3-D nonlinear evolution of MHD instabilities
Energy Technology Data Exchange (ETDEWEB)
Bateman, G.; Hicks, H. R.; Wooten, J. W.
1977-03-01
The nonlinear evolution of ideal MHD internal instabilities is investigated in straight cylindrical geometry by means of a 3-D initial-value computer code. These instabilities are characterized by pairs of velocity vortex cells rolling off each other and helically twisted down the plasma column. The cells persist until the poloidal velocity saturates at a few tenths of the Alfven velocity. The nonlinear phase is characterized by convection around these essentially fixed vortex cells. For example, the initially centrally peaked temperature profile is convected out and around to form an annulus of high temperature surrounding a small region of lower temperature. Weak, centrally localized instabilities do not alter the edge of the plasma. Strong, large-scale instabilities, resulting from a stronger longitudinal equilibrium current, drive the plasma against the wall. After three examples of instability are analyzed in detail, the numerical methods and their verification are discussed.
3D MHD Flux emergence experiments
DEFF Research Database (Denmark)
Hood, A.W.; Archontis, V.; Mactaggart, David
2012-01-01
This paper reviews some of the many 3D numerical experiments of the emergence of magnetic fields from the solar interior and the subsequent interaction with the pre-existing coronal magnetic field. The models described here are idealised, in the sense that the internal energy equation only involves...
3D MHD Models of Active Region Loops
Ofman, Leon
2004-01-01
Present imaging and spectroscopic observations of active region loops allow to determine many physical parameters of the coronal loops, such as the density, temperature, velocity of flows in loops, and the magnetic field. However, due to projection effects many of these parameters remain ambiguous. Three dimensional imaging in EUV by the STEREO spacecraft will help to resolve the projection ambiguities, and the observations could be used to setup 3D MHD models of active region loops to study the dynamics and stability of active regions. Here the results of 3D MHD models of active region loops are presented, and the progress towards more realistic 3D MHD models of active regions. In particular the effects of impulsive events on the excitation of active region loop oscillations, and the generation, propagations and reflection of EIT waves are shown. It is shown how 3D MHD models together with 3D EUV observations can be used as a diagnostic tool for active region loop physical parameters, and to advance the science of the sources of solar coronal activity.
3D MHD simulation of polarized emission in SN 1006
Schneiter, E M; Reynoso, E M; Esquivel, A; De Colle, F
2015-01-01
We use three dimensional magnetohydrodynamic (MHD) simulations to model the supernova remnant SN 1006. From our numerical results, we have carried out a polarization study, obtaining synthetic maps of the polarized intensity, the Stokes parameter $Q$, and the polar-referenced angle, which can be compared with observational results. Synthetic maps were computed considering two possible particle acceleration mechanisms: quasi-parallel and quasi-perpendicular. The comparison of synthetic maps of the Stokes parameter $Q$ maps with observations proves to be a valuable tool to discern unambiguously which mechanism is taking place in the remnant of SN 1006, giving strong support to the quasi-parallel model.
Parallel magnetohydrodynamics on the Cray T3D
Meijer, P. M.; Poedts, S.; Goedbloed, J. P.
1996-01-01
The equations of magnetohydrodynamics (MHD) are discussed in the framework of parallel computing. Both linear and nonlinear MHD models are addressed. Special attention is given to the parallellisation of the kernels of the existing sequential MHD codes. These kernels involve matrix-vector multiplica
Fully Parallel MHD Stability Analysis Tool
Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang
2015-11-01
Progress on full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. It is a powerful tool for studying MHD and MHD-kinetic instabilities and it is widely used by fusion community. Parallel version of MARS is intended for simulations on local parallel clusters. It will be an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, already implemented in MARS. Parallelization of the code includes parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the present MARS algorithm using parallel libraries and procedures. Results of MARS parallelization and of the development of a new fix boundary equilibrium code adapted for MARS input will be reported. Work is supported by the U.S. DOE SBIR program.
3D MHD disruptions simulations of tokamaks plasmas
Paccagnella, Roberto; Strauss, Hank; Breslau, Joshua
2008-11-01
Tokamaks Vertical Displacement Events (VDEs) and disruptions simulations in toroidal geometry by means of a single fluid visco-resistive magneto-hydro-dynamic (MHD) model are presented in this paper. The plasma model, implemented in the M3D code [1], is completed with the presence of a 2D homogeneous wall with finite resistivity. This allows the study of the relatively slowly growing magneto-hydro-dynamical perturbation, the resistive wall mode (RWM), which is, in this work, the main drive of the disruptions. Amplitudes and asymmetries of the halo currents pattern at the wall are also calculated and comparisons with tokamak experimental databases and predictions for ITER are given. [1] W. Park, E.V. Belova, G.Y. Fu, X.Z. Tang, H.R. Strauss, L.E. Sugiyama, Phys. Plasmas 6 (1999) 1796.
FARGO3D: A new GPU-oriented MHD code
Benítez-Llambay, Pablo
2016-01-01
We present the FARGO3D code, recently publicly released. It is a magnetohydrodynamics code developed with special emphasis on protoplanetary disks physics and planet-disk interactions, and parallelized with MPI. The hydrodynamics algorithms are based on finite difference upwind, dimensionally split methods. The magnetohydrodynamics algorithms consist of the constrained transport method to preserve the divergence-free property of the magnetic field to machine accuracy, coupled to a method of characteristics for the evaluation of electromotive forces and Lorentz forces. Orbital advection is implemented, and an N-body solver is included to simulate planets or stars interacting with the gas. We present our implementation in detail and present a number of widely known tests for comparison purposes. One strength of FARGO3D is that it can run on both "Graphical Processing Units" (GPUs) or "Central Processing unit" (CPUs), achieving large speed up with respect to CPU cores. We describe our implementation choices, whi...
Global 3D MHD Simulations of Waves in Accretion Discs
Directory of Open Access Journals (Sweden)
Romanova M.M.
2013-04-01
Full Text Available We discuss results of the first global 3D MHD simulations of warp and density waves in accretion disks excited by a rotating star with a misaligned dipole magnetic field. A wide range of cases are considered. We find for example that if the star’s magnetosphere corotates approximately with the inner disk, then a strong one-arm bending wave or warp forms. The warp corotates with the star and has a maximum amplitude (|zw|/r ~ 0.3 between the corotation radius and the radius of the vertical resonance. If the magnetosphere rotates more slowly than the inner disk, then a bending wave is excited at the disk-magnetosphere boundary, but it does not form a large-scale warp. In this case the angular rotation of the disk [Ω(r] has a maximum as a function of r so that there is an inner region where dΩ/dr > 0. In this region we observe radially trapped density waves in approximate agreement with the theoretical prediction of a Rossby wave instability in this region.
Current systems of coronal loops in 3D MHD simulations
Warnecke, Jörn; Bingert, Sven; Peter, Hardi
2016-01-01
We study the magnetic field and current structure associated with a coronal loop. Through this we investigate to what extent the assumptions of a force-free magnetic field break down. We analyse a three-dimensional MHD model of the solar corona in an emerging active region with the focus on the structure of the forming coronal loops. The lower boundary of this simulation is taken from a model of an emerging active region. As a consequence of the emerging magnetic flux a coronal loop formes self-consistently. We investigate the current density along magnetic field lines inside (and outside) this loop and study the magnetic and plasma properties in and around this loop. The loop is defined as the bundle of field lines that coincides with enhanced emission in extreme UV. We find that the total current along the emerging loop changes its sign from being antiparallel to parallel to the magnetic field. Around the loop the currents form a complex non-force-free helical structure. This is directly related to a bipola...
The MHD simulations of 3D magnetic reconnection near null point of magnetic configurations
Energy Technology Data Exchange (ETDEWEB)
Bulanov, S.V. [Institute of General Physics, Russian Academy of Sciences, Moscow (Russian Federation); Echkina, E.Yu; Inovenkov, I.N.; Pichushkin, V.V. [Moscow State University, Moscow (Russian Federation); Pegoraro, F. [Dipartimento di Fisica dell' Universit' a di Pisa and INFM (Italy)
2000-07-01
We investigate 3D plasma flow in the vicinities of critical points of magnetic configurations. The study is based on the analysis of exact self-similar solution of the MHD equations and 3D computer simulations. Both the analytical solution and 3D MHD simulations demonstrate appearance of singular distribution of the electric current density near the magnetic field separatrix surfaces of the form of the current and vortex sheets. (author)
FARGO3D: A NEW GPU-ORIENTED MHD CODE
Energy Technology Data Exchange (ETDEWEB)
Benitez-Llambay, Pablo [Instituto de Astronomía Teórica y Experimental, Observatorio Astronónomico, Universidad Nacional de Córdoba. Laprida 854, X5000BGR, Córdoba (Argentina); Masset, Frédéric S., E-mail: pbllambay@oac.unc.edu.ar, E-mail: masset@icf.unam.mx [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México (UNAM), Apdo. Postal 48-3,62251-Cuernavaca, Morelos (Mexico)
2016-03-15
We present the FARGO3D code, recently publicly released. It is a magnetohydrodynamics code developed with special emphasis on the physics of protoplanetary disks and planet–disk interactions, and parallelized with MPI. The hydrodynamics algorithms are based on finite-difference upwind, dimensionally split methods. The magnetohydrodynamics algorithms consist of the constrained transport method to preserve the divergence-free property of the magnetic field to machine accuracy, coupled to a method of characteristics for the evaluation of electromotive forces and Lorentz forces. Orbital advection is implemented, and an N-body solver is included to simulate planets or stars interacting with the gas. We present our implementation in detail and present a number of widely known tests for comparison purposes. One strength of FARGO3D is that it can run on either graphical processing units (GPUs) or central processing units (CPUs), achieving large speed-up with respect to CPU cores. We describe our implementation choices, which allow a user with no prior knowledge of GPU programming to develop new routines for CPUs, and have them translated automatically for GPUs.
Hayek, W; Carlsson, M; Trampedach, R; Collet, R; Gudiksen, B V; Hansteen, V H; Leenaarts, J
2010-01-01
We present the implementation of a radiative transfer solver with coherent scattering in the new BIFROST code for radiative magneto-hydrodynamical (MHD) simulations of stellar surface convection. The code is fully parallelized using MPI domain decomposition, which allows for large grid sizes and improved resolution of hydrodynamical structures. We apply the code to simulate the surface granulation in a solar-type star, ignoring magnetic fields, and investigate the importance of coherent scattering for the atmospheric structure. A scattering term is added to the radiative transfer equation, requiring an iterative computation of the radiation field. We use a short-characteristics-based Gauss-Seidel acceleration scheme to compute radiative flux divergences for the energy equation. The effects of coherent scattering are tested by comparing the temperature stratification of three 3D time-dependent hydrodynamical atmosphere models of a solar-type star: without scattering, with continuum scattering only, and with bo...
3D MHD modeling of twisted coronal loops
Reale, F; Guarrasi, M; Mignone, A; Peres, G; Hood, A W; Priest, E R
2016-01-01
We perform MHD modeling of a single bright coronal loop to include the interaction with a non-uniform magnetic field. The field is stressed by random footpoint rotation in the central region and its energy is dissipated into heating by growing currents through anomalous magnetic diffusivity that switches on in the corona above a current density threshold. We model an entire single magnetic flux tube, in the solar atmosphere extending from the high-beta chromosphere to the low-beta corona through the steep transition region. The magnetic field expands from the chromosphere to the corona. The maximum resolution is ~30 km. We obtain an overall evolution typical of loop models and realistic loop emission in the EUV and X-ray bands. The plasma confined in the flux tube is heated to active region temperatures (~3 MK) after ~2/3 hr. Upflows from the chromosphere up to ~100 km/s fill the core of the flux tube to densities above 10^9 cm^-3. More heating is released in the low corona than the high corona and is finely ...
3D MHD modeling of twisted coronal loops
Reale, F.; Orlando, S.; Guarrasi, M.; Mignone, A.; Peres, G.; Hood, A. W.; Priest, E. R.
2016-10-01
We perform MHD modeling of a single bright coronal loop to include the interaction with a non-uniform magnetic field. The field is stressed by random footpoint rotation in the central region and its energy is dissipated into heating by growing currents through anomalous magnetic diffusivity that switches on in the corona above a current density threshold. We model an entire single magnetic flux tube in the solar atmosphere extending from the high-β chromosphere to the low-β corona through the steep transition region. The magnetic field expands from the chromosphere to the corona. The maximum resolution is ∼30 km. We obtain an overall evolution typical of loop models and realistic loop emission in the EUV and X-ray bands. The plasma confined in the flux tube is heated to active region temperatures (∼3 MK) after ∼2/3 hr. Upflows from the chromosphere up to ∼100 km s‑1 fill the core of the flux tube to densities above 109 cm‑3. More heating is released in the low corona than the high corona and is finely structured both in space and time.
Photon Scattering in 3D Radiative MHD Simulations
Hayek, Wolfgang
2009-09-01
Recent results from 3D time-dependent radiative hydrodynamic simulations of stellar atmospheres are presented, which include the effects of coherent scattering in the radiative transfer treatment. Rayleigh scattering and electron scattering are accounted for in the source function, requiring an iterative solution of the transfer equation. Opacities and scattering coefficients are treated in the multigroup opacity approximation. The impact of scattering on the horizontal mean temperature structure is investigated, which is an important diagnostic for model atmospheres, with implications for line formation and stellar abundance measurements. We find that continuum scattering is not important for the atmosphere of a metal-poor Sun with metailicity [Fe/H] = -3.0, similar to the previously investigated photosphere at solar metallicity.
3D simulations of fluctuation spectra in the hall-MHD plasma.
Shaikh, Dastgeer; Shukla, P K
2009-01-30
Turbulent spectral cascades are investigated by means of fully three-dimensional (3D) simulations of a compressible Hall-magnetohydrodynamic (H-MHD) plasma in order to understand the observed spectral break in the solar wind turbulence spectra in the regime where the characteristic length scales associated with electromagnetic fluctuations are smaller than the ion gyroradius. In this regime, the results of our 3D simulations exhibit that turbulent spectral cascades in the presence of a mean magnetic field follow an omnidirectional anisotropic inertial-range spectrum close to k(-7/3). The latter is associated with the Hall current arising from nonequal electron and ion fluid velocities in our 3D H-MHD plasma model.
Parallel Processor for 3D Recovery from Optical Flow
Directory of Open Access Journals (Sweden)
Jose Hugo Barron-Zambrano
2009-01-01
Full Text Available 3D recovery from motion has received a major effort in computer vision systems in the recent years. The main problem lies in the number of operations and memory accesses to be performed by the majority of the existing techniques when translated to hardware or software implementations. This paper proposes a parallel processor for 3D recovery from optical flow. Its main feature is the maximum reuse of data and the low number of clock cycles to calculate the optical flow, along with the precision with which 3D recovery is achieved. The results of the proposed architecture as well as those from processor synthesis are presented.
On the 2D behavior of 3D MHD with a strong guiding field
Alexakis, Alexandros
2011-01-01
The Magneto-hydrodynamic (MHD) equations in the presence of a guiding magnetic field are investigated by means of direct numerical simulations. The basis of the investigation consists of 9 runs forced at the small scales. The results demonstrate that for a large enough uniform magnetic field the large scale flow behaves as a two dimensional (non-MHD) fluid exhibiting an inverse cascade of energy in the direction perpendicular to the magnetic field, while the small scales behave like a three dimensional MHD-fluid cascading the energy forwards. The amplitude of the inverse cascade is sensitive to the magnetic field amplitude, the domain size, the forcing mechanism, and the forcing scale. All these dependencies are demonstrated by the varying parameters of simulations. Furthermore, in the case that the system is forced anisotropically in the small parallel scales an inverse cascade in the parallel direction is observed that is feeding the 2D modes.
Intermittent heating in the solar corona employing a 3D MHD model
Bingert, Sven
2011-01-01
We investigate the spatial and temporal evolution of the heating of the corona of a cool star such as our Sun in a three-dimensional magneto-hydrodynamic (3D MHD) model. We solve the 3D MHD problem numerically in a box representing part of the (solar) corona. The energy balance includes Spitzer heat conduction along the magnetic field and optically thin radiative losses. The self-consistent heating mechanism is based on the braiding of magnetic field lines rooted in the convective photosphere. Magnetic stress induced by photospheric motions leads to currents in the atmosphere which heat the corona through Ohmic dissipation. While the horizontally averaged quantities, such as heating rate, temperature or density, are relatively constant in time, the simulated corona is highly variable and dynamic, on average reaching temperatures and densities as found in observations. The strongest heating per particle is found in the transition region from the chromosphere to the corona. The heating is concentrated in curren...
Progress on accelerated calculation of 3D MHD equilibrium with the PIES code
Raburn, Daniel; Reiman, Allan; Monticello, Donald
2016-10-01
Continuing progress has been made in accelerating the 3D MHD equilibrium code, PIES, using an external numerical wrapper. The PIES code (Princeton Iterative Equilibrium Solver) is capable of calculating 3D MHD equilibria with islands. The numerical wrapper has been demonstrated to greatly improve the rate of convergence in numerous cases corresponding to equilibria in the TFTR device where magnetic islands are present; the numerical wrapper makes use of a Jacobian-free Newton-Krylov solver along with adaptive preconditioning and a sophisticated subspace-restricted Levenberg backtracking algorithm. The wrapper has recently been improved by automation which combines the preexisting backtracking algorithm with insights gained from the stability of the Picard algorithm traditionally used with PIES. Improved progress logging and stopping criteria have also been incorporated in to the numerical wrapper.
CALTRANS: A parallel, deterministic, 3D neutronics code
Energy Technology Data Exchange (ETDEWEB)
Carson, L.; Ferguson, J.; Rogers, J.
1994-04-01
Our efforts to parallelize the deterministic solution of the neutron transport equation has culminated in a new neutronics code CALTRANS, which has full 3D capability. In this article, we describe the layout and algorithms of CALTRANS and present performance measurements of the code on a variety of platforms. Explicit implementation of the parallel algorithms of CALTRANS using both the function calls of the Parallel Virtual Machine software package (PVM 3.2) and the Meiko CS-2 tagged message passing library (based on the Intel NX/2 interface) are provided in appendices.
A blowup criterion for the 3D generalized MHD system with zero magnetic diffusivity
Directory of Open Access Journals (Sweden)
Jishan Fan
2014-10-01
Full Text Available This paper proves a new regularity criterion ω: = rotu∈L¹(0，T;Bº ∞，∞ for the 3D generalized MHD system with fractional diffusion terms ( － Δαu with α ＞ 8/9 and zero magnetic diffusivity． Here u is the fluid velocity，ω is the vorticity and Bº∞，∞ is the homogeneous Besov space．
3D MHD Jet in a Non-Uniform Magnetic Field
Institute of Scientific and Technical Information of China (English)
Huang Hulin; Han Dong
2005-01-01
The purpose of this paper is to present a two-phase 3D magnetohydrodynamics (MHD) flow model that combines the volume of fluid (VOF) method with the technique derived from induced-magnetic-field equations for liquid metal free surface MHD-jet-flow. Analogy between the induced-magnetic-filed equation and the conventional computational fluid dynamics (CFD) equation is made, so that the equation can be conveniently accounted for by CFD. A penalty factor numerical method is introduced in order to force the local divergence-free condition of the magnetic fields and an extension of the void insulating calculation domain is applied to ensure that the induced-magnetic field at its boundaries is null. These simulation results for lithium liquid metal jets under magnetic field configurations of Magnetic Torus (Mtor) and National Spherical Torus Experiment (NSTX) outboard divertor have shown that three dimensional jet can not be annihilated by magnetic braking and its cross-section will deform in such a way that the momentum flux of the jet is conserved. 3D MHD effects from a magnetic field gradient cause return currents to interact with applied magnetic fields and produce unfavorable Lorentz forces.Under 3D applied non-uniform magnetic fields of the divertor, unfavorable Lorentz forces lead to a substantial change in flow pattern and a reduction in flow velocity, with the jet cross-section moving to one side of the jet space. These critical phenomena can not be revealed by 2D models.
Buttery, Richard
2011-08-01
This annual workshop on MHD Stability Control has been held since 1996 with a focus on understanding and developing control of MHD instabilities for future fusion reactors. The workshop generally covers a wide range of stability topics: from disruptions, to tearing modes, error fields, ELMs, resistive wall modes (RWMs) and ideal MHD. It spans many device types, particularly tokamaks, stellarators and reversed field pinches, to pull out commonalities in the physics and improve understanding. In 2010 the workshop was held on 15-17 November at the University of Wisconsin in Madison and was combined with the annual US-Japan MHD Workshop. The theme was `3D Magnetic Field Effects in MHD Control', with a focus on multidisciplinary sessions exploring issues of plasma response to 3D fields, the manifestation of such fields in the plasma, and how they influence stability. This has been a topic of renewed interest, with utilisation of 3D fields for ELM control now planned in ITER, and a focus on the application of such fields for error field correction, disruption avoidance, and RWM control. Key issues included the physics of the interaction, types of coils and harmonic spectra needed to control instabilities, and subsidiary effects such as braking (or rotating) the plasma. More generally, a wider range of issues were discussed including RWM physics, tearing mode physics, disruption mitigation, ballooning stability, the snowflake divertor concept, and the line tied pinch! A novel innovation to the meeting was a panel discussion session, this year on Neoclassical Toroidal Viscosity, which ran well; more will be tried next year. In this special section of Plasma Physics and Controlled Fusion we present several of the invited and contributed papers from the 2010 workshop, which have been subject to the normal refereeing procedures of the journal. These papers give a sense of the exceptional quality of the presentations at this workshop, all of which may be found at http://fusion.gat.com/conferences/mhd
3-D Visualization on Workspace of Parallel Manipulators
Tanaka, Yoshito; Yokomichi, Isao; Ishii, Junko; Makino, Toshiaki
In parallel mechanisms, the form and volume of workspace also change variously with the attitude of a platform. This paper presents a method to search for the workspace of parallel mechanisms with 6-DOF and 3D visualization of the workspace. Workspace is a search for the movable range of the central point of a platform when it moves with a given orientation. In order to search workspace, geometric analysis based on inverse kinematics is considered. Plots of 2D of calculations are compared with those measured by position sensors. The test results are shown to have good agreement with simulation results. The workspace variations are demonstrated in terms of 3D and 2D plots for prototype mechanisms. The workspace plots are created with OpenGL and Visual C++ by implementation of the algorithm. An application module is developed, which displays workspace of the mechanism in 3D images. The effectiveness and practicability of 3D visualization on workspace are successfully demonstrated by 6-DOF parallel mechanisms.
Parallel Optimization of 3D Cardiac Electrophysiological Model Using GPU
Directory of Open Access Journals (Sweden)
Yong Xia
2015-01-01
Full Text Available Large-scale 3D virtual heart model simulations are highly demanding in computational resources. This imposes a big challenge to the traditional computation resources based on CPU environment, which already cannot meet the requirement of the whole computation demands or are not easily available due to expensive costs. GPU as a parallel computing environment therefore provides an alternative to solve the large-scale computational problems of whole heart modeling. In this study, using a 3D sheep atrial model as a test bed, we developed a GPU-based simulation algorithm to simulate the conduction of electrical excitation waves in the 3D atria. In the GPU algorithm, a multicellular tissue model was split into two components: one is the single cell model (ordinary differential equation and the other is the diffusion term of the monodomain model (partial differential equation. Such a decoupling enabled realization of the GPU parallel algorithm. Furthermore, several optimization strategies were proposed based on the features of the virtual heart model, which enabled a 200-fold speedup as compared to a CPU implementation. In conclusion, an optimized GPU algorithm has been developed that provides an economic and powerful platform for 3D whole heart simulations.
Sawtooth mitigation in 3D MHD tokamak modelling with applied magnetic perturbations
Bonfiglio, D.; Veranda, M.; Cappello, S.; Chacón, L.; Escande, D. F.
2017-01-01
The effect of magnetic perturbations (MPs) on the sawtoothing dynamics of the internal kink mode in the tokamak is discussed in the framework of nonlinear 3D MHD modelling. Numerical simulations are performed with the pixie3d code (Chacón 2008 Phys. Plasmas 15 056103) based on a D-shaped configuration in toroidal geometry. MPs are applied as produced by two sets of coils distributed along the toroidal direction, one set located above and the other set below the outboard midplane, like in experimental devices such as DIII-D and ASDEX Upgrade. The capability of n = 1 MPs to affect quasi-periodic sawteeth is shown to depend on the toroidal phase difference Δ φ between the perturbations produced by the two sets of coils. In particular, sawtooth mitigation is obtained for the Δ φ =π phasing, whereas no significant effect is observed for Δ φ =0 . Numerical findings are explained by the interplay between different poloidal harmonics in the spectrum of applied MPs, and appear to be consistent with experiments performed in the DIII-D device. Sawtooth mitigation and stimulation of self-organized helical states by applied MPs have been previously demonstrated in both circular tokamak and reversed-field pinch (RFP) experiments in the RFX-mod device, and in related 3D MHD modelling.
Shared Memory Parallelism for 3D Cartesian Discrete Ordinates Solver
Moustafa, Salli; Dutka-Malen, Ivan; Plagne, Laurent; Ponçot, Angélique; Ramet, Pierre
2014-06-01
This paper describes the design and the performance of DOMINO, a 3D Cartesian SN solver that implements two nested levels of parallelism (multicore+SIMD) on shared memory computation nodes. DOMINO is written in C++, a multi-paradigm programming language that enables the use of powerful and generic parallel programming tools such as Intel TBB and Eigen. These two libraries allow us to combine multi-thread parallelism with vector operations in an efficient and yet portable way. As a result, DOMINO can exploit the full power of modern multi-core processors and is able to tackle very large simulations, that usually require large HPC clusters, using a single computing node. For example, DOMINO solves a 3D full core PWR eigenvalue problem involving 26 energy groups, 288 angular directions (S16), 46 × 106 spatial cells and 1 × 1012 DoFs within 11 hours on a single 32-core SMP node. This represents a sustained performance of 235 GFlops and 40:74% of the SMP node peak performance for the DOMINO sweep implementation. The very high Flops/Watt ratio of DOMINO makes it a very interesting building block for a future many-nodes nuclear simulation tool.
Parallel tempering and 3D spin glass models
Papakonstantinou, T.; Malakis, A.
2014-03-01
We review parallel tempering schemes and examine their main ingredients for accuracy and efficiency. We discuss two selection methods of temperatures and some alternatives for the exchange of replicas, including all-pair exchange methods. We measure specific heat errors and round-trip efficiency using the two-dimensional (2D) Ising model, and also test the efficiency for the ground state production in 3D spin glass models. We find that the optimization of the GS problem is highly influenced by the choice of the temperature range of the PT process. Finally, we present numerical evidence concerning the universality aspects of an anisotropic case of the 3D spin-glass model.
3D simulations of disc-winds extending radially self-similar MHD models
Stute, Matthias; Vlahakis, Nektarios; Tsinganos, Kanaris; Mignone, Andrea; Massaglia, Silvano
2014-01-01
Disc-winds originating from the inner parts of accretion discs are considered as the basic component of magnetically collimated outflows. The only available analytical MHD solutions to describe disc-driven jets are those characterized by the symmetry of radial self-similarity. However, radially self-similar MHD jet models, in general, have three geometrical shortcomings, (i) a singularity at the jet axis, (ii) the necessary assumption of axisymmetry, and (iii) the non-existence of an intrinsic radial scale, i.e. the jets formally extend to radial infinity. Hence, numerical simulations are necessary to extend the analytical solutions towards the axis, by solving the full three-dimensional equations of MHD and impose a termination radius at finite radial distance. We focus here on studying the effects of relaxing the (ii) assumption of axisymmetry, i.e. of performing full 3D numerical simulations of a disc-wind crossing all magnetohydrodynamic critical surfaces. We compare the results of these runs with previou...
3D-MHD simulations of the evolution of magnetic fields in FR II radio sources
Huarte-Espinosa, Martin; Alexander, Paul
2010-01-01
3D-MHD numerical simulations of bipolar, hypersonic, weakly magnetized jets and synthetic synchrotron observations are presented to study the structure and evolution of magnetic fields in FR II radio sources. The magnetic field setup in the jet is initially random. The power of the jets as well as the observational viewing angle are investigated. We find that synthetic polarization maps agree with observations and show that magnetic fields inside the sources are shaped by the jets' backflow. Polarimetry statistics correlates with time, the viewing angle and the jet-to-ambient density contrast. The magnetic structure inside thin elongated sources is more uniform than for ones with fatter cocoons. Jets increase the magnetic energy in cocoons, in proportion to the jet velocity. Both, filaments in synthetic emission maps and 3D magnetic power spectra suggest that turbulence develops in evolved sources.
Large-scale Magnetic Structure Formation in 3D-MHD Turbulence
Malapaka, Shiva Kumar
2013-01-01
The inverse cascade of magnetic helicity in 3D-MHD turbulence is believed to be one of the processes responsible for large scale magnetic structure formation in astrophysical systems. In this work we present an exhaustive set of high resolution direct numerical simulations (DNS) of both forced and decaying 3D-MHD turbulence, to understand this structure formation process. It is first shown that an inverse cascade of magnetic helicity in small-scale driven turbulence does not necessarily generate coherent large-scale magnetic structures. The observed large-scale magnetic field, in this case, is severely perturbed by magnetic fluctuations generated by the small-scale forcing. In the decaying case, coherent large-scale structure form similar to those observed astronomically. Based on the numerical results the formation of large-scale magnetic structures in some astrophysical systems, is suggested to be the consequence of an initial forcing which imparts the necessary turbulent energy into the system, which, afte...
Existence of two MHD reconnection modes in a solar 3D magnetic null point topology
Pariat, Etienne; Antiochos, Spiro; DeVore, C. Richard; Dalmasse, Kévin
2012-07-01
Magnetic topologies with a 3D magnetic null point are common in the solar atmosphere and occur at different spatial scales: such structures can be associated with some solar eruptions, with the so-called pseudo-streamers, and with numerous coronal jets. We have recently developed a series of numerical experiments that model magnetic reconnection in such configurations in order to study and explain the properties of jet-like features. Our model uses our state-of-the-art adaptive-mesh MHD solver ARMS. Energy is injected in the system by line-tied motion of the magnetic field lines in a corona-like configuration. We observe that, in the MHD framework, two reconnection modes eventually appear in the course of the evolution of the system. A very impulsive one, associated with a highly dynamic and fully 3D current sheet, is associated with the energetic generation of a jet. Before and after the generation of the jet, a quasi-steady reconnection mode, more similar to the standard 2D Sweet-Parker model, presents a lower global reconnection rate. We show that the geometry of the magnetic configuration influences the trigger of one or the other mode. We argue that this result carries important implications for the observed link between observational features such as solar jets, solar plumes, and the emission of coronal bright points.
Observationally driven 3D MHD model of the solar corona above an active region
Bourdin, Ph -A; Peter, H
2013-01-01
Aims. The goal is to employ a 3D magnetohydrodynamics (MHD) model including spectral synthesis to model the corona in an observed solar active region. This will allow us to judge the merits of the coronal heating mechanism built into the 3D model. Methods. Photospheric observations of the magnetic field and horizontal velocities in an active region are used to drive our coronal simulation from the bottom. The currents induced by this heat the corona through Ohmic dissipation. Heat conduction redistributes the energy that is lost in the end through optically thin radiation. Based on the MHD model, we synthesized profiles of coronal emission lines which can be directly compared to actual coronal observations of the very same active region. Results. In the synthesized model data we find hot coronal loops which host siphon flows or which expand and lose mass through draining. These synthesized loops are at the same location as and show similar dynamics in terms of Doppler shifts to the observed structures. This m...
The 3D MHD code GOEMHD3 for large-Reynolds-number astrophysical plasmas
Skála, J; Büchner, J; Rampp, M
2014-01-01
The numerical simulation of turbulence and flows in almost ideal, large-Reynolds-number astrophysical plasmas motivates the implementation of almost conservative MHD computer codes. They should efficiently calculate, use highly parallelized schemes scaling well with large numbers of CPU cores, allows to obtain a high grid resolution over large simulation domains and which can easily be adapted to new computer architectures as well as to new initial and boundary conditions, allow modular extensions. The new massively parallel simulation code GOEMHD3 enables efficient and fast simulations of almost ideal, large-Reynolds-number astrophysical plasma flows, well resolved and on huge grids covering large domains. Its abilities are validated by major tests of ideal and weakly dissipative plasma phenomena. The high resolution ($2048^3$ grid points) simulation of a large part of the solar corona above an observed active region proved the excellent parallel scalability of the code using more than 30.000 processor cores...
Non-local thermodynamic equilibrium inversions from a 3D MHD chromospheric model
Rodríguez, Jaime de la Cruz; Carlsson, Mats; Leenaarts, Jorrit
2012-01-01
The structure of the solar chromosphere is believed to be governed by magnetic fields, even in quiet-Sun regions that have a relatively weak photospheric field. During the past decade inversion methods have emerged as powerful tools for analyzing the chromosphere of active regions. The applicability of inversions to infer the stratification of the physical conditions in a dynamic 3D solar chromosphere has not yet been studied in detail. This study aims to establish the diagnostic capabilities of non-local thermodynamical equilibrium (NLTE) inversion techniques of Stokes profiles induced by the Zeeman effect in the Ca II 8542 line. We computed the Ca II atomic level populations in a snapshot from a 3D radiation-MHD simulation of the quiet solar atmosphere in non-LTE using the 3D radiative transfer code Multi3d. These populations were used to compute synthetic full-Stokes profiles in the Ca II 8542 line using 1.5D radiative transfer and the inversion code Nicole. The profiles were then spectrally degraded to ac...
FOI-PERFECT code: 3D relaxation MHD modeling and Applications
Wang, Gang-Hua; Duan, Shu-Chao; Comutational Physics Team Team
2016-10-01
One of the challenges in numerical simulations of electromagnetically driven high energy density (HED) systems is the existence of vacuum region. FOI-PERFECT code adopts a full relaxation magnetohydrodynamic (MHD) model. The electromagnetic part of the conventional model adopts the magnetic diffusion approximation. The vacuum region is approximated by artificially increasing the resistivity. On one hand the phase/group velocity is superluminal and hence non-physical in the vacuum region, on the other hand a diffusion equation with large diffusion coefficient can only be solved by implicit scheme which is difficult to be parallelized and converge. A better alternative is to solve the full electromagnetic equations. Maxwell's equations coupled with the constitutive equation, generalized Ohm's law, constitute a relaxation model. The dispersion relation is given to show its transition from electromagnetic propagation in vacuum to resistive MHD in plasma in a natural way. The phase and group velocities are finite for this system. A better time stepping is adopted to give a 3rd full order convergence in time domain without the stiff relaxation term restriction. Therefore it is convenient for explicit & parallel computations. Some numerical results of FOI-PERFECT code are also given. Project supported by the National Natural Science Foundation of China (Grant No. 11571293) And Foundation of China Academy of Engineering Physics (Grant No. 2015B0201023).
A novel code for numerical 3-D MHD studies of CME expansion
Directory of Open Access Journals (Sweden)
J. Kleimann
2009-03-01
Full Text Available A recent third-order, essentially non-oscillatory central scheme to advance the equations of single-fluid magnetohydrodynamics (MHD in time has been implemented into a new numerical code. This code operates on a 3-D Cartesian, non-staggered grid, and is able to handle shock-like gradients without producing spurious oscillations.
To demonstrate the suitability of our code for the simulation of coronal mass ejections (CMEs and similar heliospheric transients, we present selected results from test cases and perform studies of the solar wind expansion during phases of minimum solar activity. We can demonstrate convergence of the system into a stable Parker-like steady state for both hydrodynamic and MHD winds. The model is subsequently applied to expansion studies of CME-like plasma bubbles, and their evolution is monitored until a stationary state similar to the initial one is achieved. In spite of the model's (current simplicity, we can confirm the CME's nearly self-similar evolution close to the Sun, thus highlighting the importance of detailed modelling especially at small heliospheric radii.
Additionally, alternative methods to implement boundary conditions at the coronal base, as well as strategies to ensure a solenoidal magnetic field, are discussed and evaluated.
Modeling Statistical Properties of Solar Active Regions through DNS of 3D-MHD Turbulence
Malapaka, Shiva Kumar
2013-01-01
Statistical properties of the Sun's photospheric turbulent magnetic field, especially those of the Active Regions (ARs), have been studied using the line-of-sight data from magnetograms taken by SOHO and several other instruments (see e.g. Abramenko et al (2002, 2003),Abramenko and Yurchyshyn (2010)). This includes structure functions and their exponents, flatness curves and correlation functions. In these works, the dependence of structure function exponents ($\\zeta_p$) of the order of the structure functions ($\\it{p}$) was modeled using a non-intermittent K41 model. It is now well known that the ARs are highly turbulent and are associated with strong intermittent events. In this paper we compare some of the observations from Abramenko et al (2003) with the log-Poisson model (Biskamp 2003) used for modeling intermittent MHD turbulent flows. Next, we analyze the structure function data obtained from the direct numerical simulations (DNS) of homogeneous, incompressible 3D-MHD turbulence in three cases: sustain...
Introducing ZEUS-MP A 3D, Parallel, Multiphysics Code for Astrophysical Fluid Dynamics
Norman, M L
2000-01-01
We describe ZEUS-MP: a Multi-Physics, Massively-Parallel, Message-Passing code for astrophysical fluid dynamics simulations in 3 dimensions. ZEUS-MP is a follow-on to the sequential ZEUS-2D and ZEUS-3D codes developed and disseminated by the Laboratory for Computational Astrophysics (lca.ncsa.uiuc.edu) at NCSA. V1.0 released 1/1/2000 includes the following physics modules: ideal hydrodynamics, ideal MHD, and self-gravity. Future releases will include flux-limited radiation diffusion, thermal heat conduction, two-temperature plasma, and heating and cooling functions. The covariant equations are cast on a moving Eulerian grid with Cartesian, cylindrical, and spherical polar coordinates currently supported. Parallelization is done by domain decomposition and implemented in F77 and MPI. The code is portable across a wide range of platforms from networks of workstations to massively parallel processors. Some parallel performance results are presented as well as an application to turbulent star formation.
A global 3-D MHD model of the solar wind with Alfven waves
Usmanov, A. V.
1995-01-01
A fully three-dimensional solar wind model that incorporates momentum and heat addition from Alfven waves is developed. The proposed model upgrades the previous one by considering self-consistently the total system consisting of Alfven waves propagating outward from the Sun and the mean polytropic solar wind flow. The simulation region extends from the coronal base (1 R(sub s) out to beyond 1 AU. The fully 3-D MHD equations written in spherical coordinates are solved in the frame of reference corotating with the Sun. At the inner boundary, the photospheric magnetic field observations are taken as boundary condition and wave energy influx is prescribed to be proportional to the magnetic field strength. The results of the model application for several time intervals are presented.
Murphy, G C; Pelletier, Guy
2008-01-01
Magnetic reconnection plays a critical role in many astrophysical processes where high energy emission is observed, e.g. particle acceleration, relativistic accretion powered outflows, pulsar winds and probably in dissipation of Poynting flux in GRBs. The magnetic field acts as a reservoir of energy and can dissipate its energy to thermal and kinetic energy via the tearing mode instability. We have performed 3d nonlinear MHD simulations of the tearing mode instability in a current sheet. Results from a temporal stability analysis in both the linear regime and weakly nonlinear (Rutherford) regime are compared to the numerical simulations. We observe magnetic island formation, island merging and oscillation once the instability has saturated. The growth in the linear regime is exponential in agreement with linear theory. In the second, Rutherford regime the island width grows linearly with time. We find that thermal energy produced in the current sheet strongly dominates the kinetic energy. Finally preliminary ...
Testa, Paola; Martinez-Sykora, Juan; Hansteen, Viggo; Carlsson, Mats
2012-01-01
Determining the temperature distribution of coronal plasmas can provide stringent constraints on coronal heating. Current observations with the Extreme ultraviolet Imaging Spectrograph onboard Hinode and the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory provide diagnostics of the emission measure distribution (EMD) of the coronal plasma. Here we test the reliability of temperature diagnostics using 3D radiative MHD simulations. We produce synthetic observables from the models, and apply the Monte Carlo Markov chain EMD diagnostic. By comparing the derived EMDs with the "true" distributions from the model we assess the limitations of the diagnostics, as a function of the plasma parameters and of the signal-to-noise of the data. We find that EMDs derived from EIS synthetic data reproduce some general characteristics of the true distributions, but usually show differences from the true EMDs that are much larger than the estimated uncertainties suggest, especially when structures with signif...
Unstable Disk Accretion to Magnetized Stars: First Global 3D MHD Simulations
Romanova, Marina M; Lovelace, Richard V E
2007-01-01
We report the first global three-dimensional (3D) MHD simulations of disk accretion onto a rotating magnetized star through the Rayleigh-Taylor instability. In this regime, the accreting matter typically forms 2 to 7 vertically elongated "tongues" which penetrate deep into the magnetosphere, until they are stopped by the strong field. Subsequently, the matter is channeled along the field lines to the surface of the star, forming hot spots. The number, position and shape of the hot spots vary with time, so that the light-curves associated with the hot spots are stochastic. A magnetized star may be in the stable (with funnel streams) or unstable (with random tongues) regime of accretion, and consequently have significantly different observational properties. A star may switch between these two regimes depending on the accretion rate.
Quasi 3D ECE imaging system for study of MHD instabilities in KSTAR
Energy Technology Data Exchange (ETDEWEB)
Yun, G. S., E-mail: gunsu@postech.ac.kr; Choi, M. J.; Lee, J.; Kim, M.; Leem, J.; Nam, Y.; Choe, G. H. [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Lee, W.; Park, H. K. [Ulsan National Institute of Science and Technology, Ulsan 689-798 (Korea, Republic of); Park, H.; Woo, D. S.; Kim, K. W. [School of Electrical Engineering, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Domier, C. W.; Luhmann, N. C. [Department of Electrical and Computer Engineering, University of California, Davis, California 95616 (United States); Ito, N. [KASTEC, Kyushu University, Kasuga-shi, Fukuoka 812-8581 (Japan); Mase, A. [Ube National College of Technology, Ube-shi, Yamaguchi 755-8555 (Japan); Lee, S. G. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of)
2014-11-15
A second electron cyclotron emission imaging (ECEI) system has been installed on the KSTAR tokamak, toroidally separated by 1/16th of the torus from the first ECEI system. For the first time, the dynamical evolutions of MHD instabilities from the plasma core to the edge have been visualized in quasi-3D for a wide range of the KSTAR operation (B{sub 0} = 1.7∼3.5 T). This flexible diagnostic capability has been realized by substantial improvements in large-aperture quasi-optical microwave components including the development of broad-band polarization rotators for imaging of the fundamental ordinary ECE as well as the usual 2nd harmonic extraordinary ECE.
3D MHD Coronal Oscillations About a Magnetic Null Point: Application of WKB Theory
McLaughlin, J A; Hood, A W
2007-01-01
This paper is a demonstration of how the WKB approximation can be used to help solve the linearised 3D MHD equations. Using Charpit's Method and a Runge-Kutta numerical scheme, we have demonstrated this technique for a potential 3D magnetic null point, ${\\bf{B}}=(x,\\epsilon y -(\\epsilon +1)z)$. Under our cold plasma assumption, we have considered two types of wave propagation: fast magnetoacoustic and Alfv\\'en waves. We find that the fast magnetoacoustic wave experiences refraction towards the magnetic null point, and that the effect of this refraction depends upon the Alfv\\'en speed profile. The wave, and thus the wave energy, accumulates at the null point. We have found that current build up is exponential and the exponent is dependent upon $\\epsilon$. Thus, for the fast wave there is preferential heating at the null point. For the Alfv\\'en wave, we find that the wave propagates along the fieldlines. For an Alfv\\'en wave generated along the fan-plane, the wave accumulates along the spine. For an Alfv\\'en wa...
Scaling laws of coronal loops compared to a 3D MHD model of an Active Region
Bourdin, Philippe-A; Peter, Hardi
2016-01-01
Context. The structure and heating of coronal loops are investigated since decades. Established scaling laws relate fundamental quantities like the loop apex temperature, pressure, length, and the coronal heating. Aims. We test such scaling laws against a large-scale 3D MHD model of the Solar corona, which became feasible with nowadays high-performance computing. Methods. We drive an active region simulation a with photospheric observations and found strong similarities to the observed coronal loops in X-rays and EUV wavelength. A 3D reconstruction of stereoscopic observations showed that our model loops have a realistic spatial structure. We compare scaling laws to our model data extracted along an ensemble of field lines. Finally, we fit a new scaling law that represents well hot loops and also cooler structures, which was not possible before only based on observations. Results. Our model data gives some support for scaling laws that were established for hot and EUV-emissive coronal loops. For the RTV scali...
A remark on the Beale-Kato-Majda criterion for the 3D MHD equations with zero magnetic diffusivity
Gala, Sadek; Ragusa, Maria Alessandra
2016-06-01
In this work, we show that a smooth solution of the 3D MHD equations with zero magnetic diffusivity in the whole space ℝ3 breaks down if and only if a certain norm of the magnetic field blows up at the same time.
DPGL: The Direct3D9-based Parallel Graphics Library for Multi-display Environment
Institute of Scientific and Technical Information of China (English)
Zhen Liu; Jiao-Ying Shi
2007-01-01
The emergence of high performance 3D graphics cards has opened the way to PC clusters for high performance multidisplay environment. In order to exploit the rendering ability of PC clusters, we should design appropriate parallel rendering algorithms and parallel graphics library interfaces. Due to the rapid development of Direct3D, we bring forward DPGL, the Direct3D9-based parallel graphics library in D3DPR parallel rendering system, which implements Direct3D9 interfaces to support existing Direct3D9 application parallelization with no modification. Based on the parallelism analysis of Direct3D9 rendering pipeline, we briefly introduce D3DPR parallel rendering system. DPGL is the fundamental component of D3DPR. After presenting DPGL three layers architecture,we discuss the rendering resource interception and management. Finally, we describe the design and implementation of DPGL in detail,including rendering command interception layer, rendering command interpretation layer and rendering resource parallelization layer.
Skála, J.; Baruffa, F.; Büchner, J.; Rampp, M.
2015-08-01
Context. The numerical simulation of turbulence and flows in almost ideal astrophysical plasmas with large Reynolds numbers motivates the implementation of magnetohydrodynamical (MHD) computer codes with low resistivity. They need to be computationally efficient and scale well with large numbers of CPU cores, allow obtaining a high grid resolution over large simulation domains, and be easily and modularly extensible, for instance, to new initial and boundary conditions. Aims: Our aims are the implementation, optimization, and verification of a computationally efficient, highly scalable, and easily extensible low-dissipative MHD simulation code for the numerical investigation of the dynamics of astrophysical plasmas with large Reynolds numbers in three dimensions (3D). Methods: The new GOEMHD3 code discretizes the ideal part of the MHD equations using a fast and efficient leap-frog scheme that is second-order accurate in space and time and whose initial and boundary conditions can easily be modified. For the investigation of diffusive and dissipative processes the corresponding terms are discretized by a DuFort-Frankel scheme. To always fulfill the Courant-Friedrichs-Lewy stability criterion, the time step of the code is adapted dynamically. Numerically induced local oscillations are suppressed by explicit, externally controlled diffusion terms. Non-equidistant grids are implemented, which enhance the spatial resolution, where needed. GOEMHD3 is parallelized based on the hybrid MPI-OpenMP programing paradigm, adopting a standard two-dimensional domain-decomposition approach. Results: The ideal part of the equation solver is verified by performing numerical tests of the evolution of the well-understood Kelvin-Helmholtz instability and of Orszag-Tang vortices. The accuracy of solving the (resistive) induction equation is tested by simulating the decay of a cylindrical current column. Furthermore, we show that the computational performance of the code scales very
Coronal energy input and dissipation in a solar active region 3D MHD model
Bourdin, Philippe-A; Peter, Hardi
2015-01-01
Context. We have conducted a 3D MHD simulation of the solar corona above an active region in full scale and high resolution, which shows coronal loops, and plasma flows within them, similar to observations. Aims. We want to find the connection between the photospheric energy input by field-line braiding with the coronal energy conversion by Ohmic dissipation of induced currents. Methods. To this end we compare the coronal energy input and dissipation within our simulation domain above different fields of view, e.g. for a small loops system in the active region (AR) core. We also choose an ensemble of field lines to compare, e.g., the magnetic energy input to the heating per particle along these field lines. Results. We find an enhanced Ohmic dissipation of currents in the corona above areas that also have enhanced upwards-directed Poynting flux. These regions coincide with the regions where hot coronal loops within the AR core are observed. The coronal density plays a role in estimating the coronal temperatur...
3D Tomography of MHD Fluctuations in the H-1NF Heliac
Haskey, S R; Seiwald, B; Howard, J
2014-01-01
A 3D tomographic reconstruction technique which does not rely on a set of radial basis functions is described for inversion of a set of limited-angle high-resolution 2D visible light emission projections (extended in the vertical and toroidal directions) of global MHD eigenmodes in the H-1NF heliac. This paper deals with some of the features and challenges that will arise in the application of tomographic imaging systems to fusion reactors, especially the strong shaping of optimised stellarator/heliotron configurations, and limited access in all types. The fluctuations are represented as a finite sum of Fourier modes characterised by toroidal and poloidal mode numbers having fixed amplitude and phase in a set of nested cylindrical flux volumes in Boozer space. The amplitudes and phases are calculated using iterative tomographic inversion techniques such as ART, SIRT and standard linear least-squares methods. The tomography is applied to synchronous camera images of singly charged carbon impurity ion emission ...
3D MHD Simulations of Laser Plasma Guiding in Curved Magnetic Field
Roupassov, S.; Rankin, R.; Tsui, Y.; Capjack, C.; Fedosejevs, R.
1999-11-01
The guiding and confinement of laser produced plasma in a curved magnetic field has been investigated numerically. These studies were motivated by experiments on pulsed laser deposition of diamond-like films [1] in which a 1kG magnetic field in a curved solenoid geometry was utilized to steer a carbon plasma around a curved trajectory and thus to separate it from unwanted macroparticles produced by the laser ablation. The purpose of the modeling was to characterize the plasma dynamics during the propagation through the magnetic guide field and to investigate the effect of different magnetic field configurations. A 3D curvilinear ADI code developed on the basis of an existing Cartesian code [2] was employed to simulate the underlying resistive one-fluid MHD model. Issues such as large regions of low background density and nonreflective boundary conditions were addressed. Results of the simulations in a curved guide field will be presented and compared to experimental results. [1] Y.Y. Tsui, D. Vick and R. Fedosejevs, Appl. Phys. Lett. 70 (15), pp. 1953-57, 1997. [2] R. Rankin, and I. Voronkov, in "High Performance Computing Systems and Applications", pp. 59-69, Kluwer AP, 1998.
Spicule-like structures observed in 3D realistic MHD simulations
Martinez-Sykora, J; De Pontieu, B; Carlsson, M
2009-01-01
We analyze features that resemble type i spicules in two different 3D numerical simulations in which we include horizontal magnetic flux emergence in a computational domain spanning the upper layers of the convection zone to the lower corona. The two simulations differ mainly in the preexisting ambient magnetic field strength and in the properties of the inserted flux tube. We use the Oslo Staggered Code (OSC) to solve the full MHD equations with non-grey and non-LTE radiative transfer and thermal conduction along the magnetic field lines. We find a multitude of features that show a spatiotemporal evolution that is similar to that observed in type i spicules, which are characterized by parabolic height vs. time profiles, and are dominated by rapid upward motion at speeds of 10-30 km/s, followed by downward motion at similar velocities. We measured the parameters of the parabolic profile of the spicules and find similar correlations between the parameters as those found in observations. The values for height (...
Flux Emergence In The Solar Photosphere - Diagnostics Based On 3-D Rradiation-MHD Simulations
Yelles Chaouche, L.; Cheung, M.; Lagg, A.; Solanki, S.
2006-08-01
We investigate flux tube emergence in the solar photosphere using a diagnostic procedure based on analyzing Stokes signals from different spectral lines calculated in 3-D radiation-MHD simulations. The simulations include the effects of radiative transport and partial ionization and cover layers both above and below the solar surface. The simulations consider the emergence of a twisted magnetic flux tube through the solar surface. We consider different stages in the emergence process, starting from the early appearance of the flux tube at the solar surface, and following the emergence process until the emerged flux looks similar to a normal bipolar region. At every stage we compute line profiles by numerically solving the Unno-Rachkovsky equations at every horizontal grid point. Then, following observational practice, we apply Milne-Eddington-type inversions to the synthetic spectra in order to retrieve different atmospheric parameters. We include the influence of spatial smearing on the deduced atmospheric parameters to identify signatures of different stages of flux emergence in the solar photosphere.
Parallel Simulation of 3-D Turbulent Flow Through Hydraulic Machinery
Institute of Scientific and Technical Information of China (English)
徐宇; 吴玉林
2003-01-01
Parallel calculational methods were used to analyze incompressible turbulent flow through hydraulic machinery. Two parallel methods were used to simulate the complex flow field. The space decomposition method divides the computational domain into several sub-ranges. Parallel discrete event simulation divides the whole task into several parts according to their functions. The simulation results were compared with the serial simulation results and particle image velocimetry (PIV) experimental results. The results give the distribution and configuration of the complex vortices and illustrate the effectiveness of the parallel algorithms for numerical simulation of turbulent flows.
Parallel Hall effect from 3D single-component metamaterials
Kern, Christian; Wegener, Martin
2015-01-01
We propose a class of three-dimensional metamaterial architectures composed of a single doped semiconductor (e.g., n-Si) in air or vacuum that lead to unusual effective behavior of the classical Hall effect. Using an anisotropic structure, we numerically demonstrate a Hall voltage that is parallel---rather than orthogonal---to the external static magnetic-field vector ("parallel Hall effect"). The sign of this parallel Hall voltage can be determined by a structure parameter. Together with the previously demonstrated positive or negative orthogonal Hall voltage, we demonstrate four different sign combinations
Thurgood, J. O.; McLaughlin, J. A.
2012-09-01
Context. Coronal magnetic null points have been implicated as possible locations for localised heating events in 2D models. We investigate this possibility about fully 3D null points. Aims: We investigate the nature of the fast magnetoacoustic wave about a fully 3D magnetic null point, with a specific interest in its propagation, and we look for evidence of MHD mode coupling and/or conversion to the Alfvén mode. Methods: A special fieldline and flux-based coordinate system was constructed to permit the introduction of a pure fast magnetoacoustic wave in the vicinity of proper and improper 3D null points. We considered the ideal, β = 0, MHD equations, which are solved using the LARE3D numerical code. The constituent modes of the resulting wave were isolated and identified using the special coordinate system. Numerical results were supported by analytical work derived from perturbation theory and a linear implementation of the WKB method. Results: An initially pure fast wave is found to be permanently decoupled from the Alfvén mode both linearly and nonlinearly for both proper and improper 3D null points. The pure fast mode also generates and sustains a nonlinear disturbance aligned along the equilibrium magnetic field. The resulting pure fast magnetoacoustic pulse has transient behaviour, which is found to be governed by the (equilibrium) Alfvén-speed profile, and a refraction effect focuses all the wave energy towards the null point. Conclusions: Thus, the main results from previous 2D work do indeed carry over to the fully 3D magnetic null points and so we conclude that 3D null points are locations for preferential heating in the corona by 3D fast magnetoacoustic waves.
Expected IPS variations due to a disturbance described by a 3-D MHD model
Tappin, S. J.; Dryer, M.; Han, S. M.; Wu, S. T.
1988-01-01
The variations of interplanetary scintillation due to a disturbance described by a three-dimensional, time-dependent, MHD model of the interplanetary medium are calculated. The resulting simulated IPS maps are compared with observations of real disturbances and it is found that there is some qualitative agreement. It is concluded that the MHD model with a more realistic choice of input conditions would probably provide a useful description of many interplanetary disturbances.
Toward 3D MHD modeling of neoclassical tearing mode suppression by ECCD
Directory of Open Access Journals (Sweden)
Westerhof E.
2012-09-01
Full Text Available We propose a framework to extend the magnetohydrodynamic (MHD equations to include electron cyclotron current drive (ECCD and discuss previous models proposed by Giruzzi et al. [2] and by Hegna and Callen [3]. To model neoclassical tearing mode (NTM instabilities and study the growth of magnetic islands as NTMs evolve, we employ the nonlinear reduced-MHD simulation JOREK. We present tearing-mode growth-rate calculations from JOREK simulations.
Energy Technology Data Exchange (ETDEWEB)
Malapaka, Shiva Kumar; Mueller, Wolf-Christian [Max-Planck Institute for Plasma Physics, Boltzmannstrasse 2, D-85748 Garching bei Muenchen (Germany)
2013-09-01
Statistical properties of the Sun's photospheric turbulent magnetic field, especially those of the active regions (ARs), have been studied using the line-of-sight data from magnetograms taken by the Solar and Heliospheric Observatory and several other instruments. This includes structure functions and their exponents, flatness curves, and correlation functions. In these works, the dependence of structure function exponents ({zeta}{sub p}) of the order of the structure functions (p) was modeled using a non-intermittent K41 model. It is now well known that the ARs are highly turbulent and are associated with strong intermittent events. In this paper, we compare some of the observations from Abramenko et al. with the log-Poisson model used for modeling intermittent MHD turbulent flows. Next, we analyze the structure function data obtained from the direct numerical simulations (DNS) of homogeneous, incompressible 3D-MHD turbulence in three cases: sustained by forcing, freely decaying, and a flow initially driven and later allowed to decay (case 3). The respective DNS replicate the properties seen in the plots of {zeta}{sub p} against p of ARs. We also reproduce the trends and changes observed in intermittency in flatness and correlation functions of ARs. It is suggested from this analysis that an AR in the onset phase of a flare can be treated as a forced 3D-MHD turbulent system in its simplest form and that the flaring stage is representative of decaying 3D-MHD turbulence. It is also inferred that significant changes in intermittency from the initial onset phase of a flare to its final peak flaring phase are related to the time taken by the system to reach the initial onset phase.
Thurgood, J O; 10.1051/0004-6361/201219850
2012-01-01
Context: Coronal magnetic null points have been implicated as possible locations for localised heating events in 2D models. We investigate this possibility about fully 3D null points. Aims: We investigate the nature of the fast magnetoacoustic wave about a fully 3D magnetic null point, with a specific interest in its propagation, and we look for evidence of MHD mode coupling and/or conversion to the Alfv\\'en mode. Methods: A special fieldline and flux-based coordinate system was constructed to permit the introduction of a pure fast magnetoacoustic wave in the vicinity of proper and improper 3D null points. We considered the ideal, {\\beta} = 0, MHD equations, which are solved using the LARE3D numerical code. The constituent modes of the resulting wave were isolated and identified using the special coordinate system. Numerical results were supported by analytical work derived from perturbation theory and a linear implementation of the WKB method. Results: An initially pure fast wave is found to be permanently d...
Wu, C.; Chang, T.
2010-12-01
A new method in describing the multifractal characteristics of intermittent events was introduced by Cheng and Wu [Chang T. and Wu C.C., Physical Rev, E77, 045401(R), 2008]. The procedure provides a natural connection between the rank-ordered spectrum and the idea of one-parameter scaling for monofractals. This technique has been demonstrated using results obtained from a 2D MHD simulation. It has also been successfully applied to in-situ solar wind observations [Chang T., Wu, C.C. and Podesta, J., AIP Conf Proc. 1039, 75, 2008], and the broadband electric field oscillations from the auroral zone [Tam, S.W.Y. et al., Physical Rev, E81, 036414, 2010]. We take the next step in this procedure. By using the ROMA spectra and the scaled probability distribution functions (PDFs), raw PDFs can be calculated, which can be compared directly with PDFs from observations or simulation results. In addition to 2D MHD simulation results and in-situ solar wind observation, we show clearly using the ROMA analysis the multifractal character of the 3D fluid simulation data obtained from the JHU turbulence database cluster at http://turbulence.pha.jhu.edu. In particular, we show the scaling of the non-symmetrical PDF for the parallel-velocity fluctuations of this 3D fluid data.
A Parallel Sweeping Preconditioner for Heterogeneous 3D Helmholtz Equations
Poulson, Jack
2013-05-02
A parallelization of a sweeping preconditioner for three-dimensional Helmholtz equations without large cavities is introduced and benchmarked for several challenging velocity models. The setup and application costs of the sequential preconditioner are shown to be O(γ2N4/3) and O(γN logN), where γ(ω) denotes the modestly frequency-dependent number of grid points per perfectly matched layer. Several computational and memory improvements are introduced relative to using black-box sparse-direct solvers for the auxiliary problems, and competitive runtimes and iteration counts are reported for high-frequency problems distributed over thousands of cores. Two open-source packages are released along with this paper: Parallel Sweeping Preconditioner (PSP) and the underlying distributed multifrontal solver, Clique. © 2013 Society for Industrial and Applied Mathematics.
Parallel deterministic neutronics with AMR in 3D
Energy Technology Data Exchange (ETDEWEB)
Clouse, C.; Ferguson, J.; Hendrickson, C. [Lawrence Livermore National Lab., CA (United States)
1997-12-31
AMTRAN, a three dimensional Sn neutronics code with adaptive mesh refinement (AMR) has been parallelized over spatial domains and energy groups and runs on the Meiko CS-2 with MPI message passing. Block refined AMR is used with linear finite element representations for the fluxes, which allows for a straight forward interpretation of fluxes at block interfaces with zoning differences. The load balancing algorithm assumes 8 spatial domains, which minimizes idle time among processors.
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
An asynchronous and parallel time-marching method for three-dimensional (3D) time-dependent magnetohydrodynamic (MHD) simulation is used for large-scale solar wind simulation. It uses different local time steps in the corona and the heliosphere according to the local Courant-Friedrichs-Levy (CFL) conditions. The solar wind background with observed solar photospheric magnetic field as input is first presented. The simulation time for the background solar wind by using the asynchronous method is <1/6 of that by using the normal synchronous time-marching method with the same computation precision. Then, we choose the coronal mass ejection (CME) event of 13 November, 2003 as a test case. The time-dependent variations of the pressure and the velocity configured from a CME model at the inner boundary are applied to generate transient structures in order to study the dynamical interaction of a CME with the background solar wind flow between 1 and 230 Rs. This time-marching method is very effective in terms of computation time for large-scale 3D time-dependent numerical MHD problem. In this validation study, we find that this 3D MHD model, with the asynchronous and parallel time-marching method, provides a relatively satisfactory comparison with the ACE spacecraft obser- vations at L1 point.
Willensdorfer, M; Strumberger, E; Suttrop, W; Vanovac, B; Brida, D; Cavedon, M; Classen, I; Dunne, M; Fietz, S; Fischer, R; Kirk, A; Laggner, F M; Liu, Y Q; Odstrcil, T; Ryan, D A; Viezzer, E; Zohm, H; Luhmann, I C
2016-01-01
The plasma response from an external n = 2 magnetic perturbation field in ASDEX Upgrade has been measured using mainly electron cyclotron emission (ECE) diagnostics and a rigid rotating field. To interpret ECE and ECE-imaging (ECE-I) measurements accurately, forward modeling of the radiation transport has been combined with ray tracing. The measured data is compared to synthetic ECE data generated from a 3D ideal magnetohydrodynamics (MHD) equilibrium calculated by VMEC. The measured amplitudes of the helical displacement in the midplane are in reasonable agreement with the one from the synthetic VMEC diagnostics. Both exceed the vacuum field calculations and indicate the presence of an amplified kink response at the edge. Although the calculated magnetic structure of this edge kink peaks at poloidal mode numbers larger than the resonant components |m| > |nq|, the displacement measured by ECE-I is almost resonant |m| ~ |nq|. This is expected from ideal MHD in the proximity of rational surfaces. VMEC and MARS-...
Parallel processing for efficient 3D slope stability modelling
Marchesini, Ivan; Mergili, Martin; Alvioli, Massimiliano; Metz, Markus; Schneider-Muntau, Barbara; Rossi, Mauro; Guzzetti, Fausto
2014-05-01
We test the performance of the GIS-based, three-dimensional slope stability model r.slope.stability. The model was developed as a C- and python-based raster module of the GRASS GIS software. It considers the three-dimensional geometry of the sliding surface, adopting a modification of the model proposed by Hovland (1977), and revised and extended by Xie and co-workers (2006). Given a terrain elevation map and a set of relevant thematic layers, the model evaluates the stability of slopes for a large number of randomly selected potential slip surfaces, ellipsoidal or truncated in shape. Any single raster cell may be intersected by multiple sliding surfaces, each associated with a value of the factor of safety, FS. For each pixel, the minimum value of FS and the depth of the associated slip surface are stored. This information is used to obtain a spatial overview of the potentially unstable slopes in the study area. We test the model in the Collazzone area, Umbria, central Italy, an area known to be susceptible to landslides of different type and size. Availability of a comprehensive and detailed landslide inventory map allowed for a critical evaluation of the model results. The r.slope.stability code automatically splits the study area into a defined number of tiles, with proper overlap in order to provide the same statistical significance for the entire study area. The tiles are then processed in parallel by a given number of processors, exploiting a multi-purpose computing environment at CNR IRPI, Perugia. The map of the FS is obtained collecting the individual results, taking the minimum values on the overlapping cells. This procedure significantly reduces the processing time. We show how the gain in terms of processing time depends on the tile dimensions and on the number of cores.
Time efficient 3-D electromagnetic modeling on massively parallel computers
Energy Technology Data Exchange (ETDEWEB)
Alumbaugh, D.L.; Newman, G.A.
1995-08-01
A numerical modeling algorithm has been developed to simulate the electromagnetic response of a three dimensional earth to a dipole source for frequencies ranging from 100 to 100MHz. The numerical problem is formulated in terms of a frequency domain--modified vector Helmholtz equation for the scattered electric fields. The resulting differential equation is approximated using a staggered finite difference grid which results in a linear system of equations for which the matrix is sparse and complex symmetric. The system of equations is solved using a preconditioned quasi-minimum-residual method. Dirichlet boundary conditions are employed at the edges of the mesh by setting the tangential electric fields equal to zero. At frequencies less than 1MHz, normal grid stretching is employed to mitigate unwanted reflections off the grid boundaries. For frequencies greater than this, absorbing boundary conditions must be employed by making the stretching parameters of the modified vector Helmholtz equation complex which introduces loss at the boundaries. To allow for faster calculation of realistic models, the original serial version of the code has been modified to run on a massively parallel architecture. This modification involves three distinct tasks; (1) mapping the finite difference stencil to a processor stencil which allows for the necessary information to be exchanged between processors that contain adjacent nodes in the model, (2) determining the most efficient method to input the model which is accomplished by dividing the input into ``global`` and ``local`` data and then reading the two sets in differently, and (3) deciding how to output the data which is an inherently nonparallel process.
Zhai, Xiaoping; Yin, Zhaoyang
2017-02-01
The present paper is dedicated to the global well-posedness for the 3D inhomogeneous incompressible Navier-Stokes equations, in critical Besov spaces without smallness assumption on the variation of the density. We aim at extending the work by Abidi, Gui and Zhang (2012) [2], and (2013) [3] to a lower regularity index about the initial velocity. The key to that improvement is a new a priori estimate for an elliptic equation with nonconstant coefficients in Besov spaces which have the same degree as L2 in R3. Finally, we also generalize our well-posedness result to the inhomogeneous incompressible MHD equations.
A Novel High-Order, Entropy Stable, 3D AMR MHD Solver with Guaranteed Positive Pressure
Derigs, Dominik; Gassner, Gregor J; Walch, Stefanie
2016-01-01
We describe a high-order numerical magnetohydrodynamics (MHD) solver built upon a novel non-linear entropy stable numerical flux function that supports eight travelling wave solutions. By construction the solver conserves mass, momentum, and energy and is entropy stable. The method is designed to treat the divergence-free constraint on the magnetic field in a similar fashion to a hyperbolic divergence cleaning technique. The solver described herein is especially well-suited for flows involving strong discontinuities. Furthermore, we present a new formulation to guarantee positivity of the pressure. We present the underlying theory and implementation of the new solver into the multi-physics, multi-scale adaptive mesh refinement (AMR) simulation code $\\texttt{FLASH}$ (http://flash.uchicago.edu). The accuracy, robustness and computational efficiency is demonstrated with a number of tests, including comparisons to available MHD implementations in $\\texttt{FLASH}$.
A comparative study on 3-D solar wind structure observed by Ulysses and MHD simulation
Institute of Scientific and Technical Information of China (English)
FENG Xueshang; XIANG Changqing; ZHONG Dingkun; FAN Quanlin
2005-01-01
During Ulysses' first rapid pole-to-pole transit from September 1994 to June 1995, its observations showed that middle- or high-speed solar winds covered all latitudes except those between -20° and +20° near the ecliptic plane,where the velocity was 300-450 km/s. At poleward 40°,however, only fast solar winds at the speed of 700-870 km/s were observed. In addition, the transitions from low-speed wind to high-speed wind or vice versa were abrupt. In this paper, the large-scale structure of solar wind observed by Ulysses near solar minimum is simulated by using the three-dimensional numerical MHD model. The model combines TVD Lax-Friedrich scheme and MacCormack Ⅱ scheme and decomposes the calculation region into two regions: one from 1 to 22 Rs and the other from 18 Rs to 1 AU.Based on the observations of the solar photospheric magnetic field and an addition of the volumetric heating to MHD equations, the large-scale solar wind structure mentioned above is reproduced by using the three-dimensional MHD model and the numerical results are roughly consistent with Ulysses' observations. Our simulation shows that the initial magnetic field topology and the addition of volume heating may govern the bimodal structure of solar wind observed by Ulysses and also demonstrates that the three-dimensional MHD numerical model used here is efficient in modeling the large-scale solar wind structure.
Institute of Scientific and Technical Information of China (English)
ZHANG XianGuo; PU ZuYin; MA ZhiWei; ZHOU XuZhi
2008-01-01
A three-dimensional (3-D) Hall MHD simulation is carried out to study the roles of initial current carrier in the topology of magnetic field,the generation and distribuering the contribution of ions to the initial current,the topology of the obtained magnetic field turns to be more complex. In some cases,it is found that not only the traditional By quadrupole structure but also a reversal By quadrupole structure appears in the simulation box. This can explain the observational features near the diffusion region,which are inconsistent with the Hall MHD theory with the total initial current carried by electrons. Several other interesting features are also emerged. First,motions of electrons and ions are decoupled from each other in the small plasma region (Hall effect region) with a scale less than or comparable with the ion inertial length or ion skin depth di=c/ωp. In the non-Hall effect region,the global magnetic structure is shifted in +y direction under the influence of ions with initial y directional motion. However,in the Hall effect region,magnetic field lines are bent in -y direction,mainly controlled by the motion of electrons,then By is generated. Second,FACs emerge as a result of the appearance of By. Compared with the prior Hall MHD simulation results,the generated FACs shift in +y direction,
Parallel OSEM Reconstruction Algorithm for Fully 3-D SPECT on a Beowulf Cluster.
Rong, Zhou; Tianyu, Ma; Yongjie, Jin
2005-01-01
In order to improve the computation speed of ordered subset expectation maximization (OSEM) algorithm for fully 3-D single photon emission computed tomography (SPECT) reconstruction, an experimental beowulf-type cluster was built and several parallel reconstruction schemes were described. We implemented a single-program-multiple-data (SPMD) parallel 3-D OSEM reconstruction algorithm based on message passing interface (MPI) and tested it with combinations of different number of calculating processors and different size of voxel grid in reconstruction (64×64×64 and 128×128×128). Performance of parallelization was evaluated in terms of the speedup factor and parallel efficiency. This parallel implementation methodology is expected to be helpful to make fully 3-D OSEM algorithms more feasible in clinical SPECT studies.
An Arbitrary Lagrangian-Eulerian Discretization of MHD on 3D Unstructured Grids
Energy Technology Data Exchange (ETDEWEB)
Rieben, R N; White, D A; Wallin, B K; Solberg, J M
2006-06-12
We present an arbitrary Lagrangian-Eulerian (ALE) discretization of the equations of resistive magnetohydrodynamics (MHD) on unstructured hexahedral grids. The method is formulated using an operator-split approach with three distinct phases: electromagnetic diffusion, Lagrangian motion, and Eulerian advection. The resistive magnetic dynamo equation is discretized using a compatible mixed finite element method with a 2nd order accurate implicit time differencing scheme which preserves the divergence-free nature of the magnetic field. At each discrete time step, electromagnetic force and heat terms are calculated and coupled to the hydrodynamic equations to compute the Lagrangian motion of the conducting materials. By virtue of the compatible discretization method used, the invariants of Lagrangian MHD motion are preserved in a discrete sense. When the Lagrangian motion of the mesh causes significant distortion, that distortion is corrected with a relaxation of the mesh, followed by a 2nd order monotonic remap of the electromagnetic state variables. The remap is equivalent to Eulerian advection of the magnetic flux density with a fictitious mesh relaxation velocity. The magnetic advection is performed using a novel variant of constrained transport (CT) that is valid for unstructured hexahedral grids with arbitrary mesh velocities. The advection method maintains the divergence free nature of the magnetic field and is second order accurate in regions where the solution is sufficiently smooth. For regions in which the magnetic field is discontinuous (e.g. MHD shocks) the method is limited using a novel variant of algebraic flux correction (AFC) which is local extremum diminishing (LED) and divergence preserving. Finally, we verify each stage of the discretization via a set of numerical experiments.
3D MHD VDE and disruptions simulations of tokamaks plasmas including some ITER scenarios
Paccagnella, R.; Strauss, H. R.; Breslau, J.
2009-03-01
Tokamaks vertical displacement events (VDEs) and disruptions simulations in toroidal geometry by means of a single fluid visco-resistive magneto-hydro-dynamic (MHD) model are presented in this paper. The plasma model is completed with the presence of a 2D wall with finite resistivity which allows the study of the relatively slowly growing magnetic perturbation, the resistive wall mode (RWM), which is, in this paper, the main drive of the disruption evolution. Amplitudes and asymmetries of the halo currents pattern at the wall are also calculated and comparisons with tokamak experimental databases and predictions for ITER are given.
ERROR ANALYSIS OF 3D DETECTING SYSTEM BASED ON WHOLE-FIELD PARALLEL CONFOCAL MICROSCOPE
Institute of Scientific and Technical Information of China (English)
Wang Yonghong; Yu Xiaofen
2005-01-01
Compared with the traditional scanning confocal microscopy, the effect of various factors on characteristic in multi-beam parallel confocal system is discussed, the error factors in multi-beam parallel confocal system are analyzed. The factors influencing the characteristics of the multi-beam parallel confocal system are discussed. The construction and working principle of the non-scanning 3D detecting system is introduced, and some experiment results prove the effect of various factors on the detecting system.
Nonlinear evolution of parallel propagating Alfven waves: Vlasov - MHD simulation
Nariyuki, Y; Kumashiro, T; Hada, T
2009-01-01
Nonlinear evolution of circularly polarized Alfv\\'en waves are discussed by using the recently developed Vlasov-MHD code, which is a generalized Landau-fluid model. The numerical results indicate that as far as the nonlinearity in the system is not so large, the Vlasov-MHD model can validly solve time evolution of the Alfv\\'enic turbulence both in the linear and nonlinear stages. The present Vlasov-MHD model is proper to discuss the solar coronal heating and solar wind acceleration by Alfve\\'n waves propagating from the photosphere.
Morphology and dynamics of solar prominences from 3D MHD simulations
Terradas, J; Luna, M; Oliver, R; Ballester, J L
2014-01-01
In this paper we present a numerical study of the time evolution of solar prominences embedded in sheared magnetic arcades. The prominence is represented by a density enhancement in a background stratified atmosphere and is connected to the photosphere through the magnetic field. By solving the ideal magnetohydrodynamic (MHD) equations in three dimensions we study the dynamics for a range of parameters representative of real prominences. Depending on the parameters considered, we find prominences that are suspended above the photosphere, i.e., detached prominences, but also configurations resembling curtain or hedgerow prominences whose material continuously connects to the photosphere. The plasma$-\\beta$ is an important parameter that determines the shape of the structure. In many cases magnetic Rayleigh-Taylor (MRT) instabilities and oscillatory phenomena develop. Fingers and plumes are generated, affecting the whole prominence body and producing vertical structures in an essentially horizontal magnetic fie...
A novel high-order, entropy stable, 3D AMR MHD solver with guaranteed positive pressure
Derigs, Dominik; Winters, Andrew R.; Gassner, Gregor J.; Walch, Stefanie
2016-07-01
We describe a high-order numerical magnetohydrodynamics (MHD) solver built upon a novel non-linear entropy stable numerical flux function that supports eight travelling wave solutions. By construction the solver conserves mass, momentum, and energy and is entropy stable. The method is designed to treat the divergence-free constraint on the magnetic field in a similar fashion to a hyperbolic divergence cleaning technique. The solver described herein is especially well-suited for flows involving strong discontinuities. Furthermore, we present a new formulation to guarantee positivity of the pressure. We present the underlying theory and implementation of the new solver into the multi-physics, multi-scale adaptive mesh refinement (AMR) simulation code FLASH (http://flash.uchicago.edu)
Institute of Scientific and Technical Information of China (English)
2008-01-01
A three-dimensional (3-D) Hall MHD simulation is carried out to study the roles of initial current carrier in the topology of magnetic field, the generation and distribu- tion of field aligned currents (FACs), and the appearance of Alfvén waves. Consid- ering the contribution of ions to the initial current, the topology of the obtained magnetic field turns to be more complex. In some cases, it is found that not only the traditional By quadrupole structure but also a reversal By quadrupole structure appears in the simulation box. This can explain the observational features near the diffusion region, which are inconsistent with the Hall MHD theory with the total ini- tial current carried by electrons. Several other interesting features are also emerged. First, motions of electrons and ions are decoupled from each other in the small plasma region (Hall effect region) with a scale less than or comparable with the ion inertial length or ion skin depth di=c/ωp. In the non-Hall effect region, the global magnetic structure is shifted in +y direction under the influence of ions with initial y directional motion. However, in the Hall effect region, magnetic field lines are bent in ?y direction, mainly controlled by the motion of electrons, then By is generated. Second, FACs emerge as a result of the appearance of By. Compared with the prior Hall MHD simulation results, the generated FACs shift in +y direction, and hence the dawn-dusk symmetry is broken. Third, the Walén relation in our simulations is consistent with the Walén relation in Hall plasma, thus the presence of Alfvén wave is confirmed.
Non-twist map bifurcation of drift-lines and drift-island formation in saturated 3D MHD equilibria
Pfefferle, David; Cooper, Wilfred A.; Graves, Jonathan P.
2015-11-01
Based on non-canonical perturbation theory, guiding-centre drift equations are identified as perturbed magnetic field-line equations. The topology of passing-particle orbits, called drift-lines, is completely determined by the magnetic configuration. In axisymmetric tokamak fields, drift-lines lie on shifted flux-surfaces, called drift-surfaces. Field-lines and drift-lines are subject to island structures at rational surfaces only when a non-axisymmetric component is added. The picture is different in the case of 3D saturated MHD equilibrium like the helical core associated with a non-resonant internal kink mode. In assuming nested flux-surfaces, these bifurcated states, expected for a reversed q-profile with qmin close yet above unity and conveniently obtained in VMEC, feature integrable field-lines. The helical drift-lines however become resonant with the axisymmetric component in the region of qmin and spontaneously generate drift-islands. Due to the locally reversed sheared q-profile, the drift-island structure follows the bifurcation/reconnection mechanism of non-twist maps. This result provides a theoretical interpretation of NBI fast ion helical hot-spots in Long-Lived Modes as well as snake-like impurity density accumulation in internal MHD activity.
3D MHD simulation of post--flare supra--arcade downflows in a turbulent current sheet medium
Cécere, M; Costa, A; Schneiter, M
2014-01-01
Supra--arcade downflows (SADs) are sunward, generally dark, plasma density depletions originated above posteruption flare arcades. In this paper using 3D MHD simulations we investigate if the SAD cavities can be produced by a direct combination of the tearing mode and Kelvin--Helmholtz instabilities leading to a turbulent current sheet (CS) medium or if the current sheet is merely the background where SADs are produced triggered by an impulsive deposition of energy. We find that to give account of the observational dark lane structures an addition of local energy provided by a reconnection event is required. This local reconnection can trigger a nonlinear internal wave dynamic, generated by the bouncing and interfering of shocks and expansion waves that compose relatively stable voids.
Parallel Finite Element Solution of 3D Rayleigh-Benard-Marangoni Flows
Carey, G. F.; McLay, R.; Bicken, G.; Barth, B.; Pehlivanov, A.
1999-01-01
A domain decomposition strategy and parallel gradient-type iterative solution scheme have been developed and implemented for computation of complex 3D viscous flow problems involving heat transfer and surface tension effects. Details of the implementation issues are described together with associated performance and scalability studies. Representative Rayleigh-Benard and microgravity Marangoni flow calculations and performance results on the Cray T3D and T3E are presented. The work is currently being extended to tightly-coupled parallel "Beowulf-type" PC clusters and we present some preliminary performance results on this platform. We also describe progress on related work on hierarchic data extraction for visualization.
Relativistic MHD simulations of core-collapse GRB jets: 3D instabilities and magnetic dissipation
Bromberg, Omer
2015-01-01
Relativistic jets naturally occur in astrophysical systems that involve accretion onto compact objects, such as core collapse of massive stars in gamma-ray bursts (GRBs) and accretion onto supermassive black holes in active galactic nuclei (AGN). It is generally accepted that these jets are powered electromagnetically, by the magnetised rotation of a central compact object. However, how they produce the observed emission and survive the propagation for many orders of magnitude in distance without being disrupted by current-driven non-axisymmetric instabilities is the subject of active debate. We carry out time-dependent 3D relativistic magnetohydrodynamic simulations of relativistic, Poynting flux dominated jets. The jets are launched self-consistently by the rotation of a strongly magnetised central compact object. This determines the natural degree of azimuthal magnetic field winding, a crucial factor that controls jet stability. We find that the jets are susceptible to two types of instability: (i) a globa...
3D MHD Simulations of accreting neutron stars: evidence of QPO emission from the surface
Bachetti, Matteo; Kulkarni, Akshay; Burderi, Luciano; di Salvo, Tiziana; .,
2009-01-01
3D Magnetohydrodynamic simulations show that when matter accretes onto neutron stars, in particular if the misalignment angle is small, it does not constantly fall at a fixed spot. Instead, the location at which matter reaches the star moves. These moving hot spots can be produced both during stable accretion, where matter falls near the magnetic poles of the star, and unstable accretion, characterized by the presence of several tongues of matter which fall on the star near the equator, due to Rayleigh-Taylor instabilities. Precise modeling with Monte Carlo simulations shows that those movements could be observed as high frequency Quasi Periodic Oscillations. We performed a number of new simulation runs with a much wider set of parameters, focusing on neutron stars with a small misalignment angle. In most cases we observe oscillations whose frequency is correlated with the mass accretion rate $\\dot{M}$. Moreover, in some cases double QPOs appear, each of them showing the same correlation with $\\dot{M}$.
3D data denoising via Nonlocal Means filter by using parallel GPU strategies.
Cuomo, Salvatore; De Michele, Pasquale; Piccialli, Francesco
2014-01-01
Nonlocal Means (NLM) algorithm is widely considered as a state-of-the-art denoising filter in many research fields. Its high computational complexity leads researchers to the development of parallel programming approaches and the use of massively parallel architectures such as the GPUs. In the recent years, the GPU devices had led to achieving reasonable running times by filtering, slice-by-slice, and 3D datasets with a 2D NLM algorithm. In our approach we design and implement a fully 3D NonLocal Means parallel approach, adopting different algorithm mapping strategies on GPU architecture and multi-GPU framework, in order to demonstrate its high applicability and scalability. The experimental results we obtained encourage the usability of our approach in a large spectrum of applicative scenarios such as magnetic resonance imaging (MRI) or video sequence denoising.
First 3D radiative transfer with scattering for domain-decomposed MHD simulations
Energy Technology Data Exchange (ETDEWEB)
Hayek, W [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston Creek ACT 2611 (Australia)], E-mail: hayek@mpa-garching.mpg.de
2008-12-15
This paper presents an implementation of the Gauss-Seidel solver for radiative transfer with scattering in the Oslo Stagger Code. It fully supports MPI parallelism through domain decomposition of the simulation box, enabling fast computation of radiative transfer at a high resolution. Continuum and line opacities are treated with either a multigroup method or opacity sampling. Line scattering probabilities are estimated using the van Regemorter approximation for de-excitation rates of electron collisions. A solar-type test simulation with continuum and line scattering exhibits a steeper temperature gradient due to decreased radiative heating above the optical surface when compared with the strict local thermodynamic equilibrium (LTE) case. The classical van Regemorter approximation may overestimate the importance of line scattering, implying that the true temperature structure will be in between the LTE case and the scattering case considered here. It is demonstrated that continuum scattering is unimportant in the case of the Sun.
First 3D radiative transfer with scattering for domain-decomposed MHD simulations
Hayek, W.
2008-12-01
This paper presents an implementation of the Gauss Seidel solver for radiative transfer with scattering in the Oslo Stagger Code. It fully supports MPI parallelism through domain decomposition of the simulation box, enabling fast computation of radiative transfer at a high resolution. Continuum and line opacities are treated with either a multigroup method or opacity sampling. Line scattering probabilities are estimated using the van Regemorter approximation for de-excitation rates of electron collisions. A solar-type test simulation with continuum and line scattering exhibits a steeper temperature gradient due to decreased radiative heating above the optical surface when compared with the strict local thermodynamic equilibrium (LTE) case. The classical van Regemorter approximation may overestimate the importance of line scattering, implying that the true temperature structure will be in between the LTE case and the scattering case considered here. It is demonstrated that continuum scattering is unimportant in the case of the Sun.
Study of improved ray tracing parallel algorithm for CGH of 3D objects on GPU
Cong, Bin; Jiang, Xiaoyu; Yao, Jun; Zhao, Kai
2014-11-01
An improved parallel algorithm for holograms of three-dimensional objects was presented. According to the physical characteristics and mathematical properties of the original ray tracing algorithm for computer generated holograms (CGH), using transform approximation and numerical analysis methods, we extract parts of ray tracing algorithm which satisfy parallelization features and implement them on graphics processing unit (GPU). Meanwhile, through proper design of parallel numerical procedure, we did parallel programming to the two-dimensional slices of three-dimensional object with CUDA. According to the experiments, an effective method of dealing with occlusion problem in ray tracing is proposed, as well as generating the holograms of 3D objects with additive property. Our results indicate that the improved algorithm can effectively shorten the computing time. Due to the different sizes of spatial object points and hologram pixels, the speed has increased 20 to 70 times comparing with original ray tracing algorithm.
On the Parallel Design and Analysis for 3-D ADI Telegraph Problem with MPI
Directory of Open Access Journals (Sweden)
Simon Uzezi Ewedafe
2014-05-01
Full Text Available In this paper we describe the 3-D Telegraph Equation (3-DTEL with the use of Alternating Direction Implicit (ADI method on Geranium Cadcam Cluster (GCC with Message Passing Interface (MPI parallel software. The algorithm is presented by the use of Single Program Multiple Data (SPMD technique. The implementation is discussed by means of Parallel Design and Analysis with the use of Domain Decomposition (DD strategy. The 3-DTEL with ADI scheme is implemented on the GCC cluster, with an objective to evaluate the overhead it introduces, with ability to exploit the inherent parallelism of the computation. Results of the parallel experiments are presented. The Speedup and Efficiency from the experiments on different block sizes agree with the theoretical analysis.
Nardon, E.; Fil, A.; Hoelzl, M.; Huijsmans, G.; contributors, JET
2017-01-01
3D non-linear MHD simulations of a D 2 massive gas injection (MGI) triggered disruption in JET with the JOREK code provide results which are qualitatively consistent with experimental observations and shed light on the physics at play. In particular, it is observed that the gas destabilizes a large m/n = 2/1 tearing mode, with the island O-point coinciding with the gas deposition region, by enhancing the plasma resistivity via cooling. When the 2/1 island gets so large that its inner side reaches the q = 3/2 surface, a 3/2 tearing mode grows. Simulations suggest that this is due to a steepening of the current profile right inside q = 3/2. Magnetic field stochastization over a large fraction of the minor radius as well as the growth of higher n modes ensue rapidly, leading to the thermal quench (TQ). The role of the 1/1 internal kink mode is discussed. An I p spike at the TQ is obtained in the simulations but with a smaller amplitude than in the experiment. Possible reasons are discussed.
Fisher, Dustin; Zhang, Yue; Wallace, Ben; Gilmore, Mark; Manchester, Ward; Arge, C. Nick
2016-10-01
The Plasma Bubble Expansion Experiment (PBEX) at the University of New Mexico uses a coaxial plasma gun to launch jet and spheromak magnetic plasma configurations into the Helicon-Cathode (HelCat) plasma device. Plasma structures launched from the gun drag frozen-in magnetic flux into the background magnetic field of the chamber providing a rich set of dynamics to study magnetic turbulence, force-free magnetic spheromaks, and shocks. Preliminary modeling is presented using the highly-developed 3-D, MHD, BATS-R-US code developed at the University of Michigan. BATS-R-US employs an adaptive mesh refinement grid that enables the capture and resolution of shock structures and current sheets, and is particularly suited to model the parameter regime under investigation. CCD images and magnetic field data from the experiment suggest the stabilization of an m =1 kink mode trailing a plasma jet launched into a background magnetic field. Results from a linear stability code investigating the effect of shear-flow as a cause of this stabilization from magnetic tension forces on the jet will be presented. Initial analyses of a possible magnetic Rayleigh Taylor instability seen at the interface between launched spheromaks and their entraining background magnetic field will also be presented. Work supported by the Army Research Office Award No. W911NF1510480.
D'Avillez, M A; Breitschwerdt, Dieter
2005-01-01
State of the art models of the ISM use adaptive mesh refinement to capture small scale structures, by refining on the fly those regions of the grid where density and pressure gradients occur, keeping at the same time the existing resolution in the other regions. With this technique it became possible to study the ISM in star-forming galaxies in a global way by following matter circulation between stars and the interstellar gas, and, in particular the energy input by random and clustered supernova explosions, which determine the dynamical and chemical evolution of the ISM, and hence of the galaxy as a whole. In this paper we review the conditions for a self-consistent modelling of the ISM and present the results from the latest developments in the 3D HD/MHD global models of the ISM. Special emphasis is put on the effects of the magnetic field with respect to the volume and mass fractions of the different ISM ``phases'', the relative importance of ram, thermal and magnetic pressures, and whether the field can p...
Zhilkin, A G; Mason, P A; 10.1134/S1063772912040087
2012-01-01
We performed 3D MHD calculations of stream accretion in cataclysmic variable stars for which the white dwarf primary star possesses a strong and complex magnetic field. These calculations are motivated by observations of polars; cataclysmic variables containing white dwarfs with magnetic fields sufficiently strong to prevent the formation of an accretion disk. So an accretion stream flows from the L1 point and impacts directly onto one or more spots on the surface of the white dwarf. Observations indicate that the white dwarf, in some binaries, possesses a complex (non-dipolar) magnetic field. We perform simulations of 10 polars or equivalently one asynchronous polar at 10 different beat phases. Our models have an aligned dipole plus quadrupole magnetic field centered on the white dwarf primary. We find that for a sufficiently strong quadrupole component an accretion spot occurs near the magnetic equator for slightly less than half of our simulations while a polar accretion zone is active for most of the rest...
Fast 3D Variable-FOV Reconstruction for Parallel Imaging with Localized Sensitivities
Can, Yiğit Baran; Çukur, Tolga
2016-01-01
Several successful iterative approaches have recently been proposed for parallel-imaging reconstructions of variable-density (VD) acquisitions, but they often induce substantial computational burden for non-Cartesian data. Here we propose a generalized variable-FOV PILS reconstruction 3D VD Cartesian and non-Cartesian data. The proposed method separates k-space into non-intersecting annuli based on sampling density, and sets the 3D reconstruction FOV for each annulus based on the respective sampling density. The variable-FOV method is compared against conventional gridding, PILS, and ESPIRiT reconstructions. Results indicate that the proposed method yields better artifact suppression compared to gridding and PILS, and improves noise conditioning relative to ESPIRiT, enabling fast and high-quality reconstructions of 3D datasets.
Gust Acoustics Computation with a Space-Time CE/SE Parallel 3D Solver
Wang, X. Y.; Himansu, A.; Chang, S. C.; Jorgenson, P. C. E.; Reddy, D. R. (Technical Monitor)
2002-01-01
The benchmark Problem 2 in Category 3 of the Third Computational Aero-Acoustics (CAA) Workshop is solved using the space-time conservation element and solution element (CE/SE) method. This problem concerns the unsteady response of an isolated finite-span swept flat-plate airfoil bounded by two parallel walls to an incident gust. The acoustic field generated by the interaction of the gust with the flat-plate airfoil is computed by solving the 3D (three-dimensional) Euler equations in the time domain using a parallel version of a 3D CE/SE solver. The effect of the gust orientation on the far-field directivity is studied. Numerical solutions are presented and compared with analytical solutions, showing a reasonable agreement.
Stiffness Analysis of 3-d.o.f. Overconstrained Translational Parallel Manipulators
Pashkevich, Anatoly; Wenger, Philippe
2008-01-01
The paper presents a new stiffness modelling method for overconstrained parallel manipulators, which is applied to 3-d.o.f. translational mechanisms. It is based on a multidimensional lumped-parameter model that replaces the link flexibility by localized 6-d.o.f. virtual springs. In contrast to other works, the method includes a FEA-based link stiffness evaluation and employs a new solution strategy of the kinetostatic equations, which allows computing the stiffness matrix for the overconstrained architectures and for the singular manipulator postures. The advantages of the developed technique are confirmed by application examples, which deal with comparative stiffness analysis of two translational parallel manipulators.
An improved parallel SPH approach to solve 3D transient generalized Newtonian free surface flows
Ren, Jinlian; Jiang, Tao; Lu, Weigang; Li, Gang
2016-08-01
In this paper, a corrected parallel smoothed particle hydrodynamics (C-SPH) method is proposed to simulate the 3D generalized Newtonian free surface flows with low Reynolds number, especially the 3D viscous jets buckling problems are investigated. The proposed C-SPH method is achieved by coupling an improved SPH method based on the incompressible condition with the traditional SPH (TSPH), that is, the improved SPH with diffusive term and first-order Kernel gradient correction scheme is used in the interior of the fluid domain, and the TSPH is used near the free surface. Thus the C-SPH method possesses the advantages of two methods. Meanwhile, an effective and convenient boundary treatment is presented to deal with 3D multiple-boundary problem, and the MPI parallelization technique with a dynamic cells neighbor particle searching method is considered to improve the computational efficiency. The validity and the merits of the C-SPH are first verified by solving several benchmarks and compared with other results. Then the viscous jet folding/coiling based on the Cross model is simulated by the C-SPH method and compared with other experimental or numerical results. Specially, the influences of macroscopic parameters on the flow are discussed. All the numerical results agree well with available data, and show that the C-SPH method has higher accuracy and better stability for solving 3D moving free surface flows over other particle methods.
Spatial Parallelism of a 3D Finite Difference, Velocity-Stress Elastic Wave Propagation Code
Energy Technology Data Exchange (ETDEWEB)
MINKOFF,SUSAN E.
1999-12-09
Finite difference methods for solving the wave equation more accurately capture the physics of waves propagating through the earth than asymptotic solution methods. Unfortunately. finite difference simulations for 3D elastic wave propagation are expensive. We model waves in a 3D isotropic elastic earth. The wave equation solution consists of three velocity components and six stresses. The partial derivatives are discretized using 2nd-order in time and 4th-order in space staggered finite difference operators. Staggered schemes allow one to obtain additional accuracy (via centered finite differences) without requiring additional storage. The serial code is most unique in its ability to model a number of different types of seismic sources. The parallel implementation uses the MP1 library, thus allowing for portability between platforms. Spatial parallelism provides a highly efficient strategy for parallelizing finite difference simulations. In this implementation, one can decompose the global problem domain into one-, two-, and three-dimensional processor decompositions with 3D decompositions generally producing the best parallel speed up. Because i/o is handled largely outside of the time-step loop (the most expensive part of the simulation) we have opted for straight-forward broadcast and reduce operations to handle i/o. The majority of the communication in the code consists of passing subdomain face information to neighboring processors for use as ''ghost cells''. When this communication is balanced against computation by allocating subdomains of reasonable size, we observe excellent scaled speed up. Allocating subdomains of size 25 x 25 x 25 on each node, we achieve efficiencies of 94% on 128 processors. Numerical examples for both a layered earth model and a homogeneous medium with a high-velocity blocky inclusion illustrate the accuracy of the parallel code.
Spatial parallelism of a 3D finite difference, velocity-stress elastic wave propagation code
Energy Technology Data Exchange (ETDEWEB)
Minkoff, S.E.
1999-12-01
Finite difference methods for solving the wave equation more accurately capture the physics of waves propagating through the earth than asymptotic solution methods. Unfortunately, finite difference simulations for 3D elastic wave propagation are expensive. The authors model waves in a 3D isotropic elastic earth. The wave equation solution consists of three velocity components and six stresses. The partial derivatives are discretized using 2nd-order in time and 4th-order in space staggered finite difference operators. Staggered schemes allow one to obtain additional accuracy (via centered finite differences) without requiring additional storage. The serial code is most unique in its ability to model a number of different types of seismic sources. The parallel implementation uses the MPI library, thus allowing for portability between platforms. Spatial parallelism provides a highly efficient strategy for parallelizing finite difference simulations. In this implementation, one can decompose the global problem domain into one-, two-, and three-dimensional processor decompositions with 3D decompositions generally producing the best parallel speedup. Because I/O is handled largely outside of the time-step loop (the most expensive part of the simulation) the authors have opted for straight-forward broadcast and reduce operations to handle I/O. The majority of the communication in the code consists of passing subdomain face information to neighboring processors for use as ghost cells. When this communication is balanced against computation by allocating subdomains of reasonable size, they observe excellent scaled speedup. Allocating subdomains of size 25 x 25 x 25 on each node, they achieve efficiencies of 94% on 128 processors. Numerical examples for both a layered earth model and a homogeneous medium with a high-velocity blocky inclusion illustrate the accuracy of the parallel code.
Energy Technology Data Exchange (ETDEWEB)
Kolotilina, L.; Nikishin, A.; Yeremin, A. [and others
1994-12-31
The solution of large systems of linear equations is a crucial bottleneck when performing 3D finite element analysis of structures. Also, in many cases the reliability and robustness of iterative solution strategies, and their efficiency when exploiting hardware resources, fully determine the scope of industrial applications which can be solved on a particular computer platform. This is especially true for modern vector/parallel supercomputers with large vector length and for modern massively parallel supercomputers. Preconditioned iterative methods have been successfully applied to industrial class finite element analysis of structures. The construction and application of high quality preconditioners constitutes a high percentage of the total solution time. Parallel implementation of high quality preconditioners on such architectures is a formidable challenge. Two common types of existing preconditioners are the implicit preconditioners and the explicit preconditioners. The implicit preconditioners (e.g. incomplete factorizations of several types) are generally high quality but require solution of lower and upper triangular systems of equations per iteration which are difficult to parallelize without deteriorating the convergence rate. The explicit type of preconditionings (e.g. polynomial preconditioners or Jacobi-like preconditioners) require sparse matrix-vector multiplications and can be parallelized but their preconditioning qualities are less than desirable. The authors present results of numerical experiments with Factorized Sparse Approximate Inverses (FSAI) for symmetric positive definite linear systems. These are high quality preconditioners that possess a large resource of parallelism by construction without increasing the serial complexity.
Energy Technology Data Exchange (ETDEWEB)
Schultz, Anthony [Nouvel Hopital Civil, Strasbourg University Hospital, Radiology Department, Strasbourg Cedex (France); Nouvel Hopital Civil, Service de Radiologie, Strasbourg Cedex (France); Caspar, Thibault [Nouvel Hopital Civil, Strasbourg University Hospital, Cardiology Department, Strasbourg Cedex (France); Schaeffer, Mickael [Nouvel Hopital Civil, Strasbourg University Hospital, Public Health and Biostatistics Department, Strasbourg Cedex (France); Labani, Aissam; Jeung, Mi-Young; El Ghannudi, Soraya; Roy, Catherine [Nouvel Hopital Civil, Strasbourg University Hospital, Radiology Department, Strasbourg Cedex (France); Ohana, Mickael [Nouvel Hopital Civil, Strasbourg University Hospital, Radiology Department, Strasbourg Cedex (France); Universite de Strasbourg / CNRS, UMR 7357, iCube Laboratory, Illkirch (France)
2016-06-15
To qualitatively and quantitatively compare different late gadolinium enhancement (LGE) sequences acquired at 3T with a parallel RF transmission technique. One hundred and sixty participants prospectively enrolled underwent a 3T cardiac MRI with 3 different LGE sequences: 3D Phase-Sensitive Inversion-Recovery (3D-PSIR) acquired 5 minutes after injection, 3D Inversion-Recovery (3D-IR) at 9 minutes and 3D-PSIR at 13 minutes. All LGE-positive patients were qualitatively evaluated both independently and blindly by two radiologists using a 4-level scale, and quantitatively assessed with measurement of contrast-to-noise ratio and LGE maximal surface. Statistical analyses were calculated under a Bayesian paradigm using MCMC methods. Fifty patients (70 % men, 56yo ± 19) exhibited LGE (62 % were post-ischemic, 30 % related to cardiomyopathy and 8 % post-myocarditis). Early and late 3D-PSIR were superior to 3D-IR sequences (global quality, estimated coefficient IR > early-PSIR: -2.37 CI = [-3.46; -1.38], prob(coef > 0) = 0 % and late-PSIR > IR: 3.12 CI = [0.62; 4.41], prob(coef > 0) = 100 %), LGE surface estimated coefficient IR > early-PSIR: -0.09 CI = [-1.11; -0.74], prob(coef > 0) = 0 % and late-PSIR > IR: 0.96 CI = [0.77; 1.15], prob(coef > 0) = 100 %. Probabilities for late PSIR being superior to early PSIR concerning global quality and CNR were over 90 %, regardless of the aetiological subgroup. In 3T cardiac MRI acquired with parallel RF transmission technique, 3D-PSIR is qualitatively and quantitatively superior to 3D-IR. (orig.)
Parallel Imaging of 3D Surface Profile with Space-Division Multiplexing
Directory of Open Access Journals (Sweden)
Hyung Seok Lee
2016-01-01
Full Text Available We have developed a modified optical frequency domain imaging (OFDI system that performs parallel imaging of three-dimensional (3D surface profiles by using the space division multiplexing (SDM method with dual-area swept sourced beams. We have also demonstrated that 3D surface information for two different areas could be well obtained in a same time with only one camera by our method. In this study, double field of views (FOVs of 11.16 mm × 5.92 mm were achieved within 0.5 s. Height range for each FOV was 460 µm and axial and transverse resolutions were 3.6 and 5.52 µm, respectively.
Introducing zeus-mp: a 3d, parallel, multiphysics code for astrophysical fluid dynamics
Directory of Open Access Journals (Sweden)
Michael L. Norman
2000-01-01
Full Text Available Describimos ZEUS-MP: un c odigo Multi-F sica, Masivamente-Paralelo, Pasa-Mensajes para simulaciones tridimensionales de din amica de uidos astrof sicos. ZEUS-MP es la continuaci on de los c odigos ZEUS-2D y ZEUS-3D, desarrollados y diseminados por el Laboratorio de Astrof sica Computacional (lca.ncsa.uiuc.edu del NCSA. La versi on V1.0, liberada el 1/1/2000, contiene los siguientes m odulos: hidrodin amica ideal, MHD ideal y auto-gravedad. Las pr oximas versiones tendr an difusi on radiativa de ujo limitado, conducci on de calor, plasma de dos temperaturas y funciones de enfriamiento y calentamiento. Las ecuaciones covariantes est an avanzadas en una malla Euleriana m ovil en coordenadas Cartesianas, cil ndricas y polares esf ericas. La paralelizaci on es hecha por descomposici on del dominio y est a implementada en F77 y MPI. El c odigo es portable en un amplio rango de plataformas, desde redes de estaciones de trabajo hasta procesadores de paralelismo masivo. Se presentan algunos resultados de la e ciencia en paralelo junto con una aplicaci on a formaci on estelar turbulenta.
A New MHD Code with Adaptive Mesh Refinement and Parallelization for Astrophysics
Jiang, R L; Chen, P F
2012-01-01
A new code, named MAP, is written in Fortran language for magnetohydrodynamics (MHD) calculation with the adaptive mesh refinement (AMR) and Message Passing Interface (MPI) parallelization. There are several optional numerical schemes for computing the MHD part, namely, modified Mac Cormack Scheme (MMC), Lax-Friedrichs scheme (LF) and weighted essentially non-oscillatory (WENO) scheme. All of them are second order, two-step, component-wise schemes for hyperbolic conservative equations. The total variation diminishing (TVD) limiters and approximate Riemann solvers are also equipped. A high resolution can be achieved by the hierarchical block-structured AMR mesh. We use the extended generalized Lagrange multiplier (EGLM) MHD equations to reduce the non-divergence free error produced by the scheme in the magnetic induction equation. The numerical algorithms for the non-ideal terms, e.g., the resistivity and the thermal conduction, are also equipped in the MAP code. The details of the AMR and MPI algorithms are d...
PARALLEL 3-D SPACE CHARGE CALCULATIONS IN THE UNIFIED ACCELERATOR LIBRARY.
Energy Technology Data Exchange (ETDEWEB)
D' IMPERIO, N.L.; LUCCIO, A.U.; MALITSKY, N.
2006-06-26
The paper presents the integration of the SIMBAD space charge module in the UAL framework. SIMBAD is a Particle-in-Cell (PIC) code. Its 3-D Parallel approach features an optimized load balancing scheme based on a genetic algorithm. The UAL framework enhances the SIMBAD standalone version with the interactive ROOT-based analysis environment and an open catalog of accelerator algorithms. The composite package addresses complex high intensity beam dynamics and has been developed as part of the FAIR SIS 100 project.
Jung, Jaewoon; Kobayashi, Chigusa; Imamura, Toshiyuki; Sugita, Yuji
2016-03-01
Three-dimensional Fast Fourier Transform (3D FFT) plays an important role in a wide variety of computer simulations and data analyses, including molecular dynamics (MD) simulations. In this study, we develop hybrid (MPI+OpenMP) parallelization schemes of 3D FFT based on two new volumetric decompositions, mainly for the particle mesh Ewald (PME) calculation in MD simulations. In one scheme, (1d_Alltoall), five all-to-all communications in one dimension are carried out, and in the other, (2d_Alltoall), one two-dimensional all-to-all communication is combined with two all-to-all communications in one dimension. 2d_Alltoall is similar to the conventional volumetric decomposition scheme. We performed benchmark tests of 3D FFT for the systems with different grid sizes using a large number of processors on the K computer in RIKEN AICS. The two schemes show comparable performances, and are better than existing 3D FFTs. The performances of 1d_Alltoall and 2d_Alltoall depend on the supercomputer network system and number of processors in each dimension. There is enough leeway for users to optimize performance for their conditions. In the PME method, short-range real-space interactions as well as long-range reciprocal-space interactions are calculated. Our volumetric decomposition schemes are particularly useful when used in conjunction with the recently developed midpoint cell method for short-range interactions, due to the same decompositions of real and reciprocal spaces. The 1d_Alltoall scheme of 3D FFT takes 4.7 ms to simulate one MD cycle for a virus system containing more than 1 million atoms using 32,768 cores on the K computer.
Simulating Growth Kinetics in a Data-Parallel 3D Lattice Photobioreactor
Directory of Open Access Journals (Sweden)
A. V. Husselmann
2013-01-01
Full Text Available Though there have been many attempts to address growth kinetics in algal photobioreactors, surprisingly little have attempted an agent-based modelling (ABM approach. ABM has been heralded as a method of practical scientific inquiry into systems of a complex nature and has been applied liberally in a range of disciplines including ecology, physics, social science, and microbiology with special emphasis on pathogenic bacterial growth. We bring together agent-based simulation with the Photosynthetic Factory (PSF model, as well as certain key bioreactor characteristics in a visual 3D, parallel computing fashion. Despite being at small scale, the simulation gives excellent visual cues on the dynamics of such a reactor, and we further investigate the model in a variety of ways. Our parallel implementation on graphical processing units of the simulation provides key advantages, which we also briefly discuss. We also provide some performance data, along with particular effort in visualisation, using volumetric and isosurface rendering.
Assessing the performance of a parallel MATLAB-based 3D convection code
Kirkpatrick, G. J.; Hasenclever, J.; Phipps Morgan, J.; Shi, C.
2008-12-01
We are currently building 2D and 3D MATLAB-based parallel finite element codes for mantle convection and melting. The codes use the MATLAB implementation of core MPI commands (eg. Send, Receive, Broadcast) for message passing between computational subdomains. We have found that code development and algorithm testing are much faster in MATLAB than in our previous work coding in C or FORTRAN, this code was built from scratch with only 12 man-months of effort. The one extra cost w.r.t. C coding on a Beowulf cluster is the cost of the parallel MATLAB license for a >4core cluster. Here we present some preliminary results on the efficiency of MPI messaging in MATLAB on a small 4 machine, 16core, 32Gb RAM Intel Q6600 processor-based cluster. Our code implements fully parallelized preconditioned conjugate gradients with a multigrid preconditioner. Our parallel viscous flow solver is currently 20% slower for a 1,000,000 DOF problem on a single core in 2D as the direct solve MILAMIN MATLAB viscous flow solver. We have tested both continuous and discontinuous pressure formulations. We test with various configurations of network hardware, CPU speeds, and memory using our own and MATLAB's built in cluster profiler. So far we have only explored relatively small (up to 1.6GB RAM) test problems. We find that with our current code and Intel memory controller bandwidth limitations we can only get ~2.3 times performance out of 4 cores than 1 core per machine. Even for these small problems the code runs faster with message passing between 4 machines with one core each than 1 machine with 4 cores and internal messaging (1.29x slower), or 1 core (2.15x slower). It surprised us that for 2D ~1GB-sized problems with only 3 multigrid levels, the direct- solve on the coarsest mesh consumes comparable time to the iterative solve on the finest mesh - a penalty that is greatly reduced either by using a 4th multigrid level or by using an iterative solve at the coarsest grid level. We plan to
Porting a 3D-model for the transport of reactive air pollutants to the parallel machine T3D
Kessler, C.; Blom, J.G.; Verwer, J.G.
1995-01-01
Air pollution forecasting puts a high demand on the memory and the floating point performance of modern computers. For this kind of problems massively parallel computers are very promising, although the software tools and the I/O facilities on those machines are still under-developed. This report de
Parallel implementation of 3D protein structure similarity searches using a GPU and the CUDA.
Mrozek, Dariusz; Brożek, Miłosz; Małysiak-Mrozek, Bożena
2014-02-01
Searching for similar 3D protein structures is one of the primary processes employed in the field of structural bioinformatics. However, the computational complexity of this process means that it is constantly necessary to search for new methods that can perform such a process faster and more efficiently. Finding molecular substructures that complex protein structures have in common is still a challenging task, especially when entire databases containing tens or even hundreds of thousands of protein structures must be scanned. Graphics processing units (GPUs) and general purpose graphics processing units (GPGPUs) can perform many time-consuming and computationally demanding processes much more quickly than a classical CPU can. In this paper, we describe the GPU-based implementation of the CASSERT algorithm for 3D protein structure similarity searching. This algorithm is based on the two-phase alignment of protein structures when matching fragments of the compared proteins. The GPU (GeForce GTX 560Ti: 384 cores, 2GB RAM) implementation of CASSERT ("GPU-CASSERT") parallelizes both alignment phases and yields an average 180-fold increase in speed over its CPU-based, single-core implementation on an Intel Xeon E5620 (2.40GHz, 4 cores). In this paper, we show that massive parallelization of the 3D structure similarity search process on many-core GPU devices can reduce the execution time of the process, allowing it to be performed in real time. GPU-CASSERT is available at: http://zti.polsl.pl/dmrozek/science/gpucassert/cassert.htm.
Jiang, Chaowei; Wu, S T; Hu, Qiang
2012-01-01
We apply a data-driven MHD model to investigate the three-dimensional (3D) magnetic field of NOAA active region (AR) 11117 around the time of a C-class confined flare occurred on 2010 October 25. The MHD model, based on the spacetime conservation-element and solution-element (CESE) scheme, is designed to focus on the magnetic-field evolution and to consider a simplified solar atomsphere with finite plasma $\\beta$. Magnetic vector-field data derived from the observations at the photoshpere is inputted directly to constrain the model. Assuming that the dynamic evolution of the coronal magnetic field can be approximated by successive equilibria, we solve a time sequence of MHD equilibria basing on a set of vector magnetograms for AR 11117 taken by the Helioseismic and Magnetic Imager (HMI) on board the {\\it Solar Dynamic Observatory (SDO)} around the time of flare. The model qualitatively reproduces the basic structures of the 3D magnetic field, as supported by the visual similarity between the field lines and t...
Hegde, Ganapathi; Vaya, Pukhraj
2013-10-01
This article presents a parallel architecture for 3-D discrete wavelet transform (3-DDWT). The proposed design is based on the 1-D pipelined lifting scheme. The architecture is fully scalable beyond the present coherent Daubechies filter bank (9, 7). This 3-DDWT architecture has advantages such as no group of pictures restriction and reduced memory referencing. It offers low power consumption, low latency and high throughput. The computing technique is based on the concept that lifting scheme minimises the storage requirement. The application specific integrated circuit implementation of the proposed architecture is done by synthesising it using 65 nm Taiwan Semiconductor Manufacturing Company standard cell library. It offers a speed of 486 MHz with a power consumption of 2.56 mW. This architecture is suitable for real-time video compression even with large frame dimensions.
3-D readout-electronics packaging for high-bandwidth massively paralleled imager
Kwiatkowski, Kris; Lyke, James
2007-12-18
Dense, massively parallel signal processing electronics are co-packaged behind associated sensor pixels. Microchips containing a linear or bilinear arrangement of photo-sensors, together with associated complex electronics, are integrated into a simple 3-D structure (a "mirror cube"). An array of photo-sensitive cells are disposed on a stacked CMOS chip's surface at a 45.degree. angle from light reflecting mirror surfaces formed on a neighboring CMOS chip surface. Image processing electronics are held within the stacked CMOS chip layers. Electrical connections couple each of said stacked CMOS chip layers and a distribution grid, the connections for distributing power and signals to components associated with each stacked CSMO chip layer.
Hybrid Parallel Bundle Adjustment for 3D Scene Reconstruction with Massive Points
Institute of Scientific and Technical Information of China (English)
Xin Liu; Wei Gao; Zhan-Yi Hu
2012-01-01
Bundle adjustment (BA) is a crucial but time consuming step in 3D reconstruction.In this paper,we intend to tackle a special class of BA problems where the reconstructed 3D points are much more numerous than the camera parameters,called Massive-Points BA (MPBA) problems.This is often the case when high-resolution images are used.We present a design and implementation of a new bundle adjustment algorithm for efficiently solving the MPBA problems.The use of hardware parallelism,the multi-core CPUs as well as GPUs,is explored.By careful memory-usage design,the graphic-memory limitation is effectively alleviated.Several modern acceleration strategies for bundle adjustment,such as the mixed-precision arithmetics,the embedded point iteration,and the preconditioned conjugate gradients,are explored and compared.By using several high-resolution image datasets,we generate a variety of MPBA problems,with which the performance of five bundle adjustment algorithms are evaluated.The experimental results show that our algorithm is up to 40 times faster than classical Sparse Bundle Adjustment,while maintaining comparable precision.
Parallel 3-d simulations for porous media models in soil mechanics
Wieners, C.; Ammann, M.; Diebels, S.; Ehlers, W.
Numerical simulations in 3-d for porous media models in soil mechanics are a difficult task for the engineering modelling as well as for the numerical realization. Here, we present a general numerical scheme for the simulation of two-phase models in combination with an material model via the stress response with a specialized parallel saddle point solver. Therefore, we give a brief introduction into the theoretical background of the Theory of Porous Media and constitute a two-phase model consisting of a porous solid skeleton saturated by a viscous pore-fluid. The material behaviour of the skeleton is assumed to be elasto-viscoplastic. The governing equations are transfered to a weak formulation suitable for the application of the finite element method. Introducing an formulation in terms of the stress response, we define a clear interface between the assembling process and the parallel solver modules. We demonstrate the efficiency of this approach by challenging numerical experiments realized on the Linux Cluster in Chemnitz.
Jauer, P. R.; Gonzalez, W. D.; de Souza Costa, C. L.; Souza, V. M.
2013-12-01
The interaction, transport and conversion of energy between the solar wind and Earth's magnetosphere have been studied for decades through in situ measurements and Magnetohydrodynamics simulation, (MHD). Nevertheless, due to the vast regions of space and nonlinearities of the physical processes there are many questions that still remain without conclusive answers. Currently, the MHD simulation is a powerful tool that helps other means of already existing research, even within its theoretical limitation; it provides information of the space regions where in situ measurements are rare or nonexistent. The aim of this work is the study of energy transfer from the solar wind through the calculation of the divergence of the Poynting vector for the inner regions of the Earth's magnetosphere, especially the magneto tail using 3D global MHD numerical code Space Weather Modelling Framework (SWMF) / (Block Adaptive Tree Solar wind Roe Upwind Scheme) (BATS-R-US), developed by the University of Michigan. We conducted a simulation study for the event that occurred on September 21-27, 1999, for which the peak value of the interplanetary magnetic field was -22 nT, and gave rise to an intense magnetic storm with peak Dst of -160 nT. Furthermore, we compare the results of the power estimated by the model - through the integration of the Poynting vector in rectangular region of the tail, with a domain -130 powerful tool to reproduce the observations with a good degree of reliability.
Rastogi, Richa; Londhe, Ashutosh; Srivastava, Abhishek; Sirasala, Kirannmayi M.; Khonde, Kiran
2017-03-01
In this article, a new scalable 3D Kirchhoff depth migration algorithm is presented on state of the art multicore CPU based cluster. Parallelization of 3D Kirchhoff depth migration is challenging due to its high demand of compute time, memory, storage and I/O along with the need of their effective management. The most resource intensive modules of the algorithm are traveltime calculations and migration summation which exhibit an inherent trade off between compute time and other resources. The parallelization strategy of the algorithm largely depends on the storage of calculated traveltimes and its feeding mechanism to the migration process. The presented work is an extension of our previous work, wherein a 3D Kirchhoff depth migration application for multicore CPU based parallel system had been developed. Recently, we have worked on improving parallel performance of this application by re-designing the parallelization approach. The new algorithm is capable to efficiently migrate both prestack and poststack 3D data. It exhibits flexibility for migrating large number of traces within the available node memory and with minimal requirement of storage, I/O and inter-node communication. The resultant application is tested using 3D Overthrust data on PARAM Yuva II, which is a Xeon E5-2670 based multicore CPU cluster with 16 cores/node and 64 GB shared memory. Parallel performance of the algorithm is studied using different numerical experiments and the scalability results show striking improvement over its previous version. An impressive 49.05X speedup with 76.64% efficiency is achieved for 3D prestack data and 32.00X speedup with 50.00% efficiency for 3D poststack data, using 64 nodes. The results also demonstrate the effectiveness and robustness of the improved algorithm with high scalability and efficiency on a multicore CPU cluster.
Parallel computing simulation of electrical excitation and conduction in the 3D human heart.
Di Yu; Dongping Du; Hui Yang; Yicheng Tu
2014-01-01
A correctly beating heart is important to ensure adequate circulation of blood throughout the body. Normal heart rhythm is produced by the orchestrated conduction of electrical signals throughout the heart. Cardiac electrical activity is the resulted function of a series of complex biochemical-mechanical reactions, which involves transportation and bio-distribution of ionic flows through a variety of biological ion channels. Cardiac arrhythmias are caused by the direct alteration of ion channel activity that results in changes in the AP waveform. In this work, we developed a whole-heart simulation model with the use of massive parallel computing with GPGPU and OpenGL. The simulation algorithm was implemented under several different versions for the purpose of comparisons, including one conventional CPU version and two GPU versions based on Nvidia CUDA platform. OpenGL was utilized for the visualization / interaction platform because it is open source, light weight and universally supported by various operating systems. The experimental results show that the GPU-based simulation outperforms the conventional CPU-based approach and significantly improves the speed of simulation. By adopting modern computer architecture, this present investigation enables real-time simulation and visualization of electrical excitation and conduction in the large and complicated 3D geometry of a real-world human heart.
A new MHD code with adaptive mesh refinement and parallelization for astrophysics
Jiang, R.-L.; Fang, C.; Chen, P.-F.
2012-08-01
A new code, named MAP, is written in FORTRAN language for magnetohydrodynamics (MHD) simulations with the adaptive mesh refinement (AMR) and Message Passing Interface (MPI) parallelization. There are several optional numerical schemes for computing the MHD part, namely, modified Mac Cormack Scheme (MMC), Lax-Friedrichs scheme (LF), and weighted essentially non-oscillatory (WENO) scheme. All of them are second-order, two-step, component-wise schemes for hyperbolic conservative equations. The total variation diminishing (TVD) limiters and approximate Riemann solvers are also equipped. A high resolution can be achieved by the hierarchical block-structured AMR mesh. We use the extended generalized Lagrange multiplier (EGLM) MHD equations to reduce the non-divergence free error produced by the scheme in the magnetic induction equation. The numerical algorithms for the non-ideal terms, e.g., the resistivity and the thermal conduction, are also equipped in the code. The details of the AMR and MPI algorithms are described in the paper.
Energy Technology Data Exchange (ETDEWEB)
Xie, G.; Li, J.; Majer, E.; Zuo, D.
1998-07-01
This paper describes a new 3D parallel GILD electromagnetic (EM) modeling and nonlinear inversion algorithm. The algorithm consists of: (a) a new magnetic integral equation instead of the electric integral equation to solve the electromagnetic forward modeling and inverse problem; (b) a collocation finite element method for solving the magnetic integral and a Galerkin finite element method for the magnetic differential equations; (c) a nonlinear regularizing optimization method to make the inversion stable and of high resolution; and (d) a new parallel 3D modeling and inversion using a global integral and local differential domain decomposition technique (GILD). The new 3D nonlinear electromagnetic inversion has been tested with synthetic data and field data. The authors obtained very good imaging for the synthetic data and reasonable subsurface EM imaging for the field data. The parallel algorithm has high parallel efficiency over 90% and can be a parallel solver for elliptic, parabolic, and hyperbolic modeling and inversion. The parallel GILD algorithm can be extended to develop a high resolution and large scale seismic and hydrology modeling and inversion in the massively parallel computer.
Li, Xujing; Zheng, Weiying
2016-10-01
A new parallel code based on discontinuous Galerkin (DG) method for hyperbolic conservation laws on three dimensional unstructured meshes is developed recently. This code can be used for simulations of MHD equations, which are very important in magnetic confined plasma research. The main challenges in MHD simulations in fusion include the complex geometry of the configurations, such as plasma in tokamaks, the possibly discontinuous solutions and large scale computing. Our new developed code is based on three dimensional unstructured meshes, i.e. tetrahedron. This makes the code flexible to arbitrary geometries. Second order polynomials are used on each element and HWENO type limiter are applied. The accuracy tests show that our scheme reaches the desired three order accuracy and the nonlinear shock test demonstrate that our code can capture the sharp shock transitions. Moreover, One of the advantages of DG compared with the classical finite element methods is that the matrices solved are localized on each element, making it easy for parallelization. Several simulations including the kink instabilities in toroidal geometry will be present here. Chinese National Magnetic Confinement Fusion Science Program 2015GB110003.
Directory of Open Access Journals (Sweden)
Christopher D. Dharmaraj
2009-01-01
Full Text Available Three-dimensional Oximetric Electron Paramagnetic Resonance Imaging using the Single Point Imaging modality generates unpaired spin density and oxygen images that can readily distinguish between normal and tumor tissues in small animals. It is also possible with fast imaging to track the changes in tissue oxygenation in response to the oxygen content in the breathing air. However, this involves dealing with gigabytes of data for each 3D oximetric imaging experiment involving digital band pass filtering and background noise subtraction, followed by 3D Fourier reconstruction. This process is rather slow in a conventional uniprocessor system. This paper presents a parallelization framework using OpenMP runtime support and parallel MATLAB to execute such computationally intensive programs. The Intel compiler is used to develop a parallel C++ code based on OpenMP. The code is executed on four Dual-Core AMD Opteron shared memory processors, to reduce the computational burden of the filtration task significantly. The results show that the parallel code for filtration has achieved a speed up factor of 46.66 as against the equivalent serial MATLAB code. In addition, a parallel MATLAB code has been developed to perform 3D Fourier reconstruction. Speedup factors of 4.57 and 4.25 have been achieved during the reconstruction process and oximetry computation, for a data set with 23×23×23 gradient steps. The execution time has been computed for both the serial and parallel implementations using different dimensions of the data and presented for comparison. The reported system has been designed to be easily accessible even from low-cost personal computers through local internet (NIHnet. The experimental results demonstrate that the parallel computing provides a source of high computational power to obtain biophysical parameters from 3D EPR oximetric imaging, almost in real-time.
Dharmaraj, Christopher D; Thadikonda, Kishan; Fletcher, Anthony R; Doan, Phuc N; Devasahayam, Nallathamby; Matsumoto, Shingo; Johnson, Calvin A; Cook, John A; Mitchell, James B; Subramanian, Sankaran; Krishna, Murali C
2009-01-01
Three-dimensional Oximetric Electron Paramagnetic Resonance Imaging using the Single Point Imaging modality generates unpaired spin density and oxygen images that can readily distinguish between normal and tumor tissues in small animals. It is also possible with fast imaging to track the changes in tissue oxygenation in response to the oxygen content in the breathing air. However, this involves dealing with gigabytes of data for each 3D oximetric imaging experiment involving digital band pass filtering and background noise subtraction, followed by 3D Fourier reconstruction. This process is rather slow in a conventional uniprocessor system. This paper presents a parallelization framework using OpenMP runtime support and parallel MATLAB to execute such computationally intensive programs. The Intel compiler is used to develop a parallel C++ code based on OpenMP. The code is executed on four Dual-Core AMD Opteron shared memory processors, to reduce the computational burden of the filtration task significantly. The results show that the parallel code for filtration has achieved a speed up factor of 46.66 as against the equivalent serial MATLAB code. In addition, a parallel MATLAB code has been developed to perform 3D Fourier reconstruction. Speedup factors of 4.57 and 4.25 have been achieved during the reconstruction process and oximetry computation, for a data set with 23 x 23 x 23 gradient steps. The execution time has been computed for both the serial and parallel implementations using different dimensions of the data and presented for comparison. The reported system has been designed to be easily accessible even from low-cost personal computers through local internet (NIHnet). The experimental results demonstrate that the parallel computing provides a source of high computational power to obtain biophysical parameters from 3D EPR oximetric imaging, almost in real-time.
Energy Technology Data Exchange (ETDEWEB)
Sofronov, I.D.; Voronin, B.L.; Butnev, O.I. [VNIIEF (Russian Federation)] [and others
1997-12-31
The aim of the work performed is to develop a 3D parallel program for numerical calculation of gas dynamics problem with heat conductivity on distributed memory computational systems (CS), satisfying the condition of numerical result independence from the number of processors involved. Two basically different approaches to the structure of massive parallel computations have been developed. The first approach uses the 3D data matrix decomposition reconstructed at temporal cycle and is a development of parallelization algorithms for multiprocessor CS with shareable memory. The second approach is based on using a 3D data matrix decomposition not reconstructed during a temporal cycle. The program was developed on 8-processor CS MP-3 made in VNIIEF and was adapted to a massive parallel CS Meiko-2 in LLNL by joint efforts of VNIIEF and LLNL staffs. A large number of numerical experiments has been carried out with different number of processors up to 256 and the efficiency of parallelization has been evaluated in dependence on processor number and their parameters.
Meléndez, A.; Korenaga, J.; Sallarès, V.; Miniussi, A.; Ranero, C. R.
2015-10-01
We present a new 3-D traveltime tomography code (TOMO3D) for the modelling of active-source seismic data that uses the arrival times of both refracted and reflected seismic phases to derive the velocity distribution and the geometry of reflecting boundaries in the subsurface. This code is based on its popular 2-D version TOMO2D from which it inherited the methods to solve the forward and inverse problems. The traveltime calculations are done using a hybrid ray-tracing technique combining the graph and bending methods. The LSQR algorithm is used to perform the iterative regularized inversion to improve the initial velocity and depth models. In order to cope with an increased computational demand due to the incorporation of the third dimension, the forward problem solver, which takes most of the run time (˜90 per cent in the test presented here), has been parallelized with a combination of multi-processing and message passing interface standards. This parallelization distributes the ray-tracing and traveltime calculations among available computational resources. The code's performance is illustrated with a realistic synthetic example, including a checkerboard anomaly and two reflectors, which simulates the geometry of a subduction zone. The code is designed to invert for a single reflector at a time. A data-driven layer-stripping strategy is proposed for cases involving multiple reflectors, and it is tested for the successive inversion of the two reflectors. Layers are bound by consecutive reflectors, and an initial velocity model for each inversion step incorporates the results from previous steps. This strategy poses simpler inversion problems at each step, allowing the recovery of strong velocity discontinuities that would otherwise be smoothened.
Nakamizo, A.; Tanaka, T.
2006-12-01
Existing global models of the solar-wind/IMF expanding to the Earth's orbit are basically grounded in the idea of "source surface." It is widely accepted that the sector structure and the solar wind speed are primarily controlled by the magnetic field at the source surface and the so-called "expansion factor." On the other hand, 3-D MHD model is still off from practical use because both of scientific and technical problems. One of the former problems is the reproduction of supersonic solar-wind. From the viewpoint of the physics of the solar wind, coronal heating and outward acceleration mechanisms are invoked to explain the supersonic evolution of the solar wind. Since the mechanism responsible for the heating/acceleration is still one of the primary subjects of the physics of the solar wind, many MHD models have taken into account their effects by incorporating additional source terms corresponding to promising candidates such as thermal conductions, radiation losses and wave pressures. However there are few MHD models considering the effect of the expansion factor, which determines the solar-wind speed in the series of source surface models. In this study we newly incorporate the flux tube expansion rate into the MHD equation system including heat source function in the energy equation. Appling the unstructured grid system, we achieved the dense grid spacing at the inner boundary, which enable us to adopt realistic solar magnetic fields, and a size of simulation space of 1AU. Photospheric magnetic field data is used as the inner boundary condition.The simulation results are summarized as: (1) The variation of solar wind speed is well controlled by the structure of magnetic fields at and little above the solar surface and (2) Far above the solar surface, the interface between high and low speed flows evolves to a structure suggestive of CIRs. Comparing the data from simulation with the actual solar wind data obtained by spacecrafts, we will discuss the future
Reactor Dosimetry Applications Using RAPTOR-M3G:. a New Parallel 3-D Radiation Transport Code
Longoni, Gianluca; Anderson, Stanwood L.
2009-08-01
The numerical solution of the Linearized Boltzmann Equation (LBE) via the Discrete Ordinates method (SN) requires extensive computational resources for large 3-D neutron and gamma transport applications due to the concurrent discretization of the angular, spatial, and energy domains. This paper will discuss the development RAPTOR-M3G (RApid Parallel Transport Of Radiation - Multiple 3D Geometries), a new 3-D parallel radiation transport code, and its application to the calculation of ex-vessel neutron dosimetry responses in the cavity of a commercial 2-loop Pressurized Water Reactor (PWR). RAPTOR-M3G is based domain decomposition algorithms, where the spatial and angular domains are allocated and processed on multi-processor computer architectures. As compared to traditional single-processor applications, this approach reduces the computational load as well as the memory requirement per processor, yielding an efficient solution methodology for large 3-D problems. Measured neutron dosimetry responses in the reactor cavity air gap will be compared to the RAPTOR-M3G predictions. This paper is organized as follows: Section 1 discusses the RAPTOR-M3G methodology; Section 2 describes the 2-loop PWR model and the numerical results obtained. Section 3 addresses the parallel performance of the code, and Section 4 concludes this paper with final remarks and future work.
Chiang, Mao-Hsiung; Lin, Hao-Ting; Hou, Chien-Lun
2011-01-01
In this paper, a stereo vision 3D position measurement system for a three-axial pneumatic parallel mechanism robot arm is presented. The stereo vision 3D position measurement system aims to measure the 3D trajectories of the end-effector of the robot arm. To track the end-effector of the robot arm, the circle detection algorithm is used to detect the desired target and the SAD algorithm is used to track the moving target and to search the corresponding target location along the conjugate epipolar line in the stereo pair. After camera calibration, both intrinsic and extrinsic parameters of the stereo rig can be obtained, so images can be rectified according to the camera parameters. Thus, through the epipolar rectification, the stereo matching process is reduced to a horizontal search along the conjugate epipolar line. Finally, 3D trajectories of the end-effector are computed by stereo triangulation. The experimental results show that the stereo vision 3D position measurement system proposed in this paper can successfully track and measure the fifth-order polynomial trajectory and sinusoidal trajectory of the end-effector of the three- axial pneumatic parallel mechanism robot arm.
Parallel rapid relaxation inversion of 3D magnetotelluric data%大地电磁三维快速松弛反演并行算法研究
Institute of Scientific and Technical Information of China (English)
林昌洪; 谭捍东; 佟拓
2009-01-01
We implement a parallel algorithm with the advantage of MPI (Message Passing Interface) to speed up the rapid relaxation inversion for 3D magnetotelluric data. We test the parallel rapid relaxation algorithm with synthetic and real data. The execution efficiency of the algorithm for several different situations is also compared. The results 'indicate that the parallel rapid relaxation algorithm for 3D magnetotelluric inversion, is effective. This parallel algorithm implemented on a common PC promotes the practical application of 3D magnetotelluric inversion and can be suitable for the other geophysical 3D modeling and inversion.
Focusing optics of a parallel beam CCD optical tomography apparatus for 3D radiation gel dosimetry.
Krstajić, Nikola; Doran, Simon J
2006-04-21
Optical tomography of gel dosimeters is a promising and cost-effective avenue for quality control of radiotherapy treatments such as intensity-modulated radiotherapy (IMRT). Systems based on a laser coupled to a photodiode have so far shown the best results within the context of optical scanning of radiosensitive gels, but are very slow ( approximately 9 min per slice) and poorly suited to measurements that require many slices. Here, we describe a fast, three-dimensional (3D) optical computed tomography (optical-CT) apparatus, based on a broad, collimated beam, obtained from a high power LED and detected by a charged coupled detector (CCD). The main advantages of such a system are (i) an acquisition speed approximately two orders of magnitude higher than a laser-based system when 3D data are required, and (ii) a greater simplicity of design. This paper advances our previous work by introducing a new design of focusing optics, which take information from a suitably positioned focal plane and project an image onto the CCD. An analysis of the ray optics is presented, which explains the roles of telecentricity, focusing, acceptance angle and depth-of-field (DOF) in the formation of projections. A discussion of the approximation involved in measuring the line integrals required for filtered backprojection reconstruction is given. Experimental results demonstrate (i) the effect on projections of changing the position of the focal plane of the apparatus, (ii) how to measure the acceptance angle of the optics, and (iii) the ability of the new scanner to image both absorbing and scattering gel phantoms. The quality of reconstructed images is very promising and suggests that the new apparatus may be useful in a clinical setting for fast and accurate 3D dosimetry.
Schultz, A.
2010-12-01
3D forward solvers lie at the core of inverse formulations used to image the variation of electrical conductivity within the Earth's interior. This property is associated with variations in temperature, composition, phase, presence of volatiles, and in specific settings, the presence of groundwater, geothermal resources, oil/gas or minerals. The high cost of 3D solutions has been a stumbling block to wider adoption of 3D methods. Parallel algorithms for modeling frequency domain 3D EM problems have not achieved wide scale adoption, with emphasis on fairly coarse grained parallelism using MPI and similar approaches. The communications bandwidth as well as the latency required to send and receive network communication packets is a limiting factor in implementing fine grained parallel strategies, inhibiting wide adoption of these algorithms. Leading Graphics Processor Unit (GPU) companies now produce GPUs with hundreds of GPU processor cores per die. The footprint, in silicon, of the GPU's restricted instruction set is much smaller than the general purpose instruction set required of a CPU. Consequently, the density of processor cores on a GPU can be much greater than on a CPU. GPUs also have local memory, registers and high speed communication with host CPUs, usually through PCIe type interconnects. The extremely low cost and high computational power of GPUs provides the EM geophysics community with an opportunity to achieve fine grained (i.e. massive) parallelization of codes on low cost hardware. The current generation of GPUs (e.g. NVidia Fermi) provides 3 billion transistors per chip die, with nearly 500 processor cores and up to 6 GB of fast (DDR5) GPU memory. This latest generation of GPU supports fast hardware double precision (64 bit) floating point operations of the type required for frequency domain EM forward solutions. Each Fermi GPU board can sustain nearly 1 TFLOP in double precision, and multiple boards can be installed in the host computer system. We
High-Performance Computation of Distributed-Memory Parallel 3D Voronoi and Delaunay Tessellation
Energy Technology Data Exchange (ETDEWEB)
Peterka, Tom; Morozov, Dmitriy; Phillips, Carolyn
2014-11-14
Computing a Voronoi or Delaunay tessellation from a set of points is a core part of the analysis of many simulated and measured datasets: N-body simulations, molecular dynamics codes, and LIDAR point clouds are just a few examples. Such computational geometry methods are common in data analysis and visualization; but as the scale of simulations and observations surpasses billions of particles, the existing serial and shared-memory algorithms no longer suffice. A distributed-memory scalable parallel algorithm is the only feasible approach. The primary contribution of this paper is a new parallel Delaunay and Voronoi tessellation algorithm that automatically determines which neighbor points need to be exchanged among the subdomains of a spatial decomposition. Other contributions include periodic and wall boundary conditions, comparison of our method using two popular serial libraries, and application to numerous science datasets.
Calibration of 3-d.o.f. Translational Parallel Manipulators Using Leg Observations
Pashkevich, Anatoly; Wenger, Philippe; Gomolitsky, Roman
2009-01-01
The paper proposes a novel approach for the geometrical model calibration of quasi-isotropic parallel kinematic mechanisms of the Orthoglide family. It is based on the observations of the manipulator leg parallelism during motions between the specific test postures and employs a low-cost measuring system composed of standard comparator indicators attached to the universal magnetic stands. They are sequentially used for measuring the deviation of the relevant leg location while the manipulator moves the TCP along the Cartesian axes. Using the measured differences, the developed algorithm estimates the joint offsets and the leg lengths that are treated as the most essential parameters. Validity of the proposed calibration technique is confirmed by the experimental results.
Comparison of parallel and spiral tagged MRI geometries in estimation of 3-D myocardial strains
Tustison, Nicholas J.; Amini, Amir A.
2005-04-01
Research involving the quantification of left ventricular myocardial strain from cardiac tagged magnetic resonance imaging (MRI) is extensive. Two different imaging geometries are commonly employed by these methodologies to extract longitudinal deformation. We refer to these imaging geometries as either parallel or spiral. In the spiral configuration, four long-axis tagged image slices which intersect along the long-axis of the left ventricle are collected and in the parallel configuration, contiguous tagged long-axis images spanning the width of the left ventricle between the lateral wall and the septum are collected. Despite the number of methodologies using either or both imaging configurations, to date, no comparison has been made to determine which geometry results in more accurate estimation of strains. Using previously published work in which left ventricular myocardial strain is calculated from 4-D anatomical NURBS models, we compare the strain calculated from these two imaging geometries in both simulated tagged MR images for which ground truth strain is available as well as in in vivo data. It is shown that strains calculated using the parallel imaging protocol are more accurate than that calculated using spiral protocol.
Chu, Chunlei
2009-01-01
The major performance bottleneck of the parallel Fourier method on distributed memory systems is the network communication cost. In this study, we investigate the potential of using non‐blocking all‐to‐all communications to solve this problem by overlapping computation and communication. We present the runtime comparison of a 3D seismic modeling problem with the Fourier method using non‐blocking and blocking calls, respectively, on a Linux cluster. The data demonstrate that a performance improvement of up to 40% can be achieved by simply changing blocking all‐to‐all communication calls to non‐blocking ones to introduce the overlapping capability. A 3D reverse‐time migration result is also presented as an extension to the modeling work based on non‐blocking collective communications.
Design and Sensitivity Analysis Simulation of a Novel 3D Force Sensor Based on a Parallel Mechanism
Directory of Open Access Journals (Sweden)
Eileen Chih-Ying Yang
2016-12-01
Full Text Available Automated force measurement is one of the most important technologies in realizing intelligent automation systems. However, while many methods are available for micro-force sensing, measuring large three-dimensional (3D forces and loads remains a significant challenge. Accordingly, the present study proposes a novel 3D force sensor based on a parallel mechanism. The transformation function and sensitivity index of the proposed sensor are analytically derived. The simulation results show that the sensor has a larger effective measuring capability than traditional force sensors. Moreover, the sensor has a greater measurement sensitivity for horizontal forces than for vertical forces over most of the measurable force region. In other words, compared to traditional force sensors, the proposed sensor is more sensitive to shear forces than normal forces.
Sparse Approximations of the Schur Complement for Parallel Algebraic Hybrid Solvers in 3D
Institute of Scientific and Technical Information of China (English)
L.Giraud; A.Haidar; Y.Saad
2010-01-01
In this paper we study the computational performance of variants of an al-gebraic additive Schwarz preconditioner for the Schur complement for the solution of large sparse linear systems. In earlier works, the local Schur complements were com- puted exactly using a sparse direct solver. The robustness of the preconditioner comes at the price of this memory and time intensive computation that is the main bottleneck of the approach for tackling huge problems. In this work we investigate the use of sparse approximation of the dense local Schur complements. These approximations are com-puted using a partial incomplete LU factorization. Such a numerical calculation is the core of the multi-level incomplete factorization such as the one implemented in pARMS. The numerical and computing performance of the new numerical scheme is illustrated on a set of large 3D convection-diffusion problems;preliminary experiments on linear systems arising from structural mechanics are also reported.
Institute of Scientific and Technical Information of China (English)
Ting Lei; Zhenhan Yao; Haitao Wang; Pengbo Wang
2006-01-01
In this paper, an adaptive boundary element method (BEM) is presented for solving 3-D elasticity problems. The numerical scheme is accelerated by the new version of fast multipole method (FMM) and parallelized on distributed memory architectures. The resulting solver is applied to the study of representative volume element (RVE)for short fiberreinforced composites with complex inclusion geometry. Numerical examples performed on a 32-processor cluster show that the proposed method is both accurate and efficient. And can solve problems of large size that are challenging to existing state-of-the-art domain methods.
Massively Parallel Linear Stability Analysis with P_ARPACK for 3D Fluid Flow Modeled with MPSalsa
Energy Technology Data Exchange (ETDEWEB)
Lehoucq, R.B.; Salinger, A.G.
1998-10-13
We are interested in the stability of three-dimensional fluid flows to small dkturbances. One computational approach is to solve a sequence of large sparse generalized eigenvalue problems for the leading modes that arise from discretizating the differential equations modeling the flow. The modes of interest are the eigenvalues of largest real part and their associated eigenvectors. We discuss our work to develop an effi- cient and reliable eigensolver for use by the massively parallel simulation code MPSalsa. MPSalsa allows simulation of complex 3D fluid flow, heat transfer, and mass transfer with detailed bulk fluid and surface chemical reaction kinetics.
Institute of Scientific and Technical Information of China (English)
Zhang Laiping; Zhao Zhong; Chang Xinghua; He Xin
2013-01-01
A hybrid grid generation technique and a multigrid/parallel algorithm are presented in this paper for turbulence flow simulations over three-dimensional (3D) complex geometries.The hybrid grid generation technique is based on an agglomeration method of anisotropic tetrahedrons.Firstly,the complex computational domain is covered by pure tetrahedral grids,in which anisotropic tetrahedrons are adopted to discrete the boundary layer and isotropic tetrahedrons in the outer field.Then,the anisotropic tetrahedrons in the boundary layer are agglomerated to generate prismatic grids.The agglomeration method can improve the grid quality in boundary layer and reduce the grid quantity to enhance the numerical accuracy and efficiency.In order to accelerate the convergence history,a multigrid/parallel algorithm is developed also based on anisotropic agglomeration approach.The numerical results demonstrate the excellent accelerating capability of this multigrid method.
Fast and Precise 3D Computation of Capacitance of Parallel Narrow Beam MEMS Structures
Majumdar, N
2007-01-01
Efficient design and performance of electrically actuated MEMS devices necessitate accurate estimation of electrostatic forces on the MEMS structures. This in turn requires thorough study of the capacitance of the structures and finally the charge density distribution on the various surfaces of a device. In this work, nearly exact BEM solutions have been provided in order to estimate these properties of a parallel narrow beam structure found in MEMS devices. The effect of three-dimensionality, which is an important aspect for these structures, and associated fringe fields have been studied in detail. A reasonably large parameter space has been covered in order to follow the variation of capacitance with various geometric factors. The present results have been compared with those obtained using empirical parametrized expressions keeping in view the requirement of the speed of computation. The limitations of the empirical expressions have been pointed out and possible approaches of their improvement have been d...
A Case Study of a Hybrid Parallel 3D Surface Rendering Graphics Architecture
DEFF Research Database (Denmark)
Holten-Lund, Hans Erik; Madsen, Jan; Pedersen, Steen
1997-01-01
This paper presents a case study in the design strategy used inbuilding a graphics computer, for drawing very complex 3Dgeometric surfaces. The goal is to build a PC based computer systemcapable of handling surfaces built from about 2 million triangles, andto be able to render a perspective view...... of these on a computer displayat interactive frame rates, i.e. processing around 50 milliontriangles per second. The paper presents a hardware/softwarearchitecture called HPGA (Hybrid Parallel Graphics Architecture) whichis likely to be able to carry out this task. The case study focuses ontechniques to increase...... the clock frequency as well as the parallelismof the system. This paper focuses on the back-end graphics pipeline,which is responsible for rasterizing triangles.%with a practically linear increase in performance. A pure software implementation of the proposed architecture iscurrently able to process 300...
Parallel deconvolution of large 3D images obtained by confocal laser scanning microscopy.
Pawliczek, Piotr; Romanowska-Pawliczek, Anna; Soltys, Zbigniew
2010-03-01
Various deconvolution algorithms are often used for restoration of digital images. Image deconvolution is especially needed for the correction of three-dimensional images obtained by confocal laser scanning microscopy. Such images suffer from distortions, particularly in the Z dimension. As a result, reliable automatic segmentation of these images may be difficult or even impossible. Effective deconvolution algorithms are memory-intensive and time-consuming. In this work, we propose a parallel version of the well-known Richardson-Lucy deconvolution algorithm developed for a system with distributed memory and implemented with the use of Message Passing Interface (MPI). It enables significantly more rapid deconvolution of two-dimensional and three-dimensional images by efficiently splitting the computation across multiple computers. The implementation of this algorithm can be used on professional clusters provided by computing centers as well as on simple networks of ordinary PC machines.
Directory of Open Access Journals (Sweden)
Hao-Ting Lin
2011-12-01
Full Text Available This study aimed to develop a novel 3D parallel mechanism robot driven by three vertical-axial pneumatic actuators with a stereo vision system for path tracking control. The mechanical system and the control system are the primary novel parts for developing a 3D parallel mechanism robot. In the mechanical system, a 3D parallel mechanism robot contains three serial chains, a fixed base, a movable platform and a pneumatic servo system. The parallel mechanism are designed and analyzed first for realizing a 3D motion in the X-Y-Z coordinate system of the robot’s end-effector. The inverse kinematics and the forward kinematics of the parallel mechanism robot are investigated by using the Denavit-Hartenberg notation (D-H notation coordinate system. The pneumatic actuators in the three vertical motion axes are modeled. In the control system, the Fourier series-based adaptive sliding-mode controller with H∞ tracking performance is used to design the path tracking controllers of the three vertical servo pneumatic actuators for realizing 3D path tracking control of the end-effector. Three optical linear scales are used to measure the position of the three pneumatic actuators. The 3D position of the end-effector is then calculated from the measuring position of the three pneumatic actuators by means of the kinematics. However, the calculated 3D position of the end-effector cannot consider the manufacturing and assembly tolerance of the joints and the parallel mechanism so that errors between the actual position and the calculated 3D position of the end-effector exist. In order to improve this situation, sensor collaboration is developed in this paper. A stereo vision system is used to collaborate with the three position sensors of the pneumatic actuators. The stereo vision system combining two CCD serves to measure the actual 3D position of the end-effector and calibrate the error between the actual and the calculated 3D position of the end
Chiang, Mao-Hsiung; Lin, Hao-Ting
2011-01-01
This study aimed to develop a novel 3D parallel mechanism robot driven by three vertical-axial pneumatic actuators with a stereo vision system for path tracking control. The mechanical system and the control system are the primary novel parts for developing a 3D parallel mechanism robot. In the mechanical system, a 3D parallel mechanism robot contains three serial chains, a fixed base, a movable platform and a pneumatic servo system. The parallel mechanism are designed and analyzed first for realizing a 3D motion in the X-Y-Z coordinate system of the robot's end-effector. The inverse kinematics and the forward kinematics of the parallel mechanism robot are investigated by using the Denavit-Hartenberg notation (D-H notation) coordinate system. The pneumatic actuators in the three vertical motion axes are modeled. In the control system, the Fourier series-based adaptive sliding-mode controller with H(∞) tracking performance is used to design the path tracking controllers of the three vertical servo pneumatic actuators for realizing 3D path tracking control of the end-effector. Three optical linear scales are used to measure the position of the three pneumatic actuators. The 3D position of the end-effector is then calculated from the measuring position of the three pneumatic actuators by means of the kinematics. However, the calculated 3D position of the end-effector cannot consider the manufacturing and assembly tolerance of the joints and the parallel mechanism so that errors between the actual position and the calculated 3D position of the end-effector exist. In order to improve this situation, sensor collaboration is developed in this paper. A stereo vision system is used to collaborate with the three position sensors of the pneumatic actuators. The stereo vision system combining two CCD serves to measure the actual 3D position of the end-effector and calibrate the error between the actual and the calculated 3D position of the end-effector. Furthermore, to
Reuter, K.; Jenko, F.; Forest, C. B.; Bayliss, R. A.
2008-08-01
A parallel implementation of a nonlinear pseudo-spectral MHD code for the simulation of turbulent dynamos in spherical geometry is reported. It employs a dual domain decomposition technique in both real and spectral space. It is shown that this method shows nearly ideal scaling going up to 128 CPUs on Beowulf-type clusters with fast interconnect. Furthermore, the potential of exploiting single precision arithmetic on standard x86 processors is examined. It is pointed out that the MHD code thereby achieves a maximum speedup of 1.7, whereas the validity of the computations is still granted. The combination of both measures will allow for the direct numerical simulation of highly turbulent cases ( 1500
Cai, Hongzhu; Hu, Xiangyun; Li, Jianhui; Endo, Masashi; Xiong, Bin
2017-02-01
We solve the 3D controlled-source electromagnetic (CSEM) problem using the edge-based finite element method. The modeling domain is discretized using unstructured tetrahedral mesh. We adopt the total field formulation for the quasi-static variant of Maxwell's equation and the computation cost to calculate the primary field can be saved. We adopt a new boundary condition which approximate the total field on the boundary by the primary field corresponding to the layered earth approximation of the complicated conductivity model. The primary field on the modeling boundary is calculated using fast Hankel transform. By using this new type of boundary condition, the computation cost can be reduced significantly and the modeling accuracy can be improved. We consider that the conductivity can be anisotropic. We solve the finite element system of equations using a parallelized multifrontal solver which works efficiently for multiple source and large scale electromagnetic modeling.
Hayek, W.; Asplund, M.; Carlsson, M.; Trampedach, R.; Collet, R.; Gudiksen, B. V.; Hansteen, V. H.; Leenaarts, J.
2010-07-01
Aims: We present the implementation of a radiative transfer solver with coherent scattering in the new BIFROST code for radiative magneto-hydrodynamical (MHD) simulations of stellar surface convection. The code is fully parallelized using MPI domain decomposition, which allows for large grid sizes and improved resolution of hydrodynamical structures. We apply the code to simulate the surface granulation in a solar-type star, ignoring magnetic fields, and investigate the importance of coherent scattering for the atmospheric structure. Methods: A scattering term is added to the radiative transfer equation, requiring an iterative computation of the radiation field. We use a short-characteristics-based Gauss-Seidel acceleration scheme to compute radiative flux divergences for the energy equation. The effects of coherent scattering are tested by comparing the temperature stratification of three 3D time-dependent hydrodynamical atmosphere models of a solar-type star: without scattering, with continuum scattering only, and with both continuum and line scattering. Results: We show that continuum scattering does not have a significant impact on the photospheric temperature structure for a star like the Sun. Including scattering in line-blanketing, however, leads to a decrease of temperatures by about 350 K below log10 τ5000 ⪉ -4. The effect is opposite to that of 1D hydrostatic models in radiative equilibrium, where scattering reduces the cooling effect of strong LTE lines in the higher layers of the photosphere. Coherent line scattering also changes the temperature distribution in the high atmosphere, where we observe stronger fluctuations compared to a treatment of lines as true absorbers.
Wang, Jin; Zhang, Cao; Katz, Joseph
2016-11-01
A PIV based method to reconstruct the volumetric pressure field by direct integration of the 3D material acceleration directions has been developed. Extending the 2D virtual-boundary omni-directional method (Omni2D, Liu & Katz, 2013), the new 3D parallel-line omni-directional method (Omni3D) integrates the material acceleration along parallel lines aligned in multiple directions. Their angles are set by a spherical virtual grid. The integration is parallelized on a Tesla K40c GPU, which reduced the computing time from three hours to one minute for a single realization. To validate its performance, this method is utilized to calculate the 3D pressure fields in isotropic turbulence and channel flow using the JHU DNS Databases (http://turbulence.pha.jhu.edu). Both integration of the DNS acceleration as well as acceleration from synthetic 3D particles are tested. Results are compared to other method, e.g. solution to the Pressure Poisson Equation (e.g. PPE, Ghaemi et al., 2012) with Bernoulli based Dirichlet boundary conditions, and the Omni2D method. The error in Omni3D prediction is uniformly low, and its sensitivity to acceleration errors is local. It agrees with the PPE/Bernoulli prediction away from the Dirichlet boundary. The Omni3D method is also applied to experimental data obtained using tomographic PIV, and results are correlated with deformation of a compliant wall. ONR.
Large Scale Earth’s Bow Shock with Northern IMF as Simulated by PIC Code in Parallel with MHD Model
Indian Academy of Sciences (India)
Suleiman Baraka
2016-06-01
In this paper, we propose a 3D kinetic model (particle-in-cell, PIC) for the description of the large scale Earth’s bow shock. The proposed version is stable and does not require huge or extensive computer resources. Because PIC simulations work with scaled plasma and field parameters, we also propose to validate our code by comparing its results with the available MHD simulations under same scaled solar wind (SW) and (IMF) conditions. We report new results from the two models. In both codes the Earth’s bow shock position is found to be $\\approx 14.8 R_{{\\rm E}}$ along the Sun–Earth line, and $\\approx 29 R_{{\\rm E}}$ on the dusk side. Those findings are consistent with past in situ observations. Both simulations reproduce the theoretical jump conditions at the shock. However, the PIC code density and temperature distributions are inflated and slightly shifted sunward when compared to the MHD results. Kinetic electron motions and reflected ions upstream may cause this sunward shift. Species distributions in the foreshock region are depicted within the transition of the shock (measured $\\approx$2$c/\\omega_{pi}$ for $ \\Theta_{Bn}=90^{\\circ}$ and $M_{{\\rm MS}} = 4.7 $) and in the downstream. The size of the foot jump in the magnetic field at the shock is measured to be ($1.7 c/ \\omega_{pi} $). In the foreshocked region, the thermal velocity is found equal to 213 km $s^{−1}$ at $15R_{{\\rm E}}$ and is equal to $63 km s^{-1}$ at $12 R_{{\\rm E}}$ (magnetosheath region). Despite the large cell size of the current version of the PIC code, it is powerful to retain macrostructure of planets magnetospheres in very short time, thus it can be used for pedagogical test purposes. It is also likely complementary with MHD to deepen our understanding of the large scale magnetosphere.
Large Scale Earth's Bow Shock with Northern IMF as simulated by PIC code in parallel with MHD model
Baraka, Suleiman M
2016-01-01
In this paper, we propose a 3D kinetic model (Particle-in-Cell PIC ) for the description of the large scale Earth's bow shock. The proposed version is stable and does not require huge or extensive computer resources. Because PIC simulations work with scaled plasma and field parameters, we also propose to validate our code by comparing its results with the available MHD simulations under same scaled Solar wind ( SW ) and ( IMF ) conditions. We report new results from the two models. In both codes the Earth's bow shock position is found to be ~14.8 RE along the Sun-Earth line, and ~ 29 RE on the dusk side. Those findings are consistent with past in situ observations. Both simulations reproduce the theoretical jump conditions at the shock. However, the PIC code density and temperature distributions are inflated and slightly shifted sunward when compared to the MHD results. Kinetic electron motions and reflected ions upstream may cause this sunward shift. Species distributions in the foreshock region are depicted...
Energy Technology Data Exchange (ETDEWEB)
2016-06-20
AE3D solves for the shear Alfven eigenmodes and eigenfrequencies in a torodal magnetic fusion confinement device. The configuration can be either 2D (e.g. tokamak, reversed field pinch) or 3D (e.g. stellarator, helical reversed field pinch, tokamak with ripple). The equations solved are based on a reduced MHD model and sound wave coupling effects are not currently included.
3D Equilibrium Reconstructions in DIII-D
Lao, L. L.; Ferraro, N. W.; Strait, E. J.; Turnbull, A. D.; King, J. D.; Hirshman, H. P.; Lazarus, E. A.; Sontag, A. C.; Hanson, J.; Trevisan, G.
2013-10-01
Accurate and efficient 3D equilibrium reconstruction is needed in tokamaks for study of 3D magnetic field effects on experimentally reconstructed equilibrium and for analysis of MHD stability experiments with externally imposed magnetic perturbations. A large number of new magnetic probes have been recently installed in DIII-D to improve 3D equilibrium measurements and to facilitate 3D reconstructions. The V3FIT code has been in use in DIII-D to support 3D reconstruction and the new magnetic diagnostic design. V3FIT is based on the 3D equilibrium code VMEC that assumes nested magnetic surfaces. V3FIT uses a pseudo-Newton least-square algorithm to search for the solution vector. In parallel, the EFIT equilibrium reconstruction code is being extended to allow for 3D effects using a perturbation approach based on an expansion of the MHD equations. EFIT uses the cylindrical coordinate system and can include the magnetic island and stochastic effects. Algorithms are being developed to allow EFIT to reconstruct 3D perturbed equilibria directly making use of plasma response to 3D perturbations from the GATO, MARS-F, or M3D-C1 MHD codes. DIII-D 3D reconstruction examples using EFIT and V3FIT and the new 3D magnetic data will be presented. Work supported in part by US DOE under DE-FC02-04ER54698, DE-FG02-95ER54309 and DE-AC05-06OR23100.
Parallel high-order methods for deterministic and stochastic CFD and MHD problems
Lin, Guang
In computational fluid dynamics (CFD) and magneto-hydro-dynamics (MHD) applications there exist many sources of uncertainty, arising from imprecise material properties, random geometric roughness, noise in boundary/initial condition, transport coefficients, or external forcing. In this dissertation, stochastic perturbation analysis and stochastic simulations based on multi-element generalized polynomial chaos (ME-gPC) are employed synergistically, to solve large-scale stochastic CFD and MHD problems with many random inputs. Stochastic analytical solutions are obtained to serve in verifying the accuracy of the numerical results for small random inputs, but also in shedding light into the physical mechanisms and scaling laws associated with the structural changes of flow field due to random inputs. First, the Karhuen-Loeve (K-L) decomposition is presented; it is an efficient technique for modeling the random inputs. How to represent the covariance kernel for different boundary constrains is an important issue. A new covariance matrix for an one-dimensional fourth-order random process with four boundary constraints is derived analytically, and it is used to model random rough wedge surfaces subjected to supersonic flow. The algorithm of ME-gPC is presented next. ME-gPC is based on the decomposition of random space and spectral expansions. To efficiently solve complex stochastic fluid dynamical systems, e.g., stochastic compressible flows, the ME-gPC method is extended to multi-element probabilistic collocation method on sparse grids (ME-PCM) by coupling it with the probabilistic collocation projection. By using the sparse grid points, ME-PCM can handle random process with large number of random dimensions, with relative lower computational cost, compared to full tensor products. Several prototype problems in compressible and MHD flows are investigated by employing the aforementioned high-order stochastic numerical methods in conjunction with the stochastic
Directory of Open Access Journals (Sweden)
Alireza AZIMI
2014-07-01
Full Text Available In this paper the velocity fields associated with the two-dimensional unsteady magnetohydrodynamic (MHD flow of a viscous fluid between moving parallel plates have been investigated. The governing Navier-Stokes equations for the flow are reduced to a fourth order nonlinear ordinary differential equation. The Homotopy Perturbation Method (HPM and Reconstruction of Variational Iteration Method (RVIM have been used to achieve analytical solutions. The obtained approximate results have been compared with numerical ones and results from pervious works in some cases. It has been shown that the current study is accurate and validated and can be used for other nonlinear cases.doi:10.14456/WJST.2014.70
Directory of Open Access Journals (Sweden)
Mohammad H. Yazdi
2011-12-01
Full Text Available This paper presents a new design of open parallel microchannels embedded within a permeable continuous moving surface due to reduction of exergy losses in magnetohydrodynamic (MHD flow at a prescribed surface temperature (PST. The entropy generation number is formulated by an integral of the local rate of entropy generation along the width of the surface based on an equal number of microchannels and no-slip gaps interspersed between those microchannels. The velocity, the temperature, the velocity gradient and the temperature gradient adjacent to the wall are substituted into this equation resulting from the momentum and energy equations obtained numerically by an explicit Runge-Kutta (4, 5 formula, the Dormand-Prince pair and shooting method. The entropy generation number, as well as the Bejan number, for various values of the involved parameters of the problem are also presented and discussed in detail.
Marx, Alain; Lütjens, Hinrich
2017-03-01
A hybrid MPI/OpenMP parallel version of the XTOR-2F code [Lütjens and Luciani, J. Comput. Phys. 229 (2010) 8130] solving the two-fluid MHD equations in full tokamak geometry by means of an iterative Newton-Krylov matrix-free method has been developed. The present work shows that the code has been parallelized significantly despite the numerical profile of the problem solved by XTOR-2F, i.e. a discretization with pseudo-spectral representations in all angular directions, the stiffness of the two-fluid stability problem in tokamaks, and the use of a direct LU decomposition to invert the physical pre-conditioner at every Krylov iteration of the solver. The execution time of the parallelized version is an order of magnitude smaller than the sequential one for low resolution cases, with an increasing speedup when the discretization mesh is refined. Moreover, it allows to perform simulations with higher resolutions, previously forbidden because of memory limitations.
Institute of Scientific and Technical Information of China (English)
刘柏鑫; 任婷婷
2016-01-01
研究三维不可压双流体MHD方程Cauchy问题，给出该问题在小初值条件下解的整体存在性结果。%This paper deals with the Cauchy pronlems of 3D two-fluid MHD model. The global well-posedness is obtained under the two-fluid MHD model.
Parallel GRISYS/Power Challenge System Version 1.0 and 3D Prestack Depth Migration Package
Institute of Scientific and Technical Information of China (English)
Zhao Zhenwen
1995-01-01
@@ Based on the achievements and experience of seismic data parallel processing made in the past years by Beijing Global Software Corporation (GS) of CNPC, Parallel GRISYS/Power Challenge seismic data processing system version 1.0 has been cooperatively developed and integrated on the Power Challenge computer by GS, SGI (USA) and Shuangyuan Company of Academia Sinica.
Directory of Open Access Journals (Sweden)
Gabriele Jost
2010-01-01
Full Text Available Today most systems in high-performance computing (HPC feature a hierarchical hardware design: shared-memory nodes with several multi-core CPUs are connected via a network infrastructure. When parallelizing an application for these architectures it seems natural to employ a hierarchical programming model such as combining MPI and OpenMP. Nevertheless, there is the general lore that pure MPI outperforms the hybrid MPI/OpenMP approach. In this paper, we describe the hybrid MPI/OpenMP parallelization of IR3D (Incompressible Realistic 3-D code, a full-scale real-world application, which simulates the environmental effects on the evolution of vortices trailing behind control surfaces of underwater vehicles. We discuss performance, scalability and limitations of the pure MPI version of the code on a variety of hardware platforms and show how the hybrid approach can help to overcome certain limitations.
Heat Transfer on Steady MHD rotating flow through porous medium in a parallel plate channel
Directory of Open Access Journals (Sweden)
Dr. G. Prabhakara Rao,
2015-04-01
Full Text Available We discussed the combined effects of radiative heat transfer and a transverse magnetic field on steady rotating flow of an electrically conducting optically thin fluid through a porous medium in a parallel plate channel and non-uniform temperatures at the walls. The analytical solutions are obtained from coupled nonlinear partial differential equations for the problem. The computational results are discussed quantitatively with the aid of the dimensionless parameters entering in the solution.
Energy Technology Data Exchange (ETDEWEB)
Hayes, J C; Norman, M
1999-10-28
This report details an investigation into the efficacy of two approaches to solving the radiation diffusion equation within a radiation hydrodynamic simulation. Because leading-edge scientific computing platforms have evolved from large single-node vector processors to parallel aggregates containing tens to thousands of individual CPU's, the ability of an algorithm to maintain high compute efficiency when distributed over a large array of nodes is critically important. The viability of an algorithm thus hinges upon the tripartite question of numerical accuracy, total time to solution, and parallel efficiency.
Directory of Open Access Journals (Sweden)
G. Domairry
2009-01-01
Full Text Available An analysis has been performed to study magneto-hydrodynamic (MHD squeeze flow between two parallel infinite disks where one disk is impermeable and the other is porous with either suction or injection of the fluid. We investigate the combined effect of inertia, electromagnetic forces, and suction or injection. With the introduction of a similarity transformation, the continuity and momentum equations governing the squeeze flow are reduced to a single, nonlinear, ordinary differential equation. An approximate solution of the equation subject to the appropriate boundary conditions is derived using the homotopy perturbation method (HPM and compared with the direct numerical solution (NS. Results showing the effect of squeeze Reynolds number, Hartmann number and the suction/injection parameter on the axial and radial velocity distributions are presented and discussed. The approximate solution is found to be highly accurate for the ranges of parameters investigated. Because of its simplicity, versatility and high accuracy, the method can be applied to study linear and nonlinear boundary value problems arising in other engineering applications.
Sung, Chul
2013-08-01
Accurate estimation of neuronal count and distribution is central to the understanding of the organization and layout of cortical maps in the brain, and changes in the cell population induced by brain disorders. High-throughput 3D microscopy techniques such as Knife-Edge Scanning Microscopy (KESM) are enabling whole-brain survey of neuronal distributions. Data from such techniques pose serious challenges to quantitative analysis due to the massive, growing, and sparsely labeled nature of the data. In this paper, we present a scalable, incremental learning algorithm for cell body detection that can address these issues. Our algorithm is computationally efficient (linear mapping, non-iterative) and does not require retraining (unlike gradient-based approaches) or retention of old raw data (unlike instance-based learning). We tested our algorithm on our rat brain Nissl data set, showing superior performance compared to an artificial neural network-based benchmark, and also demonstrated robust performance in a scenario where the data set is rapidly growing in size. Our algorithm is also highly parallelizable due to its incremental nature, and we demonstrated this empirically using a MapReduce-based implementation of the algorithm. We expect our scalable, incremental learning approach to be widely applicable to medical imaging domains where there is a constant flux of new data. © 2013 IEEE.
Freniere, Cole; Pathak, Ashish; Raessi, Mehdi
2016-11-01
Ocean Wave Energy Converters (WECs) are devices that convert energy from ocean waves into electricity. To aid in the design of WECs, an advanced computational framework has been developed which has advantages over conventional methods. The computational framework simulates the performance of WECs in a virtual wave tank by solving the full Navier-Stokes equations in 3D, capturing the fluid-structure interaction, nonlinear and viscous effects. In this work, we present simulations of the performance of pitching cylinder-type WECs and compare against experimental data. WECs are simulated at both model and full scales. The results are used to determine the role of the Keulegan-Carpenter (KC) number. The KC number is representative of viscous drag behavior on a bluff body in an oscillating flow, and is considered an important indicator of the dynamics of a WEC. Studying the effects of the KC number is important for determining the validity of the Froude scaling and the inviscid potential flow theory, which are heavily relied on in the conventional approaches to modeling WECs. Support from the National Science Foundation is gratefully acknowledged.
Nizenkov, Paul; Noeding, Peter; Konopka, Martin; Fasoulas, Stefanos
2017-03-01
The in-house direct simulation Monte Carlo solver PICLas, which enables parallel, three-dimensional simulations of rarefied gas flows, is verified and validated. Theoretical aspects of the method and the employed schemes are briefly discussed. Considered cases include simple reservoir simulations and complex re-entry geometries, which were selected from literature and simulated with PICLas. First, the chemistry module is verified using simple numerical and analytical solutions. Second, simulation results of the rarefied gas flow around a 70° blunted-cone, the REX Free-Flyer as well as multiple points of the re-entry trajectory of the Orion capsule are presented in terms of drag and heat flux. A comparison to experimental measurements as well as other numerical results shows an excellent agreement across the different simulation cases. An outlook on future code development and applications is given.
Ervik, Åsmund; Müller, Bernhard
2014-01-01
To leverage the last two decades' transition in High-Performance Computing (HPC) towards clusters of compute nodes bound together with fast interconnects, a modern scalable CFD code must be able to efficiently distribute work amongst several nodes using the Message Passing Interface (MPI). MPI can enable very large simulations running on very large clusters, but it is necessary that the bulk of the CFD code be written with MPI in mind, an obstacle to parallelizing an existing serial code. In this work we present the results of extending an existing two-phase 3D Navier-Stokes solver, which was completely serial, to a parallel execution model using MPI. The 3D Navier-Stokes equations for two immiscible incompressible fluids are solved by the continuum surface force method, while the location of the interface is determined by the level-set method. We employ the Portable Extensible Toolkit for Scientific Computing (PETSc) for domain decomposition (DD) in a framework where only a fraction of the code needs to be a...
Mars-solar wind interaction: LatHyS, an improved parallel 3-D multispecies hybrid model
Modolo, Ronan; Hess, Sebastien; Mancini, Marco; Leblanc, Francois; Chaufray, Jean-Yves; Brain, David; Leclercq, Ludivine; Esteban-Hernández, Rosa; Chanteur, Gerard; Weill, Philippe; González-Galindo, Francisco; Forget, Francois; Yagi, Manabu; Mazelle, Christian
2016-07-01
In order to better represent Mars-solar wind interaction, we present an unprecedented model achieving spatial resolution down to 50 km, a so far unexplored resolution for global kinetic models of the Martian ionized environment. Such resolution approaches the ionospheric plasma scale height. In practice, the model is derived from a first version described in Modolo et al. (2005). An important effort of parallelization has been conducted and is presented here. A better description of the ionosphere was also implemented including ionospheric chemistry, electrical conductivities, and a drag force modeling the ion-neutral collisions in the ionosphere. This new version of the code, named LatHyS (Latmos Hybrid Simulation), is here used to characterize the impact of various spatial resolutions on simulation results. In addition, and following a global model challenge effort, we present the results of simulation run for three cases which allow addressing the effect of the suprathermal corona and of the solar EUV activity on the magnetospheric plasma boundaries and on the global escape. Simulation results showed that global patterns are relatively similar for the different spatial resolution runs, but finest grid runs provide a better representation of the ionosphere and display more details of the planetary plasma dynamic. Simulation results suggest that a significant fraction of escaping O+ ions is originated from below 1200 km altitude.
三维有限元并行EBE方法%PARALLEL 3-D FINITE ELEMENT ANALYSIS BASED ON EBE METHOD
Institute of Scientific and Technical Information of China (English)
刘耀儒; 周维垣; 杨强
2006-01-01
采用Jacobi预处理,推导了基于EBE方法的预处理共轭梯度算法,给出了有限元EBE方法在分布存储并行机上的计算过程,可以实现整个三维有限元计算过程的并行化.编制了三维有限元求解的PFEM(Parallel Finite Element Method)程序,并在网络机群系统上实现.采用矩形截面悬臂梁的算例,对PFEM程序进行了数值测试,对串行计算和并行计算的效率进行了分析,最后将PFEM程序应用于二滩拱坝-地基系统的三维有限元数值计算中.结果表明,三维有限元EBE算法在求解过程中不需要集成整体刚度矩阵,有效地减少了对内存的需求,具有很好的并行性,可以有效地进行三维复杂结构的大规模数值分析.
Energy Technology Data Exchange (ETDEWEB)
Li, Shengtai [Los Alamos National Laboratory; Li, Hui [Los Alamos National Laboratory
2012-06-14
sensitive to the position of the planet, we adopt the corotating frame that allows the planet moving only in radial direction if only one planet is present. This code has been extensively tested on a number of problems. For the earthmass planet with constant aspect ratio h = 0.05, the torque calculated using our code matches quite well with the the 3D linear theory results by Tanaka et al. (2002). The code is fully parallelized via message-passing interface (MPI) and has very high parallel efficiency. Several numerical examples for both fixed planet and moving planet are provided to demonstrate the efficacy of the numerical method and code.
Tramm, John R.; Gunow, Geoffrey; He, Tim; Smith, Kord S.; Forget, Benoit; Siegel, Andrew R.
2016-05-01
In this study we present and analyze a formulation of the 3D Method of Characteristics (MOC) technique applied to the simulation of full core nuclear reactors. Key features of the algorithm include a task-based parallelism model that allows independent MOC tracks to be assigned to threads dynamically, ensuring load balancing, and a wide vectorizable inner loop that takes advantage of modern SIMD computer architectures. The algorithm is implemented in a set of highly optimized proxy applications in order to investigate its performance characteristics on CPU, GPU, and Intel Xeon Phi architectures. Speed, power, and hardware cost efficiencies are compared. Additionally, performance bottlenecks are identified for each architecture in order to determine the prospects for continued scalability of the algorithm on next generation HPC architectures.
3D MHD Simulations of Spheromak Compression
Stuber, James E.; Woodruff, Simon; O'Bryan, John; Romero-Talamas, Carlos A.; Darpa Spheromak Team
2015-11-01
The adiabatic compression of compact tori could lead to a compact and hence low cost fusion energy system. The critical scientific issues in spheromak compression relate both to confinement properties and to the stability of the configuration undergoing compression. We present results from the NIMROD code modified with the addition of magnetic field coils that allow us to examine the role of rotation on the stability and confinement of the spheromak (extending prior work for the FRC). We present results from a scan in initial rotation, from 0 to 100km/s. We show that strong rotational shear (10km/s over 1cm) occurs. We compare the simulation results with analytic scaling relations for adiabatic compression. Work performed under DARPA grant N66001-14-1-4044.
DeJong, Andrew
Numerical models of fluid-structure interaction have grown in importance due to increasing interest in environmental energy harvesting, airfoil-gust interactions, and bio-inspired formation flying. Powered by increasingly powerful parallel computers, such models seek to explain the fundamental physics behind the complex, unsteady fluid-structure phenomena. To this end, a high-fidelity computational model based on the high-order spectral difference method on 3D unstructured, dynamic meshes has been developed. The spectral difference method constructs continuous solution fields within each element with a Riemann solver to compute the inviscid fluxes at the element interfaces and an averaging mechanism to compute the viscous fluxes. This method has shown promise in the past as a highly accurate, yet sufficiently fast method for solving unsteady viscous compressible flows. The solver is monolithically coupled to the equations of motion of an elastically mounted 3-degree of freedom rigid bluff body undergoing flow-induced lift, drag, and torque. The mesh is deformed using 4 methods: an analytic function, Laplace equation, biharmonic equation, and a bi-elliptic equation with variable diffusivity. This single system of equations -- fluid and structure -- is advanced through time using a 5-stage, 4th-order Runge-Kutta scheme. Message Passing Interface is used to run the coupled system in parallel on up to 240 processors. The solver is validated against previously published numerical and experimental data for an elastically mounted cylinder. The effect of adding an upstream body and inducing wake galloping is observed.
Kordy, M.; Wannamaker, P.; Maris, V.; Cherkaev, E.; Hill, G.
2016-01-01
We have developed an algorithm, which we call HexMT, for 3-D simulation and inversion of magnetotelluric (MT) responses using deformable hexahedral finite elements that permit incorporation of topography. Direct solvers parallelized on symmetric multiprocessor (SMP), single-chassis workstations with large RAM are used throughout, including the forward solution, parameter Jacobians and model parameter update. In Part I, the forward simulator and Jacobian calculations are presented. We use first-order edge elements to represent the secondary electric field (E), yielding accuracy O(h) for E and its curl (magnetic field). For very low frequencies or small material admittivities, the E-field requires divergence correction. With the help of Hodge decomposition, the correction may be applied in one step after the forward solution is calculated. This allows accurate E-field solutions in dielectric air. The system matrix factorization and source vector solutions are computed using the MKL PARDISO library, which shows good scalability through 24 processor cores. The factorized matrix is used to calculate the forward response as well as the Jacobians of electromagnetic (EM) field and MT responses using the reciprocity theorem. Comparison with other codes demonstrates accuracy of our forward calculations. We consider a popular conductive/resistive double brick structure, several synthetic topographic models and the natural topography of Mount Erebus in Antarctica. In particular, the ability of finite elements to represent smooth topographic slopes permits accurate simulation of refraction of EM waves normal to the slopes at high frequencies. Run-time tests of the parallelized algorithm indicate that for meshes as large as 176 × 176 × 70 elements, MT forward responses and Jacobians can be calculated in ˜1.5 hr per frequency. Together with an efficient inversion parameter step described in Part II, MT inversion problems of 200-300 stations are computable with total run times
Quasi-isotropic cascade in MHD turbulence with mean field
Grappin, Roland; Gürcan, Özgür
2012-01-01
We propose a phenomenological theory of incompressible magnetohydrodynamic turbulence in the presence of a strong large-scale magnetic field, which establishes a link between the known anisotropic models of strong and weak MHD turbulence We argue that the Iroshnikov-Kraichnan isotropic cascade develops naturally within the plane perpendicular to the mean field, while oblique-parallel cascades with weaker amplitudes can develop, triggered by the perpendicular cascade, with a reduced flux resulting from a quasi-resonance condition. The resulting energy spectrum $E(k_\\parallel,k_\\bot)$ has the same slope in all directions. The ratio between the extents of the inertial range in the parallel and perpendicular directions is equal to $b_{rms}/B_0$. These properties match those found in recent 3D MHD simulations with isotropic forcing reported in [R. Grappin and W.-C. M\\"uller, Phys. Rev. E \\textbf{82}, 26406 (2010)].
基于C++ Builder的共焦显微镜三维重建方法%3D reconstruction of parallel confocal microscope based on C++ Builder
Institute of Scientific and Technical Information of China (English)
杨召雷; 张运波; 董洪波
2012-01-01
主要研究基于C++ Builder的数字微镜器件(Digital Micro-mirror Device,简称DMD)多路并行扫描共焦检测系统三维重建方法,将实验采集的虚拟针孔位图经过拟合后得到三维坐标数据,将其网格化后,采用集成OpenGL的C++Builder开发三维重建软件系统并重建三维图形,实验结果成功还原了被测物表面的微结构.%This paper primarily researched 3D reconstruction of the DMD ( Digital Micro-mirror Device) multi-point parallel confocal inspection system based on C ++ Builder, with the virtual pinhole bitmap collected from the laboratory after fitting, three-dimensional coordinate data was obtained, then made them grid. After the three-dimensional reconstruction software system compiled by C ++ Builder & OpenGL, the three-dimensional graphics were rebuild, and the results showed that the surface of the micro-structure was restored successfully.
Using Faraday Rotation to Probe MHD Instabilities in Intracluster Media
Bogdanovic, Tamara; Massey, Richard
2010-01-01
It has recently been suggested that conduction-driven magnetohydrodynamic (MHD) instabilities may operate at all radii within an intracluster medium (ICM), and profoundly affect the structure of a cluster's magnetic field. Where MHD instabilities dominate the dynamics of an ICM, they will re-orient magnetic field lines perpendicular to the temperature gradient inside a cooling core, or parallel to the temperature gradient outside it. This characteristic structure of magnetic field could be probed by measurements of polarized radio emission from background sources. Motivated by this possibility we have constructed 3-d models of a magnetized cooling core cluster and calculated Faraday rotation measure (RM) maps in the plane of the sky under realistic observing conditions. We compare a scenario in which magnetic field geometry is characterized by conduction driven MHD instabilities to that where it is determined by the turbulent motions. We find that future high-sensitivity spectro-polarimetric measurements of R...
A Fast MHD Code for Gravitationally Stratified Media using Graphical Processing Units: SMAUG
Indian Academy of Sciences (India)
M. K. Griffiths; V. Fedun; R.Erdélyi
2015-03-01
Parallelization techniques have been exploited most successfully by the gaming/graphics industry with the adoption of graphical processing units (GPUs), possessing hundreds of processor cores. The opportunity has been recognized by the computational sciences and engineering communities, who have recently harnessed successfully the numerical performance of GPUs. For example, parallel magnetohydrodynamic (MHD) algorithms are important for numerical modelling of highly inhomogeneous solar, astrophysical and geophysical plasmas. Here, we describe the implementation of SMAUG, the Sheffield Magnetohydrodynamics Algorithm Using GPUs. SMAUG is a 1–3D MHD code capable of modelling magnetized and gravitationally stratified plasma. The objective of this paper is to present the numerical methods and techniques used for porting the code to this novel and highly parallel compute architecture. The methods employed are justified by the performance benchmarks and validation results demonstrating that the code successfully simulates the physics for a range of test scenarios including a full 3D realistic model of wave propagation in the solar atmosphere.
MHD simulations on an unstructured mesh
Energy Technology Data Exchange (ETDEWEB)
Strauss, H.R. [New York Univ., NY (United States); Park, W.; Belova, E.; Fu, G.Y. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Longcope, D.W. [Univ. of Montana, Missoula, MT (United States); Sugiyama, L.E. [Massachusetts Inst. of Tech., Cambridge, MA (United States)
1998-12-31
Two reasons for using an unstructured computational mesh are adaptivity, and alignment with arbitrarily shaped boundaries. Two codes which use finite element discretization on an unstructured mesh are described. FEM3D solves 2D and 3D RMHD using an adaptive grid. MH3D++, which incorporates methods of FEM3D into the MH3D generalized MHD code, can be used with shaped boundaries, which might be 3D.
冷冻电镜三维重构在CPU-GPU系统中的并行性%Parallelism for cryo-EM 3D reconstruction on CPU-GPU heterogeneous system
Institute of Scientific and Technical Information of China (English)
李兴建; 李临川; 谭光明; 张佩珩
2011-01-01
It is a challenge to efficiently utilize massive parallelism on both applications and architectures for heterogeneous systems. A practice of accelerating a cryo-EM 3D program was presented on how to exploit and orchestrate parallelism of applications to take advantage of the underlying parallelism exposed at the architecture level. All possible parallelism in cryo-EM 3D was exploited, and a self-adaptive dynamic scheduling algorithm was leveraged to efficiently implement parallelism mapping between the application and architecture. The experiment on a part of dawning nebulae system (32 nodes) confirms that a hierarchical parallelism is an efficient pattern of parallel programming to utilize capabilities of both CPU and GPU on a heterogeneous system. The hybrid CPU-GPU program improves performance by 2. 4 times over the best CPU-only one for certain problem sizes.%为了有效地发掘和利用异构系统在应用和体系结构上的并行性,以冷冻电镜三维重构为例展示如何利用应用程序潜在的并行性.通过分析重构计算所有的并行性,实现了将动态自适应的划分算法用于任务在异构系统上高效的分发.在曙光星云系统的部分节点系统(32节点)上评估并行化的程序性能.实验证明:多层次的并行化是CPU与GPU异构系统上开发并行性的有效模式；CPU-GPU混合程序在给定问题规模上相对单纯CPU程序获得2.4倍加速比.
Directory of Open Access Journals (Sweden)
KHEM CHAND
2011-07-01
Full Text Available The heat transfer and hydromagnetic boundary layer flow of an electrically conducting viscous ,incompressible fluid over a continuous flat surface moving in a parallel free stream is investigated. The porous infinite surface is subjected to a slightly sinusoidal transverse suction velocity distribution. The flow becomes three dimensional due to this type of suction velocity without taking into account the induced magnetic field; the mathematical analysis is presented for the hydromagnetic laminar boundary layer flow. For the asymptotic flow condition, the components of the surface skin friction and the rate of heat transfer are obtained. During discussion it is found that with the increase of Hartmann number M, the skin friction factor F1 increase sharply for lower values of theReynolds number, but for the large value it increases steadily. But if the surface velocity is more than that of free stream velocity then the reverse trend is observed.
NEPTUNE:并行三维全电磁粒子模拟软件%NEPTUNE:A 3-D Fully Electromagnetic Particle Parallel Software
Institute of Scientific and Technical Information of China (English)
陈军; 董烨; 杨温渊; 董志伟
2009-01-01
为求解具有复杂几何的高功率微波电磁场问题,本文研制了一个三维全电磁粒子并行软件NEPTUNE.本文介绍了该并行软件的基本结构和采用的一些并行算法.目前,该软件已经成功模拟了多种高功率源器件,并可扩展到数千台处理器核上运行.%We developed a three-dimensional fully electromagnetic particle parallel software based on the parallel adaptive structure mesh application infrastructure, ,to solve the electromagnetic problem in the high power microwave devices with complex geometry. This paper presents the basic numerical method and parallel algorithm used in the parallel program. A typical device with complex geometry is simulated by the parallel program on thousands of processors, and the results show the good scalability. Currently it has been simulated many high power microwave devices successfully.
Carson, Jeffrey J. L.; Roumeliotis, Michael; Chaudhary, Govind; Stodilka, Robert Z.; Anastasio, Mark A.
2010-06-01
Our group has concentrated on development of a 3D photoacoustic imaging system for biomedical imaging research. The technology employs a sparse parallel detection scheme and specialized reconstruction software to obtain 3D optical images using a single laser pulse. With the technology we have been able to capture 3D movies of translating point targets and rotating line targets. The current limitation of our 3D photoacoustic imaging approach is its inability ability to reconstruct complex objects in the field of view. This is primarily due to the relatively small number of projections used to reconstruct objects. However, in many photoacoustic imaging situations, only a few objects may be present in the field of view and these objects may have very high contrast compared to background. That is, the objects have sparse properties. Therefore, our work had two objectives: (i) to utilize mathematical tools to evaluate 3D photoacoustic imaging performance, and (ii) to test image reconstruction algorithms that prefer sparseness in the reconstructed images. Our approach was to utilize singular value decomposition techniques to study the imaging operator of the system and evaluate the complexity of objects that could potentially be reconstructed. We also compared the performance of two image reconstruction algorithms (algebraic reconstruction and l1-norm techniques) at reconstructing objects of increasing sparseness. We observed that for a 15-element detection scheme, the number of measureable singular vectors representative of the imaging operator was consistent with the demonstrated ability to reconstruct point and line targets in the field of view. We also observed that the l1-norm reconstruction technique, which is known to prefer sparseness in reconstructed images, was superior to the algebraic reconstruction technique. Based on these findings, we concluded (i) that singular value decomposition of the imaging operator provides valuable insight into the capabilities of
3维全电磁粒子软件NEPTUNE中的并行计算方法%Parallelization methods in 3D fully electromagnetic code NEPTUNE
Institute of Scientific and Technical Information of China (English)
陈军; 莫则尧; 董烨; 杨温渊; 董志伟
2011-01-01
NEPTUNE is a three-dimensional fully parallel electromagnetic code to solve electromagnetic problem in high power microwaveC HPM) devices with complex geometry. This paper introduces the following three parallelization methods used in the code. For massively computation, the "block-patch" two level parallel domain decomposition strategy is provided to scale the computation size to thousands of processor cores. Based on the geometry information, the mesh is reconfigured using the adaptive technology to get rid of invalid grid cells, and thus the storage amount and parallel execution time decrease sharply. On the basis of traditional Boris' successive over relaxation (SOR) iteration method, a parallel Poisson solver on irregular domains is provided with red and black ordering technology and geometry constraints. With the above methods, NEPTUNE can get 51. 8% parallel efficiency on 1 024 cores when simulating MILO devices.%介绍了NEPTUNE软件采用的一些并行计算方法:采用“块-网格片”二层并行区域分解方法,使计算规模能够扩展到上千个处理器核.基于复杂几何特征采用自适应技术并行生成结构网格,在原有规则区域的基础上剔除无效网格,大幅降低了存储量和并行执行时间.在经典的Boris和SOR迭代方法基础上,采用红黑排序和几何约束,提出了非规则区域上的Poisson方程并行求解方法.采用这些方法后,当使用NEP-TUNE软件模拟MILO器件时,可在1024个处理器核上获得51.8％的并行效率.
Irwan, Roy; Rüssel, Iris K; Sijens, Paul E
2006-09-01
A magnetic resonance sequence for high-resolution imaging of coronary arteries in a very short acquisition time is presented. The technique is based on fast low-angle shot and uses fat saturation and magnetization transfer contrast prepulses to improve image contrast. GeneRalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) is implemented to shorten acquisition time. The sequence was tested on a moving anthropomorphic silicone heart phantom where the coronary arteries were filled with a gadolinium contrast agent solution, and imaging was performed at varying heart rates using GRAPPA. The clinical relevance of the phantom was validated by comparing the myocardial relaxation times of the phantom's homogeneous silicone cardiac wall to those of humans. Signal-to-noise ratio and contrast-to-noise ratio were higher when parallel imaging was used, possibly benefiting from the acquisition of one partition per heartbeat. Another advantage of parallel imaging for visualizing the coronary arteries is that the entire heart can be imaged within a few breath-holds.
Zheng, Xiang
2015-03-01
We present a numerical algorithm for simulating the spinodal decomposition described by the three dimensional Cahn-Hilliard-Cook (CHC) equation, which is a fourth-order stochastic partial differential equation with a noise term. The equation is discretized in space and time based on a fully implicit, cell-centered finite difference scheme, with an adaptive time-stepping strategy designed to accelerate the progress to equilibrium. At each time step, a parallel Newton-Krylov-Schwarz algorithm is used to solve the nonlinear system. We discuss various numerical and computational challenges associated with the method. The numerical scheme is validated by a comparison with an explicit scheme of high accuracy (and unreasonably high cost). We present steady state solutions of the CHC equation in two and three dimensions. The effect of the thermal fluctuation on the spinodal decomposition process is studied. We show that the existence of the thermal fluctuation accelerates the spinodal decomposition process and that the final steady morphology is sensitive to the stochastic noise. We also show the evolution of the energies and statistical moments. In terms of the parallel performance, it is found that the implicit domain decomposition approach scales well on supercomputers with a large number of processors. © 2015 Elsevier Inc.
Energy Technology Data Exchange (ETDEWEB)
Moriakov, A. [Russian Research Centre, Kurchatov Institute, Moscow (Russian Federation); Vasyukhno, V.; Netecha, M.; Khacheresov, G. [Research and Development Institute of Power Engineering, Moscow (Russian Federation)
2003-07-01
Powerful supercomputers are available today. MBC-1000M is one of Russian supercomputers that may be used by distant way access. Programs LUCKY and LUCKY{sub C} were created to work for multi-processors systems. These programs have algorithms created especially for these computers and used MPI (message passing interface) service for exchanges between processors. LUCKY may resolved shielding tasks by multigroup discreet ordinate method. LUCKY{sub C} may resolve critical tasks by same method. Only XYZ orthogonal geometry is available. Under little space steps to approximate discreet operator this geometry may be used as universal one to describe complex geometrical structures. Cross section libraries are used up to P8 approximation by Legendre polynomials for nuclear data in GIT format. Programming language is Fortran-90. 'Vector' processors may be used that lets get a time profit up to 30 times. But unfortunately MBC-1000M has not these processors. Nevertheless sufficient value for efficiency of parallel calculations was obtained under 'space' (LUCKY) and 'space and energy' (LUCKY{sub C}) paralleling. AUTOCAD program is used to control geometry after a treatment of input data. Programs have powerful geometry module, it is a beautiful tool to achieve any geometry. Output results may be processed by graphic programs on personal computer. (authors)
Is the 3-D magnetic null point with a convective electric field an efficient particle accelerator?
Guo, J.-N.; Büchner, J.; Otto, A.; Santos, J.; Marsch, E.; Gan, W.-Q.
2010-04-01
Aims: We study the particle acceleration at a magnetic null point in the solar corona, considering self-consistent magnetic fields, plasma flows and the corresponding convective electric fields. Methods: We calculate the electromagnetic fields by 3-D magnetohydrodynamic (MHD) simulations and expose charged particles to these fields within a full-orbit relativistic test-particle approach. In the 3-D MHD simulation part, the initial magnetic field configuration is set to be a potential field obtained by extrapolation from an analytic quadrupolar photospheric magnetic field with a typically observed magnitude. The configuration is chosen so that the resulting coronal magnetic field contains a null. Driven by photospheric plasma motion, the MHD simulation reveals the coronal plasma motion and the self-consistent electric and magnetic fields. In a subsequent test particle experiment the particle energies and orbits (determined by the forces exerted by the convective electric field and the magnetic field around the null) are calculated in time. Results: Test particle calculations show that protons can be accelerated up to 30 keV near the null if the local plasma flow velocity is of the order of 1000 km s-1 (in solar active regions). The final parallel velocity is much higher than the perpendicular velocity so that accelerated particles escape from the null along the magnetic field lines. Stronger convection electric field during big flare explosions can accelerate protons up to 2 MeV and electrons to 3 keV. Higher initial velocities can help most protons to be strongly accelerated, but a few protons also run the risk to be decelerated. Conclusions: Through its convective electric field and due to magnetic nonuniform drifts and de-magnetization process, the 3-D null can act as an effective accelerator for protons but not for electrons. Protons are more easily de-magnetized and accelerated than electrons because of their larger Larmor radii. Notice that macroscopic MHD
Beane, Andy
2012-01-01
The essential fundamentals of 3D animation for aspiring 3D artists 3D is everywhere--video games, movie and television special effects, mobile devices, etc. Many aspiring artists and animators have grown up with 3D and computers, and naturally gravitate to this field as their area of interest. Bringing a blend of studio and classroom experience to offer you thorough coverage of the 3D animation industry, this must-have book shows you what it takes to create compelling and realistic 3D imagery. Serves as the first step to understanding the language of 3D and computer graphics (CG)Covers 3D anim
Lucas, Laurent; Loscos, Céline
2013-01-01
While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century.The chapters in this book cover a large spectrum of areas connected to 3D video, which are presented both theoretically and technologically, while taking into account both physiological and perceptual aspects. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide th
Qiang, Ji; Todd, Damon
2005-01-01
The driver linac of the proposed Rare Isotope Accelerator (RIA) requires a great variety of high intensity, high charge state ion beams. In order to design and optimize the low energy beam line optics of the RIA front end, we have developed a new parallel three-dimensional model to simulate the low energy, multi-species beam transport from the ECR ion source extraction region to the focal plane of the analyzing magnet. A multi-section overlapped computational domain has been used to break the original transport system into a number of independent subsystems. Within each subsystem, macro-particle tracking is used to obtain the charge density distribution in this subdomain. The three-dimensional Poisson equation is solved within the subdomain and particle tracking is repeated until the solution converges. Two new Poisson solvers based on a combination of the spectral method and the multigrid method have been developed to solve the Poisson equation in cylindrical coordinates for the beam extraction region and in...
三维有限元并行计算及其工程应用%PARALLEL 3D FINITE ELEMENT ANALYSIS AND ITS APPLICATION TO HYDRAULIC ENGINEERING
Institute of Scientific and Technical Information of China (English)
刘耀儒; 周维垣; 杨强; 陈新
2005-01-01
针对水利工程中的大型复杂三维结构对大规模数值计算的需求,基于J-PCG方法(Jacobi预处理共轭梯度法),建立了有限元EBE(element-by-element)方法在分布存储并行机上的计算算法.该算法不用考虑网格拓扑结构和单元的排序,同时不形成整体刚度矩阵,而且避免了对复杂的三维结构进行区域分解.采用上述算法编制了三维有限元并行求解的PFEM(parallel finite element method)程序,并在网络机群系统上实现,然后将其应用到二滩拱坝-地基系统和水布娅地下洞室的三维有限元数值计算中.数值计算结果表明,三维有限元并行EBE方法非常适合于水利工程中三维复杂结构的大规模数值计算.
M3D project for simulation studies of plasmas
Energy Technology Data Exchange (ETDEWEB)
Park, W.; Belova, E.V.; Fu, G.Y. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Strauss, H.R. [New York Univ., NY (United States); Sugiyama, L.E. [Massachusetts Inst. of Tech., Cambridge, MA (United States)
1998-12-31
The M3D (Multi-level 3D) project carries out simulation studies of plasmas of various regimes using multi-levels of physics, geometry, and mesh schemes in one code package. This paper and papers by Strauss, Sugiyama, and Belova in this workshop describe the project, and present examples of current applications. The currently available physics models of the M3D project are MHD, two-fluids, gyrokinetic hot particle/MHD hybrid, and gyrokinetic particle ion/two-fluid hybrid models. The code can be run with both structured and unstructured meshes.
Energy Technology Data Exchange (ETDEWEB)
Rich, D.O.; Pope, S.C.; DeLapp, J.G.
1994-10-01
In April, a 128 PE Cray T3D was installed at Los Alamos National Laboratory`s Advanced Computing Laboratory as part of the DOE`s High-Performance Parallel Processor Program (H4P). In conjunction with CRI, the authors implemented a 30 day acceptance test. The test was constructed in part to help them understand the strengths and weaknesses of the T3D. In this paper, they briefly describe the H4P and its goals. They discuss the design and implementation of the T3D acceptance test and detail issues that arose during the test. They conclude with a set of system requirements that must be addressed as the T3D system evolves.
Advanced 3-D Ultrasound Imaging
DEFF Research Database (Denmark)
Rasmussen, Morten Fischer
The main purpose of the PhD project was to develop methods that increase the 3-D ultrasound imaging quality available for the medical personnel in the clinic. Acquiring a 3-D volume gives the medical doctor the freedom to investigate the measured anatomy in any slice desirable after the scan has...... been completed. This allows for precise measurements of organs dimensions and makes the scan more operator independent. Real-time 3-D ultrasound imaging is still not as widespread in use in the clinics as 2-D imaging. A limiting factor has traditionally been the low image quality achievable using...... Field II simulations and measurements with the ultrasound research scanner SARUS and a 3.5MHz 1024 element 2-D transducer array. In all investigations, 3-D synthetic aperture imaging achieved a smaller main-lobe, lower sidelobes, higher contrast, and better signal to noise ratio than parallel...
Institute of Scientific and Technical Information of China (English)
杨蕾; 周爱萍; 黄东升; 何晨
2016-01-01
Fabricated via industrial process using raw bamboo,Parallel strand bamboo (PSB)is a high strength composite which has been used in building constructions in recent years.Microvoids are inevitably left in PSB composite owing to the dimensional inconsistence of bamboo fibers;hence fracture due to mocrovids coalescence and expanding maybe a major failure mode of PSB components.This paper amid at studying on the Mode I fracture properties based on LEFM theory and Iwrin’s energy theory. Wedge splitting test was employed as test method.The length of crack expending was determined by three dimensional virtual image correlation (VIC-3D)global-field deformation acquisition system.Fracture toughness of PSB and R-curves were obtained.The results showed that the VIC-3D global-field acquisition system can precisely determine the crack tip and the complicated calculation for crack length determination may be avoided.Good agreement may be achieved between the result of this method and compliance approach,which indicated that the proposed method in this study is efficient.%重组竹是原竹经工业化制造而成的一种高强复合材料，近年来被用于建筑结构。由于重组竹内部存在许多微裂纹，断裂破坏是重组竹构件的主要失效模式。本文基于线弹性断裂理论和 Irwin 能量原理，采用 VIC 3D 全场变形测量技术确定裂纹扩展长度，通过重组竹楔形试件断裂试验，研究重组竹 I 型裂纹的断裂性能，给出重组竹的断裂韧度和 R 曲线。试验表明：VIC 3D 全场变形测量技术可准确确定裂纹尖端，避免了等效柔度法的复杂运算。该方法的结构与等效柔度法高度一致，是研究重组竹断裂性能的一种有效测量手段。
Institute of Scientific and Technical Information of China (English)
胡峰; 骆德渊; 雷霆; 柯辉
2012-01-01
Aiming at the problem that the control system of parallel robot is more complicated, compared to the traditional series robot, the technology of virtual simulation was investigated on the control strategy of parallel robot Taking 3D0F Delta Parallel Robot for example, in order to conveniently and rapidly achieve the control system simulation , using Simulink for simulation platform and combining with SimMechanics link, the method of modeling which translates CAD assemblies of Pro/E into SimMechanics model was presented, after that the PID controller model was designed. The experimental results show that it can provide the efficient and significant simulation platform to research the control strategy of parallel robot.%针对并联机器人控制系统比传统串联机器人更加复杂的问题,将虚拟仿真技术应用到并联机器人控制策略的研究上.以三自由度Delta并联机器人为例,为便捷高效实现其控制系统仿真,利用Simulink为仿真平台,结合SimMechanics Link接口软件,提出了三维Pro/E模型转换成SimMechanics模型的建模方法建立机械系统模型,并设计PID控制器模型进行仿真分析.结果表明,该方法为并联机器人控制策略的研究提供了高效的仿真平台,便于展开针对并联机器人特点的各种控制策略的研究.
Energy Technology Data Exchange (ETDEWEB)
Chen, J.; Alpan, F. A.; Fischer, G.A.; Fero, A.H. [Westinghouse Electric Company, Nuclear Services, Radiation Engineering and Analysis, 1000 Westinghouse Dr., Cranberry Township, PA 16066-5228 (United States)
2011-07-01
Traditional two-dimensional (2D)/one-dimensional (1D) SYNTHESIS methodology has been widely used to calculate fast neutron (>1.0 MeV) fluence exposure to reactor pressure vessel in the belt-line region. However, it is expected that this methodology cannot provide accurate fast neutron fluence calculation at elevations far above or below the active core region. A three-dimensional (3D) parallel discrete ordinates calculation for ex-vessel neutron dosimetry on a Westinghouse 4-Loop XL Pressurized Water Reactor has been done. It shows good agreement between the calculated results and measured results. Furthermore, the results show very different fast neutron flux values at some of the former plate locations and elevations above and below an active core than those calculated by a 2D/1D SYNTHESIS method. This indicates that for certain irregular reactor internal structures, where the fast neutron flux has a very strong local effect, it is required to use a 3D transport method to calculate accurate fast neutron exposure. (authors)
Magneto-acoustic waves in sunspots: first results from a new 3D nonlinear magnetohydrodynamic code
Felipe, T; Collados, M
2010-01-01
Waves observed in the photosphere and chromosphere of sunspots show complex dynamics and spatial patterns. The interpretation of high-resolution sunspot wave observations requires modeling of three-dimensional non-linear wave propagation and mode transformation in the sunspot upper layers in realistic spot model atmospheres. Here we present the first results of such modeling. We have developed a 3D non-linear numerical code specially designed to calculate the response of magnetic structures in equilibrium to an arbitrary perturbation. The code solves the 3D nonlinear MHD equations for perturbations; it is stabilized by hyper-diffusivity terms and is fully parallelized. The robustness of the code is demonstrated by a number of standard tests. We analyze several simulations of a sunspot perturbed by pulses of different periods at subphotospheric level, from short periods, introduced for academic purposes, to longer and realistic periods of three and five minutes. We present a detailed description of the three-d...
Acceleration of the OpenFOAM-based MHD solver using graphics processing units
Energy Technology Data Exchange (ETDEWEB)
He, Qingyun; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; Feng, Jingchao
2015-12-15
Highlights: • A 3D PISO-MHD was implemented on Kepler-class graphics processing units (GPUs) using CUDA technology. • A consistent and conservative scheme is used in the code which was validated by three basic benchmarks in a rectangular and round ducts. • Parallelized of CPU and GPU acceleration were compared relating to single core CPU in MHD problems and non-MHD problems. • Different preconditions for solving MHD solver were compared and the results showed that AMG method is better for calculations. - Abstract: The pressure-implicit with splitting of operators (PISO) magnetohydrodynamics MHD solver of the couple of Navier–Stokes equations and Maxwell equations was implemented on Kepler-class graphics processing units (GPUs) using the CUDA technology. The solver is developed on open source code OpenFOAM based on consistent and conservative scheme which is suitable for simulating MHD flow under strong magnetic field in fusion liquid metal blanket with structured or unstructured mesh. We verified the validity of the implementation on several standard cases including the benchmark I of Shercliff and Hunt's cases, benchmark II of fully developed circular pipe MHD flow cases and benchmark III of KIT experimental case. Computational performance of the GPU implementation was examined by comparing its double precision run times with those of essentially the same algorithms and meshes. The resulted showed that a GPU (GTX 770) can outperform a server-class 4-core, 8-thread CPU (Intel Core i7-4770k) by a factor of 2 at least.
Brdnik, Lovro
2015-01-01
Diplomsko delo analizira trenutno stanje 3D tiskalnikov na trgu. Prikazan je razvoj in principi delovanja 3D tiskalnikov. Predstavljeni so tipi 3D tiskalnikov, njihove prednosti in slabosti. Podrobneje je predstavljena zgradba in delovanje koračnih motorjev. Opravljene so meritve koračnih motorjev. Opisana je programska oprema za rokovanje s 3D tiskalniki in komponente, ki jih potrebujemo za izdelavo. Diploma se oklepa vprašanja, ali je izdelava 3D tiskalnika bolj ekonomična kot pa naložba v ...
Meulien Ohlmann, Odile
2013-02-01
Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?
Lipatov, A. S.; Farrell, W. M.; Cooper, J. F.; Sittler, E. C., Jr.; Hartle, R. E.
2015-01-01
The interactions between the solar wind and Moon-sized objects are determined by a set of the solar wind parameters and plasma environment of the space objects. The orientation of upstream magnetic field is one of the key factors which determines the formation and structure of bow shock wave/Mach cone or Alfven wing near the obstacle. The study of effects of the direction of the upstream magnetic field on lunar-like plasma environment is the main subject of our investigation in this paper. Photoionization, electron-impact ionization and charge exchange are included in our hybrid model. The computational model includes the self-consistent dynamics of the light (hydrogen (+), helium (+)) and heavy (sodium (+)) pickup ions. The lunar interior is considered as a weakly conducting body. Our previous 2013 lunar work, as reported in this journal, found formation of a triple structure of the Mach cone near the Moon in the case of perpendicular upstream magnetic field. Further advances in modeling now reveal the presence of strong wave activity in the upstream solar wind and plasma wake in the cases of quasiparallel and parallel upstream magnetic fields. However, little wave activity is found for the opposite case with a perpendicular upstream magnetic field. The modeling does not show a formation of the Mach cone in the case of theta(Sub B,U) approximately equal to 0 degrees.
Kolar, Nataša
2016-01-01
Diplomsko delo predstavi razvoj tiskanja skozi čas. Podrobneje so opisani 3D tiskalniki, ki uporabljajo različne tehnologije 3D tiskanja. Predstavljene so različne tehnologije 3D tiskanja, njihova uporaba in narejeni prototipi oz. končni izdelki. Diplomsko delo opiše celoten postopek, od zamisli, priprave podatkov in tiskalnika do izdelave prototipa oz. končnega izdelka.
3D MHD simulations of subsurface convection in OB stars
Cantiello, Matteo; Brandenburg, Axel; Del Sordo, Fabio; Käpylä, Petri; Langer, Norbert
2010-01-01
During their main sequence evolution, massive stars can develop convective regions very close to their surface. These regions are caused by an opacity peak associated with iron ionization. Cantiello et al. (2009) found a possible connection between the presence of sub-photospheric convective motions and small scale stochastic velocities in the photosphere of early-type stars. This supports a physical mechanism where microturbulence is caused by waves that are triggered by subsurface convection zones. They further suggest that clumping in the inner parts of the winds of OB stars could be related to subsurface convection, and that the convective layers may also be responsible for stochastic excitation of non-radial pulsations. Furthermore, magnetic fields produced in the iron convection zone could appear at the surface of such massive stars. Therefore subsurface convection could be responsible for the occurrence of observable phenomena such as line profile variability and discrete absorption components. These p...
3-D Simulations of MHD Jets - The Stability Problem
Nakamura, M; Nakamura, Masanori; Meier, David L.
2003-01-01
Non-relativistic three-dimensional magnetohydrodynamic simulations of Poynting-flux-dominated (PFD) jets are presented. Our study focuses on the propagation of strongly magnetized hypersonic but sub-Alfv\\'enic flow ($C_{\\rm s}^2 1$), driven in large part by the radial component of the Lorentz force.
DEFF Research Database (Denmark)
Tournay, Bruno; Rüdiger, Bjarne
2006-01-01
3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s.......3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s....
Tokamak magnetohydrodynamic equilibrium states with axisymmetric boundary and a 3D helical core.
Cooper, W A; Graves, J P; Pochelon, A; Sauter, O; Villard, L
2010-07-16
Magnetohydrodynamic (MHD) equilibrium states with imposed axisymmetric boundary are computed in which a spontaneous bifurcation develops to produce an internal three-dimensional (3D) configuration with a helical structure in addition to the standard axisymmetric system. Equilibrium states with similar MHD energy levels are shown to develop very different geometric structures. The helical equilibrium states resemble saturated internal kink mode structures.
Valenza, Enrico
2015-01-01
This book is aimed at the professionals that already have good 3D CGI experience with commercial packages and have now decided to try the open source Blender and want to experiment with something more complex than the average tutorials on the web. However, it's also aimed at the intermediate Blender users who simply want to go some steps further.It's taken for granted that you already know how to move inside the Blender interface, that you already have 3D modeling knowledge, and also that of basic 3D modeling and rendering concepts, for example, edge-loops, n-gons, or samples. In any case, it'
DEFF Research Database (Denmark)
Hundebøl, Jesper
wave of new building information modelling tools demands further investigation, not least because of industry representatives' somewhat coarse parlance: Now the word is spreading -3D digital modelling is nothing less than a revolution, a shift of paradigm, a new alphabet... Research qeustions. Based...... on empirical probes (interviews, observations, written inscriptions) within the Danish construction industry this paper explores the organizational and managerial dynamics of 3D Digital Modelling. The paper intends to - Illustrate how the network of (non-)human actors engaged in the promotion (and arrest) of 3......D Modelling (in Denmark) stabilizes - Examine how 3D Modelling manifests itself in the early design phases of a construction project with a view to discuss the effects hereof for i.a. the management of the building process. Structure. The paper introduces a few, basic methodological concepts...
Lively, Michael
2010-01-01
Professional Papervision3D describes how Papervision3D works and how real world applications are built, with a clear look at essential topics such as building websites and games, creating virtual tours, and Adobe's Flash 10. Readers learn important techniques through hands-on applications, and build on those skills as the book progresses. The companion website contains all code examples, video step-by-step explanations, and a collada repository.
Institute of Scientific and Technical Information of China (English)
夏艺; 范丽; 刘士远; 管宇; 徐雪原; 于红; 肖湘生
2012-01-01
目的 评价3D并行采集动态对比增强MRI(dynamic contrast-enhanced MRI,DCE-MRI)技术对肺实质局部灌注成像的可行性.资料与方法 采用GE 1.5 T MRI系统,对10名健康志愿者及47例肺部疾病患者行灌注成像；评价肺灌注图像的均匀度,若存在灌注异常区域则计算其与正常肺组织的信号强度之比( RSI).结果 DCE-MRI可以清楚地显示肺实质灌注情况:10名健康志愿者的灌注图像较均匀,未见灌注缺损区.10例肺动脉栓塞( pulmonary embolism,PE)共出现12个楔形灌注缺损区,其中1例双侧PE出现3个灌注缺损区；12例侵犯邻近肺动脉的肺癌,在相应供血区均出现灌注缺损；RSI经单样本t检验差异具有明显的统计学意义(t＝-24.74,P＜0.05)；另25例(20例未侵犯邻近肺动脉的肺癌和5例炎性病变)在对比剂首过肺实质强化达峰值时,病灶局部均呈低信号改变.结论 3D并行采集DCE-MRI技术可在单次屏气状态下完成动态多期扫描,获得全肺的容积灌注成像数据,对MR肺灌注图像采用半量化分析可明显区分出灌注异常区与灌注正常区.%Objective To assess the feasibility of 3 D partially parallel acquisition dynamic contrast enhanced (DCE) MRI in pulmonary parenchyma perfusion. Materials and Methods Ten healthy volunteers and 47 patients with lung disease performed perfusion imaging on a clinical 1. 5-T GE Excite HD whole body system. The homogeneity of perfusion images were assessed. In case of perfusion abnormality, the signal intensity ratio ( RSI) of perfusion abnormality and normal lung were calculated. Results Pulmonary parenchyma perfusion was well depicted with DCE-MRI. The perfusion images of healthy volunteers were homogeneous. 12 wedge shaped perfusion defects were visualized in 10 patients with pulmonary embolisms. 12 perfusion defects were also showed in 12 patients with lung cancer infiltrating the pulmonary artery. There was significant difference in RSI (t = - 24
Oldham, Mark
2015-01-01
Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.
3D Spectroscopic Instrumentation
Bershady, Matthew A
2009-01-01
In this Chapter we review the challenges of, and opportunities for, 3D spectroscopy, and how these have lead to new and different approaches to sampling astronomical information. We describe and categorize existing instruments on 4m and 10m telescopes. Our primary focus is on grating-dispersed spectrographs. We discuss how to optimize dispersive elements, such as VPH gratings, to achieve adequate spectral resolution, high throughput, and efficient data packing to maximize spatial sampling for 3D spectroscopy. We review and compare the various coupling methods that make these spectrographs ``3D,'' including fibers, lenslets, slicers, and filtered multi-slits. We also describe Fabry-Perot and spatial-heterodyne interferometers, pointing out their advantages as field-widened systems relative to conventional, grating-dispersed spectrographs. We explore the parameter space all these instruments sample, highlighting regimes open for exploitation. Present instruments provide a foil for future development. We give an...
DEFF Research Database (Denmark)
Halskov, Kim; Johansen, Stine Liv; Bach Mikkelsen, Michelle
2014-01-01
Three-dimensional projection installations are particular kinds of augmented spaces in which a digital 3-D model is projected onto a physical three-dimensional object, thereby fusing the digital content and the physical object. Based on interaction design research and media studies, this article...... contributes to the understanding of the distinctive characteristics of such a new medium, and identifies three strategies for designing 3-D projection installations: establishing space; interplay between the digital and the physical; and transformation of materiality. The principal empirical case, From...... Fingerplan to Loop City, is a 3-D projection installation presenting the history and future of city planning for the Copenhagen area in Denmark. The installation was presented as part of the 12th Architecture Biennale in Venice in 2010....
DEFF Research Database (Denmark)
Villaume, René Domine; Ørstrup, Finn Rude
2002-01-01
Projektet undersøger potentialet for interaktiv 3D design via Internettet. Arkitekt Jørn Utzons projekt til Espansiva blev udviklet som et byggesystem med det mål, at kunne skabe mangfoldige planmuligheder og mangfoldige facade- og rumudformninger. Systemets bygningskomponenter er digitaliseret som...... 3D elementer og gjort tilgængelige. Via Internettet er det nu muligt at sammenstille og afprøve en uendelig række bygningstyper som systemet blev tænkt og udviklet til....
Exact vectorial law for axisymmetric MHD turbulence
Galtier, S.
2009-12-01
3D incompressible MHD turbulence is investigated under the assumptions of homogeneity and axisymmetry. We demonstrate that previous works of Chandrasekhar (1950) may be improved significantly by using a different formalism for the representation of two-point correlation tensors. From this axisymmetric kinematics, the equations a la von Karman-Howarth are derived from which an exact relation is found in terms of measurable correlations. The relation is then analyzed in the particular case of a medium permeated by an imposed magnetic field. We make the ansatz that the development of anisotropy implies an algebraic relation between the axial and the radial components of the separation vector and we derive an exact vectorial law which is parametrized by the intensity of anisotropy. The critical balance proposed by Goldreich & Sridhar (1995) is used to fix this parameter and to obtain a unique exact expression; the particular limits of correlations transverse and parallel to the mean field are given for which simple expressions are found. Predictions for the energy spectra are also proposed by a straightforward dimensional analysis of the exact law; it gives a stronger theoretical background to the heuristic spectra previously proposed in the context of the critical balance. We also discuss the wave turbulence limit of an asymptotically large external magnetic field which appears as a natural limit of the vectorial relation. A new interpretation of the anisotropic solar wind observations is eventually discussed.
DEFF Research Database (Denmark)
Hejlesen, Aske K.; Ovesen, Nis
2012-01-01
This paper presents an experimental approach to teaching 3D modelling techniques in an Industrial Design programme. The approach includes the use of tangible free form models as tools for improving the overall learning. The paper is based on lecturer and student experiences obtained through...
DEFF Research Database (Denmark)
Stenholt, Rasmus; Madsen, Claus B.
2011-01-01
Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data...
DEFF Research Database (Denmark)
Jordi, Moréton; F, Escribano; J. L., Farias
This document is a general report on the implementation of gamification in 3D Wire 2015 event. As the second gamification experience in this event, we have delved deeply in the previous objectives (attracting public areas less frequented exhibition in previous years and enhance networking) and ha......, improves socialization and networking, improves media impact, improves fun factor and improves encouragement of the production team....
Wireless Rover Meets 3D Design and Product Development
Deal, Walter F., III; Hsiung, Steve C.
2016-01-01
Today there are a number of 3D printing technologies that are low cost and within the budgets of middle and high school programs. Educational technology companies offer a variety of 3D printing technologies and parallel curriculum materials to enable technology and engineering teachers to easily add 3D learning activities to their programs.…
Institute of Scientific and Technical Information of China (English)
董烨; 董志伟; 周海京; 陈虹; 莫则尧; 陈军; 杨温渊; 赵强; 夏芳; 肖丽; 马彦; 廖丽; 孙会芳
2011-01-01
介绍了自主编制的3维全电磁粒子模拟大规模并行程序NEPTUNE的基本情况.该程序具备对多种典型高功率微波源器件的3维模拟能力,可以在数百乃至上千个CPU上稳定运行.该程序使用时域有限差分(FDTD)方法更新计算电磁场,采用Buneman-Boris算法更新粒子运动状态,运用质点网格法(PIC)处理粒子与电磁场的耦合关系,最后利用Boris方法求解泊松方程对电场散度进行修正,以确保计算精度.该程序初步具备复杂几何结构建模能力,可以对典型高功率微波器件中常见的一些复杂结构,如任意边界形状的轴对称几何体、正交投影面几何体,慢波结构、耦合孔洞、金属线和曲面薄膜等进行几何建模.该程序将理想导体边界、外加波边界、粒子发射与吸收边界及完全匹配层边界等物理边界应用于几何边界上,实现了数值计算的封闭求解.最后以算例的形式,介绍了使用NEPTUNE程序对磁绝缘线振荡器、相对论返波管、虚阴极振荡器及相对论速调管等典型高功率微波源器件进行的模拟计算情况,验证了模拟计算结果的可靠性,同时给出了并行效率的分布情况.%A massively parallel code named NEPTUNE for 3D fully electromagnetic and particle-in-cell(PIC) simulations is introduced , which can run on the Linux system with hundreds or even thousands of CPUs. NEPTUNE is capable of three-dimensional simulation of various typical high power microwave( HPM) devices. In NEPTUNE code, electromagnetic fields are updated by using finite-difference time-domain (FDTD) method to solve Maxwell equations and particles are moved by using Buneman-Boris method to solve the relativistic Newton-Lorentz equation. The electromagnetic fields and particles are coupled by using linear weighing interpolation PIC method, and the electric field components are corrected by using Boris method to solve the Poisson e-quation in order to ensure charge
Directory of Open Access Journals (Sweden)
Navid Freidoonimehr
2015-01-01
Full Text Available The main purpose of this study is to present dual solutions for the problem of magneto-hydrodynamic Jeffery–Hamel nano-fluid flow in non-parallel walls. To do so, we employ a new analytical technique, Predictor Homotopy Analysis Method (PHAM. This effective method is capable to calculate all branches of the multiple solutions simultaneously. Moreover, comparison of the PHAM results with numerical results obtained by the shooting method coupled with a Runge-Kutta integration method illustrates the high accuracy for this technique. For the current problem, it is found that the multiple (dual solutions exist for some values of governing parameters especially for the convergent channel cases (α = -1. The fluid in the non-parallel walls, divergent and convergent channels, is the drinking water containing different nanoparticles; Copper oxide (CuO, Copper (Cu and Silver (Ag. The effects of nanoparticle volume fraction parameter (φ, Reynolds number (Re, magnetic parameter (Mn, and angle of the channel (α as well as different types of nanoparticles on the flow characteristics are discussed.
Bhardwaj, Lakshya
2016-01-01
This paper generalizes two facts about oriented 3d TFTs to the unoriented case. On one hand, it is known that oriented 3d TFTs having a topological boundary condition admit a state-sum construction known as the Turaev-Viro construction. This is related to the string-net construction of fermionic phases of matter. We show how Turaev-Viro construction can be generalized to unoriented 3d TFTs. On the other hand, it is known that the "fermionic" versions of oriented TFTs, known as Spin-TFTs, can be constructed in terms of "shadow" TFTs which are ordinary oriented TFTs with an anomalous Z_2 1-form symmetry. We generalize this correspondence to Pin+ TFTs by showing that they can be constructed in terms of ordinary unoriented TFTs with anomalous Z_2 1-form symmetry having a mixed anomaly with time-reversal symmetry. The corresponding Pin+ TFT does not have any anomaly for time-reversal symmetry however and hence it can be unambiguously defined on a non-orientable manifold. In case a Pin+ TFT admits a topological bou...
Current accumulation at an asymmetric 3D null point caused by generic shearing motions
Galsgaard, K.; Pontin, D. I.
2011-10-01
Context. Here we investigate the dynamical evolution of the reconnection process at an initially linear 3D null point that is stressed by a localised shear motion across the spine axis. The difference to previous investigations is that the fan plane is not rotationally symmetric and this allows for different behaviours depending on the alignment of the fan plane relative to the imposed driver direction. Aims: The aim is to show how the current accumulation and the associated reconnection process at the non-axisymmetric null depends on the relative orientation between the driver imposed stress across the spine axis of the null and the main eigenvector direction in the fan plane. Methods: The time evolution of the 3D null point is investigated solving the 3D non-ideal MHD equations numerically in a Cartesian box. The magnetic field is frozen to the boundaries and the boundary velocity is only non-zero where the imposed driving for stressing the system is applied. Results: The current accumulation is found to be along the direction of the fan eigenvector associated with the smallest eigenvalue until the direction of the driver is almost parallel to this eigenvector. When the driving velocity is parallel to the weak eigenvector and has an impulsive temporal profile the null only has a weak collapse forming only a weak current layer. However, when the null point is stressed continuously boundary effects dominates the current accumulation. Conclusions: There is a clear relation between the orientation of the current concentration and the direction of the fan eigenvector corresponding to the small eigenvalue. This shows that the structure of the magnetic field is the most important in determining where current is going to accumulate when a single 3D null point is perturbed by a simple shear motion across the spine axis. As the angle between the driving direction and the strong eigenvector direction increases, the current that accumulates at the null becomes progressively
Introduction to 3D Graphics through Excel
Benacka, Jan
2013-01-01
The article presents a method of explaining the principles of 3D graphics through making a revolvable and sizable orthographic parallel projection of cuboid in Excel. No programming is used. The method was tried in fourteen 90 minute lessons with 181 participants, which were Informatics teachers, undergraduates of Applied Informatics and gymnasium…
Fung, Y. C.
1995-05-01
This conference on physiology and function covers a wide range of subjects, including the vasculature and blood flow, the flow of gas, water, and blood in the lung, the neurological structure and function, the modeling, and the motion and mechanics of organs. Many technologies are discussed. I believe that the list would include a robotic photographer, to hold the optical equipment in a precisely controlled way to obtain the images for the user. Why are 3D images needed? They are to achieve certain objectives through measurements of some objects. For example, in order to improve performance in sports or beauty of a person, we measure the form, dimensions, appearance, and movements.
Relativistic HD and MHD modelling for AGN jets
Keppens, R.; Porth, O.; Monceau-Baroux, R.; Walg, S.
2013-12-01
Relativistic hydro and magnetohydrodynamics (MHD) provide a continuum fluid description for plasma dynamics characterized by shock-dominated flows approaching the speed of light. Significant progress in its numerical modelling emerged in the last two decades; we highlight selected examples of modern grid-adaptive, massively parallel simulations realized by our open-source software MPI-AMRVAC (Keppens et al 2012 J. Comput. Phys. 231 718). Hydrodynamical models quantify how energy transfer from active galactic nuclei (AGN) jets to their surrounding interstellar/intergalactic medium (ISM/IGM) gets mediated through shocks and various fluid instability mechanisms (Monceau-Baroux et al 2012 Astron. Astrophys. 545 A62). With jet parameters representative for Fanaroff-Riley type-II jets with finite opening angles, we can quantify the ISM volumes affected by jet injection and distinguish the roles of mixing versus shock-heating in cocoon regions. This provides insight in energy feedback by AGN jets, usually incorporated parametrically in cosmological evolution scenarios. We discuss recent axisymmetric studies up to full 3D simulations for precessing relativistic jets, where synthetic radio maps can confront observations. While relativistic hydrodynamic models allow one to better constrain dynamical parameters like the Lorentz factor and density contrast between jets and their surroundings, the role of magnetic fields in AGN jet dynamics and propagation characteristics needs full relativistic MHD treatments. Then, we can demonstrate the collimating properties of an overal helical magnetic field backbone and study differences between poloidal versus toroidal field dominated scenarios (Keppens et al 2008 Astron. Astrophys. 486 663). Full 3D simulations allow one to consider the fate of non-axisymmetric perturbations on relativistic jet propagation from rotating magnetospheres (Porth 2013 Mon. Not. R. Astron. Soc. 429 2482). Self-stabilization mechanisms related to the detailed
Linga Raju, T.; Neela Rao, B.
2016-08-01
The paper aims to analyze the heat transfer aspects of a two-layered fluid flow in a horizontal channel under the action of an applied magnetic and electric fields, when the whole system is rotated about an axis perpendicular to the flow. The flow is driven by a common constant pressure gradient in the channel bounded by two parallel porous insulating plates, one being stationary and the other one oscillatory. The fluids in the two regions are considered electrically conducting, and are assumed to be incompressible with variable properties, namely, different densities, viscosities, thermal and electrical conductivities. The transport properties of the two fluids are taken to be constant and the bounding plates are maintained at constant and equal temperature. The governing partial differential equations are then reduced to the ordinary linear differential equations by using a two-term series. The temperature distributions in both fluid regions of the channel are derived analytically. The results are presented graphically to discuss the effect on the heat transfer characteristics and their dependence on the governing parameters, i.e., the Hartmann number, Taylor number, porous parameter, and ratios of the viscosities, heights, electrical and thermal conductivities. It is observed that, as the Coriolis forces become stronger, i.e., as the Taylor number increases, the temperature decreases in the two fluid regions. It is also seen that an increase in porous parameter diminishes the temperature distribution in both the regions.
Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael
2009-01-01
This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308
Directory of Open Access Journals (Sweden)
Ms. Swapnali R. Ghadge
2013-08-01
Full Text Available In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot of discussions. Basically, one can look into this matter from a few different perspectives: visualization and representation of information, and creation and transportation of information, among others. All of them still constitute research challenges, as no products or services are yet available or foreseen for the near future. Nevertheless, one can try to envisage the directions that can be taken towards achieving this goal. People who take part in virtual worlds stay online longer with a heightened level of interest. To take advantage of that interest, diverse businesses and organizations have claimed an early stake in this fast-growing market. They include technology leaders such as IBM, Microsoft, and Cisco, companies such as BMW, Toyota, Circuit City, Coca Cola, and Calvin Klein, and scores of universities, including Harvard, Stanford and Penn State.
VizieR Online Data Catalog: STAGGER-grid of 3D stellar models. I. (Magic+, 2013)
Magic, Z.; Collet, R.; Asplund, M.; Trampedach, R.; Hayek, W.; Chiavassa, A.; Stein, R. F.; Nordlund, A.
2013-07-01
The 3D model atmospheres presented here were constructed with a custom version of the Stagger-code, a state-of-the-art, multipurpose, radiative-magnetohydrodynamics (R-MHD) code originally developed by Nordlund & Galsgaard (1995, http://www.astro.ku.dk/~kg/Papers/MHD_code.ps.gz), and continuously improved over the years by its user community. (1 data file).
2006-09-01
Aerospace Applications, AIAA-Paper 96-2355, New Orleans, 1996 2. V.A.Bityurin, A.N.Bocharov, J.Lineberry, MHD Aerospace Applications, Invited Lecture ...Paper 2003- 4303, Orlando, FL 8. V.A.Bityurin, Prospective of MHD Interaction in Hypersonic and Propulsion Technologies, In: von Karman Series : Lectures ...Efforts in MHD AeoSpace Applications, In: von Karman Series : Lectures , Introduction of Magneto-Fluid Dynamics for AeroSpace Applications, von Karman
2 types of spicules "observed" in 3D realistic models
Martínez-Sykora, Juan
2010-01-01
Realistic numerical 3D models of the outer solar atmosphere show two different kind of spicule-like phenomena, as also observed on the solar limb. The numerical models are calculated using the 2 types of spicules "observed" in 3D realistic models Oslo Staggered Code (OSC) to solve the full MHD equations with non-grey and NLTE radiative transfer and thermal conduction along the magnetic field lines. The two types of spicules arise as a natural result of the dynamical evolution in the models. We discuss the different properties of these two types of spicules, their differences from observed spicules and what needs to be improved in the models.
3D Membrane Imaging and Porosity Visualization
Sundaramoorthi, Ganesh
2016-03-03
Ultrafiltration asymmetric porous membranes were imaged by two microscopy methods, which allow 3D reconstruction: Focused Ion Beam and Serial Block Face Scanning Electron Microscopy. A new algorithm was proposed to evaluate porosity and average pore size in different layers orthogonal and parallel to the membrane surface. The 3D-reconstruction enabled additionally the visualization of pore interconnectivity in different parts of the membrane. The method was demonstrated for a block copolymer porous membrane and can be extended to other membranes with application in ultrafiltration, supports for forward osmosis, etc, offering a complete view of the transport paths in the membrane.
LOGARITHMICALLY IMPROVED REGULARITY CRITERION FOR THE 3D GENERALIZED MAGNETO-HYDRODYNAMIC EQUATIONS
Institute of Scientific and Technical Information of China (English)
赵继红; 刘桥
2014-01-01
This article proves the logarithmically improved Serrin’s criterion for solutions of the 3D generalized magneto-hydrodynamic equations in terms of the gradient of the velocity field, which can be regarded as improvement of results in [10] (Luo Y W. On the regularity of generalized MHD equations. J Math Anal Appl, 2010, 365: 806-808) and [18] (Zhang Z J. Remarks on the regularity criteria for generalized MHD equations. J Math Anal Appl, 2011, 375: 799-802).
Hausman, Kalani Kirk
2014-01-01
Get started printing out 3D objects quickly and inexpensively! 3D printing is no longer just a figment of your imagination. This remarkable technology is coming to the masses with the growing availability of 3D printers. 3D printers create 3-dimensional layered models and they allow users to create prototypes that use multiple materials and colors. This friendly-but-straightforward guide examines each type of 3D printing technology available today and gives artists, entrepreneurs, engineers, and hobbyists insight into the amazing things 3D printing has to offer. You'll discover methods for
Kühmstedt, Peter; Bräuer-Burchardt, Christian; Munkelt, Christoph; Heinze, Matthias; Palme, Martin; Schmidt, Ingo; Hintersehr, Josef; Notni, Gunther
2007-09-01
Here a new set-up of a 3D-scanning system for CAD/CAM in dental industry is proposed. The system is designed for direct scanning of the dental preparations within the mouth. The measuring process is based on phase correlation technique in combination with fast fringe projection in a stereo arrangement. The novelty in the approach is characterized by the following features: A phase correlation between the phase values of the images of two cameras is used for the co-ordinate calculation. This works contrary to the usage of only phase values (phasogrammetry) or classical triangulation (phase values and camera image co-ordinate values) for the determination of the co-ordinates. The main advantage of the method is that the absolute value of the phase at each point does not directly determine the coordinate. Thus errors in the determination of the co-ordinates are prevented. Furthermore, using the epipolar geometry of the stereo-like arrangement the phase unwrapping problem of fringe analysis can be solved. The endoscope like measurement system contains one projection and two camera channels for illumination and observation of the object, respectively. The new system has a measurement field of nearly 25mm × 15mm. The user can measure two or three teeth at one time. So the system can by used for scanning of single tooth up to bridges preparations. In the paper the first realization of the intraoral scanner is described.
1997-01-01
This area of terrain near the Sagan Memorial Station was taken on Sol 3 by the Imager for Mars Pathfinder (IMP). 3D glasses are necessary to identify surface detail.The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
FEMHD: An adaptive finite element method for MHD and edge modelling
Energy Technology Data Exchange (ETDEWEB)
Strauss, H.R.
1995-07-01
This paper describes the code FEMHD, an adaptive finite element MHD code, which is applied in a number of different manners to model MHD behavior and edge plasma phenomena on a diverted tokamak. The code uses an unstructured triangular mesh in 2D and wedge shaped mesh elements in 3D. The code has been adapted to look at neutral and charged particle dynamics in the plasma scrape off region, and into a full MHD-particle code.
Electric Current Filamentation Induced by 3D Plasma Flows in the Solar Corona
Nickeler, Dieter H.; Wiegelmann, Thomas; Karlický, Marian; Kraus, Michaela
2017-03-01
Many magnetic structures in the solar atmosphere evolve rather slowly, so they can be assumed as (quasi-)static or (quasi-)stationary and represented via magnetohydrostatic (MHS) or stationary magnetohydrodynamic (MHD) equilibria, respectively. While exact 3D solutions would be desired, they are extremely difficult to find in stationary MHD. We construct solutions with magnetic and flow vector fields that have three components depending on all three coordinates. We show that the noncanonical transformation method produces quasi-3D solutions of stationary MHD by mapping 2D or 2.5D MHS equilibria to corresponding stationary MHD states, that is, states that display the same field-line structure as the original MHS equilibria. These stationary MHD states exist on magnetic flux surfaces of the original 2D MHS states. Although the flux surfaces and therefore also the equilibria have a 2D character, these stationary MHD states depend on all three coordinates and display highly complex currents. The existence of geometrically complex 3D currents within symmetric field-line structures provides the basis for efficient dissipation of the magnetic energy in the solar corona by ohmic heating. We also discuss the possibility of maintaining an important subset of nonlinear MHS states, namely force-free fields, by stationary flows. We find that force-free fields with nonlinear flows only arise under severe restrictions of the field-line geometry and of the magnetic flux density distribution.
Aboufadel, Edward F.
2014-01-01
The purpose of this short paper is to describe a project to manufacture a regular octohedron on a 3D printer. We assume that the reader is familiar with the basics of 3D printing. In the project, we use fundamental ideas to calculate the vertices and faces of an octohedron. Then, we utilize the OPENSCAD program to create a virtual 3D model and an STereoLithography (.stl) file that can be used by a 3D printer.
Salient Local 3D Features for 3D Shape Retrieval
Godil, Afzal
2011-01-01
In this paper we describe a new formulation for the 3D salient local features based on the voxel grid inspired by the Scale Invariant Feature Transform (SIFT). We use it to identify the salient keypoints (invariant points) on a 3D voxelized model and calculate invariant 3D local feature descriptors at these keypoints. We then use the bag of words approach on the 3D local features to represent the 3D models for shape retrieval. The advantages of the method are that it can be applied to rigid as well as to articulated and deformable 3D models. Finally, this approach is applied for 3D Shape Retrieval on the McGill articulated shape benchmark and then the retrieval results are presented and compared to other methods.
Neoclassical Tearing Mode Locking Avoidance by 3D Fields and Recovery of High Confinement
Okabayashi, M.; Budny, B.; Brennan, D.; Ferraro, N.; Grierson, B.; Jardin, S.; Logan, N.; Nazikian, R.; Tobias, B.; Wang, Z.; Strait, E.; de Grassie, J.; La Haye, R.; Paz-Soldan, C.; Taylor, Z.; Shiraki, D.; Hanson, J.; Holcomb, C.; Liu, Y.
2016-10-01
A slowly rotating n=1 helical magnetic field has been applied for Neoclassical Tearing Mode (NTM) locking avoidance in the DIII-D tokamak. This 3D field applied through feedback recovered a high performance configuration by rebuilding a H-mode edge and high ion temperature internal transport barrier in the plasma core, although, at present, the βn was reduced by 30%. The m/n=2/1 component of 3D field served to avoid NTM locking, while the m/n=1 and the m/n=(4-5)/1 components recover core confinement and H-mode edge. Preliminary analysis shows a quasi-steady helical plasma flow was built up around the core, mostly parallel to the equilibrium magnetic field. The optimization of m-components with n=1 is a promising approach for integrating optimizations of MHD stability from core to edge. Supported in part by the US DOE under DE-AC02-09CH11466, DE-FG02-99ER54531, DE-SC0003913 and DE-FC02-04ER54698.
Magnetohydrodynamics dynamical relaxation of coronal magnetic fields. IV. 3D tilted nulls
Fuentes-Fernandez, Jorge
2013-01-01
In this paper we study current accumulations in 3D "tilted" nulls formed by a folding of the spine and fan. A non-zero component of current parallel to the fan is required such that the null's fan plane and spine are not perpendicular. Our aims are to provide valid magnetohydrostatic equilibria and to describe the current accumulations in various cases involving finite plasma pressure.To create our equilibrium current structures we use a full, non-resistive, magnetohydrodynamic (MHD) code so that no reconnection is allowed. A series of experiments are performed in which a perturbed 3D tilted null relaxes towards an equilibrium via real, viscous damping forces. Changes to the initial plasma pressure and to magnetic parameters are investigated systematically.An initially tilted fan is associated with a non-zero Lorentz force that drives the fan and spine to collapse towards each other, in a similar manner to the collapse of a 2D X-point. In the final equilibrium state for an initially radial null with only the ...
Time domain topology optimization of 3D nanophotonic devices
DEFF Research Database (Denmark)
Elesin, Yuriy; Lazarov, Boyan Stefanov; Jensen, Jakob Søndergaard;
2014-01-01
We present an efficient parallel topology optimization framework for design of large scale 3D nanophotonic devices. The code shows excellent scalability and is demonstrated for optimization of broadband frequency splitter, waveguide intersection, photonic crystal-based waveguide and nanowire...
3D toroidal physics: Testing the boundaries of symmetry breakinga)
Spong, Donald A.
2015-05-01
Toroidal symmetry is an important concept for plasma confinement; it allows the existence of nested flux surface MHD equilibria and conserved invariants for particle motion. However, perfect symmetry is unachievable in realistic toroidal plasma devices. For example, tokamaks have toroidal ripple due to discrete field coils, optimized stellarators do not achieve exact quasi-symmetry, the plasma itself continually seeks lower energy states through helical 3D deformations, and reactors will likely have non-uniform distributions of ferritic steel near the plasma. Also, some level of designed-in 3D magnetic field structure is now anticipated for most concepts in order to provide the plasma control needed for a stable, steady-state fusion reactor. Such planned 3D field structures can take many forms, ranging from tokamaks with weak 3D edge localized mode suppression fields to stellarators with more dominant 3D field structures. This motivates the development of physics models that are applicable across the full range of 3D devices. Ultimately, the questions of how much symmetry breaking can be tolerated and how to optimize its design must be addressed for all fusion concepts. A closely coupled program of simulation, experimental validation, and design optimization is required to determine what forms and amplitudes of 3D shaping and symmetry breaking will be compatible with the requirements of future fusion reactors.
3D toroidal physics: Testing the boundaries of symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Spong, Donald A., E-mail: spongda@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6169 (United States)
2015-05-15
Toroidal symmetry is an important concept for plasma confinement; it allows the existence of nested flux surface MHD equilibria and conserved invariants for particle motion. However, perfect symmetry is unachievable in realistic toroidal plasma devices. For example, tokamaks have toroidal ripple due to discrete field coils, optimized stellarators do not achieve exact quasi-symmetry, the plasma itself continually seeks lower energy states through helical 3D deformations, and reactors will likely have non-uniform distributions of ferritic steel near the plasma. Also, some level of designed-in 3D magnetic field structure is now anticipated for most concepts in order to provide the plasma control needed for a stable, steady-state fusion reactor. Such planned 3D field structures can take many forms, ranging from tokamaks with weak 3D edge localized mode suppression fields to stellarators with more dominant 3D field structures. This motivates the development of physics models that are applicable across the full range of 3D devices. Ultimately, the questions of how much symmetry breaking can be tolerated and how to optimize its design must be addressed for all fusion concepts. A closely coupled program of simulation, experimental validation, and design optimization is required to determine what forms and amplitudes of 3D shaping and symmetry breaking will be compatible with the requirements of future fusion reactors.
Spatial and temporal analysis of DIII-D 3D magnetic diagnostic data
Strait, E. J.; King, J. D.; Hanson, J. M.; Logan, N. C.
2016-11-01
An extensive set of magnetic diagnostics in DIII-D is aimed at measuring non-axisymmetric "3D" features of tokamak plasmas, with typical amplitudes ˜10-3 to 10-5 of the total magnetic field. We describe hardware and software techniques used at DIII-D to condition the individual signals and analysis to estimate the spatial structure from an ensemble of discrete measurements. Applications of the analysis include detection of non-rotating MHD instabilities, plasma control, and validation of MHD stability and 3D equilibrium models.
VisAn MHD: a toolbox in Matlab for MHD computer model data visualisation and analysis
Directory of Open Access Journals (Sweden)
P. Daum
2007-03-01
Full Text Available Among the many challenges facing modern space physics today is the need for a visualisation and analysis package which can examine the results from the diversity of numerical and empirical computer models as well as observational data. Magnetohydrodynamic (MHD models represent the latest numerical models of the complex Earth's space environment and have the unique ability to span the enormous distances present in the magnetosphere from several hundred kilometres to several thousand kilometres above the Earth surface. This feature enables scientist to study complex structures of processes where otherwise only point measurements from satellites or ground-based instruments are available. Only by combining these observational data and the MHD simulations it is possible to enlarge the scope of the point-to-point observations and to fill the gaps left by measurements in order to get a full 3-D representation of the processes in our geospace environment. In this paper we introduce the VisAn MHD toolbox for Matlab as a tool for the visualisation and analysis of observational data and MHD simulations. We have created an easy to use tool which is capable of highly sophisticated visualisations and data analysis of the results from a diverse set of MHD models in combination with in situ measurements from satellites and ground-based instruments. The toolbox is being released under an open-source licensing agreement to facilitate and encourage community use and contribution.
3D toroidal physics: testing the boundaries of symmetry breaking
Spong, Don
2014-10-01
Toroidal symmetry is an important concept for plasma confinement; it allows the existence of nested flux surface MHD equilibria and conserved invariants for particle motion. However, perfect symmetry is unachievable in realistic toroidal plasma devices. For example, tokamaks have toroidal ripple due to discrete field coils, optimized stellarators do not achieve exact quasi-symmetry, the plasma itself continually seeks lower energy states through helical 3D deformations, and reactors will likely have non-uniform distributions of ferritic steel near the plasma. Also, some level of designed-in 3D magnetic field structure is now anticipated for most concepts in order to lead to a stable, steady-state fusion reactor. Such planned 3D field structures can take many forms, ranging from tokamaks with weak 3D ELM-suppression fields to stellarators with more dominant 3D field structures. There is considerable interest in the development of unified physics models for the full range of 3D effects. Ultimately, the questions of how much symmetry breaking can be tolerated and how to optimize its design must be addressed for all fusion concepts. Fortunately, significant progress is underway in theory, computation and plasma diagnostics on many issues such as magnetic surface quality, plasma screening vs. amplification of 3D perturbations, 3D transport, influence on edge pedestal structures, MHD stability effects, modification of fast ion-driven instabilities, prediction of energetic particle heat loads on plasma-facing materials, effects of 3D fields on turbulence, and magnetic coil design. A closely coupled program of simulation, experimental validation, and design optimization is required to determine what forms and amplitudes of 3D shaping and symmetry breaking will be compatible with future fusion reactors. The development of models to address 3D physics and progress in these areas will be described. This work is supported both by the US Department of Energy under Contract DE
Magnetohydrodynamics dynamical relaxation of coronal magnetic fields. IV. 3D tilted nulls
Fuentes-Fernández, J.; Parnell, C. E.
2013-06-01
Context. There are various types of reconnection that may take place at 3D magnetic null points. Each different reconnection scenario must be associated with a particular type of current layer. Aims: A range of current layers may form because the topology of 3D nulls permits currents to form by either twisting the field about the spine of the null or by folding the fan and spine into each other. Additionally, the initial geometry of the field can lead to variations in the currents that are accumulated. Here, we study current accumulations in so-called 3D "tilted" nulls formed by a folding of the spine and fan. A non-zero component of current parallel to the fan is required such that the null's fan plane and spine are not perpendicular. Our aims are to provide valid magnetohydrostatic equilibria and to describe the current accumulations in various cases involving finite plasma pressure. Methods: To create our equilibrium current structures we use a full, non-resistive, magnetohydrodynamic (MHD) code so that no reconnection is allowed. A series of experiments are performed in which a perturbed 3D tilted null relaxes towards an equilibrium via real, viscous damping forces. Changes to the initial plasma pressure and to magnetic parameters are investigated systematically. Results: An initially tilted fan is associated with a non-zero Lorentz force that drives the fan and spine to collapse towards each other, in a similar manner to the collapse of a 2D X-point. In the final equilibrium state for an initially radial null with only the current perpendicular to the spine, the current concentrates along the tilt axis of the fan and in a layer about the null point with a sharp peak at the null itself. The continued growth of this peak indicates that the system is in an asymptotic regime involving an infinite time singularity at the null. When the initial tilt disturbance (current perpendicular to the spine) is combined with a spiral-type disturbance (current parallel to the
Digital holography microscopy in 3D biologic samples analysis
Energy Technology Data Exchange (ETDEWEB)
Ricardo, J O; Palacios, F; Palacios, G F; Sanchez, A [Department of Physics, University of Oriente (Cuba); Muramatsu, M [Department of General Physics, University of Sao Paulo - Sao Paulo (Brazil); Gesualdi, M [Engineering center, Models and Applied Social Science, UFABC - Sao Paulo (Brazil); Font, O [Department of Bio-ingeniering, University of Oriente - Santiago de Cuba (Cuba); Valin, J L [Mechanics Department, ISPJAE, Habana (Cuba); Escobedo, M; Herold, S [Department of Computation, University of Oriente (Cuba); Palacios, D F, E-mail: frpalaciosf@gmail.com [Department of Nuclear physics, University of Simon BolIva (Venezuela, Bolivarian Republic of)
2011-01-01
In this work it is used a setup for Digital Holography Microscopy (MHD) for 3D biologic samples reconstruction. The phase contrast image reconstruction is done by using the Double propagation Method. The system was calibrated and tested by using a micrometric scale and pure phase object respectively. It was simulated the human red blood cell (erythrocyte) and beginning from the simulated hologram the digital 3D phase image for erythrocytes it was calculated. Also there was obtained experimental holograms of human erythrocytes and its corresponding 3D phase images, being evident the correspondence qualitative and quantitative between these characteristics in the simulated erythrocyte and in the experimentally calculated by DHM in both cases.
Schnack, Dalton D.
In this lecture we will examine some simple examples of MHD equilibrium configurations. These will all be in cylindrical geometry. They form the basis for more complicated equilibrium states in toroidal geometry.
Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco
2011-09-01
Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.
Spherical 3D isotropic wavelets
Lanusse, F.; Rassat, A.; Starck, J.-L.
2012-04-01
Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html
3D IBFV : Hardware-Accelerated 3D Flow Visualization
Telea, Alexandru; Wijk, Jarke J. van
2003-01-01
We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique for 2D flow visualization in two main directions. First, we decompose the 3D flow visualization problem in a
3D Elevation Program—Virtual USA in 3D
Lukas, Vicki; Stoker, J.M.
2016-04-14
The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.
Interactive 3D multimedia content
Cellary, Wojciech
2012-01-01
The book describes recent research results in the areas of modelling, creation, management and presentation of interactive 3D multimedia content. The book describes the current state of the art in the field and identifies the most important research and design issues. Consecutive chapters address these issues. These are: database modelling of 3D content, security in 3D environments, describing interactivity of content, searching content, visualization of search results, modelling mixed reality content, and efficient creation of interactive 3D content. Each chapter is illustrated with example a
DEFF Research Database (Denmark)
Larsen, Rasmus
1997-01-01
. This includes the specification of a Gaussian distribution for the pixel values as well as a prior distribution for the configuration of class variables within the cross that is m ade of a pixel and its four nearest neighbours. We will extend this algorithm to 3-D, i.e. we will specify a simultaneous Gaussian...... distr ibution for a pixel and its 6 nearest 3-D neighbours, and generalise the class variable configuration distribution within the 3-D cross. The algorithm is tested on a synthetic 3-D multivariate dataset....
3D Bayesian contextual classifiers
DEFF Research Database (Denmark)
Larsen, Rasmus
2000-01-01
We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours.......We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours....
Griffey, Jason
2014-01-01
As the maker movement continues to grow and 3-D printers become more affordable, an expanding group of hobbyists is keen to explore this new technology. In the time-honored tradition of introducing new technologies, many libraries are considering purchasing a 3-D printer. Jason Griffey, an early enthusiast of 3-D printing, has researched the marketplace and seen several systems first hand at the Consumer Electronics Show. In this report he introduces readers to the 3-D printing marketplace, covering such topics asHow fused deposition modeling (FDM) printing workBasic terminology such as build
Connell, Ellery
2011-01-01
Helping graphic designers expand their 2D skills into the 3D space The trend in graphic design is towards 3D, with the demand for motion graphics, animation, photorealism, and interactivity rapidly increasing. And with the meteoric rise of iPads, smartphones, and other interactive devices, the design landscape is changing faster than ever.2D digital artists who need a quick and efficient way to join this brave new world will want 3D for Graphic Designers. Readers get hands-on basic training in working in the 3D space, including product design, industrial design and visualization, modeling, ani
Wiehle, S.; Plaschke, F.; Motschmann, U.; Glassmeier, K. H.; Auster, H. U.; Angelopoulos, V.; Mueller, J.; Kriegel, H.; Georgescu, E.; Halekas, J.; Sibeck, D. G.; McFadden, J. P.
2011-01-01
The spacecraft P1 of the new ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun) mission passed the lunar wake for the first time on February 13, 2010. We present magnetic field and plasma data of this event and results of 3D hybrid simulations. As the solar wind magnetic field was highly dynamic during the passage, a simulation with stationary solar wind input cannot distinguish whether distortions were caused by these solar wind variations or by the lunar wake; therefore, a dynamic real-time simulation of the flyby has been performed. The input values of this simulation are taken from NASA OMNI data and adapted to the P1 data, resulting in a good agreement between simulation and measurements. Combined with the stationary simulation showing non-transient lunar wake structures, a separation of solar wind and wake effects is achieved. An anisotropy in the magnitude of the plasma bulk flow velocity caused by a non-vanishing magnetic field component parallel to the solar wind flow and perturbations created by counterstreaming ions in the lunar wake are observed in data and simulations. The simulations help to interpret the data granting us the opportunity to examine the entire lunar plasma environment and, thus, extending the possibilities of measurements alone: A comparison of a simulation cross section to theoretical predictions of MHD wave propagation shows that all three basic MHD modes are present in the lunar wake and that their expansion governs the lunar wake refilling process.
Simulated annealing for three-dimensional low-beta reduced MHD equilibria in cylindrical geometry
Furukawa, M
2016-01-01
Simulated annealing (SA) is applied for three-dimensional (3D) equilibrium calculation of ideal, low-beta reduced MHD in cylindrical geometry. The SA is based on the theory of Hamiltonian mechanics. The dynamical equation of the original system, low-beta reduced MHD in this study, is modified so that the energy changes monotonically while preserving the Casimir invariants in the artificial dynamics. An equilibrium of the system is given by an extremum of the energy, therefore SA can be used as a method for calculating ideal MHD equilibrium. Previous studies demonstrated that the SA succeeds to lead to various MHD equilibria in two dimensional rectangular domain. In this paper, the theory is applied to 3D equilibrium of ideal, low-beta reduced MHD. An example of equilibrium with magnetic islands, obtained as a lower energy state, is shown. Several versions of the artificial dynamics are developed that can effect smoothing.
Spherical 3D Isotropic Wavelets
Lanusse, F; Starck, J -L
2011-01-01
Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D Spherical Fourier-Bessel (SFB) analysis in is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the Fourier-Bessel decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. 2006. We also present a new fast Discrete Spherical Fourier-Bessel Transform (DSFBT) based on both a discrete Bessel Transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large...
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
The disadvantage remaining in 3D scanning system and its reasons are discussed. A new host-and-slave structure with high speed image acquisition and processing system is proposed to quicken the image processing and improve the performance of 3D scanning system.
ECT Team, Purdue
2015-01-01
Building Bytes, by Brian Peters, is a project that uses desktop 3D printers to print bricks for architecture. Instead of using an expensive custom-made printer, it uses a normal standard 3D printer which is available for everyone and makes it more accessible and also easier for fabrication.
Pezzaniti, J. Larry; Edmondson, Richard; Vaden, Justin; Hyatt, Bryan; Chenault, David B.; Kingston, David; Geulen, Vanilynmae; Newell, Scott; Pettijohn, Brad
2009-02-01
In this paper, we report on the development of a 3D vision system consisting of a flat panel stereoscopic display and auto-converging stereo camera and an assessment of the system's use for robotic driving, manipulation, and surveillance operations. The 3D vision system was integrated onto a Talon Robot and Operator Control Unit (OCU) such that direct comparisons of the performance of a number of test subjects using 2D and 3D vision systems were possible. A number of representative scenarios were developed to determine which tasks benefited most from the added depth perception and to understand when the 3D vision system hindered understanding of the scene. Two tests were conducted at Fort Leonard Wood, MO with noncommissioned officers ranked Staff Sergeant and Sergeant First Class. The scenarios; the test planning, approach and protocols; the data analysis; and the resulting performance assessment of the 3D vision system are reported.
Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.
1990-01-01
PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.
Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A
2015-12-01
3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.
DEFF Research Database (Denmark)
Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen
2005-01-01
The notion of three-dimensionality is applied to five stages of the visualization pipeline. While 3D visulization is most often associated with the visual mapping and representation of data, this chapter also identifies its role in the management and assembly of data, and in the media used...... to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...... with abstracted representations embedded in a 3D space. The interactions between development of geovisualization, the technology used to implement it and the theory surrounding cartographic representation are explored. The dominance of computing technologies, driven particularly by the gaming industry...
ADT-3D Tumor Detection Assistant in 3D
Directory of Open Access Journals (Sweden)
Jaime Lazcano Bello
2008-12-01
Full Text Available The present document describes ADT-3D (Three-Dimensional Tumor Detector Assistant, a prototype application developed to assist doctors diagnose, detect and locate tumors in the brain by using CT scan. The reader may find on this document an introduction to tumor detection; ADT-3D main goals; development details; description of the product; motivation for its development; result’s study; and areas of applicability.
Relativistic MHD with Adaptive Mesh Refinement
Anderson, M; Liebling, S L; Neilsen, D; Anderson, Matthew; Hirschmann, Eric; Liebling, Steven L.; Neilsen, David
2006-01-01
We solve the relativistic magnetohydrodynamics (MHD) equations using a finite difference Convex ENO method (CENO) in 3+1 dimensions within a distributed parallel adaptive mesh refinement (AMR) infrastructure. In flat space we examine a Balsara blast wave problem along with a spherical blast wave and a relativistic rotor test both with unigrid and AMR simulations. The AMR simulations substantially improve performance while reproducing the resolution equivalent unigrid simulation results. We also investigate the impact of hyperbolic divergence cleaning for the spherical blast wave and relativistic rotor. We include unigrid and mesh refinement parallel performance measurements for the spherical blast wave.
Unassisted 3D camera calibration
Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.
2012-03-01
With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.
Stanton, M M; Samitier, J; Sánchez, S
2015-08-07
Three-dimensional (3D) bioprinting has recently emerged as an extension of 3D material printing, by using biocompatible or cellular components to build structures in an additive, layer-by-layer methodology for encapsulation and culture of cells. These 3D systems allow for cell culture in a suspension for formation of highly organized tissue or controlled spatial orientation of cell environments. The in vitro 3D cellular environments simulate the complexity of an in vivo environment and natural extracellular matrices (ECM). This paper will focus on bioprinting utilizing hydrogels as 3D scaffolds. Hydrogels are advantageous for cell culture as they are highly permeable to cell culture media, nutrients, and waste products generated during metabolic cell processes. They have the ability to be fabricated in customized shapes with various material properties with dimensions at the micron scale. 3D hydrogels are a reliable method for biocompatible 3D printing and have applications in tissue engineering, drug screening, and organ on a chip models.
Alexakis, A.
2009-04-01
Most astrophysical and planetary systems e.g., solar convection and stellar winds, are in a turbulent state and coupled to magnetic fields. Understanding and quantifying the statistical properties of magneto-hydro-dynamic (MHD) turbulence is crucial to explain the involved physical processes. Although the phenomenological theory of hydro-dynamic (HD) turbulence has been verified up to small corrections, a similar statement cannot be made for MHD turbulence. Since the phenomenological description of Hydrodynamic turbulence by Kolmogorov in 1941 there have been many attempts to derive a similar description for turbulence in conducting fluids (i.e Magneto-Hydrodynamic turbulence). However such a description is going to be based inevitably on strong assumptions (typically borrowed from hydrodynamics) that do not however necessarily apply to the MHD case. In this talk I will discuss some of the properties and differences of the energy and helicity cascades in turbulent MHD and HD flows. The investigation is going to be based on the analysis of direct numerical simulations. The cascades in MHD turbulence appear to be a more non-local process (in scale space) than in Hydrodynamics. Some implications of these results to turbulent modeling will be discussed
Tuotekehitysprojekti: 3D-tulostin
Pihlajamäki, Janne
2011-01-01
Opinnäytetyössä tutustuttiin 3D-tulostamisen teknologiaan. Työssä käytiin läpi 3D-tulostimesta tehty tuotekehitysprojekti. Sen lisäksi esiteltiin yleisellä tasolla tuotekehitysprosessi ja syntyneiden tulosten mahdollisia suojausmenetelmiä. Tavoitteena tässä työssä oli kehittää markkinoilta jo löytyvää kotitulostin-tasoista 3D-laiteteknologiaa lähemmäksi ammattilaistason ratkaisua. Tavoitteeseen pyrittiin keskittymällä parantamaan laitteella saavutettavaa tulostustarkkuutta ja -nopeutt...
Garrou , Philip; Ramm , Peter
2014-01-01
Edited by key figures in 3D integration and written by top authors from high-tech companies and renowned research institutions, this book covers the intricate details of 3D process technology.As such, the main focus is on silicon via formation, bonding and debonding, thinning, via reveal and backside processing, both from a technological and a materials science perspective. The last part of the book is concerned with assessing and enhancing the reliability of the 3D integrated devices, which is a prerequisite for the large-scale implementation of this emerging technology. Invaluable reading fo
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
This paper presents a principle and a method of col or 3D laser scanning measurement. Based on the fundamental monochrome 3D measureme nt study, color information capture, color texture mapping, coordinate computati on and other techniques are performed to achieve color 3D measurement. The syste m is designed and composed of a line laser light emitter, one color CCD camera, a motor-driven rotary filter, a circuit card and a computer. Two steps in captu ring object's images in the measurement process: Firs...
Lin, Zeyu
2014-01-01
3D printing technology is introduced and defined in this Thesis. Some methods of 3D printing are illustrated and their principles are explained with pictures. Most of the essential parts are presented with pictures and their effects are explained within the whole system. Problems on Up! Plus 3D printer are solved and a DIY product is made with this machine. The processes of making product are recorded and the items which need to be noticed during the process are the highlight in this th...
PSH3D fast Poisson solver for petascale DNS
Adams, Darren; Dodd, Michael; Ferrante, Antonino
2016-11-01
Direct numerical simulation (DNS) of high Reynolds number, Re >= O (105) , turbulent flows requires computational meshes >= O (1012) grid points, and, thus, the use of petascale supercomputers. DNS often requires the solution of a Helmholtz (or Poisson) equation for pressure, which constitutes the bottleneck of the solver. We have developed a parallel solver of the Helmholtz equation in 3D, PSH3D. The numerical method underlying PSH3D combines a parallel 2D Fast Fourier transform in two spatial directions, and a parallel linear solver in the third direction. For computational meshes up to 81923 grid points, our numerical results show that PSH3D scales up to at least 262k cores of Cray XT5 (Blue Waters). PSH3D has a peak performance 6 × faster than 3D FFT-based methods when used with the 'partial-global' optimization, and for a 81923 mesh solves the Poisson equation in 1 sec using 128k cores. Also, we have verified that the use of PSH3D with the 'partial-global' optimization in our DNS solver does not reduce the accuracy of the numerical solution of the incompressible Navier-Stokes equations.
Conducting polymer 3D microelectrodes
DEFF Research Database (Denmark)
Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi
2010-01-01
Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...
MHD Equations with Regularity in One Direction
Directory of Open Access Journals (Sweden)
Zujin Zhang
2014-01-01
Full Text Available We consider the 3D MHD equations and prove that if one directional derivative of the fluid velocity, say, ∂3u∈Lp0, T;LqR3, with 2/p + 3/q = γ ∈ [1,3/2, 3/γ ≤ q ≤ 1/(γ - 1, then the solution is in fact smooth. This improves previous results greatly.
DEFF Research Database (Denmark)
Lading, Brian; Larsen, Rasmus; Astrom, K
2006-01-01
We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations......We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations...
DEFF Research Database (Denmark)
Lading, Brian; Larsen, Rasmus; Åström, Kalle
2006-01-01
We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}......We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}...
Main: TATCCAYMOTIFOSRAMY3D [PLACE
Lifescience Database Archive (English)
Full Text Available TATCCAYMOTIFOSRAMY3D S000256 01-August-2006 (last modified) kehi TATCCAY motif foun...d in rice (O.s.) RAmy3D alpha-amylase gene promoter; Y=T/C; a GATA motif as its antisense sequence; TATCCAY ...motif and G motif (see S000130) are responsible for sugar repression (Toyofuku et al. 1998); GATA; amylase; sugar; repression; rice (Oryza sativa) TATCCAY ...
3D fold growth in transpression
Frehner, Marcel
2016-12-01
Geological folds in transpression are inherently 3D structures; hence their growth and rotation behavior is studied using 3D numerical finite-element simulations. Upright single-layer buckle folds in Newtonian materials are considered, which grow from an initial point-like perturbation due to a combination of in-plane shortening and shearing (i.e., transpression). The resulting fold growth exhibits three components: (1) fold amplification (vertical), (2) fold elongation (parallel to fold axis), and (3) sequential fold growth (perpendicular to axial plane) of new anti- and synforms adjacent to the initial fold. Generally, the fold growth rates are smaller for shearing-dominated than for shortening-dominated transpression. In spite of the growth rate, the folding behavior is very similar for the different convergence angles. The two lateral directions always exhibit similar growth rates implying that the bulk fold structure occupies an increasing roughly circular area. Fold axes are always parallel to the major horizontal principal strain axis (λ→max, i.e., long axis of the horizontal finite strain ellipse), which is initially also parallel to the major horizontal instantaneous stretching axis (ISA→max). After initiation, the fold axes rotate together with λ→max. Sequential folds appearing later do not initiate parallel to ISA→max, but parallel to λ→max, i.e. parallel to the already existing folds, and also rotate with λ→max. Therefore, fold axes do not correspond to passive material lines and hinge migration takes place as a consequence. The fold axis orientation parallel to λ→max is independent of convergence angle and viscosity ratio. Therefore, a triangular relationship between convergence angle, amount of shortening, and fold axis orientation exists. If two of these values are known, the third can be determined. This relationship is applied to the Zagros fold-and-thrust-belt to estimate the degree of strain partitioning between the Simply
Kanki, Takashi; Nagata, Masayoshi; Kagei, Yasuhiro
2011-10-01
The dynamics of structures of magnetic field, current density, and plasma flow generated during multi-pulsed coaxial helicity injection in spherical torus is investigated by 3-D nonlinear MHD simulations. During the driven phase, the flux and current amplifications occur due to the merging and magnetic reconnection between the preexisting plasma in the confinement region and the ejected plasma from the gun region involving the n = 1 helical kink distortion of the central open flux column (COFC). Interestingly, the diamagnetic poloidal flow which tends toward the gun region is then observed due to the steep pressure gradients of the COFC generated by ohmic heating through an injection current winding around the inboard field lines, resulting in the formation of the strong poloidal flow shear at the interface between the COFC and the core region. This result is consistent with the flow shear observed in the HIST. During the decay phase, the configuration approaches the axisymmetric MHD equilibrium state without flow because of the dissipation of magnetic fluctuation energy to increase the closed flux surfaces, suggesting the generation of ordered magnetic field structure. The parallel current density λ concentrated in the COFC then diffuses to the core region so as to reduce the gradient in λ, relaxing in the direction of the Taylor state.
MPML3D: Scripting Agents for the 3D Internet.
Prendinger, Helmut; Ullrich, Sebastian; Nakasone, Arturo; Ishizuka, Mitsuru
2011-05-01
The aim of this paper is two-fold. First, it describes a scripting language for specifying communicative behavior and interaction of computer-controlled agents ("bots") in the popular three-dimensional (3D) multiuser online world of "Second Life" and the emerging "OpenSimulator" project. While tools for designing avatars and in-world objects in Second Life exist, technology for nonprogrammer content creators of scenarios involving scripted agents is currently missing. Therefore, we have implemented new client software that controls bots based on the Multimodal Presentation Markup Language 3D (MPML3D), a highly expressive XML-based scripting language for controlling the verbal and nonverbal behavior of interacting animated agents. Second, the paper compares Second Life and OpenSimulator platforms and discusses the merits and limitations of each from the perspective of agent control. Here, we also conducted a small study that compares the network performance of both platforms.
Emerging Applications of Bedside 3D Printing in Plastic Surgery
Directory of Open Access Journals (Sweden)
Michael P Chae
2015-06-01
Full Text Available Modern imaging techniques are an essential component of preoperative planning in plastic and reconstructive surgery. However, conventional modalities, including three-dimensional (3D reconstructions, are limited by their representation on 2D workstations. 3D printing has been embraced by early adopters to produce medical imaging-guided 3D printed biomodels that facilitate various aspects of clinical practice. The cost and size of 3D printers have rapidly decreased over the past decade in parallel with the expiration of key 3D printing patents. With increasing accessibility, investigators are now able to convert standard imaging data into Computer Aided Design (CAD files using various 3D reconstruction softwares and ultimately fabricate 3D models using 3D printing techniques, such as stereolithography (SLA, multijet modeling (MJM, selective laser sintering (SLS, binder jet technique (BJT, and fused deposition modeling (FDM. Significant improvements in clinical imaging and user-friendly 3D software have permitted computer-aided 3D modeling of anatomical structures and implants without out-sourcing in many cases. These developments offer immense potential for the application of 3D printing at the bedside for a variety of clinical applications. However, many clinicians have questioned whether the cost-to-benefit ratio justifies its ongoing use. In this review the existing uses of 3D printing in plastic surgery practice, spanning the spectrum from templates for facial transplantation surgery through to the formation of bespoke craniofacial implants to optimize post-operative aesthetics, are described. Furthermore, we discuss the potential of 3D printing to become an essential office-based tool in plastic surgery to assist in preoperative planning, patient and surgical trainee education, and the development of intraoperative guidance tools and patient-specific prosthetics in everyday surgical practice.
Emerging Applications of Bedside 3D Printing in Plastic Surgery.
Chae, Michael P; Rozen, Warren M; McMenamin, Paul G; Findlay, Michael W; Spychal, Robert T; Hunter-Smith, David J
2015-01-01
Modern imaging techniques are an essential component of preoperative planning in plastic and reconstructive surgery. However, conventional modalities, including three-dimensional (3D) reconstructions, are limited by their representation on 2D workstations. 3D printing, also known as rapid prototyping or additive manufacturing, was once the province of industry to fabricate models from a computer-aided design (CAD) in a layer-by-layer manner. The early adopters in clinical practice have embraced the medical imaging-guided 3D-printed biomodels for their ability to provide tactile feedback and a superior appreciation of visuospatial relationship between anatomical structures. With increasing accessibility, investigators are able to convert standard imaging data into a CAD file using various 3D reconstruction softwares and ultimately fabricate 3D models using 3D printing techniques, such as stereolithography, multijet modeling, selective laser sintering, binder jet technique, and fused deposition modeling. However, many clinicians have questioned whether the cost-to-benefit ratio justifies its ongoing use. The cost and size of 3D printers have rapidly decreased over the past decade in parallel with the expiration of key 3D printing patents. Significant improvements in clinical imaging and user-friendly 3D software have permitted computer-aided 3D modeling of anatomical structures and implants without outsourcing in many cases. These developments offer immense potential for the application of 3D printing at the bedside for a variety of clinical applications. In this review, existing uses of 3D printing in plastic surgery practice spanning the spectrum from templates for facial transplantation surgery through to the formation of bespoke craniofacial implants to optimize post-operative esthetics are described. Furthermore, we discuss the potential of 3D printing to become an essential office-based tool in plastic surgery to assist in preoperative planning, developing
Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.
2014-08-01
In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers
3D-mallinnus ja 3D-animaatiot biovoimalaitoksesta
Hiltula, Tytti
2014-01-01
Opinnäytetyössä tehtiin biovoimalaitoksen piirustuksista 3D-mallinnus ja animaatiot. Työn tarkoituksena oli saada valmiiksi Recwell Oy:lle markkinointiin tarkoitetut kuva- ja videomateriaalit. Työssä perehdyttiin 3D-mallintamisen perustietoihin ja lähtökohtiin sekä animaation laatimiseen. Työ laadittiin kokonaisuudessaan AutoCAD-ohjelmalla, ja työn aikana tutustuttiin huolellisesti myös ohjelman käyttöohjeisiin. Piirustusten mitoituksessa huomattiin jo alkuvaiheessa suuria puutteita, ...
When fast atom diffraction turns 3D
Energy Technology Data Exchange (ETDEWEB)
Zugarramurdi, Asier; Borisov, Andrei G., E-mail: andrei.borissov@u-psud.fr
2013-12-15
Fast atom diffraction at surfaces (FAD) in grazing incidence geometry is characterized by the slow motion in the direction perpendicular to the surface and fast motion parallel to the surface plane along a low index direction. It is established experimentally that for the typical surfaces the FAD reveals the 2D diffraction patterns associated with exchange of the reciprocal lattice vector perpendicular to the direction of fast motion. The reciprocal lattice vector exchange along the direction of fast motion is negligible. The usual approximation made in the description of the experimental data is then to assume that the effective potential leading to the diffraction results from the averaging of the 3D surface potential along the atomic strings forming the axial channel. In this work we use full quantum wave packet propagation calculations to study theoretically the possibility to observe the 3D diffraction in FAD experiments. We show that for the surfaces with large unit cell, such as can be the case for reconstructed or vicinal surfaces, the 3D diffraction can be observed. The reciprocal lattice vector exchange along the direction of fast motion leads to several Laue circles in the diffraction pattern.
3D- VISUALIZATION BY RAYTRACING IMAGE SYNTHESIS ON GPU
Directory of Open Access Journals (Sweden)
Al-Oraiqat Anas M.
2016-06-01
Full Text Available This paper presents a realization of the approach to spatial 3D stereo of visualization of 3D images with use parallel Graphics processing unit (GPU. The experiments of realization of synthesis of images of a 3D stage by a method of trace of beams on GPU with Compute Unified Device Architecture (CUDA have shown that 60 % of the time is spent for the decision of a computing problem approximately, the major part of time (40 % is spent for transfer of data between the central processing unit and GPU for calculations and the organization process of visualization. The study of the influence of increase in the size of the GPU network at the speed of calculations showed importance of the correct task of structure of formation of the parallel computer network and general mechanism of parallelization.
YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters
Schild, Jonas; Seele, Sven; Masuch, Maic
2012-03-01
Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.
Dagiuklas, Tasos
2014-01-01
This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The main contributions are based on the results of the FP7 European Projects ROMEO, which focus on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the Future Internet (www.ict-romeo.eu). The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of constant video quality to both fixed and mobile users. ROMEO will design and develop hybrid-networking solutions that co...
Materialedreven 3d digital formgivning
DEFF Research Database (Denmark)
Hansen, Flemming Tvede
2010-01-01
Formålet med forskningsprojektet er for det første at understøtte keramikeren i at arbejde eksperimenterende med digital formgivning, og for det andet at bidrage til en tværfaglig diskurs om brugen af digital formgivning. Forskningsprojektet fokuserer på 3d formgivning og derved på 3d digital...... formgivning og Rapid Prototyping (RP). RP er en fællesbetegnelse for en række af de teknikker, der muliggør at overføre den digitale form til 3d fysisk form. Forskningsprojektet koncentrerer sig om to overordnede forskningsspørgsmål. Det første handler om, hvordan viden og erfaring indenfor det keramiske...... fagområde kan blive udnyttet i forhold til 3d digital formgivning. Det andet handler om, hvad en sådan tilgang kan bidrage med, og hvordan den kan blive udnyttet i et dynamisk samspil med det keramiske materiale i formgivningen af 3d keramiske artefakter. Materialedreven formgivning er karakteriseret af en...
Dagiuklas, Tasos
2015-01-01
This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The contributions are based on the results of the FP7 European Project ROMEO, which focuses on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the future Internet. The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of consistent video quality to fixed and mobile users. ROMEO will present hybrid networking solutions that combine the DVB-T2 and DVB-NGH broadcas...
2002-01-01
In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.
Modification of 3D milling machine to 3D printer
Halamíček, Lukáš
2015-01-01
Tato práce se zabývá přestavbou gravírovací frézky na 3D tiskárnu. V první části se práce zabývá možnými technologiemi 3D tisku a možností jejich využití u přestavby. Dále jsou popsány a vybrány vhodné součásti pro přestavbu. V další části je realizováno řízení ohřevu podložky, trysky a řízení posuvu drátu pomocí softwaru TwinCat od společnosti Beckhoff na průmyslovém počítači. Výsledkem práce by měla být oživená 3D tiskárna. This thesis deals with rebuilding of engraving machine to 3D pri...
Aspects of defects in 3d-3d correspondence
Gang, Dongmin; Kim, Nakwoo; Romo, Mauricio; Yamazaki, Masahito
2016-10-01
In this paper we study supersymmetric co-dimension 2 and 4 defects in the compactification of the 6d (2, 0) theory of type A N -1 on a 3-manifold M . The so-called 3d-3d correspondence is a relation between complexified Chern-Simons theory (with gauge group SL(N,C) ) on M and a 3d N=2 theory T N [ M ]. We study this correspondence in the presence of supersymmetric defects, which are knots/links inside the 3-manifold. Our study employs a number of different methods: state-integral models for complex Chern-Simons theory, cluster algebra techniques, domain wall theory T [SU( N )], 5d N=2 SYM, and also supergravity analysis through holography. These methods are complementary and we find agreement between them. In some cases the results lead to highly non-trivial predictions on the partition function. Our discussion includes a general expression for the cluster partition function, which can be used to compute in the presence of maximal and certain class of non-maximal punctures when N > 2. We also highlight the non-Abelian description of the 3d N=2 T N [ M ] theory with defect included, when such a description is available. This paper is a companion to our shorter paper [1], which summarizes our main results.
DEFF Research Database (Denmark)
Holbek, Simon
studies and in vivo. Phantom measurements are compared with their corresponding reference value, whereas the in vivo measurement is validated against the current golden standard for non-invasive blood velocity estimates, based on magnetic resonance imaging (MRI). The study concludes, that a high precision......, if this significant reduction in the element count can still provide precise and robust 3-D vector flow estimates in a plane. The study concludes that the RC array is capable of estimating precise 3-D vector flow both in a plane and in a volume, despite the low channel count. However, some inherent new challenges......For the last decade, the field of ultrasonic vector flow imaging has gotten an increasingly attention, as the technique offers a variety of new applications for screening and diagnostics of cardiovascular pathologies. The main purpose of this PhD project was therefore to advance the field of 3-D...
DEFF Research Database (Denmark)
Pihl, Michael Johannes
The main purpose of this PhD project is to develop an ultrasonic method for 3D vector flow imaging. The motivation is to advance the field of velocity estimation in ultrasound, which plays an important role in the clinic. The velocity of blood has components in all three spatial dimensions, yet...... conventional methods can estimate only the axial component. Several approaches for 3D vector velocity estimation have been suggested, but none of these methods have so far produced convincing in vivo results nor have they been adopted by commercial manufacturers. The basis for this project is the Transverse...... on the TO fields are suggested. They can be used to optimize the TO method. In the third part, a TO method for 3D vector velocity estimation is proposed. It employs a 2D phased array transducer and decouples the velocity estimation into three velocity components, which are estimated simultaneously based on 5...
DEFF Research Database (Denmark)
Walder, Christian; Breidt, Martin; Bulthoff, Heinrich
2009-01-01
We present a novel algorithm for the markerless tracking of deforming surfaces such as faces. We acquire a sequence of 3D scans along with color images at 40Hz. The data is then represented by implicit surface and color functions, using a novel partition-of-unity type method of efficiently...... combining local regressors using nearest neighbor searches. Both these functions act on the 4D space of 3D plus time, and use temporal information to handle the noise in individual scans. After interactive registration of a template mesh to the first frame, it is then automatically deformed to track...... the scanned surface, using the variation of both shape and color as features in a dynamic energy minimization problem. Our prototype system yields high-quality animated 3D models in correspondence, at a rate of approximately twenty seconds per timestep. Tracking results for faces and other objects...
Impulsive reconnection: 3D onset and stagnation in turbulent paradigms
Energy Technology Data Exchange (ETDEWEB)
Sears, Jason A [Los Alamos National Laboratory; Intrator, Thomas P [Los Alamos National Laboratory; Weber, Tom [Los Alamos National Laboratory; Lapenta, Giovanni [KATHOLIEKE UNIV.; Lazarian, Alexander [UNIV OF WISCONSIN
2010-12-14
Reconnection processes are ubiquitous in solar coronal loops, the earth's magnetotail, galactic jets, and laboratory configurations such as spheromaks and Z pinches. It is believed that reconnection dynamics are often closely linked to turbulence. In these phenomena, the bursty onset of reconnection is partly determined by a balance of macroscopic MHD forces. In a turbulent paradigm, it is reasonable to suppose that there exist many individual reconnection sites, each X-line being finite in axial extent and thus intrinsically three-dimensional (3D) in structure. The balance between MHD forces and flux pile-up continuously shifts as mutually tangled flux ropes merge or bounce. The spatial scale and thus the rate of reconnection are therefore intimately related to the turbulence statistics both in space and in time. We study intermittent 3D reconnection along spatially localized X-lines between two or more flux ropes. The threshold of MHD instability which in this case is the kink threshold is varied by modifying the line-tying boundary conditions. For fast inflow speed of approaching ropes, there is merging and magnetic reconnection which is a well known and expected consequence of the 2D coalescence instability. On the other hand, for slower inflow speed the flux ropes bounce. The threshold appears to be the Sweet Parker speed v{sub A}/S{sup 1/2}, where v{sub A} is the Alfven speed and S is the Lundquist number. Computations by collaborators at University of Wisconsin, Madison, Katholieke Universiteit Leuven, and LANL complement the experiment.
3D Printed Bionic Nanodevices.
Kong, Yong Lin; Gupta, Maneesh K; Johnson, Blake N; McAlpine, Michael C
2016-06-01
The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and 'living' platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the
Directory of Open Access Journals (Sweden)
Georgette B. Salieb-Beugelaar
2016-10-01
Full Text Available Polymeric microfluidic systems are well suited for miniaturized devices with complex functionality, and rapid prototyping methods for 3D microfluidic structures are increasingly used. Mixing at the microscale and performing chemical reactions at the microscale are important applications of such systems and we therefore explored feasibility, mixing characteristics and the ability to control a chemical reaction in helical 3D channels produced by the emerging thread template method. Mixing at the microscale is challenging because channel size reduction for improving solute diffusion comes at the price of a reduced Reynolds number that induces a strictly laminar flow regime and abolishes turbulence that would be desired for improved mixing. Microfluidic 3D helix mixers were rapidly prototyped in polydimethylsiloxane (PDMS using low-surface energy polymeric threads, twisted to form 2-channel and 3-channel helices. Structure and flow characteristics were assessed experimentally by microscopy, hydraulic measurements and chromogenic reaction, and were modeled by computational fluid dynamics. We found that helical 3D microfluidic systems produced by thread templating allow rapid prototyping, can be used for mixing and for controlled chemical reaction with two or three reaction partners at the microscale. Compared to the conventional T-shaped microfluidic system used as a control device, enhanced mixing and faster chemical reaction was found to occur due to the combination of diffusive mixing in small channels and flow folding due to the 3D helix shape. Thus, microfluidic 3D helix mixers can be rapidly prototyped using the thread template method and are an attractive and competitive method for fluid mixing and chemical reactions at the microscale.
3D reconstruction based on spatial vanishing information
Institute of Scientific and Technical Information of China (English)
Yuan Shu; Zheng Tan
2005-01-01
An approach for the three-dimensional (3D) reconstruction of architectural scenes from two un-calibrated images is described in this paper. From two views of one architectural structure, three pairs of corresponding vanishing points of three major mutual orthogonal directions can be extracted. The simple but powerful constraints of parallelism and orthogonal lines in architectural scenes can be used to calibrate the cameras and to recover the 3D information of the structure. This approach is applied to the real images of architectural scenes, and a 3D model of a building in virtual reality modelling language (VRML) format is presented which illustrates the method with successful performance.
Energy Technology Data Exchange (ETDEWEB)
Kang, L.; Matsuo, T. [Kyoto University (Japan). Dept. of Electrical Engineering; Inui, Y. [Toyohashi University of Technology (Japan). Dept. of Electrical and Electronic Engineering; Ishikawa, M. [University of Tsukuba (Japan). Inst. of Engineering Mechanics and Systems; Umoto, J. [Fukuyama University (Japan)
2000-09-01
Performance analyses of a commercial scale closed-cycle MHD disk generator are performed. A large scale MHD generator, superconducting magnet, inversion system and synchronous generator are designed. The MHD generator is operated with Ar-Cs plasma and connected to the ac power infinite bus through line-commutated inverters, while the synchronous generator is operated in parallel. The thermal input is 1000 MW, and the power output is 400 and 200 MW, from the MHD and synchronous generators. Fault analyses have found that rather large fluctuations within the MHD generator are induced by faults of the inverter and power transmission line, but control of the inverters can recover the MHD generation system to normal operation within 0.15 s. The feature of behavior of the MHD generator is the same with or without the parallel operation of the synchronous generator. The interaction between the MHD and the synchronous generators is small, and this feature is much different from the open-cycle MHD generation system, since the variation of output current of the closed-cycle disk MHD generator is much smaller compared with open-cycle MHD generators. (author)
Manos, Harry
2016-01-01
Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…
DEFF Research Database (Denmark)
Pedersen, Pernille Klarskov; Strikwerda, Andrew; Wang, Tianwu
2013-01-01
We present a characterization of THz beams generated in both a two-color air plasma and in a LiNbO3 crystal. Using a commercial THz camera, we record intensity images as a function of distance through the beam waist, from which we extract 2D beam profiles and visualize our measurements into 3D beam...
3D Printing: Exploring Capabilities
Samuels, Kyle; Flowers, Jim
2015-01-01
As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
The presentation of the vanguard work,My Dream3D,the innovative production by the China Disabled People’s Performing Art Troupe(CDPPAT),directed by Joy Joosang Park,provided the film’s domestic premiere at Beijing’s Olympic Park onApril7.The show provided an intriguing insight not
Priprava 3D modelov za 3D tisk
2015-01-01
Po mnenju nekaterih strokovnjakov bo aditivna proizvodnja (ali 3D tiskanje) spremenila proizvodnjo industrijo, saj si bo vsak posameznik lahko natisnil svoj objekt po želji. V diplomski nalogi so predstavljene nekatere tehnologije aditivne proizvodnje. V nadaljevanju diplomske naloge je predstavljena izdelava makete hiše v merilu 1:100, vse od modeliranja do tiskanja. Poseben poudarek je posvečen predelavi modela, da je primeren za tiskanje, kjer je razvit pristop za hitrejše i...
Post processing of 3D models for 3D printing
2015-01-01
According to the opinion of some experts the additive manufacturing or 3D printing will change manufacturing industry, because any individual could print their own model according to his or her wishes. In this graduation thesis some of the additive manufacturing technologies are presented. Furthermore in the production of house scale model in 1:100 is presented, starting from modeling to printing. Special attention is given to postprocessing of the building model elements us...
Proceedings of the workshop on nonlinear MHD and extended MHD
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-12-01
Nonlinear MHD simulations have proven their value in interpreting experimental results over the years. As magnetic fusion experiments reach higher performance regimes, more sophisticated experimental diagnostics coupled with ever expanding computer capabilities have increased both the need for and the feasibility of nonlinear global simulations using models more realistic than regular ideal and resistive MHD. Such extended-MHD nonlinear simulations have already begun to produce useful results. These studies are expected to lead to ever more comprehensive simulation models in the future and to play a vital role in fully understanding fusion plasmas. Topics include the following: (1) current state of nonlinear MHD and extended-MHD simulations; (2) comparisons to experimental data; (3) discussions between experimentalists and theorists; (4) /equations for extended-MHD models, kinetic-based closures; and (5) paths toward more comprehensive simulation models, etc. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.
Simulation of current generation in a 3-D plasma model
Energy Technology Data Exchange (ETDEWEB)
Tsung, F.S.; Dawson, J.M. [Univ. of California, Los Angeles, CA (United States)
1996-12-31
Two wires carrying current in the same direction will attract each other, and two wires carrying current in the opposite direction will repel each other. Now, consider a test charge in a plasma. If the test charge carries current parallel to the plasma, then it will be pulled toward the plasma core, and if the test charge carries current anti-parallel to the plasma, then it will be pushed to the edge. The electromagnetic coupling between the plasma and a test charge (i.e., the A{sub {parallel}} {circ} v{sub {parallel}} term in the test charge`s Hamiltonian) breaks the symmetry in the parallel direction, and gives rise to a diffusion coefficient which is dependent on the particle`s parallel velocity. This is the basis for the {open_quotes}preferential loss{close_quotes} mechanism described in the work by Nunan et al. In our previous 2+{1/2}D work, in both cylindrical and toroidal geometries, showed that if the plasma column is centrally fueled, then an initial current increases steadily. The results in straight, cylindrical plasmas showed that self generated parallel current arises without trapped particle or neoclassical diffusion, as assumed by the bootstrap theory. It suggests that the fundamental mechanism seems to be the conservation of particles canonical momenta in the direction of the ignorable coordinate. We have extended the simulation to 3D to verify the model put forth. A scalable 3D EM-PIC code, with a localized field-solver, has been implemented to run on a large class of parallel computers. On the 512-node SP2 at Cornell Theory Center, we have benchmarked the 2+{1/2}D calculations using 32 grids in the previously ignored direction, and a 100-fold increase in the number of particles. Our preliminary results show good agreements between the 2+{1/2}D and the 3D calculations. We will present our 3D results at the meeting.
Frutos-Alfaro, Francisco
2015-01-01
A program to generate codes in Fortran and C of the full Magnetohydrodynamic equations is shown. The program used the free computer algebra system software REDUCE. This software has a package called EXCALC, which is an exterior calculus program. The advantage of this program is that it can be modified to include another complex metric or spacetime. The output of this program is modified by means of a LINUX script which creates a new REDUCE program to manipulate the MHD equations to obtain a code that can be used as a seed for a MHD code for numerical applications. As an example, we present part of output of our programs for Cartesian coordinates and how to do the discretization.
3-D force-balanced magnetospheric configurations
Directory of Open Access Journals (Sweden)
S. Zaharia
2004-01-01
. Our results provide 3-D distributions of magnetic field, plasma pressure, as well as parallel and transverse currents for both quiet-time and disturbed magnetospheric conditions.
Key words. Magnetospheric physics (magnetospheric configuration and dynamics; magnetotail; plasma sheet
Nonlinear helical MHD instability
Energy Technology Data Exchange (ETDEWEB)
Zueva, N.M.; Solov' ev, L.S.
1977-07-01
An examination is made of the boundary problem on the development of MHD instability in a toroidal plasma. Two types of local helical instability are noted - Alfven and thermal, and the corresponding criteria of instability are cited. An evaluation is made of the maximum attainable kinetic energy, limited by the degree to which the law of conservation is fulfilled. An examination is made of a precise solution to a kinematic problem on the helical evolution of a cylindrical magnetic configuration at a given velocity distribution in a plasma. A numerical computation of the development of MHD instability in a plasma cylinder by a computerized solution of MHD equations is made where the process's helical symmetry is conserved. The development of instability is of a resonance nature. The instability involves the entire cross section of the plasma and leads to an inside-out reversal of the magnetic surfaces when there is a maximum unstable equilibrium configuration in the nonlinear stage. The examined instability in the tore is apparently stabilized by a magnetic hole when certain limitations are placed on the distribution of flows in the plasma. 29 references, 8 figures.
Forensic 3D Scene Reconstruction
Energy Technology Data Exchange (ETDEWEB)
LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.
1999-10-12
Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.
Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.
2013-01-01
Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.
3D Printable Graphene Composite.
Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong
2015-07-08
In human being's history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today's personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite's linear thermal coefficient is below 75 ppm·°C(-1) from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.
Medical 3D thermography system
GRUBIŠIĆ, IVAN
2011-01-01
Infrared (IR) thermography determines the surface temperature of an object or human body using thermal IR measurement camera. It is an imaging technology which is contactless and completely non-invasive. These propertiesmake IR thermography a useful method of analysis that is used in various industrial applications to detect, monitor and predict irregularities in many fields from engineering to medical and biological observations. This paper presents a conceptual model of Medical 3D Thermo...
3D Alfven wave behaviour around proper and improper magnetic null points
Thurgood, J O
2013-01-01
Context: MHD waves and magnetic null points are both prevalent in many astrophysical plasmas, including the solar atmosphere. Interaction between waves and null points has been implicated as a possible mechanism for localised heating events. Aims: Here we investigate the transient behaviour of the Alfven wave about fully 3D proper and improper 3D magnetic null points. Previously, the behaviour of fast magnetoacoustic waves at null points in 3D, cold MHD was considered by Thurgood & McLaughlin (Astronomy & Astrophysics, 2012, 545, A9). Methods: We introduce an Alfven wave into the vicinity of both proper and improper null points by numerically solving the ideal, $\\beta=0$ MHD equations using the LARE3D code. A magnetic fieldline and flux-based coordinate system permits the isolation of resulting wave-modes and the analysis of their interaction. Results: We find that the Alfven wave propagates throughout the region and accumulates near the fan-plane, causing current build up. For different values of nul...
Dynamo action in dissipative, forced, rotating MHD turbulence
Shebalin, John V.
2016-06-01
Magnetohydrodynamic (MHD) turbulence is an inherent feature of large-scale, energetic astrophysical and geophysical magnetofluids. In general, these are rotating and are energized through buoyancy and shear, while viscosity and resistivity provide a means of dissipation of kinetic and magnetic energy. Studies of unforced, rotating, ideal (i.e., non-dissipative) MHD turbulence have produced interesting results, but it is important to determine how these results are affected by dissipation and forcing. Here, we extend our previous work and examine dissipative, forced, and rotating MHD turbulence. Incompressibility is assumed, and finite Fourier series represent turbulent velocity and magnetic field on a 643 grid. Forcing occurs at an intermediate wave number by a method that keeps total energy relatively constant and allows for injection of kinetic and magnetic helicity. We find that 3-D energy spectra are asymmetric when forcing is present. We also find that dynamo action occurs when forcing has either kinetic or magnetic helicity, with magnetic helicity injection being more important. In forced, dissipative MHD turbulence, the dynamo manifests itself as a large-scale coherent structure that is similar to that seen in the ideal case. These results imply that MHD turbulence, per se, may play a fundamental role in the creation and maintenance of large-scale (i.e., dipolar) stellar and planetary magnetic fields.
Energy Technology Data Exchange (ETDEWEB)
Parzefall, Ulrich [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany)], E-mail: ulrich.parzefall@physik.uni-freiburg.de; Bates, Richard [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Boscardin, Maurizio [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Dalla Betta, Gian-Franco [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Eckert, Simon [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Eklund, Lars; Fleta, Celeste [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Jakobs, Karl; Kuehn, Susanne [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Lozano, Manuel [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pahn, Gregor [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Parkes, Chris [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Pellegrini, Giulio [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pennicard, David [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Piemonte, Claudio; Ronchin, Sabina [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Szumlak, Tomasz [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Zoboli, Andrea [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Zorzi, Nicola [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy)
2009-06-01
While the Large Hadron Collider (LHC) at CERN has started operation in autumn 2008, plans for a luminosity upgrade to the Super-LHC (sLHC) have already been developed for several years. This projected luminosity increase by an order of magnitude gives rise to a challenging radiation environment for tracking detectors at the LHC experiments. Significant improvements in radiation hardness are required with respect to the LHC. Using a strawman layout for the new tracker of the ATLAS experiment as an example, silicon strip detectors (SSDs) with short strips of 2-3 cm length are foreseen to cover the region from 28 to 60 cm distance to the beam. These SSD will be exposed to radiation levels up to 10{sup 15}N{sub eq}/cm{sup 2}, which makes radiation resistance a major concern for the upgraded ATLAS tracker. Several approaches to increasing the radiation hardness of silicon detectors exist. In this article, it is proposed to combine the radiation hard 3D-design originally conceived for pixel-style applications with the benefits of the established planar technology for strip detectors by using SSDs that have regularly spaced doped columns extending into the silicon bulk under the detector strips. The first 3D SSDs to become available for testing were made in the Single Type Column (STC) design, a technological simplification of the original 3D design. With such 3D SSDs, a small number of prototype sLHC detector modules with LHC-speed front-end electronics as used in the semiconductor tracking systems of present LHC experiments were built. Modules were tested before and after irradiation to fluences of 10{sup 15}N{sub eq}/cm{sup 2}. The tests were performed with three systems: a highly focused IR-laser with 5{mu}m spot size to make position-resolved scans of the charge collection efficiency, an Sr{sup 90}{beta}-source set-up to measure the signal levels for a minimum ionizing particle (MIP), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of
Fully 3D GPU PET reconstruction
Energy Technology Data Exchange (ETDEWEB)
Herraiz, J.L., E-mail: joaquin@nuclear.fis.ucm.es [Grupo de Fisica Nuclear, Departmento Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Espana, S. [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Cal-Gonzalez, J. [Grupo de Fisica Nuclear, Departmento Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Vaquero, J.J. [Departmento de Bioingenieria e Ingenieria Espacial, Universidad Carlos III, Madrid (Spain); Desco, M. [Departmento de Bioingenieria e Ingenieria Espacial, Universidad Carlos III, Madrid (Spain); Unidad de Medicina y Cirugia Experimental, Hospital General Universitario Gregorio Maranon, Madrid (Spain); Udias, J.M. [Grupo de Fisica Nuclear, Departmento Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain)
2011-08-21
Fully 3D iterative tomographic image reconstruction is computationally very demanding. Graphics Processing Unit (GPU) has been proposed for many years as potential accelerators in complex scientific problems, but it has not been used until the recent advances in the programmability of GPUs that the best available reconstruction codes have started to be implemented to be run on GPUs. This work presents a GPU-based fully 3D PET iterative reconstruction software. This new code may reconstruct sinogram data from several commercially available PET scanners. The most important and time-consuming parts of the code, the forward and backward projection operations, are based on an accurate model of the scanner obtained with the Monte Carlo code PeneloPET and they have been massively parallelized on the GPU. For the PET scanners considered, the GPU-based code is more than 70 times faster than a similar code running on a single core of a fast CPU, obtaining in both cases the same images. The code has been designed to be easily adapted to reconstruct sinograms from any other PET scanner, including scanner prototypes.
Statistical 3D damage accumulation model for ion implant simulators
Energy Technology Data Exchange (ETDEWEB)
Hernandez-Mangas, J.M. E-mail: jesman@ele.uva.es; Lazaro, J.; Enriquez, L.; Bailon, L.; Barbolla, J.; Jaraiz, M
2003-04-01
A statistical 3D damage accumulation model, based on the modified Kinchin-Pease formula, for ion implant simulation has been included in our physically based ion implantation code. It has only one fitting parameter for electronic stopping and uses 3D electron density distributions for different types of targets including compound semiconductors. Also, a statistical noise reduction mechanism based on the dose division is used. The model has been adapted to be run under parallel execution in order to speed up the calculation in 3D structures. Sequential ion implantation has been modelled including previous damage profiles. It can also simulate the implantation of molecular and cluster projectiles. Comparisons of simulated doping profiles with experimental SIMS profiles are presented. Also comparisons between simulated amorphization and experimental RBS profiles are shown. An analysis of sequential versus parallel processing is provided.
Statistical 3D damage accumulation model for ion implant simulators
Hernandez-Mangas, J M; Enriquez, L E; Bailon, L; Barbolla, J; Jaraiz, M
2003-01-01
A statistical 3D damage accumulation model, based on the modified Kinchin-Pease formula, for ion implant simulation has been included in our physically based ion implantation code. It has only one fitting parameter for electronic stopping and uses 3D electron density distributions for different types of targets including compound semiconductors. Also, a statistical noise reduction mechanism based on the dose division is used. The model has been adapted to be run under parallel execution in order to speed up the calculation in 3D structures. Sequential ion implantation has been modelled including previous damage profiles. It can also simulate the implantation of molecular and cluster projectiles. Comparisons of simulated doping profiles with experimental SIMS profiles are presented. Also comparisons between simulated amorphization and experimental RBS profiles are shown. An analysis of sequential versus parallel processing is provided.
3D hybrid simulations with gyrokinetic particle ions and fluid electrons
Energy Technology Data Exchange (ETDEWEB)
Belova, E.V.; Park, W.; Fu, G.Y. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Strauss, H.R. [New York Univ., NY (United States); Sugiyama, L.E. [Massachusetts Inst. of Tech., Cambridge, MA (United States)
1998-12-31
The previous hybrid MHD/particle model (MH3D-K code) represented energetic ions as gyrokinetic (or drift-kinetic) particles coupled to MHD equations using the pressure or current coupling scheme. A small energetic to bulk ion density ratio was assumed, n{sub h}/n{sub b} {much_lt} 1, allowing the neglect of the energetic ion perpendicular inertia in the momentum equation and the use of MHD Ohm`s law E = {minus}v{sub b} {times} B. A generalization of this model in which all ions are treated as gyrokinetic/drift-kinetic particles and fluid description is used for the electron dynamics is considered in this paper.
Dual side transparent OLED 3D display using Gabor super-lens
Chestak, Sergey; Kim, Dae-Sik; Cho, Sung-Woo
2015-03-01
We devised dual side transparent 3D display using transparent OLED panel and two lenticular arrays. The OLED panel is sandwiched between two parallel confocal lenticular arrays, forming Gabor super-lens. The display provides dual side stereoscopic 3D imaging and floating image of the object, placed behind it. The floating image can be superimposed with the displayed 3D image. The displayed autostereoscopic 3D images are composed of 4 views, each with resolution 64x90 pix.
3D Ultrasonic Wave Simulations for Structural Health Monitoring
Campbell, Leckey Cara A/; Miler, Corey A.; Hinders, Mark K.
2011-01-01
Structural health monitoring (SHM) for the detection of damage in aerospace materials is an important area of research at NASA. Ultrasonic guided Lamb waves are a promising SHM damage detection technique since the waves can propagate long distances. For complicated flaw geometries experimental signals can be difficult to interpret. High performance computing can now handle full 3-dimensional (3D) simulations of elastic wave propagation in materials. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate ultrasound scattering from flaws in materials. EFIT results have been compared to experimental data and the simulations provide unique insight into details of the wave behavior. This type of insight is useful for developing optimized experimental SHM techniques. 3D EFIT can also be expanded to model wave propagation and scattering in anisotropic composite materials.
Design for scalability in 3D computer graphics architectures
DEFF Research Database (Denmark)
Holten-Lund, Hans Erik
2002-01-01
been developed. Hybris is a prototype rendering architeture which can be tailored to many specific 3D graphics applications and implemented in various ways. Parallel software implementations for both single and multi-processor Windows 2000 system have been demonstrated. Working hardware/software...... codesign implementations of Hybris for standard-cell based ASIC (simulated) and FPGA technologies have been demonstrated, using manual co-synthesis for translation of a Virtual Prototyping architecture specification written in C into both optimized C source for software and into to a synthesizable VHDL...... specification for hardware implementation. A flexible VRML 97 3D scene graph engine with a Java interface and C++ interface has been implemented to allow flexible integration of the rendering technology into Java and C++ applications. A 3D medical visualization workstation prototype (3D-Med) is examined...
2-D Versus 3-D Magnetotelluric Data Interpretation
Ledo, Juanjo
2005-09-01
In recent years, the number of publications dealing with the mathematical and physical 3-D aspects of the magnetotelluric method has increased drastically. However, field experiments on a grid are often impractical and surveys are frequently restricted to single or widely separated profiles. So, in many cases we find ourselves with the following question: is the applicability of the 2-D hypothesis valid to extract geoelectric and geological information from real 3-D environments? The aim of this paper is to explore a few instructive but general situations to understand the basics of a 2-D interpretation of 3-D magnetotelluric data and to determine which data subset (TE-mode or TM-mode) is best for obtaining the electrical conductivity distribution of the subsurface using 2-D techniques. A review of the mathematical and physical fundamentals of the electromagnetic fields generated by a simple 3-D structure allows us to prioritise the choice of modes in a 2-D interpretation of responses influenced by 3-D structures. This analysis is corroborated by numerical results from synthetic models and by real data acquired by other authors. One important result of this analysis is that the mode most unaffected by 3-D effects depends on the position of the 3-D structure with respect to the regional 2-D strike direction. When the 3-D body is normal to the regional strike, the TE-mode is affected mainly by galvanic effects, while the TM-mode is affected by galvanic and inductive effects. In this case, a 2-D interpretation of the TM-mode is prone to error. When the 3-D body is parallel to the regional 2-D strike the TE-mode is affected by galvanic and inductive effects and the TM-mode is affected mainly by galvanic effects, making it more suitable for 2-D interpretation. In general, a wise 2-D interpretation of 3-D magnetotelluric data can be a guide to a reasonable geological interpretation.
Directory of Open Access Journals (Sweden)
FROILAN G. DESTREZA
2014-02-01
Full Text Available This study is for the BSHRM Students of Batangas State University (BatStateU ARASOF for the researchers believe that the Wireless 3D Chocolate Printer would be helpful in their degree program especially on making creative, artistic, personalized and decorative chocolate designs. The researchers used the Prototyping model as procedural method for the successful development and implementation of the hardware and software. This method has five phases which are the following: quick plan, quick design, prototype construction, delivery and feedback and communication. This study was evaluated by the BSHRM Students and the assessment of the respondents regarding the software and hardware application are all excellent in terms of Accuracy, Effecitveness, Efficiency, Maintainability, Reliability and User-friendliness. Also, the overall level of acceptability of the design project as evaluated by the respondents is excellent. With regard to the observation about the best raw material to use in 3D printing, the chocolate is good to use as the printed material is slightly distorted,durable and very easy to prepare; the icing is also good to use as the printed material is not distorted and is very durable but consumes time to prepare; the flour is not good as the printed material is distorted, not durable but it is easy to prepare. The computation of the economic viability level of 3d printer with reference to ROI is 37.14%. The recommendation of the researchers in the design project are as follows: adding a cooling system so that the raw material will be more durable, development of a more simplified version and improving the extrusion process wherein the user do not need to stop the printing process just to replace the empty syringe with a new one.
Interactive 3D Mars Visualization
Powell, Mark W.
2012-01-01
The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.
Institute of Scientific and Technical Information of China (English)
吕铁雄
2011-01-01
难度:★★★★☆词数:450 建议阅读时间:8分钟 Most people see out of two eyes. This is a basic fact of humanity,but it’s what makes possible the illusion of depth(纵深幻觉) that 3-D movies create. Human eyes are spaced about two inches apart, meaning that each eye gives the brain a slightly different perspective(透视感)on the same object. The brain then uses this variance to quickly determine an object’s distance.
Virtual 3-D Facial Reconstruction
Directory of Open Access Journals (Sweden)
Martin Paul Evison
2000-06-01
Full Text Available Facial reconstructions in archaeology allow empathy with people who lived in the past and enjoy considerable popularity with the public. It is a common misconception that facial reconstruction will produce an exact likeness; a resemblance is the best that can be hoped for. Research at Sheffield University is aimed at the development of a computer system for facial reconstruction that will be accurate, rapid, repeatable, accessible and flexible. This research is described and prototypical 3-D facial reconstructions are presented. Interpolation models simulating obesity, ageing and ethnic affiliation are also described. Some strengths and weaknesses in the models, and their potential for application in archaeology are discussed.
Real-time depth map manipulation for 3D visualization
Ideses, Ianir; Fishbain, Barak; Yaroslavsky, Leonid
2009-02-01
One of the key aspects of 3D visualization is computation of depth maps. Depth maps enables synthesis of 3D video from 2D video and use of multi-view displays. Depth maps can be acquired in several ways. One method is to measure the real 3D properties of the scene objects. Other methods rely on using two cameras and computing the correspondence for each pixel. Once a depth map is acquired for every frame, it can be used to construct its artificial stereo pair. There are many known methods for computing the optical flow between adjacent video frames. The drawback of these methods is that they require extensive computation power and are not very well suited to high quality real-time 3D rendering. One efficient method for computing depth maps is extraction of motion vector information from standard video encoders. In this paper we present methods to improve the 3D visualization quality acquired from compression CODECS by spatial/temporal and logical operations and manipulations. We show how an efficient real time implementation of spatial-temporal local order statistics such as median and local adaptive filtering in 3D-DCT domain can substantially improve the quality of depth maps and consequently 3D video while retaining real-time rendering. Real-time performance is achived by utilizing multi-core technology using standard parallelization algorithms and libraries (OpenMP, IPP).
FROMS3D: New Software for 3-D Visualization of Fracture Network System in Fractured Rock Masses
Noh, Y. H.; Um, J. G.; Choi, Y.
2014-12-01
A new software (FROMS3D) is presented to visualize fracture network system in 3-D. The software consists of several modules that play roles in management of borehole and field fracture data, fracture network modelling, visualization of fracture geometry in 3-D and calculation and visualization of intersections and equivalent pipes between fractures. Intel Parallel Studio XE 2013, Visual Studio.NET 2010 and the open source VTK library were utilized as development tools to efficiently implement the modules and the graphical user interface of the software. The results have suggested that the developed software is effective in visualizing 3-D fracture network system, and can provide useful information to tackle the engineering geological problems related to strength, deformability and hydraulic behaviors of the fractured rock masses.
3D medical thermography device
Moghadam, Peyman
2015-05-01
In this paper, a novel handheld 3D medical thermography system is introduced. The proposed system consists of a thermal-infrared camera, a color camera and a depth camera rigidly attached in close proximity and mounted on an ergonomic handle. As a practitioner holding the device smoothly moves it around the human body parts, the proposed system generates and builds up a precise 3D thermogram model by incorporating information from each new measurement in real-time. The data is acquired in motion, thus it provides multiple points of view. When processed, these multiple points of view are adaptively combined by taking into account the reliability of each individual measurement which can vary due to a variety of factors such as angle of incidence, distance between the device and the subject and environmental sensor data or other factors influencing a confidence of the thermal-infrared data when captured. Finally, several case studies are presented to support the usability and performance of the proposed system.
3D Printable Graphene Composite
Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong
2015-07-01
In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.
Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C
2013-06-12
The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.
Directory of Open Access Journals (Sweden)
G. García Segura
2000-01-01
Full Text Available Se presenta un escenario auto consistente para explicar la morfolog a de las nebulosas planetarias. El escenario es consistente con la distribuci on Gal actica de los diferentes tipos morfol ogicos. Este trabajo resuelve, por medio de efectos MHD, algunas de las caracter sticas controversiales que aparecen en las nebulosas planetarias. Estas caracter sticas incluyen la presencia de ujos axisim etricos y colimados, con una cinem atica que aumenta linealmente con la distancia y la existencia de morfolog as asim etricas tales como las de las nebulosas con simetr a de punto.
Frutos-Alfaro, Francisco; Carboni-Mendez, Rodrigo
2015-01-01
A program to generate codes in Fortran and C of the full Magnetohydrodynamic equations is shown. The program used the free computer algebra system software REDUCE. This software has a package called EXCALC, which is an exterior calculus program. The advantage of this program is that it can be modified to include another complex metric or spacetime. The output of this program is modified by means of a LINUX script which creates a new REDUCE program to manipulate the MHD equations to obtain a c...
Energy Technology Data Exchange (ETDEWEB)
Retallick, F.D.
1978-04-01
This document establishes criteria to be utilized for the design of a pilot-scale (150 to 300 MW thermal) open cycle, coal-fired MHD/steam plant. Criteria for this Engineering Test Facility (ETF) are presented relative to plant siting, plant engineering and operations, MHD-ETF testing, costing and scheduling.
3D Gray Radiative Properties of Accretion Shocks in Young Stellar Objects
Ibgui, L.; Orlando, S.; Stehlé, C.; Chièze, J.-P.; Hubeny, I.; Lanz, T.; de Sá, L.; Matsakos, T.; González, M.; Bonito, R.
2014-01-01
We address the problem of the contribution of radiation to the structure and dynamics of accretion shocks on Young Stellar Objects. Solving the 3D RTE (radiative transfer equation) under our "gray LTE approach", i.e., using appropriate mean opacities computed in local thermodynamic equilibrium, we post-process the 3D MHD (magnetohydrodynamic) structure of an accretion stream impacting the stellar chromosphere. We find a radiation flux of ten orders of magnitude larger than the accreting energy rate, which is due to a large overestimation of the radiative cooling. A gray LTE radiative transfer approximation is therefore not consistent with the given MHD structure of the shock. Further investigations are required to clarify the role of radiation, by relaxing both the gray and LTE approximations in RHD (radiation hydrodynamics) simulations. Post-processing the obtained structures through the resolution of the non-LTE monochromatic RTE will provide reference radiation quantities against which RHD approximate solutions will be compared.
A 3D staggered-grid finite difference scheme for poroelastic wave equation
Zhang, Yijie; Gao, Jinghuai
2014-10-01
Three dimensional numerical modeling has been a viable tool for understanding wave propagation in real media. The poroelastic media can better describe the phenomena of hydrocarbon reservoirs than acoustic and elastic media. However, the numerical modeling in 3D poroelastic media demands significantly more computational capacity, including both computational time and memory. In this paper, we present a 3D poroelastic staggered-grid finite difference (SFD) scheme. During the procedure, parallel computing is implemented to reduce the computational time. Parallelization is based on domain decomposition, and communication between processors is performed using message passing interface (MPI). Parallel analysis shows that the parallelized SFD scheme significantly improves the simulation efficiency and 3D decomposition in domain is the most efficient. We also analyze the numerical dispersion and stability condition of the 3D poroelastic SFD method. Numerical results show that the 3D numerical simulation can provide a real description of wave propagation.
3D biometrics systems and applications
Zhang, David
2013-01-01
Includes discussions on popular 3D imaging technologies, combines them with biometric applications, and then presents real 3D biometric systems Introduces many efficient 3D feature extraction, matching, and fusion algorithms Techniques presented have been supported by experimental results using various 3D biometric classifications
Scaling laws in decaying helical 3D magnetohydrodynamic turbulence
Christensson, M; Brandenburg, A; Christensson, Mattias; Hindmarsh, Mark; Brandenburg, Axel
2002-01-01
We study the evolution of growth and decay laws for the magnetic field coherence length xi, energy E_M and magnetic helicity H in freely decaying 3D MHD turbulence. We show that with certain assumptions, self-similarity of the magnetic power spectrum alone implies that xi ~ t^{1/2}. This in turn implies that magnetic helicity decays as H ~ t^{-2s}, where s=(xi_diff/xi_H)^2, in terms of xi_diff, the diffusion length scale, and xi_H, a length scale defined from the helicity power spectrum. The relative magnetic helicity remains constant, implying that the magnetic energy decays as E_M ~ t^{-0.5-2s}. At late times s is constant and inversely proportional to the magnetic Reynolds number Re_M.
Development of 3D microwave imaging reflectometry in LHD (invited).
Nagayama, Y; Kuwahara, D; Yoshinaga, T; Hamada, Y; Kogi, Y; Mase, A; Tsuchiya, H; Tsuji-Iio, S; Yamaguchi, S
2012-10-01
Three-dimensional (3D) microwave imaging reflectometry has been developed in the large helical device to visualize fluctuating reflection surface which is caused by the density fluctuations. The plasma is illuminated by the probe wave with four frequencies, which correspond to four radial positions. The imaging optics makes the image of cut-off surface onto the 2D (7 × 7 channels) horn antenna mixer arrays. Multi-channel receivers have been also developed using micro-strip-line technology to handle many channels at reasonable cost. This system is first applied to observe the edge harmonic oscillation (EHO), which is an MHD mode with many harmonics that appears in the edge plasma. A narrow structure along field lines is observed during EHO.
Wang, Yanqing; Wu, Gang; Zhou, Daoguo
2016-12-01
By means of blow-up method and the special structure of the 3D viscous magnetohydrodynamics equations, we derive some interior regularity criteria in terms of horizontal part of the velocity with sufficiently small local scaled norm and both the vertical part of the velocity and the magnetic field with bounded local scaled norm for the suitable weak solutions to this system. As an application, this allows us to improve the previous limiting case for the regularity criterion about the MHD equations.
Regularity criteria for the 3D magneto-micropolar fluid equations via the direction of the velocity
Indian Academy of Sciences (India)
Zujin Zhang
2015-02-01
We consider sufficient conditions to ensure the smoothness of solutions to 3D magneto-micropolar fluid equations. It involves only the direction of the velocity and the magnetic field. Our result extends to the cases of Navier–Stokes and MHD equations.
3D Printing of Graphene Aerogels.
Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong
2016-04-01
3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction.
Directory of Open Access Journals (Sweden)
M. Schüssler
Full Text Available Two aspects of solar MHD are discussed in relation to the work of the MHD simulation group at KIS. Photospheric magneto-convection, the nonlinear interaction of magnetic field and convection in a strongly stratified, radiating fluid, is a key process of general astrophysical relevance. Comprehensive numerical simulations including radiative transfer have significantly improved our understanding of the processes and have become an important tool for the interpretation of observational data. Examples of field intensification in the solar photosphere ('convective collapse' are shown. The second line of research is concerned with the dynamics of flux tubes in the convection zone, which has far-reaching implications for our understanding of the solar dynamo. Simulations indicate that the field strength in the region where the flux is stored before erupting to form sunspot groups is of the order of 10^{5} G, an order of magnitude larger than previous estimates based on equipartition with the kinetic energy of convective flows.
Key words. Solar physics · astrophysics and astronomy (photosphere and chromosphere; stellar interiors and dynamo theory; numerical simulation studies.
Conducting Polymer 3D Microelectrodes
Directory of Open Access Journals (Sweden)
Jenny Emnéus
2010-12-01
Full Text Available Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements.
2009-01-01
of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through. The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave. This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron. High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these structures, but their orientation and
Linear and Nonlinear MHD Wave Processes in Plasmas. Final Report
Energy Technology Data Exchange (ETDEWEB)
Tataronis, J. A.
2004-06-01
This program treats theoretically low frequency linear and nonlinear wave processes in magnetized plasmas. A primary objective has been to evaluate the effectiveness of MHD waves to heat plasma and drive current in toroidal configurations. The research covers the following topics: (1) the existence and properties of the MHD continua in plasma equilibria without spatial symmetry; (2) low frequency nonresonant current drive and nonlinear Alfven wave effects; and (3) nonlinear electron acceleration by rf and random plasma waves. Results have contributed to the fundamental knowledge base of MHD activity in symmetric and asymmetric toroidal plasmas. Among the accomplishments of this research effort, the following are highlighted: Identification of the MHD continuum mode singularities in toroidal geometry. Derivation of a third order ordinary differential equation that governs nonlinear current drive in the singular layers of the Alfvkn continuum modes in axisymmetric toroidal geometry. Bounded solutions of this ODE implies a net average current parallel to the toroidal equilibrium magnetic field. Discovery of a new unstable continuum of the linearized MHD equation in axially periodic circular plasma cylinders with shear and incompressibility. This continuum, which we named “accumulation continuum” and which is related to ballooning modes, arises as discrete unstable eigenfrequency accumulate on the imaginary frequency axis in the limit of large mode numbers. Development of techniques to control nonlinear electron acceleration through the action of multiple coherent and random plasmas waves. Two important elements of this program aye student participation and student training in plasma theory.
3D low-beta magnetized plasma equilibria from external shaping
Hassam, A.; Tenbarge, J.; Landreman, M.; Dorland, W.; Sengupta, W.
2016-10-01
A 3D nonlinear dissipative MHD code is in development to allow relaxation to low-beta MHD equilibrium inside a shaped 3D conducting boundary with prescribed conserved axial magnetic flux and no external current. Formation of magnetic islands is expected. Heat sources would be eventually introduced to allow the possibility of non-stationary convection depending on the stability properties of the accessible MHD equilibria. The initial development will be done using the code UMHD. The initial emphasis will be on recovering expected physics in simpler 3D geometries. A primary objective is to minimize numerical boundary noise. In particular, codes which specify the normal magnetic field B.n on bounding surfaces are prone to noise generation. We plan to shape the boundary to conform to the desired field shape so that B.n is zero on the boundary. Non-orthogonal coordinates will be chosen to effect this. We will test noise reduction within the tangential field approach. Results obtained to date support this conjecture. Initial results from simple 2D code equilibria have been verified against analytic solution of equilibria in weak shaping. Initial results also recover the expected features of the Hahm- Kulsrud island formation solution. Work supported by US DOE.
Simulation of bootstrap current in 2D and 3D ideal magnetic fields in tokamaks
Raghunathan, M.; Graves, J. P.; Cooper, W. A.; Pedro, M.; Sauter, O.
2016-09-01
We aim to simulate the bootstrap current for a MAST-like spherical tokamak using two approaches for magnetic equilibria including externally caused 3D effects such as resonant magnetic perturbations (RMPs), the effect of toroidal ripple, and intrinsic 3D effects such as non-resonant internal kink modes. The first approach relies on known neoclassical coefficients in ideal MHD equilibria, using the Sauter (Sauter et al 1999 Phys. Plasmas 6 2834) expression valid for all collisionalities in axisymmetry, and the second approach being the quasi-analytic Shaing-Callen (Shaing and Callen 1983 Phys. Fluids 26 3315) model in the collisionless regime for 3D. Using the ideal free-boundary magnetohydrodynamic code VMEC, we compute the flux-surface averaged bootstrap current density, with the Sauter and Shaing-Callen expressions for 2D and 3D ideal MHD equilibria including an edge pressure barrier with the application of resonant magnetic perturbations, and equilibria possessing a saturated non-resonant 1/1 internal kink mode with a weak internal pressure barrier. We compare the applicability of the self-consistent iterative model on the 3D applications and discuss the limitations and advantages of each bootstrap current model for each type of equilibrium.
Institute of Scientific and Technical Information of China (English)
周继和; 王帅; 刘艺; 李溪
2015-01-01
For the first time in the world, Chinese athlete Zhou Shixiong completed 450° turn to handstand on parallel bars. This article applies 3D video analytic method to collect Zhou Shixiong' s kinematic data in the competi-tion, uses immersive 3D virtual reality technology to reconstruct the obtained kinematics data, and makes kine-matics analysis in the form of three dimensional animation after 360° rotation-reproduced observations. The study shows that although Zhou Shixiong completed this action in the game, it is still not perfect. The main problems include that he stretches hip earlier, and his swing scope is slightly wide in upswing stage. This leads to the result that when he supports his body with one arm, the horizontal distance between his body center of gravity and the supporting point is too wide. As a result, his body tilts and this affects his subsequent handstand action. Besides, his two legs are not fully closed in the swiveling phase.%在世界上，中国运动员周施雄首次完成双杠后上转体450°成倒立动作。本文应用三维录像解析法对周施雄在比赛现场所做的后上转体450°成倒立动作采集运动学数据，利用沉浸式三维虚拟现实技术对获得的运动学数据进行重建，通过360°的旋转再现观察，以三维动画的形式进行运动学分析。研究发现周施雄在比赛中虽然完成了这一动作，但还有待完善。主要问题有上摆阶段伸髋较早、幅度稍大，导致在下一阶段的转体过程中单臂支撑的时候人体重心离支撑点的水平距离偏大，身体产生了倾斜，影响了之后的倒立动作，另外在转体阶段两腿并未完全并拢。
3D multiplexed immunoplasmonics microscopy
Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel
2016-07-01
Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed
Kuvaus 3D-tulostamisesta hammastekniikassa
Munne, Mauri; Mustonen, Tuomas; Vähäjylkkä, Jaakko
2013-01-01
3D-tulostaminen kehittyy nopeasti ja yleistyy koko ajan. Tulostimien tarkkuuksien kehittyessä 3D-tulostus on ottamassa myös jalansijaa hammastekniikan alalta. Tämän opinnäytetyön tarkoituksena on kuvata 3D-tulostamisen tilaa hammastekniikassa. 3D-tulostaminen on Suomessa vielä melko harvinaista, joten opinnäytetyön tavoitteena on koota yhteen kaikki mahdollinen tieto liittyen 3D-tulostamiseen hammastekniikassa. Tavoitteena on myös 3D-tulostimen testaaminen käytännössä aina suun skannaami...
MHD Energy Bypass Scramjet Engine
Mehta, Unmeel B.; Bogdanoff, David W.; Park, Chul; Arnold, Jim (Technical Monitor)
2001-01-01
Revolutionary rather than evolutionary changes in propulsion systems are most likely to decrease cost of space transportation and to provide a global range capability. Hypersonic air-breathing propulsion is a revolutionary propulsion system. The performance of scramjet engines can be improved by the AJAX energy management concept. A magneto-hydro-dynamics (MHD) generator controls the flow and extracts flow energy in the engine inlet and a MHD accelerator downstream of the combustor accelerates the nozzle flow. A progress report toward developing the MHD technology is presented herein. Recent theoretical efforts are reviewed and ongoing experimental efforts are discussed. The latter efforts also include an ongoing collaboration between NASA, the US Air Force Research Laboratory, US industry, and Russian scientific organizations. Two of the critical technologies, the ionization of the air and the MHD accelerator, are briefly discussed. Examples of limiting the combustor entrance Mach number to a low supersonic value with a MHD energy bypass scheme are presented, demonstrating an improvement in scramjet performance. The results for a simplified design of an aerospace plane show that the specific impulse of the MHD-bypass system is better than the non-MHD system and typical rocket over a narrow region of flight speeds and design parameters. Equilibrium ionization and non-equilibrium ionization are discussed. The thermodynamic condition of air at the entrance of the engine inlet determines the method of ionization. The required external power for non-equilibrium ionization is computed. There have been many experiments in which electrical power generation has successfully been achieved by magneto-hydrodynamic (MHD) means. However, relatively few experiments have been made to date for the reverse case of achieving gas acceleration by the MHD means. An experiment in a shock tunnel is described in which MHD acceleration is investigated experimentally. MHD has several
Crowdsourcing Based 3d Modeling
Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.
2016-06-01
Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.
Free-boundary ideal MHD stability of W7-X divertor equilibria
Nührenberg, C.
2016-07-01
Plasma configurations describing the stellarator experiment Wendelstein 7-X (W7-X) are computationally established taking into account the geometry of the test-divertor unit and the high-heat-flux divertor which will be installed in the vacuum chamber of the device (Gasparotto et al 2014 Fusion Eng. Des. 89 2121). These plasma equilibria are computationally studied for their global ideal magnetohydrodynamic (MHD) stability properties. Results from the ideal MHD stability code cas3d (Nührenberg 1996 Phys. Plasmas 3 2401), stability limits, spatial structures and growth rates are presented for free-boundary perturbations. The work focusses on the exploration of MHD unstable regions of the W7-X configuration space, thereby providing information for future experiments in W7-X aiming at an assessment of the role of ideal MHD in stellarator confinement.
Linear MHD stability studies with the STARWALL code
Merkel, P
2015-01-01
The STARWALL/CAS3D/OPTIM code package is a powerful tool to study the linear MHD stability of 3D, ideal equilibria in the presence of multiply-connected ideal and/or resistive conducting structures, and their feedback stabilization by external currents. Robust feedback stabilization of resistive wall modes can be modelled with the OPTIM code. Resistive MHD studies are possible combining STARWALL with the linear, resistive 2D CASTOR code as well as nonlinear MHD simulations combining STARWALL with the JOREK code. In the present paper, a detailed description of the STARWALL code is given and some of its applications are presented to demonstrate the methods used. Conducting structures are treated in the thin wall approximation and depending on their complexity they are discretized by a spectral method or by triangular finite elements. As an example, a configuration is considered consisting of an ideal plasma surrounded by a vacuum domain containing a resistive wall and bounded by an external wall. Ideal linear M...
Scalable Nuclear Density Functional Theory with Sky3D
Afibuzzaman, Md; Aktulga, Hasan Metin
2016-01-01
In nuclear astro-physics, the quantum simulation of large inhomogenous dense systems as present in the crusts of neutron stars presents big challenges. The feasible number of particles in a simulation box with periodic boundary conditions is strongly limited due to the immense computational cost of the quantum methods. In this paper, we describe the techniques used to parallelize Sky3D, a nuclear density functional theory code that operates on an equidistant grid, and optimize its performance on distributed memory architectures. We also describe cache blocking techniques to accelerate the compute-intensive matrix calculation part in Sky3D. Presented techniques allow Sky3D to achieve good scaling and high performance on a large number of cores, as demonstrated through detailed performance analysis on Edison, a Cray XC30 supercomputer.
3D hydrodynamic focusing microfluidics for emerging sensing technologies.
Daniele, Michael A; Boyd, Darryl A; Mott, David R; Ligler, Frances S
2015-05-15
While the physics behind laminar flows has been studied for 200 years, understanding of how to use parallel flows to augment the capabilities of microfluidic systems has been a subject of study primarily over the last decade. The use of one flow to focus another within a microfluidic channel has graduated from a two-dimensional to a three-dimensional process and the design principles are only now becoming established. This review explores the underlying principles for hydrodynamic focusing in three dimensions (3D) using miscible fluids and the application of these principles for creation of biosensors, separation of cells and particles for sample manipulation, and fabrication of materials that could be used for biosensors. Where sufficient information is available, the practicality of devices implementing fluid flows directed in 3D is evaluated and the advantages and limitations of 3D hydrodynamic focusing for the particular application are highlighted.
3D Flash LIDAR Space Laser Project
National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc. (ASC) is a small business that has developed 3D Flash LIDAR systems for space and terrestrial applications. 3D Flash LIDAR is...
Eesti 3D jaoks kitsas / Virge Haavasalu
Haavasalu, Virge
2009-01-01
Produktsioonifirma Digitaalne Sputnik: Kaur ja Kaspar Kallas tegelevad filmide produtseerimise ning 3D digitaalkaamerate tootearendusega (Silicon Imaging LLC). Vendade Kallaste 3D-kaamerast. Kommenteerib Eesti Filmi Sihtasutuse direktor Marge Liiske
Will 3D printers manufacture your meals?
Bommel, K.J.C. van
2013-01-01
These days, 3D printers are laying down plastics, metals, resins, and other materials in whatever configurations creative people can dream up. But when the next 3D printing revolution comes, you'll be able to eat it.
An interactive multiview 3D display system
Zhang, Zhaoxing; Geng, Zheng; Zhang, Mei; Dong, Hui
2013-03-01
The progresses in 3D display systems and user interaction technologies will help more effective 3D visualization of 3D information. They yield a realistic representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them. In this paper, we describe an autostereoscopic multiview 3D display system with capability of real-time user interaction. Design principle of this autostereoscopic multiview 3D display system is presented, together with the details of its hardware/software architecture. A prototype is built and tested based upon multi-projectors and horizontal optical anisotropic display structure. Experimental results illustrate the effectiveness of this novel 3D display and user interaction system.
Sliding Adjustment for 3D Video Representation
Directory of Open Access Journals (Sweden)
Galpin Franck
2002-01-01
Full Text Available This paper deals with video coding of static scenes viewed by a moving camera. We propose an automatic way to encode such video sequences using several 3D models. Contrary to prior art in model-based coding where 3D models have to be known, the 3D models are automatically computed from the original video sequence. We show that several independent 3D models provide the same functionalities as one single 3D model, and avoid some drawbacks of the previous approaches. To achieve this goal we propose a novel algorithm of sliding adjustment, which ensures consistency of successive 3D models. The paper presents a method to automatically extract the set of 3D models and associate camera positions. The obtained representation can be used for reconstructing the original sequence, or virtual ones. It also enables 3D functionalities such as synthetic object insertion, lightning modification, or stereoscopic visualization. Results on real video sequences are presented.
1997-01-01
Mars Pathfinder's forward rover ramp can be seen successfully unfurled in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This ramp was not used for the deployment of the microrover Sojourner, which occurred at the end of Sol 2. When this image was taken, Sojourner was still latched to one of the lander's petals, waiting for the command sequence that would execute its descent off of the lander's petal.The image helped Pathfinder scientists determine whether to deploy the rover using the forward or backward ramps and the nature of the first rover traverse. The metallic object at the lower left of the image is the lander's low-gain antenna. The square at the end of the ramp is one of the spacecraft's magnetic targets. Dust that accumulates on the magnetic targets will later be examined by Sojourner's Alpha Proton X-Ray Spectrometer instrument for chemical analysis. At right, a lander petal is visible.The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
Laser Based 3D Volumetric Display System
1993-03-01
Literature, Costa Mesa, CA July 1983. 3. "A Real Time Autostereoscopic Multiplanar 3D Display System", Rodney Don Williams, Felix Garcia, Jr., Texas...8217 .- NUMBERS LASER BASED 3D VOLUMETRIC DISPLAY SYSTEM PR: CD13 0. AUTHOR(S) PE: N/AWIU: DN303151 P. Soltan, J. Trias, W. Robinson, W. Dahlke 7...laser generated 3D volumetric images on a rotating double helix, (where the 3D displays are computer controlled for group viewing with the naked eye
Kinetic modeling of 3D equilibria in a tokamak
Albert, C. G.; Heyn, M. F.; Kasilov, S. V.; Kernbichler, W.; Martitsch, A. F.; Runov, A. M.
2016-11-01
External resonant magnetic perturbations (RMPs) can modify the magnetic topology in a tokamak. In this case the magnetic field cannot generally be described by ideal MHD equilibrium equations in the vicinity of resonant magnetic surfaces where parallel and perpendicular relaxation timescales are comparable. Usually, resistive MHD models are used to describe these regions. In the present work, a kinetic model is used for this purpose. Within this model, plasma response, current and charge density are computed with help of a Monte Carlo method, where guiding center orbit equations are solved using a semianalytical geometrical integrator. Besides its higher efficiency in comparison to usual integrators this method is not sensitive to noise in field quantities. The computed charges and currents are used to calculate the electromagnetic field with help of a finite element solver. A preconditioned iterative scheme is applied to search for a self-consistent solution. The discussed method is aimed at the nonlinear kinetic description of RMPs in experiments on Edge Localized Mode (ELM) mitigation by external perturbation coil systems without simplification of the device geometry.
Can 3D Point Clouds Replace GCPs?
Stavropoulou, G.; Tzovla, G.; Georgopoulos, A.
2014-05-01
Over the past decade, large-scale photogrammetric products have been extensively used for the geometric documentation of cultural heritage monuments, as they combine metric information with the qualities of an image document. Additionally, the rising technology of terrestrial laser scanning has enabled the easier and faster production of accurate digital surface models (DSM), which have in turn contributed to the documentation of heavily textured monuments. However, due to the required accuracy of control points, the photogrammetric methods are always applied in combination with surveying measurements and hence are dependent on them. Along this line of thought, this paper explores the possibility of limiting the surveying measurements and the field work necessary for the production of large-scale photogrammetric products and proposes an alternative method on the basis of which the necessary control points instead of being measured with surveying procedures are chosen from a dense and accurate point cloud. Using this point cloud also as a surface model, the only field work necessary is the scanning of the object and image acquisition, which need not be subject to strict planning. To evaluate the proposed method an algorithm and the complementary interface were produced that allow the parallel manipulation of 3D point clouds and images and through which single image procedures take place. The paper concludes by presenting the results of a case study in the ancient temple of Hephaestus in Athens and by providing a set of guidelines for implementing effectively the method.
Discrete elements for 3D microfluidics.
Bhargava, Krisna C; Thompson, Bryant; Malmstadt, Noah
2014-10-21
Microfluidic systems are rapidly becoming commonplace tools for high-precision materials synthesis, biochemical sample preparation, and biophysical analysis. Typically, microfluidic systems are constructed in monolithic form by means of microfabrication and, increasingly, by additive techniques. These methods restrict the design and assembly of truly complex systems by placing unnecessary emphasis on complete functional integration of operational elements in a planar environment. Here, we present a solution based on discrete elements that liberates designers to build large-scale microfluidic systems in three dimensions that are modular, diverse, and predictable by simple network analysis techniques. We develop a sample library of standardized components and connectors manufactured using stereolithography. We predict and validate the flow characteristics of these individual components to design and construct a tunable concentration gradient generator with a scalable number of parallel outputs. We show that these systems are rapidly reconfigurable by constructing three variations of a device for generating monodisperse microdroplets in two distinct size regimes and in a high-throughput mode by simple replacement of emulsifier subcircuits. Finally, we demonstrate the capability for active process monitoring by constructing an optical sensing element for detecting water droplets in a fluorocarbon stream and quantifying their size and frequency. By moving away from large-scale integration toward standardized discrete elements, we demonstrate the potential to reduce the practice of designing and assembling complex 3D microfluidic circuits to a methodology comparable to that found in the electronics industry.
3D Printing and Its Urologic Applications.
Soliman, Youssef; Feibus, Allison H; Baum, Neil
2015-01-01
3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology.
Engle, Rob
2008-02-01
This paper discusses the creative and technical challenges encountered during the production of "Beowulf 3D," director Robert Zemeckis' adaptation of the Old English epic poem and the first film to be simultaneously released in IMAX 3D and digital 3D formats.
3D Printing and Its Urologic Applications
Soliman, Youssef; Feibus, Allison H; Baum, Neil
2015-01-01
3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology. PMID:26028997
Expanding Geometry Understanding with 3D Printing
Cochran, Jill A.; Cochran, Zane; Laney, Kendra; Dean, Mandi
2016-01-01
With the rise of personal desktop 3D printing, a wide spectrum of educational opportunities has become available for educators to leverage this technology in their classrooms. Until recently, the ability to create physical 3D models was well beyond the scope, skill, and budget of many schools. However, since desktop 3D printers have become readily…
Novel 3D Compression Methods for Geometry, Connectivity and Texture
Siddeq, M. M.; Rodrigues, M. A.
2016-06-01
A large number of applications in medical visualization, games, engineering design, entertainment, heritage, e-commerce and so on require the transmission of 3D models over the Internet or over local networks. 3D data compression is an important requirement for fast data storage, access and transmission within bandwidth limitations. The Wavefront OBJ (object) file format is commonly used to share models due to its clear simple design. Normally each OBJ file contains a large amount of data (e.g. vertices and triangulated faces, normals, texture coordinates and other parameters) describing the mesh surface. In this paper we introduce a new method to compress geometry, connectivity and texture coordinates by a novel Geometry Minimization Algorithm (GM-Algorithm) in connection with arithmetic coding. First, each vertex ( x, y, z) coordinates are encoded to a single value by the GM-Algorithm. Second, triangle faces are encoded by computing the differences between two adjacent vertex locations, which are compressed by arithmetic coding together with texture coordinates. We demonstrate the method on large data sets achieving compression ratios between 87 and 99 % without reduction in the number of reconstructed vertices and triangle faces. The decompression step is based on a Parallel Fast Matching Search Algorithm (Parallel-FMS) to recover the structure of the 3D mesh. A comparative analysis of compression ratios is provided with a number of commonly used 3D file formats such as VRML, OpenCTM and STL highlighting the performance and effectiveness of the proposed method.
A 3D MHD simulation of SN 1006: a polarized emission study for the turbulent case
Velázquez, P. F.; Schneiter, E. M.; Reynoso, E. M.; Esquivel, A.; De Colle, F.; Toledo-Roy, J. C.; Gómez, D. O.; Sieyra, M. V.; Moranchel-Basurto, A.
2017-01-01
Three dimensional magnetohydrodynamical simulations were carried out in order to perform a new polarization study of the radio emission of the supernova remnant SN 1006. These simulations consider that the remnant expands into a turbulent interstellar medium (including both magnetic field and figuredensity perturbations). Based on the referenced-polar angle technique, a statistical study was done on observational and numerical magnetic field position-angle distributions. Our results show that a turbulent medium with an adiabatic index of 1.3 can reproduce the polarization properties of the SN 1006 remnant. This statistical study reveals itself as a useful tool for obtaining the orientation of the ambient magnetic field, previous to be swept up by the main supernova remnant shock.
3D Relativistic MHD Simulation of a Tilted Accretion Disk Around a Rapidly Rotating Black Hole
Fragile, P Chris; Blaes, Omer M; Salmonson, Jay D
2016-01-01
We posit that accreting compact objects, including stellar mass black holes and neutron stars as well as supermassive black holes, may undergo extended periods of accretion during which the angular momentum of the disk at large scales is misaligned with that of the compact object. In such a scenario, Lense-Thirring precession caused by the rotating compact object can dramatically affect the disk. In this presentation we describe results from a three-dimensional relativistic magnetohydrodynamic simulation of an MRI turbulent disk accreting onto a tilted rapidly rotating black hole. For this case, the disk does not achieve the commonly described Bardeen-Petterson configuration; rather, it remains nearly planar, undergoing a slow global precession. Accretion from the disk onto the hole occurs predominantly through two opposing plunging streams that start from high latitudes with respect to both the black-hole and disk midplanes. This is a consequence of the non-sphericity of the gravitational spacetime of the bl...
Buoyancy effects on the 3D MHD stagnation-point flow of a Newtonian fluid
Borrelli, A.; Giantesio, G.; Patria, M. C.; Roşca, N. C.; Roşca, A. V.; Pop, I.
2017-02-01
This work examines the steady three-dimensional stagnation-point flow of an electrically conducting Newtonian fluid in the presence of a uniform external magnetic field H0 under the Oberbeck-Boussinesq approximation. We neglect the induced magnetic field and examine the three possible directions of H0 which coincide with the directions of the axes. In all cases it is shown that the governing nonlinear partial differential equations admit similarity solutions. We find that the flow has to satisfy an ordinary differential problem whose solution depends on the Hartmann number M, the buoyancy parameter λ and the Prandtl number Pr. The skin-friction components along the axes are computed and the stagnation-point is classified. The numerical integration shows the existence of dual solutions and the occurrence of the reverse flow for some values of the parameters.
MORPHOLOGY AND DYNAMICS OF SOLAR PROMINENCES FROM 3D MHD SIMULATIONS
Energy Technology Data Exchange (ETDEWEB)
Terradas, J.; Soler, R.; Oliver, R.; Ballester, J. L. [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Luna, M., E-mail: jaume.terradas@uib.es [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain)
2015-01-20
In this paper we present a numerical study of the time evolution of solar prominences embedded in sheared magnetic arcades. The prominence is represented by a density enhancement in a background-stratified atmosphere and is connected to the photosphere through the magnetic field. By solving the ideal magnetohydrodynamic equations in three dimensions, we study the dynamics for a range of parameters representative of real prominences. Depending on the parameters considered, we find prominences that are suspended above the photosphere, i.e., detached prominences, but also configurations resembling curtain or hedgerow prominences whose material continuously connects to the photosphere. The plasma-β is an important parameter that determines the shape of the structure. In many cases magnetic Rayleigh-Taylor instabilities and oscillatory phenomena develop. Fingers and plumes are generated, affecting the whole prominence body and producing vertical structures in an essentially horizontal magnetic field. However, magnetic shear is able to reduce or even to suppress this instability.
Terradas, J; Luna, M; Oliver, R; Ballester, J L; Wright, A N
2015-01-01
The temporal evolution of a solar prominence inserted in a three-dimensional magnetic flux rope is investigated numerically. Using the model of Titov Demoulin (1999) under the regime of weak twist, the cold and dense prominence counteracts gravity by modifying the initially force-free magnetic configuration. In some cases a quasi-stationary situation is achieved after the relaxation phase, characterized by the excitation of standing vertical oscillations. These oscillations show a strong attenuation with time produced by the mechanism of continuum damping due to the inhomogeneous transition between the prominence and solar corona. The characteristic period of the vertical oscillations does not depend strongly on the twist of the flux rope. Nonlinearity is the responsible for triggering the Kelvin-Helmholtz instability associated to the vertical oscillations and that eventually produces horizontal structures. Contrary to other configurations in which the longitudinal axis of the prominence is permeated by a pe...
Energy Technology Data Exchange (ETDEWEB)
Terradas, J.; Soler, R.; Oliver, R.; Ballester, J. L. [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Luna, M. [Instituto de Astrofsíca de Canarias, E-38205 La Laguna, Tenerife (Spain); Wright, A. N., E-mail: jaume.terradas@uib.es [School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9SS (United Kingdom)
2016-04-01
The temporal evolution of a solar prominence inserted in a three-dimensional magnetic flux rope is investigated numerically. Using the model of Titov and Démoulin under the regime of weak twist, the cold and dense prominence counteracts gravity by modifying the initially force-free magnetic configuration. In some cases a quasi-stationary situation is achieved after the relaxation phase, characterized by the excitation of standing vertical oscillations. These oscillations show a strong attenuation with time produced by the mechanism of continuum damping due to the inhomogeneous transition between the prominence and solar corona. The characteristic period of the vertical oscillations does not depend strongly on the twist of the flux rope. Nonlinearity is responsible for triggering the Kelvin–Helmholtz instability associated with the vertical oscillations and that eventually produces horizontal structures. Contrary to other configurations in which the longitudinal axis of the prominence is permeated by a perpendicular magnetic field, like in unsheared arcades, the orientation of the prominence along the flux rope axis prevents the development of Rayleigh–Taylor instabilities and therefore the appearance of vertical structuring along this axis.
3-D MHD disk wind simulations of jets and outflows from high-mass protostars
Staff, Jan E.; Tanaka, Kei; Tan, Jonathan C.; Zhang, Yichen; Liu, Mengyao
2017-01-01
We present the results of a series of nested, large scale, three-dimensional magnetohydrodynamics simulations of disk winds with a Blandford-Payne like magnetic field configuration, resolving scales from the stellar surface to beyond the core. The goal is to understand the structure of massive protostellar cores at various stages of their formation as the protostellar mass grows from a massive core. At each stage of a given protostellar mass, first, we study how jets and winds develop from the inner accretion disk to ~100 AU scales. We use the results from these simulations to dictate the inner boundary condition of a set of simulation extending to the core boundary at ~10,000 AU of an initially 60 solar mass core. We run separate simulations where the protostellar mass is 1, 2, 4, 8, 12, 16, and 24 Msun, and we are working on making a small grid of models in the context of the Turbulent Core Model with three different core masses and three different core surface densities. The wind is blown into the simulation box with properties derived from the previous jet simulations. We examine the opening angle of the outflow cavity and thus the star formation efficiency from the core due to outflow feedback. We find that the opening angle increases as the protostellar mass grows, but it is always less than 10 degrees, which is surprisingly small compared with previous analytic models. This is caused by the core which confines the outflow. Finally, we use our simulation results as input to a radiative transfer calculation, to compare with observations made by the SOMA survey.
The intensity contrast of solar granulation: comparing Hinode SP results with MHD simulations
Danilovic, S.; Gandorfer, A.; Lagg, A.; SchÜssler, M.; Solanki, S.K.; Vögler, A.; Katsukawa, Y.; Tsuneta, S.
2008-01-01
Context. The contrast of granulation is an important quantity characterizing solar surface convection. Aims. We compare the intensity contrast at 630 nm, observed using the Spectro-Polarimeter (SP) aboard the Hinode satellite, with the 3D radiative MHD simulations of Vögler & Schüssler (2007, A&A, 4
Twisted 3D holograms for self-referencing interferometers in metrology and imaging
Berz, Martin
2016-01-01
The interference between radiation fields superposed appropriately contains all available information about the source. This will be recapitulated for coherent and incoherent fields. We will further analyze a new kind of twisted 3D interferometer which allows us to generate interferograms with high information content. The physical basis for these devices is the geometric parallel transport of electric fields along a 3D path in space. This concept enables us to build very compact 3D interferometers.
Investigating Mobile Stereoscopic 3D Touchscreen Interaction
Colley, Ashley; Hakkila, Jonna; SCHOENING, Johannes; Posti, Maaret
2013-01-01
3D output is no longer limited to large screens in cinemas or living rooms. Nowadays more and more mobile devices are equipped with autostereoscopic 3D (S3D) touchscreens. As a consequence interaction with 3D content now also happens whilst users are on the move. In this paper we carried out a user study with 27 participants to assess how mobile interaction, i.e. whilst walking, with mobile S3D devices, differs from interaction with 2D mobile touchscreens. We investigate the difference in tou...
Wafer level 3-D ICs process technology
Tan, Chuan Seng; Reif, L Rafael
2009-01-01
This book focuses on foundry-based process technology that enables the fabrication of 3-D ICs. The core of the book discusses the technology platform for pre-packaging wafer lever 3-D ICs. However, this book does not include a detailed discussion of 3-D ICs design and 3-D packaging. This is an edited book based on chapters contributed by various experts in the field of wafer-level 3-D ICs process technology. They are from academia, research labs and industry.
View-based 3-D object retrieval
Gao, Yue
2014-01-01
Content-based 3-D object retrieval has attracted extensive attention recently and has applications in a variety of fields, such as, computer-aided design, tele-medicine,mobile multimedia, virtual reality, and entertainment. The development of efficient and effective content-based 3-D object retrieval techniques has enabled the use of fast 3-D reconstruction and model design. Recent technical progress, such as the development of camera technologies, has made it possible to capture the views of 3-D objects. As a result, view-based 3-D object retrieval has become an essential but challenging res
Improving 3D-Turbo Code's BER Performance with a BICM System over Rayleigh Fading Channel
Directory of Open Access Journals (Sweden)
R. Yao
2016-12-01
Full Text Available Classical Turbo code suffers from high error floor due to its small Minimum Hamming Distance (MHD. Newly-proposed 3D-Turbo code can effectively increase the MHD and achieve a lower error floor by adding a rate-1 post encoder. In 3D-Turbo codes, part of the parity bits from the classical Turbo encoder are further encoded through the post encoder. In this paper, a novel Bit-Interleaved Coded Modulation (BICM system is proposed by combining rotated mapping Quadrature Amplitude Modulation (QAM and 3D-Turbo code to improve the Bit Error Rate (BER performance of 3D-Turbo code over Raleigh fading channel. A key-bit protection scheme and a Two-Dimension (2D iterative soft demodulating-decoding algorithm are developed for the proposed BICM system. Simulation results show that the proposed system can obtain about 0.8-1.0 dB gain at BER of 10^{-6}, compared with the existing BICM system with Gray mapping QAM.
MHD waves generated by high-frequency photospheric vortex motions
Directory of Open Access Journals (Sweden)
V. Fedun
2011-06-01
Full Text Available In this paper, we discuss simulations of MHD wave generation and propagation through a three-dimensional open magnetic flux tube in the lower solar atmosphere. By using self-similar analytical solutions for modelling the magnetic field in Cartesian coordinate system, we have constructed a 3-D magnetohydrostatic configuration which is used as the initial condition for non-linear MHD wave simulations. For a driver we have implemented a high-frequency vortex-type motion at the footpoint region of the open magnetic flux tube. It is found that the implemented swirly source is able to excite different types of wave modes, i.e. sausage, kink and torsional Alfvén modes. Analysing these waves by magneto-seismology tools could provide insight into the magnetic structure of the lower solar atmosphere.
Web-based interactive visualization of 3D video mosaics using X3D standard
Institute of Scientific and Technical Information of China (English)
CHON Jaechoon; LEE Yang-Won; SHIBASAKI Ryosuke
2006-01-01
We present a method of 3D image mosaicing for real 3D representation of roadside buildings, and implement a Web-based interactive visualization environment for the 3D video mosaics created by 3D image mosaicing. The 3D image mosaicing technique developed in our previous work is a very powerful method for creating textured 3D-GIS data without excessive data processing like the laser or stereo system. For the Web-based open access to the 3D video mosaics, we build an interactive visualization environment using X3D, the emerging standard of Web 3D. We conduct the data preprocessing for 3D video mosaics and the X3D modeling for textured 3D data. The data preprocessing includes the conversion of each frame of 3D video mosaics into concatenated image files that can be hyperlinked on the Web. The X3D modeling handles the representation of concatenated images using necessary X3D nodes. By employing X3D as the data format for 3D image mosaics, the real 3D representation of roadside buildings is extended to the Web and mobile service systems.
Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion
Handy Turner, Tara
2010-02-01
From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.
VPython: Python plus Animations in Stereo 3D
Sherwood, Bruce
2004-03-01
Python is a modern object-oriented programming language. VPython (http://vpython.org) is a combination of Python (http://python.org), the Numeric module from LLNL (http://www.pfdubois.com/numpy), and the Visual module created by David Scherer, all of which have been under continuous development as open source projects. VPython makes it easy to write programs that generate real-time, navigable 3D animations. The Visual module includes a set of 3D objects (sphere, cylinder, arrow, etc.), tools for creating other shapes, and support for vector algebra. The 3D renderer runs in a parallel thread, and animations are produced as a side effect of computations, freeing the programmer to concentrate on the physics. Applications include educational and research visualization. In the Fall of 2003 Hugh Fisher at the Australian National University, John Zelle at Wartburg College, and I contributed to a new stereo capability of VPython. By adding a single statement to an existing VPython program, animations can be viewed in true stereo 3D. One can choose several modes: active shutter glasses, passive polarized glasses, or colored glasses (e.g. red-cyan). The talk will demonstrate the new stereo capability and discuss the pros and cons of various schemes for display of stereo 3D for a large audience. Supported in part by NSF grant DUE-0237132.
3D laptop for defense applications
Edmondson, Richard; Chenault, David
2012-06-01
Polaris Sensor Technologies has developed numerous 3D display systems using a US Army patented approach. These displays have been developed as prototypes for handheld controllers for robotic systems and closed hatch driving, and as part of a TALON robot upgrade for 3D vision, providing depth perception for the operator for improved manipulation and hazard avoidance. In this paper we discuss the prototype rugged 3D laptop computer and its applications to defense missions. The prototype 3D laptop combines full temporal and spatial resolution display with the rugged Amrel laptop computer. The display is viewed through protective passive polarized eyewear, and allows combined 2D and 3D content. Uses include robot tele-operation with live 3D video or synthetically rendered scenery, mission planning and rehearsal, enhanced 3D data interpretation, and simulation.
User-centered 3D geovisualisation
DEFF Research Database (Denmark)
Nielsen, Anette Hougaard
2004-01-01
3D Geovisualisation is a multidisciplinary science mainly utilizing geographically related data, developing software systems for 3D visualisation and producing relevant models. In this paper the connection between geoinformation stored as 3D objects and the end user is of special interest....... In a broader perspective, the overall aim is to develop a language in 3D Geovisualisation gained through usability projects and the development of a theoretical background. A conceptual level of user-centered 3D Geovisualisation is introduced by applying a categorisation originating from Virtual Reality....... The conceptual level is used to structure and organise user-centered 3D Geovisualisation into four categories: representation, rendering, interface and interaction. The categories reflect a process of development of 3D Geovisualisation where objects can be represented verisimilar to the real world...
Optical-CT imaging of complex 3D dose distributions
Oldham, Mark; Kim, Leonard; Hugo, Geoffrey
2005-04-01
The limitations of conventional dosimeters restrict the comprehensiveness of verification that can be performed for advanced radiation treatments presenting an immediate and substantial problem for clinics attempting to implement these techniques. In essence, the rapid advances in the technology of radiation delivery have not been paralleled by corresponding advances in the ability to verify these treatments. Optical-CT gel-dosimetry is a relatively new technique with potential to address this imbalance by providing high resolution 3D dose maps in polymer and radiochromic gel dosimeters. We have constructed a 1st generation optical-CT scanner capable of high resolution 3D dosimetry and applied it to a number of simple and increasingly complex dose distributions including intensity-modulated-radiation-therapy (IMRT). Prior to application to IMRT, the robustness of optical-CT gel dosimetry was investigated on geometry and variable attenuation phantoms. Physical techniques and image processing methods were developed to minimize deleterious effects of refraction, reflection, and scattered laser light. Here we present results of investigations into achieving accurate high-resolution 3D dosimetry with optical-CT, and show clinical examples of 3D IMRT dosimetry verification. In conclusion, optical-CT gel dosimetry can provide high resolution 3D dose maps that greatly facilitate comprehensive verification of complex 3D radiation treatments. Good agreement was observed at high dose levels (>50%) between planned and measured dose distributions. Some systematic discrepancies were observed however (rms discrepancy 3% at high dose levels) indicating further work is required to eliminate confounding factors presently compromising the accuracy of optical-CT 3D gel-dosimetry.
3-D numerical simulations of coronal loops oscillations
Directory of Open Access Journals (Sweden)
M. Selwa
2009-10-01
Full Text Available We present numerical results of 3-D MHD model of a dipole active region field containing a loop with a higher density than its surroundings. We study different ways of excitation of vertical kink oscillations by velocity perturbation: as an initial condition, and as an impulsive excitation with a pulse of a given position, duration, and amplitude. These properties are varied in the parametric studies. We find that the amplitude of vertical kink oscillations is significantly amplified in comparison to horizontal kink oscillations for exciters located centrally (symmetrically below the loop, but not if the exciter is located a significant distance to the side of the loop. This explains why the pure vertical kink mode is so rarely observed in comparison to the horizontally polarized one. We discuss the role of curved magnetic field lines and the pulse overlapping at one of the loop's footpoints in 3-D active regions (AR's on the excitation and the damping of slow standing waves. We find that footpoint excitation becomes more efficient in 3-D curved loops than in 2-D curved arcades and that slow waves can be excited within an interval of time that is comparable to the observed one wave-period due to the combined effect of the pulse inside and outside the loop. Additionally, we study the effect of AR topology on the excitation and trapping of loop oscillations. We find that a perturbation acting directly on a single loop excites oscillations, but results in an increased leakage compared to excitation of oscillations in an AR field by an external source.
Neural Network Based Reconstruction of a 3D Object from a 2D Wireframe
Johnson, Kyle; Lipson, Hod
2010-01-01
We propose a new approach for constructing a 3D representation from a 2D wireframe drawing. A drawing is simply a parallel projection of a 3D object onto a 2D surface; humans are able to recreate mental 3D models from 2D representations very easily, yet the process is very difficult to emulate computationally. We hypothesize that our ability to perform this construction relies on the angles in the 2D scene, among other geometric properties. Being able to reproduce this reconstruction process automatically would allow for efficient and robust 3D sketch interfaces. Our research focuses on the relationship between 2D geometry observable in the sketch and 3D geometry derived from a potential 3D construction. We present a fully automated system that constructs 3D representations from 2D wireframes using a neural network in conjunction with a genetic search algorithm.
FROM 3D MODEL DATA TO SEMANTICS
Directory of Open Access Journals (Sweden)
My Abdellah Kassimi
2012-01-01
Full Text Available The semantic-based 3D models retrieval systems have become necessary since the increase of 3D modelsdatabases. In this paper, we propose a new method for the mapping problem between 3D model data andsemantic data involved in semantic based retrieval for 3D models given by polygonal meshes. First, wefocused on extracting invariant descriptors from the 3D models and analyzing them to efficient semanticannotation and to improve the retrieval accuracy. Selected shape descriptors provide a set of termscommonly used to describe visually a set of objects using linguistic terms and are used as semanticconcept to label 3D model. Second, spatial relationship representing directional, topological anddistance relationships are used to derive other high-level semantic features and to avoid the problem ofautomatic 3D model annotation. Based on the resulting semantic annotation and spatial concepts, anontology for 3D model retrieval is constructed and other concepts can be inferred. This ontology is usedto find similar 3D models for a given query model. We adopted the query by semantic example approach,in which the annotation is performed mostly automatically. The proposed method is implemented in our3D search engine (SB3DMR, tested using the Princeton Shape Benchmark Database.
3D change detection - Approaches and applications
Qin, Rongjun; Tian, Jiaojiao; Reinartz, Peter
2016-12-01
Due to the unprecedented technology development of sensors, platforms and algorithms for 3D data acquisition and generation, 3D spaceborne, airborne and close-range data, in the form of image based, Light Detection and Ranging (LiDAR) based point clouds, Digital Elevation Models (DEM) and 3D city models, become more accessible than ever before. Change detection (CD) or time-series data analysis in 3D has gained great attention due to its capability of providing volumetric dynamics to facilitate more applications and provide more accurate results. The state-of-the-art CD reviews aim to provide a comprehensive synthesis and to simplify the taxonomy of the traditional remote sensing CD techniques, which mainly sit within the boundary of 2D image/spectrum analysis, largely ignoring the particularities of 3D aspects of the data. The inclusion of 3D data for change detection (termed 3D CD), not only provides a source with different modality for analysis, but also transcends the border of traditional top-view 2D pixel/object-based analysis to highly detailed, oblique view or voxel-based geometric analysis. This paper reviews the recent developments and applications of 3D CD using remote sensing and close-range data, in support of both academia and industry researchers who seek for solutions in detecting and analyzing 3D dynamics of various objects of interest. We first describe the general considerations of 3D CD problems in different processing stages and identify CD types based on the information used, being the geometric comparison and geometric-spectral analysis. We then summarize relevant works and practices in urban, environment, ecology and civil applications, etc. Given the broad spectrum of applications and different types of 3D data, we discuss important issues in 3D CD methods. Finally, we present concluding remarks in algorithmic aspects of 3D CD.
BGK electron solitary waves: 1D and 3D
Directory of Open Access Journals (Sweden)
L.-J. Chen
2002-01-01
Full Text Available This paper presents new results for 1D BGK electron solitary wave (phase-space electron hole solutions and, based on the new results, extends the solutions to include the 3D electrical interaction (E ~ 1/r 2 of charged particles. Our approach for extending to 3D is to solve the nonlinear 3D Poisson and 1D Vlasov equations based on a key feature of 1D electron hole (EH solutions; the positive core of an EH is screened by electrons trapped inside the potential energy trough. This feature has not been considered in previous studies. We illustrate this key feature using an analytical model and argue that the feature is independent of any specific model. We then construct azimuthally symmetric EH solutions under conditions where electrons are highly field-aligned and ions form a uniform background along the magnetic field. Our results indicate that, for a single humped electric potential, the parallel cut of the perpendicular component of the electric field (E⊥ is unipolar and that of the parallel component (E|| bipolar, reproducing the multi-dimensional features of the solitary waves observed by the FAST satellite. Our analytical solutions presented in this article capture the 3D electric interaction and the observed features of (E|| and E⊥. The solutions predict a dependence of the parallel width-amplitude relation on the perpendicular size of EHs. This dependence can be used in conjunction with experimental data to yield an estimate of the typical perpendicular size of observed EHs; this provides important information on the perpendicular span of the source region as well as on how much electrostatic energy is transported by the solitary waves.
Motion stability of a suspended particle in a MHD flow
Energy Technology Data Exchange (ETDEWEB)
Shvarts, I.A.
1977-07-01
An examination is made of the motion instability of a suspended particle in a plane-parallel laminar flow with a velocity profile U(y,A) where A is certain parameter. An expression was obtained for the critical Reynolds number Re = ..cap alpha../delta/U/delta y/:the coefficient ..cap alpha.. is associated with dimensions and form of the particle. The results of the common theory are used for studying the motion instability of suspended spherical particle in Couette--Hartmann MHD flows. At large Hartmann numbers Re*/Ha was shown to be constant. This agrees well with experimental data on the hydrodynamic stability of the MHD flow itself. A definite correlation also takes place between Re/sub kr/(Ha) of a MHD flow and the Reynolds numbers that determine the stability of suspended particles when the Hartmann numbers are small. Thus, in a number of cases it is possible to examine the hydrodynamic stability of a MHD flow by the motion stability of solid particles introduced into the flow. 8 references, 2 illustrations.
3D Systems” ‘Stuck in the Middle’ of the 3D Printer Boom?
A. Hoffmann (Alan)
2014-01-01
textabstract3D Systems, the pioneer of 3D printing, predicted a future where "kids from 8 to 80" could design and print their ideas at home. By 2013, 9 years after the creation of the first working 3D printer, there were more than 30 major 3D printing companies competing for market share. 3DS and it
MHD Integrated Topping Cycle Project
Energy Technology Data Exchange (ETDEWEB)
1992-03-01
The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990's, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.
Arvekari, Lassi
2013-01-01
Opinnäytetyön tavoitteena on selvittää 3D-tulostustekniikan perusteita ja 3D-tulostuksen nykytilannetta. 3D-tulostukseen sopivien mallien luomista tutkitaan ja mallin tekemiseen on etsitty toimivia ohjesääntöjä. Tärkeä osa työtä on tutkia mitä vaiheita 3D-tulostimen hankinnassa kotikäyttöön tulee vastaan. Käytännön kokeita varten opinnäytetyössä on case Printrbot, jossa on tutustuttu edulliseen 3D-tulostuslaitteeseen kokoonpanosta lähtien. Työn kuluessa selvisi että edulliset 3D-tulos...
Stability Criteria of 3D Inviscid Shears
Li, Y Charles
2009-01-01
The classical plane Couette flow, plane Poiseuille flow, and pipe Poiseuille flow share some universal 3D steady coherent structure in the form of "streak-roll-critical layer". As the Reynolds number approaches infinity, the steady coherent structure approaches a 3D limiting shear of the form ($U(y,z), 0, 0$) in velocity variables. All such 3D shears are steady states of the 3D Euler equations. This raises the importance of investigating the stability of such inviscid 3D shears in contrast to the classical Rayleigh theory of inviscid 2D shears. Several general criteria of stability for such inviscid 3D shears are derived. In the Appendix, an argument is given to show that a 2D limiting shear can only be the classical laminar shear.
Ultrasonic Sensor Based 3D Mapping & Localization
Directory of Open Access Journals (Sweden)
Shadman Fahim Ahmad
2016-04-01
Full Text Available This article provides a basic level introduction to 3D mapping using sonar sensors and localization. It describes the methods used to construct a low-cost autonomous robot along with the hardware and software used as well as an insight to the background of autonomous robotic 3D mapping and localization. We have also given an overview to what the future prospects of the robot may hold in 3D based mapping.
ERP system for 3D printing industry
Directory of Open Access Journals (Sweden)
Deaky Bogdan
2017-01-01
Full Text Available GOCREATE is an original cloud-based production management and optimization service which helps 3D printing service providers to use their resources better. The proposed Enterprise Resource Planning system can significantly increase income through improved productivity. With GOCREATE, the 3D printing service providers get a much higher production efficiency at a much lower licensing cost, to increase their competitiveness in the fast growing 3D printing market.
Reconhecimento de faces 3D com Kinect
Cardia Neto, João Baptista [UNESP
2014-01-01
For person identification, facil recognition has several advantages over other biometric traits due mostly to its high universelly, collectability, and acceptability. When dealing with 2D face images several problems arise related to pose, illumination, and facial expressions. To increase the performance of facial recognition, 3D mehtods have been proposed and developedm since working with 3D objects allow us to handle better the aforementioned problems. With 3D object, it is possible to rota...
Study of Electron Acceleration and Multiple Dipolarization Fronts in 3D kinetic models
Lapenta, Giovanni; Ashour-Abdalla, Maha; Walker, Raymond; El-Alaoui, Mostafa
2014-05-01
The THEMIS mission encountered a depolarization front (DF) during a magnetotail crossing in the interval 035600 - 035900 UT on February 15, 2008 [1]. We present the results of an innovative investigative approach: we combine a global MHD model of the full Earth environment with a local PIC simulation. The global MHD view is provided on the UCLA model applied to the conditions for the interval of interest on Feb 15, 2008. At the specific time of 034800UT, a reconnection site first appear at about x=-15RE, y=4RE. We then use this specific MHD state as the initial setup for a fully kinetic PIC simulation, performed with the iPic3D code [2]. We consider a one way coupling where the MHD state is used as initial state and boundary conditions for the kinetic study [3]. In the present case, the time span of the kinetic simulation is short form the perspective of the global MHD simulation and does not require a full coupling where the MHD then process the information received back from the kinetic run [4]. The fields and particles are advanced self-consistently from the MHD state using a completely kinetic treatment. Many features missed by the MHD model emerge. Most notably a fast reconnection pattern develops and an unsteady reconnection process develops. The typical signatures of fast kinetic reconnection (Hall field) are observed and particle acceleration is obtained self consistently in the fields generated by the PIC simulation. The focus of the presentation will be the mechanisms of unsteady reconnection leading to multiple DFs. We observe intense wave activity propagating off the separatrices. We conduct a spectral analysis to isolate the different wave components in the lower hybrid and whistler regime. The unsteady reconnection and multiple DFs are also analysed in their impact on the energy transfer. We track the conversion of magnetic energy to particle energy and Poynting flux. The processes observed in the simulation are then compared with in situ THEMIS data
Topology Dictionary for 3D Video Understanding
2012-01-01
This paper presents a novel approach that achieves 3D video understanding. 3D video consists of a stream of 3D models of subjects in motion. The acquisition of long sequences requires large storage space (2 GB for 1 min). Moreover, it is tedious to browse data sets and extract meaningful information. We propose the topology dictionary to encode and describe 3D video content. The model consists of a topology-based shape descriptor dictionary which can be generated from either extracted pattern...
Illustrating Mathematics using 3D Printers
Knill, Oliver; Slavkovsky, Elizabeth
2013-01-01
3D printing technology can help to visualize proofs in mathematics. In this document we aim to illustrate how 3D printing can help to visualize concepts and mathematical proofs. As already known to educators in ancient Greece, models allow to bring mathematics closer to the public. The new 3D printing technology makes the realization of such tools more accessible than ever. This is an updated version of a paper included in book Low-Cost 3D Printing for science, education and Sustainable Devel...
Calibration for 3D Structured Light Measurement
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A calibration procedure was developed for three-dimensional(3D) binocular structured light measurement systems. In virtue of a specially designed pattern, matching points in stereo images are extracted. And then sufficient 3D space points are obtained through pairs of images with the intrinsic and extrinsic parameters of each camera estimated prior and consequently some lights are calibrated by means of multi point fitting. Finally, a mathematical model is applied to interpolate and approximate all dynamic scanning lights based on geometry. The process of calibration method is successfully used in the binocular 3D measurement system based on structured lights and the 3D reconstruction results are satisfying.
Getting started in 3D with Maya
Watkins, Adam
2012-01-01
Deliver professional-level 3D content in no time with this comprehensive guide to 3D animation with Maya. With over 12 years of training experience, plus several award winning students under his belt, author Adam Watkins is the ideal mentor to get you up to speed with 3D in Maya. Using a structured and pragmatic approach Getting Started in 3D with Maya begins with basic theory of fundamental techniques, then builds on this knowledge using practical examples and projects to put your new skills to the test. Prepared so that you can learn in an organic fashion, each chapter builds on the know
Virtual Realization using 3D Password
Directory of Open Access Journals (Sweden)
A.B.Gadicha
2012-03-01
Full Text Available Current authentication systems suffer from many weaknesses. Textual passwords are commonly used; however, users do not follow their requirements. Users tend to choose meaningful words from dictionaries, which make textual passwords easy to break and vulnerable to dictionary or brute force attacks. Many available graphical passwords have a password space that is less than or equal to the textual password space. Smart cards or tokens can be stolen. Many biometric authentications have been proposed; however, users tend to resist using biometrics because of their intrusiveness and the effect on their privacy. Moreover, biometrics cannot be revoked. In this paper, we present and evaluate our contribution, i.e., the 3D password. The 3D password is a multifactor authentication scheme. To be authenticated, we present a 3D virtual environment where the user navigates and interacts with various objects. The sequence of actions and interactions toward the objects inside the 3D environment constructs the user’s 3D password. The 3D password can combine most existing authentication schemes such as textual passwords, graphical passwords, and various types of biometrics into a 3D virtual environment. The design of the 3D virtual environment and the type of objects selected determine the 3D password key space.
Ekologinen 3D-tulostettava asuste
Paulasaari, Laura
2014-01-01
Tämän opinnäytetyön aiheena oli ekologisuus 3D-tulostuksessa ja sen hyödynnettävyys erityisesti asustesuunnittelussa. Työn tarkoituksena oli selvittää, kuinka 3D-tulostusta voi tehdä ekologisemmin ja mitä vaihtoehtoja kuluttajalle tällä hetkellä on. Työ tehtiin Young skills –osuuskunnalle. 3D-tulostuksella on mahdollisuus antaa todella paljon tulevaisuuden tuotantomenetelmille ja se vapauttaa tuotteiden muotoilua täysin uudella tavalla. 3D-tulostuksen avulla voidaan keskittyä enemmän esim...
AUTOMATIC 3D MAPPING USING MULTIPLE UNCALIBRATED CLOSE RANGE IMAGES
Directory of Open Access Journals (Sweden)
M. Rafiei
2013-09-01
Full Text Available Automatic three-dimensions modeling of the real world is an important research topic in the geomatics and computer vision fields for many years. By development of commercial digital cameras and modern image processing techniques, close range photogrammetry is vastly utilized in many fields such as structure measurements, topographic surveying, architectural and archeological surveying, etc. A non-contact photogrammetry provides methods to determine 3D locations of objects from two-dimensional (2D images. Problem of estimating the locations of 3D points from multiple images, often involves simultaneously estimating both 3D geometry (structure and camera pose (motion, it is commonly known as structure from motion (SfM. In this research a step by step approach to generate the 3D point cloud of a scene is considered. After taking images with a camera, we should detect corresponding points in each two views. Here an efficient SIFT method is used for image matching for large baselines. After that, we must retrieve the camera motion and 3D position of the matched feature points up to a projective transformation (projective reconstruction. Lacking additional information on the camera or the scene makes the parallel lines to be unparalleled. The results of SfM computation are much more useful if a metric reconstruction is obtained. Therefor multiple views Euclidean reconstruction applied and discussed. To refine and achieve the precise 3D points we use more general and useful approach, namely bundle adjustment. At the end two real cases have been considered to reconstruct (an excavation and a tower.
Mechanical Properties of 3d Scaffolds for Bone Regeneration
Directory of Open Access Journals (Sweden)
Deividas Mizeras
2017-01-01
Full Text Available One of the biggest challenges in modern tissue engineering is a creation 3D scaffolds for bone tissue regeneration. Until now, in order to restore bone defects are used various bone substitutes (autologous and allogeneic, however, their usage is limited because is required additional surgery, possible complications, also limited their use is associated with ethical point of view. In this work we aim to determine the mechanical properties of 3D printed PLA objects having various orientation woodpile microarchitectures. In this work we chose three different 3D microarchitectures: woodpile BCC (each layer consists of parallel logs which are rotated 90 deg every next layer, woodpile FCC (every layer is additionally shifted half of the period in respect to the previous parallel log layer and a rotating woodpile 60 deg (each layer is rotated 60 deg in respect to the previous one. Compressive and bending tests were carried out with TIRAtest2300 universal testing machine. We found that 60 deg rotating woodpile geometry had the highest mechanical values which were approximately about 3 times higher than the BCC or FCC microstructures.
Discrete Method of Images for 3D Radio Propagation Modeling
Novak, Roman
2016-09-01
Discretization by rasterization is introduced into the method of images (MI) in the context of 3D deterministic radio propagation modeling as a way to exploit spatial coherence of electromagnetic propagation for fine-grained parallelism. Traditional algebraic treatment of bounding regions and surfaces is replaced by computer graphics rendering of 3D reflections and double refractions while building the image tree. The visibility of reception points and surfaces is also resolved by shader programs. The proposed rasterization is shown to be of comparable run time to that of the fundamentally parallel shooting and bouncing rays. The rasterization does not affect the signal evaluation backtracking step, thus preserving its advantage over the brute force ray-tracing methods in terms of accuracy. Moreover, the rendering resolution may be scaled back for a given level of scenario detail with only marginal impact on the image tree size. This allows selection of scene optimized execution parameters for faster execution, giving the method a competitive edge. The proposed variant of MI can be run on any GPU that supports real-time 3D graphics.
High Speed 3D Tomography on CPU, GPU, and FPGA
Directory of Open Access Journals (Sweden)
GAC Nicolas
2008-01-01
Full Text Available Abstract Back-projection (BP is a costly computational step in tomography image reconstruction such as positron emission tomography (PET. To reduce the computation time, this paper presents a pipelined, prefetch, and parallelized architecture for PET BP (3PA-PET. The key feature of this architecture is its original memory access strategy, masking the high latency of the external memory. Indeed, the pattern of the memory references to the data acquired hinders the processing unit. The memory access bottleneck is overcome by an efficient use of the intrinsic temporal and spatial locality of the BP algorithm. A loop reordering allows an efficient use of general purpose processor's caches, for software implementation, as well as the 3D predictive and adaptive cache (3D-AP cache, when considering hardware implementations. Parallel hardware pipelines are also efficient thanks to a hierarchical 3D-AP cache: each pipeline performs a memory reference in about one clock cycle to reach a computational throughput close to 100%. The 3PA-PET architecture is prototyped on a system on programmable chip (SoPC to validate the system and to measure its expected performances. Time performances are compared with a desktop PC, a workstation, and a graphic processor unit (GPU.
High Speed 3D Tomography on CPU, GPU, and FPGA
Directory of Open Access Journals (Sweden)
Dominique Houzet
2009-02-01
Full Text Available Back-projection (BP is a costly computational step in tomography image reconstruction such as positron emission tomography (PET. To reduce the computation time, this paper presents a pipelined, prefetch, and parallelized architecture for PET BP (3PA-PET. The key feature of this architecture is its original memory access strategy, masking the high latency of the external memory. Indeed, the pattern of the memory references to the data acquired hinders the processing unit. The memory access bottleneck is overcome by an efficient use of the intrinsic temporal and spatial locality of the BP algorithm. A loop reordering allows an efficient use of general purpose processor's caches, for software implementation, as well as the 3D predictive and adaptive cache (3D-AP cache, when considering hardware implementations. Parallel hardware pipelines are also efficient thanks to a hierarchical 3D-AP cache: each pipeline performs a memory reference in about one clock cycle to reach a computational throughput close to 100%. The 3PA-PET architecture is prototyped on a system on programmable chip (SoPC to validate the system and to measure its expected performances. Time performances are compared with a desktop PC, a workstation, and a graphic processor unit (GPU.
An aerial 3D printing test mission
Hirsch, Michael; McGuire, Thomas; Parsons, Michael; Leake, Skye; Straub, Jeremy
2016-05-01
This paper provides an overview of an aerial 3D printing technology, its development and its testing. This technology is potentially useful in its own right. In addition, this work advances the development of a related in-space 3D printing technology. A series of aerial 3D printing test missions, used to test the aerial printing technology, are discussed. Through completing these test missions, the design for an in-space 3D printer may be advanced. The current design for the in-space 3D printer involves focusing thermal energy to heat an extrusion head and allow for the extrusion of molten print material. Plastics can be used as well as composites including metal, allowing for the extrusion of conductive material. A variety of experiments will be used to test this initial 3D printer design. High altitude balloons will be used to test the effects of microgravity on 3D printing, as well as parabolic flight tests. Zero pressure balloons can be used to test the effect of long 3D printing missions subjected to low temperatures. Vacuum chambers will be used to test 3D printing in a vacuum environment. The results will be used to adapt a current prototype of an in-space 3D printer. Then, a small scale prototype can be sent into low-Earth orbit as a 3-U cube satellite. With the ability to 3D print in space demonstrated, future missions can launch production hardware through which the sustainability and durability of structures in space will be greatly improved.
Further validation of liquid metal MHD code for unstructured grid based on OpenFOAM
Energy Technology Data Exchange (ETDEWEB)
Feng, Jingchao; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; He, Qingyun; Ye, Minyou
2015-11-15
Highlights: • Specific correction scheme has been adopted to revise the calculating result for non-orthogonal meshes. • The developed MHD code based on OpenFOAM platform has been validated by benchmark cases under uniform and non-uniform magnetic field in round and rectangular ducts. • ALEX experimental results have been used to validate the MHD code based on OpenFOAM. - Abstract: In fusion liquid metal blankets, complex geometries involving contractions, expansions, bends, manifolds are very common. The characteristics of liquid metal flow in these geometries are significant. In order to extend the magnetohydrodynamic (MHD) solver developed on OpenFOAM platform to be applied in the complex geometry, the MHD solver based on unstructured meshes has been implemented. The adoption of non-orthogonal correction techniques in the solver makes it possible to process the non-orthogonal meshes in complex geometries. The present paper focused on the validation of the code under critical conditions. An analytical solution benchmark case and two experimental benchmark cases were conducted to validate the code. Benchmark case I is MHD flow in a circular pipe with arbitrary electric conductivity of the walls in a uniform magnetic field. Benchmark cases II and III are experimental cases of 3D laminar steady MHD flow under fringing magnetic field. In all these cases, the numerical results match well with the benchmark cases.
Magnetohydrodynamic (MHD) channel corner seal
Spurrier, Francis R.
1980-01-01
A corner seal for an MHD duct includes a compressible portion which contacts the duct walls and an insulating portion which contacts the electrodes, sidewall bars and insulators. The compressible portion may be a pneumatic or hydraulic gasket or an open-cell foam rubber. The insulating portion is segmented into a plurality of pieces of the same thickness as the electrodes, insulators and sidewall bars and aligned therewith, the pieces aligned with the insulator being of a different size from the pieces aligned with the electrodes and sidewall bars to create a stepped configuration along the corners of the MHD channel.
Problems in nonlinear resistive MHD
Energy Technology Data Exchange (ETDEWEB)
Turnbull, A.D.; Strait, E.J.; La Haye, R.J.; Chu, M.S.; Miller, R.L. [General Atomics, San Diego, CA (United States)
1998-12-31
Two experimentally relevant problems can relatively easily be tackled by nonlinear MHD codes. Both problems require plasma rotation in addition to the nonlinear mode coupling and full geometry already incorporated into the codes, but no additional physics seems to be crucial. These problems discussed here are: (1) nonlinear coupling and interaction of multiple MHD modes near the B limit and (2) nonlinear coupling of the m/n = 1/1 sawtooth mode with higher n gongs and development of seed islands outside q = 1.
Frozen Gaussian approximation for 3-D seismic wave propagation
Chai, Lihui; Tong, Ping; Yang, Xu
2017-01-01
We present a systematic introduction on applying frozen Gaussian approximation (FGA) to compute synthetic seismograms in 3-D earth models. In this method, seismic wavefield is decomposed into frozen (fixed-width) Gaussian functions, which propagate along ray paths. Rather than the coherent state solution to the wave equation, this method is rigorously derived by asymptotic expansion on phase plane, with analysis of its accuracy determined by the ratio of short wavelength over large domain size. Similar to other ray-based beam methods (e.g. Gaussian beam methods), one can use relatively small number of Gaussians to get accurate approximations of high-frequency wavefield. The algorithm is embarrassingly parallel, which can drastically speed up the computation with a multicore-processor computer station. We illustrate the accuracy and efficiency of the method by comparing it to the spectral element method for a 3-D seismic wave propagation in homogeneous media, where one has the analytical solution as a benchmark. As another proof of methodology, simulations of high-frequency seismic wave propagation in heterogeneous media are performed for 3-D waveguide model and smoothed Marmousi model, respectively. The second contribution of this paper is that, we incorporate the Snell's law into the FGA formulation, and asymptotically derive reflection, transmission and free surface conditions for FGA to compute high-frequency seismic wave propagation in high contrast media. We numerically test these conditions by computing traveltime kernels of different phases in the 3-D crust-over-mantle model.
Development and Evaluation of Gold 3D Cylindrical Nanoelectrode Ensembles
Institute of Scientific and Technical Information of China (English)
CAO Li-Xin; YAN Pei-Sheng; SUN Ke-Ning; KIRK W Donald
2007-01-01
Gold 3D cylindrical nanoelectrode ensembles (NEEs), 100 nm in diameter and 500 nm in length were prepared by electroless template synthesis in polycarbonate filter membranes, followed by selective controlled chemical etching. The morphology of the nanowires and cylindrical NEEs was imaged by scanning electron microscopy. The protruding nanoelectrodes were in good parallel order. EDX study showed that the nanoelectrode elements consisted of pure gold. The electrochemical evaluation of the 3D electrodes was conducted using the well known [Fe(CN)6]3-/[Fe(CN)6]4- couple. Cyclic voltammgrams (CV) show a very low double layer charging current and a higher ratio of signal to background current than 2D disc NEEs. Electrochemical impedance spectroscopy (EIS) indicates that the 3D cylindrical NEEs effectively accelerate the charge transfer process, which is in consistent with the results of CV. The linear relationship with a slope of 0.5 between lg Ipc and lg v shows that linear diffusion is dominant on the 3D cylindrical NEEs at conventional scan rates.
Integration of real-time 3D image acquisition and multiview 3D display
Zhang, Zhaoxing; Geng, Zheng; Li, Tuotuo; Li, Wei; Wang, Jingyi; Liu, Yongchun
2014-03-01
Seamless integration of 3D acquisition and 3D display systems offers enhanced experience in 3D visualization of the real world objects or scenes. The vivid representation of captured 3D objects displayed on a glasses-free 3D display screen could bring the realistic viewing experience to viewers as if they are viewing real-world scene. Although the technologies in 3D acquisition and 3D display have advanced rapidly in recent years, effort is lacking in studying the seamless integration of these two different aspects of 3D technologies. In this paper, we describe our recent progress on integrating a light-field 3D acquisition system and an autostereoscopic multiview 3D display for real-time light field capture and display. This paper focuses on both the architecture design and the implementation of the hardware and the software of this integrated 3D system. A prototype of the integrated 3D system is built to demonstrate the real-time 3D acquisition and 3D display capability of our proposed system.
3D Printed Block Copolymer Nanostructures
Scalfani, Vincent F.; Turner, C. Heath; Rupar, Paul A.; Jenkins, Alexander H.; Bara, Jason E.
2015-01-01
The emergence of 3D printing has dramatically advanced the availability of tangible molecular and extended solid models. Interestingly, there are few nanostructure models available both commercially and through other do-it-yourself approaches such as 3D printing. This is unfortunate given the importance of nanotechnology in science today. In this…
Parametrizable cameras for 3D computational steering
Mulder, J.D.; Wijk, J.J. van
1997-01-01
We present a method for the definition of multiple views in 3D interfaces for computational steering. The method uses the concept of a point-based parametrizable camera object. This concept enables a user to create and configure multiple views on his custom 3D interface in an intuitive graphical man
3D elastic control for mobile devices.
Hachet, Martin; Pouderoux, Joachim; Guitton, Pascal
2008-01-01
To increase the input space of mobile devices, the authors developed a proof-of-concept 3D elastic controller that easily adapts to mobile devices. This embedded device improves the completion of high-level interaction tasks such as visualization of large documents and navigation in 3D environments. It also opens new directions for tomorrow's mobile applications.
3D printing of functional structures
Krijnen, G.J.M.
2016-01-01
The technology colloquial known as ‘3D printing’ has developed in such diversity in printing technologies and application fields that meanwhile it seems anything is possible. However, clearly the ideal 3D Printer, with high resolution, multi-material capability, fast printing, etc. is yet to be deve
Norbury, Keith
2012-01-01
It may be too soon for students to be showing up for class with popcorn and gummy bears, but technology similar to that behind the 3D blockbuster movie "Avatar" is slowly finding its way into college classrooms. 3D classroom projectors are taking students on fantastic voyages inside the human body, to the ruins of ancient Greece--even to faraway…
DEFF Research Database (Denmark)
Holmgren, Steen; Rüdiger, Bjarne; Tournay, Bruno
2001-01-01
We have worked with the construction and use of 3D city models for about ten years. This work has given us valuable experience concerning model methodology. In addition to this collection of knowledge, our perception of the concept of city models has changed radically. In order to explain...... of 3D city models....
3D Printing of Molecular Models
Gardner, Adam; Olson, Arthur
2016-01-01
Physical molecular models have played a valuable role in our understanding of the invisible nano-scale world. We discuss 3D printing and its use in producing models of the molecules of life. Complex biomolecular models, produced from 3D printed parts, can demonstrate characteristics of molecular structure and function, such as viral self-assembly,…
Love, Tyler S.; Roy, Ken
2016-01-01
Health concerns from 3D printing were first documented by Stephens, Azimi, Orch, and Ramos (2013), who found that commercially available 3D printers were producing hazardous levels of ultrafine particles (UFPs) and volatile organic compounds (VOCs) when plastic materials were melted through the extruder. UFPs are particles less than 100 nanometers…
Topology dictionary for 3D video understanding.
Tung, Tony; Matsuyama, Takashi
2012-08-01
This paper presents a novel approach that achieves 3D video understanding. 3D video consists of a stream of 3D models of subjects in motion. The acquisition of long sequences requires large storage space (2 GB for 1 min). Moreover, it is tedious to browse data sets and extract meaningful information. We propose the topology dictionary to encode and describe 3D video content. The model consists of a topology-based shape descriptor dictionary which can be generated from either extracted patterns or training sequences. The model relies on 1) topology description and classification using Reeb graphs, and 2) a Markov motion graph to represent topology change states. We show that the use of Reeb graphs as the high-level topology descriptor is relevant. It allows the dictionary to automatically model complex sequences, whereas other strategies would require prior knowledge on the shape and topology of the captured subjects. Our approach serves to encode 3D video sequences, and can be applied for content-based description and summarization of 3D video sequences. Furthermore, topology class labeling during a learning process enables the system to perform content-based event recognition. Experiments were carried out on various 3D videos. We showcase an application for 3D video progressive summarization using the topology dictionary.
3D background aerodynamics using CFD
DEFF Research Database (Denmark)
Sørensen, Niels N.
2002-01-01
3D rotor computations for the Greek Geovilogiki (GEO) 44 meter rotor equipped with 19 meters blades are performed. The lift and drag polars are extracted at five spanvise locations r/R= (.37, .55, .71, .82, .93) based on identification of stagnationpoints between 2D and 3D computations. The inner...
3-D Equilibrium Reconstruction in the HSX Stellarator
Schmitt, J. C.
2011-10-01
Axisymmetric toroidal devices reconstruct the MHD equilibrium properties from measured pressure, magnetic field components, external field coil currents, and other diagnostics, by solving the Grad-Shafranov equation. For modern toroidal systems including advanced stellarators and tokamaks with asymmetric fields, such as those that arise from finite toroidal ripple or ferromagnetic blanket materials, a 3-D equilibrium reconstruction is required to account for non-axisymmetric effects and accurately determine the plasma profiles. The 3-D equilibrium reconstruction of plasma current and pressure profiles in the quasi-helically symmetric stellarator HSX is presented. The equilibrium currents in the HSX stellarator are measured with a set of magnetic diagnostics, which includes Rogowski coils, diamagnetic loops, two poloidal `belts' that are separated by 1/3 of a field period, and internal coils. Each belt consists of 16 3-axis magnetic pick-up coils to measure the local magnetic field, and 15 internal coils measure the poloidal field. V3FIT, a 3-D equilibrium reconstruction code, is used to reconstruct the pressure and current profile from the measured fields and fluxes. Reconstructions based on the external diagnostics confirm that the Pfirsch-Schlüter current is helical due to the lack of toroidal curvature in HSX. The reconstruction of the pressure profile and stored energy based on the internal poloidal array agrees well with that measured by Thomson scattering and the flux loop. Later in time, the measurements are dominated by the bootstrap current which rises on a timescale comparable to the length of the discharge. The reconstruction of the current profile is consistent with the neoclassical bootstrap current when the effects of momentum conservation between plasma species and the 3-D inductive response of the plasma column are considered. The magnitude of the Pfirsch-Schlüter and bootstrap currents are reduced by the high effective transform (~3), which is
Limited Feedback for 3D Massive MIMO under 3D-UMa and 3D-UMi Scenarios
Directory of Open Access Journals (Sweden)
Zheng Hu
2015-01-01
Full Text Available For three-dimensional (3D massive MIMO utilizing the uniform rectangular array (URA in the base station (BS, we propose a limited feedback transmission scheme in which the channel state information (CSI feedback operations for horizontal domain and vertical domain are separate. Compared to the traditional feedback scheme, the scheme can reduce the feedback overhead, code word index search complexity, and storage requirement. Also, based on the zenith of departure angle (ZoD distribution in 3D-Urban Macro Cell (3D-UMa and 3D-Urban Micro Cell (3D-UMi scenarios, we propose the angle quantization codebook for vertical domain, while the codebook of long term evolution-advanced (LTE-Advanced is still adopted in horizontal domain to preserve compatibility with the LTE-Advanced. Based on the angle quantization codebook, the subsampled 3-bit DFT codebook is designed for vertical domain. The system-level simulation results reveal that, to compromise the feedback overhead and system performance, 2-bit codebook for 3D-UMa scenario and 3-bit codebook for 3D-UMi scenario can meet requirements in vertical domain. The feedback period for vertical domain can also be extended appropriately to reduce the feedback overhead.
A numerical code for a three-dimensional magnetospheric MHD equilibrium model
Voigt, G.-H.
1992-01-01
Two dimensional and three dimensional MHD equilibrium models were begun for Earth's magnetosphere. The original proposal was motivated by realizing that global, purely data based models of Earth's magnetosphere are inadequate for studying the underlying plasma physical principles according to which the magnetosphere evolves on the quasi-static convection time scale. Complex numerical grid generation schemes were established for a 3-D Poisson solver, and a robust Grad-Shafranov solver was coded for high beta MHD equilibria. Thus, the effects were calculated of both the magnetopause geometry and boundary conditions on the magnetotail current distribution.
Fabrication of 3D Silicon Sensors
Energy Technology Data Exchange (ETDEWEB)
Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; /SINTEF, Oslo; Kenney, C.; Hasi, J.; /SLAC; Da Via, C.; /Manchester U.; Parker, S.I.; /Hawaii U.
2012-06-06
Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.
Maintaining and troubleshooting your 3D printer
Bell, Charles
2014-01-01
Maintaining and Troubleshooting Your 3D Printer by Charles Bell is your guide to keeping your 3D printer running through preventive maintenance, repair, and diagnosing and solving problems in 3D printing. If you've bought or built a 3D printer such as a MakerBot only to be confounded by jagged edges, corner lift, top layers that aren't solid, or any of a myriad of other problems that plague 3D printer enthusiasts, then here is the book to help you get past all that and recapture the joy of creative fabrication. The book also includes valuable tips for builders and those who want to modify the
Dekker, T.; de Zwart, S. T.; Willemsen, O. H.; Hiddink, M. G. H.; IJzerman, W. L.
2006-02-01
A prerequisite for a wide market acceptance of 3D displays is the ability to switch between 3D and full resolution 2D. In this paper we present a robust and cost effective concept for an auto-stereoscopic switchable 2D/3D display. The display is based on an LCD panel, equipped with switchable LC-filled lenticular lenses. We will discuss 3D image quality, with the focus on display uniformity. We show that slanting the lenticulars in combination with a good lens design can minimize non-uniformities in our 20" 2D/3D monitors. Furthermore, we introduce fractional viewing systems as a very robust concept to further improve uniformity in the case slanting the lenticulars and optimizing the lens design are not sufficient. We will discuss measurements and numerical simulations of the key optical characteristics of this display. Finally, we discuss 2D image quality, the switching characteristics and the residual lens effect.
6D Interpretation of 3D Gravity
Herfray, Yannick; Krasnov, Kirill; Scarinci, Carlos
2017-02-01
We show that 3D gravity, in its pure connection formulation, admits a natural 6D interpretation. The 3D field equations for the connection are equivalent to 6D Hitchin equations for the Chern–Simons 3-form in the total space of the principal bundle over the 3-dimensional base. Turning this construction around one gets an explanation of why the pure connection formulation of 3D gravity exists. More generally, we interpret 3D gravity as the dimensional reduction of the 6D Hitchin theory. To this end, we show that any \\text{SU}(2) invariant closed 3-form in the total space of the principal \\text{SU}(2) bundle can be parametrised by a connection together with a 2-form field on the base. The dimensional reduction of the 6D Hitchin theory then gives rise to 3D gravity coupled to a topological 2-form field.
3D Visualization Development of SIUE Campus
Nellutla, Shravya
Geographic Information Systems (GIS) has progressed from the traditional map-making to the modern technology where the information can be created, edited, managed and analyzed. Like any other models, maps are simplified representations of real world. Hence visualization plays an essential role in the applications of GIS. The use of sophisticated visualization tools and methods, especially three dimensional (3D) modeling, has been rising considerably due to the advancement of technology. There are currently many off-the-shelf technologies available in the market to build 3D GIS models. One of the objectives of this research was to examine the available ArcGIS and its extensions for 3D modeling and visualization and use them to depict a real world scenario. Furthermore, with the advent of the web, a platform for accessing and sharing spatial information on the Internet, it is possible to generate interactive online maps. Integrating Internet capacity with GIS functionality redefines the process of sharing and processing the spatial information. Enabling a 3D map online requires off-the-shelf GIS software, 3D model builders, web server, web applications and client server technologies. Such environments are either complicated or expensive because of the amount of hardware and software involved. Therefore, the second objective of this research was to investigate and develop simpler yet cost-effective 3D modeling approach that uses available ArcGIS suite products and the free 3D computer graphics software for designing 3D world scenes. Both ArcGIS Explorer and ArcGIS Online will be used to demonstrate the way of sharing and distributing 3D geographic information on the Internet. A case study of the development of 3D campus for the Southern Illinois University Edwardsville is demonstrated.
The psychology of the 3D experience
Janicke, Sophie H.; Ellis, Andrew
2013-03-01
With 3D televisions expected to reach 50% home saturation as early as 2016, understanding the psychological mechanisms underlying the user response to 3D technology is critical for content providers, educators and academics. Unfortunately, research examining the effects of 3D technology has not kept pace with the technology's rapid adoption, resulting in large-scale use of a technology about which very little is actually known. Recognizing this need for new research, we conducted a series of studies measuring and comparing many of the variables and processes underlying both 2D and 3D media experiences. In our first study, we found narratives within primetime dramas had the power to shift viewer attitudes in both 2D and 3D settings. However, we found no difference in persuasive power between 2D and 3D content. We contend this lack of effect was the result of poor conversion quality and the unique demands of 3D production. In our second study, we found 3D technology significantly increased enjoyment when viewing sports content, yet offered no added enjoyment when viewing a movie trailer. The enhanced enjoyment of the sports content was shown to be the result of heightened emotional arousal and attention in the 3D condition. We believe the lack of effect found for the movie trailer may be genre-related. In our final study, we found 3D technology significantly enhanced enjoyment of two video games from different genres. The added enjoyment was found to be the result of an increased sense of presence.
Fast wave current drive antenna performance on D3-D
Mayberry, M. J.; Pinsker, R. I.; Petty, C. C.; Chiu, S. C.; Jackson, G. L.; Lippmann, S. I.; Prater, R.; Porkolab, M.
1991-10-01
Fast wave current drive (FWCD) experiments at 60 MHz are being performed on the D3-D tokamak for the first time in high electron temperature, high (beta) target plasmas. A four-element phased-array antenna is used to launch a directional wave spectrum with the peak n(sub parallel) value (approximately = 7) optimized for strong single-pass electron absorption due to electron Landau damping. For this experiment, high power FW injection (2 MW) must be accomplished without voltage breakdown in the transmission lines or antenna, and without significant impurity influx. In addition, there is the technological challenge of impedance matching a four-element antenna while maintaining equal currents and the correct phasing (90 degrees) in each of the straps for a directional spectrum. We describe the performance of the D3-D FWCD antenna during initial FW electron heating and current drive experiments in terms of these requirements.
3D Simulation of Nano-Imprint Lithography
DEFF Research Database (Denmark)
Román Marín, José Manuel; Rasmussen, Henrik K.; Hassager, Ole
2010-01-01
A proof of concept study of the feasibility of fully three-dimensional (3D) time-dependent simulation of nano-imprint lithography of polymer melt, where the polymer is treated as a structured liquid, has been presented. Considering the flow physics of the polymer as a structured liquid, we have...... followed the line initiated by de Gennes, using a Molecular Stress Function model of the Doi and Edwards type. We have used a 3D Lagrangian Galerkin finite element methods implemented on a parallel computer architecture. In a Lagrangian techniques, the node point follows the particle movement, allowing...... for the movement of free surfaces or interfaces. We have extended the method to handle the dynamic movement of the contact line between the polymer melt and stamp during mold filling....
Striations in molecular clouds: Streamers or MHD waves?
Tritsis, A
2016-01-01
Dust continuum and molecular observations of the low column density parts of molecular clouds have revealed the presence of elongated structures which appear to be well aligned with the magnetic field. These so-called striations are usually assumed to be streams that flow towards or away from denser regions. We perform ideal magnetohydrodynamic (MHD) simulations adopting four models that could account for the formation of such structures. In the first two models striations are created by velocity gradients between ambient, parallel streamlines along magnetic field lines. In the third model striations are formed as a result of a Kelvin-Helmholtz instability perpendicular to field lines. Finally, in the fourth model striations are formed from the nonlinear coupling of MHD waves due to density inhomogeneities. We assess the validity of each scenario by comparing the results from our simulations with previous observational studies and results obtained from the analysis of CO (J = 1 - 0) observations from the Taur...
3D Alfvén wave behaviour about proper and improper magnetic null points
Thurgood, J. O.; McLaughlin, J. A.
2013-10-01
Context. Magnetohydrodynamic (MHD) waves and magnetic null points are both prevalent in many astrophysical plasmas, including the solar atmosphere. Interaction between waves and null points has been implicated as a possible mechanism for localised heating events. Aims: Here we investigate the transient behaviour of the Alfvén wave about fully 3D proper and improper magnetic null points. Methods: We introduce an Alfvén wave into the vicinity of both proper and improper null points by numerically solving the ideal, β = 0 MHD equations using the LARE3D code. A magnetic fieldline and flux-based coordinate system permits the isolation of resulting wave modes and the analysis of their interaction. Results: We find that the Alfvén wave propagates throughout the region and accumulates near the fan-plane, causing current build up. For different values of null point eccentricity, the qualitative behaviour changes only by the imposition of anisotropic pulse dilation, owing to the differing rates at which fieldlines diverge from the spine. For all eccentricities, we find that the fast and Alfvén waves are linearly decoupled. During the driving phase, an independently propagating fast wave is nonlinearly generated owing to the ponderomotive force. Subsequently, no further excitation of fast waves occurs. Conclusions: We find that the key aspects of the theory of Alfvén waves about 2D null points extends intuitively to the fully 3D case; i.e. the wave propagates along fieldlines and thus accumulates at predictable parts of the topology. We also highlight that unlike in the 2D case, in 3D Alfvén-wave pulses are always toroidal, and thus any aspects of 2D Alfvén-wave-null models that are pulse-geometry specific must be reconsidered in 3D.
Simpson, D. G.; Lipatov, A. S.; Sittler, E. C.; Cooper, J. F.; Hartle, R. E.; Sarantos, M.
2012-12-01
In this report we discuss the results of a 3D hybrid modeling of the interaction between Saturn's magnetosphere and Titan's atmosphere/ionosphere for the T5 encounter. The T5 flyby is the only encounter when the two main ionizing sources of Titan's atmosphere, solar radiation and corotating plasma, align quasi-anti-parallel. The model is based on recent analysis of the Cassini Plasma Spectrometer (CAPS) and the Cassini Ion and Neutral Mass Spectrometer (INMS) measurements during the T5 flyby through Titan's ram-side and polar ionosphere [1,2]. Magnetic field data was used from the MAG instrument [3]. In our model the background ions (O+, H+), all pickup ions, and ionospheric ions are considered as a particles, whereas the electrons are described as a fluid (see e.g. [4]). Inhomogeneous photoionization (in the dayside ionosphere), electron-impact ionization, and charge exchange are included in our model. The temperature of the background electrons and pickup electrons was also incorporated into the generalized Ohm's law. We also take into account collisions between ions and neutrals. In our hybrid simulations we use Chamberlain profiles for the exosphere's components. The moon is considered as a weakly conducting body. The first results of our hybrid modeling show a strong asymmetry in the background (H+, O+) and pickup (H2+, N2+, CH4+) ion density profiles. Such strong asymmetry cannot be explained by a single-fluid multi-species 3D MHD model [5], which includes complex chemistry but does not produce finite gyroradius and kinetic effects. References [1] Sittler, et al., Energy Deposition Processes in Titan's Atmosphere and Its Induced Magnetosphere. In: Titan from Cassini-Huygens, Brown, R.H., Lebreton, J.P., Waite, J.H., Eds., Springer, (Dordrecht, Heidelberg, London, New York), pp. 393-455, 2010. [2] Agren, K., et al., On magnetosphere electron impact ionization and dynamics in Titan's ram-side and polar ionosphere -- a Cassini case study, Ann. Geophys., 25, 2359
3D imaging in forensic odontology.
Evans, Sam; Jones, Carl; Plassmann, Peter
2010-06-16
This paper describes the investigation of a new 3D capture method for acquiring and subsequent forensic analysis of bite mark injuries on human skin. When documenting bite marks with standard 2D cameras errors in photographic technique can occur if best practice is not followed. Subsequent forensic analysis of the mark is problematic when a 3D structure is recorded into a 2D space. Although strict guidelines (BAFO) exist, these are time-consuming to follow and, due to their complexity, may produce errors. A 3D image capture and processing system might avoid the problems resulting from the 2D reduction process, simplifying the guidelines and reducing errors. Proposed Solution: a series of experiments are described in this paper to demonstrate that the potential of a 3D system might produce suitable results. The experiments tested precision and accuracy of the traditional 2D and 3D methods. A 3D image capture device minimises the amount of angular distortion, therefore such a system has the potential to create more robust forensic evidence for use in courts. A first set of experiments tested and demonstrated which method of forensic analysis creates the least amount of intra-operator error. A second set tested and demonstrated which method of image capture creates the least amount of inter-operator error and visual distortion. In a third set the effects of angular distortion on 2D and 3D methods of image capture were evaluated.
Medical 3D Printing for the Radiologist.
Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A; Cai, Tianrun; Kumamaru, Kanako K; George, Elizabeth; Wake, Nicole; Caterson, Edward J; Pomahac, Bohdan; Ho, Vincent B; Grant, Gerald T; Rybicki, Frank J
2015-01-01
While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article.
Digital relief generation from 3D models
Wang, Meili; Sun, Yu; Zhang, Hongming; Qian, Kun; Chang, Jian; He, Dongjian
2016-09-01
It is difficult to extend image-based relief generation to high-relief generation, as the images contain insufficient height information. To generate reliefs from three-dimensional (3D) models, it is necessary to extract the height fields from the model, but this can only generate bas-reliefs. To overcome this problem, an efficient method is proposed to generate bas-reliefs and high-reliefs directly from 3D meshes. To produce relief features that are visually appropriate, the 3D meshes are first scaled. 3D unsharp masking is used to enhance the visual features in the 3D mesh, and average smoothing and Laplacian smoothing are implemented to achieve better smoothing results. A nonlinear variable scaling scheme is then employed to generate the final bas-reliefs and high-reliefs. Using the proposed method, relief models can be generated from arbitrary viewing positions with different gestures and combinations of multiple 3D models. The generated relief models can be printed by 3D printers. The proposed method provides a means of generating both high-reliefs and bas-reliefs in an efficient and effective way under the appropriate scaling factors.
3D numerical modeling of YSO accretion shocks
Directory of Open Access Journals (Sweden)
Matsakos T.
2014-01-01
Full Text Available The dynamics of YSO accretion shocks is determined by radiative processes as well as the strength and structure of the magnetic field. A quasi-periodic emission signature is theoretically expected to be observed, but observations do not confirm any such pattern. In this work, we assume a uniform background field, in the regime of optically thin energy losses, and we study the multi-dimensional shock evolution in the presence of perturbations, i.e. clumps in the stream and an acoustic energy flux flowing at the base of the chromosphere. We perform 3D MHD simulations using the PLUTO code, modelling locally the impact of the infalling gas onto the chromosphere. We find that the structure and dynamics of the post-shock region is strongly dependent on the plasma-beta (thermal over magnetic pressure, different values of which may give distinguishable emission signatures, relevant for observations. In particular, a strong magnetic field effectively confines the plasma inside its flux tubes and leads to the formation of quasi-independent fibrils. The fibrils may oscillate out of phase and hence the sum of their contributions in the emission results in a smooth overall profile. On the contrary, a weak magnetic field is not found to have any significant effect on the shocked plasma and the turbulent hot slab that forms is found to retain its periodic signature.
Spicules and Jets: 3D flux emergence simulations
Martínez-Sykora, Juan; Moreno-Insertis, Fernando
2010-01-01
Recent high temporal and spatial resolution observations of the chromosphere have forced the definition of a new type of spicule, ``type II's", that are characterized by rising rapidly, having short lives, and by fading away at the end of their lifetimes. Here, we report on features found in realistic 3D simulations of the outer solar atmosphere that resemble the observed type II spicules. These features evolve naturally from the simulations as a consequence of the magnetohydrodynamical evolution of the model atmosphere. The simulations span from the upper layer of the convection zone to the lower corona and include the emergence of horizontal magnetic flux. The state-of-art Oslo Staggered Code (OSC) is used to solve the full MHD equations with non-grey and non-LTE radiative transfer and thermal conduction along the magnetic field lines. We describe in detail the physics involved in a process which we consider a possible candidate as a driver mechanism to produce type II spicules. The model spicule is compose...
3D Reconstruction Technique for Tomographic PIV
Institute of Scientific and Technical Information of China (English)
姜楠; 包全; 杨绍琼
2015-01-01
Tomographic particle image velocimetry(Tomo-PIV) is a state-of-the-art experimental technique based on a method of optical tomography to achieve the three-dimensional(3D) reconstruction for three-dimensional three-component(3D-3C) flow velocity measurements. 3D reconstruction for Tomo-PIV is carried out herein. Meanwhile, a 3D simplified tomographic reconstruction model reduced from a 3D volume light inten-sity field with 2D projection images into a 2D Tomo-slice plane with 1D projecting lines, i.e., simplifying this 3D reconstruction into a problem of 2D Tomo-slice plane reconstruction, is applied thereafter. Two kinds of the most well-known algebraic reconstruction techniques, algebraic reconstruction technique(ART) and multiple algebraic reconstruction technique(MART), are compared as well. The principles of the two reconstruction algorithms are discussed in detail, which has been performed by a series of simulation images, yielding the corresponding recon-struction images that show different features between the ART and MART algorithm, and then their advantages and disadvantages are discussed. Further discussions are made for the standard particle image reconstruction when the background noise of the pre-initial particle image has been removed. Results show that the particle image recon-struction has been greatly improved. The MART algorithm is much better than the ART. Furthermore, the computa-tional analyses of two parameters(the particle density and the number of cameras), are performed to study their effects on the reconstruction. Lastly, the 3D volume particle field is reconstructed by using the improved algorithm based on the simplified 3D tomographic reconstruction model, which proves that the algorithm simplification is feasible and it can be applied to the reconstruction of 3D volume particle field in a Tomo-PIV system.
3D object-oriented image analysis in 3D geophysical modelling
DEFF Research Database (Denmark)
Fadel, I.; van der Meijde, M.; Kerle, N.
2015-01-01
Non-uniqueness of satellite gravity interpretation has traditionally been reduced by using a priori information from seismic tomography models. This reduction in the non-uniqueness has been based on velocity-density conversion formulas or user interpretation of the 3D subsurface structures (objects......) based on the seismic tomography models and then forward modelling these objects. However, this form of object-based approach has been done without a standardized methodology on how to extract the subsurface structures from the 3D models. In this research, a 3D object-oriented image analysis (3D OOA......) approach was implemented to extract the 3D subsurface structures from geophysical data. The approach was applied on a 3D shear wave seismic tomography model of the central part of the East African Rift System. Subsequently, the extracted 3D objects from the tomography model were reconstructed in the 3D...
3-D Human Modeling and Animation
Ratner, Peter
2012-01-01
3-D Human Modeling and Animation Third Edition All the tools and techniques you need to bring human figures to 3-D life Thanks to today's remarkable technology, artists can create and animate realistic, three-dimensional human figures that were not possible just a few years ago. This easy-to-follow book guides you through all the necessary steps to adapt your own artistic skill in figure drawing, painting, and sculpture to this exciting digital canvas. 3-D Human Modeling and Animation, Third Edition starts you off with simple modeling, then prepares you for more advanced techniques for crea
FIT3D: Fitting optical spectra
Sánchez, S. F.; Pérez, E.; Sánchez-Blázquez, P.; González, J. J.; Rosales-Ortega, F. F.; Cano-Díaz, M.; López-Cobá, C.; Marino, R. A.; Gil de Paz, A.; Mollá, M.; López-Sánchez, A. R.; Ascasibar, Y.; Barrera-Ballesteros, J.
2016-09-01
FIT3D fits optical spectra to deblend the underlying stellar population and the ionized gas, and extract physical information from each component. FIT3D is focused on the analysis of Integral Field Spectroscopy data, but is not restricted to it, and is the basis of Pipe3D, a pipeline used in the analysis of datasets like CALIFA, MaNGA, and SAMI. It can run iteratively or in an automatic way to derive the parameters of a large set of spectra.
3D Immersive Visualization with Astrophysical Data
Kent, Brian R.
2017-01-01
We present the refinement of a new 3D immersion technique for astrophysical data visualization.Methodology to create 360 degree spherical panoramas is reviewed. The 3D software package Blender coupled with Python and the Google Spatial Media module are used together to create the final data products. Data can be viewed interactively with a mobile phone or tablet or in a web browser. The technique can apply to different kinds of astronomical data including 3D stellar and galaxy catalogs, images, and planetary maps.
3D Printing the ATLAS' barrel toroid
Goncalves, Tiago Barreiro
2016-01-01
The present report summarizes my work as part of the Summer Student Programme 2016 in the CERN IR-ECO-TSP department (International Relations – Education, Communication & Outreach – Teacher and Student Programmes). Particularly, I worked closely with the S’Cool LAB team on a science education project. This project included the 3D designing, 3D printing, and assembling of a model of the ATLAS’ barrel toroid. A detailed description of the project' development is presented and a short manual on how to use 3D printing software and hardware is attached.
3D face modeling, analysis and recognition
Daoudi, Mohamed; Veltkamp, Remco
2013-01-01
3D Face Modeling, Analysis and Recognition presents methodologies for analyzing shapes of facial surfaces, develops computational tools for analyzing 3D face data, and illustrates them using state-of-the-art applications. The methodologies chosen are based on efficient representations, metrics, comparisons, and classifications of features that are especially relevant in the context of 3D measurements of human faces. These frameworks have a long-term utility in face analysis, taking into account the anticipated improvements in data collection, data storage, processing speeds, and application s
A high capacity 3D steganography algorithm.
Chao, Min-Wen; Lin, Chao-hung; Yu, Cheng-Wei; Lee, Tong-Yee
2009-01-01
In this paper, we present a very high-capacity and low-distortion 3D steganography scheme. Our steganography approach is based on a novel multilayered embedding scheme to hide secret messages in the vertices of 3D polygon models. Experimental results show that the cover model distortion is very small as the number of hiding layers ranges from 7 to 13 layers. To the best of our knowledge, this novel approach can provide much higher hiding capacity than other state-of-the-art approaches, while obeying the low distortion and security basic requirements for steganography on 3D models.
RHOCUBE: 3D density distributions modeling code
Nikutta, Robert; Agliozzo, Claudia
2016-11-01
RHOCUBE models 3D density distributions on a discrete Cartesian grid and their integrated 2D maps. It can be used for a range of applications, including modeling the electron number density in LBV shells and computing the emission measure. The RHOCUBE Python package provides several 3D density distributions, including a powerlaw shell, truncated Gaussian shell, constant-density torus, dual cones, and spiralling helical tubes, and can accept additional distributions. RHOCUBE provides convenient methods for shifts and rotations in 3D, and if necessary, an arbitrary number of density distributions can be combined into the same model cube and the integration ∫ dz performed through the joint density field.
Computer Modelling of 3D Geological Surface
Kodge, B G
2011-01-01
The geological surveying presently uses methods and tools for the computer modeling of 3D-structures of the geographical subsurface and geotechnical characterization as well as the application of geoinformation systems for management and analysis of spatial data, and their cartographic presentation. The objectives of this paper are to present a 3D geological surface model of Latur district in Maharashtra state of India. This study is undertaken through the several processes which are discussed in this paper to generate and visualize the automated 3D geological surface model of a projected area.
Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.
2015-01-01
This manual describes the installation and execution of FUN3D version 12.8, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.
2015-01-01
This manual describes the installation and execution of FUN3D version 12.6, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.
2014-01-01
This manual describes the installation and execution of FUN3D version 12.5, including optional dependent packages. FUN3D is a suite of computational uid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables ecient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.
2017-01-01
This manual describes the installation and execution of FUN3D version 13.1, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.
2014-01-01
This manual describes the installation and execution of FUN3D version 12.4, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixedelement unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.
2015-01-01
This manual describes the installation and execution of FUN3D version 12.7, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
Automatic balancing of 3D models
DEFF Research Database (Denmark)
Christiansen, Asger Nyman; Schmidt, Ryan; Bærentzen, Jakob Andreas
2014-01-01
3D printing technologies allow for more diverse shapes than are possible with molds and the cost of making just one single object is negligible compared to traditional production methods. However, not all shapes are suitable for 3D print. One of the remaining costs is therefore human time spent......, in these cases, we will apply a rotation of the object which only deforms the shape a little near the base. No user input is required but it is possible to specify manufacturing constraints related to specific 3D print technologies. Several models have successfully been balanced and printed using both polyjet...
Participation and 3D Visualization Tools
DEFF Research Database (Denmark)
Mullins, Michael; Jensen, Mikkel Holm; Henriksen, Sune
2004-01-01
With a departure point in a workshop held at the VR Media Lab at Aalborg University , this paper deals with aspects of public participation and the use of 3D visualisation tools. The workshop grew from a desire to involve a broad collaboration between the many actors in the city through using new...... perceptions of architectural representation in urban design where 3D visualisation techniques are used. It is the authors? general finding that, while 3D visualisation media have the potential to increase understanding of virtual space for the lay public, as well as for professionals, the lay public require...
The reactor dynamics code DYN3D
Energy Technology Data Exchange (ETDEWEB)
Kliem, Soeren; Bilodid, Yuri; Fridman, Emil; Baier, Silvio; Grahn, Alexander; Gommlich, Andre; Nikitin, Evgeny; Rohde, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany)
2016-05-15
The article provides an overview on the code DYN3D which is a three-dimensional core model for steady-state, dynamic and depletion calculations in reactor cores with quadratic or hexagonal fuel assembly geometry being developed by the Helmholtz-Zentrum Dresden-Rossendorf for more than 20 years. The current paper gives an overview on the basic DYN3D models and the available code couplings. The verification and validation status is shortly outlined. The paper concludes with the current developments of the DYN3D code. For more detailed information the reader is referred to the publications cited in the corresponding chapters.
Do-It-Yourself: 3D Models of Hydrogenic Orbitals through 3D Printing
Griffith, Kaitlyn M.; de Cataldo, Riccardo; Fogarty, Keir H.
2016-01-01
Introductory chemistry students often have difficulty visualizing the 3-dimensional shapes of the hydrogenic electron orbitals without the aid of physical 3D models. Unfortunately, commercially available models can be quite expensive. 3D printing offers a solution for producing models of hydrogenic orbitals. 3D printing technology is widely…
3D presentatie van geluid in de cockpit [3D sound presentation in the cockpit
Bronkhorst, A.W.
2003-01-01
A.W. Bronkhorst, 3D-presentatie van geluid in de cockpit 1 Using virtual acoustics, sound can be presented from virtual sources located in the 3D space around the listener. This 3D sound has interesting applications in the cockpit. Sounds can be used to convey directional information, and interferen
Easy, Luke; Omotani, John; Dudson, Benjamin; Havlíčková, Eva; Tamain, Patrick; Naulin, Volker; Nielsen, Anders H
2014-01-01
This paper presents simulations of isolated 3D filaments in a slab geometry obtained using a 3D reduced fluid code. First, systematic scans were performed to investigate how the dynamics of a filament are affected by its amplitude, perpendicular size and parallel extent. The perpendicular size of the filament was found to have a strong influence on its motions, as it determined the relative importance of parallel currents to polarisation and viscous currents, whilst drift-wave instabilities were observed if the initial amplitude of the blob was increased sufficiently. Next, the 3D simulations were compared to 2D simulations using different parallel closures; namely, the sheath dissipation closure, which neglects parallel gradients, and the vorticity advection closure, which neglects the influence of parallel currents. The vorticity advection closure was found to not replicate the 3D perpendicular dynamics and overestimated the initial radial acceleration of all the filaments studied. In contrast, a more satis...
Networked 3D Virtual Museum System
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
Virtual heritage has become increasingly important in the conservation, preservation, and interpretation of our cultural and natural history. Moreover, rapid advances in digital technologies in recent years offer virtual heritage new direction. This paper introduces our approach toward a networked 3D virtual museum system, especially, how to model, manage, present virtual heritages and furthermore how to use computer network for the share of virtual heritage in the networked virtual environment. This paper first addresses a 3D acquisition and processing technique for virtual heritage modeling and shows some illustrative examples. Then, this paper describes a management of virtual heritage assets that are composed by various rich media. This paper introduces our schemes to present the virtual heritages, which include 3D virtual heritage browser system, CAVE system, and immersive VR theater. Finally, this paper presents the new direction of networked 3D virtual museum of which main idea is remote guide of the virtual heritage using the mixed reality technique.
Two Accelerating Techniques for 3D Reconstruction
Institute of Scientific and Technical Information of China (English)
刘世霞; 胡事民; 孙家广
2002-01-01
Automatic reconstruction of 3D objects from 2D orthographic views has been a major research issue in CAD/CAM. In this paper, two accelerating techniques to improve the efficiency of reconstruction are presented. First, some pseudo elements are removed by depth and topology information as soon as the wire-frame is constructed, which reduces the searching space. Second, the proposed algorithm does not establish all possible surfaces in the process of generating 3D faces. The surfaces and edge loops are generated by using the relationship between the boundaries of 3D faces and their projections. This avoids the growth in combinational complexity of previous methods that have to check all possible pairs of 3D candidate edges.
3D-FPA Hybridization Improvements Project
National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc. (ASC) is a small business, which has developed a compact, eye-safe 3D Flash LIDARTM Camera (FLC) well suited for real-time...
The 3-d view of planetary nebulae
Directory of Open Access Journals (Sweden)
Hugo E. Schwarz
2006-01-01
Full Text Available Considerando las nebulosas planetarias (PNe de manera tridimensional (3-D, demonstramos que se pueden reducir las grandes incertidumbres asociadas con los m etodos cl asicos de modelar y observar PNe para obtener sus estructuras 3-D y distancias. Usando espectrofotometr a de ranura larga o empleando un Integral Field Unit para restringir los modelos de fotoionizaci on 3-D de PNe y as eliminar dicha incertidumbre de la densidad y de la fracci on del volumen que emite radiaci on ( lling factor, determinamos las detalladas estructuras 3-D, los par ametros de las estrellas centrales y las distancias con una precisi on de 10-20%. Los m etodos cl asicos t picamente daban estos par ametros con una incertidumbre de un factor 3 o m as.
Nonlaser-based 3D surface imaging
Energy Technology Data Exchange (ETDEWEB)
Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J. [Lawrence Livermore National Lab., CA (United States)
1994-11-15
3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.
Designing Biomaterials for 3D Printing.
Guvendiren, Murat; Molde, Joseph; Soares, Rosane M D; Kohn, Joachim
2016-10-10
Three-dimensional (3D) printing is becoming an increasingly common technique to fabricate scaffolds and devices for tissue engineering applications. This is due to the potential of 3D printing to provide patient-specific designs, high structural complexity, rapid on-demand fabrication at a low-cost. One of the major bottlenecks that limits the widespread acceptance of 3D printing in biomanufacturing is the lack of diversity in "biomaterial inks". Printability of a biomaterial is determined by the printing technique. Although a wide range of biomaterial inks including polymers, ceramics, hydrogels and composites have been developed, the field is still struggling with processing of these materials into self-supporting devices with tunable mechanics, degradation, and bioactivity. This review aims to highlight the past and recent advances in biomaterial ink development and design considerations moving forward. A brief overview of 3D printing technologies focusing on ink design parameters is also included.
DNA biosensing with 3D printing technology.
Loo, Adeline Huiling; Chua, Chun Kiang; Pumera, Martin
2017-01-16
3D printing, an upcoming technology, has vast potential to transform conventional fabrication processes due to the numerous improvements it can offer to the current methods. To date, the employment of 3D printing technology has been examined for applications in the fields of engineering, manufacturing and biological sciences. In this study, we examined the potential of adopting 3D printing technology for a novel application, electrochemical DNA biosensing. Metal 3D printing was utilized to construct helical-shaped stainless steel electrodes which functioned as a transducing platform for the detection of DNA hybridization. The ability of electroactive methylene blue to intercalate into the double helix structure of double-stranded DNA was then exploited to monitor the DNA hybridization process, with its inherent reduction peak serving as an analytical signal. The designed biosensing approach was found to demonstrate superior selectivity against a non-complementary DNA target, with a detection range of 1-1000 nM.