermosphere Model (M-GITM) and the 3-D hot oxygen profiles (100km~5RM) from the exosphere Monte Carlo model Adaptive Mesh Particle Simulator (AMPS). We apply these 3-D model outputs fields into the 3-D BATS-R-US Mars multi-fluid MHD model (100km~20RM) that can better simulate the interplay between Mars upper atmosphere and solar wind by considering the dynamics of individual ion species. The multi-fluid model solves separate continuity, momentum and energy equations for each ion species (H+, O+, O2+, CO2+). The M-GITM model together with the AMPS exosphere model take into account the effects of solar cycle and seasonal variations on both cold and hot neutral atmospheres, allowing us to investigate the corresponding effects on the Mars upper atmosphere ion escape by using a one-way coupling approach, i.e., both the M-GITM and AMPS model outputs are used as the inputs for the multi-fluid model and M-GITM is used as input into the AMPS exosphere model. The calculations are carried out for selected cases with different nominal solar wind, solar cycle and crustal field orientation conditions. This work has the potential to provide predictions of ion escape rates for comparison to future data to be returned by the MAVEN primary mission (2014-2016) and thereby improve our understanding of present day escape processes. Acknowledgments: The work presented here was supported by NASA grants NNH10CC04C, NNX09AL26G, NSF grant ATM-0535811.
Energy Technology Data Exchange (ETDEWEB)
Li, Shengtai [Los Alamos National Laboratory; Li, Hui [Los Alamos National Laboratory
2012-06-14
sensitive to the position of the planet, we adopt the corotating frame that allows the planet moving only in radial direction if only one planet is present. This code has been extensively tested on a number of problems. For the earthmass planet with constant aspect ratio h = 0.05, the torque calculated using our code matches quite well with the the 3D linear theory results by Tanaka et al. (2002). The code is fully parallelized via message-passing interface (MPI) and has very high parallel efficiency. Several numerical examples for both fixed planet and moving planet are provided to demonstrate the efficacy of the numerical method and code.
Detman, T. R.; Intriligator, D. S.; Dryer, M.; Sun, W.; Deehr, C. S.; Intriligator, J.
2012-01-01
We describe our 3-D, time ]dependent, MHD solar wind model that we recently modified to include the physics of pickup protons from interstellar neutral hydrogen. The model has a time-dependent lower boundary condition, at 0.1 AU, that is driven by source surface map files through an empirical interface module. We describe the empirical interface and its parameter tuning to maximize model agreement with background (quiet) solar wind observations at ACE. We then give results of a simulation study of the famous Halloween 2003 series of solar events. We began with shock inputs from the Fearless Forecast real ]time shock arrival prediction study, and then we iteratively adjusted input shock speeds to obtain agreement between observed and simulated shock arrival times at ACE. We then extended the model grid to 5.5 AU and compared those simulation results with Ulysses observations at 5.2 AU. Next we undertook the more difficult tuning of shock speeds and locations to get matching shock arrival times at both ACE and Ulysses. Then we ran this last case again with neutral hydrogen density set to zero, to identify the effect of pickup ions. We show that the speed of interplanetary shocks propagating from the Sun to Ulysses is reduced by the effects of pickup protons. We plan to make further improvements to the model as we continue our benchmarking process to 10 AU, comparing our results with Cassini observations, and eventually on to 100 AU, comparing our results with Voyager 1 and 2 observations.
Tramm, John R.; Gunow, Geoffrey; He, Tim; Smith, Kord S.; Forget, Benoit; Siegel, Andrew R.
2016-05-01
In this study we present and analyze a formulation of the 3D Method of Characteristics (MOC) technique applied to the simulation of full core nuclear reactors. Key features of the algorithm include a task-based parallelism model that allows independent MOC tracks to be assigned to threads dynamically, ensuring load balancing, and a wide vectorizable inner loop that takes advantage of modern SIMD computer architectures. The algorithm is implemented in a set of highly optimized proxy applications in order to investigate its performance characteristics on CPU, GPU, and Intel Xeon Phi architectures. Speed, power, and hardware cost efficiencies are compared. Additionally, performance bottlenecks are identified for each architecture in order to determine the prospects for continued scalability of the algorithm on next generation HPC architectures.
High-Fidelity RF Gun Simulations with the Parallel 3D Finite Element Particle-In-Cell Code Pic3P
Energy Technology Data Exchange (ETDEWEB)
Candel, A; Kabel, A.; Lee, L.; Li, Z.; Limborg, C.; Ng, C.; Schussman, G.; Ko, K.; /SLAC
2009-06-19
SLAC's Advanced Computations Department (ACD) has developed the first parallel Finite Element 3D Particle-In-Cell (PIC) code, Pic3P, for simulations of RF guns and other space-charge dominated beam-cavity interactions. Pic3P solves the complete set of Maxwell-Lorentz equations and thus includes space charge, retardation and wakefield effects from first principles. Pic3P uses higher-order Finite Elementmethods on unstructured conformal meshes. A novel scheme for causal adaptive refinement and dynamic load balancing enable unprecedented simulation accuracy, aiding the design and operation of the next generation of accelerator facilities. Application to the Linac Coherent Light Source (LCLS) RF gun is presented.
DeJong, Andrew
Numerical models of fluid-structure interaction have grown in importance due to increasing interest in environmental energy harvesting, airfoil-gust interactions, and bio-inspired formation flying. Powered by increasingly powerful parallel computers, such models seek to explain the fundamental physics behind the complex, unsteady fluid-structure phenomena. To this end, a high-fidelity computational model based on the high-order spectral difference method on 3D unstructured, dynamic meshes has been developed. The spectral difference method constructs continuous solution fields within each element with a Riemann solver to compute the inviscid fluxes at the element interfaces and an averaging mechanism to compute the viscous fluxes. This method has shown promise in the past as a highly accurate, yet sufficiently fast method for solving unsteady viscous compressible flows. The solver is monolithically coupled to the equations of motion of an elastically mounted 3-degree of freedom rigid bluff body undergoing flow-induced lift, drag, and torque. The mesh is deformed using 4 methods: an analytic function, Laplace equation, biharmonic equation, and a bi-elliptic equation with variable diffusivity. This single system of equations -- fluid and structure -- is advanced through time using a 5-stage, 4th-order Runge-Kutta scheme. Message Passing Interface is used to run the coupled system in parallel on up to 240 processors. The solver is validated against previously published numerical and experimental data for an elastically mounted cylinder. The effect of adding an upstream body and inducing wake galloping is observed.
3D MHD Simulations of Spheromak Compression
Stuber, James E.; Woodruff, Simon; O'Bryan, John; Romero-Talamas, Carlos A.; Darpa Spheromak Team
2015-11-01
The adiabatic compression of compact tori could lead to a compact and hence low cost fusion energy system. The critical scientific issues in spheromak compression relate both to confinement properties and to the stability of the configuration undergoing compression. We present results from the NIMROD code modified with the addition of magnetic field coils that allow us to examine the role of rotation on the stability and confinement of the spheromak (extending prior work for the FRC). We present results from a scan in initial rotation, from 0 to 100km/s. We show that strong rotational shear (10km/s over 1cm) occurs. We compare the simulation results with analytic scaling relations for adiabatic compression. Work performed under DARPA grant N66001-14-1-4044.
Kordy, M.; Wannamaker, P.; Maris, V.; Cherkaev, E.; Hill, G.
2016-01-01
We have developed an algorithm, which we call HexMT, for 3-D simulation and inversion of magnetotelluric (MT) responses using deformable hexahedral finite elements that permit incorporation of topography. Direct solvers parallelized on symmetric multiprocessor (SMP), single-chassis workstations with large RAM are used throughout, including the forward solution, parameter Jacobians and model parameter update. In Part I, the forward simulator and Jacobian calculations are presented. We use first-order edge elements to represent the secondary electric field (E), yielding accuracy O(h) for E and its curl (magnetic field). For very low frequencies or small material admittivities, the E-field requires divergence correction. With the help of Hodge decomposition, the correction may be applied in one step after the forward solution is calculated. This allows accurate E-field solutions in dielectric air. The system matrix factorization and source vector solutions are computed using the MKL PARDISO library, which shows good scalability through 24 processor cores. The factorized matrix is used to calculate the forward response as well as the Jacobians of electromagnetic (EM) field and MT responses using the reciprocity theorem. Comparison with other codes demonstrates accuracy of our forward calculations. We consider a popular conductive/resistive double brick structure, several synthetic topographic models and the natural topography of Mount Erebus in Antarctica. In particular, the ability of finite elements to represent smooth topographic slopes permits accurate simulation of refraction of EM waves normal to the slopes at high frequencies. Run-time tests of the parallelized algorithm indicate that for meshes as large as 176 × 176 × 70 elements, MT forward responses and Jacobians can be calculated in ˜1.5 hr per frequency. Together with an efficient inversion parameter step described in Part II, MT inversion problems of 200-300 stations are computable with total run times
Santasusana, Miquel; Irazábal, Joaquín; Oñate, Eugenio; Carbonell, Josep Maria
2016-07-01
In this work, we present a new methodology for the treatment of the contact interaction between rigid boundaries and spherical discrete elements (DE). Rigid body parts are present in most of large-scale simulations. The surfaces of the rigid parts are commonly meshed with a finite element-like (FE) discretization. The contact detection and calculation between those DE and the discretized boundaries is not straightforward and has been addressed by different approaches. The algorithm presented in this paper considers the contact of the DEs with the geometric primitives of a FE mesh, i.e. facet, edge or vertex. To do so, the original hierarchical method presented by Horner et al. (J Eng Mech 127(10):1027-1032, 2001) is extended with a new insight leading to a robust, fast and accurate 3D contact algorithm which is fully parallelizable. The implementation of the method has been developed in order to deal ideally with triangles and quadrilaterals. If the boundaries are discretized with another type of geometries, the method can be easily extended to higher order planar convex polyhedra. A detailed description of the procedure followed to treat a wide range of cases is presented. The description of the developed algorithm and its validation is verified with several practical examples. The parallelization capabilities and the obtained performance are presented with the study of an industrial application example.
Pathak, Ashish; Raessi, Mehdi
2014-11-01
We present a 3D MPI-parallel, GPU-accelerated computational tool that captures the interaction between a moving rigid body and two-fluid flows. Although the immediate application is the study of ocean wave energy converters (WECs), the model was developed at a general level and can be used in other applications. Solving the full Navier-Stokes equations, the model is able to capture non-linear effects, including wave-breaking and fluid-structure interaction, that have significant impact on WEC performance. To transport mass and momentum, we use a consistent scheme that can handle large density ratios (e.g. air/water). We present a novel reconstruction scheme for resolving three-phase (solid-liquid-gas) cells in the volume-of-fluid context, where the fluid interface orientation is estimated via a minimization procedure, while imposing a contact angle. The reconstruction allows for accurate mass and momentum transport in the vicinity of three-phase cells. The fast-fictitious-domain method is used for capturing the interaction between a moving rigid body and two-fluid flow. The pressure Poisson solver is accelerated using GPUs in the MPI framework. We present results of an array of test cases devised to assess the performance and accuracy of the computational tool.
Athena3D: Flux-conservative Godunov-type algorithm for compressible magnetohydrodynamics
Hawley, John; Simon, Jake; Stone, James; Gardiner, Thomas; Teuben, Peter
2015-05-01
Written in FORTRAN, Athena3D, based on Athena (ascl:1010.014), is an implementation of a flux-conservative Godunov-type algorithm for compressible magnetohydrodynamics. Features of the Athena3D code include compressible hydrodynamics and ideal MHD in one, two or three spatial dimensions in Cartesian coordinates; adiabatic and isothermal equations of state; 1st, 2nd or 3rd order reconstruction using the characteristic variables; and numerical fluxes computed using the Roe scheme. In addition, it offers the ability to add source terms to the equations and is parallelized based on MPI.
A Fast MHD Code for Gravitationally Stratified Media using Graphical Processing Units: SMAUG
Indian Academy of Sciences (India)
M. K. Griffiths; V. Fedun; R.Erdélyi
2015-03-01
Parallelization techniques have been exploited most successfully by the gaming/graphics industry with the adoption of graphical processing units (GPUs), possessing hundreds of processor cores. The opportunity has been recognized by the computational sciences and engineering communities, who have recently harnessed successfully the numerical performance of GPUs. For example, parallel magnetohydrodynamic (MHD) algorithms are important for numerical modelling of highly inhomogeneous solar, astrophysical and geophysical plasmas. Here, we describe the implementation of SMAUG, the Sheffield Magnetohydrodynamics Algorithm Using GPUs. SMAUG is a 1–3D MHD code capable of modelling magnetized and gravitationally stratified plasma. The objective of this paper is to present the numerical methods and techniques used for porting the code to this novel and highly parallel compute architecture. The methods employed are justified by the performance benchmarks and validation results demonstrating that the code successfully simulates the physics for a range of test scenarios including a full 3D realistic model of wave propagation in the solar atmosphere.
MHD simulations on an unstructured mesh
International Nuclear Information System (INIS)
Two reasons for using an unstructured computational mesh are adaptivity, and alignment with arbitrarily shaped boundaries. Two codes which use finite element discretization on an unstructured mesh are described. FEM3D solves 2D and 3D RMHD using an adaptive grid. MH3D++, which incorporates methods of FEM3D into the MH3D generalized MHD code, can be used with shaped boundaries, which might be 3D
KHEM CHAND
2011-01-01
The heat transfer and hydromagnetic boundary layer flow of an electrically conducting viscous ,incompressible fluid over a continuous flat surface moving in a parallel free stream is investigated. The porous infinite surface is subjected to a slightly sinusoidal transverse suction velocity distribution. The flow becomes three dimensional due to this type of suction velocity without taking into account the induced magnetic field; the mathematical analysis is presented for the hydromagnetic lam...
International Nuclear Information System (INIS)
The problem of unsteady conducting viscous flow of n-immiscible and incompressible fluids, occupying equal heights between parallel plates under the influence of periodic pressure gradient superposed on the steady flow has been studied. Expressions for velocity distributions for n-fluids have been obtained. The velocity distributions have been shown graphically against nondimensional distance in the case of two fluids in particular. (auth.)
Energy Technology Data Exchange (ETDEWEB)
Oberholzer, K.; Romaneehsen, B.; Kunz, P.; Thelen, M.; Kreitner, K.F. [Klinik fuer Radiologie, Johannes Gutenberg-Univ. Mainz (Germany); Kramm, T. [Klinik fuer Herz-, Thorax- und Gefaesschirurgie, Johannes Gutenberg-Univ. Mainz (Germany)
2004-04-01
Purpose: Comparison of two different types of contrast-enhanced 3D-MR angiography (CE-MRA) with integrated parallel acquisition technique (iPAT) in patients with chronic-thromboembolic pulmonary hypertension (CTEPH) and evaluation whether sagittal acquisition with higher resolution and minimized acquisition time is superior to common coronal orientation. Materials and Methods: CE-MRA was performed on 15 patients with CTEPH preoperatively and on 10 patients also postoperatively, while 5 other patients received only a postoperative MRA. All 30 MR studies with one coronal and two sagittal acquisitions were blindly evaluated and compared. The resolution of coronal and sagittal MRA was 1.3 x 0.6 x 1.4 mm{sup 3} and 1.2 x 1.2 x 1.2 mm{sup 3}, and acquisition time 20 and 17 sec (iPAT factor 2, GRAPPA), respectively. Image quality, coverage of the pulmonary arteries, delineation of patent segmental and subsegmental vessels and pathological findings were assessed. A total of 1980 vessels were evaluated. Results: Sagittal 3D-MRA was superior in overall image quality and complete coverage of the vessels compared to coronal MRA, 18% of subsegmental and 4.3% of segmental arteries as well as 1.1% of the lobar vessels were not covered by coronal acquisition. Only 0.5% of sagittal subsegments were missed. The number of depicted patent segmental and subsegmental arteries was higher in sagittal MRA (460 vs 489 and 573 vs. 649, respectively), the total difference of patent vessels was 105. Sagittal MRA revealed more pathological findings in segmental arteries (especially thrombotic material and stenoses). (orig.) [German] Ziel: Vergleich zweier kontrastmittelverstaerkter MR-Angiographie-Techniken der Pulmonalarterien mit integrierter paralleler Akquisitionstechnik (iPAT) bei Patienten mit chronisch-thromboembolischer pulmonaler Hypertonie (CTEPH), Ueberpruefung der Hypothese, dass mit sagittaler Datenaufnahme eine bessere Bildqualitaet und Detailerkennbarkeit durch hoehere Aufloesung
Gabriele Jost; Bob Robins
2010-01-01
Today most systems in high-performance computing (HPC) feature a hierarchical hardware design: shared-memory nodes with several multi-core CPUs are connected via a network infrastructure. When parallelizing an application for these architectures it seems natural to employ a hierarchical programming model such as combining MPI and OpenMP. Nevertheless, there is the general lore that pure MPI outperforms the hybrid MPI/OpenMP approach. In this paper, we describe the hybrid MPI/OpenMP paralleliz...
Zheng, Xiang
2015-03-01
We present a numerical algorithm for simulating the spinodal decomposition described by the three dimensional Cahn-Hilliard-Cook (CHC) equation, which is a fourth-order stochastic partial differential equation with a noise term. The equation is discretized in space and time based on a fully implicit, cell-centered finite difference scheme, with an adaptive time-stepping strategy designed to accelerate the progress to equilibrium. At each time step, a parallel Newton-Krylov-Schwarz algorithm is used to solve the nonlinear system. We discuss various numerical and computational challenges associated with the method. The numerical scheme is validated by a comparison with an explicit scheme of high accuracy (and unreasonably high cost). We present steady state solutions of the CHC equation in two and three dimensions. The effect of the thermal fluctuation on the spinodal decomposition process is studied. We show that the existence of the thermal fluctuation accelerates the spinodal decomposition process and that the final steady morphology is sensitive to the stochastic noise. We also show the evolution of the energies and statistical moments. In terms of the parallel performance, it is found that the implicit domain decomposition approach scales well on supercomputers with a large number of processors. © 2015 Elsevier Inc.
International Nuclear Information System (INIS)
We present a numerical algorithm for simulating the spinodal decomposition described by the three dimensional Cahn–Hilliard–Cook (CHC) equation, which is a fourth-order stochastic partial differential equation with a noise term. The equation is discretized in space and time based on a fully implicit, cell-centered finite difference scheme, with an adaptive time-stepping strategy designed to accelerate the progress to equilibrium. At each time step, a parallel Newton–Krylov–Schwarz algorithm is used to solve the nonlinear system. We discuss various numerical and computational challenges associated with the method. The numerical scheme is validated by a comparison with an explicit scheme of high accuracy (and unreasonably high cost). We present steady state solutions of the CHC equation in two and three dimensions. The effect of the thermal fluctuation on the spinodal decomposition process is studied. We show that the existence of the thermal fluctuation accelerates the spinodal decomposition process and that the final steady morphology is sensitive to the stochastic noise. We also show the evolution of the energies and statistical moments. In terms of the parallel performance, it is found that the implicit domain decomposition approach scales well on supercomputers with a large number of processors
International Nuclear Information System (INIS)
Powerful supercomputers are available today. MBC-1000M is one of Russian supercomputers that may be used by distant way access. Programs LUCKY and LUCKYC were created to work for multi-processors systems. These programs have algorithms created especially for these computers and used MPI (message passing interface) service for exchanges between processors. LUCKY may resolved shielding tasks by multigroup discreet ordinate method. LUCKYC may resolve critical tasks by same method. Only XYZ orthogonal geometry is available. Under little space steps to approximate discreet operator this geometry may be used as universal one to describe complex geometrical structures. Cross section libraries are used up to P8 approximation by Legendre polynomials for nuclear data in GIT format. Programming language is Fortran-90. 'Vector' processors may be used that lets get a time profit up to 30 times. But unfortunately MBC-1000M has not these processors. Nevertheless sufficient value for efficiency of parallel calculations was obtained under 'space' (LUCKY) and 'space and energy' (LUCKYC) paralleling. AUTOCAD program is used to control geometry after a treatment of input data. Programs have powerful geometry module, it is a beautiful tool to achieve any geometry. Output results may be processed by graphic programs on personal computer. (authors)
NIF Ignition Target 3D Point Design
Energy Technology Data Exchange (ETDEWEB)
Jones, O; Marinak, M; Milovich, J; Callahan, D
2008-11-05
We have developed an input file for running 3D NIF hohlraums that is optimized such that it can be run in 1-2 days on parallel computers. We have incorporated increasing levels of automation into the 3D input file: (1) Configuration controlled input files; (2) Common file for 2D and 3D, different types of capsules (symcap, etc.); and (3) Can obtain target dimensions, laser pulse, and diagnostics settings automatically from NIF Campaign Management Tool. Using 3D Hydra calculations to investigate different problems: (1) Intrinsic 3D asymmetry; (2) Tolerance to nonideal 3D effects (e.g. laser power balance, pointing errors); and (3) Synthetic diagnostics.
Lucas, Laurent; Loscos, Céline
2013-01-01
While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century.The chapters in this book cover a large spectrum of areas connected to 3D video, which are presented both theoretically and technologically, while taking into account both physiological and perceptual aspects. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide th
Beane, Andy
2012-01-01
The essential fundamentals of 3D animation for aspiring 3D artists 3D is everywhere--video games, movie and television special effects, mobile devices, etc. Many aspiring artists and animators have grown up with 3D and computers, and naturally gravitate to this field as their area of interest. Bringing a blend of studio and classroom experience to offer you thorough coverage of the 3D animation industry, this must-have book shows you what it takes to create compelling and realistic 3D imagery. Serves as the first step to understanding the language of 3D and computer graphics (CG)Covers 3D anim
International Nuclear Information System (INIS)
The driver linac of the proposed Rare Isotope Accelerator (RIA) requires a great variety of high intensity, high charge state ion beams. In order to design and to optimize the low energy beamline optics of the RIA front end,we have developed a new parallel three-dimensional model to simulate the low energy, multi-species ion beam formation and transport from the ECR ion source extraction region to the focal plane of the analyzing magnet. A multisection overlapped computational domain has been used to break the original transport system into a number of each subsystem, macro-particle tracking is used to obtain the charge density distribution in this subdomain. The three-dimensional Poisson equation is solved within the subdomain and particle tracking is repeated until the solution converges. Two new Poisson solvers based on a combination of the spectral method and the multigrid method have been developed to solve the Poisson equation in cylindrical coordinates for the beam extraction region and in the Frenet-Serret coordinates for the bending magnet region. Some test examples and initial applications will also be presented
Self-consistent stationary MHD shear flows in the solar atmosphere as electric field generators
Nickeler, D H; Wiegelmann, T; Kraus, M
2014-01-01
Magnetic fields and flows in coronal structures, for example, in gradual phases in flares, can be described by 2D and 3D magnetohydrostatic (MHS) and steady magnetohydrodynamic (MHD) equilibria. Within a physically simplified, but exact mathematical model, we study the electric currents and corresponding electric fields generated by shear flows. Starting from exact and analytically calculated magnetic potential fields, we solveid the nonlinear MHD equations self-consistently. By applying a magnetic shear flow and assuming a nonideal MHD environment, we calculated an electric field via Faraday's law. The formal solution for the electromagnetic field allowed us to compute an expression of an effective resistivity similar to the collisionless Speiser resistivity. We find that the electric field can be highly spatially structured, or in other words, filamented. The electric field component parallel to the magnetic field is the dominant component and is high where the resistivity has a maximum. The electric field ...
Nonlinear evolution of MHD instabilities
International Nuclear Information System (INIS)
A 3-D nonlinear MHD computer code was used to study the time evolution of internal instabilities. Velocity vortex cells are observed to persist into the nonlinear evolution. Pressure and density profiles convect around these cells for a weak localized instability, or convect into the wall for a strong instability. (U.S.)
International Nuclear Information System (INIS)
The direct use of enlarged subsets of mathematically exact equations of change in moments of the velocity distribution function, each equation corresponding to one of the macroscopic variables to be retained, produces extended MHD models. The first relevant level of closure provides 'ten moment' equations in the density ρ, velocity v, scalar pressure p, and the traceless component of the pressure tensor t. The next 'thirteen moment' level also includes the thermal flux vector q, and further extended MHD models could be developed by including even higher level basic equations of change. Explicit invariant forms for the tensor t and the heat flux vector defining q follow from their respective basic equations of change. Except in the neighbourhood of a magnetic null, in magnetised plasma these forms may be resolved into known sums of their parallel, cross (or transverse) and perpendicular components. Parallel viscosity in an electron-ion plasma is specifically discussed. (author)
Morrison, P. J.; Abdelhamid, H. M.; Grasso, D.; Hazeltine, R. D.; Lingam, M.; Tassi, E.
2015-11-01
Over the years various reduced fluid models have been obtained for modeling plasmas, with the goal of capturing important physics while maintaining computability. Such models have included the physics contained in various generalizations of Ohm's law, including Hall drift and electron inertia. In a recent publication it was shown that full 3D extended MHD is a Hamiltonian system by finding its noncanonical Poisson bracket. Subsequently, this bracket was shown to be derivable from that for Hall MHD by a series of remarkable transformations, which greatly simplifies the proof of the Jacobi identity and allows one to immediately obtain generalizations of the helicity and cross helicity. In this poster we use this structure to obtain exact reduced fluid models with the effects of full two-fluid theory. Results of numerical computations of collisionless reconnection using an exact reduced 4-field model will be presented and analytical comparisons of mode structure of previous reduced models will be made.
Directory of Open Access Journals (Sweden)
D. Pletinckx
2012-09-01
Full Text Available The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.
International Nuclear Information System (INIS)
This book explains modeling of solid works 3D and application of 3D CAD/CAM. The contents of this book are outline of modeling such as CAD and 2D and 3D, solid works composition, method of sketch, writing measurement fixing, selecting projection, choosing condition of restriction, practice of sketch, making parts, reforming parts, modeling 3D, revising 3D modeling, using pattern function, modeling necessaries, assembling, floor plan, 3D modeling method, practice floor plans for industrial engineer data aided manufacturing, processing of CAD/CAM interface.
International Nuclear Information System (INIS)
Traditional two-dimensional (2D)/one-dimensional (1D) SYNTHESIS methodology has been widely used to calculate fast neutron (>1.0 MeV) fluence exposure to reactor pressure vessel in the belt-line region. However, it is expected that this methodology cannot provide accurate fast neutron fluence calculation at elevations far above or below the active core region. A three-dimensional (3D) parallel discrete ordinates calculation for ex-vessel neutron dosimetry on a Westinghouse 4-Loop XL Pressurized Water Reactor has been done. It shows good agreement between the calculated results and measured results. Furthermore, the results show very different fast neutron flux values at some of the former plate locations and elevations above and below an active core than those calculated by a 2D/1D SYNTHESIS method. This indicates that for certain irregular reactor internal structures, where the fast neutron flux has a very strong local effect, it is required to use a 3D transport method to calculate accurate fast neutron exposure. (authors)
Directory of Open Access Journals (Sweden)
Felician ALECU
2010-01-01
Full Text Available Many professionals and 3D artists consider Blender as being the best open source solution for 3D computer graphics. The main features are related to modeling, rendering, shading, imaging, compositing, animation, physics and particles and realtime 3D/game creation.
Magneto-acoustic waves in sunspots: first results from a new 3D nonlinear magnetohydrodynamic code
Felipe, T; Collados, M
2010-01-01
Waves observed in the photosphere and chromosphere of sunspots show complex dynamics and spatial patterns. The interpretation of high-resolution sunspot wave observations requires modeling of three-dimensional non-linear wave propagation and mode transformation in the sunspot upper layers in realistic spot model atmospheres. Here we present the first results of such modeling. We have developed a 3D non-linear numerical code specially designed to calculate the response of magnetic structures in equilibrium to an arbitrary perturbation. The code solves the 3D nonlinear MHD equations for perturbations; it is stabilized by hyper-diffusivity terms and is fully parallelized. The robustness of the code is demonstrated by a number of standard tests. We analyze several simulations of a sunspot perturbed by pulses of different periods at subphotospheric level, from short periods, introduced for academic purposes, to longer and realistic periods of three and five minutes. We present a detailed description of the three-d...
3d-3d correspondence revisited
Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr
2016-04-01
In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.
Brdnik, Lovro
2015-01-01
Diplomsko delo analizira trenutno stanje 3D tiskalnikov na trgu. Prikazan je razvoj in principi delovanja 3D tiskalnikov. Predstavljeni so tipi 3D tiskalnikov, njihove prednosti in slabosti. Podrobneje je predstavljena zgradba in delovanje koračnih motorjev. Opravljene so meritve koračnih motorjev. Opisana je programska oprema za rokovanje s 3D tiskalniki in komponente, ki jih potrebujemo za izdelavo. Diploma se oklepa vprašanja, ali je izdelava 3D tiskalnika bolj ekonomična kot pa naložba v ...
Meulien Ohlmann, Odile
2013-02-01
Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?
Lipatov, A. S.; Farrell, W. M.; Cooper, J. F.; Sittler, E. C., Jr.; Hartle, R. E.
2015-01-01
The interactions between the solar wind and Moon-sized objects are determined by a set of the solar wind parameters and plasma environment of the space objects. The orientation of upstream magnetic field is one of the key factors which determines the formation and structure of bow shock wave/Mach cone or Alfven wing near the obstacle. The study of effects of the direction of the upstream magnetic field on lunar-like plasma environment is the main subject of our investigation in this paper. Photoionization, electron-impact ionization and charge exchange are included in our hybrid model. The computational model includes the self-consistent dynamics of the light (hydrogen (+), helium (+)) and heavy (sodium (+)) pickup ions. The lunar interior is considered as a weakly conducting body. Our previous 2013 lunar work, as reported in this journal, found formation of a triple structure of the Mach cone near the Moon in the case of perpendicular upstream magnetic field. Further advances in modeling now reveal the presence of strong wave activity in the upstream solar wind and plasma wake in the cases of quasiparallel and parallel upstream magnetic fields. However, little wave activity is found for the opposite case with a perpendicular upstream magnetic field. The modeling does not show a formation of the Mach cone in the case of theta(Sub B,U) approximately equal to 0 degrees.
Regularity criterion for the 3D Hall-magneto-hydrodynamics
Dai, Mimi
2016-07-01
This paper studies the regularity problem for the 3D incompressible resistive viscous Hall-magneto-hydrodynamic (Hall-MHD) system. The Kolmogorov 41 phenomenological theory of turbulence [14] predicts that there exists a critical wavenumber above which the high frequency part is dominated by the dissipation term in the fluid equation. Inspired by this idea, we apply an approach of splitting the wavenumber combined with an estimate of the energy flux to obtain a new regularity criterion. The regularity condition presented here is weaker than conditions in the existing criteria (Prodi-Serrin type criteria) for the 3D Hall-MHD system.
DEFF Research Database (Denmark)
Tournay, Bruno; Rüdiger, Bjarne
2006-01-01
3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s.......3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s....
Directory of Open Access Journals (Sweden)
Roberto Rinaldi
2014-12-01
Full Text Available After an experimental phase of many years, 3D filming is now effective and successful. Improvements are still possible, but the film industry achieved memorable success on 3D movie’s box offices due to the overall quality of its products. Special environments such as space (“Gravity” and the underwater realm look perfect to be reproduced in 3D. “Filming in space” was possible in “Gravity” using special effects and computer graphic. The underwater realm is still difficult to be handled. Underwater filming in 3D was not that easy and effective as filming in 2D, since not long ago. After almost 3 years of research, a French, Austrian and Italian team realized a perfect tool to film underwater, in 3D, without any constrains. This allows filmmakers to bring the audience deep inside an environment where they most probably will never have the chance to be.
OpenMHD: Godunov-type code for ideal/resistive magnetohydrodynamics (MHD)
Zenitani, Seiji
2016-04-01
OpenMHD is a Godunov-type finite-volume code for ideal/resistive magnetohydrodynamics (MHD). It is written in Fortran 90 and is parallelized by using MPI-2 and OpenMP. The code was originally developed for studying magnetic reconnection problems and has been made publicly available in the hope that others may find it useful.
3D MHD simulations of subsurface convection in OB stars
Cantiello, Matteo; Brandenburg, Axel; Del Sordo, Fabio; Käpylä, Petri; Langer, Norbert
2010-01-01
During their main sequence evolution, massive stars can develop convective regions very close to their surface. These regions are caused by an opacity peak associated with iron ionization. Cantiello et al. (2009) found a possible connection between the presence of sub-photospheric convective motions and small scale stochastic velocities in the photosphere of early-type stars. This supports a physical mechanism where microturbulence is caused by waves that are triggered by subsurface convection zones. They further suggest that clumping in the inner parts of the winds of OB stars could be related to subsurface convection, and that the convective layers may also be responsible for stochastic excitation of non-radial pulsations. Furthermore, magnetic fields produced in the iron convection zone could appear at the surface of such massive stars. Therefore subsurface convection could be responsible for the occurrence of observable phenomena such as line profile variability and discrete absorption components. These p...
Valenza, Enrico
2015-01-01
This book is aimed at the professionals that already have good 3D CGI experience with commercial packages and have now decided to try the open source Blender and want to experiment with something more complex than the average tutorials on the web. However, it's also aimed at the intermediate Blender users who simply want to go some steps further.It's taken for granted that you already know how to move inside the Blender interface, that you already have 3D modeling knowledge, and also that of basic 3D modeling and rendering concepts, for example, edge-loops, n-gons, or samples. In any case, it'
Experimental onset threshold and magnetic pressure pileup for 3D Sweet-Parker reconnection
International Nuclear Information System (INIS)
In space, astrophysical and laboratory plasmas, magnetic reconnect ion converts magnetic into particle energy during unsteady, explosive events. The abrupt onset and cessation has been a long standing puzzle. We show the first three-dimensional (3D) laboratory example of onset and stagnation of Sweet-Parker type magnetic reconnection between magnetized and parallel current (flux) ropes driven by magnetohydrodynamic (MHD) attraction and 3D instability. Mutually attracting flux ropes advect and merge oppositely directed magnetic fields. Magnetic flux is annihilated, but reaches soon a threshold where magnetic flux and pressure pile up, and reconnection magnetic topology appears. This occurs when inflow speeds exceed the SweetParker speed vSP = vA / S1/2, where vA is the Alfven speed and S is the Lundquist number for the reconnection layer, as magnetic flux arrives faster than flux annihilation can process it. Finally piled up fields generate MHD reaction forces that stall the inflow and the reconnection process.
Greenwood, J.; Rucker, D.; Levitt, M.; Yang, X.; Lagmanson, M.
2007-12-01
High Resolution Resistivity data is currently used by hydroGEOPHYSICS, Inc to detect and characterize the distribution of suspected contaminant plumes beneath leaking tanks and disposal sites within the U.S. Department of Energy Hanford Site, in Eastern Washington State. The success of the characterization effort has led to resistivity data acquisition in extremely large survey areas exceeding 0.6 km2 and containing over 6,000 electrodes. Optimal data processing results are achieved by utilizing 105 data points within a single finite difference or finite element model domain. The large number of measurements and electrodes and high resolution of the modeling domain requires a model mesh of over 106 nodes. Existing commercially available resistivity inversion software could not support the domain size due to software and hardware limitations. hydroGEOPHYSICS, Inc teamed with Advanced Geosciences, Inc to advance the existing EarthImager3D inversion software to allow for parallel-processing and large memory support under a 64 bit operating system. The basis for the selection of EarthImager3D is demonstrated with a series of verification tests and benchmark comparisons using synthetic test models, field scale experiments and 6 months of intensive modeling using an array of multi-processor servers. The results of benchmark testing show equivalence to other industry standard inversion codes that perform the same function on significantly smaller domain models. hydroGEOPHYSICS, Inc included the use of 214 steel-cased monitoring wells as "long electrodes", 6000 surface electrodes and 8 buried point source electrodes. Advanced Geosciences, Inc. implemented a long electrode modeling function to support the Hanford Site well casing data. This utility is unique to commercial resistivity inversion software, and was evaluated through a series of laboratory and field scale tests using engineered subsurface plumes. The Hanford site is an ideal proving ground for these methods due
Probe Trajectory Interpolation for 3D Reconstruction of Freehand Ultrasound
Coupé, Pierrick; Hellier, Pierre; Morandi, Xavier; Barillot, Christian
2007-01-01
Three-dimensional (3D) Freehand ultrasound uses the acquisition of non parallel B-scans localized in 3D by a tracking system (optic, mechanical or magnetic). Using the positions of the irregularly spaced B-scans, a regular 3D lattice volume can be reconstructed, to which conventional 3D computer vision algorithms (registration and segmentation) can be applied. This paper presents a new 3D reconstruction method which explicitly accounts for the probe trajectory. Experiments were conducted on p...
DEFF Research Database (Denmark)
Hundebøl, Jesper
wave of new building information modelling tools demands further investigation, not least because of industry representatives' somewhat coarse parlance: Now the word is spreading -3D digital modelling is nothing less than a revolution, a shift of paradigm, a new alphabet... Research qeustions. Based...... on empirical probes (interviews, observations, written inscriptions) within the Danish construction industry this paper explores the organizational and managerial dynamics of 3D Digital Modelling. The paper intends to - Illustrate how the network of (non-)human actors engaged in the promotion (and arrest) of 3......D Modelling (in Denmark) stabilizes - Examine how 3D Modelling manifests itself in the early design phases of a construction project with a view to discuss the effects hereof for i.a. the management of the building process. Structure. The paper introduces a few, basic methodological concepts...
Lively, Michael
2010-01-01
Professional Papervision3D describes how Papervision3D works and how real world applications are built, with a clear look at essential topics such as building websites and games, creating virtual tours, and Adobe's Flash 10. Readers learn important techniques through hands-on applications, and build on those skills as the book progresses. The companion website contains all code examples, video step-by-step explanations, and a collada repository.
[Real time 3D echocardiography
Bauer, F.; Shiota, T.; Thomas, J. D.
2001-01-01
Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.
The M3D-C1 Approach to Simulating 3D 2-fluid Magnetohydrodynamics in Magnetic Fusion Experiments
International Nuclear Information System (INIS)
A new approach for solving the 3D MHD equations in a strongly magnetized toroidal plasma is presented which uses high-order 2D finite elements with C1 continuity. The vector fields use a physics-based decomposition. An efficient implicit time advance separates the velocity and field advance. ITAPS (SCOREC) adaptivity software and TOPS solvers are used
Full-field drift Hamiltonian particle orbits in 3D geometry
Energy Technology Data Exchange (ETDEWEB)
Cooper, W A; Graves, J P; Brunner, S [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confederation Suisse, CH1015 Lausanne (Switzerland); Isaev, M Yu, E-mail: wilfred.cooper@epfl.ch [Nuclear Fusion Institute, RRC ' Kurchatov Institute' , 123182 Moscow (Russian Federation)
2011-02-15
A Hamiltonian/Lagrangian theory to describe guiding centre orbit drift motion which is canonical in the Boozer coordinate frame has been extended to include full electromagnetic perturbed fields in anisotropic pressure 3D equilibria with nested magnetic flux surfaces. A redefinition of the guiding centre velocity to eliminate the motion due to finite equilibrium radial magnetic fields and the choice of a gauge condition that sets the radial component of the electromagnetic vector potential to zero are invoked to guarantee that the Boozer angular coordinates retain the canonical structure. The canonical momenta are identified and the guiding centre particle radial drift motion and parallel gyroradius evolution are derived. The particle coordinate position is linearly modified by wave-particle interactions. All the nonlinear wave-wave interactions appear explicitly only in the evolution of the parallel gyroradius. The radial variation of the electrostatic potential is related to the binormal component of the displacement vector for MHD-type perturbations. The electromagnetic vector potential projections can then be determined from the electrostatic potential and the radial component of the MHD displacement vector.
3D Spectroscopic Instrumentation
Bershady, Matthew A
2009-01-01
In this Chapter we review the challenges of, and opportunities for, 3D spectroscopy, and how these have lead to new and different approaches to sampling astronomical information. We describe and categorize existing instruments on 4m and 10m telescopes. Our primary focus is on grating-dispersed spectrographs. We discuss how to optimize dispersive elements, such as VPH gratings, to achieve adequate spectral resolution, high throughput, and efficient data packing to maximize spatial sampling for 3D spectroscopy. We review and compare the various coupling methods that make these spectrographs ``3D,'' including fibers, lenslets, slicers, and filtered multi-slits. We also describe Fabry-Perot and spatial-heterodyne interferometers, pointing out their advantages as field-widened systems relative to conventional, grating-dispersed spectrographs. We explore the parameter space all these instruments sample, highlighting regimes open for exploitation. Present instruments provide a foil for future development. We give an...
DEFF Research Database (Denmark)
Halskov, Kim; Johansen, Stine Liv; Bach Mikkelsen, Michelle
2014-01-01
Three-dimensional projection installations are particular kinds of augmented spaces in which a digital 3-D model is projected onto a physical three-dimensional object, thereby fusing the digital content and the physical object. Based on interaction design research and media studies, this article...... contributes to the understanding of the distinctive characteristics of such a new medium, and identifies three strategies for designing 3-D projection installations: establishing space; interplay between the digital and the physical; and transformation of materiality. The principal empirical case, From...... Fingerplan to Loop City, is a 3-D projection installation presenting the history and future of city planning for the Copenhagen area in Denmark. The installation was presented as part of the 12th Architecture Biennale in Venice in 2010....
Directory of Open Access Journals (Sweden)
Francisco R. Feito Higueruela
2010-04-01
Full Text Available Applications of Geographical Information Systems on several Archeology fields have been increasing during the last years. Recent avances in these technologies make possible to work with more realistic 3D models. In this paper we introduce a new paradigm for this system, the GIS Thetrahedron, in which we define the fundamental elements of GIS, in order to provide a better understanding of their capabilities. At the same time the basic 3D characteristics of some comercial and open source software are described, as well as the application to some samples on archeological researchs
Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran
2016-03-01
We study the conformal bootstrap for a 4-point function of fermions in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge C T . We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N . We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.
DEFF Research Database (Denmark)
Villaume, René Domine; Ørstrup, Finn Rude
2002-01-01
Projektet undersøger potentialet for interaktiv 3D design via Internettet. Arkitekt Jørn Utzons projekt til Espansiva blev udviklet som et byggesystem med det mål, at kunne skabe mangfoldige planmuligheder og mangfoldige facade- og rumudformninger. Systemets bygningskomponenter er digitaliseret som...... 3D elementer og gjort tilgængelige. Via Internettet er det nu muligt at sammenstille og afprøve en uendelig række bygningstyper som systemet blev tænkt og udviklet til....
Kotek, L.
2015-01-01
This paper is about 3D scan of plaster dental casts. The main aim of the work is a hardware and software proposition of 3D scan system for scanning of dental casts. There were used camera, projector and rotate table for this scanning system. Surface triangulation was used, taking benefits of projections of structured light on object, which is being scanned. The rotate table is controlled by PC. The camera, projector and rotate table are synchronized by PC. Controlling of stepper motor is prov...
Ms. Swapnali R. Ghadge
2013-01-01
In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot o...
Magnetohydrodynamic (MHD) power generation
International Nuclear Information System (INIS)
The concept of MHD power generation, principles of operation of the MHD generator, its design, types, MHD generator cycles, technological problems to be overcome, the current state of the art in USA and USSR are described. Progress of India's experimental 5 Mw water-gas fired open cycle MHD power generator project is reported in brief. (M.G.B.)
Wireless Rover Meets 3D Design and Product Development
Deal, Walter F., III; Hsiung, Steve C.
2016-01-01
Today there are a number of 3D printing technologies that are low cost and within the budgets of middle and high school programs. Educational technology companies offer a variety of 3D printing technologies and parallel curriculum materials to enable technology and engineering teachers to easily add 3D learning activities to their programs.…
DEFF Research Database (Denmark)
Hejlesen, Aske K.; Ovesen, Nis
2012-01-01
This paper presents an experimental approach to teaching 3D modelling techniques in an Industrial Design programme. The approach includes the use of tangible free form models as tools for improving the overall learning. The paper is based on lecturer and student experiences obtained through...
DEFF Research Database (Denmark)
Stenholt, Rasmus; Madsen, Claus B.
2011-01-01
Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data...
M.M. Voormolen
2007-01-01
textabstractThree dimensional (3D) echocardiography has recently developed from an experimental technique in the â€™90 towards an imaging modality for the daily clinical practice. This dissertation describes the considerations, implementation, validation and clinical application of a unique
Two-fluid and parallel compressibility effects in tokamak plasmas
International Nuclear Information System (INIS)
The MHD, or single fluid, model for a plasma has long been known to provide a surprisingly good description of much of the observed nonlinear dynamics of confined plasmas, considering its simple nature compared to the complexity of the real system. On the other hand, some of the supposed agreement arises from the lack of the detailed measurements that are needed to distinguish MHD from more sophisticated models that incorporate slower time scale processes. At present, a number of factors combine to make models beyond MHD of practical interest. Computational considerations still favor fluid rather than particle models for description of the full plasma, and suggest an approach that starts from a set of fluid-like equations that extends MHD to slower time scales and more accurate parallel dynamics. This paper summarizes a set of two-fluid equations for toroidal (tokamak) geometry that has been developed and tested as the MH3D-T code [1] and some results from the model. The electrons and ions are described as separate fluids. The code and its original MHD version, MH3D [2], are the first numerical, initial value models in toroidal geometry that include the full 3D (fluid) compressibility and electromagnetic effects. Previous nonlinear MHD codes for toroidal geometry have, in practice, neglected the plasma density evolution, on the grounds that MHD plasmas are only weakly compressible and that the background density variation is weaker than the temperature variation. Analytically, the common use of toroidal plasma models based on aspect ratio expansion, such as reduced MHD, has reinforced this impression, since this ordering reduces plasma compressibility effects. For two-fluid plasmas, the density evolution cannot be neglected in principle, since it provides the basic driving energy for the diamagnetic drifts of the electrons and ions perpendicular to the magnetic field. It also strongly influences the parallel dynamics, in combination with the parallel thermal
Meléndez, Adrià
2014-01-01
[eng] This dissertation is devoted to seismic tomography. I have implemented a new modelling tool for 3-D joint refraction and reflection travel-time tomography of wide-angle seismic data (TOMO3D). The reason behind this central objective is the evidence that the information based on 2-D seismic data does not allow to capture the structural complexity of many 3-D targets, and in particular that of the seismogenic zone in subduction margins. The scientific rationale for this statement, which j...
Popov, Anton; Kaus, Boris
2015-04-01
This software project aims at bringing the 3D lithospheric deformation modeling to a qualitatively different level. Our code LaMEM (Lithosphere and Mantle Evolution Model) is based on the following building blocks: * Massively-parallel data-distributed implementation model based on PETSc library * Light, stable and accurate staggered-grid finite difference spatial discretization * Marker-in-Cell pedictor-corector time discretization with Runge-Kutta 4-th order * Elastic stress rotation algorithm based on the time integration of the vorticity pseudo-vector * Staircase-type internal free surface boundary condition without artificial viscosity contrast * Geodynamically relevant visco-elasto-plastic rheology * Global velocity-pressure-temperature Newton-Raphson nonlinear solver * Local nonlinear solver based on FZERO algorithm * Coupled velocity-pressure geometric multigrid preconditioner with Galerkin coarsening Staggered grid finite difference, being inherently Eulerian and rather complicated discretization method, provides no natural treatment of free surface boundary condition. The solution based on the quasi-viscous sticky-air phase introduces significant viscosity contrasts and spoils the convergence of the iterative solvers. In LaMEM we are currently implementing an approximate stair-case type of the free surface boundary condition which excludes the empty cells and restores the solver convergence. Because of the mutual dependence of the stress and strain-rate tensor components, and their different spatial locations in the grid, there is no straightforward way of implementing the nonlinear rheology. In LaMEM we have developed and implemented an efficient interpolation scheme for the second invariant of the strain-rate tensor, that solves this problem. Scalable efficient linear solvers are the key components of the successful nonlinear problem solution. In LaMEM we have a range of PETSc-based preconditioning techniques that either employ a block factorization of
International Nuclear Information System (INIS)
A test particle model is used to study the motion of ions specularly reflected off a shock in the presence of large-amplitude, monochromatic, transverse MHD waves. The characteristics of the motion depend on the frequency, wavelength, phase, and amplitude of the wave that is being convected into the shock. For low wave frequencies and long wavelengths (ω'> ion gyroradius), the ion motion depends only upon theta/sub B/n(phi0), the instantaneous angle between the total magnetic field at the shock (ambient+wave) and the shock normal. For high wave frequencies and short wavelengths (ω'>>ion gyrofrequency, lambda0, the angle between the ambient magnetic field and the shock normal. For intermediate frequencies and wavelengths, including those of interest in the region upstream from the earth's bow shock (ω'approx.ion gyrofrequency, lambdaapprox.ion gyroradius), no simple theta/sub B/n0 or theta/sub B/n(phi0) criterion for the ion motion is found. For example, at intermediate frequencies, the motion depends both on theta/sub B/n(phi0) and theta/sub B/n0 as well as upon b/B, the ratio of the wave amplitude to ambient magnetic field strength. In general, the presence of upstream waves inhibits the escape of specularly reflected ions from the shock, the effect being greatest when the wave amplitude is large
Directory of Open Access Journals (Sweden)
S. B. Kulkarni
2015-04-01
Full Text Available An unsteady flow of elastico-viscous incompressible and electrically conducting fluid through a porous medium between two parallel plates under the influence of transverse magnetic field is examined. Initially, the flow is generated by a constant pressure gradient parallel to the bounding fluids. After attaining the steady state, the pressure gradient is suddenly withdrawn and the resulting fluid motion between the parallel plates under the influence of magnetic field is then to be investigated. The problem is solved in two stages: the first stage is a steady motion between the parallel plates under the influence of a constant pressure gradient and the magnetic parameter. The momentum equation of steady state does not involve the elastic-viscosity parameter; however, the influence Darcian friction would appear in it. The solution of the momentum equation at this stage will be the initial condition for the subsequent flow. The second stage concerns with an unsteady motion for which the initial value for the velocity will be that obtained in stage one together with the no-slip condition on the boundary plates. The problem was solved employing Laplace transformation technique. It was found that the effect of the applied transverse magnetic field has significant contribution on the velocity profiles.Defence Science Journal, Vol. 65, No. 2, March 2015, pp.119-125, DOI:http://dx.doi.org/10.14429/dsj.65.7958
Klusoň, Jindřich
2010-01-01
Computer animation has a growing importance and application in the world. With expansion of technologies increases quality of the final animation as well as number of 3D animation software. This thesis is currently mapped animation software for creating animation in film, television industry and video games which are advisable users requirements. Of them were selected according to criteria the best - Autodesk Maya 2011. This animation software is unique with tools for creating special effects...
Introduction to 3D Graphics through Excel
Benacka, Jan
2013-01-01
The article presents a method of explaining the principles of 3D graphics through making a revolvable and sizable orthographic parallel projection of cuboid in Excel. No programming is used. The method was tried in fourteen 90 minute lessons with 181 participants, which were Informatics teachers, undergraduates of Applied Informatics and gymnasium…
Particle Acceleration in 3D Magnetic Reconnection
Dahlin, J.; Drake, J. F.; Swisdak, M.
2015-12-01
Magnetic reconnection is an important driver of energetic particles in phenomena such as magnetospheric storms and solar flares. Using kinetic particle-in-cell (PIC) simulations, we show that the stochastic magnetic field structure which develops during 3D reconnection plays a vital role in particle acceleration and transport. In a 2D system, electrons are trapped in magnetic islands which limits their energy gain. In a 3D system, however, the stochastic magnetic field enables the energetic electrons to access volume-filling acceleration regions and therefore gain energy much more efficiently than in the 2D system. We also examine the relative roles of two important acceleration drivers: parallel electric fields and a Fermi mechanism associated with reflection of charged particles from contracting field lines. We find that parallel electric fields are most important for accelerating low energy particles, whereas Fermi reflection dominates energetic particle production. We also find that proton energization is reduced in the 3D system.
Energy Technology Data Exchange (ETDEWEB)
Heeter, R F; Fasoli, A; Testa, D; Sharapov, S; Berk, H L; Breizman, B; Gondhalekar, A; Mantsinen, M
2004-03-23
Experiments are conducted on the JET tokamak to assess the diagnostic potential of MHD active and passive spectroscopy, for the plasma bulk and its suprathermal components, using Alfv{acute e}n Eigenmodes (AEs) excited by external antennas and by energetic particles. The measurements of AE frequencies and mode numbers give information on the bulk plasma. Improved equilibrium reconstruction, in particular in terms of radial profiles of density and safety factor, is possible from the comparison between the antenna driven spectrum and that calculated theoretically. Details of the time evolution of the non-monotonic safety factor profile in advanced scenarios can be reconstructed from the frequency of ICRH-driven energetic particle modes. The plasma effective mass can be inferred from the resonant frequency of externally driven AEs in discharges with similar equilibrium profiles. The stability thresholds and the nonlinear development of the instabilities can give clues on energy and spatial distribution of the fast particle population. The presence of unstable AEs provides lower limits in the energy of ICRH generated fast ion tails. Fast ion pressure gradients and their evolution can be inferred from the stability of AEs at different plasma radial positions. Finally, the details of the AE spectrum in the nonlinear stage can be used to obtain information about the fast particle velocity space diffusion.
International Nuclear Information System (INIS)
This paper presents the investigation of the flow of a micropolar fluid between two parallel plates rotating about two non-coincident axes when the upper surface is acted upon by an electric field and a magnetic field is applied perpendicular to the flow. Expressions for the velocity and microrotation have been obtained. The effects of the rotation of the plates in the presence of surface charges and magnetic field have been discussed in detail. (author). 5 refs., 11 figs
Andringa, Roel; de Roo, Mees; Hohm, Olaf; Sezgin, Ergin; Townsend, Paul K
2009-01-01
We construct the N=1 three-dimensional supergravity theory with cosmological, Einstein-Hilbert, Lorentz Chern-Simons, and general curvature squared terms. We determine the general supersymmetric configuration, and find a family of supersymmetric adS vacua with the supersymmetric Minkowski vacuum as a limiting case. Linearizing about the Minkowski vacuum, we find three classes of unitary theories; one is the supersymmetric extension of the recently discovered `massive 3D gravity'. Another is a `new topologically massive supergravity' (with no Einstein-Hilbert term) that propagates a single (2,3/2) helicity supermultiplet.
Energy Technology Data Exchange (ETDEWEB)
Andringa, Roel; Bergshoeff, Eric A; De Roo, Mees; Hohm, Olaf [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Sezgin, Ergin [George and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Townsend, Paul K, E-mail: E.A.Bergshoeff@rug.n, E-mail: O.Hohm@rug.n, E-mail: sezgin@tamu.ed, E-mail: P.K.Townsend@damtp.cam.ac.u [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)
2010-01-21
We construct the N=1 three-dimensional supergravity theory with cosmological, Einstein-Hilbert, Lorentz Chern-Simons, and general curvature squared terms. We determine the general supersymmetric configuration, and find a family of supersymmetric adS vacua with the supersymmetric Minkowski vacuum as a limiting case. Linearizing about the Minkowski vacuum, we find three classes of unitary theories; one is the supersymmetric extension of the recently discovered 'massive 3D gravity'. Another is a 'new topologically massive supergravity' (with no Einstein-Hilbert term) that propagates a single (2,3/2) helicity supermultiplet.
Directory of Open Access Journals (Sweden)
Ms. Swapnali R. Ghadge
2013-08-01
Full Text Available In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot of discussions. Basically, one can look into this matter from a few different perspectives: visualization and representation of information, and creation and transportation of information, among others. All of them still constitute research challenges, as no products or services are yet available or foreseen for the near future. Nevertheless, one can try to envisage the directions that can be taken towards achieving this goal. People who take part in virtual worlds stay online longer with a heightened level of interest. To take advantage of that interest, diverse businesses and organizations have claimed an early stake in this fast-growing market. They include technology leaders such as IBM, Microsoft, and Cisco, companies such as BMW, Toyota, Circuit City, Coca Cola, and Calvin Klein, and scores of universities, including Harvard, Stanford and Penn State.
Kantrowitz, Arthur; Rosa, Richard J.
1975-01-01
Explains the operation of the Magnetohydrodynamic (MHD) generator and advantages of the system over coal, oil or nuclear powered generators. Details the development of MHD generators in the United States and Soviet Union. (CP)
MHD simulations on an unstructured mesh
International Nuclear Information System (INIS)
We describe work on a full MHD code using an unstructured mesh. MH3D++ is an extension of the PPPL MH3D resistive full MHD code. MH3D++ replaces the structured mesh and finite difference / fourier discretization of MH3D with an unstructured mesh and finite element / fourier discretization. Low level routines which perform differential operations, solution of PDEs such as Poisson's equation, and graphics, are encapsulated in C++ objects to isolate the finite element operations from the higher level code. The high level code is the same, whether it is run in structured or unstructured mesh versions. This allows the unstructured mesh version to be benchmarked against the structured mesh version. As a preliminary example, disruptions in DIIID reverse shear equilibria are studied numerically with the MH3D++ code. Numerical equilibria were first produced starting with an EQDSK file containing equilibrium data of a DIII-D L-mode negative central shear discharge. Using these equilibria, the linearized equations are time advanced to get the toroidal mode number n = 1 linear growth rate and eigenmode, which is resistively unstable. The equilibrium and linear mode are used to initialize 3D nonlinear runs. An example shows poloidal slices of 3D pressure surfaces: initially, on the left, and at an intermediate time, on the right
Directory of Open Access Journals (Sweden)
Navid Freidoonimehr
2015-01-01
Full Text Available The main purpose of this study is to present dual solutions for the problem of magneto-hydrodynamic Jeffery–Hamel nano-fluid flow in non-parallel walls. To do so, we employ a new analytical technique, Predictor Homotopy Analysis Method (PHAM. This effective method is capable to calculate all branches of the multiple solutions simultaneously. Moreover, comparison of the PHAM results with numerical results obtained by the shooting method coupled with a Runge-Kutta integration method illustrates the high accuracy for this technique. For the current problem, it is found that the multiple (dual solutions exist for some values of governing parameters especially for the convergent channel cases (α = -1. The fluid in the non-parallel walls, divergent and convergent channels, is the drinking water containing different nanoparticles; Copper oxide (CuO, Copper (Cu and Silver (Ag. The effects of nanoparticle volume fraction parameter (φ, Reynolds number (Re, magnetic parameter (Mn, and angle of the channel (α as well as different types of nanoparticles on the flow characteristics are discussed.
Yan, X.; Cai, D.; Nishikawa, K.; Lembege, B.
2004-12-01
We made our efforts to parallelize the global 3D HPF Electromagnetic particle model (EMPM) for several years and have also reported our meaningful simulation results that revealed the essential physics involved in interaction of the solar wind with the Earth's magnetosphere using this EMPM (Nishikawa et al., 1995; Nishikawa, 1997, 1998a, b, 2001, 2002) in our PC cluster and supercomputer(D.S. Cai et al., 2001, 2003). Sash patterns and related phenomena have been observed and reported in some satellite observations (Fujumoto et al. 1997; Maynard, 2001), and have motivated 3D MHD simulations (White and al., 1998). We also investigated it with our global 3D parallelized HPF EMPM with dawnward IMF By (K.-I. Nishikawa, 1998) and recently new simulation with dusk-ward IMF By was accomplished in the new VPP5000 supercomputer. In the new simulations performed on the new VPP5000 supercomputer of Tsukuba University, we used larger domain size, 305×205×205, smaller grid size (Δ ), 0.5R E(the radium of the Earth), more total particle number, 220,000,000 (about 8 pairs per cell). At first, we run this code until we get the so-called quasi-stationary status; After the quasi-stationary status was established, we applied a northward IMF (B z=0.2), and then wait until the IMF arrives around the magnetopuase. After the arrival of IMF, we begin to change the IMF from northward to duskward (IMF B y=-0.2). The results revealed that the groove structure at the day-side magnetopause, that causes particle entry into inner magnetosphere and the cross structure or S-structure at near magneto-tail are formed. Moreover, in contrast with MHD simulations, kinetic characteristic of this event is also analyzed self-consistently with this simulation. The new simulation provides new and more detailed insights for the observed sash event.
3D Membrane Imaging and Porosity Visualization
Sundaramoorthi, Ganesh
2016-03-03
Ultrafiltration asymmetric porous membranes were imaged by two microscopy methods, which allow 3D reconstruction: Focused Ion Beam and Serial Block Face Scanning Electron Microscopy. A new algorithm was proposed to evaluate porosity and average pore size in different layers orthogonal and parallel to the membrane surface. The 3D-reconstruction enabled additionally the visualization of pore interconnectivity in different parts of the membrane. The method was demonstrated for a block copolymer porous membrane and can be extended to other membranes with application in ultrafiltration, supports for forward osmosis, etc, offering a complete view of the transport paths in the membrane.
Design for scalability in 3D computer graphics architectures
DEFF Research Database (Denmark)
Holten-Lund, Hans Erik
2002-01-01
This thesis describes useful methods and techniques for designing scalable hybrid parallel rendering architectures for 3D computer graphics. Various techniques for utilizing parallelism in a pipelines system are analyzed. During the Ph.D study a prototype 3D graphics architecture named Hybris has...... been developed. Hybris is a prototype rendering architeture which can be tailored to many specific 3D graphics applications and implemented in various ways. Parallel software implementations for both single and multi-processor Windows 2000 system have been demonstrated. Working hardware...... as a case study and an application of the Hybris graphics architecture....
Hausman, Kalani Kirk
2014-01-01
Get started printing out 3D objects quickly and inexpensively! 3D printing is no longer just a figment of your imagination. This remarkable technology is coming to the masses with the growing availability of 3D printers. 3D printers create 3-dimensional layered models and they allow users to create prototypes that use multiple materials and colors. This friendly-but-straightforward guide examines each type of 3D printing technology available today and gives artists, entrepreneurs, engineers, and hobbyists insight into the amazing things 3D printing has to offer. You'll discover methods for
Szkandera, Jan
2009-01-01
Tato bakalářská práce se zabývá návrhem a realizací systému, který umožní obraz scény zobrazovaný na ploše vnímat prostorově. Prostorové vnímání 2D obrazové informace je umožněno jednak stereopromítáním a jednak tím, že se obraz mění v závislosti na poloze pozorovatele. Tato práce se zabývá hlavně druhým z těchto problémů. This Bachelor's thesis goal is to design and realize system, which allows user to perceive 2D visual information as three-dimensional. 3D visual preception of 2D image i...
International Nuclear Information System (INIS)
Mobile tomographs often have the problem that high spatial resolution is impossible owing to the position or setup of the tomograph. While the tree tomograph developed by Messrs. Isotopenforschung Dr. Sauerwein GmbH worked well in practice, it is no longer used as the spatial resolution and measuring time are insufficient for many modern applications. The paper shows that the mechanical base of the method is sufficient for 3D CT measurements with modern detectors and X-ray tubes. CT measurements with very good statistics take less than 10 min. This means that mobile systems can be used, e.g. in examinations of non-transportable cultural objects or monuments. Enhancement of the spatial resolution of mobile tomographs capable of measuring in any position is made difficult by the fact that the tomograph has moving parts and will therefore have weight shifts. With the aid of tomographies whose spatial resolution is far higher than the mechanical accuracy, a correction method is presented for direct integration of the Feldkamp algorithm
Relativistic HD and MHD modelling for AGN jets
Keppens, R.; Porth, O.; Monceau-Baroux, R.; Walg, S.
2013-12-01
Relativistic hydro and magnetohydrodynamics (MHD) provide a continuum fluid description for plasma dynamics characterized by shock-dominated flows approaching the speed of light. Significant progress in its numerical modelling emerged in the last two decades; we highlight selected examples of modern grid-adaptive, massively parallel simulations realized by our open-source software MPI-AMRVAC (Keppens et al 2012 J. Comput. Phys. 231 718). Hydrodynamical models quantify how energy transfer from active galactic nuclei (AGN) jets to their surrounding interstellar/intergalactic medium (ISM/IGM) gets mediated through shocks and various fluid instability mechanisms (Monceau-Baroux et al 2012 Astron. Astrophys. 545 A62). With jet parameters representative for Fanaroff-Riley type-II jets with finite opening angles, we can quantify the ISM volumes affected by jet injection and distinguish the roles of mixing versus shock-heating in cocoon regions. This provides insight in energy feedback by AGN jets, usually incorporated parametrically in cosmological evolution scenarios. We discuss recent axisymmetric studies up to full 3D simulations for precessing relativistic jets, where synthetic radio maps can confront observations. While relativistic hydrodynamic models allow one to better constrain dynamical parameters like the Lorentz factor and density contrast between jets and their surroundings, the role of magnetic fields in AGN jet dynamics and propagation characteristics needs full relativistic MHD treatments. Then, we can demonstrate the collimating properties of an overal helical magnetic field backbone and study differences between poloidal versus toroidal field dominated scenarios (Keppens et al 2008 Astron. Astrophys. 486 663). Full 3D simulations allow one to consider the fate of non-axisymmetric perturbations on relativistic jet propagation from rotating magnetospheres (Porth 2013 Mon. Not. R. Astron. Soc. 429 2482). Self-stabilization mechanisms related to the detailed
X3D: Extensible 3D Graphics Standard
Daly, Leonard; Brutzman, Don
2007-01-01
The article of record as published may be located at http://dx.doi.org/10.1109/MSP.2007.905889 Extensible 3D (X3D) is the open standard for Web-delivered three-dimensional (3D) graphics. It specifies a declarative geometry definition language, a run-time engine, and an application program interface (API) that provide an interactive, animated, real-time environment for 3D graphics. The X3D specification documents are freely available, the standard can be used without paying any royalties,...
3D game environments create professional 3D game worlds
Ahearn, Luke
2008-01-01
The ultimate resource to help you create triple-A quality art for a variety of game worlds; 3D Game Environments offers detailed tutorials on creating 3D models, applying 2D art to 3D models, and clear concise advice on issues of efficiency and optimization for a 3D game engine. Using Photoshop and 3ds Max as his primary tools, Luke Ahearn explains how to create realistic textures from photo source and uses a variety of techniques to portray dynamic and believable game worlds.From a modern city to a steamy jungle, learn about the planning and technological considerations for 3D modelin
Aboufadel, Edward F.
2014-01-01
The purpose of this short paper is to describe a project to manufacture a regular octohedron on a 3D printer. We assume that the reader is familiar with the basics of 3D printing. In the project, we use fundamental ideas to calculate the vertices and faces of an octohedron. Then, we utilize the OPENSCAD program to create a virtual 3D model and an STereoLithography (.stl) file that can be used by a 3D printer.
Rodrigues, Marcos; Robinson, Alan; Alboul, Lyuba; Brink, Willie
2006-01-01
3D face recognition is an open field. In this paper we present a method for 3D facial recognition based on Principal Components Analysis. The method uses a relatively large number of facial measurements and ratios and yields reliable recognition. We also highlight our approach to sensor development for fast 3D model acquisition and automatic facial feature extraction.
Oblique stability of circularly polarized MHD waves
International Nuclear Information System (INIS)
The stability of finite-amplitude weakly dispersive circularly polarized MHD wave trains with respect to oblique modulations is investigated. The mathematical model is a multi-dimensional extension of the DNLS equation. It is found that the right-hand-polarized wave, which is stable with respect to parallel modulations, is unstable with respect to certain oblique modulations for most primary wavenumbers. (author)
Frumkin, Michael; Yan, Jerry
1999-01-01
We present an HPF (High Performance Fortran) implementation of ARC3D code along with the profiling and performance data on SGI Origin 2000. Advantages and limitations of HPF as a parallel programming language for CFD applications are discussed. For achieving good performance results we used the data distributions optimized for implementation of implicit and explicit operators of the solver and boundary conditions. We compare the results with MPI and directive based implementations.
FLIP MHD - A particle-in-cell method for magnetohydrodynamics
Brackbill, J. U.
1991-01-01
The fluid-implicit-particle, or 'FLIP' method presently extended to 2D and 3D MHD flow incorporates a Lagrangian field representation and yields a grid magnetic Reynolds number of up to 16 while preserving contact continuities that retain the Galilean invariance of the MHD flow equations. Analytical arguments and numerical examples demonstrate the conservation of mass, momentum, magnetic flux, and energy; 2D calculation results for the illustrative cases of contact discontinuity convection, Rayleigh-Taylor unstable flow.
Kolmogorov-style argument for the decaying homogeneous MHD turbulence
International Nuclear Information System (INIS)
Similarity solutions for 2D MHD and 3D MHD turbulence are obtained assuming the invariance of the mean square magnetic potential and the magnetic helicity respectively in the limit of infinite Reynolds number. The temporal decay laws of the energy, the cross-helicity and the magnetic helicity are derived from these similarity solutions. The present conjecture concerning the decay process is discussed in comparison with the one employed by Talyor. (author)
Performance Analysis of 3-D Monolithic Integrated Circuits
Bobba, Shashikanth; Chakraborthy, Ashutosh; Olivier THOMAS (LEREPS-GRES); Batude, Perrine; Pavlidis, Vasileios; Micheli, Giovanni De
2010-01-01
3-D monolithic integration (3DMI), also termed as sequential integration, is a potential technology for future gigascale circuits. Since the device layers are processed in sequential order, the size of the vertical contacts is similar to traditional contacts unlike in the case of parallel 3-D integration with through silicon vias (TSVs). Given the advantage of such small contacts, 3DMI supports stacking active layers such that fine-grain integration of 3-D circuits can be implemented. This pa...
Mechanical properties of structures 3D printed with cementitious powders
Feng, Peng; Meng, Xinmiao; Chen, Jian Fei; Ye, Lieping
2015-01-01
The three dimensional (3D) printing technology has undergone rapid development in the last few years and it is now possible to print engineering structures. This paper presents a study of the mechanical behavior of 3D printed structures using cementitious powder. Microscopic observation reveals that the 3D printed products have a layered orthotropic microstructure, in which each layer consists of parallel strips. Compression and flexural tests were conducted to determine the mechanical proper...
LOGARITHMICALLY IMPROVED REGULARITY CRITERION FOR THE 3D GENERALIZED MAGNETO-HYDRODYNAMIC EQUATIONS
Institute of Scientific and Technical Information of China (English)
赵继红; 刘桥
2014-01-01
This article proves the logarithmically improved Serrin’s criterion for solutions of the 3D generalized magneto-hydrodynamic equations in terms of the gradient of the velocity field, which can be regarded as improvement of results in [10] (Luo Y W. On the regularity of generalized MHD equations. J Math Anal Appl, 2010, 365: 806-808) and [18] (Zhang Z J. Remarks on the regularity criteria for generalized MHD equations. J Math Anal Appl, 2011, 375: 799-802).
3-D contextual Bayesian classifiers
DEFF Research Database (Denmark)
Larsen, Rasmus
distribution for the pixel values as well as a prior distribution for the configuration of class variables within the cross that is made of a pixel and its four nearest neighbours. We will extend these algorithms to 3-D, i.e. we will specify a simultaneous Gaussian distribution for a pixel and its 6 nearest 3......-D neighbours, and generalise the class variable configuration distributions within the 3-D cross given in 2-D algorithms. The new 3-D algorithms are tested on a synthetic 3-D multivariate dataset....
Taming Supersymmetric Defects in 3d-3d Correspondence
Gang, Dongmin; Romo, Mauricio; Yamazaki, Masahito
2015-01-01
We study knots in 3d Chern-Simons theory with complex gauge group $SL(N,\\mathbb{C})$, in the context of its relation with 3d $\\mathcal{N}=2$ theory (the so-called 3d-3d correspondence). The defect has either co-dimension 2 or co-dimension 4 inside the 6d $(2,0)$ theory, which is compactified on a 3-manifold $\\hat{M}$. We identify such defects in various corners of the 3d-3d correspondence, namely in 3d $SL(N,\\mathbb{C})$ Chern-Simons theory, in 3d $\\mathcal{N}=2$ theory, in 5d $\\mathcal{N}=2$ super Yang-Mills theory, and in the M-theory holographic dual. We can make quantitative checks of the 3d-3d correspondence by computing partition functions at each of these theories. This Letter is a companion to a longer paper, which contains more details and more results.
International Nuclear Information System (INIS)
The 'Investigating R and D Committee on Application of MHD Technology' was started to contribute to the developments of MHD power generation and its application through the comprehensive investigation of the related R and D fields, and has been working three years from June 2010 to May 2013. In this committee, the following themes were investigated intensively, New developments and future perspectives of advanced MHD power generation with highly efficient energy utilization and environmentally friendly. New developments and future perspectives of clean energy MHD power generation systems utilizing solar, hydrogen, or ocean wave energy. New developments of MHD application such as the flow control technology with MHD effect in the aeronautics and astronautics, plasma and electrical conducting flows in the electric machinery, plasma flow utilization in the material and chemical processes. The present technical report described the results of investigation by this committee. (author)
3D toroidal physics: Testing the boundaries of symmetry breakinga)
Spong, Donald A.
2015-05-01
Toroidal symmetry is an important concept for plasma confinement; it allows the existence of nested flux surface MHD equilibria and conserved invariants for particle motion. However, perfect symmetry is unachievable in realistic toroidal plasma devices. For example, tokamaks have toroidal ripple due to discrete field coils, optimized stellarators do not achieve exact quasi-symmetry, the plasma itself continually seeks lower energy states through helical 3D deformations, and reactors will likely have non-uniform distributions of ferritic steel near the plasma. Also, some level of designed-in 3D magnetic field structure is now anticipated for most concepts in order to provide the plasma control needed for a stable, steady-state fusion reactor. Such planned 3D field structures can take many forms, ranging from tokamaks with weak 3D edge localized mode suppression fields to stellarators with more dominant 3D field structures. This motivates the development of physics models that are applicable across the full range of 3D devices. Ultimately, the questions of how much symmetry breaking can be tolerated and how to optimize its design must be addressed for all fusion concepts. A closely coupled program of simulation, experimental validation, and design optimization is required to determine what forms and amplitudes of 3D shaping and symmetry breaking will be compatible with the requirements of future fusion reactors.
3D toroidal physics: Testing the boundaries of symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Spong, Donald A., E-mail: spongda@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6169 (United States)
2015-05-15
Toroidal symmetry is an important concept for plasma confinement; it allows the existence of nested flux surface MHD equilibria and conserved invariants for particle motion. However, perfect symmetry is unachievable in realistic toroidal plasma devices. For example, tokamaks have toroidal ripple due to discrete field coils, optimized stellarators do not achieve exact quasi-symmetry, the plasma itself continually seeks lower energy states through helical 3D deformations, and reactors will likely have non-uniform distributions of ferritic steel near the plasma. Also, some level of designed-in 3D magnetic field structure is now anticipated for most concepts in order to provide the plasma control needed for a stable, steady-state fusion reactor. Such planned 3D field structures can take many forms, ranging from tokamaks with weak 3D edge localized mode suppression fields to stellarators with more dominant 3D field structures. This motivates the development of physics models that are applicable across the full range of 3D devices. Ultimately, the questions of how much symmetry breaking can be tolerated and how to optimize its design must be addressed for all fusion concepts. A closely coupled program of simulation, experimental validation, and design optimization is required to determine what forms and amplitudes of 3D shaping and symmetry breaking will be compatible with the requirements of future fusion reactors.
3D toroidal physics: testing the boundaries of symmetry breaking
Spong, Don
2014-10-01
Toroidal symmetry is an important concept for plasma confinement; it allows the existence of nested flux surface MHD equilibria and conserved invariants for particle motion. However, perfect symmetry is unachievable in realistic toroidal plasma devices. For example, tokamaks have toroidal ripple due to discrete field coils, optimized stellarators do not achieve exact quasi-symmetry, the plasma itself continually seeks lower energy states through helical 3D deformations, and reactors will likely have non-uniform distributions of ferritic steel near the plasma. Also, some level of designed-in 3D magnetic field structure is now anticipated for most concepts in order to lead to a stable, steady-state fusion reactor. Such planned 3D field structures can take many forms, ranging from tokamaks with weak 3D ELM-suppression fields to stellarators with more dominant 3D field structures. There is considerable interest in the development of unified physics models for the full range of 3D effects. Ultimately, the questions of how much symmetry breaking can be tolerated and how to optimize its design must be addressed for all fusion concepts. Fortunately, significant progress is underway in theory, computation and plasma diagnostics on many issues such as magnetic surface quality, plasma screening vs. amplification of 3D perturbations, 3D transport, influence on edge pedestal structures, MHD stability effects, modification of fast ion-driven instabilities, prediction of energetic particle heat loads on plasma-facing materials, effects of 3D fields on turbulence, and magnetic coil design. A closely coupled program of simulation, experimental validation, and design optimization is required to determine what forms and amplitudes of 3D shaping and symmetry breaking will be compatible with future fusion reactors. The development of models to address 3D physics and progress in these areas will be described. This work is supported both by the US Department of Energy under Contract DE
FEMHD: An adaptive finite element method for MHD and edge modelling
Energy Technology Data Exchange (ETDEWEB)
Strauss, H.R.
1995-07-01
This paper describes the code FEMHD, an adaptive finite element MHD code, which is applied in a number of different manners to model MHD behavior and edge plasma phenomena on a diverted tokamak. The code uses an unstructured triangular mesh in 2D and wedge shaped mesh elements in 3D. The code has been adapted to look at neutral and charged particle dynamics in the plasma scrape off region, and into a full MHD-particle code.
3D Printing Functional Nanocomposites
Leong, Yew Juan
2016-01-01
3D printing presents the ability of rapid prototyping and rapid manufacturing. Techniques such as stereolithography (SLA) and fused deposition molding (FDM) have been developed and utilized since the inception of 3D printing. In such techniques, polymers represent the most commonly used material for 3D printing due to material properties such as thermo plasticity as well as its ability to be polymerized from monomers. Polymer nanocomposites are polymers with nanomaterials composited into the ...
3D Elevation Program—Virtual USA in 3D
Lukas, Vicki; Stoker, J.M.
2016-01-01
The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.
3D IBFV : Hardware-Accelerated 3D Flow Visualization
Telea, Alexandru; Wijk, Jarke J. van
2003-01-01
We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique for 2D flow visualization in two main directions. First, we decompose the 3D flow visualization problem in a
Connell, Ellery
2011-01-01
Helping graphic designers expand their 2D skills into the 3D space The trend in graphic design is towards 3D, with the demand for motion graphics, animation, photorealism, and interactivity rapidly increasing. And with the meteoric rise of iPads, smartphones, and other interactive devices, the design landscape is changing faster than ever.2D digital artists who need a quick and efficient way to join this brave new world will want 3D for Graphic Designers. Readers get hands-on basic training in working in the 3D space, including product design, industrial design and visualization, modeling, ani
DEFF Research Database (Denmark)
Larsen, Rasmus
1997-01-01
. This includes the specification of a Gaussian distribution for the pixel values as well as a prior distribution for the configuration of class variables within the cross that is m ade of a pixel and its four nearest neighbours. We will extend this algorithm to 3-D, i.e. we will specify a simultaneous Gaussian...... distr ibution for a pixel and its 6 nearest 3-D neighbours, and generalise the class variable configuration distribution within the 3-D cross. The algorithm is tested on a synthetic 3-D multivariate dataset....
3D Bayesian contextual classifiers
DEFF Research Database (Denmark)
Larsen, Rasmus
2000-01-01
We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours.......We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours....
Interactive 3D multimedia content
Cellary, Wojciech
2012-01-01
The book describes recent research results in the areas of modelling, creation, management and presentation of interactive 3D multimedia content. The book describes the current state of the art in the field and identifies the most important research and design issues. Consecutive chapters address these issues. These are: database modelling of 3D content, security in 3D environments, describing interactivity of content, searching content, visualization of search results, modelling mixed reality content, and efficient creation of interactive 3D content. Each chapter is illustrated with example a
Griffey, Jason
2014-01-01
As the maker movement continues to grow and 3-D printers become more affordable, an expanding group of hobbyists is keen to explore this new technology. In the time-honored tradition of introducing new technologies, many libraries are considering purchasing a 3-D printer. Jason Griffey, an early enthusiast of 3-D printing, has researched the marketplace and seen several systems first hand at the Consumer Electronics Show. In this report he introduces readers to the 3-D printing marketplace, covering such topics asHow fused deposition modeling (FDM) printing workBasic terminology such as build
Digital holography microscopy in 3D biologic samples analysis
Energy Technology Data Exchange (ETDEWEB)
Ricardo, J O; Palacios, F; Palacios, G F; Sanchez, A [Department of Physics, University of Oriente (Cuba); Muramatsu, M [Department of General Physics, University of Sao Paulo - Sao Paulo (Brazil); Gesualdi, M [Engineering center, Models and Applied Social Science, UFABC - Sao Paulo (Brazil); Font, O [Department of Bio-ingeniering, University of Oriente - Santiago de Cuba (Cuba); Valin, J L [Mechanics Department, ISPJAE, Habana (Cuba); Escobedo, M; Herold, S [Department of Computation, University of Oriente (Cuba); Palacios, D F, E-mail: frpalaciosf@gmail.com [Department of Nuclear physics, University of Simon BolIva (Venezuela, Bolivarian Republic of)
2011-01-01
In this work it is used a setup for Digital Holography Microscopy (MHD) for 3D biologic samples reconstruction. The phase contrast image reconstruction is done by using the Double propagation Method. The system was calibrated and tested by using a micrometric scale and pure phase object respectively. It was simulated the human red blood cell (erythrocyte) and beginning from the simulated hologram the digital 3D phase image for erythrocytes it was calculated. Also there was obtained experimental holograms of human erythrocytes and its corresponding 3D phase images, being evident the correspondence qualitative and quantitative between these characteristics in the simulated erythrocyte and in the experimentally calculated by DHM in both cases.
Digital holography microscopy in 3D biologic samples analysis
International Nuclear Information System (INIS)
In this work it is used a setup for Digital Holography Microscopy (MHD) for 3D biologic samples reconstruction. The phase contrast image reconstruction is done by using the Double propagation Method. The system was calibrated and tested by using a micrometric scale and pure phase object respectively. It was simulated the human red blood cell (erythrocyte) and beginning from the simulated hologram the digital 3D phase image for erythrocytes it was calculated. Also there was obtained experimental holograms of human erythrocytes and its corresponding 3D phase images, being evident the correspondence qualitative and quantitative between these characteristics in the simulated erythrocyte and in the experimentally calculated by DHM in both cases.
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
The disadvantage remaining in 3D scanning system and its reasons are discussed. A new host-and-slave structure with high speed image acquisition and processing system is proposed to quicken the image processing and improve the performance of 3D scanning system.
ECT Team, Purdue
2015-01-01
Building Bytes, by Brian Peters, is a project that uses desktop 3D printers to print bricks for architecture. Instead of using an expensive custom-made printer, it uses a normal standard 3D printer which is available for everyone and makes it more accessible and also easier for fabrication.
MT3D was first developed by Chunmiao Zheng in 1990 at S.S. Papadopulos & Associates, Inc. with partial support from the U.S. Environmental Protection Agency (USEPA). Starting in 1990, MT3D was released as a pubic domain code from the USEPA. Commercial versions with enhanced capab...
DEFF Research Database (Denmark)
Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen;
2005-01-01
The notion of three-dimensionality is applied to five stages of the visualization pipeline. While 3D visulization is most often associated with the visual mapping and representation of data, this chapter also identifies its role in the management and assembly of data, and in the media used...... to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...... with abstracted representations embedded in a 3D space. The interactions between development of geovisualization, the technology used to implement it and the theory surrounding cartographic representation are explored. The dominance of computing technologies, driven particularly by the gaming industry...
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
Real time 3D scanner: investigations and results
Nouri, Taoufik; Pflug, Leopold
1993-12-01
This article presents a concept of reconstruction of 3-D objects using non-invasive and touch loss techniques. The principle of this method is to display parallel interference optical fringes on an object and then to record the object under two angles of view. According to an appropriated treatment one reconstructs the 3-D object even when the object has no symmetrical plan. The 3-D surface data is available immediately in digital form for computer- visualization and for analysis software tools. The optical set-up for recording the 3-D object, the 3-D data extraction and treatment, as well as the reconstruction of the 3-D object are reported and commented on. This application is dedicated for reconstructive/cosmetic surgery, CAD, animation and research purposes.
ADT-3D Tumor Detection Assistant in 3D
Directory of Open Access Journals (Sweden)
Jaime Lazcano Bello
2008-12-01
Full Text Available The present document describes ADT-3D (Three-Dimensional Tumor Detector Assistant, a prototype application developed to assist doctors diagnose, detect and locate tumors in the brain by using CT scan. The reader may find on this document an introduction to tumor detection; ADT-3D main goals; development details; description of the product; motivation for its development; result’s study; and areas of applicability.
Broken Ergodicity in MHD Turbulence in a Spherical Domain
Shebalin, John V.; wang, Yifan
2011-01-01
Broken ergodicity (BE) occurs in Fourier method numerical simulations of ideal, homogeneous, incompressible magnetohydrodynamic (MHD) turbulence. Although naive statistical theory predicts that Fourier coefficients of fluid velocity and magnetic field are zero-mean random variables, numerical simulations clearly show that low-wave-number coefficients have non-zero mean values that can be very large compared to the associated standard deviation. In other words, large-scale coherent structure (i.e., broken ergodicity) in homogeneous MHD turbulence can spontaneously grow out of random initial conditions. Eigenanalysis of the modal covariance matrices in the probability density functions of ideal statistical theory leads to a theoretical explanation of observed BE in homogeneous MHD turbulence. Since dissipation is minimal at the largest scales, BE is also relevant for resistive magnetofluids, as evidenced in numerical simulations. Here, we move beyond model magnetofluids confined by periodic boxes to examine BE in rotating magnetofluids in spherical domains using spherical harmonic expansions along with suitable boundary conditions. We present theoretical results for 3-D and 2-D spherical models and also present computational results from dynamical simulations of 2-D MHD turbulence on a rotating spherical surface. MHD turbulence on a 2-D sphere is affected by Coriolus forces, while MHD turbulence on a 2-D plane is not, so that 2-D spherical models are a useful (and simpler) intermediate stage on the path to understanding the much more complex 3-D spherical case.
Unassisted 3D camera calibration
Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.
2012-03-01
With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.
3D CT Image-Guided Parallel Mechanism-Assisted Femur Fracture Reduction%3维CT图像导航的并联机构辅助股骨复位方法
Institute of Scientific and Technical Information of China (English)
龚敏丽; 徐颖; 唐佩福; 胡磊; 杜海龙; 吕振天; 姚腾洲
2011-01-01
Traditionally, the clinical femur fracture reduction surgery is imperfect and often results in misalignment and high intraoperative radiation exposures.To solve the problem, a method for fracture reduction based on preoperative CT image and 6 degrees of freedom parallel mechanism which is fixed to unhealthy femur is proposed.Based on the body's symmetry principle, the method uses contralateral femur as a standard to guide the reduction of femoral shaft fractures.By twelve markers on the implementing machine,the computer can calculate the length of pole in the virtual space in real time.Finally, animal bones experiments show the effectiveness of the approach.%临床上传统股骨复位手术存在复位精确度不高、辐射量大等不足.针对以上不足,提出一种基于术前CT图像引导,由固定于股骨患侧上的6自由度并联机构辅助股骨复位的方法.该方法基于人体的对称性原理,用患者健侧股骨镜像作为标准,指导患侧股骨复位:通过执行机构上的12个标记点,在虚拟空间中实时标记执行机构上每根杆的长度.动物骨实验验证了此复位方法的有效性.
Grutle, Øyvind Kallevik
2015-01-01
3D printers have in recent years become extremely popular. Even though 3D printing technology have existed since the late 1980's, it is now considered one of the most significant technological breakthroughs of the twenty-first century. Several different 3D printing processes have been invented during the years. But it is the fused deposition modeling (FDM) which was one of the first invented that is considered the most popular today. Even though the FDM process is the most popular, it still s...
Garrou , Philip; Ramm , Peter
2014-01-01
Edited by key figures in 3D integration and written by top authors from high-tech companies and renowned research institutions, this book covers the intricate details of 3D process technology.As such, the main focus is on silicon via formation, bonding and debonding, thinning, via reveal and backside processing, both from a technological and a materials science perspective. The last part of the book is concerned with assessing and enhancing the reliability of the 3D integrated devices, which is a prerequisite for the large-scale implementation of this emerging technology. Invaluable reading fo
Lin, Zeyu
2014-01-01
3D printing technology is introduced and defined in this Thesis. Some methods of 3D printing are illustrated and their principles are explained with pictures. Most of the essential parts are presented with pictures and their effects are explained within the whole system. Problems on Up! Plus 3D printer are solved and a DIY product is made with this machine. The processes of making product are recorded and the items which need to be noticed during the process are the highlight in this th...
Tuotekehitysprojekti: 3D-tulostin
Pihlajamäki, Janne
2011-01-01
Opinnäytetyössä tutustuttiin 3D-tulostamisen teknologiaan. Työssä käytiin läpi 3D-tulostimesta tehty tuotekehitysprojekti. Sen lisäksi esiteltiin yleisellä tasolla tuotekehitysprosessi ja syntyneiden tulosten mahdollisia suojausmenetelmiä. Tavoitteena tässä työssä oli kehittää markkinoilta jo löytyvää kotitulostin-tasoista 3D-laiteteknologiaa lähemmäksi ammattilaistason ratkaisua. Tavoitteeseen pyrittiin keskittymällä parantamaan laitteella saavutettavaa tulostustarkkuutta ja -nopeutt...
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
This paper presents a principle and a method of col or 3D laser scanning measurement. Based on the fundamental monochrome 3D measureme nt study, color information capture, color texture mapping, coordinate computati on and other techniques are performed to achieve color 3D measurement. The syste m is designed and composed of a line laser light emitter, one color CCD camera, a motor-driven rotary filter, a circuit card and a computer. Two steps in captu ring object's images in the measurement process: Firs...
3-D neutron transport benchmarks
International Nuclear Information System (INIS)
A set of 3-D neutron transport benchmark problems proposed by the Osaka University to NEACRP in 1988 has been calculated by many participants and the corresponding results are summarized in this report. The results of Keff, control rod worth and region-averaged fluxes for the four proposed core models, calculated by using various 3-D transport codes are compared and discussed. The calculational methods used were: Monte Carlo, Discrete Ordinates (Sn), Spherical Harmonics (Pn), Nodal Transport and others. The solutions of the four core models are quite useful as benchmarks for checking the validity of 3-D neutron transport codes
Puntar, Matej
2012-01-01
The purpose of this thesis is the presentation of already established and new technologies of displaying 3D content in a web browser. The thesis begins with a short presentation of the history of 3D content available on the internet and its development together with advantages and disadvantages of individual technologies. The latter two are described in detail as well is their use and the differences among them. Special emphasis has been given to WebGL, the newest technology of 3D conte...
3-D Force-balanced Magnetospheric Configurations
International Nuclear Information System (INIS)
The knowledge of plasma pressure is essential for many physics applications in the magnetosphere, such as computing magnetospheric currents and deriving magnetosphere-ionosphere coupling. A thorough knowledge of the 3-D pressure distribution has however eluded the community, as most in-situ pressure observations are either in the ionosphere or the equatorial region of the magnetosphere. With the assumption of pressure isotropy there have been attempts to obtain the pressure at different locations by either (a) mapping observed data (e.g., in the ionosphere) along the field lines of an empirical magnetospheric field model or (b) computing a pressure profile in the equatorial plane (in 2-D) or along the Sun-Earth axis (in 1-D) that is in force balance with the magnetic stresses of an empirical model. However, the pressure distributions obtained through these methods are not in force balance with the empirical magnetic field at all locations. In order to find a global 3-D plasma pressure distribution in force balance with the magnetospheric magnetic field, we have developed the MAG-3D code, that solves the 3-D force balance equation J x B = (upside-down delta) P computationally. Our calculation is performed in a flux coordinate system in which the magnetic field is expressed in terms of Euler potentials as B = (upside-down delta) psi x (upside-down delta) alpha. The pressure distribution, P = P(psi,alpha), is prescribed in the equatorial plane and is based on satellite measurements. In addition, computational boundary conditions for y surfaces are imposed using empirical field models. Our results provide 3-D distributions of magnetic field and plasma pressure as well as parallel and transverse currents for both quiet-time and disturbed magnetospheric conditions
3D blob dynamics in toroidal geometry
DEFF Research Database (Denmark)
Nielsen, Anders Henry; Reiser, Dirk
DIESEL code is an extension of the ESEL code [1]. It solves a simple interchange model in full 3D tokamak geometry, where the toroidal direction is divided into a number of drift planes. On each drift plane the equations are solved in a domain corresponding to the full 2D cross section of the tokamak and...... communicate parallel with the nearest drift planes using parameterized velocities, the ion sound speed, Cs for the density equation and the Alfvén speed VA for the vorticity equation. Results show that a decrease of Alfvénic interaction of electric potential and current density leads to the expected radial...
VisAn MHD: a toolbox in Matlab for MHD computer model data visualisation and analysis
Directory of Open Access Journals (Sweden)
P. Daum
2007-03-01
Full Text Available Among the many challenges facing modern space physics today is the need for a visualisation and analysis package which can examine the results from the diversity of numerical and empirical computer models as well as observational data. Magnetohydrodynamic (MHD models represent the latest numerical models of the complex Earth's space environment and have the unique ability to span the enormous distances present in the magnetosphere from several hundred kilometres to several thousand kilometres above the Earth surface. This feature enables scientist to study complex structures of processes where otherwise only point measurements from satellites or ground-based instruments are available. Only by combining these observational data and the MHD simulations it is possible to enlarge the scope of the point-to-point observations and to fill the gaps left by measurements in order to get a full 3-D representation of the processes in our geospace environment. In this paper we introduce the VisAn MHD toolbox for Matlab as a tool for the visualisation and analysis of observational data and MHD simulations. We have created an easy to use tool which is capable of highly sophisticated visualisations and data analysis of the results from a diverse set of MHD models in combination with in situ measurements from satellites and ground-based instruments. The toolbox is being released under an open-source licensing agreement to facilitate and encourage community use and contribution.
Yang, Xu; Zhang, Yong; Yang, Chenghua; Xu, Lu; Wang, Qiang; Zhao, Yuan
2016-06-01
Conventional three dimensional (3D) ghost imaging measures range of target based on pulse fight time measurement method. Due to the limit of data acquisition system sampling rate, range resolution of the conventional 3D ghost imaging is usually low. In order to take off the effect of sampling rate to range resolution of 3D ghost imaging, a heterodyne 3D ghost imaging (HGI) system is presented in this study. The source of HGI is a continuous wave laser instead of pulse laser. Temporal correlation and spatial correlation of light are both utilized to obtain the range image of target. Through theory analysis and numerical simulations, it is demonstrated that HGI can obtain high range resolution image with low sampling rate.
Conducting polymer 3D microelectrodes
DEFF Research Database (Denmark)
Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi;
2010-01-01
Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...
Main: TATCCAYMOTIFOSRAMY3D [PLACE
Lifescience Database Archive (English)
Full Text Available TATCCAYMOTIFOSRAMY3D S000256 01-August-2006 (last modified) kehi TATCCAY motif found in rice (O. ... otif and G motif (see S000130) are responsible for sugar ... repression (Toyofuku et al. 1998); GATA; amylase; ...
Combinatorial 3D Mechanical Metamaterials
Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin
2015-03-01
We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.
DEFF Research Database (Denmark)
Lading, Brian; Larsen, Rasmus; Åström, Kalle
2006-01-01
We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}......We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}...
DEFF Research Database (Denmark)
Lading, Brian; Larsen, Rasmus; Astrom, K
2006-01-01
We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations......We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations...
Ahmed, Zeeshan
2010-01-01
In this short paper I briefly discuss 3D war Game based on artificial intelligence concepts called AI WAR. Going in to the details, I present the importance of CAICL language and how this language is used in AI WAR. Moreover I also present a designed and implemented 3D War Cybug for AI WAR using CAICL and discus the implemented strategy to defeat its enemies during the game life.
Emerging Applications of Bedside 3D Printing in Plastic Surgery
Directory of Open Access Journals (Sweden)
Michael P Chae
2015-06-01
Full Text Available Modern imaging techniques are an essential component of preoperative planning in plastic and reconstructive surgery. However, conventional modalities, including three-dimensional (3D reconstructions, are limited by their representation on 2D workstations. 3D printing has been embraced by early adopters to produce medical imaging-guided 3D printed biomodels that facilitate various aspects of clinical practice. The cost and size of 3D printers have rapidly decreased over the past decade in parallel with the expiration of key 3D printing patents. With increasing accessibility, investigators are now able to convert standard imaging data into Computer Aided Design (CAD files using various 3D reconstruction softwares and ultimately fabricate 3D models using 3D printing techniques, such as stereolithography (SLA, multijet modeling (MJM, selective laser sintering (SLS, binder jet technique (BJT, and fused deposition modeling (FDM. Significant improvements in clinical imaging and user-friendly 3D software have permitted computer-aided 3D modeling of anatomical structures and implants without out-sourcing in many cases. These developments offer immense potential for the application of 3D printing at the bedside for a variety of clinical applications. However, many clinicians have questioned whether the cost-to-benefit ratio justifies its ongoing use. In this review the existing uses of 3D printing in plastic surgery practice, spanning the spectrum from templates for facial transplantation surgery through to the formation of bespoke craniofacial implants to optimize post-operative aesthetics, are described. Furthermore, we discuss the potential of 3D printing to become an essential office-based tool in plastic surgery to assist in preoperative planning, patient and surgical trainee education, and the development of intraoperative guidance tools and patient-specific prosthetics in everyday surgical practice.
Simulated annealing for three-dimensional low-beta reduced MHD equilibria in cylindrical geometry
Furukawa, M
2016-01-01
Simulated annealing (SA) is applied for three-dimensional (3D) equilibrium calculation of ideal, low-beta reduced MHD in cylindrical geometry. The SA is based on the theory of Hamiltonian mechanics. The dynamical equation of the original system, low-beta reduced MHD in this study, is modified so that the energy changes monotonically while preserving the Casimir invariants in the artificial dynamics. An equilibrium of the system is given by an extremum of the energy, therefore SA can be used as a method for calculating ideal MHD equilibrium. Previous studies demonstrated that the SA succeeds to lead to various MHD equilibria in two dimensional rectangular domain. In this paper, the theory is applied to 3D equilibrium of ideal, low-beta reduced MHD. An example of equilibrium with magnetic islands, obtained as a lower energy state, is shown. Several versions of the artificial dynamics are developed that can effect smoothing.
Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.
2014-08-01
In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers
Numerical MHD Codes for Modeling Astrophysical Flows
Koldoba, A V; Lii, P S; Comins, M L; Dyda, S; Romanova, M M; Lovelace, R V E
2015-01-01
We describe a Godunov-type magnetohydrodynamic (MHD) code based on the Miyoshi and Kusano (2005) solver which can be used to solve various astrophysical hydrodynamic and MHD problems. The energy equation is in the form of entropy conservation. The code has been implemented on several different coordinate systems: 2.5D axisymmetric cylindrical coordinates, 2D Cartesian coordinates, 2D plane polar coordinates, and fully 3D cylindrical coordinates. Viscosity and diffusivity are implemented in the code to control the accretion rate in the disk and the rate of penetration of the disk matter through the magnetic field lines. The code has been utilized for the numerical investigations of a number of different astrophysical problems, several examples of which are shown.
Numerical MHD codes for modeling astrophysical flows
Koldoba, A. V.; Ustyugova, G. V.; Lii, P. S.; Comins, M. L.; Dyda, S.; Romanova, M. M.; Lovelace, R. V. E.
2016-05-01
We describe a Godunov-type magnetohydrodynamic (MHD) code based on the Miyoshi and Kusano (2005) solver which can be used to solve various astrophysical hydrodynamic and MHD problems. The energy equation is in the form of entropy conservation. The code has been implemented on several different coordinate systems: 2.5D axisymmetric cylindrical coordinates, 2D Cartesian coordinates, 2D plane polar coordinates, and fully 3D cylindrical coordinates. Viscosity and diffusivity are implemented in the code to control the accretion rate in the disk and the rate of penetration of the disk matter through the magnetic field lines. The code has been utilized for the numerical investigations of a number of different astrophysical problems, several examples of which are shown.
Time domain topology optimization of 3D nanophotonic devices
DEFF Research Database (Denmark)
Elesin, Yuriy; Lazarov, Boyan Stefanov; Jensen, Jakob Søndergaard; Sigmund, Ole
2014-01-01
We present an efficient parallel topology optimization framework for design of large scale 3D nanophotonic devices. The code shows excellent scalability and is demonstrated for optimization of broadband frequency splitter, waveguide intersection, photonic crystal-based waveguide and nanowire-base......-based waveguide. The obtained results are compared to simplified 2D studies and we demonstrate that 3D topology optimization may lead to significant performance improvements. © 2013 Elsevier B.V. All rights reserved....
YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters
Schild, Jonas; Seele, Sven; Masuch, Maic
2012-03-01
Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.
Remote 3D Medical Consultation
Welch, Greg; Sonnenwald, Diane H.; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Krishnan, Srinivas; Söderholm, Hanna M.
Two-dimensional (2D) video-based telemedical consultation has been explored widely in the past 15-20 years. Two issues that seem to arise in most relevant case studies are the difficulty associated with obtaining the desired 2D camera views, and poor depth perception. To address these problems we are exploring the use of a small array of cameras to synthesize a spatially continuous range of dynamic three-dimensional (3D) views of a remote environment and events. The 3D views can be sent across wired or wireless networks to remote viewers with fixed displays or mobile devices such as a personal digital assistant (PDA). The viewpoints could be specified manually or automatically via user head or PDA tracking, giving the remote viewer virtual head- or hand-slaved (PDA-based) remote cameras for mono or stereo viewing. We call this idea remote 3D medical consultation (3DMC). In this article we motivate and explain the vision for 3D medical consultation; we describe the relevant computer vision/graphics, display, and networking research; we present a proof-of-concept prototype system; and we present some early experimental results supporting the general hypothesis that 3D remote medical consultation could offer benefits over conventional 2D televideo.
Materialedreven 3d digital formgivning
DEFF Research Database (Denmark)
Hansen, Flemming Tvede
2010-01-01
Formålet med forskningsprojektet er for det første at understøtte keramikeren i at arbejde eksperimenterende med digital formgivning, og for det andet at bidrage til en tværfaglig diskurs om brugen af digital formgivning. Forskningsprojektet fokuserer på 3d formgivning og derved på 3d digital...... formgivning og Rapid Prototyping (RP). RP er en fællesbetegnelse for en række af de teknikker, der muliggør at overføre den digitale form til 3d fysisk form. Forskningsprojektet koncentrerer sig om to overordnede forskningsspørgsmål. Det første handler om, hvordan viden og erfaring indenfor det keramiske...... fagområde kan blive udnyttet i forhold til 3d digital formgivning. Det andet handler om, hvad en sådan tilgang kan bidrage med, og hvordan den kan blive udnyttet i et dynamisk samspil med det keramiske materiale i formgivningen af 3d keramiske artefakter. Materialedreven formgivning er karakteriseret af en...
Dagiuklas, Tasos
2015-01-01
This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The contributions are based on the results of the FP7 European Project ROMEO, which focuses on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the future Internet. The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of consistent video quality to fixed and mobile users. ROMEO will present hybrid networking solutions that combine the DVB-T2 and DVB-NGH broadcas...
Dagiuklas, Tasos
2014-01-01
This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The main contributions are based on the results of the FP7 European Projects ROMEO, which focus on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the Future Internet (www.ict-romeo.eu). The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of constant video quality to both fixed and mobile users. ROMEO will design and develop hybrid-networking solutions that co...
DIII-D Equilibrium Reconstructions with New 3D Magnetic Probes
Lao, Lang; Strait, E. J.; Ferraro, N. M.; Ferron, J. R.; King, J. D.; Lee, X.; Meneghini, O.; Turnbull, A. D.; Huang, Y.; Qian, J. G.; Wingen, A.
2015-11-01
DIII-D equilibrium reconstructions with the recently installed new 3D magnetic diagnostic are presented. In addition to providing information to allow more accurate 2D reconstructions, the new 3D probes also provide useful information to guide computation of 3D perturbed equilibria. A new more comprehensive magnetic compensation has been implemented. Algorithms are being developed to allow EFIT to reconstruct 3D perturbed equilibria making use of the new 3D probes and plasma responses from 3D MHD codes such as GATO and M3D-C1. To improve the computation efficiency, all inactive probes in one of the toroidal planes in EFIT have been replaced with new probes from other planes. Other 3D efforts include testing of 3D reconstructions using V3FIT and a new 3D variational moment equilibrium code VMOM3D. Other EFIT developments include a GPU EFIT version and new safety factor and MSE-LS constraints. The accuracy and limitation of the new probes for 3D reconstructions will be discussed. Supported by US DOE under DE-FC02-04ER54698 and DE-FG02-95ER54309.
Modification of 3D milling machine to 3D printer
Halamíček, Lukáš
2015-01-01
Tato práce se zabývá přestavbou gravírovací frézky na 3D tiskárnu. V první části se práce zabývá možnými technologiemi 3D tisku a možností jejich využití u přestavby. Dále jsou popsány a vybrány vhodné součásti pro přestavbu. V další části je realizováno řízení ohřevu podložky, trysky a řízení posuvu drátu pomocí softwaru TwinCat od společnosti Beckhoff na průmyslovém počítači. Výsledkem práce by měla být oživená 3D tiskárna. This thesis deals with rebuilding of engraving machine to 3D pri...
3D Imager and Method for 3D imaging
Kumar, P.; Staszewski, R.; Charbon, E.
2013-01-01
3D imager comprising at least one pixel, each pixel comprising a photodetectorfor detecting photon incidence and a time-to-digital converter system configured for referencing said photon incidence to a reference clock, and further comprising a reference clock generator provided for generating the re
Application of 3D Stereo Vision to the Reconnection Scaling Experiment
International Nuclear Information System (INIS)
The measurement and simulation of the three-dimensional structure of magnetic reconnection in astrophysical and lab plasmas is a challenging problem. At Los Alamos National Laboratory we use the Reconnection Scaling Experiment (RSX) to model 3D magnetohydrodynamic (MHD) relaxation of plasma filled tubes. These magnetic flux tubes are called flux ropes. In RSX, the 3D structure of the flux ropes is explored with insertable probes. Stereo triangulation can be used to compute the 3D position of a probe from point correspondences in images from two calibrated cameras. While common applications of stereo triangulation include 3D scene reconstruction and robotics navigation, we will investigate the novel application of stereo triangulation in plasma physics to aid reconstruction of 3D data for RSX plasmas. Several challenges will be explored and addressed, such as minimizing 3D reconstruction errors in stereo camera systems and dealing with point correspondence problems.
International Nuclear Information System (INIS)
TRAB-3D is a reactor dynamics code with three-dimensional neutronics coupled to core and circuit thermal-hydraulics. The code, entirely developed at VTT, can be used in transient and accident analyses of boiling (BWR) and pressurized water (PWR) reactors with rectangular fuel bundle geometry. The validation history of TRAB-3D includes calculation of international benchmark exercises, as well as comparisons with measured data from real plant transients. The most recent validation case is a load rejection test performed at the Olkiluoto 1 nuclear power plant in 1998 in connection with the power uprating project. The fact that there is local power measurement data available from this test makes it a suitable case for three-dimensional core model validation. The agreement between the results of the TRAB-3D calculation and the measurements is very good. (orig.)
Becker, T; Roth, M M; Becker, Thomas; Fabrika, Sergei; Roth, Martin M.
2003-01-01
The quantitative spectroscopy of stellar objects in complex environments is mainly limited by the ability of separating the object from the background. Standard slit spectroscopy, restricting the field of view to one dimension, is obviously not the proper technique in general. The emerging Integral Field (3D) technique with spatially resolved spectra of a two-dimensional field of view provides a great potential for applying advanced subtraction methods. In this paper an image reconstruction algorithm to separate point sources and a smooth background is applied to 3D data. Several performance tests demonstrate the photometric quality of the method. The algorithm is applied to real 3D observations of a sample Planetary Nebula in M31, whose spectrum is contaminated by the bright and complex galaxy background. The ability of separating sources is also studied in a crowded stellar field in M33.
DEFF Research Database (Denmark)
Walder, Christian; Breidt, Martin; Bulthoff, Heinrich;
2009-01-01
We present a novel algorithm for the markerless tracking of deforming surfaces such as faces. We acquire a sequence of 3D scans along with color images at 40Hz. The data is then represented by implicit surface and color functions, using a novel partition-of-unity type method of efficiently...... combining local regressors using nearest neighbor searches. Both these functions act on the 4D space of 3D plus time, and use temporal information to handle the noise in individual scans. After interactive registration of a template mesh to the first frame, it is then automatically deformed to track...... the scanned surface, using the variation of both shape and color as features in a dynamic energy minimization problem. Our prototype system yields high-quality animated 3D models in correspondence, at a rate of approximately twenty seconds per timestep. Tracking results for faces and other objects...
DEFF Research Database (Denmark)
Pihl, Michael Johannes
The main purpose of this PhD project is to develop an ultrasonic method for 3D vector flow imaging. The motivation is to advance the field of velocity estimation in ultrasound, which plays an important role in the clinic. The velocity of blood has components in all three spatial dimensions, yet...... conventional methods can estimate only the axial component. Several approaches for 3D vector velocity estimation have been suggested, but none of these methods have so far produced convincing in vivo results nor have they been adopted by commercial manufacturers. The basis for this project is the Transverse...... on the TO fields are suggested. They can be used to optimize the TO method. In the third part, a TO method for 3D vector velocity estimation is proposed. It employs a 2D phased array transducer and decouples the velocity estimation into three velocity components, which are estimated simultaneously based on 5...
3D-grafiikkamoottori mobiililaitteille
Vahlman, Lauri
2014-01-01
Tässä insinöörityössä käydään läpi mobiililaitteille suunnatun yksinkertaisen 3D-grafiikkamoottorin suunnittelu ja toteutus käyttäen OpenGL ES -rajapintaa. Työssä esitellään grafiikkamoottorin toteutuksessa käytettyjä tekniikoita sekä tutustutaan moottorin rakenteeseen ja toteutuksellisiin yksityiskohtiin. Työn alkupuolella tutustutaan myös modernin 3D-grafiikan yleisiin periaatteisiin ja toimintaan sekä käydään läpi 3D-grafiikkaan liittyviä suorituskykyongelmia. Työn loppupuolella esitel...
3D reconstruction based on spatial vanishing information
Institute of Scientific and Technical Information of China (English)
Yuan Shu; Zheng Tan
2005-01-01
An approach for the three-dimensional (3D) reconstruction of architectural scenes from two un-calibrated images is described in this paper. From two views of one architectural structure, three pairs of corresponding vanishing points of three major mutual orthogonal directions can be extracted. The simple but powerful constraints of parallelism and orthogonal lines in architectural scenes can be used to calibrate the cameras and to recover the 3D information of the structure. This approach is applied to the real images of architectural scenes, and a 3D model of a building in virtual reality modelling language (VRML) format is presented which illustrates the method with successful performance.
3D Computations and Experiments
Energy Technology Data Exchange (ETDEWEB)
Couch, R; Faux, D; Goto, D; Nikkel, D
2004-04-05
This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.
International Nuclear Information System (INIS)
Focused high energy ion beam micromachining is the newest of the micromachining techniques. There are about 50 scanning proton microprobe facilities worldwide, but so far only few of them showed activity in this promising field. High energy ion beam micromachining using a direct-write scanning MeV ion beam is capable of producing 3D microstructures and components with well defined lateral and depth geometry. The technique has high potential in the manufacture of 3D molds, stamps, and masks for X-ray lithography (LIGA), and also in the rapid prototyping of microcomponents either for research purposes or for components testing prior to batch production. (R.P.)
3D Simulations of line emission from ICF capsules
International Nuclear Information System (INIS)
Line emission from ICF implosions can be used to diagnose the temperature of the DT fuel and provides an indication of the distortion in the fuel-pusher interface. 2D simulations have provided valuable insights into the usefulness of argon and titanium dopants as diagnostics of instabilities. Characterizing the effects of drive asymmetries requires 3D modeling with large demands for computer time and memory, necessitating the use of parallel computers. We present the results of some 3D simulations achieved with a code utilizing both shared memory and distributed parallelism. We discuss the code structure and related performance issues
Time-resolved observation of discrete and continuous MHD dynamo in the reversed-field pinch edge
International Nuclear Information System (INIS)
We report the first experimental verification of the MHD dynamo in the RFP. A burst of magnetohydrodynamic (MHD) dynamo electric field is observed during the sawtooth crash, followed by an increase in the local parallel current in the MST RFP edge. By measuring each term, the parallel MHD mean-field Ohm's law is observed to hold within experimental error bars both between and during sawtooth crashes
A Method for Interactive 3D Reconstruction of Piecewise Planar Objects from Single Images
Sturm, Peter; Maybank, Steve
1999-01-01
We present an approach for 3D reconstruction of objects from a single image. Obviously, constraints on the 3D structure are needed to perform this task. Our approach is based on user-provided coplanarity, perpendicularity and parallelism constraints. These are used to calibrate the image and perform 3D reconstruction. The method is described in detail and results are provided.
Manos, Harry
2016-01-01
Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…
Lading, Brian; Larsen, Rasmus; Åström, Kalle
2006-01-01
We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}
Lading, Brian; Larsen, Rasmus; Astrom, K
2006-01-01
We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations
3D Printing: Exploring Capabilities
Samuels, Kyle; Flowers, Jim
2015-01-01
As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…
DEFF Research Database (Denmark)
Pedersen, Pernille Klarskov; Strikwerda, Andrew; Wang, Tianwu;
2013-01-01
We present a characterization of THz beams generated in both a two-color air plasma and in a LiNbO3 crystal. Using a commercial THz camera, we record intensity images as a function of distance through the beam waist, from which we extract 2D beam profiles and visualize our measurements into 3D beam...
Krajnović, Davor
2016-01-01
Thanks to a technique that reveals galaxies in 3D, astronomers can now show that many galaxies have been wrongly classified. Davor Krajnovi\\'c argues that the classification scheme proposed 85 years ago by Edwin Hubble now needs to be revised.
Parallel 3-D image processing for nuclear emulsion
International Nuclear Information System (INIS)
The history of nuclear plate was explained. The first nuclear plate was named as pellicles covered with 600 μm of emulsion in Europe. In Japan Emulsion Cloud Chamber (ECC) using thin emulsion (50 μm) type nuclear plate was developed in 1960. Then, the semi-automatic analyzer (1971) and automatic analyzer (1980), Track Selector (TS) with memory stored 16 layer images in 512 x 512 x 16 pixel were developed. Moreover, NTS (New Track Selector), speeding up analyzer, was produced for analysis of results of CHORUS experiment in 1996. Simultaneous readout of 16 layer images had been carried out, but UTS (Ultra Track Selector) made possible to progressive treatment of 16 layers of some data and determination of traces in all angles. Direct detection of tau neutrino (VT) was studied by DONUT (FNAL E872) using UTS and nuclear plate. Neutrino beam was produced by 800 GeV proton beam hitting the fixed target. About 1100 phenomena of neutrino reactions were observed during six months of irradiation. 203 phenomena were detected. 4 examples were shown in this paper. OPERA experiment by SK is explained. (S.Y.)
MHD Equations with Regularity in One Direction
Directory of Open Access Journals (Sweden)
Zujin Zhang
2014-01-01
Full Text Available We consider the 3D MHD equations and prove that if one directional derivative of the fluid velocity, say, ∂3u∈Lp0, T;LqR3, with 2/p + 3/q = γ ∈ [1,3/2, 3/γ ≤ q ≤ 1/(γ - 1, then the solution is in fact smooth. This improves previous results greatly.
Priprava 3D modelov za 3D tisk
Pikovnik, Tomaž
2015-01-01
Po mnenju nekaterih strokovnjakov bo aditivna proizvodnja (ali 3D tiskanje) spremenila proizvodnjo industrijo, saj si bo vsak posameznik lahko natisnil svoj objekt po želji. V diplomski nalogi so predstavljene nekatere tehnologije aditivne proizvodnje. V nadaljevanju diplomske naloge je predstavljena izdelava makete hiše v merilu 1:100, vse od modeliranja do tiskanja. Poseben poudarek je posvečen predelavi modela, da je primeren za tiskanje, kjer je razvit pristop za hitrejše i...
Post processing of 3D models for 3D printing
Pikovnik, Tomaž
2015-01-01
According to the opinion of some experts the additive manufacturing or 3D printing will change manufacturing industry, because any individual could print their own model according to his or her wishes. In this graduation thesis some of the additive manufacturing technologies are presented. Furthermore in the production of house scale model in 1:100 is presented, starting from modeling to printing. Special attention is given to postprocessing of the building model elements us...
3D Cameras: 3D Computer Vision of Wide Scope
May, Stefan; Pervoelz, Kai; Surmann, Hartmut
2007-01-01
First of all, a short comparison of range sensors and their underlying principles was given. The chapter further focused on 3D cameras. The latest innovations have given a significant improvement for the measurement accuracy, wherefore this technology has attracted attention in the robotics community. This was also the motivation for the examination in this chapter. On this account, several applications were presented, which represents common problems in the domain of autonomous robotics. For...
DYNA3D2000*, Explicit 3-D Hydrodynamic FEM Program
International Nuclear Information System (INIS)
1 - Description of program or function: DYNA3D2000 is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding, single surface contact and automatic contact generation. 2 - Method of solution: Discretization of a continuous model transforms partial differential equations into algebraic equations. A numerical solution is then obtained by solving these algebraic equations through a direct time marching scheme. 3 - Restrictions on the complexity of the problem: Recent software improvements have eliminated most of the user identified limitations with dynamic memory allocation and a very large format description that has pushed potential problem sizes beyond the reach of most users. The dominant restrictions remain in code execution speed and robustness, which the developers constantly strive to improve
Kanki, Takashi; Nagata, Masayoshi; Kagei, Yasuhiro
2011-10-01
The dynamics of structures of magnetic field, current density, and plasma flow generated during multi-pulsed coaxial helicity injection in spherical torus is investigated by 3-D nonlinear MHD simulations. During the driven phase, the flux and current amplifications occur due to the merging and magnetic reconnection between the preexisting plasma in the confinement region and the ejected plasma from the gun region involving the n = 1 helical kink distortion of the central open flux column (COFC). Interestingly, the diamagnetic poloidal flow which tends toward the gun region is then observed due to the steep pressure gradients of the COFC generated by ohmic heating through an injection current winding around the inboard field lines, resulting in the formation of the strong poloidal flow shear at the interface between the COFC and the core region. This result is consistent with the flow shear observed in the HIST. During the decay phase, the configuration approaches the axisymmetric MHD equilibrium state without flow because of the dissipation of magnetic fluctuation energy to increase the closed flux surfaces, suggesting the generation of ordered magnetic field structure. The parallel current density λ concentrated in the COFC then diffuses to the core region so as to reduce the gradient in λ, relaxing in the direction of the Taylor state.
3-D force-balanced magnetospheric configurations
Directory of Open Access Journals (Sweden)
S. Zaharia
2004-01-01
. Our results provide 3-D distributions of magnetic field, plasma pressure, as well as parallel and transverse currents for both quiet-time and disturbed magnetospheric conditions.
Key words. Magnetospheric physics (magnetospheric configuration and dynamics; magnetotail; plasma sheet
Three dimensional MHD effects studies in a manifold circular pipe
International Nuclear Information System (INIS)
Some new experimental results ar carried out in a manifold circular pipe for liquid metal MHD (Magneto-hydrodynamic) fluid flow. The velocity distributions are measured on the center plane of cross section of joint of manifold pipe. The instabilities of vortex street are observed in cross section of the pipe. It is obtained to the expression formula of three-dimensional (3D) additional MHD pressured drop due to the manifold junction. It also is discussed to the affections of 2D effect and non-fully developed flow in the experiment results
International Nuclear Information System (INIS)
The presented LMMHD cycles (Rankine MHD or Brayton MHD) show a potential superior to conventional power plants and their realisation is possible with available techniques. For the high temperature components ceramic materials can be used, which are compatible with alkali metals up to high temperatures. One can mention, that the greatest losses in the LMMHD cycles are localised in the two-phase flow region and especially in the separator. The calculations of the efficiencies of the separator are based on experimental results with low rates. Probably these efficiencies will be better for larger power installations, this could drive to an increased actual efficiency of η>0.50
Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.
2013-01-01
Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.
Forensic 3D Scene Reconstruction
International Nuclear Information System (INIS)
Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene
Forensic 3D Scene Reconstruction
Energy Technology Data Exchange (ETDEWEB)
LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.
1999-10-12
Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.
Patient specific 3D printed phantom for IMRT quality assurance
International Nuclear Information System (INIS)
The purpose of this study was to test the feasibility of a patient specific phantom for patient specific dosimetric verification. Using the head and neck region of an anthropomorphic phantom as a substitute for an actual patient, a soft-tissue equivalent model was constructed with the use of a 3D printer. Calculated and measured dose in the anthropomorphic phantom and the 3D printed phantom was compared for a parallel-opposed head and neck field geometry to establish tissue equivalence. A nine-field IMRT plan was constructed and dose verification measurements were performed for the 3D printed phantom as well as traditional standard phantoms. The maximum difference in calculated dose was 1.8% for the parallel-opposed configuration. Passing rates of various dosimetric parameters were compared for the IMRT plan measurements; the 3D printed phantom results showed greater disagreement at superficial depths than other methods. A custom phantom was created using a 3D printer. It was determined that the use of patient specific phantoms to perform dosimetric verification and estimate the dose in the patient is feasible. In addition, end-to-end testing on a per-patient basis was possible with the 3D printed phantom. Further refinement of the phantom construction process is needed for routine use. (paper)
3D fast reconstruction in positron emission tomography
International Nuclear Information System (INIS)
The issue of long reconstruction times in positron emission tomography (PET) has been addressed from several points of view, resulting in an affordable dedicated system capable of handling routine 3D reconstructions in a few minutes per frame : on the hardware side using fast processors and a parallel architecture, and on the software side, using efficient implementation of computationally less intensive algorithms
Statistical 3D damage accumulation model for ion implant simulators
Hernandez-Mangas, J M; Enriquez, L E; Bailon, L; Barbolla, J; Jaraiz, M
2003-01-01
A statistical 3D damage accumulation model, based on the modified Kinchin-Pease formula, for ion implant simulation has been included in our physically based ion implantation code. It has only one fitting parameter for electronic stopping and uses 3D electron density distributions for different types of targets including compound semiconductors. Also, a statistical noise reduction mechanism based on the dose division is used. The model has been adapted to be run under parallel execution in order to speed up the calculation in 3D structures. Sequential ion implantation has been modelled including previous damage profiles. It can also simulate the implantation of molecular and cluster projectiles. Comparisons of simulated doping profiles with experimental SIMS profiles are presented. Also comparisons between simulated amorphization and experimental RBS profiles are shown. An analysis of sequential versus parallel processing is provided.
Fully 3D GPU PET reconstruction
International Nuclear Information System (INIS)
Fully 3D iterative tomographic image reconstruction is computationally very demanding. Graphics Processing Unit (GPU) has been proposed for many years as potential accelerators in complex scientific problems, but it has not been used until the recent advances in the programmability of GPUs that the best available reconstruction codes have started to be implemented to be run on GPUs. This work presents a GPU-based fully 3D PET iterative reconstruction software. This new code may reconstruct sinogram data from several commercially available PET scanners. The most important and time-consuming parts of the code, the forward and backward projection operations, are based on an accurate model of the scanner obtained with the Monte Carlo code PeneloPET and they have been massively parallelized on the GPU. For the PET scanners considered, the GPU-based code is more than 70 times faster than a similar code running on a single core of a fast CPU, obtaining in both cases the same images. The code has been designed to be easily adapted to reconstruct sinograms from any other PET scanner, including scanner prototypes.
PLOT3D- DRAWING THREE DIMENSIONAL SURFACES
Canright, R. B.
1994-01-01
PLOT3D is a package of programs to draw three-dimensional surfaces of the form z = f(x,y). The function f and the boundary values for x and y are the input to PLOT3D. The surface thus defined may be drawn after arbitrary rotations. However, it is designed to draw only functions in rectangular coordinates expressed explicitly in the above form. It cannot, for example, draw a sphere. Output is by off-line incremental plotter or online microfilm recorder. This package, unlike other packages, will plot any function of the form z = f(x,y) and portrays continuous and bounded functions of two independent variables. With curve fitting; however, it can draw experimental data and pictures which cannot be expressed in the above form. The method used is division into a uniform rectangular grid of the given x and y ranges. The values of the supplied function at the grid points (x, y) are calculated and stored; this defines the surface. The surface is portrayed by connecting successive (y,z) points with straight-line segments for each x value on the grid and, in turn, connecting successive (x,z) points for each fixed y value on the grid. These lines are then projected by parallel projection onto the fixed yz-plane for plotting. This program has been implemented on the IBM 360/67 with on-line CDC microfilm recorder.
Fully 3D GPU PET reconstruction
Energy Technology Data Exchange (ETDEWEB)
Herraiz, J.L., E-mail: joaquin@nuclear.fis.ucm.es [Grupo de Fisica Nuclear, Departmento Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Espana, S. [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Cal-Gonzalez, J. [Grupo de Fisica Nuclear, Departmento Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Vaquero, J.J. [Departmento de Bioingenieria e Ingenieria Espacial, Universidad Carlos III, Madrid (Spain); Desco, M. [Departmento de Bioingenieria e Ingenieria Espacial, Universidad Carlos III, Madrid (Spain); Unidad de Medicina y Cirugia Experimental, Hospital General Universitario Gregorio Maranon, Madrid (Spain); Udias, J.M. [Grupo de Fisica Nuclear, Departmento Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain)
2011-08-21
Fully 3D iterative tomographic image reconstruction is computationally very demanding. Graphics Processing Unit (GPU) has been proposed for many years as potential accelerators in complex scientific problems, but it has not been used until the recent advances in the programmability of GPUs that the best available reconstruction codes have started to be implemented to be run on GPUs. This work presents a GPU-based fully 3D PET iterative reconstruction software. This new code may reconstruct sinogram data from several commercially available PET scanners. The most important and time-consuming parts of the code, the forward and backward projection operations, are based on an accurate model of the scanner obtained with the Monte Carlo code PeneloPET and they have been massively parallelized on the GPU. For the PET scanners considered, the GPU-based code is more than 70 times faster than a similar code running on a single core of a fast CPU, obtaining in both cases the same images. The code has been designed to be easily adapted to reconstruct sinograms from any other PET scanner, including scanner prototypes.
Symmetry, Statistics and Structure in MHD Turbulence
Shebalin, John V.
2007-01-01
Here, we examine homogeneous MHD turbulence in terms of truncated Fourier series. The ideal MHD equations and the associated statistical theory of absolute equilibrium ensembles are symmetric under P, C and T. However, the presence of invariant helicities, which are pseudoscalars under P and C, dynamically breaks this symmetry. This occurs because the surface of constant energy in phase space has disjoint parts, called components: while ensemble averages are taken over all components, a dynamical phase trajectory is confined to only one component. As the Birkhoff-Khinchin theorem tells us, ideal MHD turbulence is thus non-ergodic. This non-ergodicity manifests itself in low-wave number Fourier modes that have large mean values (while absolute ensemble theory predicts mean values of zero). Therefore, we have coherent structure in ideal MHD turbulence. The level of non-ergodicity and amount of energy contained in the associated coherent structure depends on the values of the helicities, as well as on the presence, or not, of a mean magnetic field and/or overall rotation. In addition to the well known cross and magnetic helicities, we also present a new invariant, which we call the parallel helicity, since it occurs when mean field and rotation axis are aligned. The question of applicability of these results to real (i.e., dissipative) MHD turbulence is also examined. Several long-time numerical simulations on a 64(exp 3) grid are given as examples. It is seen that coherent structure begins to form before decay dominates over nonlinearity. The connection of these results with inverse spectral cascades, selective decay, and magnetic dynamos is also discussed.
Wall-touching kink mode calculations with the M3D code
International Nuclear Information System (INIS)
This paper seeks to address a controversy regarding the applicability of the 3D nonlinear extended MHD code M3D [W. Park et al., Phys. Plasmas 6, 1796 (1999)] and similar codes to calculations of the electromagnetic interaction of a disrupting tokamak plasma with the surrounding vessel structures. M3D is applied to a simple test problem involving an external kink mode in an ideal cylindrical plasma, used also by the Disruption Simulation Code (DSC) as a model case for illustrating the nature of transient vessel currents during a major disruption. While comparison of the results with those of the DSC is complicated by effects arising from the higher dimensionality and complexity of M3D, we verify that M3D is capable of reproducing both the correct saturation behavior of the free boundary kink and the “Hiro” currents arising when the kink interacts with a conducting tile surface interior to the ideal wall
Wall-touching kink mode calculations with the M3D code
Energy Technology Data Exchange (ETDEWEB)
Breslau, J. A., E-mail: jbreslau@pppl.gov; Bhattacharjee, A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08542 (United States)
2015-06-15
This paper seeks to address a controversy regarding the applicability of the 3D nonlinear extended MHD code M3D [W. Park et al., Phys. Plasmas 6, 1796 (1999)] and similar codes to calculations of the electromagnetic interaction of a disrupting tokamak plasma with the surrounding vessel structures. M3D is applied to a simple test problem involving an external kink mode in an ideal cylindrical plasma, used also by the Disruption Simulation Code (DSC) as a model case for illustrating the nature of transient vessel currents during a major disruption. While comparison of the results with those of the DSC is complicated by effects arising from the higher dimensionality and complexity of M3D, we verify that M3D is capable of reproducing both the correct saturation behavior of the free boundary kink and the “Hiro” currents arising when the kink interacts with a conducting tile surface interior to the ideal wall.
Ofman, L.
2016-02-01
This chapter focuses on reviewing several observational aspects of magnetohydrodynamic (MHD) waves in the solar wind, in particular on Alfvén waves, Alfvénic turbulent spectrum, and their role in heating and accelerating the solar wind. It also reviews computational models that incorporate Alfvén waves as the driving source of the wind in the lower corona (coronal holes) and in the inner heliosphere, with emphasis on multi-dimensional models. Evidence for MHD waves in the solar wind is obtained from interplanetary scintillation (IPS) observations using Earth-based radio telescope observations of distant (galactic) radio sources. The solar wind electron density variability in the line of sight affects the received radio signal. The propagating fluctuations and their correlations are used to estimate the solar wind velocity and the wave amplitude in the parallel and the perpendicular directions in line of sight.
Petrick, Michael; Pierson, Edward S.; Schreiner, Felix
1980-01-01
According to the present invention, coal combustion gas is the primary working fluid and copper or a copper alloy is the electrodynamic fluid in the MHD generator, thereby eliminating the heat exchangers between the combustor and the liquid-metal MHD working fluids, allowing the use of a conventional coalfired steam bottoming plant, and making the plant simpler, more efficient and cheaper. In operation, the gas and liquid are combined in a mixer and the resulting two-phase mixture enters the MHD generator. The MHD generator acts as a turbine and electric generator in one unit wherein the gas expands, drives the liquid across the magnetic field and thus generates electrical power. The gas and liquid are separated, and the available energy in the gas is recovered before the gas is exhausted to the atmosphere. Where the combustion gas contains sulfur, oxygen is bubbled through a side loop to remove sulfur therefrom as a concentrated stream of sulfur dioxide. The combustor is operated substoichiometrically to control the oxide level in the copper.
3-D network model and its parameter calibration
Institute of Scientific and Technical Information of China (English)
LIU; Xiaoyu(刘晓宇); LIANG; Naigang(梁乃刚); LI; Min(李敏)
2002-01-01
A material model, whose framework is parallel spring-bundles oriented in 3-D space, isproposed. Based on a discussion of the discrete schemes and optimum discretization of the solidangles, a 3-D network cell consisted of one-dimensional components is developed with its geomet-rical and physical parameters calibrated. It is proved that the 3-D network model is able to exactlysimulate materials with arbitrary Poisson ratio from 0 to 1/2, breaking through the limit that the pre-vious models in the literature are only suitable for materials with Poisson ratio from 0 to 1/3. A sim-plified model is also proposed to realize high computation accuracy within Iow computation cost.Examples demonstrate that the 3-D network model has particular superiority in the simulation ofshort-fiber reinforced composites.
Outline of fast analyzer for MHD equilibrium 'FAME'
International Nuclear Information System (INIS)
The FAME (Fast Analyzer for Magnetohydrodynamic (MHD) Equilibrium) system has been developed in order to provide more than 100 MHD equilibria in time series which are enough for the non-stationary analysis of the experimental data of JT-60 within about 20 minutes shot interval. The FAME is an MIMD type small scale parallel computer with 20 microprocessors which are connected by a multi-stage switching system. The maximum theoretical speed is 250 MFLOPS. For the software system of FAME, MHD equilibrium analysis code SELENE and its input data production code FBI are tuned up taking the parallel processing into consideration. Consequently, the computational performance of the FAME system becomes more than 7 times faster than the existing general purpose computer FACOM M780-10s. This report summarizes the outline of the FAME system including hardware, soft-ware and peripheral equipments. (author)
Extended Scaling Laws in Numerical Simulations of MHD Turbulence
Mason, Joanne; Cattaneo, Fausto; Boldyrev, Stanislav
2011-01-01
Magnetised turbulence is ubiquitous in astrophysical systems, where it notoriously spans a broad range of spatial scales. Phenomenological theories of MHD turbulence describe the self-similar dynamics of turbulent fluctuations in the inertial range of scales. Numerical simulations serve to guide and test these theories. However, the computational power that is currently available restricts the simulations to Reynolds numbers that are significantly smaller than those in astrophysical settings. In order to increase computational efficiency and, therefore, probe a larger range of scales, one often takes into account the fundamental anisotropy of field-guided MHD turbulence, with gradients being much slower in the field-parallel direction. The simulations are then optimised by employing the reduced MHD equations and relaxing the field-parallel numerical resolution. In this work we explore a different possibility. We propose that there exist certain quantities that are remarkably stable with respect to the Reynold...
Outline of fast analyzer for MHD equilibrium `FAME`
Energy Technology Data Exchange (ETDEWEB)
Sakata, Shinya; Haginoya, Hirofumi; Tsuruoka, Takuya; Aoyagi, Tetsuo; Saito, Naoyuki; Harada, Hiroo; Tani, Keiji [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Watanabe, Hideto
1994-03-01
The FAME (Fast Analyzer for Magnetohydrodynamic (MHD) Equilibrium) system has been developed in order to provide more than 100 MHD equilibria in time series which are enough for the non-stationary analysis of the experimental data of JT-60 within about 20 minutes shot interval. The FAME is an MIMD type small scale parallel computer with 20 microprocessors which are connected by a multi-stage switching system. The maximum theoretical speed is 250 MFLOPS. For the software system of FAME, MHD equilibrium analysis code SELENE and its input data production code FBI are tuned up taking the parallel processing into consideration. Consequently, the computational performance of the FAME system becomes more than 7 times faster than the existing general purpose computer FACOM M780-10s. This report summarizes the outline of the FAME system including hardware, soft-ware and peripheral equipments. (author).
Directory of Open Access Journals (Sweden)
FROILAN G. DESTREZA
2014-02-01
Full Text Available This study is for the BSHRM Students of Batangas State University (BatStateU ARASOF for the researchers believe that the Wireless 3D Chocolate Printer would be helpful in their degree program especially on making creative, artistic, personalized and decorative chocolate designs. The researchers used the Prototyping model as procedural method for the successful development and implementation of the hardware and software. This method has five phases which are the following: quick plan, quick design, prototype construction, delivery and feedback and communication. This study was evaluated by the BSHRM Students and the assessment of the respondents regarding the software and hardware application are all excellent in terms of Accuracy, Effecitveness, Efficiency, Maintainability, Reliability and User-friendliness. Also, the overall level of acceptability of the design project as evaluated by the respondents is excellent. With regard to the observation about the best raw material to use in 3D printing, the chocolate is good to use as the printed material is slightly distorted,durable and very easy to prepare; the icing is also good to use as the printed material is not distorted and is very durable but consumes time to prepare; the flour is not good as the printed material is distorted, not durable but it is easy to prepare. The computation of the economic viability level of 3d printer with reference to ROI is 37.14%. The recommendation of the researchers in the design project are as follows: adding a cooling system so that the raw material will be more durable, development of a more simplified version and improving the extrusion process wherein the user do not need to stop the printing process just to replace the empty syringe with a new one.
INGRID, 3-D Mesh Generator for Program DYNA3D and NIKE3D and FACET and TOPAZ3D
International Nuclear Information System (INIS)
1 - Description of program or function: INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D (NESC 9909), NIKE3D (NESC 9725), FACET, and TOPAZ3D. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surface equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The most important new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition. 2 - Method of solution: Geometries are described primarily using the index space notation of the INGEN program (NESC 975) with an additional type of notation, index progression. Index progressions provide a concise and simple method for describing complex structures; the concept was developed to facilitate defining multiple regions in index space. Rather than specifying the minimum and maximum indices for a region, one specifies the progression of indices along the I, J and K directions, respectively. The index progression method allows the analyst to describe most geometries including nodes and elements with roughly the same amount of input as a solids modeler
Järvinen, Manu
2009-01-01
Opinnäytetyössä tutkittiin tehokasta tapaa toteuttaa minuutin mittainen animaatio Scene.org Awards -tapahtuman avajaisseremoniaan. Kyseinen video toteutettiin osana opinnäytetyötä. Työhön osallistui tekijän lisäksi 3D-mallintaja sekä muusikko. Työkaluina käytettiin pääasiassa Autodesk 3ds Max-, sekä Adobe After Effects- ja Adobe Photoshop -ohjelmia. Opinnäytetyö koostuu animaatioprojektin tuotantoputken ja tiedostonhallintamallin perinpohjaisesta läpikäymisestä sekä sen asian tutkimisesta...
Manos, Harry
2016-03-01
Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the TPT theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity well tailored to specific class lessons. Most of the supplies are readily available in the home or at school: rubbing alcohol, a rag, two colors of spray paint, art brushes, and masking tape. The cost of these supplies, if you don't have them, is less than 20.
Institute of Scientific and Technical Information of China (English)
吕铁雄
2011-01-01
难度:★★★★☆词数:450 建议阅读时间:8分钟 Most people see out of two eyes. This is a basic fact of humanity,but it’s what makes possible the illusion of depth(纵深幻觉) that 3-D movies create. Human eyes are spaced about two inches apart, meaning that each eye gives the brain a slightly different perspective(透视感)on the same object. The brain then uses this variance to quickly determine an object’s distance.
Virtual 3-D Facial Reconstruction
Directory of Open Access Journals (Sweden)
Martin Paul Evison
2000-06-01
Full Text Available Facial reconstructions in archaeology allow empathy with people who lived in the past and enjoy considerable popularity with the public. It is a common misconception that facial reconstruction will produce an exact likeness; a resemblance is the best that can be hoped for. Research at Sheffield University is aimed at the development of a computer system for facial reconstruction that will be accurate, rapid, repeatable, accessible and flexible. This research is described and prototypical 3-D facial reconstructions are presented. Interpolation models simulating obesity, ageing and ethnic affiliation are also described. Some strengths and weaknesses in the models, and their potential for application in archaeology are discussed.
Volumetric 3D Display System with Static Screen
Geng, Jason
2011-01-01
approaches, so there is no image jitter, and has an inherent parallel mechanism for 3D voxel addressing. High spatial resolution is possible with a full color display being easy to implement. The system is low-cost and low-maintenance.
Positional Awareness Map 3D (PAM3D)
Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise
2012-01-01
The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.
3D Printable Graphene Composite
Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong
2015-07-01
In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.
Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C
2013-06-12
The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097
3D Ion Temperature Reconstruction
Tanabe, Hiroshi; You, Setthivoine; Balandin, Alexander; Inomoto, Michiaki; Ono, Yasushi
2009-11-01
The TS-4 experiment at the University of Tokyo collides two spheromaks to form a single high-beta compact toroid. Magnetic reconnection during the merging process heats and accelerates the plasma in toroidal and poloidal directions. The reconnection region has a complex 3D topology determined by the pitch of the spheromak magnetic fields at the merging plane. A pair of multichord passive spectroscopic diagnostics have been established to measure the ion temperature and velocity in the reconnection volume. One setup measures spectral lines across a poloidal plane, retrieving velocity and temperature from Abel inversion. The other, novel setup records spectral lines across another section of the plasma and reconstructs velocity and temperature from 3D vector and 2D scalar tomography techniques. The magnetic field linking both measurement planes is determined from in situ magnetic probe arrays. The ion temperature is then estimated within the volume between the two measurement planes and at the reconnection region. The measurement is followed over several repeatable discharges to follow the heating and acceleration process during the merging reconnection.
Simulation of current generation in a 3-D plasma model
International Nuclear Information System (INIS)
Two wires carrying current in the same direction will attract each other, and two wires carrying current in the opposite direction will repel each other. Now, consider a test charge in a plasma. If the test charge carries current parallel to the plasma, then it will be pulled toward the plasma core, and if the test charge carries current anti-parallel to the plasma, then it will be pushed to the edge. The electromagnetic coupling between the plasma and a test charge (i.e., the Aparallel circ vparallel term in the test charge's Hamiltonian) breaks the symmetry in the parallel direction, and gives rise to a diffusion coefficient which is dependent on the particle's parallel velocity. This is the basis for the open-quotes preferential lossclose quotes mechanism described in the work by Nunan et al. In our previous 2+1/2 D work, in both cylindrical and toroidal geometries, showed that if the plasma column is centrally fueled, then an initial current increases steadily. The results in straight, cylindrical plasmas showed that self generated parallel current arises without trapped particle or neoclassical diffusion, as assumed by the bootstrap theory. It suggests that the fundamental mechanism seems to be the conservation of particles canonical momenta in the direction of the ignorable coordinate. We have extended the simulation to 3D to verify the model put forth. A scalable 3D EM-PIC code, with a localized field-solver, has been implemented to run on a large class of parallel computers. On the 512-node SP2 at Cornell Theory Center, we have benchmarked the 2+1/2 D calculations using 32 grids in the previously ignored direction, and a 100-fold increase in the number of particles. Our preliminary results show good agreements between the 2+1/2 D and the 3D calculations. We will present our 3D results at the meeting
International Nuclear Information System (INIS)
The Lott Ranch 3D seismic prospect located in Garza County, Texas is a project initiated in September of 1991 by the J.M. Huber Corp., a petroleum exploration and production company. By today's standards the 126 square mile project does not seem monumental, however at the time it was conceived it was the most intensive land 3D project ever attempted. Acquisition began in September of 1991 utilizing GEO-SEISMIC, INC., a seismic data contractor. The field parameters were selected by J.M. Huber, and were of a radical design. The recording instruments used were GeoCor IV amplifiers designed by Geosystems Inc., which record the data in signed bit format. It would not have been practical, if not impossible, to have processed the entire raw volume with the tools available at that time. The end result was a dataset that was thought to have little utility due to difficulties in processing the field data. In 1997, Yates Energy Corp. located in Roswell, New Mexico, formed a partnership to further develop the project. Through discussions and meetings with Pinnacle Seismic, it was determined that the original Lott Ranch 3D volume could be vastly improved upon reprocessing. Pinnacle Seismic had shown the viability of improving field-summed signed bit data on smaller 2D and 3D projects. Yates contracted Pinnacle Seismic Ltd. to perform the reprocessing. This project was initiated with high resolution being a priority. Much of the potential resolution was lost through the initial summing of the field data. Modern computers that are now being utilized have tremendous speed and storage capacities that were cost prohibitive when this data was initially processed. Software updates and capabilities offer a variety of quality control and statics resolution, which are pertinent to the Lott Ranch project. The reprocessing effort was very successful. The resulting processed data-set was then interpreted using modern PC-based interpretation and mapping software. Production data, log data
3D Printing of Graphene Aerogels.
Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong
2016-04-01
3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (printed graphene aerogel presents superelastic and high electrical conduction. PMID:26861680
3D biometrics systems and applications
Zhang, David
2013-01-01
Includes discussions on popular 3D imaging technologies, combines them with biometric applications, and then presents real 3D biometric systems Introduces many efficient 3D feature extraction, matching, and fusion algorithms Techniques presented have been supported by experimental results using various 3D biometric classifications
Proceedings of the workshop on nonlinear MHD and extended MHD
International Nuclear Information System (INIS)
Nonlinear MHD simulations have proven their value in interpreting experimental results over the years. As magnetic fusion experiments reach higher performance regimes, more sophisticated experimental diagnostics coupled with ever expanding computer capabilities have increased both the need for and the feasibility of nonlinear global simulations using models more realistic than regular ideal and resistive MHD. Such extended-MHD nonlinear simulations have already begun to produce useful results. These studies are expected to lead to ever more comprehensive simulation models in the future and to play a vital role in fully understanding fusion plasmas. Topics include the following: (1) current state of nonlinear MHD and extended-MHD simulations; (2) comparisons to experimental data; (3) discussions between experimentalists and theorists; (4) /equations for extended-MHD models, kinetic-based closures; and (5) paths toward more comprehensive simulation models, etc. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database
An Unsplit Godunov Method for Ideal MHD via Constrained Transport in Three Dimensions
Gardiner, Thomas A.; Stone, James M
2007-01-01
We present a single step, second-order accurate Godunov scheme for ideal MHD which is an extension of the method described by Gardiner & Stone (2005) to three dimensions. This algorithm combines the corner transport upwind (CTU) method of Colella for multidimensional integration, and the constrained transport (CT) algorithm for preserving the divergence-free constraint on the magnetic field. We describe the calculation of the PPM interface states for 3D ideal MHD which must include multidimen...
Photopolymers in 3D printing applications
Pandey, Ramji
2014-01-01
3D printing is an emerging technology with applications in several areas. The flexibility of the 3D printing system to use variety of materials and create any object makes it an attractive technology. Photopolymers are one of the materials used in 3D printing with potential to make products with better properties. Due to numerous applications of photopolymers and 3D printing technologies, this thesis is written to provide information about the various 3D printing technologies with particul...
Natural fibre composites for 3D Printing
Pandey, Kapil
2015-01-01
3D printing has been common option for prototyping. Not all the materials are suitable for 3D printing. Various studies have been done and still many are ongoing regarding the suitability of the materials for 3D printing. This thesis work discloses the possibility of 3D printing of certain polymer composite materials. The main objective of this thesis work was to study the possibility for 3D printing the polymer composite material composed of natural fibre composite and various different ...
Advanced 3-D Ultrasound Imaging
DEFF Research Database (Denmark)
Rasmussen, Morten Fischer
been completed. This allows for precise measurements of organs dimensions and makes the scan more operator independent. Real-time 3-D ultrasound imaging is still not as widespread in use in the clinics as 2-D imaging. A limiting factor has traditionally been the low image quality achievable using...... and removes the need to integrate custom made electronics into the probe. A downside of row-column addressing 2-D arrays is the creation of secondary temporal lobes, or ghost echoes, in the point spread function. In the second part of the scientific contributions, row-column addressing of 2-D arrays...... was investigated. An analysis of how the ghost echoes can be attenuated was presented.Attenuating the ghost echoes were shown to be achieved by minimizing the first derivative of the apodization function. In the literature, a circular symmetric apodization function was proposed. A new apodization layout...
Conducting Polymer 3D Microelectrodes
Directory of Open Access Journals (Sweden)
Jenny Emnéus
2010-12-01
Full Text Available Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements.
Institute of Scientific and Technical Information of China (English)
G.Y. Fu
2007-01-01
@@ Ⅲ.4.1Introduction Understanding MHD instability dynamics is a key issue for burning plasmas. Important MHD modes ranging from the plasma center to the edge include sawtooth oscillations and fishbone (center), ballooning modes and neoclassical tearing modes (core), external kink-ballooning modes (core/edge), and peeling-ballooning modes or edge localized modes (edge). In particular, sawtooth oscillations affect the central plasma profiles and can seed neoclassical tearing modes. Neoclassical tearing modes, ideal ballooning modes and kink modes all set a limit to the plasma beta, above which the plasma is vulnerable to disruptions. ELM dynamics determines the H-mode pedestal's height and width, which in turn determines the core plasma confinement.
Frutos-Alfaro, Francisco
2015-01-01
A program to generate codes in Fortran and C of the full Magnetohydrodynamic equations is shown. The program used the free computer algebra system software REDUCE. This software has a package called EXCALC, which is an exterior calculus program. The advantage of this program is that it can be modified to include another complex metric or spacetime. The output of this program is modified by means of a LINUX script which creates a new REDUCE program to manipulate the MHD equations to obtain a code that can be used as a seed for a MHD code for numerical applications. As an example, we present part of output of our programs for Cartesian coordinates and how to do the discretization.
Recent progress in MHD stability calculations of compact stellarators
International Nuclear Information System (INIS)
A key issue for compact stellarators is the stability of beta-limiting MHD modes, such as external kink modes driven by bootstrap current and pressure gradient. We report here recent progress in MHD stability studies for low-aspect-ratio Quasi-Axisymmetric Stellarators (QAS) and Quasi-Omnigeneous Stellarators (QOS). We find that the N=0 periodicity-preserving vertical mode is significantly more stable in stellarators than in tokamaks because of the externally generated rotational transform. It is shown that both low-n external kink modes and high-n ballooning modes can be stabilized at high beta by appropriate 3D shaping without a conducting wall. The stabilization mechanism for external kink modes in QAS appears to be an enhancement of local magnetic shear due to 3D shaping. The stabilization of ballooning mode in QOS is related to a shortening of the normal curvature connection length. (author)
2009-01-01
of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through. The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave. This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron. High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these structures, but their orientation and
3D Simulation of Nano-Imprint Lithography
DEFF Research Database (Denmark)
Román Marín, José Manuel; Rasmussen, Henrik K.; Hassager, Ole
2010-01-01
A proof of concept study of the feasibility of fully three-dimensional (3D) time-dependent simulation of nano-imprint lithography of polymer melt, where the polymer is treated as a structured liquid, has been presented. Considering the flow physics of the polymer as a structured liquid, we have...... followed the line initiated by de Gennes, using a Molecular Stress Function model of the Doi and Edwards type. We have used a 3D Lagrangian Galerkin finite element methods implemented on a parallel computer architecture. In a Lagrangian techniques, the node point follows the particle movement, allowing...
An Unsplit Godunov Method for Ideal MHD via Constrained Transport in Three Dimensions
Gardiner, Thomas A
2007-01-01
We present a single step, second-order accurate Godunov scheme for ideal MHD which is an extension of the method described by Gardiner & Stone (2005) to three dimensions. This algorithm combines the corner transport upwind (CTU) method of Colella for multidimensional integration, and the constrained transport (CT) algorithm for preserving the divergence-free constraint on the magnetic field. We describe the calculation of the PPM interface states for 3D ideal MHD which must include multidimensional ``MHD source terms'' and naturally respect the balance implicit in these terms by the ${\\bf\
Study of three dimensional MHD effects in a manifold circular pipe
International Nuclear Information System (INIS)
Some new experimental results carried out in a manifold circular pipe for liquid metal MHD (Magneto-hydro-dynamic) fluid flow were presented. The velocity distributions were measured at the center plane of cross section of the joint of the manifold pipe. The instabilities of vortex street were observed in the cross section of the pipe. An expression formula of three-dimensional (3D) additional MHD pressure drop due to the manifold junction was obtained. 2D MHD effects and effect of non-fully developed flow on the experiment results were also discussed
3-D NUMERICAL SIMULATIONS OF FLOW LOSS IN HELICAL CHANNEL
Institute of Scientific and Technical Information of China (English)
ZHAO Ling-zhi; PENG Yan; LU Fang; LI Jian; LI Ran; LIU Bao-lin
2012-01-01
The flow loss of a helical channel Magnetohydrodynamic (MHD) thruster without MHD effect was numerically studied with 3-D simulations,and a flow loss coefficient ξ was defined to quantify the flow loss and its influencing factors were studied.The results show that ξ decreases in a first-order exponential manner with the pitch of a helical wall and the Reynolds number,and it declines slowly when t / T ＞ 0.2 and Re ＞ 105,a flow guide makes the flow more smooth and uniform,especially in the flow guide and helical wall sub-regions and thus reduces the flow loss greatly,by about 30％ with the averaged value of ξ from 0.0385to 0.027,a rectifier weakens the helical flow and strengthens the axial one in the rectifier and outlet sub-regions,thus reduces the rotational kinetic pressure with the averaged value of ξ declining about 4％ from 0.0385 to 0.037,and ξ decreases with a rectifier's axial length when Re ＞ 105.
Development of 3D microwave imaging reflectometry in LHD (invited).
Nagayama, Y; Kuwahara, D; Yoshinaga, T; Hamada, Y; Kogi, Y; Mase, A; Tsuchiya, H; Tsuji-Iio, S; Yamaguchi, S
2012-10-01
Three-dimensional (3D) microwave imaging reflectometry has been developed in the large helical device to visualize fluctuating reflection surface which is caused by the density fluctuations. The plasma is illuminated by the probe wave with four frequencies, which correspond to four radial positions. The imaging optics makes the image of cut-off surface onto the 2D (7 × 7 channels) horn antenna mixer arrays. Multi-channel receivers have been also developed using micro-strip-line technology to handle many channels at reasonable cost. This system is first applied to observe the edge harmonic oscillation (EHO), which is an MHD mode with many harmonics that appears in the edge plasma. A narrow structure along field lines is observed during EHO. PMID:23126965
Regularity criteria for the 3D magneto-micropolar fluid equations via the direction of the velocity
Indian Academy of Sciences (India)
Zujin Zhang
2015-02-01
We consider sufficient conditions to ensure the smoothness of solutions to 3D magneto-micropolar fluid equations. It involves only the direction of the velocity and the magnetic field. Our result extends to the cases of Navier–Stokes and MHD equations.
3D multiplexed immunoplasmonics microscopy
Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel
2016-07-01
Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed
Kuvaus 3D-tulostamisesta hammastekniikassa
Munne, Mauri; Mustonen, Tuomas; Vähäjylkkä, Jaakko
2013-01-01
3D-tulostaminen kehittyy nopeasti ja yleistyy koko ajan. Tulostimien tarkkuuksien kehittyessä 3D-tulostus on ottamassa myös jalansijaa hammastekniikan alalta. Tämän opinnäytetyön tarkoituksena on kuvata 3D-tulostamisen tilaa hammastekniikassa. 3D-tulostaminen on Suomessa vielä melko harvinaista, joten opinnäytetyön tavoitteena on koota yhteen kaikki mahdollinen tieto liittyen 3D-tulostamiseen hammastekniikassa. Tavoitteena on myös 3D-tulostimen testaaminen käytännössä aina suun skannaami...
3D multiplexed immunoplasmonics microscopy.
Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel
2016-07-21
Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K(+) channel subunit KV1.1) on human cancer CD44(+) EGFR(+) KV1.1(+) MDA-MB-231 cells and reference CD44(-) EGFR(-) KV1.1(+) 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third
ORMGEN3D, 3-D Crack Geometry FEM Mesh Generator
International Nuclear Information System (INIS)
1 - Description of program or function: ORMGEN3D is a finite element mesh generator for computational fracture mechanics analysis. The program automatically generates a three-dimensional finite element model for six different crack geometries. These geometries include flat plates with straight or curved surface cracks and cylinders with part-through cracks on the outer or inner surface. Mathematical or user-defined crack shapes may be considered. The curved cracks may be semicircular, semi-elliptical, or user-defined. A cladding option is available that allows for either an embedded or penetrating crack in the clad material. 2 - Method of solution: In general, one eighth or one-quarter of the structure is modelled depending on the configuration or option selected. The program generates a core of special wedge or collapsed prism elements at the crack front to introduce the appropriate stress singularity at the crack tip. The remainder of the structure is modelled with conventional 20-node iso-parametric brick elements. Element group I of the finite element model consists of an inner core of special crack tip elements surrounding the crack front enclosed by a single layer of conventional brick elements. Eight element divisions are used in a plane orthogonal to the crack front, while the number of element divisions along the arc length of the crack front is user-specified. The remaining conventional brick elements of the model constitute element group II. 3 - Restrictions on the complexity of the problem: Maxima of 5,500 nodes, 4 layers of clad elements
Towards the development of a 3D full cell and external busbars thermo-electric model
International Nuclear Information System (INIS)
Taking advantage of the increasing power of computers, it is now practical to consider building a 3D full cell and external busbars thermo-electric model. In the present study, a 3D full cell quarter thermo-electric model and a 3D cathode half plus liquid zone and busbars thermo-electric model have been developed and solved using a PIll 800 MHz computer. Developing a 3D full cell and external busbars thermo-electric model will constitute a step further towards the development of a fully 'multi-physic' unified aluminium reduction cell model. Already, a full cell thermo-electric model will be able to interact with a MHD model by providing it with accurate liquid zone current density and potshell temperature data and by receiving from it local liquid/ledge interface heat transfer coefficients. (author)
3D plasma response to magnetic field structure in the Large Helical Device
International Nuclear Information System (INIS)
The three-dimensional (3D) plasma response to the magnetic eld structure is studied for high-β plasmas in the Large Helical Device (LHD). The radial electric field, Er, is measured in the peripheral region. The positive electric field appears in the region and that suggests the boundary between opened and closed field lines. The position of appearing positive Er is always the outside of the vacuum boundary. A 3D MHD modeling predicts the expanding of the effective plasma boundary by the 3D plasma response. The position of appearing strong Er is almost comparable to expanded plasma boundary of the modeling. That is, the 3D plasma response is identified in the LHD experiments. (author)
Simulation of bootstrap current in 2D and 3D ideal magnetic fields in tokamaks
Raghunathan, M.; Graves, J. P.; Cooper, W. A.; Pedro, M.; Sauter, O.
2016-09-01
We aim to simulate the bootstrap current for a MAST-like spherical tokamak using two approaches for magnetic equilibria including externally caused 3D effects such as resonant magnetic perturbations (RMPs), the effect of toroidal ripple, and intrinsic 3D effects such as non-resonant internal kink modes. The first approach relies on known neoclassical coefficients in ideal MHD equilibria, using the Sauter (Sauter et al 1999 Phys. Plasmas 6 2834) expression valid for all collisionalities in axisymmetry, and the second approach being the quasi-analytic Shaing–Callen (Shaing and Callen 1983 Phys. Fluids 26 3315) model in the collisionless regime for 3D. Using the ideal free-boundary magnetohydrodynamic code VMEC, we compute the flux-surface averaged bootstrap current density, with the Sauter and Shaing–Callen expressions for 2D and 3D ideal MHD equilibria including an edge pressure barrier with the application of resonant magnetic perturbations, and equilibria possessing a saturated non-resonant 1/1 internal kink mode with a weak internal pressure barrier. We compare the applicability of the self-consistent iterative model on the 3D applications and discuss the limitations and advantages of each bootstrap current model for each type of equilibrium.
3D multiplexed immunoplasmonics microscopy
Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel
2016-07-01
Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed
Crowdsourcing Based 3d Modeling
Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.
2016-06-01
Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.
Advances in Simulation of Wave Interaction with Extended MHD Phenomena
International Nuclear Information System (INIS)
The Integrated Plasma Simulator (IPS) provides a framework within which some of the most advanced, massively-parallel fusion modeling codes can be interoperated to provide a detailed picture of the multi-physics processes involved in fusion experiments. The presentation will cover four topics: (1) recent improvements to the IPS, (2) application of the IPS for very high resolution simulations of ITER scenarios, (3) studies of resistive and ideal MHD stability in tokamk discharges using IPS facilities, and (4) the application of RF power in the electron cyclotron range of frequencies to control slowly growing MHD modes in tokamaks and initial evaluations of optimized location for RF power deposition.
Collaboration on Scene Graph Based 3D Data
Ammon, Lorenz; Bieri, Hanspeter
Professional 3D digital content creation tools, like Alias Maya or discreet 3ds max, offer only limited support for a team of artists to work on a 3D model collaboratively. We present a scene graph repository system that enables fine-grained collaboration on scenes built using standard 3D DCC tools by applying the concept of collaborative versions to a general attributed scene graph. Artists can work on the same scene in parallel without locking out each other. The artists' changes to a scene are regularly merged to ensure that all artists can see each others progress and collaborate on current data. We introduce the concept of indirect changes and indirect conflicts to systematically inspect the effects that collaborative changes have on a scene. Inspecting indirect conflicts helps maintaining scene consistency by systematically looking for inconsistencies at the right places.
Will 3D printers manufacture your meals?
Bommel, K.J.C. van
2013-01-01
These days, 3D printers are laying down plastics, metals, resins, and other materials in whatever configurations creative people can dream up. But when the next 3D printing revolution comes, you'll be able to eat it.
Eesti 3D jaoks kitsas / Virge Haavasalu
Haavasalu, Virge
2009-01-01
Produktsioonifirma Digitaalne Sputnik: Kaur ja Kaspar Kallas tegelevad filmide produtseerimise ning 3D digitaalkaamerate tootearendusega (Silicon Imaging LLC). Vendade Kallaste 3D-kaamerast. Kommenteerib Eesti Filmi Sihtasutuse direktor Marge Liiske
3D Printing Making the Digital Real .
Directory of Open Access Journals (Sweden)
Miss Prachi More
2013-07-01
Full Text Available 3D printing is quickly expanding field, with the popularity and uses for 3D printers growing every day. 3D printing can be used to prototype, create replacement parts, and is even versatile enough to print prostheses and medical implants. It will have a growing impact on our world, as more and more people gain access to these amazing machines.[1] In this article, we would like to attempt to give an introduction of the technology. 3Dimensions printing is a method of converting a virtual 3D model into a physical object. 3D printing is a category of rapid prototyping technology. 3D printers typically work by printing successive layers on top of the previous to build up a three dimensional object. 3D printing is a revolutionary method for creating 3D models with the use of inkjet technology.[7
Sliding Adjustment for 3D Video Representation
Directory of Open Access Journals (Sweden)
Galpin Franck
2002-01-01
Full Text Available This paper deals with video coding of static scenes viewed by a moving camera. We propose an automatic way to encode such video sequences using several 3D models. Contrary to prior art in model-based coding where 3D models have to be known, the 3D models are automatically computed from the original video sequence. We show that several independent 3D models provide the same functionalities as one single 3D model, and avoid some drawbacks of the previous approaches. To achieve this goal we propose a novel algorithm of sliding adjustment, which ensures consistency of successive 3D models. The paper presents a method to automatically extract the set of 3D models and associate camera positions. The obtained representation can be used for reconstructing the original sequence, or virtual ones. It also enables 3D functionalities such as synthetic object insertion, lightning modification, or stereoscopic visualization. Results on real video sequences are presented.
3D Flash LIDAR Space Laser Project
National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc. (ASC) is a small business that has developed 3D Flash LIDAR systems for space and terrestrial applications. 3D Flash LIDAR is...
3D Additive Manufacturing Symposium & Workshop
Unver, Ertu; Taylor, Andrew
2015-01-01
The IMI /3M BIC 3D Additive Manufacturing Symposium and Workshop was hosted by 3M Buckley Innovation Centre on March 17th 2015. The event was attended by the major players in precision engineering, 3D additive design and manufacturing: Representatives from EOS, Renishaw, HK 3D Printing IMI Plc Senior Management team, design engineers, programmers and academics from the University of Huddersfield School of Art Design & Architecture, 3M Buckley centre 3D printing management and designers shared...
Face Detection with a 3D Model
Barbu, Adrian; Lay, Nathan; Gramajo, Gary
2014-01-01
This paper presents a part-based face detection approach where the spatial relationship between the face parts is represented by a hidden 3D model with six parameters. The computational complexity of the search in the six dimensional pose space is addressed by proposing meaningful 3D pose candidates by image-based regression from detected face keypoint locations. The 3D pose candidates are evaluated using a parameter sensitive classifier based on difference features relative to the 3D pose. A...
3D PHOTOGRAPHS IN CULTURAL HERITAGE
Schuhr, W.; J. D. Lee; Kiel, St.
2013-01-01
This paper on providing "oo-information" (= objective object-information) on cultural monuments and sites, based on 3D photographs is also a contribution of CIPA task group 3 to the 2013 CIPA Symposium in Strasbourg. To stimulate the interest in 3D photography for scientists as well as for amateurs, 3D-Masterpieces are presented. Exemplary it is shown, due to their high documentary value ("near reality"), 3D photography support, e.g. the recording, the visualization, the interpret...
Vlahakis, Nektarios
2010-03-01
Outflows emanating from the environment of stellar or galactic objects are a widespread phenomenon in astrophysics. Their morphology ranges from nearly spherically symmetric winds to highly collimated jets. In some cases, e.g., in jets associated with young stellar objects, the bulk outflow speeds are nonrelativistic, while in others, e.g., in jets associated with active galactic nuclei or gamma-ray bursts, it can even be highly relativistic. The main driving mechanism of collimated outflows is likely related to magnetic fields. These fields are able to tap the rotational energy of the compact object or disk, accelerate, and collimate matter ejecta. To zeroth order these outflows can be described by the highly intractable theory of magnetohydrodynamics (MHD). Even in systems where the assumptions of zero resistivity (ideal MHD), steady state, axisymmetry, one fluid description, and polytropic equation of state are applicable, the problem remains difficult. In this case the problem reduces to only two equations, corresponding to the two components of the momentum equation along the flow and in the direction perpendicular to the magnetic field (transfield direction). The latter equation is the most difficult to solve, but also the most important. It answers the question on the degree of the collimation, but also crucially affects the solution of the first, the acceleration efficiency and the bulk velocity of the flow. The first and second parts of this chapter refer to nonrelativistic and relativistic flows, respectively. These Parts can be read independently. In each one, the governing equations are presented and discussed, focusing on the case of flows that are magnetically dominated near the central source. The general characteristics of the solutions in relation to the acceleration and collimation mechanisms are analyzed. As specific examples of exact solutions of the full system of the MHD equations that satisfy all the analyzed general characteristics, self
3D textiles for composite reinforcements
Fangueiro, Raúl; Mingxing, Z.; Hong, H; Soutinho, Hélder Filipe Cunha; Gonçalves, P.; Araújo, Mário Duarte de
2010-01-01
This paper presents an overview on the last developments on 3D textile structures for composite reinforcements. The application of innovative 3D shaped weft-knitted preforms in GFRP tube joints is presented and discussed. Moreover, the mechanical behaviour of 3D hybrid basalt fiber reinforced composite material sis also presented and discussed.
3D modelling for multipurpose cadastre
Abduhl Rahman, A.; Van Oosterom, P.J.M.; Hua, T.C.; Sharkawi, K.H.; Duncan, E.E.; Azri, N.; Hassan, M.I.
2012-01-01
Three-dimensional (3D) modelling of cadastral objects (such as legal spaces around buildings, around utility networks and other spaces) is one of the important aspects for a multipurpose cadastre (MPC). This paper describes the 3D modelling of the objects for MPC and its usage to the knowledge of 3D
Novel 3D Compression Methods for Geometry, Connectivity and Texture
Siddeq, M. M.; Rodrigues, M. A.
2016-06-01
A large number of applications in medical visualization, games, engineering design, entertainment, heritage, e-commerce and so on require the transmission of 3D models over the Internet or over local networks. 3D data compression is an important requirement for fast data storage, access and transmission within bandwidth limitations. The Wavefront OBJ (object) file format is commonly used to share models due to its clear simple design. Normally each OBJ file contains a large amount of data (e.g. vertices and triangulated faces, normals, texture coordinates and other parameters) describing the mesh surface. In this paper we introduce a new method to compress geometry, connectivity and texture coordinates by a novel Geometry Minimization Algorithm (GM-Algorithm) in connection with arithmetic coding. First, each vertex ( x, y, z) coordinates are encoded to a single value by the GM-Algorithm. Second, triangle faces are encoded by computing the differences between two adjacent vertex locations, which are compressed by arithmetic coding together with texture coordinates. We demonstrate the method on large data sets achieving compression ratios between 87 and 99 % without reduction in the number of reconstructed vertices and triangle faces. The decompression step is based on a Parallel Fast Matching Search Algorithm (Parallel-FMS) to recover the structure of the 3D mesh. A comparative analysis of compression ratios is provided with a number of commonly used 3D file formats such as VRML, OpenCTM and STL highlighting the performance and effectiveness of the proposed method.
A 3D radiative transfer framework: III. periodic boundary conditions
Hauschildt, Peter H.; Baron, E.
2008-01-01
We present a general method to solve radiative transfer problems including scattering in the continuum as well as in lines in 3D configurations with periodic boundary conditions. he scattering problem for line transfer is solved via means of an operator splitting (OS) technique. The formal solution is based on a full characteristics method. The approximate $\\Lambda$ operator is constructed considering nearest neighbors exactly. The code is parallelized over both wavelength and solid angle usi...
Energy Technology Data Exchange (ETDEWEB)
Retallick, F.D.
1978-04-01
This document establishes criteria to be utilized for the design of a pilot-scale (150 to 300 MW thermal) open cycle, coal-fired MHD/steam plant. Criteria for this Engineering Test Facility (ETF) are presented relative to plant siting, plant engineering and operations, MHD-ETF testing, costing and scheduling.
MHD turbulence and distributed chaos
Bershadskii, A
2016-01-01
It is shown, using results of recent direct numerical simulations, that spectral properties of distributed chaos in MHD turbulence with zero mean magnetic field are similar to those of hydrodynamic turbulence. An exception is MHD spontaneous breaking of space translational symmetry, when the stretched exponential spectrum $\\exp(-k/k_{\\beta})^{\\beta}$ has $\\beta=4/7$.
Nonlinear evolution of MHD instabilities
International Nuclear Information System (INIS)
The problems of nonlinear theory of MHD instability, some analytical solutions of one-dimensional dynamic and two-dimensional kinematic problems and the problems of helical MHD instability in a plasma cylinder and axially-symmetric MHD instability in a Z-pinch are considered. The initial configuration is assumed to be equilibrium but unstable and its motion is initiated by a small initial disturbance. Instability evolution at a nonlinear stage is investigated by means of computer numerical integrating of the total system of MHD equations of motion. Limiting by two-dimensional motions class allows using the visual apparatus of freezed in functions satisfying in ideal gasodynamics the equation deltaPSIsub(i)/deltat+vector Vgrad PSIsub(i)=0. The investigation of evolution of axially symmetric MHD-instability in Z-pinch systems allows to construct on uncontradictory scheme of physical processes occuring in them from the initial discharge state to cylindrical equilibrium state
3-D Perspective Pasadena, California
2000-01-01
This perspective view shows the western part of the city of Pasadena, California, looking north towards the San Gabriel Mountains. Portions of the cities of Altadena and La Canada, Flintridge are also shown. The image was created from three datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation data; Landsat data from November 11, 1986 provided the land surface color (not the sky) and U.S. Geological Survey digital aerial photography provides the image detail. The Rose Bowl, surrounded by a golf course, is the circular feature at the bottom center of the image. The Jet Propulsion Laboratory is the cluster of large buildings north of the Rose Bowl at the base of the mountains. A large landfill, Scholl Canyon, is the smooth area in the lower left corner of the scene. This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Wildfires strip the mountains of vegetation, increasing the hazards from flooding and mudflows for several years afterwards. Data such as shown on this image can be used to predict both how wildfires will spread over the terrain and also how mudflows will be channeled down the canyons. The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency
Esiselvitys elintarvikkeiden 3D-tulostamisesta
Teva, Arno
2015-01-01
Opinnäytetyön tavoitteena oli laatia esiselvitys 3D-tulostamisesta elintarvikealalla. 3D-tulostaminen on uusi ja jatkuvasti kehittyvä ala, joka tulee vaikuttamaan myös elintarvikealan kehittymiseen. Työn tarkoituksena oli selvittää elintarvikenäkökulmasta 3D-tulostamiseen liittyviä tekijöitä. Aiheen toimeksiantajana oli Hämeen ammattikorkeakoulu ja kohderyhmänä elintarvikealan Pk-yritykset. Opinnäytetyössä esitellään yleisimpiä 3D-tulostusmenetelmiä ja selvitetään 3D-tulostamista tietokone...
Črešnik, Igor
2015-01-01
V diplomskem delu predstavljamo pripravo modela na 3D-tisk. V prvem delu smo preleteli zgodovino tiska. Predstavili smo tehnologijo 3D-tiska ter različne tehnike tiskanja, ki jih uporabljajo določeni tiskalniki. V nadaljevanju smo pregledali različne tipe 3D-tiskalnikov, ki se uporabljajo za domačo ali komercialno uporabo ter izpostavili njihove prednosti in slabosti. V zadnjem delu diplomskega dela smo na praktičnem primeru 3D-modela hiše prikazali proces priprave modela za 3D-tisk. Pri delu...
3D-tulostimien tutkiminen painotalolle
Toivonen, Aleksi
2014-01-01
Opinnäytetyön tavoitteena oli perehtyä 3D-tulostamiseen ja tutkia painotaloon sopivia 3D-tulostimia ja 3D-tulostamiseen liittyviä tekniikoita. Opinnäytetyön tavoitteena oli myös pohtia painotalolle mahdollisia 3D-tulostamiseen liittyviä tuotekonsepteja yrityksille ja yksityisille kuluttajille. Painoalan yrityksen tarkoituksena on sijoittaa lähitulevaisuudessa 3D-tulostimeen, joten opinnäytetyö oli ajankohtainen tutkimustyö yritykselle. Opinnäytetyön toimeksiantajana toimi painoalan yritys. ...
BUILDING A HOMEMADE 3D PRINTER
Tunc, Baran
2015-01-01
3D printing has been attracted much attention around the world due to its high potential of new application fields. In this respect, developing and inventing new filament materials for 3D printers or new techniques of 3D printing are the main interest of the many materials scientists. This paper reports a comprehensive overview of 3D printing followed by a summary of my ongoing study of building a composite homemade 3D printer. At this stage of this study, a CNC router was successfully conver...
Taylor, Andrew; Unver, Ertu
2015-01-01
This 3D Printing our Future:Now talk and visual presentation was given to delegates at the IMI 3D Workshop held at 3M Buckley Innovation Centre on 17th March 2015. The event was hosted by 3Mbuckley Innovation Centre for IMI plc a global engineering company, 3M, and leading 3D additive manufacturing technology providers: EOS, Renishaw and HK 3D printing to disseminate and share their experience on the latest 3D additive design and manufacturing technologies available to the engineering an...
Investigating Mobile Stereoscopic 3D Touchscreen Interaction
Colley, Ashley; Hakkila, Jonna; SCHOENING, Johannes; Posti, Maaret
2013-01-01
3D output is no longer limited to large screens in cinemas or living rooms. Nowadays more and more mobile devices are equipped with autostereoscopic 3D (S3D) touchscreens. As a consequence interaction with 3D content now also happens whilst users are on the move. In this paper we carried out a user study with 27 participants to assess how mobile interaction, i.e. whilst walking, with mobile S3D devices, differs from interaction with 2D mobile touchscreens. We investigate the difference in tou...
Scopigno, Roberto
2005-01-01
Nearly all of our cultural heritage is inherently three-dimensional. Recent hard- and software developments enabled 3D computer graphics to be one of the most powerful means to represent complex data sets. The ViHAP3D project (ViHAP3D is an acronym for Virtual Heritage - High Quality 3D Acquisition and Presentation) aimed therefore at preserving, presenting, accessing, and promoting cultural heritage using interactive, high-quality 3D graphics. The vision of the project was to create an exact...
Wafer level 3-D ICs process technology
Tan, Chuan Seng; Reif, L Rafael
2009-01-01
This book focuses on foundry-based process technology that enables the fabrication of 3-D ICs. The core of the book discusses the technology platform for pre-packaging wafer lever 3-D ICs. However, this book does not include a detailed discussion of 3-D ICs design and 3-D packaging. This is an edited book based on chapters contributed by various experts in the field of wafer-level 3-D ICs process technology. They are from academia, research labs and industry.
View-based 3-D object retrieval
Gao, Yue
2014-01-01
Content-based 3-D object retrieval has attracted extensive attention recently and has applications in a variety of fields, such as, computer-aided design, tele-medicine,mobile multimedia, virtual reality, and entertainment. The development of efficient and effective content-based 3-D object retrieval techniques has enabled the use of fast 3-D reconstruction and model design. Recent technical progress, such as the development of camera technologies, has made it possible to capture the views of 3-D objects. As a result, view-based 3-D object retrieval has become an essential but challenging res
Web-based interactive visualization of 3D video mosaics using X3D standard
Institute of Scientific and Technical Information of China (English)
CHON Jaechoon; LEE Yang-Won; SHIBASAKI Ryosuke
2006-01-01
We present a method of 3D image mosaicing for real 3D representation of roadside buildings, and implement a Web-based interactive visualization environment for the 3D video mosaics created by 3D image mosaicing. The 3D image mosaicing technique developed in our previous work is a very powerful method for creating textured 3D-GIS data without excessive data processing like the laser or stereo system. For the Web-based open access to the 3D video mosaics, we build an interactive visualization environment using X3D, the emerging standard of Web 3D. We conduct the data preprocessing for 3D video mosaics and the X3D modeling for textured 3D data. The data preprocessing includes the conversion of each frame of 3D video mosaics into concatenated image files that can be hyperlinked on the Web. The X3D modeling handles the representation of concatenated images using necessary X3D nodes. By employing X3D as the data format for 3D image mosaics, the real 3D representation of roadside buildings is extended to the Web and mobile service systems.
Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion
Handy Turner, Tara
2010-02-01
From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.
3D volume visualization in remote radiation treatment planning
Yun, David Y.; Garcia, Hong-Mei C.; Mun, Seong K.; Rogers, James E.; Tohme, Walid G.; Carlson, Wayne E.; May, Stephen; Yagel, Roni
1996-03-01
This paper reports a novel applications of 3D visualization in an ARPA-funded remote radiation treatment planning (RTP) experiment, utilizing supercomputer 3D volumetric modeling power and NASA ACTS (Advanced Communication Technology Satellite) communication bandwidths at the Ka-band range. The objective of radiation treatment is to deliver a tumorcidal dose of radiation to a tumor volume while minimizing doses to surrounding normal tissues. High performance graphics computers are required to allow physicians to view a 3D anatomy, specify proposed radiation beams, and evaluate the dose distribution around the tumor. Supercomputing power is needed to compute and even optimize dose distribution according to pre-specified requirements. High speed communications offer possibilities for sharing scarce and expensive computing resources (e.g., hardware, software, personnel, etc.) as well as medical expertise for 3D treatment planning among hospitals. This paper provides initial technical insights into the feasibility of such resource sharing. The overall deployment of the RTP experiment, visualization procedures, and parallel volume rendering in support of remote interactive 3D volume visualization will be described.
Directory of Open Access Journals (Sweden)
M. Schüssler
Full Text Available Two aspects of solar MHD are discussed in relation to the work of the MHD simulation group at KIS. Photospheric magneto-convection, the nonlinear interaction of magnetic field and convection in a strongly stratified, radiating fluid, is a key process of general astrophysical relevance. Comprehensive numerical simulations including radiative transfer have significantly improved our understanding of the processes and have become an important tool for the interpretation of observational data. Examples of field intensification in the solar photosphere ('convective collapse' are shown. The second line of research is concerned with the dynamics of flux tubes in the convection zone, which has far-reaching implications for our understanding of the solar dynamo. Simulations indicate that the field strength in the region where the flux is stored before erupting to form sunspot groups is of the order of 10^{5} G, an order of magnitude larger than previous estimates based on equipartition with the kinetic energy of convective flows.
Key words. Solar physics · astrophysics and astronomy (photosphere and chromosphere; stellar interiors and dynamo theory; numerical simulation studies.
3D laptop for defense applications
Edmondson, Richard; Chenault, David
2012-06-01
Polaris Sensor Technologies has developed numerous 3D display systems using a US Army patented approach. These displays have been developed as prototypes for handheld controllers for robotic systems and closed hatch driving, and as part of a TALON robot upgrade for 3D vision, providing depth perception for the operator for improved manipulation and hazard avoidance. In this paper we discuss the prototype rugged 3D laptop computer and its applications to defense missions. The prototype 3D laptop combines full temporal and spatial resolution display with the rugged Amrel laptop computer. The display is viewed through protective passive polarized eyewear, and allows combined 2D and 3D content. Uses include robot tele-operation with live 3D video or synthetically rendered scenery, mission planning and rehearsal, enhanced 3D data interpretation, and simulation.
User-centered 3D geovisualisation
DEFF Research Database (Denmark)
Nielsen, Anette Hougaard
2004-01-01
3D Geovisualisation is a multidisciplinary science mainly utilizing geographically related data, developing software systems for 3D visualisation and producing relevant models. In this paper the connection between geoinformation stored as 3D objects and the end user is of special interest....... In a broader perspective, the overall aim is to develop a language in 3D Geovisualisation gained through usability projects and the development of a theoretical background. A conceptual level of user-centered 3D Geovisualisation is introduced by applying a categorisation originating from Virtual Reality....... The conceptual level is used to structure and organise user-centered 3D Geovisualisation into four categories: representation, rendering, interface and interaction. The categories reflect a process of development of 3D Geovisualisation where objects can be represented verisimilar to the real world...
3D Chaotic Functions for Image Encryption
Directory of Open Access Journals (Sweden)
Pawan N. Khade
2012-05-01
Full Text Available This paper proposes the chaotic encryption algorithm based on 3D logistic map, 3D Chebyshev map, and 3D, 2D Arnolds cat map for color image encryption. Here the 2D Arnolds cat map is used for image pixel scrambling and 3D Arnolds cat map is used for R, G, and B component substitution. 3D Chebyshev map is used for key generation and 3D logistic map is used for image scrambling. The use of 3D chaotic functions in the encryption algorithm provide more security by using the, shuffling and substitution to the encrypted image. The Chebyshev map is used for public key encryption and distribution of generated private keys.
Practical pseudo-3D registration for large tomographic images
Liu, Xuan; Laperre, Kjell; Sasov, Alexander
2014-09-01
Image registration is a powerful tool in various tomographic applications. Our main focus is on microCT applications in which samples/animals can be scanned multiple times under different conditions or at different time points. For this purpose, a registration tool capable of handling fairly large volumes has been developed, using a novel pseudo-3D method to achieve fast and interactive registration with simultaneous 3D visualization. To reduce computation complexity in 3D registration, we decompose it into several 2D registrations, which are applied to the orthogonal views (transaxial, sagittal and coronal) sequentially and iteratively. After registration in each view, the next view is retrieved with the new transformation matrix for registration. This reduces the computation complexity significantly. For rigid transform, we only need to search for 3 parameters (2 shifts, 1 rotation) in each of the 3 orthogonal views instead of 6 (3 shifts, 3 rotations) for full 3D volume. In addition, the amount of voxels involved is also significantly reduced. For the proposed pseudo-3D method, image-based registration is employed, with Sum of Square Difference (SSD) as the similarity measure. The searching engine is Powell's conjugate direction method. In this paper, only rigid transform is used. However, it can be extended to affine transform by adding scaling and possibly shearing to the transform model. We have noticed that more information can be used in the 2D registration if Maximum Intensity Projections (MIP) or Parallel Projections (PP) is used instead of the orthogonal views. Also, other similarity measures, such as covariance or mutual information, can be easily incorporated. The initial evaluation on microCT data shows very promising results. Two application examples are shown: dental samples before and after treatment and structural changes in materials before and after compression. Evaluation on registration accuracy between pseudo-3D method and true 3D method has
An N-body Tree Algorithm for the Cray T3D
Olson, Kevin M.; Packer, Charles V.
1996-01-01
We describe in this paper an algorithm for solving the gravitational N-body problem using tree data structures on the Cray T3D parallel supercomputer. This implementation is an adaptation of previous work where this problem was solved using an SIMD, fine-grained parallel computer. We show here that this approach lends itself, with small modifications, to more coarse-grained parallelism as well. We also show that the performance of the algorithm on the Cray T3D parallel architecture scales adequately with the number of processors (up to 256). Specific levels to be reached using the Cray T3D parallel architecture. A peak performance level of 9.6 Gflop/s is reached on 256 processors for the time critical gravity computation.
Gravitational waves from 3D MHD core-collapse supernova simulations with neutrino transport
Scheidegger, Simon Urs
2011-01-01
Core-collapse supernovae (CCSNe) are among the most energetic explosions in the universe, liberating the prodigious amount of ~ 1053 erg, the binding energy of their compact remnants, neutron stars or stellar mass black holes. While 99% of this energy is emitted in neutrinos, 1% goes into the internal and asymptotic kinetic energy of the ejecta, and it is reasonable to assume that a tiny fraction is radiated in gravitational waves (GWs). Ever since the first experimental efforts to detect GWs...