WorldWideScience

Sample records for 3d optical sectioning

  1. 3D automatic quantification applied to optically sectioned images to improve microscopy analysis

    Directory of Open Access Journals (Sweden)

    JE Diaz-Zamboni

    2009-08-01

    Full Text Available New fluorescence microscopy techniques, such as confocal or digital deconvolution microscopy, allow to easily obtain three-dimensional (3D information from specimens. However, there are few 3D quantification tools that allow extracting information of these volumes. Therefore, the amount of information acquired by these techniques is difficult to manipulate and analyze manually. The present study describes a model-based method, which for the first time shows 3D visualization and quantification of fluorescent apoptotic body signals, from optical serial sections of porcine hepatocyte spheroids correlating them to their morphological structures. The method consists on an algorithm that counts apoptotic bodies in a spheroid structure and extracts information from them, such as their centroids in cartesian and radial coordinates, relative to the spheroid centre, and their integrated intensity. 3D visualization of the extracted information, allowed us to quantify the distribution of apoptotic bodies in three different zones of the spheroid.

  2. Pico-projector-based optical sectioning microscopy for 3D chlorophyll fluorescence imaging of mesophyll cells

    Science.gov (United States)

    Chen, Szu-Yu; Hsu, Yu John; Yeh, Chia-Hua; Chen, S.-Wei; Chung, Chien-Han

    2015-03-01

    A pico-projector-based optical sectioning microscope (POSM) was constructed using a pico-projector to generate structured illumination patterns. A net rate of 5.8 × 106 pixel/s and sub-micron spatial resolution in three-dimensions (3D) were achieved. Based on the pico-projector’s flexibility in pattern generation, the characteristics of POSM with different modulation periods and at different imaging depths were measured and discussed. With the application of different modulation periods, 3D chlorophyll fluorescence imaging of mesophyll cells was carried out in freshly plucked leaves of four species without sectioning or staining. For each leaf, an average penetration depth of 120 μm was achieved. Increasing the modulation period along with the increment of imaging depth, optical sectioning images can be obtained with a compromise between the axial resolution and signal-to-noise ratio. After ∼30 min imaging on the same area, photodamage was hardly observed. Taking the advantages of high speed and low damages of POSM, the investigation of the dynamic fluorescence responses to temperature changes was performed under three different treatment temperatures. The three embedded blue, green and red light-emitting diode light sources were applied to observe the responses of the leaves with different wavelength excitation.

  3. 3D optical sectioning with a new hyperspectral confocal fluorescence imaging system.

    Energy Technology Data Exchange (ETDEWEB)

    Nieman, Linda T.; Sinclair, Michael B.; Davidson, George S.; Van Benthem, Mark Hilary; Haaland, David Michael; Timlin, Jerilyn Ann; Sasaki, Darryl Yoshio; Bachand, George David; Jones, Howland D. T.

    2007-02-01

    A novel hyperspectral fluorescence microscope for high-resolution 3D optical sectioning of cells and other structures has been designed, constructed, and used to investigate a number of different problems. We have significantly extended new multivariate curve resolution (MCR) data analysis methods to deconvolve the hyperspectral image data and to rapidly extract quantitative 3D concentration distribution maps of all emitting species. The imaging system has many advantages over current confocal imaging systems including simultaneous monitoring of numerous highly overlapped fluorophores, immunity to autofluorescence or impurity fluorescence, enhanced sensitivity, and dramatically improved accuracy, reliability, and dynamic range. Efficient data compression in the spectral dimension has allowed personal computers to perform quantitative analysis of hyperspectral images of large size without loss of image quality. We have also developed and tested software to perform analysis of time resolved hyperspectral images using trilinear multivariate analysis methods. The new imaging system is an enabling technology for numerous applications including (1) 3D composition mapping analysis of multicomponent processes occurring during host-pathogen interactions, (2) monitoring microfluidic processes, (3) imaging of molecular motors and (4) understanding photosynthetic processes in wild type and mutant Synechocystis cyanobacteria.

  4. Differential axial contrast of optical sections: laser microtomography and quantitative 3D reconstruction

    Science.gov (United States)

    Pogorelova, M. A.; Golichenkov, V. A.; Pogorelov, A. G.

    2014-03-01

    Specific features of the quantitative laser microtomography of biological samples are discussed. The method exhibits the main advantages of a confocal microscope (rapid measurement of a stack of parallel optical cross sections and accurate displacement of an object along the optical axis). A relatively high contrast is reached owing to the superposition of pairwise complementary images on neighboring cross sections. A simple and convenient algorithm for image processing does not require additional software and can be computerized using a conventional graphic editor. The applicability of the method is illustrated using volume measurements of a single cell of an early mouse embryo.

  5. Automated Serial Sectioning for 3D Reconstruction

    Science.gov (United States)

    Alkemper, Jen; Voorhees, Peter W.

    2003-01-01

    Some aspects of an apparatus and method for automated serial sectioning of a specimen of a solder, aluminum, or other relatively soft opaque material are discussed. The apparatus includes a small milling machine (micromiller) that takes precise, shallow cuts (increments of depth as small as 1 micron) to expose successive sections. A microscope equipped with an electronic camera, mounted in a fixed position on the micromiller, takes pictures of the newly exposed specimen surface at each increment of depth. The images are digitized, and the resulting data are subsequently processed to reconstruct three-dimensional (3D) features of the specimen.

  6. FIT3D: Fitting optical spectra

    Science.gov (United States)

    Sánchez, S. F.; Pérez, E.; Sánchez-Blázquez, P.; González, J. J.; Rosales-Ortega, F. F.; Cano-Díaz, M.; López-Cobá, C.; Marino, R. A.; Gil de Paz, A.; Mollá, M.; López-Sánchez, A. R.; Ascasibar, Y.; Barrera-Ballesteros, J.

    2016-09-01

    FIT3D fits optical spectra to deblend the underlying stellar population and the ionized gas, and extract physical information from each component. FIT3D is focused on the analysis of Integral Field Spectroscopy data, but is not restricted to it, and is the basis of Pipe3D, a pipeline used in the analysis of datasets like CALIFA, MaNGA, and SAMI. It can run iteratively or in an automatic way to derive the parameters of a large set of spectra.

  7. 3D nanopillar optical antenna photodetectors.

    Science.gov (United States)

    Senanayake, Pradeep; Hung, Chung-Hong; Shapiro, Joshua; Scofield, Adam; Lin, Andrew; Williams, Benjamin S; Huffaker, Diana L

    2012-11-05

    We demonstrate 3D surface plasmon photoresponse in nanopillar arrays resulting in enhanced responsivity due to both Localized Surface Plasmon Resonances (LSPRs) and Surface Plasmon Polariton Bloch Waves (SPP-BWs). The LSPRs are excited due to a partial gold shell coating the nanopillar which acts as a 3D Nanopillar Optical Antenna (NOA) in focusing light into the nanopillar. Angular photoresponse measurements show that SPP-BWs can be spectrally coincident with LSPRs to result in a x2 enhancement in responsivity at 1180 nm. Full-wave Finite Difference Time Domain (FDTD) simulations substantiate both the spatial and spectral coupling of the SPP-BW / LSPR for enhanced absorption and the nature of the LSPR. Geometrical control of the 3D NOA and the self-aligned metal hole lattice allows the hybridization of both localized and propagating surface plasmon modes for enhanced absorption. Hybridized plasmonic modes opens up new avenues in optical antenna design in nanoscale photodetectors.

  8. 3D integral imaging with optical processing

    Science.gov (United States)

    Martínez-Corral, Manuel; Martínez-Cuenca, Raúl; Saavedra, Genaro; Javidi, Bahram

    2008-04-01

    Integral imaging (InI) systems are imaging devices that provide auto-stereoscopic images of 3D intensity objects. Since the birth of this new technology, InI systems have faced satisfactorily many of their initial drawbacks. Basically, two kind of procedures have been used: digital and optical procedures. The "3D Imaging and Display Group" at the University of Valencia, with the essential collaboration of Prof. Javidi, has centered its efforts in the 3D InI with optical processing. Among other achievements, our Group has proposed the annular amplitude modulation for enlargement of the depth of field, dynamic focusing for reduction of the facet-braiding effect, or the TRES and MATRES devices to enlarge the viewing angle.

  9. Multiplane 3D superresolution optical fluctuation imaging

    CERN Document Server

    Geissbuehler, Stefan; Godinat, Aurélien; Bocchio, Noelia L; Dubikovskaya, Elena A; Lasser, Theo; Leutenegger, Marcel

    2013-01-01

    By switching fluorophores on and off in either a deterministic or a stochastic manner, superresolution microscopy has enabled the imaging of biological structures at resolutions well beyond the diffraction limit. Superresolution optical fluctuation imaging (SOFI) provides an elegant way of overcoming the diffraction limit in all three spatial dimensions by computing higher-order cumulants of image sequences of blinking fluorophores acquired with a conventional widefield microscope. So far, three-dimensional (3D) SOFI has only been demonstrated by sequential imaging of multiple depth positions. Here we introduce a versatile imaging scheme which allows for the simultaneous acquisition of multiple focal planes. Using 3D cross-cumulants, we show that the depth sampling can be increased. Consequently, the simultaneous acquisition of multiple focal planes reduces the acquisition time and hence the photo-bleaching of fluorescent markers. We demonstrate multiplane 3D SOFI by imaging the mitochondria network in fixed ...

  10. Multi-resolution optical 3D sensor

    Science.gov (United States)

    Kühmstedt, Peter; Heinze, Matthias; Schmidt, Ingo; Breitbarth, Martin; Notni, Gunther

    2007-06-01

    A new multi resolution self calibrating optical 3D measurement system using fringe projection technique named "kolibri FLEX multi" will be presented. It can be utilised to acquire the all around shape of small to medium objects, simultaneously. The basic measurement principle is the phasogrammetric approach /1,2,3/ in combination with the method of virtual landmarks for the merging of the 3D single views. The system consists in minimum of two fringe projection sensors. The sensors are mounted on a rotation stage illuminating the object from different directions. The measurement fields of the sensors can be chosen different, here as an example 40mm and 180mm in diameter. In the measurement the object can be scanned at the same time with these two resolutions. Using the method of virtual landmarks both point clouds are calculated within the same world coordinate system resulting in a common 3D-point cloud. The final point cloud includes the overview of the object with low point density (wide field) and a region with high point density (focussed view) at the same time. The advantage of the new method is the possibility to measure with different resolutions at the same object region without any mechanical changes in the system or data post processing. Typical parameters of the system are: the measurement time is 2min for 12 images and the measurement accuracy is below 3μm up to 10 μm. The flexibility makes the measurement system useful for a wide range of applications such as quality control, rapid prototyping, design and CAD/CAM which will be shown in the paper.

  11. Handbook of 3D machine vision optical metrology and imaging

    CERN Document Server

    Zhang, Song

    2013-01-01

    With the ongoing release of 3D movies and the emergence of 3D TVs, 3D imaging technologies have penetrated our daily lives. Yet choosing from the numerous 3D vision methods available can be frustrating for scientists and engineers, especially without a comprehensive resource to consult. Filling this gap, Handbook of 3D Machine Vision: Optical Metrology and Imaging gives an extensive, in-depth look at the most popular 3D imaging techniques. It focuses on noninvasive, noncontact optical methods (optical metrology and imaging). The handbook begins with the well-studied method of stereo vision and

  12. Manufacturing: 3D printed micro-optics

    Science.gov (United States)

    Juodkazis, Saulius

    2016-08-01

    Uncompromised performance of micro-optical compound lenses has been achieved by high-fidelity shape definition during two-photon absorption microfabrication. The lenses have been made directly onto image sensors and even onto the tip of an optic fibre.

  13. Optical experiments on 3D photonic crystals

    NARCIS (Netherlands)

    Koenderink, F.; Vos, W.

    2003-01-01

    Photonic crystals are optical materials that have an intricate structure with length scales of the order of the wavelength of light. The flow of photons is controlled in a manner analogous to how electrons propagate through semiconductor crystals, i.e., by Bragg diffraction and the formation of band

  14. Three-Dimensional Optical Coherence Tomography (3D OCT) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Applied Science Innovations, Inc. proposes to develop a new tool of 3D optical coherence tomography (OCT) for cellular level imaging at video frame rates and...

  15. Three-Dimensional Optical Coherence Tomography (3D OCT) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Applied Science Innovations, Inc. proposes a new tool of 3D optical coherence tomography (OCT) for cellular level imaging at video frame rates and dramatically...

  16. A 3D Optical Metamaterial Made by Self-Assembly

    KAUST Repository

    Vignolini, Silvia

    2011-10-24

    Optical metamaterials have unusual optical characteristics that arise from their periodic nanostructure. Their manufacture requires the assembly of 3D architectures with structure control on the 10-nm length scale. Such a 3D optical metamaterial, based on the replication of a self-assembled block copolymer into gold, is demonstrated. The resulting gold replica has a feature size that is two orders of magnitude smaller than the wavelength of visible light. Its optical signature reveals an archetypal Pendry wire metamaterial with linear and circular dichroism. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Parallel Processor for 3D Recovery from Optical Flow

    Directory of Open Access Journals (Sweden)

    Jose Hugo Barron-Zambrano

    2009-01-01

    Full Text Available 3D recovery from motion has received a major effort in computer vision systems in the recent years. The main problem lies in the number of operations and memory accesses to be performed by the majority of the existing techniques when translated to hardware or software implementations. This paper proposes a parallel processor for 3D recovery from optical flow. Its main feature is the maximum reuse of data and the low number of clock cycles to calculate the optical flow, along with the precision with which 3D recovery is achieved. The results of the proposed architecture as well as those from processor synthesis are presented.

  18. Skeleton-Sectional Structural Analysis for 3D Printing

    Institute of Scientific and Technical Information of China (English)

    Wen-Peng Xu; Wei Li; Li-Gang Liu

    2016-01-01

    3D printing has become popular and has been widely used in various applications in recent years. More and more home users have motivation to design their own models and then fabricate them using 3D printers. However, the printed objects may have some structural or stress defects as the users may be lack of knowledge on stress analysis on 3D models. In this paper, we present an approach to help users analyze a model’s structural strength while designing its shape. We adopt sectional structural analysis instead of conventional FEM (Finite Element Method) analysis which is computationally expensive. Based on sectional structural analysis, our approach imports skeletons to assist in integrating mesh designing, strength computing and mesh correction well. Skeletons can also guide sections building and load calculation for analysis. For weak regions with high stress over a threshold value in the model from analysis result, our system corrects them by scaling the corresponding bones of skeleton so as to make these regions stiff enough. A number of experiments have demonstrated the applicability and practicability of our approach.

  19. An Optically Controlled 3D Cell Culturing System

    Directory of Open Access Journals (Sweden)

    Kelly S. Ishii

    2011-01-01

    Full Text Available A novel 3D cell culture system was developed and tested. The cell culture device consists of a microfluidic chamber on an optically absorbing substrate. Cells are suspended in a thermoresponsive hydrogel solution, and optical patterns are utilized to heat the solution, producing localized hydrogel formation around cells of interest. The hydrogel traps only the desired cells in place while also serving as a biocompatible scaffold for supporting the cultivation of cells in 3D. This is demonstrated with the trapping of MDCK II and HeLa cells. The light intensity from the optically induced hydrogel formation does not significantly affect cell viability.

  20. Research of 3D display using anamorphic optics

    Science.gov (United States)

    Matsumoto, Kenji; Honda, Toshio

    1997-05-01

    This paper describes the auto-stereoscopic display which can reconstruct more reality and viewer friendly 3-D image by increasing the number of parallaxes and giving motion parallax horizontally. It is difficult to increase number of parallaxes to give motion parallax to the 3-D image without reducing the resolution, because the resolution of display device is insufficient. The magnification and the image formation position can be selected independently in horizontal direction and the vertical direction by projecting between the display device and the 3-D image with the anamorphic optics. The anamorphic optics is an optics system with different magnification in horizontal direction and the vertical direction. It consists of the combination of cylindrical lenses with different focal length. By using this optics, even if we use a dynamic display such as liquid crystal display (LCD), it is possible to display the realistic 3-D image having motion parallax. Motion parallax is obtained by assuming width of the single parallax at the viewing position to be about the same size as the pupil diameter of viewer. In addition, because the focus depth of the 3-D image is deep in this method, conflict of accommodation and convergence is small, and natural 3-D image can be displayed.

  1. Optical-CT imaging of complex 3D dose distributions

    Science.gov (United States)

    Oldham, Mark; Kim, Leonard; Hugo, Geoffrey

    2005-04-01

    The limitations of conventional dosimeters restrict the comprehensiveness of verification that can be performed for advanced radiation treatments presenting an immediate and substantial problem for clinics attempting to implement these techniques. In essence, the rapid advances in the technology of radiation delivery have not been paralleled by corresponding advances in the ability to verify these treatments. Optical-CT gel-dosimetry is a relatively new technique with potential to address this imbalance by providing high resolution 3D dose maps in polymer and radiochromic gel dosimeters. We have constructed a 1st generation optical-CT scanner capable of high resolution 3D dosimetry and applied it to a number of simple and increasingly complex dose distributions including intensity-modulated-radiation-therapy (IMRT). Prior to application to IMRT, the robustness of optical-CT gel dosimetry was investigated on geometry and variable attenuation phantoms. Physical techniques and image processing methods were developed to minimize deleterious effects of refraction, reflection, and scattered laser light. Here we present results of investigations into achieving accurate high-resolution 3D dosimetry with optical-CT, and show clinical examples of 3D IMRT dosimetry verification. In conclusion, optical-CT gel dosimetry can provide high resolution 3D dose maps that greatly facilitate comprehensive verification of complex 3D radiation treatments. Good agreement was observed at high dose levels (>50%) between planned and measured dose distributions. Some systematic discrepancies were observed however (rms discrepancy 3% at high dose levels) indicating further work is required to eliminate confounding factors presently compromising the accuracy of optical-CT 3D gel-dosimetry.

  2. 3D simulation for solitons used in optical fibers

    Science.gov (United States)

    Vasile, F.; Tebeica, C. M.; Schiopu, P.; Vladescu, M.

    2016-12-01

    In this paper is described 3D simulation for solitions used in optical fibers. In the scientific works is started from nonlinear propagation equation and the solitons represents its solutions. This paper presents the simulation of the fundamental soliton in 3D together with simulation of the second order soliton in 3D. These simulations help in the study of the optical fibers for long distances and in the interactions between the solitons. This study helps the understanding of the nonlinear propagation equation and for nonlinear waves. These 3D simulations are obtained using MATLAB programming language, and we can observe fundamental difference between the soliton and the second order/higher order soliton and in their evolution.

  3. Progresses in 3D integral imaging with optical processing

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Corral, Manuel; Martinez-Cuenca, Raul; Saavedra, Genaro; Navarro, Hector; Pons, Amparo [Department of Optics. University of Valencia. Calle Doctor Moliner 50, E46 100, Burjassot (Spain); Javidi, Bahram [Electrical and Computer Engineering Department, University of Connecticut, Storrs, CT 06269-1157 (United States)], E-mail: manuel.martinez@uv.es

    2008-11-01

    Integral imaging is a promising technique for the acquisition and auto-stereoscopic display of 3D scenes with full parallax and without the need of any additional devices like special glasses. First suggested by Lippmann in the beginning of the 20th century, integral imaging is based in the intersection of ray cones emitted by a collection of 2D elemental images which store the 3D information of the scene. This paper is devoted to the study, from the ray optics point of view, of the optical effects and interaction with the observer of integral imaging systems.

  4. 3D reconstruction of SEM images by use of optical photogrammetry software.

    Science.gov (United States)

    Eulitz, Mona; Reiss, Gebhard

    2015-08-01

    Reconstruction of the three-dimensional (3D) surface of an object to be examined is widely used for structure analysis in science and many biological questions require information about their true 3D structure. For Scanning Electron Microscopy (SEM) there has been no efficient non-destructive solution for reconstruction of the surface morphology to date. The well-known method of recording stereo pair images generates a 3D stereoscope reconstruction of a section, but not of the complete sample surface. We present a simple and non-destructive method of 3D surface reconstruction from SEM samples based on the principles of optical close range photogrammetry. In optical close range photogrammetry a series of overlapping photos is used to generate a 3D model of the surface of an object. We adapted this method to the special SEM requirements. Instead of moving a detector around the object, the object itself was rotated. A series of overlapping photos was stitched and converted into a 3D model using the software commonly used for optical photogrammetry. A rabbit kidney glomerulus was used to demonstrate the workflow of this adaption. The reconstruction produced a realistic and high-resolution 3D mesh model of the glomerular surface. The study showed that SEM micrographs are suitable for 3D reconstruction by optical photogrammetry. This new approach is a simple and useful method of 3D surface reconstruction and suitable for various applications in research and teaching.

  5. Optical fabrication of lightweighted 3D printed mirrors

    Science.gov (United States)

    Herzog, Harrison; Segal, Jacob; Smith, Jeremy; Bates, Richard; Calis, Jacob; De La Torre, Alyssa; Kim, Dae Wook; Mici, Joni; Mireles, Jorge; Stubbs, David M.; Wicker, Ryan

    2015-09-01

    Direct Metal Laser Sintering (DMLS) and Electron Beam Melting (EBM) 3D printing technologies were utilized to create lightweight, optical grade mirrors out of AlSi10Mg aluminum and Ti6Al4V titanium alloys at the University of Arizona in Tucson. The mirror prototypes were polished to meet the λ/20 RMS and λ/4 P-V surface figure requirements. The intent of this project was to design topologically optimized mirrors that had a high specific stiffness and low surface displacement. Two models were designed using Altair Inspire software, and the mirrors had to endure the polishing process with the necessary stiffness to eliminate print-through. Mitigating porosity of the 3D printed mirror blanks was a challenge in the face of reconciling new printing technologies with traditional optical polishing methods. The prototypes underwent Hot Isostatic Press (HIP) and heat treatment to improve density, eliminate porosity, and relieve internal stresses. Metal 3D printing allows for nearly unlimited topological constraints on design and virtually eliminates the need for a machine shop when creating an optical quality mirror. This research can lead to an increase in mirror mounting support complexity in the manufacturing of lightweight mirrors and improve overall process efficiency. The project aspired to have many future applications of light weighted 3D printed mirrors, such as spaceflight. This paper covers the design/fab/polish/test of 3D printed mirrors, thermal/structural finite element analysis, and results.

  6. 3D optical manipulation of a single electron spin

    CERN Document Server

    Geiselmann, Michael; Renger, Jan; Say, Jana M; Brown, Louise J; de Abajo, F Javier García; Koppens, Frank; Quidant, Romain

    2013-01-01

    Nitrogen vacancy (NV) centers in diamond are promising elemental blocks for quantum optics [1, 2], spin-based quantum information processing [3, 4], and high-resolution sensing [5-13]. Yet, fully exploiting these capabilities of single NV centers requires strategies to accurately manipulate them. Here, we use optical tweezers as a tool to achieve deterministic trapping and 3D spatial manipulation of individual nano-diamonds hosting a single NV spin. Remarkably, we find the NV axis is nearly fixed inside the trap and can be controlled in-situ, by adjusting the polarization of the trapping light. By combining this unique spatial and angular control with coherent manipulation of the NV spin and fluorescent lifetime measurements near an integrated photonic system, we prove optically trapped NV center as a novel route for both 3D vectorial magnetometry and sensing of the local density of optical states.

  7. 3D manipulation with a scanning near field optical nanotweezers

    CERN Document Server

    Berthelot, J; Juan, M L; Kreuzer, M P; Renger, J; Quidant, R

    2013-01-01

    Recent advances in Nanotechnologies have prompted the need for tools to accurately and non-invasively manipulate individual nano-objects. Among possible strategies, optical forces have been foreseen to provide researchers with nano-optical tweezers capable to trap a specimen and move it in 3D. In practice though, the combination of weak optical forces involved and photothermal issues have thus far prevented their experimental realization. Here, we demonstrate first 3D optical manipulation of single 50 nm dielectric objects with near field nano-tweezers. The nano-optical trap is built by engineering a bowtie plasmonic aperture at the extremity of a tapered metal-coated optical fiber. Both the trapping operation and monitoring are performed through the optical fiber making these nano-tweezers totally autonomous and free of bulky optical elements. The achieved trapping performances allow for the trapped specimen to be moved over tens of micrometers during several minutes with very low in-trap intensities. This n...

  8. Advanced optical 3D scanners using DMD technology

    Science.gov (United States)

    Muenstermann, P.; Godding, R.; Hermstein, M.

    2017-02-01

    Optical 3D measurement techniques are state-of-the-art for highly precise, non-contact surface scanners - not only in industrial development, but also in near-production and even in-line configurations. The need for automated systems with very high accuracy and clear implementation of national precision standards is growing extremely due to expanding international quality guidelines, increasing production transparency and new concepts related to the demands of the fourth industrial revolution. The presentation gives an overview about the present technical concepts for optical 3D scanners and their benefit for customers and various different applications - not only in quality control, but also in design centers or in medical applications. The advantages of DMD-based systems will be discussed and compared to other approaches. Looking at today's 3D scanner market, there is a confusing amount of solutions varying from lowprice solutions to high end systems. Many of them are linked to a very special target group or to special applications. The article will clarify the differences of the approaches and will discuss some key features which are necessary to render optical measurement systems suitable for industrial environments. The paper will be completed by examples for DMDbased systems, e. g. RGB true-color systems with very high accuracy like the StereoScan neo of AICON 3D Systems. Typical applications and the benefits for customers using such systems are described.

  9. Automatic respiration tracking for radiotherapy using optical 3D camera

    Science.gov (United States)

    Li, Tuotuo; Geng, Jason; Li, Shidong

    2013-03-01

    Rapid optical three-dimensional (O3D) imaging systems provide accurate digitized 3D surface data in real-time, with no patient contact nor radiation. The accurate 3D surface images offer crucial information in image-guided radiation therapy (IGRT) treatments for accurate patient repositioning and respiration management. However, applications of O3D imaging techniques to image-guided radiotherapy have been clinically challenged by body deformation, pathological and anatomical variations among individual patients, extremely high dimensionality of the 3D surface data, and irregular respiration motion. In existing clinical radiation therapy (RT) procedures target displacements are caused by (1) inter-fractional anatomy changes due to weight, swell, food/water intake; (2) intra-fractional variations from anatomy changes within any treatment session due to voluntary/involuntary physiologic processes (e.g. respiration, muscle relaxation); (3) patient setup misalignment in daily reposition due to user errors; and (4) changes of marker or positioning device, etc. Presently, viable solution is lacking for in-vivo tracking of target motion and anatomy changes during the beam-on time without exposing patient with additional ionized radiation or high magnet field. Current O3D-guided radiotherapy systems relay on selected points or areas in the 3D surface to track surface motion. The configuration of the marks or areas may change with time that makes it inconsistent in quantifying and interpreting the respiration patterns. To meet the challenge of performing real-time respiration tracking using O3D imaging technology in IGRT, we propose a new approach to automatic respiration motion analysis based on linear dimensionality reduction technique based on PCA (principle component analysis). Optical 3D image sequence is decomposed with principle component analysis into a limited number of independent (orthogonal) motion patterns (a low dimension eigen-space span by eigen-vectors). New

  10. Implementation of 3D Optical Scanning Technology for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Abdil Kuş

    2009-03-01

    Full Text Available Reverse engineering (RE is a powerful tool for generating a CAD model from the 3D scan data of a physical part that lacks documentation or has changed from the original CAD design of the part. The process of digitizing a part and creating a CAD model from 3D scan data is less time consuming and provides greater accuracy than manually measuring the part and designing the part from scratch in CAD. 3D optical scanning technology is one of the measurement methods which have evolved over the last few years and it is used in a wide range of areas from industrial applications to art and cultural heritage. It is also used extensively in the automotive industry for applications such as part inspections, scanning of tools without CAD definition, scanning the casting for definition of the stock (i.e. the amount of material to be removed from the surface of the castings model for CAM programs and reverse engineering. In this study two scanning experiments of automotive applications are illustrated. The first one examines the processes from scanning to re-manufacturing the damaged sheet metal cutting die, using a 3D scanning technique and the second study compares the scanned point clouds data to 3D CAD data for inspection purposes. Furthermore, the deviations of the part holes are determined by using different lenses and scanning parameters.

  11. Continuous Optical 3D Printing of Green Aliphatic Polyurethanes.

    Science.gov (United States)

    Pyo, Sang-Hyun; Wang, Pengrui; Hwang, Henry H; Zhu, Wei; Warner, John; Chen, Shaochen

    2017-01-11

    Photosensitive diurethanes were prepared from a green chemistry synthesis pathway based on methacrylate-functionalized six-membered cyclic carbonate and biogenic amines. A continuous optical 3D printing method for the diurethanes was developed to create user-defined gradient stiffness and smooth complex surface microstructures in seconds. The green chemistry-derived polyurethane (gPU) showed high optical transparency, and we demonstrate the ability to tune the material stiffness of the printed structure along a gradient by controlling the exposure time and selecting various amine compounds. High-resolution 3D biomimetic structures with smooth curves and complex contours were printed using our gPU. High cell viability (over 95%) was demonstrated during cytocompatibility testing using C3H 10T1/2 cells seeded directly on the printed structures.

  12. Confocal Image 3D Surface Measurement with Optical Fiber Plate

    Institute of Scientific and Technical Information of China (English)

    WANG Zhao; ZHU Sheng-cheng; LI Bing; TAN Yu-shan

    2004-01-01

    A whole-field 3D surface measurement system for semiconductor wafer inspection is described.The system consists of an optical fiber plate,which can split the light beam into N2 subbeams to realize the whole-field inspection.A special prism is used to separate the illumination light and signal light.This setup is characterized by high precision,high speed and simple structure.

  13. Optical Sensors and Methods for Underwater 3D Reconstruction

    Directory of Open Access Journals (Sweden)

    Miquel Massot-Campos

    2015-12-01

    Full Text Available This paper presents a survey on optical sensors and methods for 3D reconstruction in underwater environments. The techniques to obtain range data have been listed and explained, together with the different sensor hardware that makes them possible. The literature has been reviewed, and a classification has been proposed for the existing solutions. New developments, commercial solutions and previous reviews in this topic have also been gathered and considered.

  14. Open-source 3D-printable optics equipment.

    Science.gov (United States)

    Zhang, Chenlong; Anzalone, Nicholas C; Faria, Rodrigo P; Pearce, Joshua M

    2013-01-01

    Just as the power of the open-source design paradigm has driven down the cost of software to the point that it is accessible to most people, the rise of open-source hardware is poised to drive down the cost of doing experimental science to expand access to everyone. To assist in this aim, this paper introduces a library of open-source 3-D-printable optics components. This library operates as a flexible, low-cost public-domain tool set for developing both research and teaching optics hardware. First, the use of parametric open-source designs using an open-source computer aided design package is described to customize the optics hardware for any application. Second, details are provided on the use of open-source 3-D printers (additive layer manufacturing) to fabricate the primary mechanical components, which are then combined to construct complex optics-related devices. Third, the use of the open-source electronics prototyping platform are illustrated as control for optical experimental apparatuses. This study demonstrates an open-source optical library, which significantly reduces the costs associated with much optical equipment, while also enabling relatively easily adapted customizable designs. The cost reductions in general are over 97%, with some components representing only 1% of the current commercial investment for optical products of similar function. The results of this study make its clear that this method of scientific hardware development enables a much broader audience to participate in optical experimentation both as research and teaching platforms than previous proprietary methods.

  15. Open-source 3D-printable optics equipment.

    Directory of Open Access Journals (Sweden)

    Chenlong Zhang

    Full Text Available Just as the power of the open-source design paradigm has driven down the cost of software to the point that it is accessible to most people, the rise of open-source hardware is poised to drive down the cost of doing experimental science to expand access to everyone. To assist in this aim, this paper introduces a library of open-source 3-D-printable optics components. This library operates as a flexible, low-cost public-domain tool set for developing both research and teaching optics hardware. First, the use of parametric open-source designs using an open-source computer aided design package is described to customize the optics hardware for any application. Second, details are provided on the use of open-source 3-D printers (additive layer manufacturing to fabricate the primary mechanical components, which are then combined to construct complex optics-related devices. Third, the use of the open-source electronics prototyping platform are illustrated as control for optical experimental apparatuses. This study demonstrates an open-source optical library, which significantly reduces the costs associated with much optical equipment, while also enabling relatively easily adapted customizable designs. The cost reductions in general are over 97%, with some components representing only 1% of the current commercial investment for optical products of similar function. The results of this study make its clear that this method of scientific hardware development enables a much broader audience to participate in optical experimentation both as research and teaching platforms than previous proprietary methods.

  16. Large optical 3D MEMS switches in access networks

    Science.gov (United States)

    Madamopoulos, Nicholas; Kaman, Volkan; Yuan, Shifu; Jerphagnon, Olivier; Helkey, Roger; Bowers, John E.

    2007-09-01

    Interest is high among residential customers and businesses for advanced, broadband services such as fast Internet access, electronic commerce, video-on-demand, digital broadcasting, teleconferencing and telemedicine. In order to satisfy such growing demand of end-customers, access technologies such as fiber-to-the-home/building (FTTH/B) are increasingly being deployed. Carriers can reduce maintenance costs, minimize technology obsolescence and introduce new services easily by reducing active elements in the fiber access network. However, having a passive optical network (PON) also introduces operational and maintenance challenges. Increased diagnostic monitoring capability of the network becomes a necessity as more and more fibers are provisioned to deliver services to the end-customers. This paper demonstrates the clear advantages that large 3D optical MEMS switches offer in solving these access network problems. The advantages in preventative maintenance, remote monitoring, test and diagnostic capability are highlighted. The low optical insertion loss for all switch optical connections of the switch enables the monitoring, grooming and serving of a large number of PON lines and customers. Furthermore, the 3D MEMS switch is transparent to optical wavelengths and data formats, thus making it easy to incorporate future upgrades, such higher bit rates or DWDM overlay to a PON.

  17. Total body irradiation with a compensator fabricated using a 3D optical scanner and a 3D printer

    Science.gov (United States)

    Park, So-Yeon; Kim, Jung-in; Joo, Yoon Ha; Lee, Jung Chan; Park, Jong Min

    2017-05-01

    We propose bilateral total body irradiation (TBI) utilizing a 3D printer and a 3D optical scanner. We acquired surface information of an anthropomorphic phantom with the 3D scanner and fabricated the 3D compensator with the 3D printer, which could continuously compensate for the lateral missing tissue of an entire body from the beam’s eye view. To test the system’s performance, we measured doses with optically stimulated luminescent dosimeters (OSLDs) as well as EBT3 films with the anthropomorphic phantom during TBI without a compensator, conventional bilateral TBI, and TBI with the 3D compensator (3D TBI). The 3D TBI showed the most uniform dose delivery to the phantom. From the OSLD measurements of the 3D TBI, the deviations between the measured doses and the prescription dose ranged from  -6.7% to 2.4% inside the phantom and from  -2.3% to 0.6% on the phantom’s surface. From the EBT3 film measurements, the prescription dose could be delivered to the entire body of the phantom within  ±10% accuracy, except for the chest region, where tissue heterogeneity is extreme. The 3D TBI doses were much more uniform than those of the other irradiation techniques, especially in the anterior-to-posterior direction. The 3D TBI was advantageous, owing to its uniform dose delivery as well as its efficient treatment procedure.

  18. Total body irradiation with a compensator fabricated using a 3D optical scanner and a 3D printer.

    Science.gov (United States)

    Park, So-Yeon; Kim, Jung-In; Joo, Yoon Ha; Lee, Jung Chan; Park, Jong Min

    2017-05-07

    We propose bilateral total body irradiation (TBI) utilizing a 3D printer and a 3D optical scanner. We acquired surface information of an anthropomorphic phantom with the 3D scanner and fabricated the 3D compensator with the 3D printer, which could continuously compensate for the lateral missing tissue of an entire body from the beam's eye view. To test the system's performance, we measured doses with optically stimulated luminescent dosimeters (OSLDs) as well as EBT3 films with the anthropomorphic phantom during TBI without a compensator, conventional bilateral TBI, and TBI with the 3D compensator (3D TBI). The 3D TBI showed the most uniform dose delivery to the phantom. From the OSLD measurements of the 3D TBI, the deviations between the measured doses and the prescription dose ranged from  -6.7% to 2.4% inside the phantom and from  -2.3% to 0.6% on the phantom's surface. From the EBT3 film measurements, the prescription dose could be delivered to the entire body of the phantom within  ±10% accuracy, except for the chest region, where tissue heterogeneity is extreme. The 3D TBI doses were much more uniform than those of the other irradiation techniques, especially in the anterior-to-posterior direction. The 3D TBI was advantageous, owing to its uniform dose delivery as well as its efficient treatment procedure.

  19. 3D Human cartilage surface characterization by optical coherence tomography

    Science.gov (United States)

    Brill, Nicolai; Riedel, Jörn; Schmitt, Robert; Tingart, Markus; Truhn, Daniel; Pufe, Thomas; Jahr, Holger; Nebelung, Sven

    2015-10-01

    Early diagnosis and treatment of cartilage degeneration is of high clinical interest. Loss of surface integrity is considered one of the earliest and most reliable signs of degeneration, but cannot currently be evaluated objectively. Optical Coherence Tomography (OCT) is an arthroscopically available light-based non-destructive real-time imaging technology that allows imaging at micrometre resolutions to millimetre depths. As OCT-based surface evaluation standards remain to be defined, the present study investigated the diagnostic potential of 3D surface profile parameters in the comprehensive evaluation of cartilage degeneration. To this end, 45 cartilage samples of different degenerative grades were obtained from total knee replacements (2 males, 10 females; mean age 63.8 years), cut to standard size and imaged using a spectral-domain OCT device (Thorlabs, Germany). 3D OCT datasets of 8  ×  8, 4  ×  4 and 1  ×  1 mm (width  ×  length) were obtained and pre-processed (image adjustments, morphological filtering). Subsequent automated surface identification algorithms were used to obtain the 3D primary profiles, which were then filtered and processed using established algorithms employing ISO standards. The 3D surface profile thus obtained was used to calculate a set of 21 3D surface profile parameters, i.e. height (e.g. Sa), functional (e.g. Sk), hybrid (e.g. Sdq) and segmentation-related parameters (e.g. Spd). Samples underwent reference histological assessment according to the Degenerative Joint Disease classification. Statistical analyses included calculation of Spearman’s rho and assessment of inter-group differences using the Kruskal Wallis test. Overall, the majority of 3D surface profile parameters revealed significant degeneration-dependent differences and correlations with the exception of severe end-stage degeneration and were of distinct diagnostic value in the assessment of surface integrity. None of the 3D

  20. Optical characterization of different types of 3D displays

    Science.gov (United States)

    Boher, Pierre; Leroux, Thierry; Bignon, Thibault; Collomb-Patton, Véronique

    2012-03-01

    All 3D displays have the same intrinsic method to induce depth perception. They provide different images in the left and right eye of the observer to obtain the stereoscopic effect. The three most common solutions already available on the market are active glass, passive glass and auto-stereoscopic 3D displays. The three types of displays are based on different physical principle (polarization, time selection or spatial emission) and consequently require different measurement instruments and techniques. In the proposed paper, we present some of these solutions and the technical characteristics that can be obtained to compare the displays. We show in particular that local and global measurements can be made in the three cases to access to different characteristics. We also discuss the new technologies currently under development and their needs in terms of optical characterization.

  1. Innovations in 3D printing: a 3D overview from optics to organs.

    Science.gov (United States)

    Schubert, Carl; van Langeveld, Mark C; Donoso, Larry A

    2014-02-01

    3D printing is a method of manufacturing in which materials, such as plastic or metal, are deposited onto one another in layers to produce a three dimensional object, such as a pair of eye glasses or other 3D objects. This process contrasts with traditional ink-based printers which produce a two dimensional object (ink on paper). To date, 3D printing has primarily been used in engineering to create engineering prototypes. However, recent advances in printing materials have now enabled 3D printers to make objects that are comparable with traditionally manufactured items. In contrast with conventional printers, 3D printing has the potential to enable mass customisation of goods on a large scale and has relevance in medicine including ophthalmology. 3D printing has already been proved viable in several medical applications including the manufacture of eyeglasses, custom prosthetic devices and dental implants. In this review, we discuss the potential for 3D printing to revolutionise manufacturing in the same way as the printing press revolutionised conventional printing. The applications and limitations of 3D printing are discussed; the production process is demonstrated by producing a set of eyeglass frames from 3D blueprints.

  2. 3D OPTICAL AND IR SPECTROSCOPY OF EXCEPTIONAL HII GALAXIES

    Directory of Open Access Journals (Sweden)

    E. Telles

    2009-01-01

    Full Text Available In this contribution I will very brie y summarize some recent results obtained applying 3D spectroscopy to observations of the well known HII galaxy II Zw 40, both in the optical and near-IR. I have studied the distribution of the dust in the starburst region, the velocity and velocity dispersion, and the geometry of the molecular hydrogen and ionized gas. I found a clear correlation between the component of the ISM and the velocity eld suggesting that the latter has a fundamental role in de ning the modes of the star formation process.

  3. Optical monitoring of scoliosis by 3D medical laser scanner

    Science.gov (United States)

    Rodríguez-Quiñonez, Julio C.; Sergiyenko, Oleg Yu.; Preciado, Luis C. Basaca; Tyrsa, Vera V.; Gurko, Alexander G.; Podrygalo, Mikhail A.; Lopez, Moises Rivas; Balbuena, Daniel Hernandez

    2014-03-01

    Three dimensional recording of the human body surface or anatomical areas have gained importance in many medical applications. In this paper, our 3D Medical Laser Scanner is presented. It is based on the novel principle of dynamic triangulation. We analyze the method of operation, medical applications, orthopedically diseases as Scoliosis and the most common types of skin to employ the system the most proper way. It is analyzed a group of medical problems related to the application of optical scanning in optimal way. Finally, experiments are conducted to verify the performance of the proposed system and its method uncertainty.

  4. 3D refractive index measurements of special optical fibers

    Science.gov (United States)

    Yan, Cheng; Huang, Su-Juan; Miao, Zhuang; Chang, Zheng; Zeng, Jun-Zhang; Wang, Ting-Yun

    2016-09-01

    A digital holographic microscopic chromatography-based approach with considerably improved accuracy, simplified configuration and performance stability is proposed to measure three dimensional refractive index of special optical fibers. Based on the approach, a measurement system is established incorporating a modified Mach-Zehnder interferometer and lab-developed supporting software for data processing. In the system, a phase projection distribution of an optical fiber is utilized to obtain an optimal digital hologram recorded by a CCD, and then an angular spectrum theory-based algorithm is adopted to extract the phase distribution information of an object wave. The rotation of the optic fiber enables the experimental measurements of multi-angle phase information. Based on the filtered back projection algorithm, a 3D refraction index of the optical fiber is thus obtained at high accuracy. To evaluate the proposed approach, both PANDA fibers and special elliptical optical fiber are considered in the system. The results measured in PANDA fibers agree well with those measured using S14 Refractive Index Profiler, which is, however, not suitable for measuring the property of a special elliptical fiber.

  5. Volumetric (3D) compressive sensing spectral domain optical coherence tomography.

    Science.gov (United States)

    Xu, Daguang; Huang, Yong; Kang, Jin U

    2014-11-01

    In this work, we proposed a novel three-dimensional compressive sensing (CS) approach for spectral domain optical coherence tomography (SD OCT) volumetric image acquisition and reconstruction. Instead of taking a spectral volume whose size is the same as that of the volumetric image, our method uses a sub set of the original spectral volume that is under-sampled in all three dimensions, which reduces the amount of spectral measurements to less than 20% of that required by the Shan-non/Nyquist theory. The 3D image is recovered from the under-sampled spectral data dimension-by-dimension using the proposed three-step CS reconstruction strategy. Experimental results show that our method can significantly reduce the sampling rate required for a volumetric SD OCT image while preserving the image quality.

  6. Beam section stiffness properties usig 3D finite elements

    DEFF Research Database (Denmark)

    Couturier, Philippe; Krenk, Steen; Høgsberg, Jan Becker

    2013-01-01

    The cross-section properties of a beam is characterized by a six by six stiffness matrix, relating the six generalized strains to the conjugate section forces. The problem is formulated as a single-layer finite element model of a slice of the beam, on which the six deformation modes are imposed via...... Lagrange multipliers. The Lagrange multipliers represent the constraining forces, and thus combine to form the cross-section stiffness matrix. The theory is illustrated by a simple isotropic cross-section....

  7. Optical 3D sensor for large objects in industrial application

    Science.gov (United States)

    Kuhmstedt, Peter; Heinze, Matthias; Himmelreich, Michael; Brauer-Burchardt, Christian; Brakhage, Peter; Notni, Gunther

    2005-06-01

    A new self calibrating optical 3D measurement system using fringe projection technique named "kolibri 1500" is presented. It can be utilised to acquire the all around shape of large objects. The basic measuring principle is the phasogrammetric approach introduced by the authors /1, 2/. The "kolibri 1500" consists of a stationary system with a translation unit for handling of objects. Automatic whole body measurement is achieved by using sensor head rotation and changeable object position, which can be done completely computer controlled. Multi-view measurement is realised by using the concept of virtual reference points. In this way no matching procedures or markers are necessary for the registration of the different images. This makes the system very flexible to realise different measurement tasks. Furthermore, due to self calibrating principle mechanical alterations are compensated. Typical parameters of the system are: the measurement volume extends from 400 mm up to 1500 mm max. length, the measurement time is between 2 min for 12 images up to 20 min for 36 images and the measurement accuracy is below 50μm.The flexibility makes the measurement system useful for a wide range of applications such as quality control, rapid prototyping, design and CAD/CAM which will be shown in the paper.

  8. Cordless hand-held optical 3D sensor

    Science.gov (United States)

    Munkelt, Christoph; Bräuer-Burchardt, Christian; Kühmstedt, Peter; Schmidt, Ingo; Notni, Gunther

    2007-07-01

    A new mobile optical 3D measurement system using phase correlation based fringe projection technique will be presented. The sensor consist of a digital projection unit and two cameras in a stereo arrangement, whereby both are battery powered. The data transfer to a base station will be done via WLAN. This gives the possibility to use the system in complicate, remote measurement situations, which are typical in archaeology and architecture. In the measurement procedure the sensor will be hand-held by the user, illuminating the object with a sequence of less than 10 fringe patterns, within a time below 200 ms. This short sequence duration was achieved by a new approach, which combines the epipolar constraint with robust phase correlation utilizing a pre-calibrated sensor head, containing two cameras and a digital fringe projector. Furthermore, the system can be utilized to acquire the all around shape of objects by using the phasogrammetric approach with virtual land marks introduced by the authors 1, 2. This way no matching procedures or markers are necessary for the registration of multiple views, which makes the system very flexible in accomplishing different measurement tasks. The realized measurement field is approx. 100 mm up to 400 mm in diameter. The mobile character makes the measurement system useful for a wide range of applications in arts, architecture, archaeology and criminology, which will be shown in the paper.

  9. Study on portable optical 3D coordinate measuring system

    Science.gov (United States)

    Ren, Tongqun; Zhu, Jigui; Guo, Yinbiao

    2009-05-01

    A portable optical 3D coordinate measuring system based on digital Close Range Photogrammetry (CRP) technology and binocular stereo vision theory is researched. Three ultra-red LED with high stability is set on a hand-hold target to provide measuring feature and establish target coordinate system. Ray intersection based field directional calibrating is done for the intersectant binocular measurement system composed of two cameras by a reference ruler. The hand-hold target controlled by Bluetooth wireless communication is free moved to implement contact measurement. The position of ceramic contact ball is pre-calibrated accurately. The coordinates of target feature points are obtained by binocular stereo vision model from the stereo images pair taken by cameras. Combining radius compensation for contact ball and residual error correction, object point can be resolved by transfer of axes using target coordinate system as intermediary. This system is suitable for on-field large-scale measurement because of its excellent portability, high precision, wide measuring volume, great adaptability and satisfying automatization. It is tested that the measuring precision is near to +/-0.1mm/m.

  10. Improved 3D Superresolution Localization Microscopy Using Adaptive Optics

    CERN Document Server

    Piro, Nicolas; Olivier, Nicolas; Manley, Suliana

    2014-01-01

    We demonstrate a new versatile method for 3D super-resolution microscopy by using a deformable mirror to shape the point spread function of our microscope in a continuous and controllable way. We apply this for 3D STORM imaging of microtubules.

  11. Configurable Input Devices for 3D Interaction using Optical Tracking

    NARCIS (Netherlands)

    Rhijn, A.J. van

    2007-01-01

    Three-dimensional interaction with virtual objects is one of the aspects that needs to be addressed in order to increase the usability and usefulness of virtual reality. Human beings have difficulties understanding 3D spatial relationships and manipulating 3D user interfaces, which require the contr

  12. Optical 3D shape measurement for dynamic process

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    3D shape dynamic measurement is essential to the study of machine vision, hydromechanics, high-speed rotation, deformation of material, stress analysis, deformation in impact, explosion process and biomedicine. in recent years. In this paper,the results of our research, including the theoretical analysis, some feasible methods and relevant verifying experiment results, are compendiously reported. At present, these results have been used in our assembling instruments for 3D shape measurement of dynamic process.

  13. Joint Applied Optics and Chinese Optics Letters Feature Introduction: Digital Holography and 3D Imaging

    Institute of Scientific and Technical Information of China (English)

    Ting-Chung Poon; Changhe Zhou; Toyohiko Yatagai; Byoungho Lee; Hongchen Zhai

    2011-01-01

    This feature issue is the fifth installment on digital holography since its inception four years ago.The last four issues have been published after the conclusion of each Topical Meeting "Digital Holography and 3D imaging (DH)." However,this feature issue includes a new key feature-Joint Applied Optics and Chinese Optics Letters Feature Issue.The DH Topical Meeting is the world's premier forum for disseminating the science and technology geared towards digital holography and 3D information processing.Since the meeting's inception in 2007,it has steadily and healthily grown to 130 presentations this year,held in Tokyo,Japan,May 2011.

  14. Air-structured optical fibre drawn from a 3D-printed preform

    CERN Document Server

    Cook, Kevin; Leon-Saval, Sergio; Reid, Zane; Hossain, Md Arafat; Comatti, Jade-Edouard; Luo, Yanhua; Peng, Gang-Ding

    2016-01-01

    A structured optical fibre is drawn from a 3D-printed structured preform. Preforms containing a single ring of holes around the core are fabricated using filament made from a modified butadiene polymer. More broadly, 3D printers capable of processing soft glasses, silica and other materials are likely to come on line in the not-so distant future. 3D printing of optical preforms signals a new milestone in optical fibre manufacture.

  15. Flexible Holographic Fabrication of 3D Photonic Crystal Templates with Polarization Control through a 3D Printed Reflective Optical Element

    Directory of Open Access Journals (Sweden)

    David Lowell

    2016-07-01

    Full Text Available In this paper, we have systematically studied the holographic fabrication of three-dimensional (3D structures using a single 3D printed reflective optical element (ROE, taking advantage of the ease of design and 3D printing of the ROE. The reflective surface was setup at non-Brewster angles to reflect both s- and p-polarized beams for the interference. The wide selection of reflective surface materials and interference angles allow control of the ratio of s- and p-polarizations, and intensity ratio of side-beam to central beam for interference lithography. Photonic bandgap simulations have also indicated that both s and p-polarized waves are sometimes needed in the reflected side beams for maximum photonic bandgap size and certain filling fractions of dielectric inside the photonic crystals. The flexibility of single ROE and single exposure based holographic fabrication of 3D structures was demonstrated with reflective surfaces of ROEs at non-Brewster angles, highlighting the capability of the ROE technique of producing umbrella configurations of side beams with arbitrary angles and polarizations and paving the way for the rapid throughput of various photonic crystal templates.

  16. Validation of optical codes based on 3D nanostructures

    Science.gov (United States)

    Carnicer, Artur; Javidi, Bahram

    2017-05-01

    Image information encoding using random phase masks produce speckle-like noise distributions when the sample is propagated in the Fresnel domain. As a result, information cannot be accessed by simple visual inspection. Phase masks can be easily implemented in practice by attaching cello-tape to the plain-text message. Conventional 2D-phase masks can be generalized to 3D by combining glass and diffusers resulting in a more complex, physical unclonable function. In this communication, we model the behavior of a 3D phase mask using a simple approach: light is propagated trough glass using the angular spectrum of plane waves whereas the diffusor is described as a random phase mask and a blurring effect on the amplitude of the propagated wave. Using different designs for the 3D phase mask and multiple samples, we demonstrate that classification is possible using the k-nearest neighbors and random forests machine learning algorithms.

  17. Design of 3D isotropic metamaterial device using smart transformation optics.

    Science.gov (United States)

    Shin, Dongheok; Kim, Junhyun; Yoo, Do-Sik; Kim, Kyoungsik

    2015-08-24

    We report here a design method for a 3 dimensional (3D) isotropic transformation optical device using smart transformation optics. Inspired by solid mechanics, smart transformation optics regards a transformation optical medium as an elastic solid and deformations as coordinate transformations. Further developing from our previous work on 2D smart transformation optics, we introduce a method of 3D smart transformation optics to design 3D transformation optical devices by maintaining isotropic materials properties for all types of polarizations imposing free or nearly free boundary conditions. Due to the material isotropy, it is possible to fabricate such devices with structural metamaterials made purely of common dielectric materials. In conclusion, the practical importance of the method reported here lies in the fact that it enables us to fabricate, without difficulty, arbitrarily shaped 3D devices with existing 3D printing technology.

  18. Model-based optical metrology and visualization of 3-D complex objects

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-li; LI A-meng; ZHAO Xiao-bo; GAO Peng-dong; TIAN Jin-dong; PENG Xiang

    2007-01-01

    This letter addresses several key issues in the process of model-based optical metrology, including three dimensional (3D) sensing, calibration, registration and fusion of range images, geometric representation, and visualization of reconstructed 3D model by taking into account the shape measurement of 3D complex structures,and some experimental results are presented.

  19. The interactive presentation of 3D information obtained from reconstructed datasets and 3D placement of single histological sections with the 3D portable document format

    NARCIS (Netherlands)

    B.A. de Boer; A.T. Soufan; J. Hagoort; T.J. Mohun; M.J.B. van den Hoff; A. Hasman; F.P.J.M. Voorbraak; A.F.M. Moorman; J.M. Ruijter

    2011-01-01

    Interpretation of the results of anatomical and embryological studies relies heavily on proper visualization of complex morphogenetic processes and patterns of gene expression in a three-dimensional (3D) context. However, reconstruction of complete 3D datasets is time consuming and often researchers

  20. (HEL MRI) 3D Meta Optics for High Energy Lasers

    Science.gov (United States)

    2016-09-13

    optical communication link using orbital angular momentum multiplexing ." Optics express 24, no. 9 (2016): 9794-9805. 3. Li, Yuan, Wenzhe Li, J. Miller, and...Magnusson, R.; Binun, P.; McCormick, K., "Wavelength Selection and Polarization Multiplexing of Blue Laser Diodes," in Photonics Technology Letters, IEEE...spatial multiplexing can take advantage of a non-Gaussian beam profile. If the components are to be used as out-couplers in bulk lasers , the optics

  1. Software for browsing sectioned images of a dog body and generating a 3D model.

    Science.gov (United States)

    Park, Jin Seo; Jung, Yong Wook

    2016-01-01

    The goals of this study were (1) to provide accessible and instructive browsing software for sectioned images and a portable document format (PDF) file that includes three-dimensional (3D) models of an entire dog body and (2) to develop techniques for segmentation and 3D modeling that would enable an investigator to perform these tasks without the aid of a computer engineer. To achieve these goals, relatively important or large structures in the sectioned images were outlined to generate segmented images. The sectioned and segmented images were then packaged into browsing software. In this software, structures in the sectioned images are shown in detail and in real color. After 3D models were made from the segmented images, the 3D models were exported into a PDF file. In this format, the 3D models could be manipulated freely. The browsing software and PDF file are available for study by students, for lecture for teachers, and for training for clinicians. These files will be helpful for anatomical study by and clinical training of veterinary students and clinicians. Furthermore, these techniques will be useful for researchers who study two-dimensional images and 3D models.

  2. An Optically-Assisted 3-D Cellular Array Machine

    Science.gov (United States)

    1993-11-05

    Presented by: Physical Optics Corporation 0 Research & Development Division 20600 Gramercy Place, Suite 103 Torrance, California 90501 Principal...Computer Machine (Constructed Hardware) (Planned Hardware Design) Processing Techniques Digital Only Digital and Analog Analog Processor N/A Celular Neural

  3. Focusing optics of a parallel beam CCD optical tomography apparatus for 3D radiation gel dosimetry.

    Science.gov (United States)

    Krstajić, Nikola; Doran, Simon J

    2006-04-21

    Optical tomography of gel dosimeters is a promising and cost-effective avenue for quality control of radiotherapy treatments such as intensity-modulated radiotherapy (IMRT). Systems based on a laser coupled to a photodiode have so far shown the best results within the context of optical scanning of radiosensitive gels, but are very slow ( approximately 9 min per slice) and poorly suited to measurements that require many slices. Here, we describe a fast, three-dimensional (3D) optical computed tomography (optical-CT) apparatus, based on a broad, collimated beam, obtained from a high power LED and detected by a charged coupled detector (CCD). The main advantages of such a system are (i) an acquisition speed approximately two orders of magnitude higher than a laser-based system when 3D data are required, and (ii) a greater simplicity of design. This paper advances our previous work by introducing a new design of focusing optics, which take information from a suitably positioned focal plane and project an image onto the CCD. An analysis of the ray optics is presented, which explains the roles of telecentricity, focusing, acceptance angle and depth-of-field (DOF) in the formation of projections. A discussion of the approximation involved in measuring the line integrals required for filtered backprojection reconstruction is given. Experimental results demonstrate (i) the effect on projections of changing the position of the focal plane of the apparatus, (ii) how to measure the acceptance angle of the optics, and (iii) the ability of the new scanner to image both absorbing and scattering gel phantoms. The quality of reconstructed images is very promising and suggests that the new apparatus may be useful in a clinical setting for fast and accurate 3D dosimetry.

  4. Test target for characterizing 3D resolution of optical coherence tomography

    Science.gov (United States)

    Hu, Zhixiong; Hao, Bingtao; Liu, Wenli; Hong, Baoyu; Li, Jiao

    2014-12-01

    Optical coherence tomography (OCT) is a non-invasive 3D imaging technology which has been applied or investigated in many diagnostic fields including ophthalmology, dermatology, dentistry, cardiovasology, endoscopy, brain imaging and so on. Optical resolution is an important characteristic that can describe the quality and utility of an image acquiring system. We employ 3D printing technology to design and fabricate a test target for characterizing 3D resolution of optical coherence tomography. The test target which mimics USAF 1951 test chart was produced with photopolymer. By measuring the 3D test target, axial resolution as well as lateral resolution of a spectral domain OCT system was evaluated. For comparison, conventional microscope and surface profiler were employed to characterize the 3D test targets. The results demonstrate that the 3D resolution test targets have the potential of qualitatively and quantitatively validating the performance of OCT systems.

  5. Introduction to the special section on 3D representation, compression, and rendering.

    Science.gov (United States)

    Vetro, Anthony; Frossard, Pascal; Lee, Sanghoon; Mueller, Karsten; Ohm, Jens-Rainer; Sullivan, Gary

    2013-09-01

    A new set of three-dimensional (3D) data formats and associated compression technologies are emerging with the aim to achieve more flexible representation and higher compression of 3D and multiview video content. These new tools will facilitate the generation of multiview output (e.g., as needed for multiview auto-stereoscopic displays), provide richer immersive multimedia experiences, and allow new interactive applications. This special section includes a timely set of papers covering the most recent technical developments in this area with papers covering topics in the different aspects of 3D systems, from representation and compression algorithms to rendering techniques and quality assessment. This special section includes a good balance on topics that are of interest to academic, industrial, and standardization communities. We believe that this collection of papers represent the most recent advances in representation, compression, rendering, and quality assessment of 3D scenes.

  6. Programmable Bidirectional Folding of Metallic Thin Films for 3D Chiral Optical Antennas.

    Science.gov (United States)

    Mao, Yifei; Zheng, Yun; Li, Can; Guo, Lin; Pan, Yini; Zhu, Rui; Xu, Jun; Zhang, Weihua; Wu, Wengang

    2017-03-10

    3D structures with characteristic lengths ranging from nanometer to micrometer scale often exhibit extraordinary optical properties, and have been becoming an extensively explored field for building new generation nanophotonic devices. Albeit a few methods have been developed for fabricating 3D optical structures, constructing 3D structures with nanometer accuracy, diversified materials, and perfect morphology is an extremely challenging task. This study presents a general 3D nanofabrication technique, the focused ion beam stress induced deformation process, which allows a programmable and accurate bidirectional folding (-70°-+90°) of various metal and dielectric thin films. Using this method, 3D helical optical antennas with different handedness, improved surface smoothness, and tunable geometries are fabricated, and the strong optical rotation effects of single helical antennas are demonstrated.

  7. Step-index optical fibre drawn from 3D printed preforms

    CERN Document Server

    CooK, Kevin; Canning, John; Chartier, Loic; Athanaze, Tristan; Hossain, Md Arafat; Han, Chunyang; Comatti, Jade-Edouard; Luo, Yanhua; Peng, Gang-Ding

    2016-01-01

    Optical fibre is drawn from a dual-head 3D printer fabricated preform made of two optically transparent plastics with a high index core (NA ~ 0.25, V > 60). The asymmetry observed in the fibre arises from asymmetry in the 3D printing process. The highly multi-mode optical fibre has losses measured by cut-back as low as {\\alpha} ~ 0.44 dB/cm in the near IR.

  8. Cytology 3D structure formation based on optical microscopy images

    Science.gov (United States)

    Pronichev, A. N.; Polyakov, E. V.; Shabalova, I. P.; Djangirova, T. V.; Zaitsev, S. M.

    2017-01-01

    The article the article is devoted to optimization of the parameters of imaging of biological preparations in optical microscopy using a multispectral camera in visible range of electromagnetic radiation. A model for the image forming of virtual preparations was proposed. The optimum number of layers was determined for the object scan in depth and holistic perception of its switching according to the results of the experiment.

  9. Polymer optical fibers integrated directly into 3D orthogonal woven composites for sensing

    Science.gov (United States)

    Hamouda, Tamer; Seyam, Abdel-Fattah M.; Peters, Kara

    2015-02-01

    This study demonstrates that standard polymer optical fibers (POF) can be directly integrated into composites from 3D orthogonal woven preforms during the weaving process and then serve as in-situ sensors to detect damage due to bending or impact loads. Different composite samples with embedded POF were fabricated of 3D orthogonal woven composites with different parameters namely number of y-/x-layers and x-yarn density. The signal of POF was not affected significantly by the preform structure. During application of resin using VARTM technique, significant drop in backscattering level was observed due to pressure caused by vacuum on the embedded POF. Measurements of POF signal while in the final composites after resin cure indicated that the backscattering level almost returned to the original level of un-embedded POF. The POF responded to application of bending and impact loads to the composite with a reduction in the backscattering level. The backscattering level almost returned back to its original level after removing the bending load until damage was present in the composite. Similar behavior occurred due to impact events. As the POF itself is used as the sensor and can be integrated throughout the composite, large sections of future 3D woven composite structures could be monitored without the need for specialized sensors or complex instrumentation.

  10. DETERMINATION OF INTERNAL STRAIN IN 3-D BRAIDED COMPOSITES USING OPTIC FIBER STRAIN SENSORS

    Institute of Scientific and Technical Information of China (English)

    YuanShenfang; HuangRui; LiXianghua; LiuXiaohui

    2004-01-01

    A reliable understanding of the properties of 3-D braided composites is of primary importance for proper utilization of these materials. A new method is introduced to study the mechanical performance of braided composite materials using embedded optic fiber sensors. Experimental research is performed to devise a method of incorporating optic fibers into a 3-D braided composite structure. The efficacy of this new testing method is evaluated on two counts. First,the optical performance of optic fibers is studied before and after incorporated into 3-D braided composites, as well as after completion of the manufacturing process for 3-D braided composites,to validate the ability of the optic fiber to survive the manufacturing process. On the other hand,the influence of incorporated optic fiber on the original braided composite is also researched by tension and compression experiments. Second, two kinds of optic fiber sensors are co-embedded into 3-D braided composites to evaluate their respective ability to measure the internal strain.Experimental results show that multiple optic fiber sensors can be co-braided into 3-D braided composites to determine their internal strain which is difficult to be fulfilled by other current existing methods.

  11. Beam section stiffness properties using a single layer of 3D solid elements

    DEFF Research Database (Denmark)

    Couturier, Philippe; Krenk, Steen; Høgsberg, Jan Becker

    2015-01-01

    A method is presented for analysis of the properties of general cross-sections with arbitrary geometry and material distribution. The full six by six cross-section stiffness matrix is evaluated from a single element thickness slice represented by 3D solid elements with lengthwise Hermitian...... illustrate the accuracy of the method for solid and thin-walled sections with isotropic and general anisotropic materials....

  12. Electro-optical measurements of 3D-stc detectors fabricated at ITC-irst

    Energy Technology Data Exchange (ETDEWEB)

    Zoboli, Andrea [INFN and Department of ICT, University of Trento, via Sommarive, 14 - 38050 Povo di Trento (Italy)], E-mail: zoboli@dit.unitn.it; Boscardin, Maurizio [ITC-irst, Microsystems Division, via Sommarive, 18 - 38050 Povo di Trento (Italy); Bosisio, Luciano [INFN and Department of Physics, University of Trieste, via A. Valerio, 2 - 34127 Trieste (Italy); Dalla Betta, Gian-Franco [INFN and Department of ICT, University of Trento, via Sommarive, 14 - 38050 Povo di Trento (Italy); Piemonte, Claudio; Pozza, Alberto; Ronchin, Sabina; Zorzi, Nicola [ITC-irst, Microsystems Division, via Sommarive, 18 - 38050 Povo di Trento (Italy)

    2007-12-11

    In the past two years 3D silicon radiation detectors have been developed at ITC-irst (Trento, Italy). As a first step toward full 3D devices, simplified structures featuring columnar electrodes of one doping type only were fabricated. This paper reports the electro-optical characterization of 3D test diodes made with this approach. Experimental results and TCAD simulations provide good insight into the charge collection mechanism and response speed limitation of these structures.

  13. Tomographic active optical trapping of arbitrarily shaped objects by exploiting 3-D refractive index maps

    CERN Document Server

    Kim, Kyoohyun

    2016-01-01

    Optical trapping can be used to manipulate the three-dimensional (3-D) motion of spherical particles based on the simple prediction of optical forces and the responding motion of samples. However, controlling the 3-D behaviour of non-spherical particles with arbitrary orientations is extremely challenging, due to experimental difficulties and the extensive computations. Here, we achieved the real-time optical control of arbitrarily shaped particles by combining the wavefront shaping of a trapping beam and measurements of the 3-D refractive index (RI) distribution of samples. Engineering the 3-D light field distribution of a trapping beam based on the measured 3-D RI map of samples generates a light mould, which can be used to manipulate colloidal and biological samples which have arbitrary orientations and/or shapes. The present method provides stable control of the orientation and assembly of arbitrarily shaped particles without knowing a priori information about the sample geometry. The proposed method can ...

  14. 3D Printing Optical Engine for Controlling Material Microstructure

    Science.gov (United States)

    Huang, Wei-Chin; Chang, Kuang-Po; Wu, Ping-Han; Wu, Chih-Hsien; Lin, Ching-Chih; Chuang, Chuan-Sheng; Lin, De-Yau; Liu, Sung-Ho; Horng, Ji-Bin; Tsau, Fang-Hei

    Controlling the cooling rate of alloy during melting and resolidification is the most commonly used method for varying the material microstructure and consequently the resuling property. However, the cooling rate of a selective laser melting (SLM) production is restricted by a preset optimal parameter of a good dense product. The head room for locally manipulating material property in a process is marginal. In this study, we invent an Optical Engine for locally controlling material microstructure in a SLM process. It develops an invovative method to control and adjust thermal history of the solidification process to gain desired material microstucture and consequently drastically improving the quality. Process parameters selected locally for specific materials requirement according to designed characteristics by using thermal dynamic principles of solidification process. It utilize a technique of complex laser beam shape of adaptive irradiation profile to permit local control of material characteristics as desired. This technology could be useful for industrial application of medical implant, aerospace and automobile industries.

  15. Rapid Prototyping across the Spectrum: RF to Optical 3D Electromagnetic Structures

    Science.gov (United States)

    2015-11-17

    microbiology, surveillance, energy harvesting , defense technology as well as sensing platforms to name a few [85, 86]. The structure of materials...AFRL-RW-EG-TP-2015-002 Rapid Prototyping across the Spectrum: RF to Optical 3D Electromagnetic Structures Jeffery W. Allen Monica S. Allen Brett...11-17-2015 Interim Report Feb. 2012 – Dec. 2015 4. TITLE AND SUBTITLE Rapid Prototyping across the Spectrum: RF to Optical 3D Electromagnetic

  16. 3D estimation of synaptic vesicle distributions in serial section transmission electron microscopy

    DEFF Research Database (Denmark)

    Khanmohammadi, Mahdieh; Darkner, Sune; Nava, Nicoletta;

    directly. It is hypothesized that in a rat model of behavioral stress the vesicles distribution varies. We propose methods for estimating the 3-dimensional distribution of synaptic vesicles from the active zone through serial section transmission electron microscope images (ssTEM) from Sprague-Dawley rat...... are lost. To reconstruct the 3D data we register the images in a common coordinate system. The traditional method to measure the distribution of the vesicles is to measure the distance independently of neighbouring sections. This is biased depending on the slope of the active zone with respect...... to the section. We suggest two alternatives to estimate: 1) the bias and correct for it in an existing estimated distribution; 2) the shortest distance from the 3D reconstruction. The proposed method has been applied to five datasets of ssTEM images of male rat brains including 123 images. After intensity...

  17. Integration of 3D anatomical data obtained by CT imaging and 3D optical scanning for computer aided implant surgery

    Directory of Open Access Journals (Sweden)

    Paoli Alessandro

    2011-02-01

    Full Text Available Abstract Background A precise placement of dental implants is a crucial step to optimize both prosthetic aspects and functional constraints. In this context, the use of virtual guiding systems has been recognized as a fundamental tool to control the ideal implant position. In particular, complex periodontal surgeries can be performed using preoperative planning based on CT data. The critical point of the procedure relies on the lack of accuracy in transferring CT planning information to surgical field through custom-made stereo-lithographic surgical guides. Methods In this work, a novel methodology is proposed for monitoring loss of accuracy in transferring CT dental information into periodontal surgical field. The methodology is based on integrating 3D data of anatomical (impression and cast and preoperative (radiographic template models, obtained by both CT and optical scanning processes. Results A clinical case, relative to a fully edentulous jaw patient, has been used as test case to assess the accuracy of the various steps concurring in manufacturing surgical guides. In particular, a surgical guide has been designed to place implants in the bone structure of the patient. The analysis of the results has allowed the clinician to monitor all the errors, which have been occurring step by step manufacturing the physical templates. Conclusions The use of an optical scanner, which has a higher resolution and accuracy than CT scanning, has demonstrated to be a valid support to control the precision of the various physical models adopted and to point out possible error sources. A case study regarding a fully edentulous patient has confirmed the feasibility of the proposed methodology.

  18. Intra-retinal layer segmentation of 3D optical coherence tomography using coarse grained diffusion map.

    Science.gov (United States)

    Kafieh, Raheleh; Rabbani, Hossein; Abramoff, Michael D; Sonka, Milan

    2013-12-01

    Optical coherence tomography (OCT) is a powerful and noninvasive method for retinal imaging. In this paper, we introduce a fast segmentation method based on a new variant of spectral graph theory named diffusion maps. The research is performed on spectral domain (SD) OCT images depicting macular and optic nerve head appearance. The presented approach does not require edge-based image information in localizing most of boundaries and relies on regional image texture. Consequently, the proposed method demonstrates robustness in situations of low image contrast or poor layer-to-layer image gradients. Diffusion mapping applied to 2D and 3D OCT datasets is composed of two steps, one for partitioning the data into important and less important sections, and another one for localization of internal layers. In the first step, the pixels/voxels are grouped in rectangular/cubic sets to form a graph node. The weights of the graph are calculated based on geometric distances between pixels/voxels and differences of their mean intensity. The first diffusion map clusters the data into three parts, the second of which is the area of interest. The other two sections are eliminated from the remaining calculations. In the second step, the remaining area is subjected to another diffusion map assessment and the internal layers are localized based on their textural similarities. The proposed method was tested on 23 datasets from two patient groups (glaucoma and normals). The mean unsigned border positioning errors (mean ± SD) was 8.52 ± 3.13 and 7.56 ± 2.95 μm for the 2D and 3D methods, respectively.

  19. Beam section stiffness properties using a single layer of 3D solid elements

    DEFF Research Database (Denmark)

    Couturier, Philippe; Krenk, Steen; Høgsberg, Jan Becker

    2015-01-01

    A method is presented for analysis of the properties of general cross-sections with arbitrary geometry and material distribution. The full six by six cross-section stiffness matrix is evaluated from a single element thickness slice represented by 3D solid elements with lengthwise Hermitian...... interpolation with six independent imposed deformation modes corresponding to extension, torsion, bending and shear. The flexibility matrix of the slice is obtained from complementary elastic energy, and the stiffness matrix is obtained by extracting and inverting the cross-section flexibility. Three examples...

  20. General beam cross-section analysis using a 3D finite element slice

    DEFF Research Database (Denmark)

    Couturier, Philippe; Krenk, Steen

    2014-01-01

    A formulation for analysis of general cross-section properties has been developed. This formulation is based on the stress-strain states in the classic six equilibrium modes of a beam by considering a finite thickness slice modelled by a single layer of 3D finite elements. The displacement...... an analytical solution is available. The paper also shows an application to wind turbine blade cross-sections and discusses the effect of the finite element discretization on the cross-section properties such as stiffness parameters and the location of the elastic and shear centers....

  1. Reconstruction of 3d grain boundaries from rock thin sections, using polarised light

    Science.gov (United States)

    Markus Hammes, Daniel; Peternell, Mark

    2016-04-01

    Grain boundaries affect the physical and chemical properties of polycrystalline materials significantly by initiating reactions and collecting impurities (Birchenall, 1959), and play an essential role in recrystallization (Doherty et al. 1997). In particular, the shape and crystallographic orientation of grain boundaries reveal the deformation and annealing history of rocks (Kruhl and Peternell 2002, Kuntcheva et al. 2006). However, there is a lack of non-destructive and easy-to-use computer supported methods to determine grain boundary geometries in 3D. The only available instrument using optical light to measure grain boundary angles is still the polarising microscope with attached universal stage; operated manually and time-consuming in use. Here we present a new approach to determine 3d grain boundary orientations from 2D rock thin sections. The data is recorded by using an automatic fabric analyser microscope (Peternell et al., 2010). Due to its unique arrangement of 9 light directions the highest birefringence colour due to each light direction and crystal orientation (retardation) can be determined at each pixel in the field of view. Retardation profiles across grain boundaries enable the calculation of grain boundary angle and direction. The data for all positions separating the grains are combined and further processed. In combination with the lateral position of the grain boundary, acquired using the FAME software (Hammes and Peternell, in review), the data is used to reconstruct a 3d grain boundary model. The processing of data is almost fully automatic by using MATLAB®. Only minor manual input is required. The applicability was demonstrated on quartzite samples, but the method is not solely restricted on quartz grains and other birefringent polycrystalline materials could be used instead. References: Birchenall, C.E., 1959: Physical Metallurgy. McGraw-Hill, New York. Doherty, R.D., Hughes, D.A., Humphreys, F.J., Jonas, J.J., Juul Jensen, D., Kassner, M

  2. A Method for Sectioning and Immunohistochemical Analysis of Stem Cell-Derived 3-D Organoids.

    Science.gov (United States)

    Wiley, Luke A; Beebe, David C; Mullins, Robert F; Stone, Edwin M; Tucker, Budd A

    2016-05-12

    This unit describes a protocol for embedding, sectioning, and immunocytochemical analysis of pluripotent stem cell-derived 3-D organoids. Specifically, we describe a method to embed iPSC-derived retinal cups in low-melt agarose, acquire thick sections using a vibratome tissue slicer, and perform immunohistochemical analysis. This method includes an approach for antibody labeling that minimizes the amount of antibody needed for individual experiments and that utilizes large-volume washing to increase the signal-to-noise ratio, allowing for clean, high-resolution imaging of developing cell types. The universal methods described can be employed regardless of the type of pluripotent stem cell used and 3-D organoid generated. © 2016 by John Wiley & Sons, Inc.

  3. Nanoimprint of a 3D structure on an optical fiber for light wavefront manipulation

    Science.gov (United States)

    Calafiore, Giuseppe; Koshelev, Alexander; Allen, Frances I.; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-09-01

    Integration of complex photonic structures onto optical fiber facets enables powerful platforms with unprecedented optical functionalities. Conventional nanofabrication technologies, however, do not permit viable integration of complex photonic devices onto optical fibers owing to their low throughput and high cost. In this paper we report the fabrication of a three-dimensional structure achieved by direct nanoimprint lithography on the facet of an optical fiber. Nanoimprint processes and tools were specifically developed to enable a high lithographic accuracy and coaxial alignment of the optical device with respect to the fiber core. To demonstrate the capability of this new approach, a 3D beam splitter has been designed, imprinted and optically characterized. Scanning electron microscopy and optical measurements confirmed the good lithographic capabilities of the proposed approach as well as the desired optical performance of the imprinted structure. The inexpensive solution presented here should enable advancements in areas such as integrated optics and sensing, achieving enhanced portability and versatility of fiber optic components.

  4. Nanoimprint of a 3D structure on an optical fiber for light wavefront manipulation.

    Science.gov (United States)

    Calafiore, Giuseppe; Koshelev, Alexander; Allen, Frances I; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-09-16

    Integration of complex photonic structures onto optical fiber facets enables powerful platforms with unprecedented optical functionalities. Conventional nanofabrication technologies, however, do not permit viable integration of complex photonic devices onto optical fibers owing to their low throughput and high cost. In this paper we report the fabrication of a three-dimensional structure achieved by direct nanoimprint lithography on the facet of an optical fiber. Nanoimprint processes and tools were specifically developed to enable a high lithographic accuracy and coaxial alignment of the optical device with respect to the fiber core. To demonstrate the capability of this new approach, a 3D beam splitter has been designed, imprinted and optically characterized. Scanning electron microscopy and optical measurements confirmed the good lithographic capabilities of the proposed approach as well as the desired optical performance of the imprinted structure. The inexpensive solution presented here should enable advancements in areas such as integrated optics and sensing, achieving enhanced portability and versatility of fiber optic components.

  5. Design of extended viewing zone at autostereoscopic 3D display based on diffusing optical element

    Science.gov (United States)

    Kim, Min Chang; Hwang, Yong Seok; Hong, Suk-Pyo; Kim, Eun Soo

    2012-03-01

    In this paper, to realize a non-glasses type 3D display as next step from the current glasses-typed 3D display, it is suggested that a viewing zone is designed for the 3D display using DOE (Diffusing Optical Element). Viewing zone of proposed method is larger than that of the current parallax barrier method or lenticular method. Through proposed method, it is shown to enable the expansion and adjustment of the area of viewing zone according to viewing distance.

  6. 3-D inelastic analysis methods for hot section components. Volume 2: Advanced special functions models

    Science.gov (United States)

    Wilson, R. B.; Banerjee, P. K.

    1987-01-01

    This Annual Status Report presents the results of work performed during the third year of the 3-D Inelastic Analysis Methods for Hot Sections Components program (NASA Contract NAS3-23697). The objective of the program is to produce a series of computer codes that permit more accurate and efficient three-dimensional analyses of selected hot section components, i.e., combustor liners, turbine blades, and turbine vanes. The computer codes embody a progression of mathematical models and are streamlined to take advantage of geometrical features, loading conditions, and forms of material response that distinguish each group of selected components.

  7. 3D printing optical watermark algorithms based on the combination of DWT and Fresnel transformation

    Science.gov (United States)

    Hu, Qi; Duan, Jin; Zhai, Di; Wang, LiNing

    2016-10-01

    With the continuous development of industrialization, 3D printing technology steps into individuals' lives gradually, however, the consequential security issue has become the urgent problem which is imminent. This paper proposes the 3D printing optical watermark algorithms based on the combination of DWT and Fresnel transformation and utilizes authorized key to restrict 3D model printing's permissions. Firstly, algorithms put 3D model into affine transform, and take the distance from the center of gravity to the vertex of 3D object in order to generate a one-dimensional discrete signal; then make this signal into wavelet transform and put the transformed coefficient into Fresnel transformation. Use math model to embed watermark information into it and finally generate 3D digital model with watermarking. This paper adopts VC++.NET and DIRECTX 9.0 SDK for combined developing and testing, and the results show that in fixed affine space, achieve the robustness in translation, revolving and proportion transforms of 3D model and better watermark-invisibility. The security and authorization of 3D model have been protected effectively.

  8. Large core plastic planar optical splitter fabricated by 3D printing technology

    Science.gov (United States)

    Prajzler, Václav; Kulha, Pavel; Knietel, Marian; Enser, Herbert

    2017-10-01

    We report on the design, fabrication and optical properties of large core multimode optical polymer splitter fabricated using fill up core polymer in substrate that was made by 3D printing technology. The splitter was designed by the beam propagation method intended for assembling large core waveguide fibers with 735 μm diameter. Waveguide core layers were made of optically clear liquid adhesive, and Veroclear polymer was used as substrate and cover layers. Measurement of optical losses proved that the insertion optical loss was lower than 6.8 dB in the visible spectrum.

  9. Design, Simulation and Optimisation of a Fibre-optic 3D Accelerometer

    Science.gov (United States)

    Yang, Zhen; Fang, Xiao-Yong; Zhou, Yan; Li, Ya-lin; Yuan, Jie; Cao, Mao-Sheng

    2013-07-01

    Using an inertia pendulum comprised of two prisms, flexible beams and an elastic flake, we present a novel fibre-optic 3D accelerometer design. The total reverse reflection of the cube-corner prism and the spectroscopic property of an orthogonal holographic grating enable the measurement of the two transverse components of the 3D acceleration simultaneously, while the longitudinal component can be determined from the elastic deformation of the flake. Due to optical interferometry, this sensor may provide a wider range, higher sensitivity and better resolving power than other accelerometers. Moreover, we use finite element analysis to study the performance and to optimise the structural design of the sensor.

  10. 3D reconstruction of digitized histological sections for vasculature quantification in the mouse hind limb

    Science.gov (United States)

    Xu, Yiwen; Pickering, J. Geoffrey; Nong, Zengxuan; Gibson, Eli; Ward, Aaron D.

    2014-03-01

    In contrast to imaging modalities such as magnetic resonance imaging and micro computed tomography, digital histology reveals multiple stained tissue features at high resolution (0.25μm/pixel). However, the two-dimensional (2D) nature of histology challenges three-dimensional (3D) quantification and visualization of the different tissue components, cellular structures, and subcellular elements. This limitation is particularly relevant to the vasculature, which has a complex and variable structure within tissues. The objective of this study was to perform a fully automated 3D reconstruction of histology tissue in the mouse hind limb preserving the accurate systemic orientation of the tissues, stained with hematoxylin and immunostained for smooth muscle α actin. We performed a 3D reconstruction using pairwise rigid registrations of 5μm thick, paraffin-embedded serial sections, digitized at 0.25μm/pixel. Each registration was performed using the iterative closest points algorithm on blood vessel landmarks. Landmarks were vessel centroids, determined according to a signed distance map of each pixel to a decision boundary in hue-saturation-value color space; this decision boundary was determined based on manual annotation of a separate training set. Cell nuclei were then automatically extracted and corresponded to refine the vessel landmark registration. Homologous nucleus landmark pairs appearing on not more than two adjacent slides were chosen to avoid registrations which force curved or non-sectionorthogonal structures to be straight and section-orthogonal. The median accumulated target registration errors ± interquartile ranges for the vessel landmark registration, and the nucleus landmark refinement were 43.4+/-42.8μm and 2.9+/-1.7μm, respectively (p<0.0001). Fully automatic and accurate 3D rigid reconstruction of mouse hind limb histology imaging is feasible based on extracted vasculature and nuclei.

  11. 3D prostate histology image reconstruction: Quantifying the impact of tissue deformation and histology section location

    Directory of Open Access Journals (Sweden)

    Eli Gibson

    2013-01-01

    Full Text Available Background: Guidelines for localizing prostate cancer on imaging are ideally informed by registered post-prostatectomy histology. 3D histology reconstruction methods can support this by reintroducing 3D spatial information lost during histology processing. The need to register small, high-grade foci drives a need for high accuracy. Accurate 3D reconstruction method design is impacted by the answers to the following central questions of this work. (1 How does prostate tissue deform during histology processing? (2 What spatial misalignment of the tissue sections is induced by microtome cutting? (3 How does the choice of reconstruction model affect histology reconstruction accuracy? Materials and Methods: Histology, paraffin block face and magnetic resonance images were acquired for 18 whole mid-gland tissue slices from six prostates. 7-15 homologous landmarks were identified on each image. Tissue deformation due to histology processing was characterized using the target registration error (TRE after landmark-based registration under four deformation models (rigid, similarity, affine and thin-plate-spline [TPS]. The misalignment of histology sections from the front faces of tissue slices was quantified using manually identified landmarks. The impact of reconstruction models on the TRE after landmark-based reconstruction was measured under eight reconstruction models comprising one of four deformation models with and without constraining histology images to the tissue slice front faces. Results: Isotropic scaling improved the mean TRE by 0.8-1.0 mm (all results reported as 95% confidence intervals, while skew or TPS deformation improved the mean TRE by <0.1 mm. The mean misalignment was 1.1-1.9΀ (angle and 0.9-1.3 mm (depth. Using isotropic scaling, the front face constraint raised the mean TRE by 0.6-0.8 mm. Conclusions: For sub-millimeter accuracy, 3D reconstruction models should not constrain histology images to the tissue slice front faces and

  12. 3D prostate histology image reconstruction: Quantifying the impact of tissue deformation and histology section location

    Science.gov (United States)

    Gibson, Eli; Gaed, Mena; Gómez, José A.; Moussa, Madeleine; Pautler, Stephen; Chin, Joseph L.; Crukley, Cathie; Bauman, Glenn S.; Fenster, Aaron; Ward, Aaron D.

    2013-01-01

    Background: Guidelines for localizing prostate cancer on imaging are ideally informed by registered post-prostatectomy histology. 3D histology reconstruction methods can support this by reintroducing 3D spatial information lost during histology processing. The need to register small, high-grade foci drives a need for high accuracy. Accurate 3D reconstruction method design is impacted by the answers to the following central questions of this work. (1) How does prostate tissue deform during histology processing? (2) What spatial misalignment of the tissue sections is induced by microtome cutting? (3) How does the choice of reconstruction model affect histology reconstruction accuracy? Materials and Methods: Histology, paraffin block face and magnetic resonance images were acquired for 18 whole mid-gland tissue slices from six prostates. 7-15 homologous landmarks were identified on each image. Tissue deformation due to histology processing was characterized using the target registration error (TRE) after landmark-based registration under four deformation models (rigid, similarity, affine and thin-plate-spline [TPS]). The misalignment of histology sections from the front faces of tissue slices was quantified using manually identified landmarks. The impact of reconstruction models on the TRE after landmark-based reconstruction was measured under eight reconstruction models comprising one of four deformation models with and without constraining histology images to the tissue slice front faces. Results: Isotropic scaling improved the mean TRE by 0.8-1.0 mm (all results reported as 95% confidence intervals), while skew or TPS deformation improved the mean TRE by <0.1 mm. The mean misalignment was 1.1-1.9° (angle) and 0.9-1.3 mm (depth). Using isotropic scaling, the front face constraint raised the mean TRE by 0.6-0.8 mm. Conclusions: For sub-millimeter accuracy, 3D reconstruction models should not constrain histology images to the tissue slice front faces and should be

  13. Deformation analysis of 3D tagged cardiac images using an optical flow method

    Directory of Open Access Journals (Sweden)

    Gorman Robert C

    2010-03-01

    Full Text Available Abstract Background This study proposes and validates a method of measuring 3D strain in myocardium using a 3D Cardiovascular Magnetic Resonance (CMR tissue-tagging sequence and a 3D optical flow method (OFM. Methods Initially, a 3D tag MR sequence was developed and the parameters of the sequence and 3D OFM were optimized using phantom images with simulated deformation. This method then was validated in-vivo and utilized to quantify normal sheep left ventricular functions. Results Optimizing imaging and OFM parameters in the phantom study produced sub-pixel root-mean square error (RMS between the estimated and known displacements in the x (RMSx = 0.62 pixels (0.43 mm, y (RMSy = 0.64 pixels (0.45 mm and z (RMSz = 0.68 pixels (1 mm direction, respectively. In-vivo validation demonstrated excellent correlation between the displacement measured by manually tracking tag intersections and that generated by 3D OFM (R ≥ 0.98. Technique performance was maintained even with 20% Gaussian noise added to the phantom images. Furthermore, 3D tracking of 3D cardiac motions resulted in a 51% decrease in in-plane tracking error as compared to 2D tracking. The in-vivo function studies showed that maximum wall thickening was greatest in the lateral wall, and increased from both apex and base towards the mid-ventricular region. Regional deformation patterns are in agreement with previous studies on LV function. Conclusion A novel method was developed to measure 3D LV wall deformation rapidly with high in-plane and through-plane resolution from one 3D cine acquisition.

  14. Internal Strain Measurement in 3D Braided Composites Using Co-braided Optical Fiber Sensors

    Institute of Scientific and Technical Information of China (English)

    Shenfang YUAN; Rui HUANG; Yunjiang RAO

    2004-01-01

    3D braided composite technology has stimulated a great deal of interest in the world at large. But due to the threedimensional nature of these kinds of composites, coupled with the shortcomings of currently-adopted experimental test methods, it is difficult to measure the internal parameters of this materials, hence causes it difficult to understand the material performance. A new method is introduced herein to measure the internal strain of braided composite materials using co-braided fiber optic sensors. Two kinds of fiber optic sensors are co-braided into 3D braided composites to measure internal strain. One of these is the Fabry-Parrot (F-P) fiber optic sensor; the other is the polarimetric fiber optic sensor. Experiments are conducted to measure internal strain under tension, bending and thermal environments in the 3D carbon fiber braided composite specimens, both locally and globally. Experimental results show that multiple fiber optic sensors can be braided into the 3D braided composites to measure the internal parameters, providing a more accurate measurement method and leading to a better understanding of these materials.

  15. Reconstruction of 3D refractive index profiles of PM PANDA optical fiber using digital holographic method

    Science.gov (United States)

    Wahba, H. H.

    2014-10-01

    In this paper, the refractive indices distributions on the two birefringent axes of polarization maintaining (PM) PANDA type optical fiber are reconstructed. The local refraction of the incident rays crossing the PM optical fiber is considered. Off-axis digital holographic interferometric phase shifting arrangement is employed in this investigation. The recorded mutual phase shifted holograms, starts with 0° with steps of π/4, are combined and numerically reconstructed in the image plane to obtain the optical interference phase map. Consequently, the optical phase differences due to the PM optical fiber are extracted after unwrapping and background subtraction of the enhanced optical interference phase map. The birefringence and the beat length in the two directions, fast and slow axes of PM optical fiber, of polarizations in the core region are calculated. This holographic technique and the advanced analysis of the phase shifting permit the calculation of the 3D refractive index distributions for PM PANDA optical fiber.

  16. Nanoimprint of a 3D structure on an optical fiber for light wavefront manipulation

    CERN Document Server

    Calafiore, Giuseppe; Allen, Frances I; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-01-01

    Integration of complex photonic structures onto optical fiber facets enables powerful platforms with unprecedented optical functionalities. Conventional nanofabrication technologies, however, do not permit viable integration of complex photonic devices onto optical fibers owing to their low throughput and high cost. In this paper we report the fabrication of a three dimensional structure achieved by direct Nanoimprint Lithography on the facet of an optical fiber. Nanoimprint processes and tools were specifically developed to enable a high lithographic accuracy and coaxial alignment of the optical device with respect to the fiber core. To demonstrate the capability of this new approach, a 3D beam splitter has been designed, imprinted and optically characterized. Scanning electron microscopy and optical measurements confirmed the excellent lithographic capabilities of the proposed approach as well as the desired optical performance of the imprinted structure. The inexpensive solution presented here should enabl...

  17. 3D mapping of elastic modulus using shear wave optical micro-elastography

    Science.gov (United States)

    Zhu, Jiang; Qi, Li; Miao, Yusi; Ma, Teng; Dai, Cuixia; Qu, Yueqiao; He, Youmin; Gao, Yiwei; Zhou, Qifa; Chen, Zhongping

    2016-10-01

    Elastography provides a powerful tool for histopathological identification and clinical diagnosis based on information from tissue stiffness. Benefiting from high resolution, three-dimensional (3D), and noninvasive optical coherence tomography (OCT), optical micro-elastography has the ability to determine elastic properties with a resolution of ~10 μm in a 3D specimen. The shear wave velocity measurement can be used to quantify the elastic modulus. However, in current methods, shear waves are measured near the surface with an interference of surface waves. In this study, we developed acoustic radiation force (ARF) orthogonal excitation optical coherence elastography (ARFOE-OCE) to visualize shear waves in 3D. This method uses acoustic force perpendicular to the OCT beam to excite shear waves in internal specimens and uses Doppler variance method to visualize shear wave propagation in 3D. The measured propagation of shear waves agrees well with the simulation results obtained from finite element analysis (FEA). Orthogonal acoustic excitation allows this method to measure the shear modulus in a deeper specimen which extends the elasticity measurement range beyond the OCT imaging depth. The results show that the ARFOE-OCE system has the ability to noninvasively determine the 3D elastic map.

  18. Monocular accommodation condition in 3D display types through geometrical optics

    Science.gov (United States)

    Kim, Sung-Kyu; Kim, Dong-Wook; Park, Min-Chul; Son, Jung-Young

    2007-09-01

    Eye fatigue or strain phenomenon in 3D display environment is a significant problem for 3D display commercialization. The 3D display systems like eyeglasses type stereoscopic or auto-stereoscopic multiview, Super Multi-View (SMV), and Multi-Focus (MF) displays are considered for detail calculation about satisfaction level of monocular accommodation by geometrical optics calculation means. A lens with fixed focal length is used for experimental verification about numerical calculation of monocular defocus effect caused by accommodation at three different depths. And the simulation and experiment results consistently show relatively high level satisfaction about monocular accommodation at MF display condition. Additionally, possibility of monocular depth perception, 3D effect, at monocular MF display is discussed.

  19. Strain determination in bone sections with simultaneous 3D digital holographic interferometry

    Science.gov (United States)

    Alvarez, Araceli Sánchez; De la Torre Ibarra, Manuel H.; Santoyo, Fernando Mendoza; Anaya, Tonatiuh-Saucedo

    2014-06-01

    A 3D digital holographic interferometer was used to measure the surface strain components in two different bovine's bone sections. The applied force on the sample was induced by a precisely controlled lateral micro compression. The simultaneous acquisition capability of the system helps to record a fast sequence of images, each one containing three independent holograms that result in three orthogonal displacement components u, v and w from which the surface strain components ɛx, ɛy and γxy over the bone's field of view were calculated. This research study was carried out in two different bone sections: the cortical bone and the medullary cavity/yellow marrow section. The resulting strain concentrators are of great importance to better understand the mechanical response of complex biological structures such as this bovine femoral bone.

  20. Bone tissue phantoms for optical flowmeters at large interoptode spacing generated by 3D-stereolithography.

    Science.gov (United States)

    Binzoni, Tiziano; Torricelli, Alessandro; Giust, Remo; Sanguinetti, Bruno; Bernhard, Paul; Spinelli, Lorenzo

    2014-08-01

    A bone tissue phantom prototype allowing to test, in general, optical flowmeters at large interoptode spacings, such as laser-Doppler flowmetry or diffuse correlation spectroscopy, has been developed by 3D-stereolithography technique. It has been demonstrated that complex tissue vascular systems of any geometrical shape can be conceived. Absorption coefficient, reduced scattering coefficient and refractive index of the optical phantom have been measured to ensure that the optical parameters reasonably reproduce real human bone tissue in vivo. An experimental demonstration of a possible use of the optical phantom, utilizing a laser-Doppler flowmeter, is also presented.

  1. Changes in quantitative 3D shape features of the optic nerve head associated with age

    Science.gov (United States)

    Christopher, Mark; Tang, Li; Fingert, John H.; Scheetz, Todd E.; Abramoff, Michael D.

    2013-02-01

    Optic nerve head (ONH) structure is an important biological feature of the eye used by clinicians to diagnose and monitor progression of diseases such as glaucoma. ONH structure is commonly examined using stereo fundus imaging or optical coherence tomography. Stereo fundus imaging provides stereo views of the ONH that retain 3D information useful for characterizing structure. In order to quantify 3D ONH structure, we applied a stereo correspondence algorithm to a set of stereo fundus images. Using these quantitative 3D ONH structure measurements, eigen structures were derived using principal component analysis from stereo images of 565 subjects from the Ocular Hypertension Treatment Study (OHTS). To evaluate the usefulness of the eigen structures, we explored associations with the demographic variables age, gender, and race. Using regression analysis, the eigen structures were found to have significant (p glaucoma, disease progression and outcomes, and genetic factors.

  2. Single Camera 3-D Coordinate Measuring System Based on Optical Probe Imaging

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new vision coordinate measuring system——single camera 3-D coordinate measuring system based on optical probe imaging is presented. A new idea in vision coordinate measurement is proposed. A linear model is deduced which can distinguish six freedom degrees of optical probe to realize coordinate measurement of the object surface. The effects of some factors on the resolution of the system are analyzed. The simulating experiments have shown that the system model is available.

  3. Fiber Optic 3-D Space Piezoelectric Accelerometer and its Antinoise Technology

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The mechanical structure of piezoelectric accelerometer is designed, and the operation equations on X-, Y-, and Z-axes are deduced. The test results of 3-D frequency response are given. Noise disturbances are effectively eliminated by using fiber optic transmission and synchronous detection.

  4. 3-D printed sensing patches with embedded polymer optical fibre Bragg gratings

    DEFF Research Database (Denmark)

    Zubel, Michal G.; Sugden, Kate; Saez-Rodriguez, D.

    2016-01-01

    The first demonstration of a polymer optical fibre Bragg grating (POFBG) embedded in a 3-D printed structure is reported. Its cyclic strain performance and temperature characteristics are examined and discussed. The sensing patch has a repeatable strain sensitivity of 0.38 pm/mu epsilon. Its...

  5. Rewritable 3D bit optical data storage in a PMMA-based photorefractive polymer

    Energy Technology Data Exchange (ETDEWEB)

    Day, D.; Gu, M. [Swinburne Univ. of Tech., Hawthorn, Vic. (Australia). Centre for Micro-Photonics; Smallridge, A. [Victoria Univ., Melbourne (Australia). School of Life Sciences and Technology

    2001-07-04

    A cheap, compact, and rewritable high-density optical data storage system for CD and DVD applications is presented by the authors. Continuous-wave illumination under two-photon excitation in a new poly(methylmethacrylate) (PMMA) based photorefractive polymer allows 3D bit storage of sub-Tbyte data. (orig.)

  6. GEOMETRIC OPTICS FOR 3D-HARTREE-TYPE EQUATION WITH COULOMB POTENTIAL

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This article considers a family of 3D-Hartree-type equation with Coulomb potential |x|-1, whose initial data oscillates so that a caustic appears. In the linear geometric optics case, by using the Lagrangian integrals, a uniform description of the solution outside the caustic, and near the caustic are obtained.

  7. 3D tomographic breast imaging in-vivo using a handheld optical imager

    Science.gov (United States)

    Erickson, Sarah J.; Martinez, Sergio; Gonzalez, Jean; Roman, Manuela; Nunez, Annie; Godavarty, Anuradha

    2011-02-01

    Hand-held optical imagers are currently developed toward clinical imaging of breast tissue. However, the hand-held optical devices developed to are not able to coregister the image to the tissue geometry for 3D tomography. We have developed a hand-held optical imager which has demonstrated automated coregistered imaging and 3D tomography in phantoms, and validated coregistered imaging in normal human subjects. Herein, automated coregistered imaging is performed in a normal human subject with a 0.45 cm3 spherical target filled with 1 μM indocyanine green (fluorescent contrast agent) placed superficially underneath the flap of the breast tissue. The coregistered image data is used in an approximate extended Kalman filter (AEKF) based reconstruction algorithm to recover the 3D location of the target within the breast tissue geometry. The results demonstrate the feasibility of performing 3D tomographic imaging and recovering a fluorescent target in breast tissue of a human subject for the first time using a hand-held based optical imager. The significance of this work is toward clinical imaging of breast tissue for cancer diagnostics and therapy monitoring.

  8. Coordinates calibration in precision detection of 3D optical deformation measurement system

    Science.gov (United States)

    Lu, Honggang; Hu, Chunsheng; Wang, Xingshu; Gao, Yang; Wu, Wei

    2012-11-01

    In order to validate the detection precision of a three Dimensions Optical Deformation Measure System (3D-OMS), a calibration method of auxiliary coordinate and the optical coordinate base on theodolites has been proposed. The installation method by using theodolites to calibrate the auxiliary coordinate and the optical coordinate has been proposed. Specifically, after the auxiliary mirrors installed, the installation accuracy is detected, then we analyzed the influence of Axis-Error of theodolite under the practical condition of our experiment. Furthermore, the influence of validation precision for the 3D-OMS caused by the misalignment of auxiliary coordinate and optical coordinate is analyzed. According to our theoretical analysis and experiments results, the validation precision of the 3D-OMS can achieve an accuracy of 1″ at the conditions of the coordinate alignment accuracy is no more than 10' and the measuring range of 3D-OMS within +/-3'. Therefore, the proposed method can meet our high accuracy requirement while not sensitive to the installation error of auxiliary mirrors. This method is also available for other similar work.

  9. 3-D printed sensing patches with embedded polymer optical fibre Bragg gratings

    DEFF Research Database (Denmark)

    Zubel, Michal G.; Sugden, Kate; Saez-Rodriguez, D.;

    2016-01-01

    The first demonstration of a polymer optical fibre Bragg grating (POFBG) embedded in a 3-D printed structure is reported. Its cyclic strain performance and temperature characteristics are examined and discussed. The sensing patch has a repeatable strain sensitivity of 0.38 pm/mu epsilon. Its temp...

  10. 3D imaging of optically cleared tissue using a simplified CLARITY method and on-chip microscopy

    KAUST Repository

    Zhang, Yibo

    2017-08-12

    High-throughput sectioning and optical imaging of tissue samples using traditional immunohistochemical techniques can be costly and inaccessible in resource-limited areas. We demonstrate three-dimensional (3D) imaging and phenotyping in optically transparent tissue using lens-free holographic on-chip microscopy as a low-cost, simple, and high-throughput alternative to conventional approaches. The tissue sample is passively cleared using a simplified CLARITY method and stained using 3,3′-diaminobenzidine to target cells of interest, enabling bright-field optical imaging and 3D sectioning of thick samples. The lens-free computational microscope uses pixel super-resolution and multi-height phase recovery algorithms to digitally refocus throughout the cleared tissue and obtain a 3D stack of complex-valued images of the sample, containing both phase and amplitude information. We optimized the tissue-clearing and imaging system by finding the optimal illumination wavelength, tissue thickness, sample preparation parameters, and the number of heights of the lens-free image acquisition and implemented a sparsity-based denoising algorithm to maximize the imaging volume and minimize the amount of the acquired data while also preserving the contrast-to-noise ratio of the reconstructed images. As a proof of concept, we achieved 3D imaging of neurons in a 200-μm-thick cleared mouse brain tissue over a wide field of view of 20.5 mm2. The lens-free microscope also achieved more than an order-of-magnitude reduction in raw data compared to a conventional scanning optical microscope imaging the same sample volume. Being low cost, simple, high-throughput, and data-efficient, we believe that this CLARITY-enabled computational tissue imaging technique could find numerous applications in biomedical diagnosis and research in low-resource settings.

  11. 3D optical vortices generated by micro-optical elements and its novel applications

    Institute of Scientific and Technical Information of China (English)

    BU J.; LIN J.; K. J. Moh; B. P. S. Ahluwalia; CHEN H. L.; PENG X.; NIU H. B.; YUAN X.C.

    2007-01-01

    In this paper we report on recent development in the areas of optical vortices generated by micro-optical elements and applications of optical vortices, including optical manipulation, radial polarization and secure free space optical communication

  12. 3D optical coherence tomography super pixel with machine classifier analysis for glaucoma detection.

    Science.gov (United States)

    Xu, Juan; Ishikawa, Hiroshi; Wollstein, Gadi; Schuman, Joel S

    2011-01-01

    Current standard quantitative 3D spectral-domain optical coherence tomography (SD-OCT) analyses of various ocular diseases is limited in detecting structural damage at early pathologic stages. This is mostly because only a small fraction of the 3D data is used in the current method of quantifying the structure of interest. This paper presents a novel SD-OCT data analysis technique, taking full advantage of the 3D dataset. The proposed algorithm uses machine classifier to analyze SD-OCT images after grouping adjacent pixels into super pixel in order to detect glaucomatous damage. A 3D SD-OCT image is first converted into a 2D feature map and partitioned into over a hundred super pixels. Machine classifier analysis using boosting algorithm is performed on super pixel features. One hundred and ninety-two 3D OCT images of the optic nerve head region were tested. Area under the receiver operating characteristic (AUC) was computed to evaluate the glaucoma discrimination performance of the algorithm and compare it to the commercial software output. The AUC of normal vs glaucoma suspect eyes using the proposed method was statistically significantly higher than the current method (0.855 and 0.707, respectively, p=0.031). This new method has the potential to improve early detection of glaucomatous structural damages.

  13. A physical model eye with 3D resolution test targets for optical coherence tomography

    Science.gov (United States)

    Hu, Zhixiong; Liu, Wenli; Hong, Baoyu; Hao, Bingtao; Wang, Lele; Li, Jiao

    2014-09-01

    Optical coherence tomography (OCT) has been widely employed as non-invasive 3D imaging diagnostic instrument, particularly in the field of ophthalmology. Although OCT has been approved for use in clinic in USA, Europe and Asia, international standardization of this technology is still in progress. Validation of OCT imaging capabilities is considered extremely important to ensure its effective use in clinical diagnoses. Phantom with appropriate test targets can assist evaluate and calibrate imaging performance of OCT at both installation and throughout lifetime of the instrument. In this paper, we design and fabricate a physical model eye with 3D resolution test targets to characterize OCT imaging performance. The model eye was fabricated with transparent resin to simulate realistic ophthalmic testing environment, and most key optical elements including cornea, lens and vitreous body were realized. The test targets which mimic USAF 1951 test chart were fabricated on the fundus of the model eye by 3D printing technology. Differing from traditional two dimensional USAF 1951 test chart, a group of patterns which have different thickness in depth were fabricated. By measuring the 3D test targets, axial resolution as well as lateral resolution of an OCT system can be evaluated at the same time with this model eye. To investigate this specialized model eye, it was measured by a scientific spectral domain OCT instrument and a clinical OCT system respectively. The results demonstrate that the model eye with 3D resolution test targets have the potential of qualitatively and quantitatively validating the performance of OCT systems.

  14. 3D morphology of a random field from its 2D cross-section

    CERN Document Server

    Makarenko, Irina; Shukurov, Anvar

    2014-01-01

    We show that both aspect ratios of randomly oriented triaxial ellipsoids (representing isosurfaces of an isotropic 3D random field) can be determined from a single 2D cross-section of their sample using the probability distribution of the filamentarity F of the structures seen in the cross-section (F=0 for a circle and F=1 for a line). The probability distribution of F has a robust form with a sharp maximum and truncation that are sensitive to the ellipsoids' aspect ratios. We show that the aspect ratios of triaxial ellipsoids with randomly distributed dimensions can still be recovered from the probability distribution of F. This method is applicable to many shape recognition and classification problems, here illustrated with neutral hydrogen density in the turbulent interstellar medium of the Milky Way. The gas distribution is shown to be filamentary with the mean axis ratio 1:2:20.

  15. Investigation of inclined dual-fiber optical tweezers for 3D manipulation and force sensing.

    Science.gov (United States)

    Liu, Yuxiang; Yu, Miao

    2009-08-03

    Optical tweezers provide a versatile tool in biological and physical researches. Optical tweezers based on optical fibers are more flexible and ready to be integrated when compared with those based on microscope objectives. In this paper, the three-dimensional (3D) trapping ability of an inclined dual-fiber optical tweezers is demonstrated. The trapping efficiency with respect to displacement is experimentally calibrated along two dimensions. The system is studied numerically using a modified ray-optics model. The spring constants obtained in the experiment are predicted by simulations. It is found both experimentally and numerically that there is a critical value for the fiber inclination angle to retain the 3D trapping ability. The inclined dual-fiber optical tweezers are demonstrated to be more robust to z-axis misalignment than the counter-propagating fiber optical tweezers, which is a special case of th former when the fiber inclination angle is 90 masculine. This inclined dual-fiber optical tweezers can serve as both a manipulator and a force sensor in integrated systems, such as microfluidic systems and lab-on-a-chip systems.

  16. A 3D integral imaging optical see-through head-mounted display.

    Science.gov (United States)

    Hua, Hong; Javidi, Bahram

    2014-06-02

    An optical see-through head-mounted display (OST-HMD), which enables optical superposition of digital information onto the direct view of the physical world and maintains see-through vision to the real world, is a vital component in an augmented reality (AR) system. A key limitation of the state-of-the-art OST-HMD technology is the well-known accommodation-convergence mismatch problem caused by the fact that the image source in most of the existing AR displays is a 2D flat surface located at a fixed distance from the eye. In this paper, we present an innovative approach to OST-HMD designs by combining the recent advancement of freeform optical technology and microscopic integral imaging (micro-InI) method. A micro-InI unit creates a 3D image source for HMD viewing optics, instead of a typical 2D display surface, by reconstructing a miniature 3D scene from a large number of perspective images of the scene. By taking advantage of the emerging freeform optical technology, our approach will result in compact, lightweight, goggle-style AR display that is potentially less vulnerable to the accommodation-convergence discrepancy problem and visual fatigue. A proof-of-concept prototype system is demonstrated, which offers a goggle-like compact form factor, non-obstructive see-through field of view, and true 3D virtual display.

  17. Virtual touch 3D interactive system for autostereoscopic display with embedded optical sensor

    Science.gov (United States)

    Huang, Yi-Pai; Wang, Guo-Zhen; Ma, Ming-Ching; Tung, Shang-Yu; Huang, Shu-Yi; Tseng, Hung-Wei; Kuo, Chung-Hong; Li, Chun-Huai

    2011-06-01

    The traidational 3D interactive sysetm which uses CCD camera to capture image is difficult to operate on near range for mobile applications.Therefore, 3D interactive display with embedded optical sensor was proposed. Based on optical sensor based system, we proposed four different methods to support differenct functions. T mark algorithm can obtain 5- axis information (x, y, z,θ, and φ)of LED no matter where LED was vertical or inclined to panel and whatever it rotated. Sequential mark algorithm and color filter based algorithm can support mulit-user. Finally, bare finger touch system with sequential illuminator can achieve to interact with auto-stereoscopic images by bare finger. Furthermore, the proposed methods were verified on a 4-inch panel with embedded optical sensors.

  18. Performance of an improved first generation optical CT scanner for 3D dosimetry.

    Science.gov (United States)

    Qian, Xin; Adamovics, John; Wuu, Cheng-Shie

    2013-12-21

    Performance analysis of a modified 3D dosimetry optical scanner based on the first generation optical CT scanner OCTOPUS is presented. The system consists of PRESAGE dosimeters, the modified 3D scanner, and a new developed in-house user control panel written in Labview program which provides more flexibility to optimize mechanical control and data acquisition technique. The total scanning time has been significantly reduced from initial 8 h to ∼2 h by using the modified scanner. The functional performance of the modified scanner has been evaluated in terms of the mechanical integrity uncertainty of the data acquisition process. Optical density distribution comparison between the modified scanner, OCTOPUS and the treatment plan system has been studied. It has been demonstrated that the agreement between the modified scanner and treatment plans is comparable with that between the OCTOPUS and treatment plans.

  19. Generation of nearly 3D-unpolarized evanescent optical near fields using total internal reflection.

    Science.gov (United States)

    Hassinen, Timo; Popov, Sergei; Friberg, Ari T; Setälä, Tero

    2016-07-01

    We analyze the time-domain partial polarization of optical fields composed of two evanescent waves created in total internal reflection by random electromagnetic beams with orthogonal planes of incidence. We show that such a two-beam configuration enables to generate nearly unpolarized, genuine three-component (3D) near fields. This result complements earlier studies on spectral polarization, which state that at least three symmetrically propagating beams are required to produce a 3D-unpolarized near field. The degree of polarization of the near field can be controlled by adjusting the polarization states and mutual correlation of the incident beams.

  20. Traceability of Height Measurements on Green Sand Molds using Optical 3D Scanning

    DEFF Research Database (Denmark)

    Mohaghegh, Kamran; Yazdanbakhsh, S.A.; Tiedje, N. S.

    2016-01-01

    (CMM) which is traceable to the meter unit. Optical scanners are increasingly used for dimensional metrology without the risk of damaging the surface, but lack of international standards makes it difficult to establish traceability of their measurements and compare them to tactile instruments....... This paper presents a metrological approach for height measurement on green sand molds using an optical 3D scanner with fringe projection. A new sand sample was developed with a hard binder to withstand the contact force of a touch probe, while keeping optical cooperativeness similar to green sand...

  1. Realization of optical multimode TSV waveguides for Si-Interposer in 3D-chip-stacks

    Science.gov (United States)

    Killge, S.; Charania, S.; Richter, K.; Neumann, N.; Al-Husseini, Z.; Plettemeier, D.; Bartha, J. W.

    2017-05-01

    Optical connectivity has the potential to outperform copper-based TSVs in terms of bandwidth at the cost of more complexity due to the required electro-optical and opto-electrical conversion. The continuously increasing demand for higher bandwidth pushes the breakeven point for a profitable operation to shorter distances. To integrate an optical communication network in a 3D-chip-stack optical through-silicon vertical VIAs (TSV) are required. While the necessary effort for the electrical/optical and vice versa conversion makes it hard to envision an on-chip optical interconnect, a chip-to-chip optical link appears practicable. In general, the interposer offers the potential advantage to realize electro-optical transceivers on affordable expense by specific, but not necessarily CMOS technology. We investigated the realization and characterization of optical interconnects as a polymer based waveguide in high aspect ratio (HAR) TSVs proved on waferlevel. To guide the optical field inside a TSV as optical-waveguide or fiber, its core has to have a higher refractive index than the surrounding material. Comparing different material / technology options it turned out that thermal grown silicon dioxide (SiO2) is a perfect candidate for the cladding (nSiO2 = 1.4525 at 850 nm). In combination with SiO2 as the adjacent polymer layer, the negative resist SU-8 is very well suited as waveguide material (nSU-8 = 1.56) for the core. Here, we present the fabrication of an optical polymer based multimode waveguide in TSVs proved on waferlevel using SU-8 as core and SiO2 as cladding. The process resulted in a defect-free filling of waveguide TSVs with SU-8 core and SiO2 cladding up to aspect ratio (AR) 20:1 and losses less than 3 dB.

  2. 3D printing of tissue-simulating phantoms for calibration of biomedical optical devices

    Science.gov (United States)

    Zhao, Zuhua; Zhou, Ximing; Shen, Shuwei; Liu, Guangli; Yuan, Li; Meng, Yuquan; Lv, Xiang; Shao, Pengfei; Dong, Erbao; Xu, Ronald X.

    2016-10-01

    Clinical utility of many biomedical optical devices is limited by the lack of effective and traceable calibration methods. Optical phantoms that simulate biological tissues used for optical device calibration have been explored. However, these phantoms can hardly simulate both structural and optical properties of multi-layered biological tissue. To address this limitation, we develop a 3D printing production line that integrates spin coating, light-cured 3D printing and Fused Deposition Modeling (FDM) for freeform fabrication of optical phantoms with mechanical and optical heterogeneities. With the gel wax Polydimethylsiloxane (PDMS), and colorless light-curable ink as matrix materials, titanium dioxide (TiO2) powder as the scattering ingredient, graphite powder and black carbon as the absorption ingredient, a multilayer phantom with high-precision is fabricated. The absorption and scattering coefficients of each layer are measured by a double integrating sphere system. The results demonstrate that the system has the potential to fabricate reliable tissue-simulating phantoms to calibrate optical imaging devices.

  3. Mapping 3D fiber orientation in tissue using dual-angle optical polarization tractography.

    Science.gov (United States)

    Wang, Y; Ravanfar, M; Zhang, K; Duan, D; Yao, G

    2016-10-01

    Optical polarization tractography (OPT) has recently been applied to map fiber organization in the heart, skeletal muscle, and arterial vessel wall with high resolution. The fiber orientation measured in OPT represents the 2D projected fiber angle in a plane that is perpendicular to the incident light. We report here a dual-angle extension of the OPT technology to measure the actual 3D fiber orientation in tissue. This method was first verified by imaging the murine extensor digitorum muscle placed at various known orientations in space. The accuracy of the method was further studied by analyzing the 3D fiber orientation of the mouse tibialis anterior muscle. Finally we showed that dual-angle OPT successfully revealed the unique 3D "arcade" fiber structure in the bovine articular cartilage.

  4. Obstacle detection and terrain characterization using optical flow without 3-D reconstruction

    Science.gov (United States)

    Young, Gin-Shu; Hong, Tsai Hong; Herman, Martin; Yang, Jackson C. S.

    1992-11-01

    For many applications in computer vision, it is important to recover range, 3-D motion, and/or scene geometry from a sequence of images. However, there are many robot behaviors which can be achieved by extracting relevant 2-D information from the imagery and using this information directly, without recovery of such information. In this paper, we focus on two behaviors, obstacle avoidance and terrain navigation. A novel method of these two behaviors has been developed without 3-D reconstruction. This approach is often called purposive active vision. A linear relationship, plotted as a line and called a reference flow line, has been found. The difference between a plotted line and the reference flow line can be used to detect discrete obstacles above or below the reference terrain. For terrain characterization, slopes of surface regions can be calculated directly from optical flow. Some error analysis is also done. The main features of this approach are that (1) discrete obstacles are detected directly from 2-D optical flow, no 3-D reconstruction is performed; (2) terrain slopes are also calculated from 2- D optical flow; (3) knowledge about the terrain model, camera-to-ground coordinate transformation, or vehicle (or camera) motion is not required; (4) the error sources involved are reduced to a minimum, since the only information required is a component of optical flow. An initial experiment using noisy synthetic data is also included to demonstrate the applicability and robustness of the method.

  5. Integrated monolithic 3D MEMS scanner for switchable real time vertical/horizontal cross-sectional imaging.

    Science.gov (United States)

    Li, Haijun; Duan, Xiyu; Qiu, Zhen; Zhou, Quan; Kurabayashi, Katsuo; Oldham, Kenn R; Wang, Thomas D

    2016-02-08

    We present an integrated monolithic, electrostatic 3D MEMS scanner with a compact chip size of 3.2 × 2.9 mm(2). Use of parametric excitation near resonance frequencies produced large optical deflection angles up to ± 27° and ± 28.5° in the X- and Y-axes and displacements up to 510 μm in the Z-axis with low drive voltages at atmospheric pressure. When packaged in a dual axes confocal endomicroscope, horizontal and vertical cross-sectional images can be collected seamlessly in tissue with a large field-of-view of >1 × 1 mm(2) and 1 × 0.41 mm(2), respectively, at 5 frames/sec.

  6. Automatic 3-D Optical Detection on Orientation of Randomly Oriented Industrial Parts for Rapid Robotic Manipulation

    Directory of Open Access Journals (Sweden)

    Liang-Chia Chen

    2012-12-01

    Full Text Available This paper proposes a novel method employing a developed 3-D optical imaging and processing algorithm for accurate classification of an object’s surface characteristics in robot pick and place manipulation. In the method, 3-D geometry of industrial parts can be rapidly acquired by the developed one-shot imaging optical probe based on Fourier Transform Profilometry (FTP by using digital-fringe projection at a camera’s maximum sensing speed. Following this, the acquired range image can be effectively segmented into three surface types by classifying point clouds based on the statistical distribution of the normal surface vector of each detected 3-D point, and then the scene ground is reconstructed by applying least squares fitting and classification algorithms. Also, a recursive search process incorporating the region-growing algorithm for registering homogeneous surface regions has been developed. When the detected parts are randomly overlapped on a workbench, a group of defined 3-D surface features, such as surface areas, statistical values of the surface normal distribution and geometric distances of defined features, can be uniquely recognized for detection of the part’s orientation. Experimental testing was performed to validate the feasibility of the developed method for real robotic manipulation.

  7. BER Analysis Using Beat Probability Method of 3D Optical CDMA Networks with Double Balanced Detection

    Directory of Open Access Journals (Sweden)

    Chih-Ta Yen

    2015-01-01

    Full Text Available This study proposes novel three-dimensional (3D matrices of wavelength/time/spatial code for code-division multiple-access (OCDMA networks, with a double balanced detection mechanism. We construct 3D carrier-hopping prime/modified prime (CHP/MP codes by extending a two-dimensional (2D CHP code integrated with a one-dimensional (1D MP code. The corresponding coder/decoder pairs were based on fiber Bragg gratings (FBGs and tunable optical delay lines integrated with splitters/combiners. System performance was enhanced by the low cross correlation properties of the 3D code designed to avoid the beat noise phenomenon. The CHP/MP code cardinality increased significantly compared to the CHP code under the same bit error rate (BER. The results indicate that the 3D code method can enhance system performance because both the beating terms and multiple-access interference (MAI were reduced by the double balanced detection mechanism. Additionally, the optical component can also be relaxed for high transmission scenery.

  8. Quantification of smoothing requirement for 3D optic flow calculation of volumetric images

    DEFF Research Database (Denmark)

    Bab-Hadiashar, Alireza; Tennakoon, Ruwan B.; de Bruijne, Marleen

    2013-01-01

    that a (surprisingly) small amount of local smoothing is required to satisfy both the necessary and sufficient conditions for accurate optic flow estimation. This notion is called 'just enough' smoothing, and its proper implementation has a profound effect on the preservation of local information in processing 3D...... dynamic scans. To demonstrate the effect of 'just enough' smoothing, a robust 3D optic flow method with quantized local smoothing is presented, and the effect of local smoothing on the accuracy of motion estimation in dynamic lung CT images is examined using both synthetic and real image sequences......Complexities of dynamic volumetric imaging challenge the available computer vision techniques on a number of different fronts. This paper examines the relationship between the estimation accuracy and required amount of smoothness for a general solution from a robust statistics perspective. We show...

  9. Design and verification of diffractive optical elements for speckle generation of 3-D range sensors

    Science.gov (United States)

    Du, Pei-Qin; Shih, Hsi-Fu; Chen, Jenq-Shyong; Wang, Yi-Shiang

    2016-09-01

    The optical projection using speckles is one of the structured light methods that have been applied to three-dimensional (3-D) range sensors. This paper investigates the design and fabrication of diffractive optical elements (DOEs) for generating the light field with uniformly distributed speckles. Based on the principles of computer generated holograms, the iterative Fourier transform algorithm was adopted for the DOE design. It was used to calculate the phase map for diffracting the incident laser beam into a goal pattern with distributed speckles. Four patterns were designed in the study. Their phase maps were first examined by a spatial light modulator and then fabricated on glass substrates by microfabrication processes. Finally, the diffraction characteristics of the fabricated devices were verified. The experimental results show that the proposed methods are applicable to the DOE design of 3-D range sensors. Furthermore, any expected diffraction area and speckle density could be possibly achieved according to the relations presented in the paper.

  10. Optical properties of 3d-ions in crystals spectroscopy and crystal field analysis

    CERN Document Server

    Brik, Mikhail

    2013-01-01

    "Optical Properties of 3d-Ions in Crystals: Spectroscopy and Crystal Field Analysis" discusses spectral, vibronic and magnetic properties of 3d-ions in a wide range of crystals, used as active media for solid state lasers and potential candidates for this role. Crystal field calculations (including first-principles calculations of energy levels and absorption spectra) and their comparison with experimental spectra, the Jahn-Teller effect, analysis of vibronic spectra, materials science applications are systematically presented. The book is intended for researchers and graduate students in crystal spectroscopy, materials science and optical applications. Dr. N.M. Avram is an Emeritus Professor at the Physics Department, West University of Timisoara, Romania; Dr. M.G. Brik is a Professor at the Institute of Physics, University of Tartu, Estonia.

  11. Design and verification of diffractive optical elements for speckle generation of 3-D range sensors

    Science.gov (United States)

    Du, Pei-Qin; Shih, Hsi-Fu; Chen, Jenq-Shyong; Wang, Yi-Shiang

    2016-12-01

    The optical projection using speckles is one of the structured light methods that have been applied to three-dimensional (3-D) range sensors. This paper investigates the design and fabrication of diffractive optical elements (DOEs) for generating the light field with uniformly distributed speckles. Based on the principles of computer generated holograms, the iterative Fourier transform algorithm was adopted for the DOE design. It was used to calculate the phase map for diffracting the incident laser beam into a goal pattern with distributed speckles. Four patterns were designed in the study. Their phase maps were first examined by a spatial light modulator and then fabricated on glass substrates by microfabrication processes. Finally, the diffraction characteristics of the fabricated devices were verified. The experimental results show that the proposed methods are applicable to the DOE design of 3-D range sensors. Furthermore, any expected diffraction area and speckle density could be possibly achieved according to the relations presented in the paper.

  12. 3D Measurement of Anatomical Cross-sections of Foot while Walking

    Science.gov (United States)

    Kimura, Makoto; Mochimaru, Masaaki; Kanade, Takeo

    Recently, techniques for measuring and modeling of human body are taking attention, because human models are useful for ergonomic design in manufacturing. We aim to measure accurate shape of human foot that will be useful for the design of shoes. For such purpose, shape measurement of foot in motion is obviously important, because foot shape in the shoe is deformed while walking or running. In this paper, we propose a method to measure anatomical cross-sections of foot while walking. No one had ever measured dynamic shape of anatomical cross-sections, though they are very basic and popular in the field of biomechanics. Our proposed method is based on multi-view stereo method. The target cross-sections are painted in individual colors (red, green, yellow and blue), and the proposed method utilizes the characteristic of target shape in the camera captured images. Several nonlinear conditions are introduced in the process to find the consistent correspondence in all images. Our desired accuracy is less than 1mm error, which is similar to the existing 3D scanners for static foot measurement. In our experiments, the proposed method achieved the desired accuracy.

  13. 3D printed sensing patches with embedded polymer optical fibre Bragg gratings

    Science.gov (United States)

    Zubel, Michal G.; Sugden, Kate; Saez-Rodriguez, D.; Nielsen, K.; Bang, O.

    2016-05-01

    The first demonstration of a polymer optical fibre Bragg grating (POFBG) embedded in a 3-D printed structure is reported. Its cyclic strain performance and temperature characteristics are examined and discussed. The sensing patch has a repeatable strain sensitivity of 0.38 pm/μepsilon. Its temperature behaviour is unstable, with temperature sensitivity values varying between 30-40 pm/°C.

  14. Optical parametric oscillators in isotropic photonic crystals and cavities: 3D time domain analysis

    OpenAIRE

    Conti, Claudio; Di Falco, Andrea; Assanto, Gaetano

    2004-01-01

    We investigate optical parametric oscillations through four-wave mixing in resonant cavities and photonic crystals. The theoretical analysis underlines the relevant features of the phenomenon and the role of the density of states. Using fully vectorial 3D time-domain simulations, including both dispersion and nonlinear polarization, for the first time we address this process in a face centered cubic lattice and in a photonic crystal slab. The results lead the way to the development of novel p...

  15. Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography.

    Science.gov (United States)

    Zhang, A Ping; Qu, Xin; Soman, Pranav; Hribar, Kolin C; Lee, Jin W; Chen, Shaochen; He, Sailing

    2012-08-16

    The topographic features of the extracelluar matrix (ECM) lay the foundation for cellular behavior. A novel biofabrication method using a digital-mirror device (DMD), called dynamic optical projection stereolithography (DOPsL) is demonstrated. This robust and versatile platform can generate complex biomimetic scaffolds within seconds. Such 3D scaffolds have promising potentials for studying cell interactions with microenvironments in vitro and in vivo.

  16. 3D visualization of the initial Yersinia ruckeri infection route in rainbow trout (Oncorhynchus mykiss) by optical projection tomography

    DEFF Research Database (Denmark)

    Otani, Maki; Villumsen, Kasper Rømer; Kragelund Strøm, Helene;

    2014-01-01

    , optical projection tomography (OPT), a novel three-dimensional (3D) bio-imaging technique, was applied. OPT not only enables the visualization of Y. ruckeri on mucosal surfaces but also the 3D spatial distribution in whole organs, without sectioning. Rainbow trout were infected by bath challenge exposure...... as 1 minute post infection. Both OPT and IHC analysis confirmed that the secondary gill lamellae were the only tissues infected at this early time point, indicating that Y. ruckeri initially infects gill epithelial cells. The experimentally induced infection caused septicemia, and Y. ruckeri was found...... trout. Using OPT scanning it was possible to visualize the initial route of entry, as well as secondary infection routes along with the proliferation and spread of Y. ruckeri, ultimately causing significant mortality in the exposed rainbow trout. These results demonstrate that OPT is a state...

  17. Active optical system for advanced 3D surface structuring by laser remelting

    Science.gov (United States)

    Pütsch, O.; Temmler, A.; Stollenwerk, J.; Willenborg, E.; Loosen, P.

    2015-03-01

    Structuring by laser remelting enables completely new possibilities for designing surfaces since material is redistributed but not wasted. In addition to technological advantages, cost and time benefits yield from shortened process times, the avoidance of harmful chemicals and the elimination of subsequent finishing steps such as cleaning and polishing. The functional principle requires a completely new optical machine technology that maintains the spatial and temporal superposition and manipulation of three different laser beams emitted from two laser sources of different wavelength. The optical system has already been developed and demonstrated for the processing of flat samples of hot and cold working steel. However, since particularly the structuring of 3D-injection molds represents an application example of high innovation potential, the optical system has to take into account the elliptical beam geometry that occurs when the laser beams irradiate a curved surface. To take full advantage of structuring by remelting for the processing of 3D surfaces, additional optical functionality, called EPS (elliptical pre-shaping) has to be integrated into the existing set-up. The development of the beam shaping devices not only requires the analysis of the mechanisms of the beam projection but also a suitable optical design. Both aspects are discussed in this paper.

  18. A joint estimation detection of Glaucoma progression in 3D spectral domain optical coherence tomography optic nerve head images.

    Science.gov (United States)

    Belghith, Akram; Bowd, Christopher; Weinreb, Robert N; Zangwill, Linda M

    2014-03-18

    Glaucoma is an ocular disease characterized by distinctive changes in the optic nerve head (ONH) and visual field. Glaucoma can strike without symptoms and causes blindness if it remains without treatment. Therefore, early disease detection is important so that treatment can be initiated and blindness prevented. In this context, important advances in technology for non-invasive imaging of the eye have been made providing quantitative tools to measure structural changes in ONH topography, an essential element for glaucoma detection and monitoring. 3D spectral domain optical coherence tomography (SD-OCT), an optical imaging technique, has been commonly used to discriminate glaucomatous from healthy subjects. In this paper, we present a new framework for detection of glaucoma progression using 3D SD-OCT images. In contrast to previous works that the retinal nerve fiber layer (RNFL) thickness measurement provided by commercially available spectral-domain optical coherence tomograph, we consider the whole 3D volume for change detection. To integrate a priori knowledge and in particular the spatial voxel dependency in the change detection map, we propose the use of the Markov Random Field to handle a such dependency. To accommodate the presence of false positive detection, the estimated change detection map is then used to classify a 3D SDOCT image into the "non-progressing" and "progressing" glaucoma classes, based on a fuzzy logic classifier. We compared the diagnostic performance of the proposed framework to existing methods of progression detection.

  19. A joint estimation detection of Glaucoma progression in 3D spectral domain optical coherence tomography optic nerve head images

    Science.gov (United States)

    Belghith, Akram; Bowd, Christopher; Weinreb, Robert N.; Zangwill, Linda M.

    2014-03-01

    Glaucoma is an ocular disease characterized by distinctive changes in the optic nerve head (ONH) and visual field. Glaucoma can strike without symptoms and causes blindness if it remains without treatment. Therefore, early disease detection is important so that treatment can be initiated and blindness prevented. In this context, important advances in technology for non-invasive imaging of the eye have been made providing quantitative tools to measure structural changes in ONH topography, an essential element for glaucoma detection and monitoring. 3D spectral domain optical coherence tomography (SD-OCT), an optical imaging technique, has been commonly used to discriminate glaucomatous from healthy subjects. In this paper, we present a new framework for detection of glaucoma progression using 3D SD-OCT images. In contrast to previous works that the retinal nerve fiber layer (RNFL) thickness measurement provided by commercially available spectral-domain optical coherence tomograph, we consider the whole 3D volume for change detection. To integrate a priori knowledge and in particular the spatial voxel dependency in the change detection map, we propose the use of the Markov Random Field to handle a such dependency. To accommodate the presence of false positive detection, the estimated change detection map is then used to classify a 3D SDOCT image into the "non-progressing" and "progressing" glaucoma classes, based on a fuzzy logic classifier. We compared the diagnostic performance of the proposed framework to existing methods of progression detection.

  20. Block matching 3D random noise filtering for absorption optical projection tomography

    Energy Technology Data Exchange (ETDEWEB)

    Fumene Feruglio, P; Vinegoni, C; Weissleder, R [Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114 (United States); Gros, J [Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston MA 02115 (United States); Sbarbati, A, E-mail: cvinegoni@mgh.harvard.ed [Department of Morphological and Biomedical Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona (Italy)

    2010-09-21

    Absorption and emission optical projection tomography (OPT), alternatively referred to as optical computed tomography (optical-CT) and optical-emission computed tomography (optical-ECT), are recently developed three-dimensional imaging techniques with value for developmental biology and ex vivo gene expression studies. The techniques' principles are similar to the ones used for x-ray computed tomography and are based on the approximation of negligible light scattering in optically cleared samples. The optical clearing is achieved by a chemical procedure which aims at substituting the cellular fluids within the sample with a cell membranes' index matching solution. Once cleared the sample presents very low scattering and is then illuminated with a light collimated beam whose intensity is captured in transillumination mode by a CCD camera. Different projection images of the sample are subsequently obtained over a 360{sup 0} full rotation, and a standard backprojection algorithm can be used in a similar fashion as for x-ray tomography in order to obtain absorption maps. Because not all biological samples present significant absorption contrast, it is not always possible to obtain projections with a good signal-to-noise ratio, a condition necessary to achieve high-quality tomographic reconstructions. Such is the case for example, for early stage's embryos. In this work we demonstrate how, through the use of a random noise removal algorithm, the image quality of the reconstructions can be considerably improved even when the noise is strongly present in the acquired projections. Specifically, we implemented a block matching 3D (BM3D) filter applying it separately on each acquired transillumination projection before performing a complete three-dimensional tomographical reconstruction. To test the efficiency of the adopted filtering scheme, a phantom and a real biological sample were processed. In both cases, the BM3D filter led to a signal-to-noise ratio

  1. A comprehensive evaluation of the PRESAGE/optical-CT 3D dosimetry system

    Energy Technology Data Exchange (ETDEWEB)

    Sakhalkar, H. S.; Adamovics, J.; Ibbott, G.; Oldham, M. [Department of Radiation Oncology Physics, Duke University Medical Center, Durham, North Carolina 27710 (United States); Department of Chemistry and Biology, Rider University, Lawrenceville, New Jersey 08648 (United States); Department of Radiation Physics, M. D. Anderson Cancer Center, Houston, Texas 77030 (United States); Department of Radiation Oncology Physics, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2009-01-15

    This work presents extensive investigations to evaluate the robustness (intradosimeter consistency and temporal stability of response), reproducibility, precision, and accuracy of a relatively new 3D dosimetry system comprising a leuco-dye doped plastic 3D dosimeter (PRESAGE) and a commercial optical-CT scanner (OCTOPUS 5x scanner from MGS Research, Inc). Four identical PRESAGE 3D dosimeters were created such that they were compatible with the Radiologic Physics Center (RPC) head-and-neck (H and N) IMRT credentialing phantom. Each dosimeter was irradiated with a rotationally symmetric arrangement of nine identical small fields (1x3 cm{sup 2}) impinging on the flat circular face of the dosimeter. A repetitious sequence of three dose levels (4, 2.88, and 1.28 Gy) was delivered. The rotationally symmetric treatment resulted in a dose distribution with high spatial variation in axial planes but only gradual variation with depth along the long axis of the dosimeter. The significance of this treatment was that it facilitated accurate film dosimetry in the axial plane, for independent verification. Also, it enabled rigorous evaluation of robustness, reproducibility and accuracy of response, at the three dose levels. The OCTOPUS 5x commercial scanner was used for dose readout from the dosimeters at daily time intervals. The use of improved optics and acquisition technique yielded substantially improved noise characteristics (reduced to {approx}2%) than has been achieved previously. Intradosimeter uniformity of radiochromic response was evaluated by calculating a 3D gamma comparison between each dosimeter and axially rotated copies of the same dosimeter. This convenient technique exploits the rotational symmetry of the distribution. All points in the gamma comparison passed a 2% difference, 1 mm distance-to-agreement criteria indicating excellent intradosimeter uniformity even at low dose levels. Postirradiation, the dosimeters were all found to exhibit a slight increase in

  2. 3D optical printing of piezoelectric nanoparticle-polymer composite materials.

    Science.gov (United States)

    Kim, Kanguk; Zhu, Wei; Qu, Xin; Aaronson, Chase; McCall, William R; Chen, Shaochen; Sirbuly, Donald J

    2014-10-28

    Here we demonstrate that efficient piezoelectric nanoparticle-polymer composite materials can be optically printed into three-dimensional (3D) microstructures using digital projection printing. Piezoelectric polymers were fabricated by incorporating barium titanate (BaTiO3, BTO) nanoparticles into photoliable polymer solutions such as polyethylene glycol diacrylate and exposing to digital optical masks that could be dynamically altered to generate user-defined 3D microstructures. To enhance the mechanical-to-electrical conversion efficiency of the composites, the BTO nanoparticles were chemically modified with acrylate surface groups, which formed direct covalent linkages with the polymer matrix under light exposure. The composites with a 10% mass loading of the chemically modified BTO nanoparticles showed piezoelectric coefficients (d(33)) of ∼ 40 pC/N, which were over 10 times larger than composites synthesized with unmodified BTO nanoparticles and over 2 times larger than composites containing unmodified BTO nanoparticles and carbon nanotubes to boost mechanical stress transfer efficiencies. These results not only provide a tool for fabricating 3D piezoelectric polymers but lay the groundwork for creating highly efficient piezoelectric polymer materials via nanointerfacial tuning.

  3. A new way to characterize autostereoscopic 3D displays using Fourier optics instrument

    Science.gov (United States)

    Boher, P.; Leroux, T.; Bignon, T.; Collomb-Patton, V.

    2009-02-01

    Auto-stereoscopic 3D displays offer presently the most attractive solution for entertainment and media consumption. Despite many studies devoted to this type of technology, efficient characterization methods are still missing. We present here an innovative optical method based on high angular resolution viewing angle measurements with Fourier optics instrument. This type of instrument allows measuring the full viewing angle aperture of the display very rapidly and accurately. The system used in the study presents a very high angular resolution below 0.04 degree which is mandatory for this type of characterization. We can predict from the luminance or color viewing angle measurements of the different views of the 3D display what will be seen by an observer at any position in front of the display. Quality criteria are derived both for 3D and standard properties at any observer position and Qualified Stereo Viewing Space (QSVS) is determined. The use of viewing angle measurements at different locations on the display surface during the observer computation gives more realistic estimation of QSVS and ensures its validity for the entire display surface. Optimum viewing position, viewing freedom, color shifts and standard parameters are also quantified. Simulation of the moire issues can be made leading to a better understanding of their origin.

  4. Optically clearing tissue as an initial step for 3D imaging of core biopsies to diagnose pancreatic cancer

    Science.gov (United States)

    Das, Ronnie; Agrawal, Aishwarya; Upton, Melissa P.; Seibel, Eric J.

    2014-02-01

    The pancreas is a deeply seated organ requiring endoscopically, or radiologically guided biopsies for tissue diagnosis. Current approaches include either fine needle aspiration biopsy (FNA) for cytologic evaluation, or core needle biopsies (CBs), which comprise of tissue cores (L = 1-2 cm, D = 0.4-2.0 mm) for examination by brightfield microscopy. Between procurement and visualization, biospecimens must be processed, sectioned and mounted on glass slides for 2D visualization. Optical information about the native tissue state can be lost with each procedural step and a pathologist cannot appreciate 3D organization from 2D observations of tissue sections 1-8 μm in thickness. Therefore, how might histological disease assessment improve if entire, intact CBs could be imaged in both brightfield and 3D? CBs are mechanically delicate; therefore, a simple device was made to cut intact, simulated CBs (L = 1-2 cm, D = 0.2-0.8 mm) from porcine pancreas. After CBs were laid flat in a chamber, z-stack images at 20x and 40x were acquired through the sample with and without the application of an optical clearing agent (FocusClear®). Intensity of transmitted light increased by 5-15x and islet structures unique to pancreas were clearly visualized 250-300 μm beneath the tissue surface. CBs were then placed in index matching square capillary tubes filled with FocusClear® and a standard optical clearing agent. Brightfield z-stack images were then acquired to present 3D visualization of the CB to the pathologist.

  5. Three-Axis Distributed Fiber Optic Strain Measurement in 3D Woven Composite Structures

    Science.gov (United States)

    Castellucci, Matt; Klute, Sandra; Lally, Evan M.; Froggatt, Mark E.; Lowry, David

    2013-01-01

    Recent advancements in composite materials technologies have broken further from traditional designs and require advanced instrumentation and analysis capabilities. Success or failure is highly dependent on design analysis and manufacturing processes. By monitoring smart structures throughout manufacturing and service life, residual and operational stresses can be assessed and structural integrity maintained. Composite smart structures can be manufactured by integrating fiber optic sensors into existing composite materials processes such as ply layup, filament winding and three-dimensional weaving. In this work optical fiber was integrated into 3D woven composite parts at a commercial woven products manufacturing facility. The fiber was then used to monitor the structures during a VARTM manufacturing process, and subsequent static and dynamic testing. Low cost telecommunications-grade optical fiber acts as the sensor using a high resolution commercial Optical Frequency Domain Reflectometer (OFDR) system providing distributed strain measurement at spatial resolutions as low as 2mm. Strain measurements using the optical fiber sensors are correlated to resistive strain gage measurements during static structural loading. Keywords: fiber optic, distributed strain sensing, Rayleigh scatter, optical frequency domain reflectometry

  6. Development of scanning laser sensor for underwater 3D imaging with the coaxial optics

    Science.gov (United States)

    Ochimizu, Hideaki; Imaki, Masaharu; Kameyama, Shumpei; Saito, Takashi; Ishibashi, Shoujirou; Yoshida, Hiroshi

    2014-06-01

    We have developed the scanning laser sensor for underwater 3-D imaging which has the wide scanning angle of 120º (Horizontal) x 30º (Vertical) with the compact size of 25 cm diameter and 60 cm long. Our system has a dome lens and a coaxial optics to realize both the wide scanning angle and the compactness. The system also has the feature in the sensitivity time control (STC) circuit, in which the receiving gain is increased according to the time of flight. The STC circuit contributes to detect a small signal by suppressing the unwanted signals backscattered by marine snows. We demonstrated the system performance in the pool, and confirmed the 3-D imaging with the distance of 20 m. Furthermore, the system was mounted on the autonomous underwater vehicle (AUV), and demonstrated the seafloor mapping at the depth of 100 m in the ocean.

  7. Encryption of digital hologram of 3-D object by virtual optics

    Science.gov (United States)

    Kim, Hyun; Kim, Do-Hyung; Lee, Yeon H.

    2004-10-01

    We present a simple technique to encrypt a digital hologram of a three-dimensional (3-D) object into a stationary white noise by use of virtual optics and then to decrypt it digitally. In this technique the digital hologram is encrypted by our attaching a computer-generated random phase key to it and then forcing them to Fresnel propagate to an arbitrary plane with an illuminating plane wave of a given wavelength. It is shown in experiments that the proposed system is robust to blind decryptions without knowing the correct propagation distance, wavelength, and phase key used in the encryption. Signal-to-noise ratio (SNR) and mean-square-error (MSE) of the reconstructed 3-D object are calculated for various decryption distances and wavelengths, and partial use of the correct phase key.

  8. Intrathoracic tumour motion estimation from CT imaging using the 3D optical flow method

    Science.gov (United States)

    Guerrero, Thomas; Zhang, Geoffrey; Huang, Tzung-Chi; Lin, Kang-Ping

    2004-09-01

    The purpose of this work was to develop and validate an automated method for intrathoracic tumour motion estimation from breath-hold computed tomography (BH CT) imaging using the three-dimensional optical flow method (3D OFM). A modified 3D OFM algorithm provided 3D displacement vectors for each voxel which were used to map tumour voxels on expiration BH CT onto inspiration BH CT images. A thoracic phantom and simulated expiration/inspiration BH CT pairs were used for validation. The 3D OFM was applied to the measured inspiration and expiration BH CT images from one lung cancer and one oesophageal cancer patient. The resulting displacements were plotted in histogram format and analysed to provide insight regarding the tumour motion. The phantom tumour displacement was measured as 1.20 and 2.40 cm with full-width at tenth maximum (FWTM) for the distribution of displacement estimates of 0.008 and 0.006 cm, respectively. The maximum error of any single voxel's motion estimate was 1.1 mm along the z-dimension or approximately one-third of the z-dimension voxel size. The simulated BH CT pairs revealed an rms error of less than 0.25 mm. The displacement of the oesophageal tumours was nonuniform and up to 1.4 cm, this was a new finding. A lung tumour maximum displacement of 2.4 cm was found in the case evaluated. In conclusion, 3D OFM provided an accurate estimation of intrathoracic tumour motion, with estimated errors less than the voxel dimension in a simulated motion phantom study. Surprisingly, oesophageal tumour motion was large and nonuniform, with greatest motion occurring at the gastro-oesophageal junction. Presented at The IASTED Second International Conference on Biomedical Engineering (BioMED 2004), Innsbruck, Austria, 16-18 February 2004.

  9. Extended volume and surface scatterometer for optical characterization of 3D-printed elements

    Science.gov (United States)

    Dannenberg, Florian; Uebeler, Denise; Weiß, Jürgen; Pescoller, Lukas; Weyer, Cornelia; Hahlweg, Cornelius

    2015-09-01

    The use of 3d printing technology seems to be a promising way for low cost prototyping, not only of mechanical, but also of optical components or systems. It is especially useful in applications where customized equipment repeatedly is subject to immediate destruction, as in experimental detonics and the like. Due to the nature of the 3D-printing process, there is a certain inner texture and therefore inhomogeneous optical behaviour to be taken into account, which also indicates mechanical anisotropy. Recent investigations are dedicated to quantification of optical properties of such printed bodies and derivation of corresponding optimization strategies for the printing process. Beside mounting, alignment and illumination means, also refractive and reflective elements are subject to investigation. The proposed measurement methods are based on an imaging nearfield scatterometer for combined volume and surface scatter measurements as proposed in previous papers. In continuation of last year's paper on the use of near field imaging, which basically is a reflective shadowgraph method, for characterization of glossy surfaces like printed matter or laminated material, further developments are discussed. The device has been extended for observation of photoelasticity effects and therefore homogeneity of polarization behaviour. A refined experimental set-up is introduced. Variation of plane of focus and incident angle are used for separation of various the images of the layers of the surface under test, cross and parallel polarization techniques are applied. Practical examples from current research studies are included.

  10. Fiber optic vibration sensor for high-power electric machines realized using 3D printing technology

    Science.gov (United States)

    Igrec, Bojan; Bosiljevac, Marko; Sipus, Zvonimir; Babic, Dubravko; Rudan, Smiljko

    2016-03-01

    The objective of this work was to demonstrate a lightweight and inexpensive fiber-optic vibration sensor, built using 3D printing technology, for high-power electric machines and similar applications. The working principle is based on modulating the light intensity using a blade attached to a bendable membrane. The sensor prototype was manufactured using PolyJet Matrix technology with DM 8515 Grey 35 Polymer. The sensor shows linear response, expected bandwidth (< 150 Hz), and from our measurements we estimated the damping ratio for used polymer to be ζ ≍ 0.019. The developed prototype is simple to assemble, adjust, calibrate and repair.

  11. 3D laser inspection of fuel assembly grid spacers for nuclear reactors based on diffractive optical elements

    Science.gov (United States)

    Finogenov, L. V.; Lemeshko, Yu A.; Zav'yalov, P. S.; Chugui, Yu V.

    2007-06-01

    Ensuring the safety and high operation reliability of nuclear reactors takes 100% inspection of geometrical parameters of fuel assemblies, which include the grid spacers performed as a cellular structure with fuel elements. The required grid spacer geometry of assembly in the transverse and longitudinal cross sections is extremely important for maintaining the necessary heat regime. A universal method for 3D grid spacer inspection using a diffractive optical element (DOE), which generates as the structural illumination a multiple-ring pattern on the inner surface of a grid spacer cell, is investigated. Using some DOEs one can inspect the nomenclature of all produced grids. A special objective has been developed for forming the inner surface cell image. The problems of diffractive elements synthesis, projecting optics calculation, adjusting methods as well as calibration of the experimental measuring system are considered. The algorithms for image processing for different constructive elements of grids (cell, channel hole, outer grid spacer rim) and the experimental results are presented.

  12. Hydrothermal synthesis, characterization and optical properties of 3D flower like indium sulfide nanostructures

    Science.gov (United States)

    Ghaderi Sheikhi abadi, Parvaneh; Salavati-Niasari, Masoud; Davar, Fatemeh

    2013-01-01

    High-quality and high-yield 3D flower like indium sulfide (In2S3) nanostructures with cubic structure were synthesized by a wet chemical route, without using any surfactant and organic solvents at 160 °C for 12 h, by using InCl3 and 2-aminothiophenol (2-ATP) as starting reagents. The obtained In2S3 with different morphologies and size was characterized by X-ray diffraction pattern (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and ultraviolet-visible (UV-vis) spectroscopy. The effects of reaction parameters, such as temperature, precursor concentration and reaction time on the morphology, and particle size of products were investigated. Our experimental results showed that temperature and time reaction played key roles in the final morphology of In2S3. The morphology of In2S3 structures could be changed from one-dimensional (1D) structures to three-dimensional (3D) structures by increasing reaction time to 24 h. In the present study the optical properties 3D In2S3 structures were investigated.

  13. 3D Woven Structures and Their Weave Design with Changing Cross-section on Warp and Weft Direction

    Institute of Scientific and Technical Information of China (English)

    ZHU Cheng-yan

    2004-01-01

    With 3D orthogonal and pseudo-orthogonal weaves, woven sructures with lengthwise and widthwise changing cross section on one side or both sides of the structure can be constructed. The weave formation and the looming draft creation are discussed in this paper which can be used as references to manufacture woven preforms with changing cross sections.

  14. Three-axis distributed fiber optic strain measurement in 3D woven composite structures

    Science.gov (United States)

    Castellucci, Matt; Klute, Sandra; Lally, Evan M.; Froggatt, Mark E.; Lowry, David

    2013-03-01

    Recent advancements in composite materials technologies have broken further from traditional designs and require advanced instrumentation and analysis capabilities. Success or failure is highly dependent on design analysis and manufacturing processes. By monitoring smart structures throughout manufacturing and service life, residual and operational stresses can be assessed and structural integrity maintained. Composite smart structures can be manufactured by integrating fiber optic sensors into existing composite materials processes such as ply layup, filament winding and three-dimensional weaving. In this work optical fiber was integrated into 3D woven composite parts at a commercial woven products manufacturing facility. The fiber was then used to monitor the structures during a VARTM manufacturing process, and subsequent static and dynamic testing. Low cost telecommunications-grade optical fiber acts as the sensor using a high resolution commercial Optical Frequency Domain Reflectometer (OFDR) system providing distributed strain measurement at spatial resolutions as low as 2mm. Strain measurements using the optical fiber sensors are correlated to resistive strain gage measurements during static structural loading.

  15. 3D automatic segmentation method for retinal optical coherence tomography volume data using boundary surface enhancement

    Directory of Open Access Journals (Sweden)

    Yankui Sun

    2016-03-01

    Full Text Available With the introduction of spectral-domain optical coherence tomography (SD-OCT, much larger image datasets are routinely acquired compared to what was possible using the previous generation of time-domain OCT. Thus, there is a critical need for the development of three-dimensional (3D segmentation methods for processing these data. We present here a novel 3D automatic segmentation method for retinal OCT volume data. Briefly, to segment a boundary surface, two OCT volume datasets are obtained by using a 3D smoothing filter and a 3D differential filter. Their linear combination is then calculated to generate new volume data with an enhanced boundary surface, where pixel intensity, boundary position information, and intensity changes on both sides of the boundary surface are used simultaneously. Next, preliminary discrete boundary points are detected from the A-Scans of the volume data. Finally, surface smoothness constraints and a dynamic threshold are applied to obtain a smoothed boundary surface by correcting a small number of error points. Our method can extract retinal layer boundary surfaces sequentially with a decreasing search region of volume data. We performed automatic segmentation on eight human OCT volume datasets acquired from a commercial Spectralis OCT system, where each volume of datasets contains 97 OCT B-Scan images with a resolution of 496×512 (each B-Scan comprising 512 A-Scans containing 496 pixels; experimental results show that this method can accurately segment seven layer boundary surfaces in normal as well as some abnormal eyes.

  16. 3D shape measurement of optical free-form surface based on fringe projection

    Science.gov (United States)

    Li, Shaohui; Liu, Shugui; Zhang, Hongwei

    2011-05-01

    Present a novel method of 3D shape measurement of optical free-from surface based on fringe projection. A virtual reference surface is proposed which can be used to improve the detection efficiency and realize the automation of measuring process. Sinusoidal fringe patterns are projected to the high reflected surface of the measured object. The deflection fringe patterns that modulated by the object surface are captured by the CCD camera. The slope information can be obtained by analyzing the relationship between the phase deflectometry and the slope of the object surface. The wave-front reconstruction method is used to reconstruct the surface. With the application of fringe projection technology the accuracy of optical free-form surfaces measurement could reach the level of tens of micrometer or even micrometer.

  17. Mixtures of 3D disperse systems with nano- and micro-particles: Optical characterization

    Directory of Open Access Journals (Sweden)

    Alexandra G. Bezrukova

    2016-12-01

    Full Text Available Multiparameter analysis of simultaneous optical data for systems of nano- and/or micro-particles (3D disperse systems, dispersions, colloids, ensembles by presentation of system characteristics as N-dimensional vectors of optical parameters (ND-vectors can help to elucidate changes in the state of the particles in systems. In this paper, the application of the ND-vector approach is shown on the examples of dispersion mixtures: a mixture of influenza virus particles with albumin proteins (as a model of dispersions at the process of vaccine production; a mixture of coli bacillus and clay dispersions (as natural water model. This approach can serve as an on-line control platform for the management of technological processes with mixtures.

  18. Optical-CT 3D Dosimetry Using Fresnel Lenses with Minimal Refractive-Index Matching Fluid.

    Directory of Open Access Journals (Sweden)

    Steven Bache

    Full Text Available Telecentric optical computed tomography (optical-CT is a state-of-the-art method for visualizing and quantifying 3-dimensional dose distributions in radiochromic dosimeters. In this work a prototype telecentric system (DFOS-Duke Fresnel Optical-CT Scanner is evaluated which incorporates two substantial design changes: the use of Fresnel lenses (reducing lens costs from $10-30K t0 $1-3K and the use of a 'solid tank' (which reduces noise, and the volume of refractively matched fluid from 1 ltr to 10 cc. The efficacy of DFOS was evaluated by direct comparison against commissioned scanners in our lab. Measured dose distributions from all systems were compared against the predicted dose distributions from a commissioned treatment planning system (TPS. Three treatment plans were investigated including a simple four-field box treatment, a multiple small field delivery, and a complex IMRT treatment. Dosimeters were imaged within 2 h post irradiation, using consistent scanning techniques (360 projections acquired at 1 degree intervals, reconstruction at 2mm. DFOS efficacy was evaluated through inspection of dose line-profiles, and 2D and 3D dose and gamma maps. DFOS/TPS gamma pass rates with 3%/3mm dose difference/distance-to-agreement criteria ranged from 89.3% to 92.2%, compared to from 95.6% to 99.0% obtained with the commissioned system. The 3D gamma pass rate between the commissioned system and DFOS was 98.2%. The typical noise rates in DFOS reconstructions were up to 3%, compared to under 2% for the commissioned system. In conclusion, while the introduction of a solid tank proved advantageous with regards to cost and convenience, further work is required to improve the image quality and dose reconstruction accuracy of the new DFOS optical-CT system.

  19. 3-D neurohistology of transparent tongue in health and injury with optical clearing

    Directory of Open Access Journals (Sweden)

    Tzu-En eHua

    2013-10-01

    Full Text Available Tongue receives extensive innervation to perform taste, sensory, and motor functions. Details of the tongue neuroanatomy and its plasticity in response to injury offer insights to investigate tongue neurophysiology and pathophysiology. However, due to the dispersed nature of the neural network, standard histology cannot provide a global view of the innervation. We prepared transparent mouse tongue by optical clearing to reveal the spatial features of the tongue innervation and its remodeling in injury. Immunostaining of neuronal markers, including PGP9.5 (pan-neuronal marker, calcitonin gene-related peptide (sensory nerves, tyrosine hydroxylase (sympathetic nerves, and vesicular acetylcholine transporter (cholinergic parasympathetic nerves and neuromuscular junctions, was combined with vessel painting and nuclear staining to label the tissue network and architecture. The tongue specimens were immersed in the optical-clearing solution to facilitate photon penetration for 3-dimensiontal (3-D confocal microscopy. Taking advantage of the transparent tissue, we simultaneously revealed the tongue microstructure and innervation with subcellular-level resolution. 3-D projection of the papillary neurovascular complex and taste bud innervation was used to demonstrate the spatial features of tongue mucosa and the panoramic imaging approach. In the tongue injury induced by 4-nitroquinoline 1-oxide administration in the drinking water, we observed neural tissue remodeling in response to the changes of mucosal and muscular structures. Neural networks and the neuromuscular junctions were both found rearranged at the peri-lesional region, suggesting the nerve-lesion interactions in response to injury. Overall, this new tongue histological approach provides a useful tool for 3-D imaging of neural tissues to better characterize their roles with the mucosal and muscular components in health and disease.

  20. Miniaturization of an optical 3D sensor by additive manufacture of metallic mirrors

    Science.gov (United States)

    Sigel, Andre; Merkel, Markus; Heinrich, Andreas

    2017-06-01

    Based on progress in the field of additive manufacturing optical components can now be printed with rapid prototyping technologies. In this contribution the possibilities of rapid prototyping for optical metrology are exemplified by the fabrication of miniaturized reflectors and the construction of a miniaturized metrology system designed for an industrial metrology application. Focusing on the manufacturing and post processing steps the process chain to fabricate the miniaturized mirror is described. This includes an evaluation of the mirror based on roughness measurements. The reflectors are later utilized in a miniaturized sensor system to scan the interior of small pipes. The additively manufactured mirror is used in the metrology system to create a defined sampling signal within the cavity. Thereby the sensor system generates a point cloud of the internal surfaces using a 3D acquisition algorithm based on the laser triangulation principle. Part of this contribution will be the setup, the 3D acquisition and calibration principle as well as an evaluation of the metrology system. To optimize the point cloud acquisition three different hardware setups were designed using different cameras and calibration algorithms. These three approaches are evaluated and compared.

  1. Optical lens-shift design for increasing spatial resolution of 3D ToF cameras

    Science.gov (United States)

    Lietz, Henrik; Hassan, M. Muneeb; Eberhardt, Jörg

    2017-02-01

    Sensor resolution of 3D time-of-flight (ToF) outdoor-capable cameras is strongly limited because of its large pixel dimensions. Computational imaging permits enhancement of the optical system's resolving power without changing physical sensor properties. Super-resolution (SR) algorithms superimpose several sub-pixel-shifted low-resolution (LR) images to overcome the system's limited spatial sampling rate. In this paper, we propose a novel opto-mechanical system to implement sub-pixel shifts by moving an optical lens. This method is more flexible in terms of implementing SR techniques than current sensor-shift approaches. In addition, we describe a SR observation model that has been optimized for the use of LR 3D ToF cameras. A state-of-the-art iteratively reweighted minimization algorithm executes the SR process. It is proven that our method achieves nearly the same resolution increase as if the pixel area would be halved physically. Resolution enhancement is measured objectively for amplitude images of a static object scene.

  2. Optically Clear and Resilient Free-Form μ-Optics 3D-Printed via Ultrafast Laser Lithography

    Science.gov (United States)

    Jonušauskas, Linas; Gailevičius, Darius; Mikoliūnaitė, Lina; Sakalauskas, Danas; Šakirzanovas, Simas; Juodkazis, Saulius; Malinauskas, Mangirdas

    2017-01-01

    We introduce optically clear and resilient free-form micro-optical components of pure (non-photosensitized) organic-inorganic SZ2080 material made by femtosecond 3D laser lithography (3DLL). This is advantageous for rapid printing of 3D micro-/nano-optics, including their integration directly onto optical fibers. A systematic study of the fabrication peculiarities and quality of resultant structures is performed. Comparison of microlens resiliency to continuous wave (CW) and femtosecond pulsed exposure is determined. Experimental results prove that pure SZ2080 is ∼20 fold more resistant to high irradiance as compared with standard lithographic material (SU8) and can sustain up to 1.91 GW/cm2 intensity. 3DLL is a promising manufacturing approach for high-intensity micro-optics for emerging fields in astro-photonics and atto-second pulse generation. Additionally, pyrolysis is employed to homogeneously shrink structures up to 40% by removing organic SZ2080 constituents. This opens a promising route towards downscaling photonic lattices and the creation of mechanically robust glass-ceramic microstructures. PMID:28772389

  3. Optically Clear and Resilient Free-Form µ-Optics 3D-Printed via Ultrafast Laser Lithography.

    Science.gov (United States)

    Jonušauskas, Linas; Gailevičius, Darius; Mikoliūnaitė, Lina; Sakalauskas, Danas; Šakirzanovas, Simas; Juodkazis, Saulius; Malinauskas, Mangirdas

    2017-01-02

    We introduce optically clear and resilient free-form micro-optical components of pure (non-photosensitized) organic-inorganic SZ2080 material made by femtosecond 3D laser lithography (3DLL). This is advantageous for rapid printing of 3D micro-/nano-optics, including their integration directly onto optical fibers. A systematic study of the fabrication peculiarities and quality of resultant structures is performed. Comparison of microlens resiliency to continuous wave (CW) and femtosecond pulsed exposure is determined. Experimental results prove that pure SZ2080 is ∼20 fold more resistant to high irradiance as compared with standard lithographic material (SU8) and can sustain up to 1.91 GW/cm² intensity. 3DLL is a promising manufacturing approach for high-intensity micro-optics for emerging fields in astro-photonics and atto-second pulse generation. Additionally, pyrolysis is employed to homogeneously shrink structures up to 40% by removing organic SZ2080 constituents. This opens a promising route towards downscaling photonic lattices and the creation of mechanically robust glass-ceramic microstructures.

  4. Optically Clear and Resilient Free-Form µ-Optics 3D-Printed via Ultrafast Laser Lithography

    Directory of Open Access Journals (Sweden)

    Linas Jonušauskas

    2017-01-01

    Full Text Available We introduce optically clear and resilient free-form micro-optical components of pure (non-photosensitized organic-inorganic SZ2080 material made by femtosecond 3D laser lithography (3DLL. This is advantageous for rapid printing of 3D micro-/nano-optics, including their integration directly onto optical fibers. A systematic study of the fabrication peculiarities and quality of resultant structures is performed. Comparison of microlens resiliency to continuous wave (CW and femtosecond pulsed exposure is determined. Experimental results prove that pure SZ2080 is ∼20 fold more resistant to high irradiance as compared with standard lithographic material (SU8 and can sustain up to 1.91 GW/cm2 intensity. 3DLL is a promising manufacturing approach for high-intensity micro-optics for emerging fields in astro-photonics and atto-second pulse generation. Additionally, pyrolysis is employed to homogeneously shrink structures up to 40% by removing organic SZ2080 constituents. This opens a promising route towards downscaling photonic lattices and the creation of mechanically robust glass-ceramic microstructures.

  5. Pre-Processing of Point-Data from Contact and Optical 3D Digitization Sensors

    Directory of Open Access Journals (Sweden)

    Mirko Soković

    2012-01-01

    Full Text Available Contemporary 3D digitization systems employed by reverse engineering (RE feature ever-growing scanning speeds with the ability to generate large quantity of points in a unit of time. Although advantageous for the quality and efficiency of RE modelling, the huge number of point datas can turn into a serious practical problem, later on, when the CAD model is generated. In addition, 3D digitization processes are very often plagued by measuring errors, which can be attributed to the very nature of measuring systems, various characteristics of the digitized objects and subjective errors by the operator, which also contribute to problems in the CAD model generation process. This paper presents an integral system for the pre-processing of point data, i.e., filtering, smoothing and reduction, based on a cross-sectional RE approach. In the course of the proposed system development, major emphasis was placed on the module for point data reduction, which was designed according to a novel approach with integrated deviation analysis and fuzzy logic reasoning. The developed system was verified through its application on three case studies, on point data from objects of versatile geometries obtained by contact and laser 3D digitization systems. The obtained results demonstrate the effectiveness of the system.

  6. Estimating elastic moduli of rocks from thin sections: Digital rock study of 3D properties from 2D images

    Science.gov (United States)

    Saxena, Nishank; Mavko, Gary

    2016-03-01

    Estimation of elastic rock moduli using 2D plane strain computations from thin sections has several numerical and analytical advantages over using 3D rock images, including faster computation, smaller memory requirements, and the availability of cheap thin sections. These advantages, however, must be weighed against the estimation accuracy of 3D rock properties from thin sections. We present a new method for predicting elastic properties of natural rocks using thin sections. Our method is based on a simple power-law transform that correlates computed 2D thin section moduli and the corresponding 3D rock moduli. The validity of this transform is established using a dataset comprised of FEM-computed elastic moduli of rock samples from various geologic formations, including Fontainebleau sandstone, Berea sandstone, Bituminous sand, and Grossmont carbonate. We note that using the power-law transform with a power-law coefficient between 0.4-0.6 contains 2D moduli to 3D moduli transformations for all rocks that are considered in this study. We also find that reliable estimates of P-wave (Vp) and S-wave velocity (Vs) trends can be obtained using 2D thin sections.

  7. Fiber based optical tweezers for simultaneous in situ force exertion and measurements in a 3D polyacrylamide gel compartment.

    Science.gov (United States)

    Ti, Chaoyang; Thomas, Gawain M; Ren, Yundong; Zhang, Rui; Wen, Qi; Liu, Yuxiang

    2015-07-01

    Optical tweezers play an important role in biological applications. However, it is difficult for traditional optical tweezers based on objective lenses to work in a three-dimensional (3D) solid far away from the substrate. In this work, we develop a fiber based optical trapping system, namely inclined dual fiber optical tweezers, that can simultaneously apply and measure forces both in water and in a 3D polyacrylamide gel matrix. In addition, we demonstrate in situ, non-invasive characterization of local mechanical properties of polyacrylamide gel by measurements on an embedded bead. The fiber optical tweezers measurements agree well with those of atomic force microscopy (AFM). The inclined dual fiber optical tweezers provide a promising and versatile tool for cell mechanics study in 3D environments.

  8. The 3-D problem of the elastic wavequide with the rectungular cross section

    Directory of Open Access Journals (Sweden)

    Belubekyan V.M.

    2015-12-01

    Full Text Available The propogation of the 3-D elastic waves in the elastic prism is investigated. The boundary conditions are established for the dividing of the equations variables. The conditions of the existence of the localized vibrations near the semi-infinite wavequides are received.

  9. Reverse engineering of B-pillar with 3D optical scanning for manufacturing of non-uniform thickness part

    Directory of Open Access Journals (Sweden)

    Islam Md. Tasbirul

    2017-01-01

    Full Text Available This paper presents reverse engineering (RE of a complex automobile structural part, B-pillar. As a major part of the automobile body-in white (BiW, B-pillar has substantial opportunity for weight reduction by introducing variable thickness across its sections. To leverage such potential, an existing B-pillar was reverse engineered with a 3D optical scanner and computer aided design (CAD application. First, digital data (i.e. in meshes of exiting B-pillar was obtained by the scanner, and subsequently, this information was utilized in developing a complete 3D CAD model. CATIA V5 was used in the modeling where some of the essential work benches were “Digitized Shape Editor”, “Quick Surface Reconstruction”, “Wireframe and Surface Design”, “Freestyle”, “Generation Shape Design” and “Part design”. In the final CAD design, five different thicknesses were incorporated successfully in order to get a B-pillar with non-uniform sections. This research opened opportunities for thickness optimization and mold tooling design in real time manufacturing.

  10. Axial-Stereo 3-D Optical Metrology for Inner Profile of Pipes Using a Scanning Laser Endoscope.

    Science.gov (United States)

    Gong, Yuanzheng; Johnston, Richard S; Melville, C David; Seibel, Eric J

    As the rapid progress in the development of optoelectronic components and computational power, 3D optical metrology becomes more and more popular in manufacturing and quality control due to its flexibility and high speed. However, most of the optical metrology methods are limited to external surfaces. This paper proposed a new approach to measure tiny internal 3D surfaces with a scanning fiber endoscope and axial-stereo vision algorithm. A dense, accurate point cloud of internally machined threads was generated to compare with its corresponding X-ray 3D data as ground truth, and the quantification was analyzed by Iterative Closest Points algorithm.

  11. A novel lithography process for 3D (three-dimensional) interconnect using an optical direct-writing exposure system

    Science.gov (United States)

    Azuma, T.; Sekiguchi, M.; Matsuo, M.; Kawasaki, A.; Hagiwara, K.; Matsui, H.; Kawamura, N.; Kishimoto, K.; Nakamura, A.; Washio, Y.

    2010-03-01

    A novel lithography process for 3D (Three-dimensional) interconnect was developed using an optical direct-writing exposure tool. A reflective IR (Infra-red) alignment system allows a direct detection of alignment marks both on front-side and back-side of wafer, and consequently allows feasible micro-fabrication for 3D interconnect using the reversed wafer. A combination of the optical direct-writing exposure tool of Dainippon Screen MFG. Co., Ltd. with the reflective IR alignment system and a high aspect chemically amplified resist of Tokyo Ohka Kogyo Co., Ltd. provides the lithography process exclusively for 12-inch wafer level 3D interconnect.

  12. Hand-guided 3D surface acquisition by combining simple light sectioning with real-time algorithms

    CERN Document Server

    Arold, Oliver; Willomitzer, Florian; Häusler, Gerd

    2014-01-01

    Precise 3D measurements of rigid surfaces are desired in many fields of application like quality control or surgery. Often, views from all around the object have to be acquired for a full 3D description of the object surface. We present a sensor principle called "Flying Triangulation" which avoids an elaborate "stop-and-go" procedure. It combines a low-cost classical light-section sensor with an algorithmic pipeline. A hand-guided sensor captures a continuous movie of 3D views while being moved around the object. The views are automatically aligned and the acquired 3D model is displayed in real time. In contrast to most existing sensors no bandwidth is wasted for spatial or temporal encoding of the projected lines. Nor is an expensive color camera necessary for 3D acquisition. The achievable measurement uncertainty and lateral resolution of the generated 3D data is merely limited by physics. An alternating projection of vertical and horizontal lines guarantees the existence of corresponding points in successi...

  13. Numerical and Experimental Verification of a 3D Quasi-Optical System

    Directory of Open Access Journals (Sweden)

    Zejian Lu

    2015-01-01

    Full Text Available A modular and efficient Gaussian beam (GB analysis method, incorporating frame-based Gabor transformation, GB reflection, and a 3D GB diffraction technique, was developed to analyze both the reflectors and frequency selective surface (FSS in quasi-optical (QO system. To validate this analysis method, a 3D dual-channel QO system operating at 183 and 325 GHz was designed and tested. The proposed QO system employs two-layer structure with a FSS of perforated hexagonal array transmitting the 325 GHz signal on the top layer while diverting the 183 GHz signal to the bottom layer. Measured results of the system demonstrate that the agreement can be achieved down to −30 dB signal level for both channels in the far field pattern. The discrepancy between the calculation and measurement is within 2 dB in the main beam region (2.5 times −3 dB beamwidth, verifying the effectiveness and accuracy of the proposed method.

  14. 3D micro-optical elements for generation of tightly focused vortex beams

    Directory of Open Access Journals (Sweden)

    Balčytis Armandas

    2015-01-01

    Full Text Available Orbital angular momentum carrying light beams are usedfor optical trapping and manipulation. This emerging trend provides new challenges involving device miniaturization for improved performance and enhanced functionality at the microscale. Here we discus a new fabrication method based on combining the additive 3D structuring capability laser photopolymerization and the substractive sub-wavelength resolution patterning of focused ion beam lithography to produce micro-optical elements capable of compound functionality. As a case in point of this approach binary spiral zone pattern based high numerical aperture micro-lenses capable of generating topological charge carrying tightly focused vortex beams in a single wavefront transformation step are presented. The devices were modelled using finite-difference time-domain simulations, and the theoretical predictions were verified by optically characterizing the propagation properties of light transmitted through the fabricated structures. The resulting devices had focal lengths close to the predicted values of f = 18 µm and f = 13 µm as well as topological charge ℓ dependent vortex focal spot sizes of ~ 1:3 µm and ~ 2:0 µm for ℓ = 1 and ℓ = 2 respectively.

  15. 3D optical phase reconstruction within PMMA samples using a spectral OCT system

    Science.gov (United States)

    Briones-R., Manuel d. J.; De La Torre-Ibarra, Manuel H.; Mendoza Santoyo, Fernando

    2015-08-01

    The optical coherence tomography (OCT) technique has proved to be a useful method in biomedical areas such as ophthalmology, dentistry, dermatology, among many others. In all these applications the main target is to reconstruct the internal structure of the samples from which the physician's expertise may recognize and diagnose the existence of a disease. Nowadays OCT has been applied one step further and is used to study the mechanics of some particular type of materials, where the resulting information involves more than just their internal structure and the measurement of parameters such as displacements, stress and strain. Here we report on a spectral OCT system used to image the internal 3D microstructure and displacement maps from a PMMA (Poly-methyl-methacrylate) sample, subjected to a deformation by a controlled three point bending and tilting. The internal mechanical response of the polymer is shown as consecutive 2D images.

  16. Analytical models of icosahedral shells for 3D optical imaging of viruses

    CERN Document Server

    Jafarpour, Aliakbar

    2014-01-01

    A modulated icosahedral shell with an inclusion is a concise description of many viruses, including recently-discovered large double-stranded DNA ones. Many X-ray scattering patterns of such viruses show major polygonal fringes, which can be reproduced in image reconstruction with a homogeneous icosahedral shell. A key question regarding a low-resolution reconstruction is how to introduce further changes to the 3D profile in an efficient way with only a few parameters. Here, we derive and compile different analytical models of such an object with consideration of practical optical setups and typical structures of such viruses. The benefits of such models include 1) inherent filtering and suppressing different numerical errors of a discrete grid, 2) providing a concise and meaningful set of descriptors for feature extraction in high-throughput classification/sorting and higher-resolution cumulative reconstructions, 3) disentangling (physical) resolution from (numerical) discretization step and having a vector ...

  17. Full optical characterization of autostereoscopic 3D displays using local viewing angle and imaging measurements

    Science.gov (United States)

    Boher, Pierre; Leroux, Thierry; Bignon, Thibault; Collomb-Patton, Véronique

    2012-03-01

    Two commercial auto-stereoscopic 3D displays are characterized a using Fourier optics viewing angle system and an imaging video-luminance-meter. One display has a fixed emissive configuration and the other adapts its emission to the observer position using head tracking. For a fixed emissive condition, three viewing angle measurements are performed at three positions (center, right and left). Qualified monocular and binocular viewing spaces in front of the display are deduced as well as the best working distance. The imaging system is then positioned at this working distance and crosstalk homogeneity on the entire surface of the display is measured. We show that the crosstalk is generally not optimized on all the surface of the display. Display aspect simulation using viewing angle measurements allows understanding better the origin of those crosstalk variations. Local imperfections like scratches and marks generally increase drastically the crosstalk, demonstrating that cleanliness requirements for this type of display are quite critical.

  18. Optical security and anti-counterfeiting using 3D screen printing

    Science.gov (United States)

    Wu, W. H.; Yang, W. K.; Cheng, S. H.; Kuo, M. K.; Lee, H. W.; Chang, C. C.; Jeng, G. R.; Liu, C. P.

    2007-04-01

    This work presents a novel method for optical decrypted key production by screen printing technology. The key is mainly used to decrypt encoded information hidden inside documents containing Moire patterns and integral photographic 3D auto-stereoscopic images as a second-line security file. The proposed method can also be applied as an anti-counterfeiting measure in artistic screening. Decryption is performed by matching the correct angle between the decoding key and the document with a text or a simple geometric pattern. This study presents the theoretical analysis and experimental results of the decoded key production by the best parameter combination of Moire pattern size and screen printing elements. Experimental results reveal that the proposed method can be applied in anti-counterfeit document design for the fast and low-cost production of decryption key.

  19. 3D micro-optical lens scanner made by multi-wafer bonding technology

    Science.gov (United States)

    Bargiel, S.; Gorecki, C.; Barański, M.; Passilly, N.; Wiemer, M.; Jia, C.; Frömel, J.

    2013-03-01

    We present the preliminary design, construction and technology of a microoptical, millimeter-size 3-D microlens scanner, which is a key-component for a number of optical on-chip microscopes with emphasis on the architecture of confocal microscope. The construction of the device relies on the vertical integration of micromachined building blocks: top glass lid, silicon electrostatic comb-drive X-Y and Z microactuators with integrated scanning microlenses, ceramic LTCC spacer, and bottom lid with focusing microlens. All components are connected on the wafer level only by sequential anodic bonding. The technology of through wafer vias is applied to create electrical connections through a stack of wafers. More generally, the presented bonding/connection technologies are also of a great importance for the development of various silicon-based devices based on vertical integration scheme. This approach offers a space-effective integration of complex MOEMS devices and an effective integration of various heterogeneous technologies.

  20. Particle-based optical pressure sensors for 3D pressure mapping.

    Science.gov (United States)

    Banerjee, Niladri; Xie, Yan; Chalaseni, Sandeep; Mastrangelo, Carlos H

    2015-10-01

    This paper presents particle-based optical pressure sensors for in-flow pressure sensing, especially for microfluidic environments. Three generations of pressure sensitive particles have been developed- flat planar particles, particles with integrated retroreflectors and spherical microballoon particles. The first two versions suffer from pressure measurement dependence on particles orientation in 3D space and angle of interrogation. The third generation of microspherical particles with spherical symmetry solves these problems making particle-based manometry in microfluidic environment a viable and efficient methodology. Static and dynamic pressure measurements have been performed in liquid medium for long periods of time in a pressure range of atmospheric to 40 psi. Spherical particles with radius of 12 μm and balloon-wall thickness of 0.5 μm are effective for more than 5 h in this pressure range with an error of less than 5%.

  1. High accuracy tracking of 2D/3D curved line-structures by consecutive cross-section matching

    NARCIS (Netherlands)

    Noordmans, H.J.; Smeulders, A.W.M.

    1998-01-01

    Curved 3D line-structures are found in domains such as angiography, cell biology and material science. This paper describes a new algorithm to track the line-structures with high subvoxel precision. Extra parameters determined for each cross-section are: local intensity, size, orientation and match

  2. High resolution 3D imaging of living cells with sub-optical wavelength phonons

    Science.gov (United States)

    Pérez-Cota, Fernando; Smith, Richard J.; Moradi, Emilia; Marques, Leonel; Webb, Kevin F.; Clark, Matt

    2016-12-01

    Label-free imaging of living cells below the optical diffraction limit poses great challenges for optical microscopy. Biologically relevant structural information remains below the Rayleigh limit and beyond the reach of conventional microscopes. Super-resolution techniques are typically based on the non-linear and stochastic response of fluorescent labels which can be toxic and interfere with cell function. In this paper we present, for the first time, imaging of live cells using sub-optical wavelength phonons. The axial imaging resolution of our system is determined by the acoustic wavelength (λa = λprobe/2n) and not on the NA of the optics allowing sub-optical wavelength acoustic sectioning of samples using the time of flight. The transverse resolution is currently limited to the optical spot size. The contrast mechanism is significantly determined by the mechanical properties of the cells and requires no additional contrast agent, stain or label to image the cell structure. The ability to breach the optical diffraction limit to image living cells acoustically promises to bring a new suite of imaging technologies to bear in answering exigent questions in cell biology and biomedicine.

  3. Large deformation diffeomorphic metric mapping registration of reconstructed 3D histological section images and in vivo MR images

    Directory of Open Access Journals (Sweden)

    Can Ceritoglu

    2010-05-01

    Full Text Available Our current understanding of neuroanatomical abnormalities in neuropsychiatric diseases is based largely on magnetic resonance imaging (MRI and post mortem histological analyses of the brain. Further advances in elucidating altered brain structure in these human conditions might emerge from combining MRI and histological methods. We propose a multistage method for registering 3D volumes reconstructed from histological sections to corresponding in vivo MRI volumes from the same subjects: (1 manual segmentation of white matter (WM, gray matter (GM and cerebrospinal fluid (CSF compartments in histological sections, (2 alignment of consecutive histological sections using 2D rigid transformation to construct a 3D histological image volume from the aligned sections, (3 registration of reconstructed 3D histological volumes to the corresponding 3D MRI volumes using 3D affine transformation, (4 intensity normalization of images via histogram matching and (5 registration of the volumes via intensity based Large Deformation Diffeomorphic Metric (LDDMM image matching algorithm. Here we demonstrate the utility of our method in the transfer of cytoarchitectonic information from histological sections to identify regions of interest in MRI scans of nine adult macaque brains for morphometric analyses. LDDMM improved the accuracy of the registration via decreased distances between GM/CSF surfaces after LDDMM (0.39±0.13 mm compared to distances after affine registration (0.76±0.41 mm. Similarly, WM/GM distances decreased to 0.28±0.16 mm after LDDMM compared to 0.54±0.39 mm after affine registration. The multistage registration method may find broad application for mapping histologically based information, e.g., receptor distributions, gene expression, onto MRI volumes.

  4. Oscillating optical tweezer-based 3-D confocal microrheometer for investigating the intracellular micromechanics and structures

    Science.gov (United States)

    Ou-Yang, H. D.; Rickter, E. A.; Pu, C.; Latinovic, O.; Kumar, A.; Mengistu, M.; Lowe-Krentz, L.; Chien, S.

    2005-08-01

    Mechanical properties of living biological cells are important for cells to maintain their shapes, support mechanical stresses and move through tissue matrix. The use of optical tweezers to measure micromechanical properties of cells has recently made significant progresses. This paper presents a new approach, the oscillating optical tweezer cytorheometer (OOTC), which takes advantage of the coherent detection of harmonically modulated particle motions by a lock-in amplifier to increase sensitivity, temporal resolution and simplicity. We demonstrate that OOTC can measure the dynamic mechanical modulus in the frequency range of 0.1-6,000 Hz at a rate as fast as 1 data point per second with submicron spatial resolution. More importantly, OOTC is capable of distinguishing the intrinsic non-random temporal variations from random fluctuations due to Brownian motion; this capability, not achievable by conventional approaches, is particular useful because living systems are highly dynamic and often exhibit non-thermal, rhythmic behavior in a broad time scale from a fraction of a second to hours or days. Although OOTC is effective in measuring the intracellular micromechanical properties, unless we can visualize the cytoskeleton in situ, the mechanical property data would only be as informative as that of "Blind men and the Elephant". To solve this problem, we take two steps, the first, to use of fluorescent imaging to identify the granular structures trapped by optical tweezers, and second, to integrate OOTC with 3-D confocal microscopy so we can take simultaneous, in situ measurements of the micromechanics and intracellular structure in living cells. In this paper, we discuss examples of applying the oscillating tweezer-based cytorheometer for investigating cultured bovine endothelial cells, the identification of caveolae as some of the granular structures in the cell as well as our approach to integrate optical tweezers with a spinning disk confocal microscope.

  5. Building 3D aerial image in photoresist with reconstructed mask image acquired with optical microscope

    Science.gov (United States)

    Chou, C. S.; Tang, Y. P.; Chu, F. S.; Huang, W. C.; Liu, R. G.; Gau, T. S.

    2012-03-01

    Calibration of mask images on wafer becomes more important as features shrink. Two major types of metrology have been commonly adopted. One is to measure the mask image with scanning electron microscope (SEM) to obtain the contours on mask and then simulate the wafer image with optical simulator. The other is to use an optical imaging tool Aerial Image Measurement System (AIMSTM) to emulate the image on wafer. However, the SEM method is indirect. It just gathers planar contours on a mask with no consideration of optical characteristics such as 3D topography structures. Hence, the image on wafer is not predicted precisely. Though the AIMSTM method can be used to directly measure the intensity at the near field of a mask but the image measured this way is not quite the same as that on the wafer due to reflections and refractions in the films on wafer. Here, a new approach is proposed to emulate the image on wafer more precisely. The behavior of plane waves with different oblique angles is well known inside and between planar film stacks. In an optical microscope imaging system, plane waves can be extracted from the pupil plane with a coherent point source of illumination. Once plane waves with a specific coherent illumination are analyzed, the partially coherent component of waves could be reconstructed with a proper transfer function, which includes lens aberration, polarization, reflection and refraction in films. It is a new method that we can transfer near light field of a mask into an image on wafer without the disadvantages of indirect SEM measurement such as neglecting effects of mask topography, reflections and refractions in the wafer film stacks. Furthermore, with this precise latent image, a separated resist model also becomes more achievable.

  6. Label-free optical detection of cells grown in 3D silicon microstructures.

    Science.gov (United States)

    Merlo, Sabina; Carpignano, Francesca; Silva, Gloria; Aredia, Francesca; Scovassi, A Ivana; Mazzini, Giuliano; Surdo, Salvatore; Barillaro, Giuseppe

    2013-08-21

    We demonstrate high aspect-ratio photonic crystals that could serve as three-dimensional (3D) microincubators for cell culture and also provide label-free optical detection of the cells. The investigated microstructures, fabricated by electrochemical micromachining of standard silicon wafers, consist of periodic arrays of silicon walls separated by narrow deeply etched air-gaps (50 μm high and 5 μm wide) and feature the typical spectral properties of photonic crystals in the wavelength range 1.0-1.7 μm: their spectral reflectivity is characterized by wavelength regions where reflectivity is high (photonic bandgaps), separated by narrow wavelength regions where reflectivity is very low. In this work, we show that the presence of cells, grown inside the gaps, strongly affects light propagation across the photonic crystal and, therefore, its spectral reflectivity. Exploiting a label-free optical detection method, based on a fiberoptic setup, we are able to probe the extension of cells adherent to the vertical silicon walls with a non-invasive direct testing. In particular, the intensity ratio at two wavelengths is the experimental parameter that can be well correlated to the cell spreading on the silicon wall inside the gaps.

  7. Characterization of fatigue resistance in photochromic composite materials for 3D rewritable optical memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Samoylova, Elena, E-mail: Elena.Samoylova@physik.uni-muenchen.de [Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy); Dallari, William; Allione, Marco; Pignatelli, Francesca; Marini, Lara; Cingolani, Roberto; Diaspro, Alberto [Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy); Athanassiou, Athanassia, E-mail: athanassia.athanassiou@iit.it [Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy); Center for Biomolecular Nanotechnologies-Unile, Istituto Italiano di Tecnologia, via Barsanti, 73010 Arnesano, Lecce (Italy)

    2013-06-01

    Highlights: • Fatigue resistance of diarylethene–polymer composites was tested with optical absorption and fluorescence methods upon repetitive UV–VIS irradiation. • Significant differences in fatigue were found in different polymeric matrices and in one-photon and two-photon excitation experiments. • Several explanations for fatigue resistance of the composites are proposed based on the physico-chemical properties of the diarylethenes and polymeric matrices. -- Abstract: Fatigue resistance of the photochromic diarylethene molecules 1,2-bis[2-methylbenzo[b]thyophen-3-yl] -3,3,4,4,5,5-hexafluoro-1-cyclopentene embedded in three different acrylic polymers is studied upon multiple coloration–decoloration cycles. The resistance to photofatigue is found to be different in the three polymeric materials when one-photon excitation was used for the reversible photoconversion experiment. In particular, the photochromic molecules lose their photoisomerization ability faster if they are embedded in poly(methyl methacrylate) (PMMA) with respect to poly(ethyl methacrylate-co-methyl acrylate) (PEMMA) and poly(ethyl methacrylate) (PEMA). We propose several explanations based on the physico-chemical properties of the matrix and of the photochromic molecules. In the case of two-photon excitation, which is necessary for 3D optical writing, the fatigue resistance is found to be poorer than in the one-photon case. The accelerated photodegradation can be assigned to the non-linear nature of interaction between the polymeric composite material and light.

  8. A 3D approach to reconstruct continuous optical images using lidar and MODIS

    Institute of Scientific and Technical Information of China (English)

    HuaGuo; Huang; Jun; Lian

    2015-01-01

    Background: Monitoring forest health and biomass for changes over time in the global environment requires the provision of continuous satellite images. However, optical images of land surfaces are generally contaminated when clouds are present or rain occurs.Methods: To estimate the actual reflectance of land surfaces masked by clouds and potential rain, 3D simulations by the RAPID radiative transfer model were proposed and conducted on a forest farm dominated by birch and larch in Genhe City, Da Xing’An Ling Mountain in Inner Mongolia, China. The canopy height model(CHM) from lidar data were used to extract individual tree structures(location, height, crown width). Field measurements related tree height to diameter of breast height(DBH), lowest branch height and leaf area index(LAI). Series of Landsat images were used to classify tree species and land cover. MODIS LAI products were used to estimate the LAI of individual trees. Combining all these input variables to drive RAPID, high-resolution optical remote sensing images were simulated and validated with available satellite images.Results: Evaluations on spatial texture, spectral values and directional reflectance were conducted to show comparable results.Conclusions: The study provides a proof-of-concept approach to link lidar and MODIS data in the parameterization of RAPID models for high temporal and spatial resolutions of image reconstruction in forest dominated areas.

  9. A 3D approach to reconstruct continuous optical images using lidar and MODIS

    Directory of Open Access Journals (Sweden)

    HuaGuo Huang

    2015-06-01

    Full Text Available Background Monitoring forest health and biomass for changes over time in the global environment requires the provision of continuous satellite images. However, optical images of land surfaces are generally contaminated when clouds are present or rain occurs. Methods To estimate the actual reflectance of land surfaces masked by clouds and potential rain, 3D simulations by the RAPID radiative transfer model were proposed and conducted on a forest farm dominated by birch and larch in Genhe City, DaXing’AnLing Mountain in Inner Mongolia, China. The canopy height model (CHM from lidar data were used to extract individual tree structures (location, height, crown width. Field measurements related tree height to diameter of breast height (DBH, lowest branch height and leaf area index (LAI. Series of Landsat images were used to classify tree species and land cover. MODIS LAI products were used to estimate the LAI of individual trees. Combining all these input variables to drive RAPID, high-resolution optical remote sensing images were simulated and validated with available satellite images. Results Evaluations on spatial texture, spectral values and directional reflectance were conducted to show comparable results. Conclusions The study provides a proof-of-concept approach to link lidar and MODIS data in the parameterization of RAPID models for high temporal and spatial resolutions of image reconstruction in forest dominated areas.

  10. 3D optical simulation formalism OPTOS for textured silicon solar cells.

    Science.gov (United States)

    Tucher, Nico; Eisenlohr, Johannes; Kiefel, Peter; Höhn, Oliver; Hauser, Hubert; Peters, Marius; Müller, Claas; Goldschmidt, Jan Christoph; Bläsi, Benedikt

    2015-11-30

    In this paper we introduce the three-dimensional formulation of the OPTOS formalism, a matrix-based method that allows for the efficient simulation of non-coherent light propagation and absorption in thick textured sheets. As application examples, we calculate the absorptance of solar cells featuring textures on front and rear side with different feature sizes operating in different optical regimes. A discretization of polar and azimuth angle enables a three-dimensional description of systems with arbitrary surface textures. We present redistribution matrices for 3D surface textures, including pyramidal textures, binary crossed gratings and a Lambertian scatterer. The results of the OPTOS simulations for silicon sheets with different combinations of these surfaces are in accordance with both optical measurements and results based on established simulation methods like ray tracing. Using OPTOS, we show that the integration of a diffractive grating at the rear side of a silicon solar cell featuring a pyramidal front side results in absorption close to the Yablonovitch Limit enhancing the photocurrent density by 0.6 mA/cm2 for a 200 µm thick cell.

  11. Beyond optical molasses: 3D raman sideband cooling of atomic cesium to high phase-space density

    Science.gov (United States)

    Kerman; Vuletic; Chin; Chu

    2000-01-17

    We demonstrate a simple, general purpose method to cool neutral atoms. A sample containing 3x10(8) cesium atoms prepared in a magneto-optical trap is cooled and simultaneously spin polarized in 10 ms at a density of 1.1x10(11) cm (-3) to a phase space density nlambda(3)(dB) = 1/500, which is almost 3 orders of magnitude higher than attainable in free space with optical molasses. The technique is based on 3D degenerate Raman sideband cooling in optical lattices and remains efficient even at densities where the mean lattice site occupation is close to unity.

  12. Real-time 3D Fourier-domain optical coherence tomography guided microvascular anastomosis

    Science.gov (United States)

    Huang, Yong; Ibrahim, Zuhaib; Lee, W. P. A.; Brandacher, Gerald; Kang, Jin U.

    2013-03-01

    Vascular and microvascular anastomosis is considered to be the foundation of plastic and reconstructive surgery, hand surgery, transplant surgery, vascular surgery and cardiac surgery. In the last two decades innovative techniques, such as vascular coupling devices, thermo-reversible poloxamers and suture-less cuff have been introduced. Intra-operative surgical guidance using a surgical imaging modality that provides in-depth view and 3D imaging can improve outcome following both conventional and innovative anastomosis techniques. Optical coherence tomography (OCT) is a noninvasive high-resolution (micron level), high-speed, 3D imaging modality that has been adopted widely in biomedical and clinical applications. In this work we performed a proof-of-concept evaluation study of OCT as an assisted intraoperative and post-operative imaging modality for microvascular anastomosis of rodent femoral vessels. The OCT imaging modality provided lateral resolution of 12 μm and 3.0 μm axial resolution in air and 0.27 volume/s imaging speed, which could provide the surgeon with clearly visualized vessel lumen wall and suture needle position relative to the vessel during intraoperative imaging. Graphics processing unit (GPU) accelerated phase-resolved Doppler OCT (PRDOCT) imaging of the surgical site was performed as a post-operative evaluation of the anastomosed vessels and to visualize the blood flow and thrombus formation. This information could help surgeons improve surgical precision in this highly challenging anastomosis of rodent vessels with diameter less than 0.5 mm. Our imaging modality could not only detect accidental suture through the back wall of lumen but also promptly diagnose and predict thrombosis immediately after reperfusion. Hence, real-time OCT can assist in decision-making process intra-operatively and avoid post-operative complications.

  13. Optical Measurement of Micromechanics and Structure in a 3D Fibrin Extracellular Matrix

    Science.gov (United States)

    Kotlarchyk, Maxwell Aaron

    2011-07-01

    In recent years, a significant number of studies have focused on linking substrate mechanics to cell function using standard methodologies to characterize the bulk properties of the hydrogel substrates. However, current understanding of the correlations between the microstructural mechanical properties of hydrogels and cell function in 3D is poor, in part because of a lack of appropriate techniques. Methods for tuning extracellular matrix (ECM) mechanics in 3D cell culture that rely on increasing the concentration of either protein or cross-linking molecules fail to control important parameters such as pore size, ligand density, and molecular diffusivity. Alternatively, ECM stiffness can be modulated independently from protein concentration by mechanically loading the ECM. We have developed an optical tweezers-based microrheology system to investigate the fundamental role of ECM mechanical properties in determining cellular behavior. Further, this thesis outlines the development of a novel device for generating stiffness gradients in naturally derived ECMs, where stiffness is tuned by inducing strain, while local structure and mechanical properties are directly determined by laser tweezers-based passive and active microrheology respectively. Hydrogel substrates polymerized within 35 mm diameter Petri dishes are strained non-uniformly by the precise rotation of an embedded cylindrical post, and exhibit a position-dependent stiffness with little to no modulation of local mesh geometry. Here we present microrheological studies in the context of fibrin hydrogels. Microrheology and confocal imaging were used to directly measure local changes in micromechanics and structure respectively in unstrained hydrogels of increasing fibrinogen concentration, as well as in our strain gradient device, in which the concentration of fibrinogen is held constant. Orbital particle tracking, and raster image correlation analysis are used to quantify changes in fibrin mechanics on the

  14. Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging.

    Science.gov (United States)

    Zhang, Edward Z; Povazay, Boris; Laufer, Jan; Alex, Aneesh; Hofer, Bernd; Pedley, Barbara; Glittenberg, Carl; Treeby, Bradley; Cox, Ben; Beard, Paul; Drexler, Wolfgang

    2011-08-01

    A noninvasive, multimodal photoacoustic and optical coherence tomography (PAT/OCT) scanner for three-dimensional in vivo (3D) skin imaging is described. The system employs an integrated, all optical detection scheme for both modalities in backward mode utilizing a shared 2D optical scanner with a field-of-view of ~13 × 13 mm(2). The photoacoustic waves were detected using a Fabry Perot polymer film ultrasound sensor placed on the surface of the skin. The sensor is transparent in the spectral range 590-1200 nm. This permits the photoacoustic excitation beam (670-680 nm) and the OCT probe beam (1050 nm) to be transmitted through the sensor head and into the underlying tissue thus providing a backward mode imaging configuration. The respective OCT and PAT axial resolutions were 8 and 20 µm and the lateral resolutions were 18 and 50-100 µm. The system provides greater penetration depth than previous combined PA/OCT devices due to the longer wavelength of the OCT beam (1050 nm rather than 829-870 nm) and by operating in the tomographic rather than the optical resolution mode of photoacoustic imaging. Three-dimensional in vivo images of the vasculature and the surrounding tissue micro-morphology in murine and human skin were acquired. These studies demonstrated the complementary contrast and tissue information provided by each modality for high-resolution 3D imaging of vascular structures to depths of up to 5 mm. Potential applications include characterizing skin conditions such as tumors, vascular lesions, soft tissue damage such as burns and wounds, inflammatory conditions such as dermatitis and other superficial tissue abnormalities.

  15. Fast, high-resolution 3D dosimetry utilizing a novel optical-CT scanner incorporating tertiary telecentric collimation

    OpenAIRE

    Sakhalkar, H. S.; Oldham, M

    2008-01-01

    This study introduces a charge coupled device (CCD) area detector based optical-computed tomography (optical-CT) scanner for comprehensive verification of radiation dose distributions recorded in nonscattering radiochromic dosimeters. Defining characteristics include: (i) a very fast scanning time of ~5 min to acquire a complete three-dimensional (3D) dataset, (ii) improved image formation through the use of custom telecentric optics, which ensures accurate projection images and minimizes art...

  16. A prototype fan-beam optical CT scanner for 3D dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Warren G.; Rudko, D. A.; Braam, Nicolas A.; Jirasek, Andrew [University of Victoria, Victoria, British Columbia V8P 5C2 (Canada); Wells, Derek M. [British Columbia Cancer Agency, Vancouver Island Centre, Victoria, British Columbia V8R 6V5 (Canada)

    2013-06-15

    Purpose: The objective of this work is to introduce a prototype fan-beam optical computed tomography scanner for three-dimensional (3D) radiation dosimetry. Methods: Two techniques of fan-beam creation were evaluated: a helium-neon laser (HeNe, {lambda} = 543 nm) with line-generating lens, and a laser diode module (LDM, {lambda} = 635 nm) with line-creating head module. Two physical collimator designs were assessed: a single-slot collimator and a multihole collimator. Optimal collimator depth was determined by observing the signal of a single photodiode with varying collimator depths. A method of extending the dynamic range of the system is presented. Two sample types were used for evaluations: nondosimetric absorbent solutions and irradiated polymer gel dosimeters, each housed in 1 liter cylindrical plastic flasks. Imaging protocol investigations were performed to address ring artefacts and image noise. Two image artefact removal techniques were performed in sinogram space. Collimator efficacy was evaluated by imaging highly opaque samples of scatter-based and absorption-based solutions. A noise-based flask registration technique was developed. Two protocols for gel manufacture were examined. Results: The LDM proved advantageous over the HeNe laser due to its reduced noise. Also, the LDM uses a wavelength more suitable for the PRESAGE{sup TM} dosimeter. Collimator depth of 1.5 cm was found to be an optimal balance between scatter rejection, signal strength, and manufacture ease. The multihole collimator is capable of maintaining accurate scatter-rejection to high levels of opacity with scatter-based solutions (T < 0.015%). Imaging protocol investigations support the need for preirradiation and postirradiation scanning to reduce reflection-based ring artefacts and to accommodate flask imperfections and gel inhomogeneities. Artefact removal techniques in sinogram space eliminate streaking artefacts and reduce ring artefacts of up to {approx}40% in magnitude. The

  17. Confocal Microscopy of thick tissue sections: 3D Visualization of rat kidney glomeruli

    Science.gov (United States)

    Confocal laser scanning microscopy (CLSM) as a technique capable of generating serial sections of whole-mount tissue and then reassembling the computer-acquired images as a virtual 3-dimentional structure. In many ways CLSM offers an alternative to traditional sectioning approac...

  18. Confocal microscopy of thick tissue sections: 3D visualizaiton of rat kidney glomeruli

    Science.gov (United States)

    Confocal laser scanning microscopy (CLSM) as a technique capable of generating serial sections of whole-mount tissue and then reassembling the computer-acquired images as a virtual 3-dimentional structure. In many ways CLSM offers an alternative to traditional sectioning approac...

  19. Confocal microscopy of thick tissue sections: 3D visualizaiton of rat kidney glomeruli

    Science.gov (United States)

    Confocal laser scanning microscopy (CLSM) as a technique capable of generating serial sections of whole-mount tissue and then reassembling the computer-acquired images as a virtual 3-dimentional structure. In many ways CLSM offers an alternative to traditional sectioning approac...

  20. Confocal Microscopy of thick tissue sections: 3D Visualization of rat kidney glomeruli

    Science.gov (United States)

    Confocal laser scanning microscopy (CLSM) as a technique capable of generating serial sections of whole-mount tissue and then reassembling the computer-acquired images as a virtual 3-dimentional structure. In many ways CLSM offers an alternative to traditional sectioning approac...

  1. Evaluation of hybrid polymers for high-precision manufacturing of 3D optical interconnects by two-photon absorption lithography

    Science.gov (United States)

    Schleunitz, A.; Klein, J. J.; Krupp, A.; Stender, B.; Houbertz, R.; Gruetzner, G.

    2017-02-01

    The fabrication of optical interconnects has been widely investigated for the generation of optical circuit boards. Twophoton absorption (TPA) lithography (or high-precision 3D printing) as an innovative production method for direct manufacture of individual 3D photonic structures gains more and more attention when optical polymers are employed. In this regard, we have evaluated novel ORMOCER-based hybrid polymers tailored for the manufacture of optical waveguides by means of high-precision 3D printing. In order to facilitate future industrial implementation, the processability was evaluated and the optical performance of embedded waveguides was assessed. The results illustrate that hybrid polymers are not only viable consumables for industrial manufacture of polymeric micro-optics using generic processes such as UV molding. They also are potential candidates to fabricate optical waveguide systems down to the chip level where TPA-based emerging manufacturing techniques are engaged. Hence, it is shown that hybrid polymers continue to meet the increasing expectations of dynamically growing markets of micro-optics and optical interconnects due to the flexibility of the employed polymer material concept.

  2. Cross-Sectional Measuring of Optical Beam

    Directory of Open Access Journals (Sweden)

    Tomas David

    2011-01-01

    Full Text Available This article deals with problematic of measuring of optical beam in free space optics (FSO. The professional FSO link was created between two buildings standing 1,5 kilometers apart from each other. Signal passing through the atmospheric media between optical heads is affected. This happens due to effects in atmospheric media. This article describes creating of the device for measuring the intensity of optical beam in 2D space and its subsequent rendering into 3D graph.

  3. Application of optical 3D measurement on thin film buckling to estimate interfacial toughness

    Science.gov (United States)

    Jia, H. K.; Wang, S. B.; Li, L. A.; Wang, Z. Y.; Goudeau, P.

    2014-03-01

    The shape-from-focus (SFF) method has been widely studied as a passive depth recovery and 3D reconstruction method for digital images. An important step in SFF is the calculation of the focus level for different points in an image by using a focus measure. In this work, an image entropy-based focus measure is introduced into the SFF method to measure the 3D buckling morphology of an aluminum film on a polymethylmethacrylate (PMMA) substrate at a micro scale. Spontaneous film wrinkles and telephone-cord wrinkles are investigated after the deposition of a 300 nm thick aluminum film onto the PMMA substrate. Spontaneous buckling is driven by the highly compressive stress generated in the Al film during the deposition process. The interfacial toughness between metal films and substrates is an important parameter for the reliability of the film/substrate system. The height profiles of different sections across the telephone-cord wrinkle can be considered a straight-sided model with uniform width and height or a pinned circular model that has a delamination region characterized by a sequence of connected sectors. Furthermore, the telephone-cord geometry of the thin film can be used to calculate interfacial toughness. The instability of the finite element model is introduced to fit the buckling morphology obtained by SFF. The interfacial toughness is determined to be 0.203 J/m2 at a 70.4° phase angle from the straight-sided model and 0.105 J/m2 at 76.9° from the pinned circular model.

  4. A new technique of recognition for coded targets in optical 3D measurement

    Science.gov (United States)

    Guo, Changye; Cheng, Xiaosheng; Cui, Haihua; Dai, Ning; Weng, Jinping

    2014-11-01

    A new technique for coded targets recognition in optical 3D-measurement application is proposed in this paper. Traditionally, point cloud registration is based on homologous features, such as the curvature, which is time-consuming and not reliable. For this, we paste some coded targets onto the surface of the object to be measured to improve the optimum target location and accurate correspondence among multi-source images. Circular coded targets are used, and an algorithm to automatically detecting them is proposed. This algorithm extracts targets with intensive bimodal histogram features from complex background, and filters noise according to their size, shape and intensity. In addition, the coded targets' identification is conducted out by their ring codes. We affine them around the circle inversely, set foreground and background respectively as 1 and 0 to constitute a binary number, and finally shift one bit every time to calculate a decimal one of the binary number to determine a minimum decimal number as its code. In this 3Dmeasurement application, we build a mutual relationship between different viewpoints containing three or more coded targets with different codes. Experiments show that it is of efficiency to obtain global surface data of an object to be measured and is robust to the projection angles and noise.

  5. Close-range optical measurement of aircraft's 3D attitude and accuracy evaluation

    Institute of Scientific and Technical Information of China (English)

    Zhe Li; Zhenliang Ding; Feng Yuan

    2008-01-01

    A new screen-spot imaging method based on optical measurement is proposed, which is applicable to the close-range measurement of aircraft's three-dimensional (3D) attitude parameters. Laser tracker is used to finish the global calibrations of the high-speed cameras and the fixed screens on test site, as well as to establish media-coordinate-frames among various coordinate systems. The laser cooperation object mounted on the aircraft surface projects laser beams on the screens and the high-speed cameras syn-chronously record the light-spots' position changing with aircraft attitude. The recorded image sequences are used to compute the aircraft attitude parameters. Based on the matrix analysis, the error sources of the measurement accuracy are analyzed, and the maximum relative error of this mathematical model is estimated. The experimental result shows that this method effectively makes the change of aircraft position distinguishable, and the error of this method is no more than 3' while the rotation angles of three axes are within a certain range.

  6. 3D Curvelet-Based Segmentation and Quantification of Drusen in Optical Coherence Tomography Images

    Directory of Open Access Journals (Sweden)

    M. Esmaeili

    2017-01-01

    Full Text Available Spectral-Domain Optical Coherence Tomography (SD-OCT is a widely used interferometric diagnostic technique in ophthalmology that provides novel in vivo information of depth-resolved inner and outer retinal structures. This imaging modality can assist clinicians in monitoring the progression of Age-related Macular Degeneration (AMD by providing high-resolution visualization of drusen. Quantitative tools for assessing drusen volume that are indicative of AMD progression may lead to appropriate metrics for selecting treatment protocols. To address this need, a fully automated algorithm was developed to segment drusen area and volume from SD-OCT images. The proposed algorithm consists of three parts: (1 preprocessing, which includes creating binary mask and removing possible highly reflective posterior hyaloid that is used in accurate detection of inner segment/outer segment (IS/OS junction layer and Bruch’s membrane (BM retinal layers; (2 coarse segmentation, in which 3D curvelet transform and graph theory are employed to get the possible candidate drusenoid regions; (3 fine segmentation, in which morphological operators are used to remove falsely extracted elongated structures and get the refined segmentation results. The proposed method was evaluated in 20 publically available volumetric scans acquired by using Bioptigen spectral-domain ophthalmic imaging system. The average true positive and false positive volume fractions (TPVF and FPVF for the segmentation of drusenoid regions were found to be 89.15% ± 3.76 and 0.17% ± .18%, respectively.

  7. Threshold response using modulated continuous wave illumination for multilayer 3D optical data storage

    Science.gov (United States)

    Saini, A.; Christenson, C. W.; Khattab, T. A.; Wang, R.; Twieg, R. J.; Singer, K. D.

    2017-01-01

    In order to achieve a high capacity 3D optical data storage medium, a nonlinear or threshold writing process is necessary to localize data in the axial dimension. To this end, commercial multilayer discs use thermal ablation of metal films or phase change materials to realize such a threshold process. This paper addresses a threshold writing mechanism relevant to recently reported fluorescence-based data storage in dye-doped co-extruded multilayer films. To gain understanding of the essential physics, single layer spun coat films were used so that the data is easily accessible by analytical techniques. Data were written by attenuating the fluorescence using nanosecond-range exposure times from a 488 nm continuous wave laser overlapping with the single photon absorption spectrum. The threshold writing process was studied over a range of exposure times and intensities, and with different fluorescent dyes. It was found that all of the dyes have a common temperature threshold where fluorescence begins to attenuate, and the physical nature of the thermal process was investigated.

  8. Combining 3D optical imaging and dual energy absorptiometry to measure three compositional components

    Science.gov (United States)

    Malkov, Serghei; Shepherd, John

    2014-02-01

    We report on the design of the technique combining 3D optical imaging and dual-energy absorptiometry body scanning to estimate local body area compositions of three compartments. Dual-energy attenuation and body shape measures are used together to solve for the three compositional tissue thicknesses: water, lipid, and protein. We designed phantoms with tissue-like properties as our reference standards for calibration purposes. The calibration was created by fitting phantom values using non-linear regression of quadratic and truncated polynomials. Dual-energy measurements were performed on tissue-mimicking phantoms using a bone densitometer unit. The phantoms were made of materials shown to have similar x-ray attenuation properties of the biological compositional compartments. The components for the solid phantom were tested and their high energy/low energy attenuation ratios are in good correspondent to water, lipid, and protein for the densitometer x-ray region. The three-dimensional body shape was reconstructed from the depth maps generated by Microsoft Kinect for Windows. We used open-source Point Cloud Library and freeware software to produce dense point clouds. Accuracy and precision of compositional and thickness measures were calculated. The error contributions due to two modalities were estimated. The preliminary phantom composition and shape measurements are found to demonstrate the feasibility of the method proposed.

  9. Fast optical 3D form measurement of aspheres including determination of thickness and wedge and decenter errors

    Science.gov (United States)

    Stover, E.; Berger, G.; Wendel, M.; Petter, J.

    2015-10-01

    A method for non-contact 3D form testing of aspheric surfaces including determination of decenter and wedge errors and lens thickness is presented. The principle is based on the absolute measurement capability of multi-wavelength interferometry (MWLI). The approach produces high density 3D shape information and geometric parameters at high accuracy in short measurement times. The system allows inspection of aspheres without restrictions in terms of spherical departures, of segmented and discontinuous optics. The optics can be polished or ground and made of opaque or transparent materials.

  10. Femtosecond laser aided processing of optical sensor fibers for 3D medical navigation and tracking (FiberNavi)

    Science.gov (United States)

    Waltermann, Christian; Koch, Jan; Angelmahr, Martin; Schade, Wolfgang; Witte, Michael; Kohn, Nils; Wilhelm, Dirk; Schneider, Armin; Reiser, Silvano; Feußner, Hubertus

    2014-05-01

    A new concept for fiber-optical 3D shape sensing applying femtosecond laser technology for highprecision direct writing of Bragg gratings within the core and the cladding of single core standard telecom fibers is presented. This new technology enables a cost-efficient and real-time 3D shape sensing and navigation of medical catheters or endoscopes only by means of passive optical sensor elements. First prototypes showed the possibility to achieve absolute navigation accuracy of four mm per meter and have successfully been tested in clinical environment.

  11. geomIO: A tool for geodynamicists to turn 2D cross-sections into 3D geometries

    Science.gov (United States)

    Baumann, Tobias; Bauville, Arthur

    2016-04-01

    In numerical deformation models, material properties are usually defined on elements (e.g., in body-fitted finite elements), or on a set of Lagrangian markers (Eulerian, ALE or mesh-free methods). In any case, geometrical constraints are needed to assign different material properties to the model domain. Whereas simple geometries such as spheres, layers or cuboids can easily be programmed, it quickly gets complex and time-consuming to create more complicated geometries for numerical model setups, especially in three dimensions. geomIO (geometry I/O, http://geomio.bitbucket.org/) is a MATLAB-based library that has two main functionalities. First, it can be used to create 3D volumes based on series of 2D vector drawings similar to a CAD program; and second, it uses these 3D volumes to assign material properties to the numerical model domain. The drawings can conveniently be created using the open-source vector graphics software Inkscape. Adobe Illustrator is also partially supported. The drawings represent a series of cross-sections in the 3D model domain, for example, cross-sectional interpretations of seismic tomography. geomIO is then used to read the drawings and to create 3D volumes by interpolating between the cross-sections. In the second part, the volumes are used to assign material phases to markers inside the volumes. Multiple volumes can be created at the same time and, depending on the order of assignment, unions or intersections can be built to assign additional material phases. geomIO also offers the possibility to create 3D temperature structures for geodynamic models based on depth dependent parameterisations, for example the half space cooling model. In particular, this can be applied to geometries of subducting slabs of arbitrary shape. Yet, geomIO is held very general, and can be used for a variety of applications. We present examples of setup generation from pictures of micro-scale tectonics and lithospheric scale setups of 3D present-day model

  12. Accuracy of optical scanning methods of the Cerec®3D system in the process of making ceramic inlays

    Directory of Open Access Journals (Sweden)

    Trifković Branka

    2010-01-01

    Full Text Available Background/Aim. One of the results of many years of Cerec® 3D CAD/CAM system technological development is implementation of one intraoral and two extraoral optical scanning methods which, depending on the current indications, are applied in making fixed restorations. The aim of this study was to determine the degree of precision of optical scanning methods by the use of the Cerec®3D CAD/CAM system in the process of making ceramic inlays. Methods. The study was conducted in three experimental groups of inlays prepared using the procedure of three methods of scanning Cerec ®3D system. Ceramic inlays made by conventional methodology were the control group. The accuracy of optical scanning methods of the Cerec®3D system computer aided designcomputer aided manufacturing (CAD/CAM was indirectly examined by measuring a marginal gap size between inlays and demarcation preparation by scanning electron microscope (SEM. Results. The results of the study showed a difference in the accuracy of the existing methods of scanning dental CAD/CAM systems. The highest level of accuracy was achieved by the extraoral optical superficial scanning technique. The value of marginal gap size inlays made with the technique of extraoral optical superficial scanning was 32.97 ± 13.17 μ. Techniques of intraoral optical superficial and extraoral point laser scanning showed a lower level of accuracy (40.29 ± 21.46 μ for inlays of intraoral optical superficial scanning and 99.67 ± 37.25 μ for inlays of extraoral point laser scanning. Conclusion. Optical scanning methods in dental CAM/CAM technologies are precise methods of digitizing the spatial models; application of extraoral optical scanning methods provides the hightest precision.

  13. Analysis of 3D-printed metal for rapid-prototyped reflective terahertz optics

    Science.gov (United States)

    Headland, Daniel; Withayachumnankul, Withawat; Webb, Michael; Ebendorff-Heidepriem, Heike; Luiten, Andre; Abbott, Derek

    2016-07-01

    We explore the potential of 3D metal printing to realize complex conductive terahertz devices. Factors impacting performance such as printing resolution, surface roughness, oxidation, and material loss are investigated via analytical, numerical, and experimental approaches. The high degree of control offered by a 3D-printed topology is exploited to realize a zone plate operating at 530 GHz. Reflection efficiency at this frequency is found to be over 90%. The high-performance of this preliminary device suggest that 3D metal printing can play a strong role in guided-wave and general beam control devices in the terahertz range.

  14. Analysis of 3D-printed metal for rapid-prototyped reflective terahertz optics

    CERN Document Server

    Headland, Daniel; Webb, Michael; Ebendorff-Heidepriem, Heike; Luiten, Andre; Abbott, Derek

    2016-01-01

    We explore the potential of 3D metal printing to realize complex conductive terahertz devices. Factors impacting performance such as printing resolution, surface roughness, oxidation, and material loss are investigated via analytical, numerical, and experimental approaches. The high degree of control offered by a 3D-printed topology is exploited to realize a zone plate operating at 530 GHz. Reflection efficiency at this frequency is found to be over 90%. The high-performance of this preliminary device suggest that 3D metal printing can play a strong role in guided-wave and general beam control devices in the terahertz range.

  15. Characterization of 3D printing output using an optical sensing system

    Science.gov (United States)

    Straub, Jeremy

    2015-05-01

    This paper presents the experimental design and initial testing of a system to characterize the progress and performance of a 3D printer. The system is based on five Raspberry Pi single-board computers. It collects images of the 3D printed object, which are compared to an ideal model. The system, while suitable for printers of all sizes, can potentially be produced at a sufficiently low cost to allow its incorporation into consumer-grade printers. The efficacy and accuracy of this system is presented and discussed. The paper concludes with a discussion of the benefits of being able to characterize 3D printer performance.

  16. Spatial accuracy of 3D reconstructed radioluminographs of serial tissue sections and resultant absorbed dose estimates

    Energy Technology Data Exchange (ETDEWEB)

    Petrie, I.A.; Flynn, A.A.; Pedley, R.B.; Green, A.J.; El-Emir, E.; Dearling, J.L.J.; Boxer, G.M.; Boden, R.; Begent, R.H.J. [Cancer Research UK Targeting and Imaging Group, Department of Oncology, Royal Free and University College Medical School, Royal Free Campus, London (United Kingdom)

    2002-10-21

    Many agents using tumour-associated characteristics are deposited heterogeneously within tumour tissue. Consequently, tumour heterogeneity should be addressed when obtaining information on tumour biology or relating absorbed radiation dose to biological effect. We present a technique that enables radioluminographs of serial tumour sections to be reconstructed using automated computerized techniques, resulting in a three-dimensional map of the dose-rate distribution of a radiolabelled antibody. The purpose of this study is to assess the reconstruction accuracy. Furthermore, we estimate the potential error resulting from registration misalignment, for a range of beta-emitting radionuclides. We compare the actual dose-rate distribution with that obtained from the same activity distribution but with manually defined translational and rotational shifts. As expected, the error produced with the short-range {sup 14}C is much larger than that for the longer range {sup 90}Y; similarly values for the medium range {sup 131}I are between the two. Thus, the impact of registration inaccuracies is greater for short-range sources. (author)

  17. Automatic 3D acoustic tissue models from histologic tissue sections and application to ex vivo tissue characterization

    Science.gov (United States)

    Mamou, Jonathan; Oelze, Michael L.; O'Brien, William D.; Zachary, James F.

    2005-04-01

    Three-dimensional acoustic tissue models (3DATMs) can be used as computational tools for ultrasonic imaging algorithm development and analysis. 3DATMs are automatically constructed from digitized light microscope images of consecutive H&E-stained histologic tissue sections. Construction necessitated contrast equalization, registration, and interpolation of missing sections. The registered (with interpolated) sections yield a 3D histologic volume (3DHV). Acoustic properties are then assigned to each tissue constituent of the 3DHV to obtain the 3DATM. A tissue characterization technique was developed to obtain scatterer parameter estimates (size and acoustic concentration) from a 3D impedance map (3DZM) deduced from a 3DHV by assigning acoustic impedance values. 3DZMs were constructed for a rat fibroadenoma (FA), a mouse mammary tumor (MMT) and a mouse sarcoma (EHS). From these 3 3DZMs estimates, effective scatterer diameters of 91 μm, 31.5 μm, and 34.5 μm, respectively, were determined. Independent ultrasonic measurements yielded average scatterer diameters of 105 μm, 30 μm, and 33 μm, respectively. The 3DZM estimation scheme showed results similar to those obtained by the ultrasonic measurements. 3DATMs may therefore be a useful tool for quantifying ultrasonic tissue properties. [Work supported by the University of Illinois Research Board.

  18. Characterizing 3D grain size distributions from 2D sections in mylonites using a modified version of the Saltykov method

    Science.gov (United States)

    Lopez-Sanchez, Marco; Llana-Fúnez, Sergio

    2016-04-01

    The understanding of creep behaviour in rocks requires knowledge of 3D grain size distributions (GSD) that result from dynamic recrystallization processes during deformation. The methods to estimate directly the 3D grain size distribution -serial sectioning, synchrotron or X-ray-based tomography- are expensive, time-consuming and, in most cases and at best, challenging. This means that in practice grain size distributions are mostly derived from 2D sections. Although there are a number of methods in the literature to derive the actual 3D grain size distributions from 2D sections, the most popular in highly deformed rocks is the so-called Saltykov method. It has though two major drawbacks: the method assumes no interaction between grains, which is not true in the case of recrystallised mylonites; and uses histograms to describe distributions, which limits the quantification of the GSD. The first aim of this contribution is to test whether the interaction between grains in mylonites, i.e. random grain packing, affects significantly the GSDs estimated by the Saltykov method. We test this using the random resampling technique in a large data set (n = 12298). The full data set is built from several parallel thin sections that cut a completely dynamically recrystallized quartz aggregate in a rock sample from a Variscan shear zone in NW Spain. The results proved that the Saltykov method is reliable as long as the number of grains is large (n > 1000). Assuming that a lognormal distribution is an optimal approximation for the GSD in a completely dynamically recrystallized rock, we introduce an additional step to the Saltykov method, which allows estimating a continuous probability distribution function of the 3D grain size population. The additional step takes the midpoints of the classes obtained by the Saltykov method and fits a lognormal distribution with a trust region using a non-linear least squares algorithm. The new protocol is named the two-step method. The

  19. 3-D segmentation of retinal blood vessels in spectral-domain OCT volumes of the optic nerve head

    Science.gov (United States)

    Lee, Kyungmoo; Abràmoff, Michael D.; Niemeijer, Meindert; Garvin, Mona K.; Sonka, Milan

    2010-03-01

    Segmentation of retinal blood vessels can provide important information for detecting and tracking retinal vascular diseases including diabetic retinopathy, arterial hypertension, arteriosclerosis and retinopathy of prematurity (ROP). Many studies on 2-D segmentation of retinal blood vessels from a variety of medical images have been performed. However, 3-D segmentation of retinal blood vessels from spectral-domain optical coherence tomography (OCT) volumes, which is capable of providing geometrically accurate vessel models, to the best of our knowledge, has not been previously studied. The purpose of this study is to develop and evaluate a method that can automatically detect 3-D retinal blood vessels from spectral-domain OCT scans centered on the optic nerve head (ONH). The proposed method utilized a fast multiscale 3-D graph search to segment retinal surfaces as well as a triangular mesh-based 3-D graph search to detect retinal blood vessels. An experiment on 30 ONH-centered OCT scans (15 right eye scans and 15 left eye scans) from 15 subjects was performed, and the mean unsigned error in 3-D of the computer segmentations compared with the independent standard obtained from a retinal specialist was 3.4 +/- 2.5 voxels (0.10 +/- 0.07 mm).

  20. Optical low-cost and portable arrangement for full field 3D displacement measurement using a single camera

    Science.gov (United States)

    López-Alba, E.; Felipe-Sesé, L.; Schmeer, S.; Díaz, F. A.

    2016-11-01

    In the current paper, an optical low-cost system for 3D displacement measurement based on a single camera and 3D digital image correlation is presented. The conventional 3D-DIC set-up based on a two-synchronized-cameras system is compared with a proposed pseudo-stereo portable system that employs a mirror system integrated in a device for a straightforward application achieving a novel handle and flexible device for its use in many scenarios. The proposed optical system splits the image by the camera into two stereo images of the object. In order to validate this new approach and quantify its uncertainty compared to traditional 3D-DIC systems, solid rigid in and out-of-plane displacements experiments have been performed and analyzed. The differences between both systems have been studied employing an image decomposition technique which performs a full image comparison. Therefore, results of all field of view are compared with those using a stereoscopy system and 3D-DIC, discussing the accurate results obtained with the proposed device not having influence any distortion or aberration produced by the mirrors. Finally, the adaptability of the proposed system and its accuracy has been tested performing quasi-static and dynamic experiments using a silicon specimen under high deformation. Results have been compared and validated with those obtained from a conventional stereoscopy system showing an excellent level of agreement.

  1. Terahertz (THz) Optical Parameters of Three-Dimensional (3-D) Printing Materials

    Science.gov (United States)

    2017-03-01

    acrylonitrile butadiene styrene (ABS), and polylactic acid (PLA). All three materials are common, low-cost, 3-D printed materials. Pictures of... Lewis , R. A., “3D Printed Terahertz Diffraction Gratings and Lenses,” Journal of Infrared Millimeter and Terahertz Waves, Volume 36, pp. 72-80...Impact polystyrene mm millimeters ns nanosecond PLA polylactic acid pp p-polarized R Reflection ss s-polarized T Transmission THz

  2. A 3D Optical Surface Profilometer Using a Dual-Frequency Liquid Crystal-Based Dynamic Fringe Pattern Generator

    Directory of Open Access Journals (Sweden)

    Kyung-Il Joo

    2016-10-01

    Full Text Available We propose a liquid crystal (LC-based 3D optical surface profilometer that can utilize multiple fringe patterns to extract an enhanced 3D surface depth profile. To avoid the optical phase ambiguity and enhance the 3D depth extraction, 16 interference patterns were generated by the LC-based dynamic fringe pattern generator (DFPG using four-step phase shifting and four-step spatial frequency varying schemes. The DFPG had one common slit with an electrically controllable birefringence (ECB LC mode and four switching slits with a twisted nematic LC mode. The spatial frequency of the projected fringe pattern could be controlled by selecting one of the switching slits. In addition, moving fringe patterns were obtainable by applying voltages to the ECB LC layer, which varied the phase difference between the common and the selected switching slits. Notably, the DFPG switching time required to project 16 fringe patterns was minimized by utilizing the dual-frequency modulation of the driving waveform to switch the LC layers. We calculated the phase modulation of the DFPG and reconstructed the depth profile of 3D objects using a discrete Fourier transform method and geometric optical parameters.

  3. FreeCAD visualization of realistic 3D physical optics beams within a CAD system-model

    Science.gov (United States)

    Gayer, D.; O'Sullivan, C.; Scully, S.; Burke, D.; Brossard, J.; Chapron, C.

    2016-07-01

    The facility to realise the shape and extent of optical beams within a telescope or beamcombiner can aid greatly in the design and layout of optical elements within the system. It can also greatly facilitate communication between the optical design team and other teams working on the mechanical design of an instrument. Beyond the realm where raytracing is applicable however, it becomes much more difficult to realise accurate 3D beams which incorporate diffraction effects. It then is another issue to incorporate this into a CAD model of the system. A novel method is proposed which has been used to aid with the design of an optical beam combiner for the QUBIC (Q and U Bolometric Interferometer for Cosmology) 1 experiment operating at 150 GHz and 220 GHz. The method combines calculation work in GRASP 2, a commercial physical optics modelling tool from TICRA, geometrical work in Mathematica, and post processing in MATLAB. Finally, the Python console of the open source package FreeCAD3 is exploited to realise the 3D beams in a complete CAD system-model of the QUBIC optical beam combiner. This paper details and explains the work carried out to reach the goal and presents some graphics of the outcome. 3D representations of beams from some back-to-back input horns of the QUBIC instrument are shown within the CAD model. Beams of the -3dB and -13dB contour envelope are shown as well as envelopes enclosing 80% and 95% of the power of the beam. The ability to see these beams in situ with all the other elements of the combiner such as mirrors, cold stop, beam splitter and cryostat widows etc. greatly simplified the design for these elements and facilitated communication of element dimension and location between different subgroups within the QUBIC group.

  4. Fast multi-core based multimodal registration of 2D cross-sections and 3D datasets

    Directory of Open Access Journals (Sweden)

    Pielot Rainer

    2010-01-01

    Full Text Available Abstract Background Solving bioinformatics tasks often requires extensive computational power. Recent trends in processor architecture combine multiple cores into a single chip to improve overall performance. The Cell Broadband Engine (CBE, a heterogeneous multi-core processor, provides power-efficient and cost-effective high-performance computing. One application area is image analysis and visualisation, in particular registration of 2D cross-sections into 3D image datasets. Such techniques can be used to put different image modalities into spatial correspondence, for example, 2D images of histological cuts into morphological 3D frameworks. Results We evaluate the CBE-driven PlayStation 3 as a high performance, cost-effective computing platform by adapting a multimodal alignment procedure to several characteristic hardware properties. The optimisations are based on partitioning, vectorisation, branch reducing and loop unrolling techniques with special attention to 32-bit multiplies and limited local storage on the computing units. We show how a typical image analysis and visualisation problem, the multimodal registration of 2D cross-sections and 3D datasets, benefits from the multi-core based implementation of the alignment algorithm. We discuss several CBE-based optimisation methods and compare our results to standard solutions. More information and the source code are available from http://cbe.ipk-gatersleben.de. Conclusions The results demonstrate that the CBE processor in a PlayStation 3 accelerates computational intensive multimodal registration, which is of great importance in biological/medical image processing. The PlayStation 3 as a low cost CBE-based platform offers an efficient option to conventional hardware to solve computational problems in image processing and bioinformatics.

  5. Geometric and topological feature extraction of linear segments from 2D cross-section data of 3D point clouds

    Science.gov (United States)

    Ramamurthy, Rajesh; Harding, Kevin; Du, Xiaoming; Lucas, Vincent; Liao, Yi; Paul, Ratnadeep; Jia, Tao

    2015-05-01

    Optical measurement techniques are often employed to digitally capture three dimensional shapes of components. The digital data density output from these probes range from a few discrete points to exceeding millions of points in the point cloud. The point cloud taken as a whole represents a discretized measurement of the actual 3D shape of the surface of the component inspected to the measurement resolution of the sensor. Embedded within the measurement are the various features of the part that make up its overall shape. Part designers are often interested in the feature information since those relate directly to part function and to the analytical models used to develop the part design. Furthermore, tolerances are added to these dimensional features, making their extraction a requirement for the manufacturing quality plan of the product. The task of "extracting" these design features from the point cloud is a post processing task. Due to measurement repeatability and cycle time requirements often automated feature extraction from measurement data is required. The presence of non-ideal features such as high frequency optical noise and surface roughness can significantly complicate this feature extraction process. This research describes a robust process for extracting linear and arc segments from general 2D point clouds, to a prescribed tolerance. The feature extraction process generates the topology, specifically the number of linear and arc segments, and the geometry equations of the linear and arc segments automatically from the input 2D point clouds. This general feature extraction methodology has been employed as an integral part of the automated post processing algorithms of 3D data of fine features.

  6. 3D nondestructive testing system with an affordable multiple reference optical-delay-based optical coherence tomography.

    Science.gov (United States)

    Dsouza, Roshan; Subhash, Hrebesh M; Neuhaus, Kai; Hogan, Josh; Wilson, Carol; Leahy, Martin

    2015-06-20

    Optical coherence tomography (OCT) is emerging as a powerful noncontact imaging technique, allowing high-quality cross-sectional imaging of scattering specimens nondestructively. However, the complexity and cost of current embodiments of an OCT system limit its use in various nondestructive testing (NDT) applications at resource-limited settings. In this paper, we demonstrate the feasibility of a novel low-cost OCT system for a range of nondestructive testing (NDT) applications. The proposed imaging system is based on an enhanced time-domain OCT system with a low cost and small form factor reference arm optical delay, called multiple reference OCT (MR-OCT), which uses a miniature voice coil actuator and a partial mirror for extending the axial scan range. The proposed approach is potentially a low-cost, compact, and unique optical imaging modality for a range of NDT applications in a low-resource setting. Using this method, we demonstrated the capability of MR-OCT to perform cross-sectional and volumetric imaging at 1200 A-scans per second.

  7. 3D optical imagery for motion compensation in a limb ultrasound system

    Science.gov (United States)

    Ranger, Bryan J.; Feigin, Micha; Zhang, Xiang; Mireault, Al; Raskar, Ramesh; Herr, Hugh M.; Anthony, Brian W.

    2016-04-01

    Conventional processes for prosthetic socket fabrication are heavily subjective, often resulting in an interface to the human body that is neither comfortable nor completely functional. With nearly 100% of amputees reporting that they experience discomfort with the wearing of their prosthetic limb, designing an effective interface to the body can significantly affect quality of life and future health outcomes. Active research in medical imaging and biomechanical tissue modeling of residual limbs has led to significant advances in computer aided prosthetic socket design, demonstrating an interest in moving toward more quantifiable processes that are still patient-specific. In our work, medical ultrasonography is being pursued to acquire data that may quantify and improve the design process and fabrication of prosthetic sockets while greatly reducing cost compared to an MRI-based framework. This paper presents a prototype limb imaging system that uses a medical ultrasound probe, mounted to a mechanical positioning system and submerged in a water bath. The limb imaging is combined with three-dimensional optical imaging for motion compensation. Images are collected circumferentially around the limb and combined into cross-sectional axial image slices, resulting in a compound image that shows tissue distributions and anatomical boundaries similar to magnetic resonance imaging. In this paper we provide a progress update on our system development, along with preliminary results as we move toward full volumetric imaging of residual limbs for prosthetic socket design. This demonstrates a novel multi-modal approach to residual limb imaging.

  8. Scatterer size and concentration estimation technique based on a 3D acoustic impedance map from histologic sections

    Science.gov (United States)

    Mamou, Jonathan; Oelze, Michael L.; O'Brien, William D.; Zachary, James F.

    2004-05-01

    Accurate estimates of scatterer parameters (size and acoustic concentration) are beneficial adjuncts to characterize disease from ultrasonic backscatterer measurements. An estimation technique was developed to obtain parameter estimates from the Fourier transform of the spatial autocorrelation function (SAF). A 3D impedance map (3DZM) is used to obtain the SAF of tissue. 3DZMs are obtained by aligning digitized light microscope images from histologic preparations of tissue. Estimates were obtained for simulated 3DZMs containing spherical scatterers randomly located: relative errors were less than 3%. Estimates were also obtained from a rat fibroadenoma and a 4T1 mouse mammary tumor (MMT). Tissues were fixed (10% neutral-buffered formalin), embedded in paraffin, serially sectioned and stained with H&E. 3DZM results were compared to estimates obtained independently against ultrasonic backscatter measurements. For the fibroadenoma and MMT, average scatterer diameters were 91 and 31.5 μm, respectively. Ultrasonic measurements yielded average scatterer diameters of 105 and 30 μm, respectively. The 3DZM estimation scheme showed results similar to those obtained by the independent ultrasonic measurements. The 3D impedance maps show promise as a powerful tool to characterize ultrasonic scattering sites of tissue. [Work supported by the University of Illinois Research Board.

  9. Optical sensing technologies for the generation of reality-based 3D models of Cultural Heritage artifacts

    OpenAIRE

    2012-01-01

    The central theme of the thesis is the use of triangulation laser scanning and other optical three-dimensional surveying systems for the realization of 3D models of objects of historical and artistic interest - sculptures, archaeological finds, decorative elements in architecture. The subject is faced keeping in mind the purposes and needs the models should or could meet, and which are the challenging steps to become a more common tool. To name one, a fundamental aspect is bridging gaps betwe...

  10. Single atom visibility in STEM optical depth sectioning

    Science.gov (United States)

    Ishikawa, Ryo; Pennycook, Stephen J.; Lupini, Andrew R.; Findlay, Scott D.; Shibata, Naoya; Ikuhara, Yuichi

    2016-10-01

    The continuing development of aberration correctors for the scanning transmission electron microscope (STEM) offers the possibility of locating single atoms in crystals in 3D via optical depth sectioning. The main factors that determine the feasibility of such an approach are visibility and dose requirements. Here, we show how Poisson's statistics can be quantitatively incorporated into STEM image simulations and demonstrate that the 3D location of single cerium atoms in wurtzite-type aluminum nitride is indeed feasible under large-angle illumination conditions with a relatively low dose. We also show that chromatic aberration does not presently represent a limitation provided a cold field emission source is used. These results suggest efforts into improved aberration corrector designs for larger illumination angles that offer significant potential for 3D structure determination of materials.

  11. Optic flow-based vision system for autonomous 3D localization and control of small aerial vehicles

    OpenAIRE

    Kendoul, Farid; Fantoni, Isabelle; Nonami, Kenzo

    2009-01-01

    International audience; The problem considered in this paper involves the design of a vision-based autopilot for small and micro Unmanned Aerial Vehicles (UAVs). The proposed autopilot is based on an optic flow-based vision system for autonomous localization and scene mapping, and a nonlinear control system for flight control and guidance. This paper focusses on the development of a real-time 3D vision algorithm for estimating optic flow, aircraft self-motion and depth map, using a low-resolu...

  12. Holographic 3D multi-spot two-photon excitation for fast optical stimulation in brain

    Science.gov (United States)

    Takiguchi, Yu; Toyoda, Haruyoshi

    2017-04-01

    We report here a holographic high speed accessing microscope of sensory-driven synaptic activity across all inputs to single living neurons in the context of the intact cerebral cortex. This system is based on holographic multiple beam generation with spatial light modulator, we have demonstrated performance of the holographic excitation efficiency in several in vitro prototype system. 3D weighted iterative Fourier Transform method using the Ewald sphere in consideration of calculation speed has been adopted; multiple locations can be patterned in 3D with single hologram. Standard deviation of intensities of spots are still large due to the aberration of the system and/or hologram calculation, we successfully excited multiple locations of neurons in living mouse brain to monitor the calcium signals.

  13. Manufacturing of polymer optical waveguides using self-assembly effect on pre-conditioned 3D-thermoformed flexible substrates

    Science.gov (United States)

    Hoffmann, Gerd-Albert; Wolfer, Tim; Zeitler, Jochen; Franke, Jörg; Suttmann, Oliver; Overmeyer, Ludger

    2017-02-01

    Optical data communication is increasingly interesting for many applications in industrial processes. Therefore mass production is required to meet the requested price and lot sizes. Polymer optical waveguides show great promises to comply with price requirements while providing sufficient optical quality for short range data transmission. A high efficient fabrication technology using polymer materials could be able to create the essential backbone for 3D-optical data transmission in the future. The approach for high efficient fabrication technology of micro optics described in this paper is based on a self-assembly effect of fluids on preconditioned 3D-thermoformed polymer foils. Adjusting the surface energy on certain areas on the flexible substrate by flexographic printing mechanism is presented in this paper. With this technique conditioning lines made of silicone containing UV-varnish are printed on top of the foils and create gaps with the exposed substrate material in between. Subsequent fabrication processes are selected whether the preconditioned foil is coated with acrylate containing waveguide material prior or after the thermoforming process. Due to the different surface energy this material tends to dewet from the conditioning lines. It acts like regional barriers and sets the width of the arising waveguides. With this fabrication technology it is possible to produce multiple waveguides with a single coating process. The relevant printing process parameters that affect the quality of the generated waveguides are discussed and results of the produced waveguides with width ranging from 10 to 300 μm are shown.

  14. Towards a Noninvasive Intracranial Tumor Irradiation Using 3D Optical Imaging and Multimodal Data Registration

    Science.gov (United States)

    Posada, R.; Daul, Ch.; Wolf, D.; Aletti, P.

    2007-01-01

    Conformal radiotherapy (CRT) results in high-precision tumor volume irradiation. In fractioned radiotherapy (FRT), lesions are irradiated in several sessions so that healthy neighbouring tissues are better preserved than when treatment is carried out in one fraction. In the case of intracranial tumors, classical methods of patient positioning in the irradiation machine coordinate system are invasive and only allow for CRT in one irradiation session. This contribution presents a noninvasive positioning method representing a first step towards the combination of CRT and FRT. The 3D data used for the positioning is point clouds spread over the patient's head (CT-data usually acquired during treatment) and points distributed over the patient's face which are acquired with a structured light sensor fixed in the therapy room. The geometrical transformation linking the coordinate systems of the diagnosis device (CT-modality) and the 3D sensor of the therapy room (visible light modality) is obtained by registering the surfaces represented by the two 3D point sets. The geometrical relationship between the coordinate systems of the 3D sensor and the irradiation machine is given by a calibration of the sensor position in the therapy room. The global transformation, computed with the two previous transformations, is sufficient to predict the tumor position in the irradiation machine coordinate system with only the corresponding position in the CT-coordinate system. Results obtained for a phantom show that the mean positioning error of tumors on the treatment machine isocentre is 0.4 mm. Tests performed with human data proved that the registration algorithm is accurate (0.1 mm mean distance between homologous points) and robust even for facial expression changes. PMID:18364992

  15. Writing of 3D optical integrated circuits with ultrashort laser pulses in the presence of strong spherical aberration

    Science.gov (United States)

    Bukharin, M. A.; Skryabin, N. N.; Khudyakov, D. V.; Vartapetov, S. K.

    2016-09-01

    A novel technique was proposed for 3D femtosecond writing of waveguides and optical integrated circuits in the presence of strong spherical aberration, caused by inscription at significantly different depth under the surface of optical glasses and crystals. Strong negative effect of spherical aberration and related asymmetry of created structures was reduced due to transition to the cumulative thermal regime of femtosecond interaction with the material. The differences in the influence of spherical aberration effect in a broad depth range (larger than 200 µm) was compensated by dynamic adjustment of laser pulse energy during the process of waveguides recording. The presented approach has been experimentally implemented in fused silica. Obtained results can be used in production of a broad class of femtosecond written three-dimensional integrated optical systems, inscripted at non-optimal (for focusing lens) optical depth or in significantly extended range of depths.

  16. WebTOP: A 3D Interactive System for Teaching and Learning Optics

    Science.gov (United States)

    Mzoughi, Taha; Herring, S. Davis; Foley, John T.; Morris, Matthew J.; Gilbert, Peter J.

    2007-01-01

    WebTOP is a three-dimensional, Web-based, interactive computer graphics system that helps instructors teach and students learn about waves and optics. Current subject areas include waves, geometrical optics, reflection and refraction, polarization, interference, diffraction, lasers, and scattering. Some of the topics covered are suited for…

  17. Intellijoint HIP®: a 3D mini-optical navigation tool for improving intraoperative accuracy during total hip arthroplasty

    Directory of Open Access Journals (Sweden)

    Paprosky WG

    2016-11-01

    Full Text Available Wayne G Paprosky,1,2 Jeffrey M Muir3 1Department of Orthopedics, Section of Adult Joint Reconstruction, Department of Orthopedics, Rush University Medical Center, Rush–Presbyterian–St Luke’s Medical Center, Chicago, 2Central DuPage Hospital, Winfield, IL, USA; 3Intellijoint Surgical, Inc, Waterloo, ON, Canada Abstract: Total hip arthroplasty is an increasingly common procedure used to address degenerative changes in the hip joint due to osteoarthritis. Although generally associated with good results, among the challenges associated with hip arthroplasty are accurate measurement of biomechanical parameters such as leg length, offset, and cup position, discrepancies of which can lead to significant long-term consequences such as pain, instability, neurological deficits, dislocation, and revision surgery, as well as patient dissatisfaction and, increasingly, litigation. Current methods of managing these parameters are limited, with manual methods such as outriggers or calipers being used to monitor leg length; however, these are susceptible to small intraoperative changes in patient position and are therefore inaccurate. Computer-assisted navigation, while offering improved accuracy, is expensive and cumbersome, in addition to adding significantly to procedural time. To address the technological gap in hip arthroplasty, a new intraoperative navigation tool (Intellijoint HIP® has been developed. This innovative, 3D mini-optical navigation tool provides real-time, intraoperative data on leg length, offset, and cup position and allows for improved accuracy and precision in component selection and alignment. Benchtop and simulated clinical use testing have demonstrated excellent accuracy, with the navigation tool able to measure leg length and offset to within <1 mm and cup position to within <1° in both anteversion and inclination. This study describes the indications, procedural technique, and early accuracy results of the Intellijoint HIP

  18. Section on High Resolution Optical Imaging (HROI)

    Data.gov (United States)

    Federal Laboratory Consortium — The Section on High Resolution Optical Imaging (HROI) develops novel technologies for studying biological processes at unprecedented speed and resolution. Research...

  19. Correlation between Optic Nerve Parameters Obtained Using 3D Nonmydriatic Retinal Camera and Optical Coherence Tomography: Interobserver Agreement on the Disc Damage Likelihood Scale

    Directory of Open Access Journals (Sweden)

    Jae Wook Han

    2014-01-01

    Full Text Available Purpose. To compare stereometric parameters obtained by three-dimensional (3D optic disc photography and optical coherence tomography (OCT and assess interobserver agreement on the disc damage likelihood scale (DDLS. Methods. This retrospective study included 190 eyes from 190 patients classified as normal, glaucoma suspect, or glaucomatous. Residents at different levels of training completed the DDLS for each patient before and after attending a training module. 3D optic disc photography and OCT were performed on each eye, and correlations between the DDLS and various parameters obtained by each device were calculated. Results. We found moderate agreement (weighted kappa value, 0.59 ± 0.03 between DDLS scores obtained by 3D optic disc photography and the glaucoma specialist. The weighted kappa values for agreement and interobserver concordance increased among residents after the training module. Interobserver concordance was the poorest at DDLS stages 5 and 6. The DDLS scored by the glaucoma specialist had the highest predictability value (0.941. Conclusions. The DDLS obtained by 3D optic disc photography is a useful diagnostic tool for glaucoma. A supervised teaching program increased trainee interobserver agreement on the DDLS. DDLS stages 5 and 6 showed the poorest interobserver agreement, suggesting that caution is required when recording these stages.

  20. Correlation between Optic Nerve Parameters Obtained Using 3D Nonmydriatic Retinal Camera and Optical Coherence Tomography: Interobserver Agreement on the Disc Damage Likelihood Scale.

    Science.gov (United States)

    Han, Jae Wook; Cho, Soon Young; Kang, Kui Dong

    2014-01-01

    Purpose. To compare stereometric parameters obtained by three-dimensional (3D) optic disc photography and optical coherence tomography (OCT) and assess interobserver agreement on the disc damage likelihood scale (DDLS). Methods. This retrospective study included 190 eyes from 190 patients classified as normal, glaucoma suspect, or glaucomatous. Residents at different levels of training completed the DDLS for each patient before and after attending a training module. 3D optic disc photography and OCT were performed on each eye, and correlations between the DDLS and various parameters obtained by each device were calculated. Results. We found moderate agreement (weighted kappa value, 0.59 ± 0.03) between DDLS scores obtained by 3D optic disc photography and the glaucoma specialist. The weighted kappa values for agreement and interobserver concordance increased among residents after the training module. Interobserver concordance was the poorest at DDLS stages 5 and 6. The DDLS scored by the glaucoma specialist had the highest predictability value (0.941). Conclusions. The DDLS obtained by 3D optic disc photography is a useful diagnostic tool for glaucoma. A supervised teaching program increased trainee interobserver agreement on the DDLS. DDLS stages 5 and 6 showed the poorest interobserver agreement, suggesting that caution is required when recording these stages.

  1. Measurement of dynamic cell-induced 3D displacement fields in vitro for traction force optical coherence microscopy.

    Science.gov (United States)

    Mulligan, Jeffrey A; Bordeleau, François; Reinhart-King, Cynthia A; Adie, Steven G

    2017-02-01

    Traction force microscopy (TFM) is a method used to study the forces exerted by cells as they sense and interact with their environment. Cell forces play a role in processes that take place over a wide range of spatiotemporal scales, and so it is desirable that TFM makes use of imaging modalities that can effectively capture the dynamics associated with these processes. To date, confocal microscopy has been the imaging modality of choice to perform TFM in 3D settings, although multiple factors limit its spatiotemporal coverage. We propose traction force optical coherence microscopy (TF-OCM) as a novel technique that may offer enhanced spatial coverage and temporal sampling compared to current methods used for volumetric TFM studies. Reconstructed volumetric OCM data sets were used to compute time-lapse extracellular matrix deformations resulting from cell forces in 3D culture. These matrix deformations revealed clear differences that can be attributed to the dynamic forces exerted by normal versus contractility-inhibited NIH-3T3 fibroblasts embedded within 3D Matrigel matrices. Our results are the first step toward the realization of 3D TF-OCM, and they highlight the potential use of OCM as a platform for advancing cell mechanics research.

  2. Light engine and optics for HELIUM3D auto-stereoscopic laser scanning display

    OpenAIRE

    Aksit, K.; Olcer, S.; Erden, E.; Kishore, V. C.; Urey, H.; Willman, E.; Baghsiahi, H.; Day, S. E.; Selviah, D. R.; Fernandez, F. A.; Surman, P.

    2011-01-01

    This paper presents a laser based auto-stereoscopic 3D display technique and a prototype utilizing a dual projector light engine. The solution described is able to form dynamic exit pupils under the control of a multi-user head-tracker. A prototype completed recently is able to provide a glasses-free solution for a single user at a fixed position. At the end of the prototyping phase it is expected to enable a multiple user interface with an integration of the pupil tracker and the spatial lig...

  3. 3D monitoring and quality control using intraoral optical camera systems.

    Science.gov (United States)

    Mehl, A; Koch, R; Zaruba, M; Ender, A

    2013-01-01

    The quality of intraoral scanning systems is steadily improving, and they are becoming easier and more reliable to operate. This opens up possibilities for routine clinical applications. A special aspect is that overlaying (superimposing) situations recorded at different times facilitates an accurate three-dimensional difference analysis. Such difference analyses can also be used to advantage in other areas of dentistry where target/actual comparisons are required. This article presents potential indications using a newly developed software, explaining the functionality of the evaluation process and the prerequisites and limitations of 3D monitoring.

  4. Optical stability of 3d transition metal ions doped-cadmium borate glasses towards γ-rays interaction

    Science.gov (United States)

    Marzouk, M.; ElBatal, H.; Eisa, W.

    2016-07-01

    This work reports the preparation of glasses of binary cadmium borate with the basic composition (mol% 45 CdO 55 B2O3) and samples of the same composition containing 0.2 wt% dopants of 3d transition metal (TM) oxides (TiO2 → CuO). The glasses have been investigated by combined optical and Fourier Transform infrared spectroscopic measurements before and after being subjected to gamma irradiation with a dose of 8 Mrad (8 × 104 Gy). Optical absorption of the undoped glass before irradiation reveals strong charge transfer UV absorption which is related to the presence of unavoidable contaminated trace iron impurities (mainly Fe3+) within the raw materials used for the preparation of the base cadmium borate glass. The optical spectra of the 3d TM ions exhibit characteristic bands which are related the stable oxidation state of the 3d TM ions within the host glass. Gamma irradiation produces some limited variations in the optical spectra due to the stability of the host glass containing high percent 45 mol% of heavy metal oxide (CdO) which causes some shielding effects towards irradiation. From the absorption edge data, the values of the optical band gap Eopt and Urbach energy (∆E) have been calculated. The values of the optical energy gap are found to be dependent on the glass composition. Infrared absorption spectral measurements reveal characteristic absorption bands due to both triangular and tetrahedral borate groups with the BO3 units vibrations more intense than BO4 units due to the known limit value for the change of BO3 to BO4 groups. The introduction of 3d TM ions with the doping level (0.2 wt%) causes no changes in the number or position of the IR bands because of the presence of TM ions in modifying sites in the glass network. It is observed that gamma irradiation causes some limited changes in the FT-IR spectral bands due to the stability of the host heavy cadmium borate glass.

  5. 3D documentation of footwear impressions and tyre tracks in snow with high resolution optical surface scanning.

    Science.gov (United States)

    Buck, Ursula; Albertini, Nicola; Naether, Silvio; Thali, Michael J

    2007-09-13

    The three-dimensional documentation of footwear and tyre impressions in snow offers an opportunity to capture additional fine detail for the identification as present photographs. For this approach, up to now, different casting methods have been used. Casting of footwear impressions in snow has always been a difficult assignment. This work demonstrates that for the three-dimensional documentation of impressions in snow the non-destructive method of 3D optical surface scanning is suitable. The new method delivers more detailed results of higher accuracy than the conventional casting techniques. The results of this easy to use and mobile 3D optical surface scanner were very satisfactory in different meteorological and snow conditions. The method is also suitable for impressions in soil, sand or other materials. In addition to the side by side comparison, the automatic comparison of the 3D models and the computation of deviations and accuracy of the data simplify the examination and delivers objective and secure results. The results can be visualized efficiently. Data exchange between investigating authorities at a national or an international level can be achieved easily with electronic data carriers.

  6. 3D optical two-mirror scanner with focus-tunable lens.

    Science.gov (United States)

    Pokorny, Petr; Miks, Antonin

    2015-08-01

    The paper presents formulas for a ray tracing in the optical system of two-mirror optical scanner with a focus-tunable lens. Furthermore, equations for the calculation of focal length which ensure focusing of a beam in the desired point in a detection plane are derived. The uncertainty description of such focal length follows as well. The chosen vector approach is general; therefore, the application of formulas in various configurations of the optical systems is possible. In the example situation, the authors derived formulas for mirrors' rotations and the focal length depending on the position of the point in the detection plane.

  7. Treating benign optic nerve tumors with a 3-D conformal plan

    Energy Technology Data Exchange (ETDEWEB)

    Millunchick, Cheryl Hope, E-mail: mordechaimillunchick@gmail.com [Rush University Medical Center, Radiation Oncology, Chicago, IL (United States)

    2013-07-01

    A 68 year old male patient presented for radiation therapy for treatment of a benign tumor, a glioma of his left optic nerve. The radiation oncologist intended to prescribe 52.2 Gy to the planning target volume, while maintaining a maximum of 54 Gy to the optic nerves and the optic chiasm and a maximum of 40–45 Gy to the globes in order to minimize the possibility of damaging the optic system, which is especially important as this is a benign tumor. The dosimetrist devised a conformal non-coplanar three-dimensional plan with a slightly weighted forward planning component. This plan was created in approximately 15 minutes after the critical organs and the targets were delineated and resulted in an extremely conformal and homogenous plan, treating the target while sparing the nearby critical structures. This approach can also be extended to other tumors in the brain - benign or malignant.

  8. Multicolor 3D super-resolution imaging by quantum dot stochastic optical reconstruction microscopy.

    Science.gov (United States)

    Xu, Jianquan; Tehrani, Kayvan F; Kner, Peter

    2015-03-24

    We demonstrate multicolor three-dimensional super-resolution imaging with quantum dots (QSTORM). By combining quantum dot asynchronous spectral blueing with stochastic optical reconstruction microscopy and adaptive optics, we achieve three-dimensional imaging with 24 nm lateral and 37 nm axial resolution. By pairing two short-pass filters with two appropriate quantum dots, we are able to image single blueing quantum dots on two channels simultaneously, enabling multicolor imaging with high photon counts.

  9. Ultra-fast 3D scanning and holographic illumination in non-linear microscopy using acousto-optic deflectors

    Science.gov (United States)

    Akemann, Walther; Ventalon, Cathie; Léger, Jean-François; Mathieu, Benjamin; Dieudonné, Stéphane; Blochet, Baptiste; Gigan, Sylvain; Bourdieu, Laurent

    2017-04-01

    Decoding of information in the brain requires the imaging of large neuronal networks using e.g. two-photon microscopy (TPM). Fast control of the focus in 3D can be achieved with phase shaping of the light beam using acoustooptic deflectors (AODs). However, beam shaping using AODs is not straightforward because of non-stationary of acousto-optic diffraction. Here, we demonstrated a new stable AOD-based phase modulator, which operates at a rate of up to about hundred kHz. It provides opportunity for 3D scanning in TPM with the possibility to correct aberrations independently for every focus position or to achieve refocusing of scattered photons in rapidly decorrelating tissues.

  10. 3D printed disposable optics and lab-on-a-chip devices for chemical sensing with cell phones

    Science.gov (United States)

    Comina, G.; Suska, A.; Filippini, D.

    2017-02-01

    Digital manufacturing (DM) offers fast prototyping capabilities and great versatility to configure countless architectures at affordable development costs. Autonomous lab-on-a-chip (LOC) devices, conceived as only disposable accessory to interface chemical sensing to cell phones, require specific features that can be achieved using DM techniques. Here we describe stereo-lithography 3D printing (SLA) of optical components and unibody-LOC (ULOC) devices using consumer grade printers. ULOC devices integrate actuation in the form of check-valves and finger pumps, as well as the calibration range required for quantitative detection. Coupling to phone camera readout depends on the detection approach, and includes different types of optical components. Optical surfaces can be locally configured with a simple polishing-free post-processing step, and the representative costs are 0.5 US$/device, same as ULOC devices, both involving fabrication times of about 20 min.

  11. Feasibility study of a single-shot 3D electron bunch shape monitor with an electro-optic sampling technique

    Directory of Open Access Journals (Sweden)

    Yuichi Okayasu

    2013-05-01

    Full Text Available We developed a three-dimensional electron bunch charge distribution (3D-BCD monitor with single-shot detection, and a spectral decoding based electro-optic (EO sampling technique for a nondestructive monitor enables real-time reconstruction of the three-dimensional distribution of a bunch charge. We realized three goals by simultaneously probing a number of Pockels EO crystals that surround the electron beam axis with hollow and radial polarized laser pulses. First, we performed a feasibility test as a simple case of a 3D-BCD monitor probing two ZnTe crystals as EO detectors installed on the opposite angle to the electron beam axis and confirmed that we simultaneously obtained both EO signals. Since the adopted hollow probe laser pulse is not only radially polarized but also temporally shifted azimuthally, some disorders in the radial polarization distribution of such a laser pulse were numerically analyzed with a plane-wave expansion method. Based on the above investigations, the 3D-BCD monitor is feasible both in experimental and numerical estimations. Furthermore, we previously developed a femtosecond response organic crystal as a Pockels EO detector and a broadband probe laser (≥350  nm in FWHM; the 3D-BCD monitor realizes 30- to 40-fs (FWHM temporal resolution. Eventually, the monitor is expected to be equipped in such advanced accelerators as XFEL to measure and adjust the electron bunch charge distribution in real time. The 3D-BCD measurement works as a critical tool to provide feedback to seeded FELs.

  12. Scanning laser optical computed tomography system for large volume 3D dosimetry

    Science.gov (United States)

    Dekker, Kurtis H.; Battista, Jerry J.; Jordan, Kevin J.

    2017-04-01

    Stray light causes artifacts in optical computed tomography (CT) that negatively affect the accuracy of radiation dosimetry in gels or solids. Scatter effects are exacerbated by a large dosimeter volume, which is desirable for direct verification of modern radiotherapy treatment plans such as multiple-isocenter radiosurgery. The goal in this study was to design and characterize an optical CT system that achieves high accuracy primary transmission measurements through effective stray light rejection, while maintaining sufficient scan speed for practical application. We present an optical imaging platform that uses a galvanometer mirror for horizontal scanning, and a translation stage for vertical movement of a laser beam and small area detector for minimal stray light production and acceptance. This is coupled with a custom lens-shaped optical CT aquarium for parallel ray sampling of projections. The scanner images 15 cm diameter, 12 cm height cylindrical volumes at 0.33 mm resolution in approximately 30 min. Attenuation coefficients reconstructed from CT scans agreed with independent cuvette measurements within 2% for both absorbing and scattering solutions as well as small 1.25 cm diameter absorbing phantoms placed within a large, scattering medium that mimics gel. Excellent linearity between the optical CT scanner and the independent measurement was observed for solutions with between 90% and 2% transmission. These results indicate that the scanner should achieve highly accurate dosimetry of large volume dosimeters in a reasonable timeframe for clinical application to radiotherapy dose verification procedures.

  13. Scanning laser optical computed tomography system for large volume 3D dosimetry.

    Science.gov (United States)

    Dekker, Kurtis H; Battista, Jerry J; Jordan, Kevin J

    2017-04-07

    Stray light causes artifacts in optical computed tomography (CT) that negatively affect the accuracy of radiation dosimetry in gels or solids. Scatter effects are exacerbated by a large dosimeter volume, which is desirable for direct verification of modern radiotherapy treatment plans such as multiple-isocenter radiosurgery. The goal in this study was to design and characterize an optical CT system that achieves high accuracy primary transmission measurements through effective stray light rejection, while maintaining sufficient scan speed for practical application. We present an optical imaging platform that uses a galvanometer mirror for horizontal scanning, and a translation stage for vertical movement of a laser beam and small area detector for minimal stray light production and acceptance. This is coupled with a custom lens-shaped optical CT aquarium for parallel ray sampling of projections. The scanner images 15 cm diameter, 12 cm height cylindrical volumes at 0.33 mm resolution in approximately 30 min. Attenuation coefficients reconstructed from CT scans agreed with independent cuvette measurements within 2% for both absorbing and scattering solutions as well as small 1.25 cm diameter absorbing phantoms placed within a large, scattering medium that mimics gel. Excellent linearity between the optical CT scanner and the independent measurement was observed for solutions with between 90% and 2% transmission. These results indicate that the scanner should achieve highly accurate dosimetry of large volume dosimeters in a reasonable timeframe for clinical application to radiotherapy dose verification procedures.

  14. Optical 3D Nano-fabrication: Drawing or Growing? (Conference Presentation)

    Science.gov (United States)

    Kawata, Satoshi

    2016-05-01

    Conventional nanotechnology based on the lithography and scanning probe microscopy is limited to 2D fabrication and modification. Here, I will talk about the method for 3D laser fabrication with two-photon polymerization [1], two-photon isomerization [2], and two-photon photo-reduction [3]. Self-growth technology, such as self-grown fiber structures of polymer [4] and self-grown metallic fractal metamaterials structures [5] will be also discussed. [1] S. Kawata, et. al, Nature 412, 697-698, 2001. [2] S. Kawata and Y. Kawata, Chem Rev. 88, 083110, 2006. [3] Y. -Y. Cao, et. al., Small 5, 1144-1148, 2009 [4] S. Shoji and S. Kawata, Appl. Phys. Lett. 75, 737-739, 1999. [5] N. Takeyasu, N. Nishimura, S. Kawata, submitted.

  15. Study of negative hydrogen ion beam optics using the 3D3V PIC model

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K., E-mail: kmiyamot@naruto-u.ac.jp [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima, 772-8502 (Japan); Nishioka, S.; Goto, I.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522 (Japan); Hanada, M.; Kojima, A. [Japan Atomic Energy Agency, 801-1,Mukoyama, Naka, 319-0913 (Japan)

    2015-04-08

    The mechanism of negative ion extraction under real conditions with the complex magnetic field is studied by using the 3D PIC simulation code. The extraction region of the negative ion source for the negative ion based neutral beam injection system in fusion reactors is modelled. It is shown that the E x B drift of electrons is caused by the magnetic filter and the electron suppression magnetic field, and the resultant asymmetry of the plasma meniscus. Furthermore, it is indicated that that the asymmetry of the plasma meniscus results in the asymmetry of negative ion beam profile including the beam halo. It could be demonstrated theoretically that the E x B drift is not significantly weakened by the elastic collisions of the electrons with neutral particles.

  16. New optical four-quadrant phase detector integrated into a photogate array for small and precise 3D cameras

    Science.gov (United States)

    Schwarte, Rudolf; Xu, Zhanping; Heinol, Horst-Guenther; Olk, Joachim; Buxbaum, Bernd

    1997-03-01

    The photonic mixer device (PMD) is a new electro-optical mixing semiconductor device. Integrated into a line or an array it may contribute a significant improvement in developing an extremely fast, flexible, robust and low cost 3D-solid-state camera. Three dimensional (3D)-cameras are of dramatically increasing interest in industrial automation, especially for production integrated quality control, in- house navigation, etc. The type of 3D-camera here under consideration is based on the principle of time-of-flight respectively phase delay of surface reflected echoes of rf- modulated light. In contrast to 3D-laser radars there is no scanner required since the whole 3D-scene is illuminated simultaneously using intensity-modulated incoherent light, e.g. in the 10 to 1000 MHz range. The rf-modulated light reflected from the 3D-scene represents the total depth information within the local delay of the back scattered phase front. If this incoming wave front is again rf- modulated by a 2D-mixer within the whole receiving aperture we get a quasi-stationary rf-inference pattern respectively rf-interferogram which may be captured by means of a conventional CCD-camera. This procedure is called rf- modulation interferometry (RFMI). Corresponding to first simulative results the new PMD-array will be appropriate to the RFMI-procedure. Though looking like a modified CCD-array or CMOS-photodetector array it will be able to perform both, the pixelwise mixing process for phase delay respectively depth evaluation and the pixelwise light intensity acquisition for gray level or color evaluation. Further advantageous properties are achieved by means of a four- quadrant (4Q)-PMD array which operates as a balanced inphase/quadrature phase (I/Q)-mixer and will be able to capture the total 3D-scene information of several 100,000 voxels within the microsecond(s) - to ms-range.

  17. Fast, high-resolution 3D dosimetry utilizing a novel optical-CT scanner incorporating tertiary telecentric collimation.

    Science.gov (United States)

    Sakhalkar, H S; Oldham, M

    2008-01-01

    This study introduces a charge coupled device (CCD) area detector based optical-computed tomography (optical-CT) scanner for comprehensive verification of radiation dose distributions recorded in nonscattering radiochromic dosimeters. Defining characteristics include: (i) a very fast scanning time of approximately 5 min to acquire a complete three-dimensional (3D) dataset, (ii) improved image formation through the use of custom telecentric optics, which ensures accurate projection images and minimizes artifacts from scattered and stray-light sources, and (iii) high resolution (potentially 50 microm) isotropic 3D dose readout. The performance of the CCD scanner for 3D dose readout was evaluated by comparison with independent 3D readout from the single laser beam OCTOPUS-scanner for the same PRESAGE dosimeters. The OCTOPUS scanner was considered the "gold standard" technique in light of prior studies demonstrating its accuracy. Additional comparisons were made against calculated dose distributions from the ECLIPSE treatment-planning system. Dose readout for the following treatments were investigated: (i) a single rectangular beam irradiation to investigate small field and very steep dose gradient dosimetry away from edge effects, (ii) a 2-field open beam parallel-opposed irradiation to investigate dosimetry along steep dose gradients, and (iii) a 7-field intensity modulated radiation therapy (IMRT) irradiation to investigate dosimetry for complex treatment delivery involving modulation of fluence and for dosimetry along moderate dose gradients. Dose profiles, dose-difference plots, and gamma maps were employed to evaluate quantitative estimates of agreement between independently measured and calculated dose distributions. Results indicated that dose readout from the CCD scanner was in agreement with independent gold-standard readout from the OCTOPUS-scanner as well as the calculated ECLIPSE dose distribution for all treatments, except in regions within a few

  18. Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy.

    Science.gov (United States)

    Akemann, Walther; Léger, Jean-François; Ventalon, Cathie; Mathieu, Benjamin; Dieudonné, Stéphane; Bourdieu, Laurent

    2015-11-01

    Acousto-optic deflection (AOD) devices offer unprecedented fast control of the entire spatial structure of light beams, most notably their phase. AOD light modulation of ultra-short laser pulses, however, is not straightforward to implement because of intrinsic chromatic dispersion and non-stationarity of acousto-optic diffraction. While schemes exist to compensate chromatic dispersion, non-stationarity remains an obstacle. In this work we demonstrate an efficient AOD light modulator for stable phase modulation using time-locked generation of frequency-modulated acoustic waves at the full repetition rate of a high power laser pulse amplifier of 80 kHz. We establish the non-local relationship between the optical phase and the generating acoustic frequency function and verify the system for temporal stability, phase accuracy and generation of non-linear two-dimensional phase functions.

  19. 3D-integrated optics component for astronomical spectro-interferometry.

    Science.gov (United States)

    Saviauk, Allar; Minardi, Stefano; Dreisow, Felix; Nolte, Stefan; Pertsch, Thomas

    2013-07-01

    We present the experimental characterization of a spectro-interferometry setup based on a laser-written three-dimensional integrated optics component. By exploiting the interferometric capability of a two-dimensional array of evanescently coupled waveguides, we measure the mutual coherence properties of three different polychromatic optical fields. Direct application of our discrete beam combiner (DBC) component is astronomical interferometry. The DBC can be scaled up to combine arbitrary large number of telescopes for the determination of coherence properties of astronomical targets. Besides applications to astronomy, the DBC can be also applied to optical integrated metrology system requiring nanometric position monitoring. The working principle, the experimental setup used, and the broadband performance of the DBC are presented.

  20. Anterior segment optical coherence tomography for the diagnosis of corneal dystrophies according to the IC3D classification.

    Science.gov (United States)

    Siebelmann, Sebastian; Scholz, Paula; Sonnenschein, Simon; Bachmann, Björn; Matthaei, Mario; Cursiefen, Claus; Heindl, Ludwig M

    2017-08-09

    Corneal dystrophies are categorized according to the International Committee for Classification of Corneal Dystrophies (IC3D) classification, and their treatment depends on the affected structures and layer of the cornea. Therefore, estimating the depth and extent of the morphological changes due to the specific dystrophy is crucial when deciding between different treatment options. Besides superficial laser treatments and penetrating keratoplasty, minimal invasive lamellar keratoplasties such as Descemet membrane endothelial keratoplasty, deep anterior lamellar keratoplasty, or Descemet stripping automated keratoplasty have become increasingly popular to exchange the specific opaque layers in dystrophic eyes. To determine the morphological changes of the cornea in the different dystrophies, in addition to slit-lamp examination, anterior segment optical coherence tomography has become an important tool with nearly histological resolution. Nonetheless, only a few case series describe the characteristics of changes seen on anterior segment optical coherence tomography. Therefore, we summarize anterior segment optical coherence tomography signs and correlate with slit-lamp examination, as well as the histopathological findings, of corneal dystrophies according to the IC3D classification. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Optical CT scanner for in-air readout of gels for external radiation beam 3D dosimetry.

    Science.gov (United States)

    Ramm, Daniel; Rutten, Thomas P; Shepherd, Justin; Bezak, Eva

    2012-06-21

    Optical CT scanners for a 3D readout of externally irradiated radiosensitive hydrogels currently require the use of a refractive index (RI) matching liquid bath to obtain suitable optical ray paths through the gel sample to the detector. The requirement for a RI matching liquid bath has been negated by the design of a plastic cylindrical gel container that provides parallel beam geometry through the gel sample for the majority of the projection. The design method can be used for various hydrogels. Preliminary test results for the prototype laser beam scanner with ferrous xylenol-orange gel show geometric distortion of 0.2 mm maximum, spatial resolution limited to beam spot size of about 0.4 mm and 0.8% noise (1 SD) for a uniform irradiation. Reconstruction of a star pattern irradiated through the cylinder walls demonstrates the suitability for external beam applications. The extremely simple and cost-effective construction of this optical CT scanner, together with the simplicity of scanning gel samples without RI matching fluid increases the feasibility of using 3D gel dosimetry for clinical external beam dose verifications.

  2. Investigation on a replica step gauge for optical 3D scanning of micro parts

    DEFF Research Database (Denmark)

    Cantatore, Angela; De Chiffre, Leonardo; Carmignato, S.

    2010-01-01

    . The stability over time of the step gauge was evaluated by repetitive measurement campaigns over a period of eight months, using measurements taken with a tactile CMM and with an optical scanner. Surface cooperativeness was investigated by measuring artefact grooves and pitch and comparing results with tactile......This work deals with investigation of the stability over time and surface cooperativeness of a calibration artefact intended for optical scanner verification. A replica step gauge with 11 grooves, made of bisacryl material for dental applications (luxabite) and previously fabricated was studied...

  3. Numerical nonlinear complex geometrical optics algorithm for the 3D Calderón problem

    DEFF Research Database (Denmark)

    Delbary, Fabrice; Knudsen, Kim

    2014-01-01

    computer implementation of the full nonlinear algorithm is given. First a boundary integral equation is solved by a Nystrom method for the traces of the complex geometrical optics solutions, second the scattering transform is computed and inverted using fast Fourier transform, and finally a boundary value...

  4. Editorial: 3DIM-DS 2015: Optical image processing in the context of 3D imaging, metrology, and data security

    Science.gov (United States)

    Alfalou, Ayman

    2017-02-01

    Following the first International Symposium on 3D Imaging, Metrology, and Data Security (3DIM-DS) held in Shenzhen during september 2015, this special issue gathers a series of articles dealing with the main topics discussed during this symposium. These topics highlighted the importance of studying complex data treatment systems and intensive calculations designed for high dimensional imaging and metrology for which high image quality and high transmission speed become critical issues in a number of technological applications. A second purpose was to celebrate the International Year of Light by emphasizing the important role of optics in actual information processing systems.

  5. Metallo-dielectric core-shell nanospheres as building blocks for optical 3D isotropic negative-index metamaterials

    CERN Document Server

    Paniagua-Domínguez, R; Marqués, R

    2011-01-01

    We propose a fully 3D, isotropic metamaterial with strong electric and magnetic response in the optical regime, based on metal-dielectric core-shell nanospheres. The magnetic response stems from the lowest, magnetic-dipole resonance of the dielectric nanoshell with high refractive index. The magnetic resonance can be tuned to coincide with the plasmon resonance of the metal core, responsible for the electric response. Since the response does not stem from coupling between structures, no particular periodic arrangement needs to be imposed.

  6. The MHOST finite element program: 3-D inelastic analysis methods for hot section components. Volume 1: Theoretical manual

    Science.gov (United States)

    Nakazawa, Shohei

    1991-01-01

    Formulations and algorithms implemented in the MHOST finite element program are discussed. The code uses a novel concept of the mixed iterative solution technique for the efficient 3-D computations of turbine engine hot section components. The general framework of variational formulation and solution algorithms are discussed which were derived from the mixed three field Hu-Washizu principle. This formulation enables the use of nodal interpolation for coordinates, displacements, strains, and stresses. Algorithmic description of the mixed iterative method includes variations for the quasi static, transient dynamic and buckling analyses. The global-local analysis procedure referred to as the subelement refinement is developed in the framework of the mixed iterative solution, of which the detail is presented. The numerically integrated isoparametric elements implemented in the framework is discussed. Methods to filter certain parts of strain and project the element discontinuous quantities to the nodes are developed for a family of linear elements. Integration algorithms are described for linear and nonlinear equations included in MHOST program.

  7. 3D Buried Utility Location Using A Marching-Cross-Section Algorithm for Multi-Sensor Data Fusion

    Directory of Open Access Journals (Sweden)

    Qingxu Dou

    2016-11-01

    Full Text Available We address the problem of accurately locating buried utility segments by fusing data from multiple sensors using a novel Marching-Cross-Section (MCS algorithm. Five types of sensors are used in this work: Ground Penetrating Radar (GPR, Passive Magnetic Fields (PMF, Magnetic Gradiometer (MG, Low Frequency Electromagnetic Fields (LFEM and Vibro-Acoustics (VA. As part of the MCS algorithm, a novel formulation of the extended Kalman Filter (EKF is proposed for marching existing utility tracks from a scan cross-section (scs to the next one; novel rules for initializing utilities based on hypothesized detections on the first scs and for associating predicted utility tracks with hypothesized detections in the following scss are introduced. Algorithms are proposed for generating virtual scan lines based on given hypothesized detections when different sensors do not share common scan lines, or when only the coordinates of the hypothesized detections are provided without any information of the actual survey scan lines. The performance of the proposed system is evaluated with both synthetic data and real data. The experimental results in this work demonstrate that the proposed MCS algorithm can locate multiple buried utility segments simultaneously, including both straight and curved utilities, and can separate intersecting segments. By using the probabilities of a hypothesized detection being a pipe or a cable together with its 3D coordinates, the MCS algorithm is able to discriminate a pipe and a cable close to each other. The MCS algorithm can be used for both post- and on-site processing. When it is used on site, the detected tracks on the current scs can help to determine the location and direction of the next scan line. The proposed “multi-utility multi-sensor” system has no limit to the number of buried utilities or the number of sensors, and the more sensor data used, the more buried utility segments can be detected with more accurate location

  8. Full-color structured illumination optical sectioning microscopy

    Science.gov (United States)

    Qian, Jia; Lei, Ming; Dan, Dan; Yao, Baoli; Zhou, Xing; Yang, Yanlong; Yan, Shaohui; Min, Junwei; Yu, Xianghua

    2015-09-01

    In merits of super-resolved resolution and fast speed of three-dimensional (3D) optical sectioning capability, structured illumination microscopy (SIM) has found variety of applications in biomedical imaging. So far, most SIM systems use monochrome CCD or CMOS cameras to acquire images and discard the natural color information of the specimens. Although multicolor integration scheme are employed, multiple excitation sources and detectors are required and the spectral information is limited to a few of wavelengths. Here, we report a new method for full-color SIM with a color digital camera. A data processing algorithm based on HSV (Hue, Saturation, and Value) color space is proposed, in which the recorded color raw images are processed in the Hue, Saturation, Value color channels, and then reconstructed to a 3D image with full color. We demonstrated some 3D optical sectioning results on samples such as mixed pollen grains, insects, micro-chips and the surface of coins. The presented technique is applicable to some circumstance where color information plays crucial roles, such as in materials science and surface morphology.

  9. Optical 3D laser measurement system for navigation of autonomous mobile robot

    Science.gov (United States)

    Básaca-Preciado, Luis C.; Sergiyenko, Oleg Yu.; Rodríguez-Quinonez, Julio C.; García, Xochitl; Tyrsa, Vera V.; Rivas-Lopez, Moises; Hernandez-Balbuena, Daniel; Mercorelli, Paolo; Podrygalo, Mikhail; Gurko, Alexander; Tabakova, Irina; Starostenko, Oleg

    2014-03-01

    In our current research, we are developing a practical autonomous mobile robot navigation system which is capable of performing obstacle avoiding task on an unknown environment. Therefore, in this paper, we propose a robot navigation system which works using a high accuracy localization scheme by dynamic triangulation. Our two main ideas are (1) integration of two principal systems, 3D laser scanning technical vision system (TVS) and mobile robot (MR) navigation system. (2) Novel MR navigation scheme, which allows benefiting from all advantages of precise triangulation localization of the obstacles, mostly over known camera oriented vision systems. For practical use, mobile robots are required to continue their tasks with safety and high accuracy on temporary occlusion condition. Presented in this work, prototype II of TVS is significantly improved over prototype I of our previous publications in the aspects of laser rays alignment, parasitic torque decrease and friction reduction of moving parts. The kinematic model of the MR used in this work is designed considering the optimal data acquisition from the TVS with the main goal of obtaining in real time, the necessary values for the kinematic model of the MR immediately during the calculation of obstacles based on the TVS data.

  10. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI).

    Science.gov (United States)

    Dertinger, T; Colyer, R; Iyer, G; Weiss, S; Enderlein, J

    2009-12-29

    Super-resolution optical microscopy is a rapidly evolving area of fluorescence microscopy with a tremendous potential for impacting many fields of science. Several super-resolution methods have been developed over the last decade, all capable of overcoming the fundamental diffraction limit of light. We present here an approach for obtaining subdiffraction limit optical resolution in all three dimensions. This method relies on higher-order statistical analysis of temporal fluctuations (caused by fluorescence blinking/intermittency) recorded in a sequence of images (movie). We demonstrate a 5-fold improvement in spatial resolution by using a conventional wide-field microscope. This resolution enhancement is achieved in iterative discrete steps, which in turn allows the evaluation of images at different resolution levels. Even at the lowest level of resolution enhancement, our method features significant background reduction and thus contrast enhancement and is demonstrated on quantum dot-labeled microtubules of fibroblast cells.

  11. Depth-resolved 3D visualization of coronary microvasculature with optical microangiography

    Science.gov (United States)

    Qin, Wan; Roberts, Meredith A.; Qi, Xiaoli; Murry, Charles E.; Zheng, Ying; Wang, Ruikang K.

    2016-11-01

    In this study, we propose a novel implementation of optical coherence tomography-based angiography combined with ex vivo perfusion of fixed hearts to visualize coronary microvascular structure and function. The extracorporeal perfusion of Intralipid solution allows depth-resolved angiographic imaging, control of perfusion pressure, and high-resolution optical microangiography. The imaging technique offers new opportunities for microcirculation research in the heart, which has been challenging due to motion artifacts and the lack of independent control of pressure and flow. With the ability to precisely quantify structural and functional features, this imaging platform has broad potential for the study of the pathophysiology of microvasculature in the heart as well as other organs.

  12. Omnidirectional 3D nanoplasmonic optical antenna array via soft-matter transformation.

    Science.gov (United States)

    Ross, Benjamin M; Wu, Liz Y; Lee, Luke P

    2011-07-13

    Inspired by the natural processes during morphogenesis, we demonstrate the transformation capability of active soft-matter to define nanoscale metal-on-polymer architectures below the resolution limit of conventional lithography. Specifically, using active polymers, we fabricate and characterize ultradense nanoplasmonic antenna arrays with sub-10 nm tip-to-tip nanogaps. In addition, the macroscale morphology can be independently manipulated into arbitrary three-dimensional geometries, demonstrated with the fabrication of an omnidirectional nanoplasmonic optical antenna array.

  13. Adaptive Optics Assisted 3D spectroscopy observations for black hole mass measurements

    OpenAIRE

    Pastorini, Guia

    2006-01-01

    The very high spatial resolution provided by Adaptive Optics assisted spectroscopic observations at 8m-class telescopes (e.g. with SINFONI at the VLT) will allow to greatly increase the number of direct black hole (BH) mass measurements which is currently very small. This is a fundamental step to investigate the tight link between galaxy evolution and BH growth, revealed by the existing scaling relations between $M_{BH}$ and galaxy structural parameters. I present preliminary results from SIN...

  14. Optical coherence tomography for ultrahigh-resolution 3D imaging of cell development and real-time guiding for photodynamic therapy

    Science.gov (United States)

    Wang, Tianshi; Zhen, Jinggao; Wang, Bo; Xue, Ping

    2009-11-01

    Optical coherence tomography is a new emerging technique for cross-sectional imaging with high spatial resolution of micrometer scale. It enables in vivo and non-invasive imaging with no need to contact the sample and is widely used in biological and clinic application. In this paper optical coherence tomography is demonstrated for both biological and clinic applications. For biological application, a white-light interference microscope is developed for ultrahigh-resolution full-field optical coherence tomography (full-field OCT) to implement 3D imaging of biological tissue. Spatial resolution of 0.9μm×1.1μm (transverse×axial) is achieved A system sensitivity of 85 dB is obtained at an acquisition time of 5s per image. The development of a mouse embryo is studied layer by layer with our ultrahigh-resolution full-filed OCT. For clinic application, a handheld optical coherence tomography system is designed for real-time and in situ imaging of the port wine stains (PWS) patient and supplying surgery guidance for photodynamic therapy (PDT) treatment. The light source with center wavelength of 1310nm, -3 dB wavelength range of 90 nm and optical power of 9mw is utilized. Lateral resolution of 8 μm and axial resolution of 7μm at a rate of 2 frames per second and with 102dB sensitivity are achieved in biological tissue. It is shown that OCT images distinguish very well the normal and PWS tissues in clinic and are good to serve as a valuable diagnosis tool for PDT treatment.

  15. GPS/Optical/Inertial Integration for 3D Navigation Using Multi-Copter Platforms

    Science.gov (United States)

    Dill, Evan T.; Young, Steven D.; Uijt De Haag, Maarten

    2017-01-01

    In concert with the continued advancement of a UAS traffic management system (UTM), the proposed uses of autonomous unmanned aerial systems (UAS) have become more prevalent in both the public and private sectors. To facilitate this anticipated growth, a reliable three-dimensional (3D) positioning, navigation, and mapping (PNM) capability will be required to enable operation of these platforms in challenging environments where global navigation satellite systems (GNSS) may not be available continuously. Especially, when the platform's mission requires maneuvering through different and difficult environments like outdoor opensky, outdoor under foliage, outdoor-urban and indoor, and may include transitions between these environments. There may not be a single method to solve the PNM problem for all environments. The research presented in this paper is a subset of a broader research effort, described in [1]. The research is focused on combining data from dissimilar sensor technologies to create an integrated navigation and mapping method that can enable reliable operation in both an outdoor and structured indoor environment. The integrated navigation and mapping design is utilizes a Global Positioning System (GPS) receiver, an Inertial Measurement Unit (IMU), a monocular digital camera, and three short to medium range laser scanners. This paper describes specifically the techniques necessary to effectively integrate the monocular camera data within the established mechanization. To evaluate the developed algorithms a hexacopter was built, equipped with the discussed sensors, and both hand-carried and flown through representative environments. This paper highlights the effect that the monocular camera has on the aforementioned sensor integration scheme's reliability, accuracy and availability.

  16. Coherent addressing of individual neutral atoms in a 3D optical lattice

    CERN Document Server

    Wang, Yang; Corcovilos, Theodore A; Kumar, Aishwarya; Weiss, David S

    2015-01-01

    We demonstrate arbitrary coherent addressing of individual neutral atoms in a $5\\times 5\\times 5$ array formed by an optical lattice. Addressing is accomplished using rapidly reconfigurable crossed laser beams to selectively ac Stark shift target atoms, so that only target atoms are resonant with state-changing microwaves. The effect of these targeted single qubit gates on the quantum information stored in non-targeted atoms is smaller than $3\\times 10^{-3}$ in state fidelity. This is an important step along the path of converting the scalability promise of neutral atoms into reality.

  17. Coherent Addressing of Individual Neutral Atoms in a 3D Optical Lattice.

    Science.gov (United States)

    Wang, Yang; Zhang, Xianli; Corcovilos, Theodore A; Kumar, Aishwarya; Weiss, David S

    2015-07-24

    We demonstrate arbitrary coherent addressing of individual neutral atoms in a 5×5×5 array formed by an optical lattice. Addressing is accomplished using rapidly reconfigurable crossed laser beams to selectively ac Stark shift target atoms, so that only target atoms are resonant with state-changing microwaves. The effect of these targeted single qubit gates on the quantum information stored in nontargeted atoms is smaller than 3×10^{-3} in state fidelity. This is an important step along the path of converting the scalability promise of neutral atoms into reality.

  18. Intercomparison of modal and sectional aerosol microphysics representations within the same 3-D global chemical transport model

    Directory of Open Access Journals (Sweden)

    G. W. Mann

    2012-05-01

    Full Text Available In the most advanced aerosol-climate models it is common to represent the aerosol particle size distribution in terms of several log-normal modes. This approach, motivated by computational efficiency, makes assumptions about the shape of the particle distribution that may not always capture the properties of global aerosol. Here, a global modal aerosol microphysics module (GLOMAP-mode is evaluated and improved by comparing against a sectional version (GLOMAP-bin and observations in the same 3-D global offline chemistry transport model. With both schemes, the model captures the main features of the global particle size distribution, with sub-micron aerosol approximately unimodal in continental regions and bi-modal in marine regions. Initial bin-mode comparisons showed that the current values for two size distribution parameter settings in the modal scheme (mode widths and inter-modal separation sizes resulted in clear biases compared to the sectional scheme. By adjusting these parameters in the modal scheme, much better agreement is achieved against the bin scheme and observations. Annual mean surface-level mass of sulphate, sea-salt, black carbon (BC and organic carbon (OC are within 25% in the two schemes in nearly all regions. Surface level concentrations of condensation nuclei (CN, cloud condensation nuclei (CCN, surface area density and condensation sink also compare within 25% in most regions. However, marine CCN concentrations between 30° N and 30° S are systematically 25–60% higher in the modal model, which we attribute to differences in size-resolved particle growth or cloud-processing. Larger differences also exist in regions or seasons dominated by biomass burning and in free-troposphere and high-latitude regions. Indeed, in the free-troposphere, GLOMAP-mode BC is a factor 2–4 higher than GLOMAP-bin, likely due to differences in size-resolved scavenging. Nevertheless, in most parts of the atmosphere, we conclude that bin

  19. The Role of Faulting on the Growth of a Carbonate Platform: Evidence from 3D Seismic Analysis and Section Restoration

    Science.gov (United States)

    Nur Fathiyah Jamaludin, Siti; Pubellier, Manuel; Prasad Ghosh, Deva; Menier, David; Pierson, Bernard

    2014-05-01

    Tectonics in addition to other environmental factors impacts the growth of carbonate platforms and plays an important role in shaping the internal architecture of the platforms. Detailed of faults and fractures development and healing in carbonate environment have not been explored sufficiently. Using 3D seismic and well data, we attempt to reconstruct the structural evolution of a Miocene carbonate platform in Central Luconia Province, offshore Malaysia. Luconia Province is located in the NW coast of Borneo and has become one of the largest carbonate factories in SE Asia. Seismic interpretations including seismic attribute analysis are applied to the carbonate platform to discern its sedimentology and structural details. Detailed seismic interpretations highlight the relationships of carbonate deposition with syn-depositional faulting. Branching conjugate faults are common in this carbonate platform and have become a template for reef growth, attesting lateral facies changes within the carbonate environments. Structural restoration was then appropriately performed on the interpreted seismic sections based on sequential restoration techniques, and provided images different from those of horizon flattening methods. This permits us to compensate faults' displacement, remove recent sediment layers and finally restore the older rock units prior to the fault motions. It allows prediction of platform evolution as a response to faulting before and after carbonate deposition and also enhances the pitfalls of interpretation. Once updated, the reconstructions allow unravelling of the un-seen geological features underneath the carbonate platform, such as paleo-structures and paleo-topography which in turn reflects the paleo-environment before deformations took place. Interestingly, sections balancing and restoration revealed the late-phase (Late Oligocene-Early Miocene) rifting of South China Sea, otherwise difficult to visualize on seismic sections. Later it is shown that

  20. Intercomparison of modal and sectional aerosol microphysics representations within the same 3-D global chemical transport model

    Directory of Open Access Journals (Sweden)

    G. W. Mann

    2012-01-01

    Full Text Available A global modal aerosol microphysics module (GLOMAP-mode is evaluated and improved by comparing against a sectional version (GLOMAP-bin and observations in the same 3-D global offline chemistry transport model. With both schemes, the model captures the main features of the global particle size distribution, with sub-micron aerosol approximately unimodal in continental regions and bi-modal in marine regions. Initial bin-mode comparisons showed that various size distribution parameter settings (mode widths and inter-modal separation sizes resulted in clear biases compared to the sectional scheme. By adjusting these parameters in the modal scheme, much better agreement is achieved against the bin scheme and observations. Surface mass of sulphate, sea-salt, black carbon (BC and organic carbon (OC are, on the annual mean, within 25 % in the two schemes in nearly all regions. On the annual mean, surface level concentrations of condensation nuclei (CN, cloud condensation nuclei (CCN, surface area density and condensation sink also compare within 25 % in most regions. However, marine CCN concentrations between 30° N and 30° S are systematically higher in the modal scheme, by 25–60 %, which we attribute to differences in size-resolved particle growth or cloud-processing. Larger differences also exist in regions or seasons dominated by biomass burning and in free-troposphere and high-latitude regions. Indeed, in the free-troposphere, GLOMAP-mode BC is a factor 2–4 higher than GLOMAP-bin, likely due to differences in size-resolved scavenging. Nevertheless, in most parts of the atmosphere, we conclude that bin-mode differences are much less than model-observation differences, although some processes are missing in these runs which may pose a bigger challenge to modal schemes (e.g. boundary layer nucleation, ultra-fine sea-spray. The findings here underline the need for a spectrum of complexity in global models, with size-resolved aerosol properties

  1. Full 3D translational and rotational optical control of multiple rod-shaped bacteria.

    Science.gov (United States)

    Hörner, Florian; Woerdemann, Mike; Müller, Stephanie; Maier, Berenike; Denz, Cornelia

    2010-07-01

    The class of rod-shaped bacteria is an important example of non-spherical objects where defined alignment is desired for the observation of intracellular processes or studies of the flagella. However, all available methods for orientational control of rod-shaped bacteria are either limited with respect to the accessible rotational axes or feasible angles or restricted to one single bacterium. In this paper we demonstrate a scheme to orientate rod-shaped bacteria with holographic optical tweezers (HOT) in any direction. While these bacteria have a strong preference to align along the direction of the incident laser beam, our scheme provides for the first time full rotational control of multiple bacteria with respect to any arbitrary axis. In combination with the translational control HOT inherently provide, this enables full control of all three translational and the two important rotational degrees of freedom of multiple rod-shaped bacteria and allows one to arrange them in any desired configuration.

  2. Optical non-invasive 3D characterization of pottery of pre-colonial Paranaiba valley tribes

    Science.gov (United States)

    Magalhães, Wagner; Alves, Márcia Angelina; Costa, Manuel F.

    2014-08-01

    Optical non-invasive inspection tools and methods had expensively proven, for several decades now, their invaluable importance in the preservation of cultural heritage and artwork. In this paper we will report on an optical non-invasive microtopographic characterization work on pre-historical and pre-colonial ceramics and pottery of tribes in the Paranaiba valley in Minas Gerais, Brazil. The samples object of this work were collected at the Inhazinha archeological site (19º 10'00" S / 47° 11'00" W) in the vicinity of Perdizes municipality in transition between the West mining area and the "triangle" area in the center of Brazil. It is a hilly region (850m high) traversed by a number of rivers and streams tributary of Araguari river like Quebra Anzol river and Macaúba and Olegário streams. The Inhazinha site' excavations are part of the Project Jigsaw Hook which since 1980 aimed the establishment of a chrono-cultural framework associated with the study of the socio-cultural dynamics corresponding to successive occupations of hunter-recollector-farmer' tribes in prehistoric and pre-colonial times in the Paranaíba valley in Minas Gerais, Brazil. Two groups of indigenous Indian occupations were found. Both of the pre-colonial period dated at 1,095 ± 186 years ago (TL-FATEC/SP for Zone 1) and of the early nineteenth century dated at 212 ± 19 years ago (EMS-CENA-USP/SP) and 190 ± 30 years ago (C14- BETA/USA) in Zone 2 seemingly occupied by southern Kayapós tribes. The pottery found is decorated with incisions with different geometric distributions and levels of complexity.

  3. Toward acquiring comprehensive radiosurgery field commissioning data using the PRESAGE/optical-CT 3D dosimetry system

    Energy Technology Data Exchange (ETDEWEB)

    Clift, Corey; Thomas, Andrew; Chang Zheng; Oldham, Mark [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States); Adamovics, John [Department of Chemistry, Rider University, Lawrenceville, NJ 08648 (United States); Das, Indra [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States)], E-mail: cclift@montefiore.org

    2010-03-07

    Achieving accurate small field dosimetry is challenging. This study investigates the utility of a radiochromic plastic PRESAGE read with optical-CT for the acquisition of radiosurgery field commissioning data from a Novalis Tx system with a high-definition multileaf collimator (HDMLC). Total scatter factors (S{sub c,p}), beam profiles, and penumbrae were measured for five different radiosurgery fields (5, 10, 20, 30 and 40 mm) using a commercially available optical-CT scanner (OCTOPUS, MGS Research). The percent depth dose (PDD), beam profile and penumbra of the 10 mm field were also measured using a higher resolution in-house prototype CCD-based scanner. Gafchromic EBT film was used for independent verification. Measurements of S{sub c,p} made with PRESAGE and film agreed with mini-ion chamber commissioning data to within 4% for every field (range 0.2-3.6% for PRESAGE, and 1.6-3.6% for EBT). PDD, beam profile and penumbra measurements made with the two PRESAGE/optical-CT systems and film showed good agreement with the high-resolution diode commissioning measurements with a competitive resolution (0.5 mm pixels). The in-house prototype optical-CT scanner allowed much finer resolution compared with previous applications of PRESAGE. The advantages of the PRESAGE (registered) system for small field dosimetry include 3D measurements, negligible volume averaging, directional insensitivity, an absence of beam perturbations, energy and dose rate independence.

  4. High-resolution 3-D imaging of surface damage sites in fused silica with Optical Coherence Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Guss, G; Bass, I; Hackel, R; Mailhiot, C; Demos, S G

    2007-10-30

    In this work, we present the first successful demonstration of a non-contact technique to precisely measure the 3D spatial characteristics of laser induced surface damage sites in fused silica for large aperture laser systems by employing Optical Coherence Tomography (OCT). What makes OCT particularly interesting in the characterization of optical materials for large aperture laser systems is that its axial resolution can be maintained with working distances greater than 5 cm, whether viewing through air or through the bulk of thick optics. Specifically, when mitigating surface damage sites against further growth by CO{sub 2} laser evaporation of the damage, it is important to know the depth of subsurface cracks below the damage site. These cracks are typically obscured by the damage rubble when imaged from above the surface. The results to date clearly demonstrate that OCT is a unique and valuable tool for characterizing damage sites before and after the mitigation process. We also demonstrated its utility as an in-situ diagnostic to guide and optimize our process when mitigating surface damage sites on large, high-value optics.

  5. 3D modelling and construction of a standard cross section of the Euganean Hydrothermal circuit - NE Italy

    Science.gov (United States)

    Pola, Marco; Zampieri, Dario; Fabbri, Paolo

    2010-05-01

    software uses 2D model sections, therefore the standard cross section will be useful as starting point for the hydrothermal model and to test its parameters sensitivity. The analysis of some available unpublished seismic lines, located few kilometres to the southeast of the EGF, has permitted to construct a 3D model of the subsurface, performed by gOcad. In the north-western part, including the EGF, the main constraint is given by the stratigraphies of deep wells penetrating the bedrock for few kilometres. Therefore, this work confirms the idea that the outflow of the thermal waters, in the area near the Euganei Hills, is caused by the local extensional regime related to the strike-slip kinematics of the Schio - Vicenza fault system.

  6. Quality assessment of reverse engineering process based on full-field true-3D optical measurements

    Science.gov (United States)

    Kujawinska, Malgorzata; Sitnik, Robert

    2000-08-01

    In the paper the sequential steps of reverse engineering based on the data gathered by full-field optical system are discussed. Each step is concerned from the point of view of its influence on the final quality of the shape of manufactured object. At first the modern shape measurement system based on the combination of fringe projection, Grey code and experimental calibration is presented. The system enables the determination of absolute coordinates of the object measured from many directions. The dependence of the quality of the cloud of points on the type of object and the measurement procedure is discussed. Then the methods of transferring the experimental data into CAD/CAM/CAE system are presented. The quality of the virtual object in the form of closed triangular mesh is analyzed. Basing on this virtual object the copy of initial body is produced and measured. The accuracy of the object manufactured is determined and the main sources of errors are discussed. The modifications of the system and algorithms that minimize the errors are proposed. The reverse engineering sequence is presented is illustrated by several examples.

  7. Adaptive Optics Assisted 3D spectroscopy observations for black hole mass measurements

    CERN Document Server

    Pastorini, G

    2006-01-01

    The very high spatial resolution provided by Adaptive Optics assisted spectroscopic observations at 8m-class telescopes (e.g. with SINFONI at the VLT) will allow to greatly increase the number of direct black hole (BH) mass measurements which is currently very small. This is a fundamental step to investigate the tight link between galaxy evolution and BH growth, revealed by the existing scaling relations between $M_{BH}$ and galaxy structural parameters. I present preliminary results from SINFONI K-band spectroscopic observations of a sample of 5 objects with $M_{BH}$ measurements obtained with the Reverberation Mapping (RM) technique. This technique is the starting point to derive the so-called virial $M_{BH}$ estimates, currently the only way to measure $M_{BH}$ at high redshift. Our goal is to assess the reliability of RM by measuring $M_{BH}$ with both gas and stellar kinematical methods and to investigate whether active galaxies follow the same $M_{BH}$-galaxy correlations as normal ones.

  8. ELTs Adaptive Optics for Multi-Objects 3D Spectroscopy Key Parameters and Design Rules

    CERN Document Server

    Neichel, B; Fusco, T; Gendron, E; Puech, M; Rousset, G; Hammer, F

    2006-01-01

    In the last few years, new Adaptive Optics [AO] techniques have emerged to answer new astronomical challenges: Ground-Layer AO [GLAO] and Multi-Conjugate AO [MCAO] to access a wider Field of View [FoV], Multi-Object AO [MOAO] for the simultaneous observation of several faint galaxies, eXtreme AO [XAO] for the detection of faint companions. In this paper, we focus our study to one of these applications : high red-shift galaxy observations using MOAO techniques in the framework of Extremely Large Telescopes [ELTs]. We present the high-level specifications of a dedicated instrument. We choose to describe the scientific requirements with the following criteria : 40% of Ensquared Energy [EE] in H band (1.65um) and in an aperture size from 25 to 150 mas. Considering these specifications we investigate different AO solutions thanks to Fourier based simulations. Sky Coverage [SC] is computed for Natural and Laser Guide Stars [NGS, LGS] systems. We show that specifications are met for NGS-based systems at the cost of ...

  9. 3D printed broadband transformation optics based all-dielectric microwave lenses

    Science.gov (United States)

    Yi, Jianjia; Nawaz Burokur, Shah; Piau, Gérard-Pascal; de Lustrac, André

    2016-04-01

    Quasi-conformal transformation optics is applied to design electromagnetic devices for focusing and collimating applications at microwave frequencies. Two devices are studied and conceived by solving Laplace’s equation that describes the deformation of a medium in a space transformation. As validation examples, material parameters of two different lenses are derived from the analytical solutions of Laplace’s equation. The first lens is applied to produce an overall directive in-phase emission from an array of sources conformed on a cylindrical structure. The second lens allows deflecting a directive beam to an off-normal direction. Full-wave simulations are performed to verify the functionality of the calculated lenses. Prototypes presenting a graded refractive index are fabricated through three-dimensional polyjet printing using solely dielectric materials. Experimental measurements carried out show very good agreement with numerical simulations, thereby validating the proposed lenses. Such easily realizable designs open the way to low-cost all-dielectric microwave lenses for beam forming and collimation.

  10. Digital Holography and 3D Imaging: introduction to the joint feature issue in Applied Optics and Journal of the Optical Society of America B.

    Science.gov (United States)

    Banerjee, Partha P; Osten, Wolfgang; Picart, Pascal; Cao, Liangcai; Nehmetallah, George

    2017-05-01

    The OSA Topical Meeting on Digital Holography and 3D Imaging (DH) was held 25-28 July 2016 in Heidelberg, Germany, as part of the Imaging Congress. Feature issues based on the DH meeting series have been released by Applied Optics (AO) since 2007. This year, AO and the Journal of the Optical Society of America B (JOSA B) jointly decided to have one such feature issue in each journal. This feature issue includes 31 papers in AO and 11 in JOSA B, and covers a large range of topics, reflecting the rapidly expanding techniques and applications of digital holography and 3D imaging. The upcoming DH meeting (DH 2017) will be held from 29 May to 1 June in Jeju Island, South Korea.

  11. Integration of an optical fiber taper with an optical microresonator fabricated in glass by femtosecond laser 3D micromachining

    CERN Document Server

    Song, Jiangxin; Tang, Jialei; Qiao, Lingling; Cheng, Ya

    2014-01-01

    We report on fabrication of a microtoroid resonator of a high-quality factor (i. e., Q-factor of ~3.24x10^6 measured under the critical coupling condition) using femtosecond laser three-dimensional (3D) micromachining. Coupling of light into and out of the microresonator has been realized with a fiber taper that is reliably assembled with the microtoroid. The assembly of the fiber taper to the microtoroid is achieved by welding the fiber taper onto the sidewall of the microtoroid using CO2 laser irradiation. The integrated microresonator maintains a high Q-factor of 3.21x10^5 as measured in air.

  12. Measurement of Choroidal Thickness in Normal Eyes Using 3D OCT-1000 Spectral Domain Optical Coherence Tomography

    Science.gov (United States)

    Shin, Joong Won; Shin, Yong Un; Cho, Hee Yoon

    2012-01-01

    Purpose To study choroidal thickness and its topographic profile in normal eyes using 3D OCT-1000 spectral domain optical coherence tomography and the correlation with age and refractive error. Methods Fifty-seven eyes (45 individuals) with no visual complaints or ocular disease underwent horizontal and vertical line scanning using 3D OCT-1000. The definition of choroidal thickness was the vertical distance between the posterior edge of the hyper-reflective retinal pigment epithelium and the choroid/sclera junction. Choroidal thickness was measured in the subfoveal area at 500 µm intervals from the fovea to 2,500 µm in the nasal, temporal, superior, and inferior regions. The spherical equivalent refractive error was measured by autorefractometry. Statistical analysis was used to confirm the correlations of choroidal thickness with age and refraction error. Results The mean age of the 45 participants (57 eyes) was 45.28 years. Detailed visualization of the choroid for measuring its thickness was possible in 63.3% of eyes. The mean subfoveal choroidal thickness was found to be 270.8 µm (standard deviation [SD], ±51 µm), in horizontal scanning and 275.0 µm (SD, ±49 µm) in vertical scanning. The temporal choroidal thickness was greater than any 500 µm interval in corresponding locations, and there was no significant difference between the superior and inferior choroid as far as 2,000 µm from the fovea. Age and refractive error were associated with subfoveal choroidal thickness in terms of regression (p Choroidal thickness in normal Korean eyes can be measured using 3D OCT-1000 with high resolution line scanning. The topographical profile of choroidal thickness varies depending on its location. Age and refractive error are essential factors for interpretation of choroidal thickness. PMID:22870023

  13. 3D characterization of EMT cell density in developing cardiac cushions using optical coherence tomography (Conference Presentation)

    Science.gov (United States)

    Yu, Siyao; Gu, Shi; Zhao, Xiaowei; Liu, Yehe; Jenkins, Michael W.; Watanabe, Michiko; Rollins, Andrew M.

    2017-02-01

    Congenital heart defects (CHDs) are the most common birth defect, affecting between 4 and 75 per 1,000 live births depending on the inclusion criteria. Many of these defects can be traced to defects of cardiac cushions, critical structures during development that serve as precursors to many structures in the mature heart, including the atrial and ventricular septa, and all four sets of cardiac valves. Epithelial-mesenchymal transition (EMT) is the process through which cardiac cushions become populated with cells. Altered cushion size or altered cushion cell density has been linked to many forms of CHDs, however, quantitation of cell density in the complex 3D cushion structure poses a significant challenge to conventional histology. Optical coherence tomography (OCT) is a technique capable of 3D imaging of the developing heart, but typically lacks the resolution to differentiate individual cells. Our goal is to develop an algorithm to quantitatively characterize the density of cells in the developing cushion using 3D OCT imaging. First, in a heart volume, the atrioventricular (AV) cushions were manually segmented. Next, all voxel values in the region of interest were pooled together to generate a histogram. Finally, two populations of voxels were classified using either K-means classification, or a Gaussian mixture model (GMM). The voxel population with higher values represents cells in the cushion. To test the algorithm, we imaged and evaluated avian embryonic hearts at looping stages. As expected, our result suggested that the cell density increases with developmental stages. We validated the technique against scoring by expert readers.

  14. Mechanical Characterization and Shape Optimization of Fascicle-Like 3D Skeletal Muscle Tissues Contracted with Electrical and Optical Stimuli.

    Science.gov (United States)

    Neal, Devin; Sakar, Mahmut Selman; Bashir, Rashid; Chan, Vincent; Asada, Haruhiko Harry

    2015-06-01

    In this study, we present a quantitative approach to construct effective 3D muscle tissues through shape optimization and load impedance matching with electrical and optical stimulation. We have constructed long, thin, fascicle-like skeletal muscle tissue and optimized its form factor through mechanical characterization. A new apparatus was designed and built, which allowed us to measure force-displacement characteristics with diverse load stiffnesses. We have found that (1) there is an optimal form factor that maximizes the muscle stress, (2) the energy transmitted to the load can be maximized with matched load stiffness, and (3) optical stimulation using channelrhodopsin2 in the muscle tissue can generate a twitch force as large as its electrical counterpart for well-developed muscle tissue. Using our tissue construct method, we found that an optimal initial diameter of 500 μm outperformed tissues using 250 μm by more than 60% and tissues using 760 μm by 105%. Using optimal load stiffness, our tissues have generated 12 pJ of energy per twitch at a peak generated stress of 1.28 kPa. Additionally, the difference in optically stimulated twitch performance versus electrically stimulated is a function of how well the overall tissue performs, with average or better performing strips having less than 10% difference. The unique mechanical characterization method used is generalizable to diverse load conditions and will be used to match load impedance to muscle tissue impedance for a wide variety of applications.

  15. Visualization of the 3-D topography of the optic nerve head through a passive stereo vision model

    Science.gov (United States)

    Ramirez, Juan M.; Mitra, Sunanda; Morales, Jose

    1999-01-01

    This paper describes a system for surface recovery and visualization of the 3D topography of the optic nerve head, as support of early diagnosis and follow up to glaucoma. In stereo vision, depth information is obtained from triangulation of corresponding points in a pair of stereo images. In this paper, the use of the cepstrum transformation as a disparity measurement technique between corresponding windows of different block sizes is described. This measurement process is embedded within a coarse-to-fine depth-from-stereo algorithm, providing an initial range map with the depth information encoded as gray levels. These sparse depth data are processed through a cubic B-spline interpolation technique in order to obtain a smoother representation. This methodology is being especially refined to be used with medical images for clinical evaluation of some eye diseases such as open angle glaucoma, and is currently under testing for clinical evaluation and analysis of reproducibility and accuracy.

  16. In-situ biofouling assessment in spacer filled channels using optical coherence tomography (OCT): 3D biofilm thickness mapping

    KAUST Repository

    Fortunato, Luca

    2017-01-13

    Membrane systems for water purification can be seriously hampered by biofouling. The use of optical coherence tomography (OCT) to investigate biofilms in membrane systems has recently increased due to the ability to do the characterization in-situ and non-destructively The OCT biofilm thickness map is presented for the first time as a tool to assess biofilm spatial distribution on a surface. The map allows the visualization and evaluation of the biofilm formation and growth in membrane filtration systems through the use of a false color scale. The biofilm development was monitored with OCT to evaluate the suitability of the proposed approach. A 3D time series analysis of biofilm development in a spacer filled channel representative of a spiral-wound membrane element was performed. The biofilm thickness map enables the time-resolved and spatial-resolved evaluation and visualization of the biofilm deposition pattern in-situ non-destructively.

  17. 3D optical see-through head-mounted display based augmented reality system and its application

    Science.gov (United States)

    Zhang, Zhenliang; Weng, Dongdong; Liu, Yue; Xiang, Li

    2015-07-01

    The combination of health and entertainment becomes possible due to the development of wearable augmented reality equipment and corresponding application software. In this paper, we implemented a fast calibration extended from SPAAM for an optical see-through head-mounted display (OSTHMD) which was made in our lab. During the calibration, the tracking and recognition techniques upon natural targets were used, and the spatial corresponding points had been set in dispersed and well-distributed positions. We evaluated the precision of this calibration, in which the view angle ranged from 0 degree to 70 degrees. Relying on the results above, we calculated the position of human eyes relative to the world coordinate system and rendered 3D objects in real time with arbitrary complexity on OSTHMD, which accurately matched the real world. Finally, we gave the degree of satisfaction about our device in the combination of entertainment and prevention of cervical vertebra diseases through user feedbacks.

  18. Retinal nerve fiber layer thickness of middle aged or elderly people measured by 3D optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Li Li

    2015-11-01

    Full Text Available AIM: To build the reference values of normal eye retinal nerve fiber layer(RNFLthickness on middle aged people between 40~69 years old, and infer the baseline data for early diagnosis of glaucoma. METHODS:A total of 180 eyes from 90 healthy subjects(age ranged from 40~69 years oldwere recruited for this study. Topcon 3D optical coherence tomography(OCT-2000(Ver 8.0was used to measure RNFL thickness. Each subject was performed circular scans around the optic nerve with a circle size of 3.4mm. Clock-hour, quadrant and total average RNFL thicknesses were recorded. The data was analyzed with SPSS statistical. The relationship between age, gender and laterality was analyzed, and the reference value for normal eye RNFL thickness parameters was obtained, RESULTS:Normal RNFL thickness distribution was bimodal curve type in 40~69 year-old middle aged or elderly people. RNFL thickness was decreased for temporal quadrant, followed by nasal, superior, inferior. RNFL thickness at 10 o'clock, 5 o'clock, 6 o'clock, superior got thinner with age prolong. Except 10 o'clock(PP>0.05. The RNFL thickness at 11 o'clock was associated with different gender. the RNFL thickness at 11 o'clock, 12 o'clock, 1 o'clock, 4 o'clock, superior, nasal was associated with different eyes, the differences was statistically significant between different eyes(PCONCLUSION: Topcon 3D OCT-2000 is effectively used to measure the RNFL thickness of 40~69 years people and provide diagnostic basis for early diagnosis of glaucoma.

  19. Wide-field optical sectioning for live-tissue imaging by plane-projection multiphoton microscopy

    Science.gov (United States)

    Yu, Jiun-Yann; Kuo, Chun-Hung; Holland, Daniel B.; Chen, Yenyu; Ouyang, Mingxing; Blake, Geoffrey A.; Zadoyan, Ruben; Guo, Chin-Lin

    2011-11-01

    Optical sectioning provides three-dimensional (3D) information in biological tissues. However, most imaging techniques implemented with optical sectioning are either slow or deleterious to live tissues. Here, we present a simple design for wide-field multiphoton microscopy, which provides optical sectioning at a reasonable frame rate and with a biocompatible laser dosage. The underlying mechanism of optical sectioning is diffuser-based temporal focusing. Axial resolution comparable to confocal microscopy is theoretically derived and experimentally demonstrated. To achieve a reasonable frame rate without increasing the laser power, a low-repetition-rate ultrafast laser amplifier was used in our setup. A frame rate comparable to that of epifluorescence microscopy was demonstrated in the 3D imaging of fluorescent protein expressed in live epithelial cell clusters. In this report, our design displays the potential to be widely used for video-rate live-tissue and embryo imaging with axial resolution comparable to laser scanning microscopy.

  20. 3D Forest structure analysis from optical and LIDAR data / Análise 3D da estrutura da floresta com dados ópticos e da LIDAR

    Directory of Open Access Journals (Sweden)

    Stefan Lang

    2006-10-01

    Full Text Available In Austria about half of the entire area (46 % is covered by forests. The majority of these forests are highly managed and controlled in growth. Besides timber production, forest ecosystems play a multifunctional role including climate control, habitat provision and, especially in Austria, protection of settlements. The interrelationships among climatic, ecological, social and economic dimensions of forests require technologies for monitoring both the state and the development of forests. This comprises forest structure, species and age composition and, forest integrity in general. Assessing forest structure for example enables forest managers and natural risk engineers to evaluate whether a forest can fulfill its protective function or not. Traditional methods for assessing forest structure like field inventories and aerial photo interpretation are intrinsically limited in providing spatially continuous information over a large area. The Centre for Geoinformatics (Z_GIS in collaboration with the National Park Bayerischer Wald, Germany and the Stand Montafon, Austria, has tested and applied advanced approaches of integrating multispectral optical data and airborne laser scanning (ALS data for (1 forest stand delineation, (2 single tree detection and (3 forest structure analysis. As optical data we used RGBI line scanner data and CIR air-photos. ALS data were raw point data (10 pulses per sqm and normalized crown models (nCM at 0.5 m and 1 m resolution. (1 Automated stand delineation was done by (a translating a key for manual mapping of forest development phases into a rule-based system via object-relationship modeling (ORM; and (b by performing multi-resolution segmentation and GIS analysis. (2 Strategies for single tree detection using raw ALS data included (a GIS modelling based on a region-growth local maxima algorithm and (b object-based image analysis using super class information class-specific rule sets. (3 Vertical forest structure has

  1. Sectional depiction of the pelvic floor by CT, MR imaging and sheet plastination: computer-aided correlation and 3D model

    Energy Technology Data Exchange (ETDEWEB)

    Beyersdorff, D.; Taupitz, M.; Hamm, B. [Dept. of Radiology, Humboldt Univ., Berlin (Germany); Schiemann, T. [Inst. for Mathematics and Computer Science in Medicine, University of Hamburg (Germany); Kooijman, H. [Philips Medical Systems, Hamburg (Germany); Nicolas, V. [Dept. of Radiology and Nuclear Medicine, BG Kliniken Bergmannsheil, Bochum (Germany)

    2001-04-01

    The structures of the pelvic floor are clinically important but difficult to assess. To facilitate the understanding of the complicated pelvic floor anatomy on sectional images obtained by CT and MR imaging, and to make the representation more vivid, a computer-aided 3D model was created from a male and a female torso to develop a teaching tool. A male and a female cadaver torso were investigated by means of CT, MR imaging, and serial-section sheet plastination. A 3D reconstruction of the pelvic floor and adjacent structures was performed by fusion of CT and MR imaging data sets with sheet plastination sections. Corresponding sections from all three methods could be compared and visualized in their 3D context. Sheet plastination allows distinction of connective tissue, muscles, and pelvic organs down to a microscopic level. In combination with CT, MR imaging, and sheet plastination a 3D model of the pelvic floor offers a better understanding of the complex pelvic anatomy. This knowledge may be applied in the diagnostic imaging of urinary incontinence or prolapse and prior to prostate surgery. (orig.)

  2. Stereological measures of trabecular bone structure: comparison of 3D micro computed tomography with 2D histological sections in human proximal tibial bone biopsies

    DEFF Research Database (Denmark)

    Thomsen, Jesper Skovhus; Laib, A.; Koller, B.;

    2005-01-01

    tibial metaphysis. The biopsies were embedded in methylmetacrylate before microCT scanning in a Scanco microCT 40 scanner at a resolution of 20 x 20 x 20 microm3, and the 3D data sets were analysed with a computer program. After microCT scanning, 16 sections were cut from the central 2 mm of each biopsy...

  3. OptoZIF Drive: a 3D printed implant and assembly tool package for neural recording and optical stimulation in freely moving mice

    Science.gov (United States)

    Freedman, David S.; Schroeder, Joseph B.; Telian, Gregory I.; Zhang, Zhengyang; Sunil, Smrithi; Ritt, Jason T.

    2016-12-01

    Objective. Behavioral neuroscience studies in freely moving rodents require small, light-weight implants to facilitate neural recording and stimulation. Our goal was to develop an integrated package of 3D printed parts and assembly aids for labs to rapidly fabricate, with minimal training, an implant that combines individually positionable microelectrodes, an optical fiber, zero insertion force (ZIF-clip) headstage connection, and secondary recording electrodes, e.g. for electromyography (EMG). Approach. Starting from previous implant designs that position recording electrodes using a control screw, we developed an implant where the main drive body, protective shell, and non-metal components of the microdrives are 3D printed in parallel. We compared alternative shapes and orientations of circuit boards for electrode connection to the headstage, in terms of their size, weight, and ease of wire insertion. We iteratively refined assembly methods, and integrated additional assembly aids into the 3D printed casing. Main results. We demonstrate the effectiveness of the OptoZIF Drive by performing real time optogenetic feedback in behaving mice. A novel feature of the OptoZIF Drive is its vertical circuit board, which facilities direct ZIF-clip connection. This feature requires angled insertion of an optical fiber that still can exit the drive from the center of a ring of recording electrodes. We designed an innovative 2-part protective shell that can be installed during the implant surgery to facilitate making additional connections to the circuit board. We use this feature to show that facial EMG in mice can be used as a control signal to lock stimulation to the animal’s motion, with stable EMG signal over several months. To decrease assembly time, reduce assembly errors, and improve repeatability, we fabricate assembly aids including a drive holder, a drill guide, an implant fixture for microelectode ‘pinning’, and a gold plating fixture. Significance. The

  4. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method.

    Science.gov (United States)

    Zhou, Xiangrong; Takayama, Ryosuke; Wang, Song; Hara, Takeshi; Fujita, Hiroshi

    2017-07-21

    issue of anatomical structure segmentation in 3D CT cases. The novelty of this work is the policy of deep learning of the different 2D sectional appearances of 3D anatomical structures for CT cases and the majority voting of the 3D segmentation results from multiple crossed 2D sections to achieve availability and reliability with better efficiency, generality, and flexibility than conventional segmentation methods, which must be guided by human expertise. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  5. 3-D EM exploration of the hepatic microarchitecture – lessons learned from large-volume in situ serial sectioning

    OpenAIRE

    Gerald John Shami; Delfine Cheng; Minh Huynh; Celien Vreuls; Eddie Wisse; Filip Braet

    2016-01-01

    To-date serial block-face scanning electron microscopy (SBF-SEM) dominates as the premier technique for generating three-dimensional (3-D) data of resin-embedded biological samples at an unprecedented depth volume. Given the infancy of the technique, limited literature is currently available regarding the applicability of SBF-SEM for the ultrastructural investigation of tissues. Herein, we provide a comprehensive and rigorous appraisal of five different SBF-SEM sample preparation protocols fo...

  6. Serial Sectioning Methods for Generating 3D Characterization Data of Grain- and Precipitate-Scale Microstructures (Preprint)

    Science.gov (United States)

    2010-04-01

    Alkemper and Voorhees 2001, Spo- wart et al 2003), as well as software programs that take in the raw data stack and provide as output reconstructions...the local stress -state for the 3D volume, or the material itself is sensitive to environmental exposure. Manual demonstrations of this...Lund AC, Voorhees PW (2002) The effect of elastic stress on microstructural development: the three-dimensional microstructure of a - ʹ alloy. Acta

  7. Comparison of 3D double inversion recovery and 2D STIR FLAIR MR sequences for the imaging of optic neuritis: pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Hodel, Jerome; Bocher, Anne-Laure; Pruvo, Jean-Pierre; Leclerc, Xavier [Hopital Roger Salengro, Department of Neuroradiology, Lille (France); Outteryck, Olivier; Zephir, Helene; Vermersch, Patrick [Hopital Roger Salengro, Department of Neurology, Lille (France); Lambert, Oriane [Fondation Ophtalmologique Rothschild, Department of Neuroradiology, Paris (France); Benadjaoud, Mohamed Amine [Radiation Epidemiology Team, Inserm, CESP Centre for Research in Epidemiology and Population Health, U1018, Villejuif (France); Chechin, David [Philips Medical Systems, Suresnes (France)

    2014-12-15

    We compared the three-dimensional (3D) double inversion recovery (DIR) magnetic resonance imaging (MRI) sequence with the coronal two-dimensional (2D) short tau inversion recovery (STIR) fluid-attenuated inversion recovery (FLAIR) for the detection of optic nerve signal abnormality in patients with optic neuritis (ON). The study group consisted of 31 patients with ON (44 pathological nerves) confirmed by visual-evoked potentials used as the reference. MRI examinations included 2D coronal STIR FLAIR and 3D DIR with 3-mm coronal reformats to match with STIR FLAIR. Image artefacts were graded for each portion of the optic nerves. Each set of MR images (2D STIR FLAIR, DIR reformats and multiplanar 3D DIR) was examined independently and separately for the detection of signal abnormality. Cisternal portion of optic nerves was better delineated with DIR (p < 0.001), while artefacts impaired analysis in four patients with STIR FLAIR. Inter-observer agreement was significantly improved (p < 0.001) on 3D DIR (κ = 0.96) compared with STIR FLAIR images (κ = 0.60). Multiplanar DIR images reached the best performance for the diagnosis of ON (95 % sensitive and 94 % specific). Our study showed a high sensitivity and specificity of 3D DIR compared with STIR FLAIR for the detection of ON. These findings suggest that the 3D DIR sequence may be more useful in patients suspected of ON. (orig.)

  8. Fast calculation method of complex space targets' optical cross section.

    Science.gov (United States)

    Han, Yi; Sun, Huayan; Li, Yingchun; Guo, Huichao

    2013-06-10

    This paper utilizes the optical cross section (OCS) to characterize the optical scattering characteristics of a space target under the conditions of Sun lighting. We derive the mathematical expression of OCS according to the radiometric theory, and put forward a fast visualization calculation method of complex space targets' OCS based on an OpenGL and 3D model. Through the OCS simulation of Lambert bodies (cylinder and sphere), the computational accuracy and speed of the algorithm were verified. By using this method, the relative error for OCS will not exceed 0.1%, and it only takes 0.05 s to complete a complex calculation. Additionally, we calculated the OCS of three actual satellites with bidirectional reflectance distribution function model parameters in visible bands, and results indicate that it is easy to distinguish the three targets by comparing their OCS curves. This work is helpful for the identification and classification of unresolved space target based on photometric characteristics.

  9. 3D Cloud Tomography, Followed by Mean Optical and Microphysical Properties, with Multi-Angle/Multi-Pixel Data

    Science.gov (United States)

    Davis, A. B.; von Allmen, P. A.; Marshak, A.; Bal, G.

    2010-12-01

    -type model is used where the cloud surface "emits" either reflected (sunny-side) or transmitted (shady-side) light at different levels. As it turns out, the reflected/transmitted light ratio yields an approximate cloud optical thickness. Another approach is to invoke tomography techniques to define the volume occupied by the cloud using, as it were, cloud masks for each direction of observation. In the shape and opacity refinement phase, initial guesses along with solar and viewing geometry information are used to predict radiance in each pixel using a fast diffusion model for the 3D RT in MISR's non-absorbing red channel (275 m resolution). Refinement is constrained and stopped when optimal resolution is reached. Finally, multi-pixel/mono-angle MODIS data for the same cloud (at comparable 250 m resolution) reveals the desired droplet size information, hence the volume-averaged LWC. This is an ambitious remote sensing science project drawing on cross-disciplinary expertise gained in medical imaging using both X-ray and near-IR sources and detectors. It is high risk but with potentially high returns not only for the cloud modeling community but also aerosol and surface characterization in the presence of broken 3D clouds.

  10. Short term reproducibility of a high contrast 3-D isotropic optic nerve imaging sequence in healthy controls

    Science.gov (United States)

    Harrigan, Robert L.; Smith, Alex K.; Mawn, Louise A.; Smith, Seth A.; Landman, Bennett A.

    2016-03-01

    The optic nerve (ON) plays a crucial role in human vision transporting all visual information from the retina to the brain for higher order processing. There are many diseases that affect the ON structure such as optic neuritis, anterior ischemic optic neuropathy and multiple sclerosis. Because the ON is the sole pathway for visual information from the retina to areas of higher level processing, measures of ON damage have been shown to correlate well with visual deficits. Increased intracranial pressure has been shown to correlate with the size of the cerebrospinal fluid (CSF) surrounding the ON. These measures are generally taken at an arbitrary point along the nerve and do not account for changes along the length of the ON. We propose a high contrast and high-resolution 3-D acquired isotropic imaging sequence optimized for ON imaging. We have acquired scan-rescan data using the optimized sequence and a current standard of care protocol for 10 subjects. We show that this sequence has superior contrast-to-noise ratio to the current standard of care while achieving a factor of 11 higher resolution. We apply a previously published automatic pipeline to segment the ON and CSF sheath and measure the size of each individually. We show that these measures of ON size have lower short- term reproducibility than the population variance and the variability along the length of the nerve. We find that the proposed imaging protocol is (1) useful in detecting population differences and local changes and (2) a promising tool for investigating biomarkers related to structural changes of the ON.

  11. Applying microCT and 3D Visualization to Jurassic Silicified Conifer Seed Cones: A Virtual Advantage Over Thin-Sectioning

    Directory of Open Access Journals (Sweden)

    Carole T. Gee

    2013-11-01

    Full Text Available Premise of the study: As an alternative to conventional thin-sectioning, which destroys fossil material, high-resolution X-ray computed tomography (also called microtomography or microCT integrated with scientific visualization, three-dimensional (3D image segmentation, size analysis, and computer animation is explored as a nondestructive method of imaging the internal anatomy of 150-million-year-old conifer seed cones from the Late Jurassic Morrison Formation, USA, and of recent and other fossil cones. Methods: MicroCT was carried out on cones using a General Electric phoenix v|tome|x s 240D, and resulting projections were processed with visualization software to produce image stacks of serial single sections for two-dimensional (2D visualization, 3D segmented reconstructions with targeted structures in color, and computer animations. Results: If preserved in differing densities, microCT produced images of internal fossil tissues that showed important characters such as seed phyllotaxy or number of seeds per cone scale. Color segmentation of deeply embedded seeds highlighted the arrangement of seeds in spirals. MicroCT of recent cones was even more effective. Conclusions: This is the first paper on microCT integrated with 3D segmentation and computer animation applied to silicified seed cones, which resulted in excellent 2D serial sections and segmented 3D reconstructions, revealing features requisite to cone identification and understanding of strobilus construction.

  12. 3D analysis of synaptic vesicle density and distribution after acute foot-shock stress by using serial section transmission electron microscopy.

    Science.gov (United States)

    Khanmohammadi, M; Darkner, S; Nava, N; Nyengaard, J R; Wegener, G; Popoli, M; Sporring, J

    2017-01-01

    Behavioural stress has shown to strongly affect neurotransmission within the neocortex. In this study, we analysed the effect of an acute stress model on density and distribution of neurotransmitter-containing vesicles within medial prefrontal cortex. Serial section transmission electron microscopy was employed to compare two groups of male rats: (1) rats subjected to foot-shock stress and (2) rats with sham stress as control group. Two-dimensional (2D) density measures are common in microscopic images and are estimated by following a 2D path in-section. However, this method ignores the slant of the active zone and thickness of the section. In fact, the active zone is a surface in three-dimension (3D) and the 2D measures do not accurately reflect the geometric configuration unless the active zone is perpendicular to the sectioning angle. We investigated synaptic vesicle density as a function of distance from the active zone in 3D. We reconstructed a 3D dataset by estimating the thickness of all sections and by registering all the image sections into a common coordinate system. Finally, we estimated the density as the average number of vesicles per area and volume and modelled the synaptic vesicle distribution by fitting a one-dimensional parametrized distribution that took into account the location uncertainty due to section thickness. Our results showed a clear structural difference in synaptic vesicle density and distribution between stressed and control group with improved separation by 3D measures in comparison to the 2D measures. Our results showed that acute foot-shock stress exposure significantly affected both the spatial distribution and density of the synaptic vesicles within the presynaptic terminal.

  13. Proceedings of the Workshop on 3-D Optical Memories (1st) Held in Snowbird, Utah on 12-13 March 1990.

    Science.gov (United States)

    1990-03-01

    issues addressed the possible utilizations of 3-D memories. It was suggested that in addition to their usage as secondary storage, 3-D memories could...SLMs operating at their thermal limit, precluding its usage for mass storage. On the other hand, the three dimensional magnetic bubble storage and...progress in solving these problems and have successfully stored and retreived 2-D data from optical disks Ŗ 5s 26. The availabilty of this technology

  14. Development of a new laser-line and CCD based optical-CT scanner for the readout of 3D radiation dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Papadakis, A E; Maris, T G; Zacharakis, G; Ripoll, J; Varveris, C; Damilakis, J, E-mail: apapadak@edu.med.uoc.g

    2010-11-01

    We present initial results on the comparison of the dose readout from a three dimensional polymer gel dosimeter using two different optical-CT systems; i) a common wide field and a wide area detector optical-CT system and ii) a new 'laser-line' and wide area detector based optical-CT system. The findings presented herein highlight the advantage of the laser based over the wide field optical-CT concept for the readout of scattering 3D dosimeters. Moreover, the new 'laser-line' based optical-CT system overcomes the disadvantage of the long acquisition times required by the existing laser-based instruments.

  15. Efficient Second Harmonic Generation in 3D Nonlinear Optical-Lattice-Like Cladding Waveguide Splitters by Femtosecond Laser Inscription.

    Science.gov (United States)

    Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R; Chen, Feng

    2016-02-29

    Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions.

  16. Intraoperative handheld probe for 3D imaging of pediatric benign vocal fold lesions using optical coherence tomography (Conference Presentation)

    Science.gov (United States)

    Benboujja, Fouzi; Garcia, Jordan; Beaudette, Kathy; Strupler, Mathias; Hartnick, Christopher J.; Boudoux, Caroline

    2016-02-01

    Excessive and repetitive force applied on vocal fold tissue can induce benign vocal fold lesions. Children affected suffer from chronic hoarseness. In this instance, the vibratory ability of the folds, a complex layered microanatomy, becomes impaired. Histological findings have shown that lesions produce a remodeling of sup-epithelial vocal fold layers. However, our understanding of lesion features and development is still limited. Indeed, conventional imaging techniques do not allow a non-invasive assessment of sub-epithelial integrity of the vocal fold. Furthermore, it remains challenging to differentiate these sub-epithelial lesions (such as bilateral nodules, polyps and cysts) from a clinical perspective, as their outer surfaces are relatively similar. As treatment strategy differs for each lesion type, it is critical to efficiently differentiate sub-epithelial alterations involved in benign lesions. In this study, we developed an optical coherence tomography (OCT) based handheld probe suitable for pediatric laryngological imaging. The probe allows for rapid three-dimensional imaging of vocal fold lesions. The system is adapted to allow for high-resolution intra-operative imaging. We imaged 20 patients undergoing direct laryngoscopy during which we looked at different benign pediatric pathologies such as bilateral nodules, cysts and laryngeal papillomatosis and compared them to healthy tissue. We qualitatively and quantitatively characterized laryngeal pathologies and demonstrated the added advantage of using 3D OCT imaging for lesion discrimination and margin assessment. OCT evaluation of the integrity of the vocal cord could yield to a better pediatric management of laryngeal diseases.

  17. 3D Histomorphometry of the Normal and Early Glaucomatous Monkey Optic Nerve Head: Lamina Cribrosa and Peripapillary Scleral Position and Thickness

    Science.gov (United States)

    Yang, Hongli; Downs, J. Crawford; Girkin, Christopher; Sakata, Lisandro; Bellezza, Anthony; Thompson, Hilary; Burgoyne, Claude F.

    2009-01-01

    Purpose To three-dimensionally delineate the anterior and posterior surface of the lamina cribrosa, scleral flange and peripapillary sclera so as to determine the position and thickness of these structures within digital three-dimensional (3D) reconstructions of the monkey optic nerve head (ONH). Methods The trephinated ONH and peripapillary sclera from both eyes of three early glaucoma (EG) monkeys (one eye Normal, one eye given laser-induced EG) were serial-sectioned at 3-μm thickness, with the embedded tissue block face stained and imaged after each cut. Images were aligned and stacked to create 3D reconstructions, within which Bruch's membrane opening (BMO) and the anterior and posterior surfaces of the lamina cribrosa and peripapillary sclera were delineated in 40 serial, radial (4.5° interval), digital, sagittal sections. For each eye, a BMO zero reference plane was fit to the 80 BMO points, which served as the reference from which all position measurements were made. Regional laminar, scleral flange, and peripapillary scleral position and thickness were compared between the Normal and EG eyes of each monkey and between treatment groups by analysis of variance. Results Laminar thickness varies substantially within the Normal eyes and is profoundly thicker within the three EG eyes. Laminar position is permanently posteriorly deformed in all three EG eyes, with substantial differences in the magnitude and extent of deformation among them. Scleral flange and peripapillary scleral thickness vary regionally within each Normal ONH with the scleral flange and peripapillary sclera thinnest nasally. Overall, the scleral flange and peripapillary sclera immediately surrounding the ONH are posteriorly displaced relative to the more peripheral sclera. Conclusion Profound fixed posterior deformation and thickening of the lamina is accompanied by mild posterior deformation and thinning of the scleral flange and peripapillary sclera at the onset of confocal scanning laser

  18. 3D Non-Woven Polyvinylidene Fluoride Scaffolds: Fibre Cross Section and Texturizing Patterns Have Impact on Growth of Mesenchymal Stromal Cells

    OpenAIRE

    Anne Schellenberg; Robin Ross; Giulio Abagnale; Sylvia Joussen; Philipp Schuster; Annahit Arshi; Norbert Pallua; Stefan Jockenhoevel; Thomas Gries; Wolfgang Wagner

    2014-01-01

    Several applications in tissue engineering require transplantation of cells embedded in appropriate biomaterial scaffolds. Such structures may consist of 3D non-woven fibrous materials whereas little is known about the impact of mesh size, pore architecture and fibre morphology on cellular behavior. In this study, we have developed polyvinylidene fluoride (PVDF) non-woven scaffolds with round, trilobal, or snowflake fibre cross section and different fibre crimp patterns (10, 16, or 28 needles...

  19. Investigations into the feasibility of optical-CT 3D dosimetry with minimal use of refractively matched fluids

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, Kelsey; Miles, Devin [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 (United States); Rankine, Leith [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63110 (United States); Oldham, Mark, E-mail: mark.oldham@duke.edu [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2015-05-15

    Purpose: In optical-CT, the use of a refractively matched polyurethane solid-tank in place of a fluid bath has the potential to greatly increase practical convenience, reduce cost, and possibly improve the efficacy of flood corrections. This work investigates the feasibility of solid-tank optical-CT imaging for 3D dosimetry through computer simulation. Methods: A MATLAB ray-tracing simulation platform, ScanSim, was used to model a parallel-source telecentric optical-CT imaging system through a polyurethane solid-tank containing a central cylindrical hollow into which PRESAGE radiochromic dosimeters can be placed. A small amount of fluid fills the 1–5 mm gap between the dosimeter and the walls of the tank. The use of the solid-tank reduces the required amount of fluid by approximately 97%. To characterize the efficacy of solid-tank, optical-CT scanning simulations investigated sensitivity to refractive index (RI) mismatches between dosimeter, solid-tank, and fluid, for a variety of dosimeter (RI = 1.5–1.47) and fluid (RI = 1.55–1.0) combinations. Efficacy was evaluated through the usable radius (r{sub u}) metric, defined as the fraction of the radius of the dosimeter where measured dose is predicted to be within 2% of the ground truth entered into the simulation. Additional simulations examined the effect of increasing gap size (1–5 mm) between the dosimeter and solid-tank well. The effects of changing the lens tolerance (0.5°–5.0°) were also investigated. Results: As the RI mismatch between the dosimeter and solid-tank increased from 0 to 0.02, the usable radius decreased from 97.6% to 50.2%. The optimal fluid RI decreased nonlinearly from 1.5 to 1.34 as the mismatch increased and was up to 9% lower than the tank. Media mismatches between the dosimeter and solid-tank also exacerbate the effects of changing the gap size, with no easily quantifiable relationship with usable radius. Generally, the optimal fluid RI value increases as gap size increases and

  20. Optical Model and Cross Section Uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Herman,M.W.; Pigni, M.T.; Dietrich, F.S.; Oblozinsky, P.

    2009-10-05

    Distinct minima and maxima in the neutron total cross section uncertainties were observed in model calculations using spherical optical potential. We found this oscillating structure to be a general feature of quantum mechanical wave scattering. Specifically, we analyzed neutron interaction with 56Fe from 1 keV up to 65 MeV, and investigated physical origin of the minima.We discuss their potential importance for practical applications as well as the implications for the uncertainties in total and absorption cross sections.

  1. Intellijoint HIP®: a 3D mini-optical navigation tool for improving intraoperative accuracy during total hip arthroplasty

    Science.gov (United States)

    Paprosky, Wayne G; Muir, Jeffrey M

    2016-01-01

    Total hip arthroplasty is an increasingly common procedure used to address degenerative changes in the hip joint due to osteoarthritis. Although generally associated with good results, among the challenges associated with hip arthroplasty are accurate measurement of biomechanical parameters such as leg length, offset, and cup position, discrepancies of which can lead to significant long-term consequences such as pain, instability, neurological deficits, dislocation, and revision surgery, as well as patient dissatisfaction and, increasingly, litigation. Current methods of managing these parameters are limited, with manual methods such as outriggers or calipers being used to monitor leg length; however, these are susceptible to small intraoperative changes in patient position and are therefore inaccurate. Computer-assisted navigation, while offering improved accuracy, is expensive and cumbersome, in addition to adding significantly to procedural time. To address the technological gap in hip arthroplasty, a new intraoperative navigation tool (Intellijoint HIP®) has been developed. This innovative, 3D mini-optical navigation tool provides real-time, intraoperative data on leg length, offset, and cup position and allows for improved accuracy and precision in component selection and alignment. Benchtop and simulated clinical use testing have demonstrated excellent accuracy, with the navigation tool able to measure leg length and offset to within <1 mm and cup position to within <1° in both anteversion and inclination. This study describes the indications, procedural technique, and early accuracy results of the Intellijoint HIP surgical tool, which offers an accurate and easy-to-use option for hip surgeons to manage leg length, offset, and cup position intraoperatively. PMID:27920583

  2. 3D evaluation of the lamina cribrosa with swept-source optical coherence tomography in normal tension glaucoma.

    Directory of Open Access Journals (Sweden)

    Kazuko Omodaka

    Full Text Available Although the lamina cribrosa (LC is the primary site of axonal damage in glaucoma, adequate methods to image and measure it are currently lacking. Here, we describe a noninvasive, in vivo method of evaluating the LC, based on swept-source optical coherence tomography (SS-OCT, and determine this method's ability to quantify LC thickness.This study comprised 54 eyes, including normal (n = 18, preperimetric glaucoma (PPG; n = 18, and normal tension glaucoma (NTG; n = 18 eyes. We used SS-OCT to obtain 3 x 3 mm cube scans of an area centered on the optic disc, and then synchronized reconstructed B- and en-face images from this data. We identified the LC in these B-scan images by marking the visible borders of the LC pores. We marked points on the anterior and posterior borders of the LC in 12 B-scan images in order to create a skeleton model of the LC. Finally, we used B-spline interpolation to form a 3D model of the LC, including only reliably measured scan areas. We calculated the average LC thickness (avgLCT in this model and used Spearman's rank correlation coefficient to compare it with circumpapillary retinal nerve fiber layer thickness (cpRNFLT.We found that the correlation coefficient of avgLCT and cpRNFLT was 0.64 (p < 0.01. The coefficient of variation for avgLCT was 5.1%. AvgLCT differed significantly in the groups (normal: 282.6 ± 20.6 μm, PPG: 261.4 ± 15.8 μm, NTG: 232.6 ± 33.3 μm. The normal, PPG and NTG groups did not significantly differ in age, sex, refractive error or intraocular pressure (IOP, although the normal and NTG groups differed significantly in cpRNFLT and Humphrey field analyzer measurements of mean deviation.Thus, our results indicate that the parameters of our newly developed method of measuring LC thickness with SS-OCT may provide useful and important data for glaucoma diagnosis and research.

  3. Structural optimization of wind turbine rotor blades by multilevel sectional/multibody/3D-FEM analysis

    DEFF Research Database (Denmark)

    Bottasso, C. L.; Campagnolo, F.; Croce, A.

    2014-01-01

    level. At first, a "coarse"-level constrained design optimization is performed by using a 1D spatial geometrically exact beam model for aero-servo-elastic multibody analysis and load calculation, integrated with a 2D FEM cross sectional model for stress/strain analysis, and the evaluation of the 1D...

  4. The Golden Section as Optical Limitation.

    Directory of Open Access Journals (Sweden)

    Mark A Elliott

    the elevated RTs to golden-sectioned patterns. This suggests that optical limitation in the form of reduced inter-neural synchronization during spatial-frequency coding may be the foundation for the perceptual effects of golden sectioning.

  5. Breaking the Crowther limit: Combining depth-sectioning and tilt tomography for high-resolution, wide-field 3D reconstructions

    Energy Technology Data Exchange (ETDEWEB)

    Hovden, Robert, E-mail: rmh244@cornell.edu [School of Applied and Engineering Physics and Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853 (United States); Ercius, Peter [National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Jiang, Yi [Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Wang, Deli; Yu, Yingchao; Abruña, Héctor D. [Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 (United States); Elser, Veit [Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Muller, David A. [School of Applied and Engineering Physics and Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853 (United States)

    2014-05-01

    To date, high-resolution (<1 nm) imaging of extended objects in three-dimensions (3D) has not been possible. A restriction known as the Crowther criterion forces a tradeoff between object size and resolution for 3D reconstructions by tomography. Further, the sub-Angstrom resolution of aberration-corrected electron microscopes is accompanied by a greatly diminished depth of field, causing regions of larger specimens (>6 nm) to appear blurred or missing. Here we demonstrate a three-dimensional imaging method that overcomes both these limits by combining through-focal depth sectioning and traditional tilt-series tomography to reconstruct extended objects, with high-resolution, in all three dimensions. The large convergence angle in aberration corrected instruments now becomes a benefit and not a hindrance to higher quality reconstructions. A through-focal reconstruction over a 390 nm 3D carbon support containing over 100 dealloyed and nanoporous PtCu catalyst particles revealed with sub-nanometer detail the extensive and connected interior pore structure that is created by the dealloying instability. - Highlights: • Develop tomography technique for high-resolution and large field of view. • We combine depth sectioning with traditional tilt tomography. • Through-focal tomography reduces tilts and improves resolution. • Through-focal tomography overcomes the fundamental Crowther limit. • Aberration-corrected becomes a benefit and not a hindrance for tomography.

  6. Laser Scanning Holographic Lithography for Flexible 3D Fabrication of Multi-Scale Integrated Nano-structures and Optical Biosensors.

    Science.gov (United States)

    Yuan, Liang Leon; Herman, Peter R

    2016-01-01

    Three-dimensional (3D) periodic nanostructures underpin a promising research direction on the frontiers of nanoscience and technology to generate advanced materials for exploiting novel photonic crystal (PC) and nanofluidic functionalities. However, formation of uniform and defect-free 3D periodic structures over large areas that can further integrate into multifunctional devices has remained a major challenge. Here, we introduce a laser scanning holographic method for 3D exposure in thick photoresist that combines the unique advantages of large area 3D holographic interference lithography (HIL) with the flexible patterning of laser direct writing to form both micro- and nano-structures in a single exposure step. Phase mask interference patterns accumulated over multiple overlapping scans are shown to stitch seamlessly and form uniform 3D nanostructure with beam size scaled to small 200 μm diameter. In this way, laser scanning is presented as a facile means to embed 3D PC structure within microfluidic channels for integration into an optofluidic lab-on-chip, demonstrating a new laser HIL writing approach for creating multi-scale integrated microsystems.

  7. 3D Cloud Radiative Effects on Aerosol Optical Thickness Retrievals in Cumulus Cloud Fields in the Biomass Burning Region in Brazil

    Science.gov (United States)

    Wen, Guo-Yong; Marshak, Alexander; Cahalan, Robert F.

    2004-01-01

    Aerosol amount in clear regions of a cloudy atmosphere is a critical parameter in studying the interaction between aerosols and clouds. Since the global cloud cover is about 50%, cloudy scenes are often encountered in any satellite images. Aerosols are more or less transparent, while clouds are extremely reflective in the visible spectrum of solar radiation. The radiative transfer in clear-cloudy condition is highly three- dimensional (3D). This paper focuses on estimating the 3D effects on aerosol optical thickness retrievals using Monte Carlo simulations. An ASTER image of cumulus cloud fields in the biomass burning region in Brazil is simulated in this study. The MODIS products (i-e., cloud optical thickness, particle effective radius, cloud top pressure, surface reflectance, etc.) are used to construct the cloud property and surface reflectance fields. To estimate the cloud 3-D effects, we assume a plane-parallel stratification of aerosol properties in the 60 km x 60 km ASTER image. The simulated solar radiation at the top of the atmosphere is compared with plane-parallel calculations. Furthermore, the 3D cloud radiative effects on aerosol optical thickness retrieval are estimated.

  8. A new method for real-time co-registration of 3D coronary angiography and intravascular ultrasound or optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, Stéphane, E-mail: sgcarlier@hotmail.com [Department of Cardiology, Universitair Ziekenhuis - UZ Brussel, Brussels (Belgium); Department of Cardiology, Erasme University Hospital, Université Libre de Bruxelles (ULB), Brussels (Belgium); Didday, Rich [INDEC Medical Systems Inc., Santa Clara, CA (United States); Slots, Tristan [Pie Medical Imaging BV, Maastricht (Netherlands); Kayaert, Peter; Sonck, Jeroen [Department of Cardiology, Universitair Ziekenhuis - UZ Brussel, Brussels (Belgium); El-Mourad, Mike; Preumont, Nicolas [Department of Cardiology, Erasme University Hospital, Université Libre de Bruxelles (ULB), Brussels (Belgium); Schoors, Dany; Van Camp, Guy [Department of Cardiology, Universitair Ziekenhuis - UZ Brussel, Brussels (Belgium)

    2014-06-15

    We present a new clinically practical method for online co-registration of 3D quantitative coronary angiography (QCA) and intravascular ultrasound (IVUS) or optical coherence tomography (OCT). The workflow is based on two modified commercially available software packages. Reconstruction steps are explained and compared to previously available methods. The feasibility for different clinical scenarios is illustrated. The co-registration appears accurate, robust and induced a minimal delay on the normal cath lab activities. This new method is based on the 3D angiographic reconstruction of the catheter path and does not require operator’s identification of landmarks to establish the image synchronization.

  9. Investigation of the feasibility of relative 3D dosimetry in the Radiologic Physics Center Head and Neck IMRT phantom using Presage/optical-CT

    OpenAIRE

    Sakhalkar, Harshad; Sterling, David; Adamovics, John; Ibbott, Geoffrey; Oldham, Mark

    2009-01-01

    This study presents the application of the Presage∕optical-CT 3D dosimetry system for relative dosimetry in the Radiologic Physics Center (RPC) Head and Neck (H&N) IMRT phantom. Performance of the system was evaluated by comparison with the “gold-standard” RPC credentialing test. A modified Presage cylindrical insert was created that extended the capability of the RPC H&N phantom to 3D dosimetry. The RPC phantom was taken through the entire treatment planning procedure with both the standard ...

  10. 2D and 3D optical diagnostic techniques applied to Madonna dei Fusi by Leonardo da Vinci

    Science.gov (United States)

    Fontana, R.; Gambino, M. C.; Greco, M.; Marras, L.; Materazzi, M.; Pampaloni, E.; Pelagotti, A.; Pezzati, L.; Poggi, P.; Sanapo, C.

    2005-06-01

    3D measurement and modelling have been traditionally applied to statues, buildings, archeological sites or similar large structures, but rarely to paintings. Recently, however, 3D measurements have been performed successfully also on easel paintings, allowing to detect and document the painting's surface. We used 3D models to integrate the results of various 2D imaging techniques on a common reference frame. These applications show how the 3D shape information, complemented with 2D colour maps as well as with other types of sensory data, provide the most interesting information. The 3D data acquisition was carried out by means of two devices: a high-resolution laser micro-profilometer, composed of a commercial distance meter mounted on a scanning device, and a laser-line scanner. The 2D data acquisitions were carried out using a scanning device for simultaneous RGB colour imaging and IR reflectography, and a UV fluorescence multispectral image acquisition system. We present here the results of the techniques described, applied to the analysis of an important painting of the Italian Reinassance: `Madonna dei Fusi', attributed to Leonardo da Vinci.

  11. 3D non-woven polyvinylidene fluoride scaffolds: fibre cross section and texturizing patterns have impact on growth of mesenchymal stromal cells.

    Science.gov (United States)

    Schellenberg, Anne; Ross, Robin; Abagnale, Giulio; Joussen, Sylvia; Schuster, Philipp; Arshi, Annahit; Pallua, Norbert; Jockenhoevel, Stefan; Gries, Thomas; Wagner, Wolfgang

    2014-01-01

    Several applications in tissue engineering require transplantation of cells embedded in appropriate biomaterial scaffolds. Such structures may consist of 3D non-woven fibrous materials whereas little is known about the impact of mesh size, pore architecture and fibre morphology on cellular behavior. In this study, we have developed polyvinylidene fluoride (PVDF) non-woven scaffolds with round, trilobal, or snowflake fibre cross section and different fibre crimp patterns (10, 16, or 28 needles per inch). Human mesenchymal stromal cells (MSCs) from adipose tissue were seeded in parallel on these scaffolds and their growth was compared. Initial cell adhesion during the seeding procedure was higher on non-wovens with round fibres than on those with snowflake or trilobal cross sections. All PVDF non-woven fabrics facilitated cell growth over a time course of 15 days. Interestingly, proliferation was significantly higher on non-wovens with round or trilobal fibres as compared to those with snowflake profile. Furthermore, proliferation increased in a wider, less dense network. Scanning electron microscopy (SEM) revealed that the MSCs aligned along the fibres and formed cellular layers spanning over the pores. 3D PVDF non-woven scaffolds support growth of MSCs, however fibre morphology and mesh size are relevant: proliferation is enhanced by round fibre cross sections and in rather wide-meshed scaffolds.

  12. 3D non-woven polyvinylidene fluoride scaffolds: fibre cross section and texturizing patterns have impact on growth of mesenchymal stromal cells.

    Directory of Open Access Journals (Sweden)

    Anne Schellenberg

    Full Text Available Several applications in tissue engineering require transplantation of cells embedded in appropriate biomaterial scaffolds. Such structures may consist of 3D non-woven fibrous materials whereas little is known about the impact of mesh size, pore architecture and fibre morphology on cellular behavior. In this study, we have developed polyvinylidene fluoride (PVDF non-woven scaffolds with round, trilobal, or snowflake fibre cross section and different fibre crimp patterns (10, 16, or 28 needles per inch. Human mesenchymal stromal cells (MSCs from adipose tissue were seeded in parallel on these scaffolds and their growth was compared. Initial cell adhesion during the seeding procedure was higher on non-wovens with round fibres than on those with snowflake or trilobal cross sections. All PVDF non-woven fabrics facilitated cell growth over a time course of 15 days. Interestingly, proliferation was significantly higher on non-wovens with round or trilobal fibres as compared to those with snowflake profile. Furthermore, proliferation increased in a wider, less dense network. Scanning electron microscopy (SEM revealed that the MSCs aligned along the fibres and formed cellular layers spanning over the pores. 3D PVDF non-woven scaffolds support growth of MSCs, however fibre morphology and mesh size are relevant: proliferation is enhanced by round fibre cross sections and in rather wide-meshed scaffolds.

  13. Radiochromic 3D Detectors

    Science.gov (United States)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  14. 3D reconstruction of VZV infected cell nuclei and PML nuclear cages by serial section array scanning electron microscopy and electron tomography.

    Directory of Open Access Journals (Sweden)

    Mike Reichelt

    Full Text Available Varicella-zoster virus (VZV is a human alphaherpesvirus that causes varicella (chickenpox and herpes zoster (shingles. Like all herpesviruses, the VZV DNA genome is replicated in the nucleus and packaged into nucleocapsids that must egress across the nuclear membrane for incorporation into virus particles in the cytoplasm. Our recent work showed that VZV nucleocapsids are sequestered in nuclear cages formed from promyelocytic leukemia protein (PML in vitro and in human dorsal root ganglia and skin xenografts in vivo. We sought a method to determine the three-dimensional (3D distribution of nucleocapsids in the nuclei of herpesvirus-infected cells as well as the 3D shape, volume and ultrastructure of these unique PML subnuclear domains. Here we report the development of a novel 3D imaging and reconstruction strategy that we term Serial Section Array-Scanning Electron Microscopy (SSA-SEM and its application to the analysis of VZV-infected cells and these nuclear PML cages. We show that SSA-SEM permits large volume imaging and 3D reconstruction at a resolution sufficient to localize, count and distinguish different types of VZV nucleocapsids and to visualize complete PML cages. This method allowed a quantitative determination of how many nucleocapsids can be sequestered within individual PML cages (sequestration capacity, what proportion of nucleocapsids are entrapped in single nuclei (sequestration efficiency and revealed the ultrastructural detail of the PML cages. More than 98% of all nucleocapsids in reconstructed nuclear volumes were contained in PML cages and single PML cages sequestered up to 2,780 nucleocapsids, which were shown by electron tomography to be embedded and cross-linked by an filamentous electron-dense meshwork within these unique subnuclear domains. This SSA-SEM analysis extends our recent characterization of PML cages and provides a proof of concept for this new strategy to investigate events during virion assembly at the

  15. 3D Reconstruction of VZV Infected Cell Nuclei and PML Nuclear Cages by Serial Section Array Scanning Electron Microscopy and Electron Tomography

    Science.gov (United States)

    Reichelt, Mike; Joubert, Lydia; Perrino, John; Koh, Ai Leen; Phanwar, Ibanri; Arvin, Ann M.

    2012-01-01

    Varicella-zoster virus (VZV) is a human alphaherpesvirus that causes varicella (chickenpox) and herpes zoster (shingles). Like all herpesviruses, the VZV DNA genome is replicated in the nucleus and packaged into nucleocapsids that must egress across the nuclear membrane for incorporation into virus particles in the cytoplasm. Our recent work showed that VZV nucleocapsids are sequestered in nuclear cages formed from promyelocytic leukemia protein (PML) in vitro and in human dorsal root ganglia and skin xenografts in vivo. We sought a method to determine the three-dimensional (3D) distribution of nucleocapsids in the nuclei of herpesvirus-infected cells as well as the 3D shape, volume and ultrastructure of these unique PML subnuclear domains. Here we report the development of a novel 3D imaging and reconstruction strategy that we term Serial Section Array-Scanning Electron Microscopy (SSA-SEM) and its application to the analysis of VZV-infected cells and these nuclear PML cages. We show that SSA-SEM permits large volume imaging and 3D reconstruction at a resolution sufficient to localize, count and distinguish different types of VZV nucleocapsids and to visualize complete PML cages. This method allowed a quantitative determination of how many nucleocapsids can be sequestered within individual PML cages (sequestration capacity), what proportion of nucleocapsids are entrapped in single nuclei (sequestration efficiency) and revealed the ultrastructural detail of the PML cages. More than 98% of all nucleocapsids in reconstructed nuclear volumes were contained in PML cages and single PML cages sequestered up to 2,780 nucleocapsids, which were shown by electron tomography to be embedded and cross-linked by an filamentous electron-dense meshwork within these unique subnuclear domains. This SSA-SEM analysis extends our recent characterization of PML cages and provides a proof of concept for this new strategy to investigate events during virion assembly at the single cell

  16. Localization of Objects Using the Ms Windows Kinect 3D Optical Device with Utilization of the Depth Image Technology

    Directory of Open Access Journals (Sweden)

    Ján VACHÁLEK

    2015-11-01

    Full Text Available The paper deals with the problem of object recognition for the needs of mobile robotic systems (MRS. The emphasis was placed on the segmentation of an in-depth image and noise filtration. MS Kinect was used to evaluate the potential of object location taking advantage of the indepth image. This tool, being an affordable alternative to expensive devices based on 3D laser scanning, was deployed in series of experiments focused on object location in its field of vision. In our case, balls with fixed diameter were used as objects for 3D location.

  17. Non-destructive testing of layer-to-layer fusion of a 3D print using ultrahigh resolution optical coherence tomography

    Science.gov (United States)

    Israelsen, Niels M.; Maria, Michael; Feuchter, Thomas; Podoleanu, Adrian; Bang, Ole

    2017-06-01

    Within the last decade, 3D printing has moved from a costly approach of building mechanical items to the present state-of-the-art phase where access to 3D printers is now common, both in industry and in private places. The plastic printers are the most common type of 3D printers providing prints that are light, robust and of lower cost. The robustness of the structure printed is only maintained if each layer printed is properly fused to its previously printed layers. In situations where the printed component has to accomplish a key mechanical role there is a need to characterize its mechanical strength. This may only be revealed by in-depth testing in order to discover unwanted air-gaps in the structure. Optical coherence tomography (OCT) is an in-depth imaging method, that is sensitive to variations in the refractive index and therefore can resolve with high resolution translucid samples. We report on volume imaging of a 3D printed block made with 100% PLA fill. By employing ultrahigh resolution OCT (UHR-OCT) we show that some parts of the PLA volume reveal highly scattering interfaces which likely correspond to transitions from one layer to another. In doing so, we document that UHR-OCT can act as a powerful tool that can be used in detecting fractures between layers stemming from insufficient fusion between printed structure layers. UHR-OCT can therefore serve as an useful assessment method of quality of 3D prints.

  18. Weld line optimization on thermoplastic elastomer micro injection moulded components using 3D focus variation optical microscopy

    DEFF Research Database (Denmark)

    Hasnaes, F.B.; Elsborg, R.; Tosello, G.;

    2015-01-01

    The presented study investigates weld line depth development across a micro suspension ring. A focus variation microscope was used to obtain 3D images of the weld line area. Suspension rings produced with different micro injection moulding process parameters were examined to identify the correlat...

  19. A Distributed Fiber Optic Sensor Network for Online 3-D Temperature and Neutron Fluence Mapping in a VHTR Environment

    Energy Technology Data Exchange (ETDEWEB)

    Tsvetkov, Pavel; Dickerson, Bryan; French, Joseph; McEachern, Donald; Ougouag, Abderrafi

    2014-04-30

    Robust sensing technologies allowing for 3D in-core performance monitoring in real time are of paramount importance for already established LWRs to enhance their reliability and availability per year, and therefore, to further facilitate their economic competitiveness via predictive assessment of the in-core conditions.

  20. Light field display and 3D image reconstruction

    Science.gov (United States)

    Iwane, Toru

    2016-06-01

    Light field optics and its applications become rather popular in these days. With light field optics or light field thesis, real 3D space can be described in 2D plane as 4D data, which we call as light field data. This process can be divided in two procedures. First, real3D scene is optically reduced with imaging lens. Second, this optically reduced 3D image is encoded into light field data. In later procedure we can say that 3D information is encoded onto a plane as 2D data by lens array plate. This transformation is reversible and acquired light field data can be decoded again into 3D image with the arrayed lens plate. "Refocusing" (focusing image on your favorite point after taking a picture), light-field camera's most popular function, is some kind of sectioning process from encoded 3D data (light field data) to 2D image. In this paper at first I show our actual light field camera and our 3D display using acquired and computer-simulated light field data, on which real 3D image is reconstructed. In second I explain our data processing method whose arithmetic operation is performed not in Fourier domain but in real domain. Then our 3D display system is characterized by a few features; reconstructed image is of finer resolutions than density of arrayed lenses and it is not necessary to adjust lens array plate to flat display on which light field data is displayed.

  1. 3D micro-particle image modeling and its application in measurement resolution investigation for visual sensing based axial localization in an optical microscope

    Science.gov (United States)

    Wang, Yuliang; Li, Xiaolai; Bi, Shusheng; Zhu, Xiaofeng; Liu, Jinhua

    2017-01-01

    Visual sensing based three dimensional (3D) particle localization in an optical microscope is important for both fundamental studies and practical applications. Compared with the lateral (X and Y) localization, it is more challenging to achieve a high resolution measurement of axial particle location. In this study, we aim to investigate the effect of different factors on axial measurement resolution through an analytical approach. Analytical models were developed to simulate 3D particle imaging in an optical microscope. A radius vector projection method was applied to convert the simulated particle images into radius vectors. With the obtained radius vectors, a term of axial changing rate was proposed to evaluate the measurement resolution of axial particle localization. Experiments were also conducted for comparison with that obtained through simulation. Moreover, with the proposed method, the effects of particle size on measurement resolution were discussed. The results show that the method provides an efficient approach to investigate the resolution of axial particle localization.

  2. 3D analysis of synaptic vesicle density and distribution after acute foot-shock stress by using serial section transmission electron microscopy

    DEFF Research Database (Denmark)

    Khanmohammadi, M; Darkner, S; Nava, N

    2017-01-01

    distribution by fitting a one-dimensional parametrized distribution that took into account the location uncertainty due to section thickness. Our results showed a clear structural difference in synaptic vesicle density and distribution between stressed and control group with improved separation by 3D measures......Behavioural stress has shown to strongly affect neurotransmission within the neocortex. In this study, we analysed the effect of an acute stress model on density and distribution of neurotransmitter-containing vesicles within medial prefrontal cortex. Serial section transmission electron microscopy...... in comparison to the 2D measures. Our results showed that acute foot-shock stress exposure significantly affected both the spatial distribution and density of the synaptic vesicles within the presynaptic terminal....

  3. DMD-based LED-illumination super-resolution and optical sectioning microscopy.

    Science.gov (United States)

    Dan, Dan; Lei, Ming; Yao, Baoli; Wang, Wen; Winterhalder, Martin; Zumbusch, Andreas; Qi, Yujiao; Xia, Liang; Yan, Shaohui; Yang, Yanlong; Gao, Peng; Ye, Tong; Zhao, Wei

    2013-01-01

    Super-resolution three-dimensional (3D) optical microscopy has incomparable advantages over other high-resolution microscopic technologies, such as electron microscopy and atomic force microscopy, in the study of biological molecules, pathways and events in live cells and tissues. We present a novel approach of structured illumination microscopy (SIM) by using a digital micromirror device (DMD) for fringe projection and a low-coherence LED light for illumination. The lateral resolution of 90 nm and the optical sectioning depth of 120 μm were achieved. The maximum acquisition speed for 3D imaging in the optical sectioning mode was 1.6×10(7) pixels/second, which was mainly limited by the sensitivity and speed of the CCD camera. In contrast to other SIM techniques, the DMD-based LED-illumination SIM is cost-effective, ease of multi-wavelength switchable and speckle-noise-free. The 2D super-resolution and 3D optical sectioning modalities can be easily switched and applied to either fluorescent or non-fluorescent specimens.

  4. DMD-based LED-illumination Super-resolution and optical sectioning microscopy

    Science.gov (United States)

    Dan, Dan; Lei, Ming; Yao, Baoli; Wang, Wen; Winterhalder, Martin; Zumbusch, Andreas; Qi, Yujiao; Xia, Liang; Yan, Shaohui; Yang, Yanlong; Gao, Peng; Ye, Tong; Zhao, Wei

    2013-01-01

    Super-resolution three-dimensional (3D) optical microscopy has incomparable advantages over other high-resolution microscopic technologies, such as electron microscopy and atomic force microscopy, in the study of biological molecules, pathways and events in live cells and tissues. We present a novel approach of structured illumination microscopy (SIM) by using a digital micromirror device (DMD) for fringe projection and a low-coherence LED light for illumination. The lateral resolution of 90 nm and the optical sectioning depth of 120 μm were achieved. The maximum acquisition speed for 3D imaging in the optical sectioning mode was 1.6×107 pixels/second, which was mainly limited by the sensitivity and speed of the CCD camera. In contrast to other SIM techniques, the DMD-based LED-illumination SIM is cost-effective, ease of multi-wavelength switchable and speckle-noise-free. The 2D super-resolution and 3D optical sectioning modalities can be easily switched and applied to either fluorescent or non-fluorescent specimens.

  5. Hydrodynamic and acoustic analysis in 3-D of a section of main steam line to EPU conditions; Analisis hidrodinamico y acustico en 3D de una seccion de linea de vapor principal a condiciones de EPU

    Energy Technology Data Exchange (ETDEWEB)

    Centeno P, J.; Castillo J, V.; Espinosa P, G. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico D. F. (Mexico); Nunez C, A.; Polo L, M. A., E-mail: baldepeor21@hotmail.com [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Jose Ma. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico)

    2013-10-15

    The objective of this word is to study the hydrodynamic and acoustic phenomenon in the main steam lines (MSLs). For this study was considered the specific case of a pipe section of the MSL, where is located the standpipe of the pressure and/or safety relief valve (SRV). In the SRV cavities originates a phenomenon known as whistling that generates a hydrodynamic disturbance of acoustic pressure waves with different tones depending of the reactor operation conditions. In the SRV cavities the propagation velocity of the wave can originate mechanical damage in the structure of the steam dryer and on free parts. The importance of studying this phenomenon resides in the safety of the integrity of the reactor pressure vessel. To dissipate the energy of the pressure wave, acoustic side branches (ASBs) are used on the standpipe of the SRVs. The ASBs are arrangements of compacted lattices similar to a porous medium, where the energy of the whistling phenomenon is dissipate and therefore the acoustic pressure load that impacts in particular to the steam dryers, and in general to the interns of the vessel, diminishes. For the analysis of the whistling phenomenon two three-dimensional (3-D) models were built, one hydrodynamic in stationary state and other acoustic for the harmonic times in transitory regimen, in which were applied techniques of Computational Fluid Dynamics. The study includes the reactor operation analysis under conditions of extended power up rate (EPU) with ASB and without ASB. The obtained results of the gauges simulated in the MSL without ASB and with ASB, show that tones with values of acoustic pressure are presented in frequency ranges between 160 and 200 Hz around 12 MPa and of 7 MPa, respectively. This attenuation of tones implies the decrease of the acoustic loads in the steam dryer and in the interns of the vessel that are designed to support pressures not more to 7.5 MPa approximately. With the above-mentioned is possible to protect the steam dryer

  6. Investigation of the feasibility of relative 3D dosimetry in the Radiologic Physics Center Head and Neck IMRT phantom using presage/optical-CT.

    Science.gov (United States)

    Sakhalkar, Harshad; Sterling, David; Adamovics, John; Ibbott, Geoffrey; Oldham, Mark

    2009-07-01

    This study presents the application of the Presage/optical-CT 3D dosimetry system for relative dosimetry in the Radiologic Physics Center (RPC) Head and Neck (H&N) IMRT phantom. Performance of the system was evaluated by comparison with the "gold-standard" RPC credentialing test. A modified Presage cylindrical insert was created that extended the capability of the RPC H&N phantom to 3D dosimetry. The RPC phantom was taken through the entire treatment planning procedure with both the standard RPC insert and the modified Presage insert. An IMRT plan was created to match the desired dose constraints of the credentialing test. This plan was delivered twice to the RPC phantom: first containing the standard insert, and then again containing the Presage insert. After irradiation, the standard insert was sent for routine credentialing analysis; including point dose measurements (TLD) and planar Gafchromic EBT film measurement. The 3D dose distribution from Presage was read out at Duke using the OCTOPUS 5X optical-CT scanner. The Presage distribution was compared with gold-standard EBT measurement (determined by the RPC) and the calculated Eclipse distribution. The agreement between the normalized EBT, Presage, and Eclipse distributions, in the central axial plane was evaluated using profiles and gamma-map comparisons (4% dose difference and 3 mm distance to agreement). Profiles showed good agreement between EBT, Presage, and Eclipse distributions. 2D gamma-map comparisons between all three modalities showed at least 98% pass rate. The excellent agreement between Presage and EBT in the central plane established Presage as a standard against which to evaluate the accuracy of the 3D calculated Eclipse distribution. A gamma comparison between normalized Presage and Eclipse 3D distributions gave an overall pass rate of approximately 94%. In conclusion, the Presage/optical-CT system was found to be feasible for relative 3D dosimetry in the RPC IMRT H&N phantom. The potential to

  7. Fabrication of holographic 3-D polymeric photonic crystals in near-Infrared band and study of Its optical property

    Institute of Scientific and Technical Information of China (English)

    ZHANG Sa-sa; WANG Qing-pu; ZHANG Xing-yu; CHEN Jia-qi; WANG Li

    2008-01-01

    A three-sidewalls-prism holographic method has been provided for the fabrication of 3-D fcc-type polymeric photonic crystal using negative photoresist.Special fabrication treatment has been introduced to ensure the stability of the fabricated nanostructures.The scanning electronic microscopy (SEM) and the diffraction results testified the good dependability of the fabricared structures.The simulation of the partial band structure is in good agreement with the transmission and reflection spectra obtained by Fouricr transform infrared spectroscopy.

  8. Localization of Objects Using the Ms Windows Kinect 3D Optical Device with Utilization of the Depth Image Technology

    OpenAIRE

    Ján VACHÁLEK; Marian GÉCI; Oliver ROVNÝ; Tomáš VOLENSKÝ

    2015-01-01

    The paper deals with the problem of object recognition for the needs of mobile robotic systems (MRS). The emphasis was placed on the segmentation of an in-depth image and noise filtration. MS Kinect was used to evaluate the potential of object location taking advantage of the indepth image. This tool, being an affordable alternative to expensive devices based on 3D laser scanning, was deployed in series of experiments focused on object location in its field of vision. In our ca...

  9. Optical Coherence Tomography Noise Reduction Using Anisotropic Local Bivariate Gaussian Mixture Prior in 3D Complex Wavelet Domain

    Directory of Open Access Journals (Sweden)

    Hossein Rabbani

    2013-01-01

    Full Text Available In this paper, MMSE estimator is employed for noise-free 3D OCT data recovery in 3D complex wavelet domain. Since the proposed distribution for noise-free data plays a key role in the performance of MMSE estimator, a priori distribution for the pdf of noise-free 3D complex wavelet coefficients is proposed which is able to model the main statistical properties of wavelets. We model the coefficients with a mixture of two bivariate Gaussian pdfs with local parameters which are able to capture the heavy-tailed property and inter- and intrascale dependencies of coefficients. In addition, based on the special structure of OCT images, we use an anisotropic windowing procedure for local parameters estimation that results in visual quality improvement. On this base, several OCT despeckling algorithms are obtained based on using Gaussian/two-sided Rayleigh noise distribution and homomorphic/nonhomomorphic model. In order to evaluate the performance of the proposed algorithm, we use 156 selected ROIs from 650 × 512 × 128 OCT dataset in the presence of wet AMD pathology. Our simulations show that the best MMSE estimator using local bivariate mixture prior is for the nonhomomorphic model in the presence of Gaussian noise which results in an improvement of 7.8 ± 1.7 in CNR.

  10. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, Adam K., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu; Andreozzi, Jacqueline M. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Zhang, Rongxiao [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Pogue, Brian W., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu [Thayer School of Engineering and Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Gladstone, David J. [Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 (United States)

    2015-07-15

    Purpose: To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). Methods: An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp–Davis–Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. Results: 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm{sup 3} volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%–99% pass fraction depending on the chosen threshold dose. Conclusions: The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water.

  11. Calibration-free absolute quantification of optical absorption coefficients using acoustic spectra in 3D photoacoustic microscopy of biological tissue.

    Science.gov (United States)

    Guo, Zijian; Hu, Song; Wang, Lihong V

    2010-06-15

    Optical absorption is closely associated with many physiological important parameters, such as the concentration and oxygen saturation of hemoglobin, and it can be used to quantify the concentrations of nonfluorescent molecules. We propose a method to use acoustic spectra of photoacoustic signals to quantify the absolute optical absorption. This method is self-calibrating and thus insensitive to variations in the optical fluence. Factors such as system bandwidth and acoustic attenuation can affect the quantification but can be canceled by dividing the acoustic spectra measured at two optical wavelengths. Using optical-resolution photoacoustic microscopy, we quantified the absolute optical absorption of black ink samples with various concentrations. We also quantified both the concentration and oxygen saturation of hemoglobin in a live mouse in absolute units.

  12. 3-D conformal treatment of prostate cancer to 74 Gy vs. high-dose-rate brachytherapy boost: A cross-sectional quality-of-life survey

    Energy Technology Data Exchange (ETDEWEB)

    Vordermark, Dirk [Univ. of Wuerzburg (DE). Dept. of Radiation Oncology] (and others)

    2006-09-15

    The effects of two modalities of dose-escalated radiotherapy on health-related quality of life (HRQOL) were compared. Forty-one consecutive patients were treated with a 3-D conformal (3-DC) boost to 74 Gy, and 43 with high-dose rate (HDR) brachytherapy boost (2x9 Gy), following 3-D conformal treatment to 46 Gy. Median age was 70 years in both groups, median initial PSA was 7.9 {mu}g/l in 3-DC boost patients and 8.1 {mu}g/l in HDR boost patients. Stage was 7 in 52% and 47%, respectively. HRQOL was assessed cross-sectionally using EORTC QLQ-C30 and organ-specific PR25 modules 3-32 (median 19) and 4-25 (median 14) months after treatment, respectively. Questionnaires were completed by 93% and 97% of patients, respectively. Diarrhea and insomnia scores were significantly increased in both groups. In the PR25 module, scores of 3-DC boost and HDR boost patients for urinary, bowel and treatment-related symptoms were similar. Among responders, 34% of 3-DC boost patients and 86% of HDR boost patients had severe erectile problems. Dose escalation in prostate cancer by either 3-DC boost to 74 Gy or HDR brachytherapy boost appears to result in similar HRQOL profiles.

  13. 3D geological modelling from boreholes, cross-sections and geological maps, application over former natural gas storages in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, O.; Martin, T. [Service de Geologie Fondamentale et Appliquee, Mons (Belgium). Faculte Polytechnique de Mons

    2008-03-15

    In a wide range of applications involving geological modelling, geological data available at low cost usually consist of documents such as cross-sections or geological maps and punctual data like borehole logs or outcrop descriptions. In order to build accurate 3D geological models based on this information, it is necessary to develop a methodology that takes into account the variety of available data. Such models, of the geometry of geological bodies, should also be easy to edit and update to integrate new data. This kind of model should produce a consistent representation of subsurface geology that may be a support for modelling other subsoil characteristics such as hydrogeologic or geothermic properties of the geological bodies. This paper presents a methodology developed to process geological information in this context. The aims of this methodology are comprehensive data description, effective data validation and easier model updates. Thus, special attention has been given to data structures and processing flows. The adopted methodology is implemented on a system architecture formed by a geographic information system, a geomodeler and a database communicating by file transfers. An application of this methodology, to build a 3D geological model of the subsoil over former coalmines used to store natural gas, is then presented. This model integrates the geological information available and is representative of the geoloigical context. It is a support to the environmental follow-up needed after the end of gas-storage operations.

  14. Non-destructive optical clearing technique enhances optical coherence tomography (OCT) for real-time, 3D histomorphometry of brain tissue (Conference Presentation)

    Science.gov (United States)

    Paul, Akshay; Chang, Theodore H.; Chou, Li-Dek; Ramalingam, Tirunelveli S.

    2016-03-01

    Evaluation of neurodegenerative disease often requires examination of brain morphology. Volumetric analysis of brain regions and structures can be used to track developmental changes, progression of disease, and the presence of transgenic phenotypes. Current standards for microscopic investigation of brain morphology are limited to detection of superficial structures at a maximum depth of 300μm. While histological techniques can provide detailed cross-sections of brain structures, they require complicated tissue preparation and the ultimate destruction of the sample. A non-invasive, label-free imaging modality known as Optical Coherence Tomography (OCT) can produce 3-dimensional reconstructions through high-speed, cross-sectional scans of biological tissue. Although OCT allows for the preservation of intact samples, the highly scattering and absorbing properties of biological tissue limit imaging depth to 1-2mm. Optical clearing agents have been utilized to increase imaging depth by index matching and lipid digestion, however, these contemporary techniques are expensive and harsh on tissues, often irreversibly denaturing proteins. Here we present an ideal optical clearing agent that offers ease-of-use and reversibility. Similar to how SeeDB has been effective for microscopy, our fructose-based, reversible optical clearing technique provides improved OCT imaging and functional immunohistochemical mapping of disease. Fructose is a natural, non-toxic sugar with excellent water solubility, capable of increasing tissue transparency and reducing light scattering. We will demonstrate the improved depth-resolving performance of OCT for enhanced whole-brain imaging of normal and diseased murine brains following a fructose clearing treatment. This technique potentially enables rapid, 3-dimensional evaluation of biological tissues at axial and lateral resolutions comparable to histopathology.

  15. Geometry and kinematics of accretionary wedge faults inherited from the structure and rheology of the incoming sedimentary section; insights from 3D seismic reflection data

    Science.gov (United States)

    Bell, Rebecca; Orme, Haydn; Lenette, Kathryn; Jackson, Christopher; Fitch, Peter; Phillips, Thomas; Moore, Gregory

    2017-04-01

    -circular seamounts. The youngest, most basinward thrusts in the wedge strike NW-SE; however, 17 km landward, towards the wedge core, they strike NE-SW. The orientation of the more landward faults correlates with the trend of linear basement relief, whereas thrust fault orientations close to the deformation front are perpendicular to the convergence direction. We notice that oceanic crust that has been subducted is characterised by NE-SW striking, now-inverted normal faults, with some faults extending up through the entire sedimentary section. We suggest that the NE-SW orientation of thrust faults has been inherited from linear basement ridges. In contrast, basement currently subducting beneath the deformation front is dominated by seamounts and is devoid of more linear features. Here, there are no pre-existing normal faults available for reactivation and thrust faults develop perpendicular to the convergence direction. We show that the incoming plate properties have a profound effect on the geometry of accretionary wedges; it would be difficult to elucidate this without 3D seismic data. Our insights provide new hypotheses that can be tested with numerical and laboratory models.

  16. Optical-sectioning microscopy by patterned illumination

    Science.gov (United States)

    Saavedra, G.; Martinez-Corral, M.; Sanchez-Ortiga, E.; Doblas, A.

    2010-02-01

    We propose a very simple method for the flexible production of 1D structured illumination for high resolution 3D microscopy. Specifically, we propose the insertion of a Fresnel biprism after a monochromatic point source for producing a pair of twin, fully coherent, virtual point sources. The resulting interference fringes are projected into the 3D sample and, by simply varying the distance between the biprism and the point source, one can tune the period of the fringes, while keeping their contrast, in a very versatile and efficient way.

  17. Optical position encoder based on four-section diffraction grating

    Science.gov (United States)

    Zherdev, A. Y.; Odinokov, S. B.; Lushnikov, D. S.; Markin, V. V.; Gurylev, O. A.; Shishova, M. V.

    2017-05-01

    Optical position encoder consists of movable coding grating and fixed analyzing grating. Light passing and diffracting through these two gratings creates interference signal on optical detector. Decoding of interference signal phase allows to determinate current position. Known optical position encoders use several accurate adjusted optical channels and detectors to gather several signals with different phase for higher encoder accuracy. We propose to use one optical channel with several-section analyzing diffraction grating for this purpose to simplify optical scheme and adjusting requirements. Optical scheme of position encoder based on four-section analyzing diffraction grating is developed and described in this paper.

  18. 3D rod-like copper oxide with nanowire hierarchical structure: Ultrasound assisted synthesis from Cu2(OH)3NO3 precursor, optical properties and formation mechanism

    Science.gov (United States)

    Ba, Ningning; Zhu, Lianjie; Li, Hongbin; Zhang, Guangzhi; Li, Jianfa; Sun, Jingfeng

    2016-03-01

    3-dimensional (3D) rod-like CuO with nanowire hierarchical structure has been synthesized successfully by a facile ultrasound assisted method combined with thermal conversion, using rouaite Cu2(OH)3NO3 as the precursor. The product was characterized by XRD, SEM, TEM, HRTEM and FT-IR spectrum. Its optical properties were studied by means of UV-Vis diffuse reflectance absorption spectroscopy and photoluminescence (PL) spectrum. Series of control experiments have been performed to explore influencing factors to the product morphologies and a possible formation mechanism has been proposed. The results show that each CuO rod assembled by tens of nanowires is 200-300 nm in diameter and about 1000 nm in length. Each nanowire contains many interconnected nanoparticles with sizes of about 15 nm. Particularly, ultrasound processing was found beneficial to the formation of the 3D rod-like CuO with nanowire hierarchical structure.

  19. 3D photoacoustic imaging

    Science.gov (United States)

    Carson, Jeffrey J. L.; Roumeliotis, Michael; Chaudhary, Govind; Stodilka, Robert Z.; Anastasio, Mark A.

    2010-06-01

    Our group has concentrated on development of a 3D photoacoustic imaging system for biomedical imaging research. The technology employs a sparse parallel detection scheme and specialized reconstruction software to obtain 3D optical images using a single laser pulse. With the technology we have been able to capture 3D movies of translating point targets and rotating line targets. The current limitation of our 3D photoacoustic imaging approach is its inability ability to reconstruct complex objects in the field of view. This is primarily due to the relatively small number of projections used to reconstruct objects. However, in many photoacoustic imaging situations, only a few objects may be present in the field of view and these objects may have very high contrast compared to background. That is, the objects have sparse properties. Therefore, our work had two objectives: (i) to utilize mathematical tools to evaluate 3D photoacoustic imaging performance, and (ii) to test image reconstruction algorithms that prefer sparseness in the reconstructed images. Our approach was to utilize singular value decomposition techniques to study the imaging operator of the system and evaluate the complexity of objects that could potentially be reconstructed. We also compared the performance of two image reconstruction algorithms (algebraic reconstruction and l1-norm techniques) at reconstructing objects of increasing sparseness. We observed that for a 15-element detection scheme, the number of measureable singular vectors representative of the imaging operator was consistent with the demonstrated ability to reconstruct point and line targets in the field of view. We also observed that the l1-norm reconstruction technique, which is known to prefer sparseness in reconstructed images, was superior to the algebraic reconstruction technique. Based on these findings, we concluded (i) that singular value decomposition of the imaging operator provides valuable insight into the capabilities of

  20. 3D geological modelling from boreholes, cross-sections and geological maps, application over former natural gas storages in coal mines (vol 34, pg 278, 2008)

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, O.; Martin, T. [Service de Geologie Fondamentale et Appliquee, Mons (Belgium)

    2009-01-15

    In a wide range of applications involving geological modelling, geological data available at low cost usually consist of documents such as cross-sections or geological maps and punctual data like borehole logs or outcrop descriptions. In order to build accurate 3D geological models based on this information, it is necessary to develop a methodology that takes into account the variety of available data. Such models, of the geometry of geological bodies, should also be easy to edit and update to integrate new data. This kind of model should produce a consistent representation of subsurface geology that may be a support for modelling other subsoil characteristics such as hydrogeologic or geothermic properties of the geological bodies. This paper presents a methodology developed to process geological information in this context. The aims of this methodology are comprehensive data description, effective data validation and easier model updates. Thus, special attention has been given to data structures and processing flows. The adopted methodology is implemented on a system architecture formed by a geographic information system, a geomodeler and a database communicating by file transfers. An application of this methodology, to build a 3D geological model of the subsoil over former coalmines used to store natural gas, is then presented. This model integrates the geological information available and is representative of the geological context. It is a support to the environmental follow-up needed after the end of gas-storage operations. This is a correction from the paper in the March 2008 issue (volume 34, part 3, pages 278-290).

  1. 3D Viscoelastic Finite Element Modelling of Polymer Flow in the Fiber Drawing Process for Microstructured Polymer Optical Fiber Fabrication

    DEFF Research Database (Denmark)

    Fasano, Andrea; Rasmussen, Henrik K.; Marín, J. M. R.

    2015-01-01

    The process of drawing an optical fiber from a polymer preform is still not completely understood,although it represents one of the most critical steps in the process chain for the fabrication of microstructuredpolymer optical fibers (mPOFs). Here we present a new approach for the numerical...... the numerical modelling of mPOF drawing has mainly beenbased on principles, such as generalized Newtonian fluid dynamics, which are not able to cope with the elasticcomponent in polymer flow. In the present work, we employ the K-BKZ constitutive equation, a non-linearsingle-integral model that combines both...

  2. Generation of a cold pulsed beam of Rb atoms by transfer from a 3D magneto-optic trap

    CERN Document Server

    Chanu, Sapam Ranjita; Natarajan, Vasant

    2016-01-01

    We demonstrate a technique for producing a cold pulsed beam of atoms by transferring a cloud of atoms trapped in a three dimensional magneto-optic trap (MOT). The MOT is loaded by heating a getter source of Rb atoms. We show that it is advantageous to transfer with two beams (with a small angle between them) compared to a single beam, because the atoms stop interacting with the beams in the two-beam technique, which results in a Gaussian velocity distribution. The atoms are further cooled in optical molasses by turning off the MOT magnetic field before the transfer beams are turned on.

  3. 3D and beyond

    Science.gov (United States)

    Fung, Y. C.

    1995-05-01

    This conference on physiology and function covers a wide range of subjects, including the vasculature and blood flow, the flow of gas, water, and blood in the lung, the neurological structure and function, the modeling, and the motion and mechanics of organs. Many technologies are discussed. I believe that the list would include a robotic photographer, to hold the optical equipment in a precisely controlled way to obtain the images for the user. Why are 3D images needed? They are to achieve certain objectives through measurements of some objects. For example, in order to improve performance in sports or beauty of a person, we measure the form, dimensions, appearance, and movements.

  4. Research on the aero-thermal effects by 3D analysis model of the optical window of the infrared imaging guidance

    Science.gov (United States)

    Xu, Bo; Li, Lin; Zhu, Ying

    2014-11-01

    Researches on hypersonic vehicles have been a hotspot in the field of aerospace because of the pursuits for higher speed by human being. Infrared imaging guidance is playing a very important role in modern warfare. When an Infrared Ray(IR) imaging guided missile is flying in the air at high speed, its optical dome suffers from serious aero-optic effects because of air flow. The turbulence around the dome and the thermal effects of the optical window would cause disturbance to the wavefront from the target. Therefore, detected images will be biased, dithered and blurred, and the capabilities of the seeker for detecting, tracking and recognizing are weakened. In this paper, methods for thermal and structural analysis with Heat Transfer and Elastic Mechanics are introduced. By studying the aero-thermal effects and aero-thermal radiation effects of the optical window, a 3D analysis model of the optical window is established by using finite element method. The direct coupling analysis is employed as a solving strategy. The variation regularity of the temperature field is obtained. For light with different incident angles, the influence on the ray propagation caused by window deformation is analyzed with theoretical calculation and optical/thermal/structural integrated analysis method respectively.

  5. Generation of a 3D atlas of the nuclear division of the thalamus based on histological sections of primate: Intra- and intersubject atlas-to-MRI warping

    Energy Technology Data Exchange (ETDEWEB)

    Dauguet, J.; Conde, F.; Hantraye, P.; Delzescaux, T. [CEA-CNRS, MIRCen, 18, route du Panorama, 92265 Fontenay-aux-Roses (France); Frouin, V. [CEA-DSV-IRCM-SCSR-LEFG, 2, place Gaston-Cremieux, 91057 Evry (France)

    2009-07-01

    We describe a framework to generate a 3D digital atlas of the thalamus based on a series of stained histological sections of a primate. The contours of the thalamus were first drawn on the stained histological slices. The series of histological sections were then aligned and mapped onto the in vivo MRI of the same animal acquired prior to the sacrifice following a methodology described in Dauguet et al. (2007) using the block face photographs as an intermediary modality. By applying the series of transformations previously estimated for the histological volume, the contours of the digital atlas were mapped onto the MRI data. The protocol was tested on two baboon brains for which the full series of slices were available, and a macaque brain for which a subset only of the histological slices were available demonstrating the ability of building digital atlases in the MRI geometry without mounting and staining all the brain slices. We then studied the accuracy of mapping the digital atlas of one baboon onto the MRI of the other baboon by comparing the overlapping with its original digital atlas. We finally used the digital atlas of one of the baboons to study the individual kinetic of the main thalamus nuclei on Positron Emission Tomography (PET) images providing a novel and accurate way of measuring very fine and local functional differences. (authors)

  6. Optical characterization of auto-stereoscopic 3D displays: interest of the resolution and comparison to human eye properties

    Science.gov (United States)

    Boher, Pierre; Leroux, Thierry; Bignon, Thibault; Collomb-Patton, Véronique

    2014-02-01

    Optical characterization of multi-view auto-stereoscopic displays is realized using high angular resolution viewing angle measurements and imaging measurements. View to view and global qualified binocular viewing space are computed from viewing angle measurements and verified using imaging measurements. Crosstalk uniformity is also deduced and related to display imperfections.

  7. US-CT 3D dual imaging by mutual display of the same sections for depicting minor changes in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Hiroyuki, E-mail: fukuhiro1962@hotmail.com [International HIFU Center, Sanmu Medical Center Hospital, Naruto 167, Sanbu-shi, Chiba 289-1326 (Japan); Ito, Ryu; Ohto, Masao; Sakamoto, Akio [International HIFU Center, Sanmu Medical Center Hospital, Naruto 167, Sanbu-shi, Chiba 289-1326 (Japan); Otsuka, Masayuki; Togawa, Akira; Miyazaki, Masaru [Department of General Surgery, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba-shi, Chiba 260-0856 (Japan); Yamagata, Hitoshi [Toshiba Medical Systems Corporation, Otawara 324-0036 (Japan)

    2012-09-15

    The purpose of this study was to evaluate the usefulness of ultrasound-computed tomography (US-CT) 3D dual imaging for the detection of small extranodular growths of hepatocellular carcinoma (HCC). The clinical and pathological profiles of 10 patients with single nodular type HCC with extranodular growth (extranodular growth) who underwent a hepatectomy were evaluated using two-dimensional (2D) ultrasonography (US), three-dimensional (3D) US, 3D computed tomography (CT) and 3D US-CT dual images. Raw 3D data was converted to DICOM (Digital Imaging and Communication in Medicine) data using Echo to CT (Toshiba Medical Systems Corp., Tokyo, Japan), and the 3D DICOM data was directly transferred to the image analysis system (ZioM900, ZIOSOFT Inc., Tokyo, Japan). By inputting the angle number (x, y, z) of the 3D CT volume data into the ZioM900, multiplanar reconstruction (MPR) images of the 3D CT data were displayed in a manner such that they resembled the conventional US images. Eleven extranodular growths were detected pathologically in 10 cases. 2D US was capable of depicting only 2 of the 11 extranodular growths. 3D CT was capable of depicting 4 of the 11 extranodular growths. On the other hand, 3D US was capable of depicting 10 of the 11 extranodular growths, and 3D US-CT dual images, which enable the dual analysis of the CT and US planes, revealed all 11 extranodular growths. In conclusion, US-CT 3D dual imaging may be useful for the detection of small extranodular growths.

  8. Boresight calibration of construction misalignments for 3D scanners built with a 2D laser range finder rotating on its optical center.

    Science.gov (United States)

    Morales, Jesús; Martínez, Jorge L; Mandow, Anthony; Reina, Antonio J; Pequeño-Boter, Alejandro; García-Cerezo, Alfonso

    2014-10-24

    Many applications, like mobile robotics, can profit from acquiring dense, wide-ranging and accurate 3D laser data. Off-the-shelf 2D scanners are commonly customized with an extra rotation as a low-cost, lightweight and low-power-demanding solution. Moreover, aligning the extra rotation axis with the optical center allows the 3D device to maintain the same minimum range as the 2D scanner and avoids offsets in computing Cartesian coordinates. The paper proposes a practical procedure to estimate construction misalignments based on a single scan taken from an arbitrary position in an unprepared environment that contains planar surfaces of unknown dimensions. Inherited measurement limitations from low-cost 2D devices prevent the estimation of very small translation misalignments, so the calibration problem reduces to obtaining boresight parameters. The distinctive approach with respect to previous plane-based intrinsic calibration techniques is the iterative maximization of both the flatness and the area of visible planes. Calibration results are presented for a case study. The method is currently being applied as the final stage in the production of a commercial 3D rangefinder.

  9. Spatially-resolved in-situ quantification of biofouling using optical coherence tomography (OCT) and 3D image analysis in a spacer filled channel

    KAUST Repository

    Fortunato, Luca

    2016-11-21

    The use of optical coherence tomography (OCT) to investigate biomass in membrane systems has increased with time. OCT is able to characterize the biomass in-situ and non-destructively. In this study, a novel approach to process three-dimensional (3D) OCT scans is proposed. The approach allows obtaining spatially-resolved detailed structural biomass information. The 3D biomass reconstruction enables analysis of the biomass only, obtained by subtracting the time zero scan to all images. A 3D time series analysis of biomass development in a spacer filled channel under representative conditions (cross flow velocity) for a spiral wound membrane element was performed. The flow cell was operated for five days with monitoring of ultrafiltration membrane performance: feed channel pressure drop and permeate flux. The biomass development in the flow cell was detected by OCT before a performance decline was observed. Feed channel pressure drop continuously increased with increasing biomass volume, while flux decline was mainly affected in the initial phase of biomass accumulation. The novel OCT imaging approach enabled the assessment of spatial biomass distribution in the flow cell, discriminating the total biomass volume between the membrane, feed spacer and glass window. Biomass accumulation was stronger on the feed spacer during the early stage of biofouling, impacting the feed channel pressure drop stronger than permeate flux.

  10. High-efficiency and wideband interlayer grating couplers in multilayer Si/SiO2/SiN platform for 3D integration of optical functionalities.

    Science.gov (United States)

    Sodagar, Majid; Pourabolghasem, Reza; Eftekhar, Ali A; Adibi, Ali

    2014-07-14

    We have designed interlayer grating couplers with single/double metallic reflectors for Si/SiO(2)/SiN multilayer material platform. Out-of-plane diffractive grating couplers separated by 1.6 μm thick buffer SiO(2) layer are vertically stacked against each other in Si and SiN layers. Geometrical optimization using genetic algorithm coupled with electromagnetic simulations using two-dimensional (2D) finite element method (FEM) results in coupler designs with high peak coupling efficiency of up to 89% for double- mirror and 64% for single-mirror structures at telecom wavelength. Also, 3-dB bandwidths of 40 nm and 50 nm are theoretically predicted for the two designs, respectively. We have fabricated the grating coupler structure with single mirror. Measured values for insertion loss and 3-dB bandwidth in the fabricated single-mirror coupler confirms the theoretical results. This opens up the possibility of low-loss 3D dense integration of optical functionalities in hybrid material platforms.

  11. Diffractive centrosymmetric 3D-transmission phase gratings positioned at the image plane of optical systems transform lightlike 4D-WORLD as tunable resonators into spectral metrics...

    Science.gov (United States)

    Lauinger, Norbert

    1999-08-01

    Diffractive 3D phase gratings of spherical scatterers dense in hexagonal packing geometry represent adaptively tunable 4D-spatiotemporal filters with trichromatic resonance in visible spectrum. They are described in the (lambda) - chromatic and the reciprocal (nu) -aspects by reciprocal geometric translations of the lightlike Pythagoras theorem, and by the direction cosine for double cones. The most elementary resonance condition in the lightlike Pythagoras theorem is given by the transformation of the grating constants gx, gy, gz of the hexagonal 3D grating to (lambda) h1h2h3 equals (lambda) 111 with cos (alpha) equals 0.5. Through normalization of the chromaticity in the von Laue-interferences to (lambda) 111, the (nu) (lambda) equals (lambda) h1h2h3/(lambda) 111-factor of phase velocity becomes the crucial resonance factor, the 'regulating device' of the spatiotemporal interaction between 3D grating and light, space and time. In the reciprocal space equal/unequal weights and times in spectral metrics result at positions of interference maxima defined by hyperbolas and circles. A database becomes built up by optical interference for trichromatic image preprocessing, motion detection in vector space, multiple range data analysis, patchwide multiple correlations in the spatial frequency spectrum, etc.

  12. 3D Evaluation of the Lamina Cribrosa with Swept-Source Optical Coherence Tomography in Normal Tension Glaucoma

    OpenAIRE

    Kazuko Omodaka; Takaaki Horii; Seri Takahashi; Tsutomu Kikawa; Akiko Matsumoto; Yukihiro Shiga; Kazuichi Maruyama; Tetsuya Yuasa; Masahiro Akiba; Toru Nakazawa

    2015-01-01

    Purpose Although the lamina cribrosa (LC) is the primary site of axonal damage in glaucoma, adequate methods to image and measure it are currently lacking. Here, we describe a noninvasive, in vivo method of evaluating the LC, based on swept-source optical coherence tomography (SS-OCT), and determine this method’s ability to quantify LC thickness. Methods This study comprised 54 eyes, including normal (n = 18), preperimetric glaucoma (PPG; n = 18), and normal tension glaucoma (NTG; n = 18) eye...

  13. A novel method of creating a surface micromachined 3D optical assembly for MEMS-based miniaturized FTIR spectrometers

    Science.gov (United States)

    Reyes, D.; Schildkraut, E. R.; Kim, J.; Connors, R. F.; Kotidis, P.; Cavicchio, D. J.

    2008-02-01

    This paper describes design, fabrication, and characterization of a miniaturized, Fourier transform infrared (FTIR) spectrometer for the detection and identification of toxic or flammable gases. By measuring the absorption by the target material of IR radiation, unambiguous detection and identification can be achieved. The key component of the device is a micromachined Michelson interferometer capable of modulating light in the 2 - 14 μm spectral region. Two major technical achievements associated with developing a MEMS interferometer module are discussed: development of a micromirror assembly having an order of magnitude larger modulation stroke to approach laboratory instrument-grade spectral resolutions; and assembly of monolithic, millimeter-scale optical components using multi-layer surface micromachining techniques to produce an extremely low cost MEMS interferometer, which has an unprecedented optical throughput. We have manufactured and tested the device. Reported optical characterization results include a precisely aligned, static interferogram acquired from an assembled Michelson interferometer using visible light wavelengths, which promises a high sensitivity FTIR spectrometer for its size.

  14. Ideal 3D asymmetric concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Botella, Angel [Departamento Fisica Aplicada a los Recursos Naturales, Universidad Politecnica de Madrid, E.T.S.I. de Montes, Ciudad Universitaria s/n, 28040 Madrid (Spain); Fernandez-Balbuena, Antonio Alvarez; Vazquez, Daniel; Bernabeu, Eusebio [Departamento de Optica, Universidad Complutense de Madrid, Fac. CC. Fisicas, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2009-01-15

    Nonimaging optics is a field devoted to the design of optical components for applications such as solar concentration or illumination. In this field, many different techniques have been used for producing reflective and refractive optical devices, including reverse engineering techniques. In this paper we apply photometric field theory and elliptic ray bundles method to study 3D asymmetric - without rotational or translational symmetry - concentrators, which can be useful components for nontracking solar applications. We study the one-sheet hyperbolic concentrator and we demonstrate its behaviour as ideal 3D asymmetric concentrator. (author)

  15. Clinical value of 3D-OCT in characteristic changes in the macular ganglion cell complex caused by lesions on the optic chiasm%3D-OCT对视交叉病变黄斑区视网膜神经节细胞复合体损害的诊断价值

    Institute of Scientific and Technical Information of China (English)

    施爱群; 严钰洁; 孙心铨; 王志军

    2016-01-01

    目的 观察蝶鞍区占位性病变对视交叉部的损害导致黄斑区视网膜神经节细胞复合体(mGCC)厚度的特征性改变及其诊断价值.方法 回顾性系列病例研究.对11例确诊为蝶鞍部占位病变患者采用Topcon 2000型三维光学相干断层扫描仪(3D-OCT)测量mGCC厚度及视盘周围神经纤维厚度,分析mGCC损伤的图像特征和视盘周围神经纤维损伤特征.并对这11例患者采用OCTOPUS 101型自动视野计进行视野检查.将3D-OCT检查结果与相应的视野检查结果进行对照,评估两者的符合度.结果 所选的11例蝶鞍区占位性病变患者中,2例因瘤体较小尚未侵犯视交叉部视路,视野和mGCC检查结果均未见异常;9例出现以中垂线划界的视野改变,其中7例为双颞侧偏肓,2例为同侧偏盲,肿物分别位于右侧视束起始部位和左侧视交叉后交界处.有视野损害的9例,3D-OCT检查均出现中垂线划界的mGCC环形的萎缩变薄或消失,与视野改变相对应.结论 蝶鞍区占位性病变对视交叉部位的损害导致中线划界的双鼻侧mGCC变薄.与视野具有等同的定位作用.%Objective To investigate the characteristic changes in the macular ganglion cell complex (mGCC) caused by damage to the optic chiasm from lesions on the sella turcica and its diagnostic value.Methods Eleven patients with lesions on the sella turcica (diagnosed by CT/MRI/ surgery/pathology) were included in a retrospective serial case study.The thickness map of the mGCC and peripheral retinal nerve fiber layer (RNFL) around the disc were obtained by Topcon 3D-OCT2000.The changes in the mGCC and the RNFL around the disc were investigated and compared with changes in the visual field (Octopus 101 Automated Perimetry).Results Two of the 11 patients had a normal GCC and perimetry because of the small size of the lesions (too small to cause damage to the optic chiasm);nine of the 11 patients had hemianopia.In the nine patients,seven had

  16. Dental wear estimation using a digital intra-oral optical scanner and an automated 3D computer vision method.

    Science.gov (United States)

    Meireles, Agnes Batista; Vieira, Antonio Wilson; Corpas, Livia; Vandenberghe, Bart; Bastos, Flavia Souza; Lambrechts, Paul; Campos, Mario Montenegro; Las Casas, Estevam Barbosa de

    2016-01-01

    The objective of this work was to propose an automated and direct process to grade tooth wear intra-orally. Eight extracted teeth were etched with acid for different times to produce wear and scanned with an intra-oral optical scanner. Computer vision algorithms were used for alignment and comparison among models. Wear volume was estimated and visual scoring was achieved to determine reliability. Results demonstrated that it is possible to directly detect submillimeter differences in teeth surfaces with an automated method with results similar to those obtained by direct visual inspection. The investigated method proved to be reliable for comparison of measurements over time.

  17. Pulse electrochemical machining on Invar alloy: Optical microscopic/SEM and non-contact 3D measurement study of surface analyses

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.H.; Choi, S.G.; Choi, W.K.; Yang, B.Y. [School of Mechanical Engineering, Inha University, Incheon 402-751 (Korea, Republic of); Lee, E.S., E-mail: leees@dreamwiz.com [Department of Mechanical Engineering, Inha University, Incheon 402-751 (Korea, Republic of)

    2014-09-30

    Highlights: • Invar alloy was electrochemically polished and then subjected to PECM (Pulse Electro Chemical Machining) in a mixture of NaCl, glycerin, and distilled water. • Optical microscopic/SEM and non-contact 3D measurement study of Invar surface analyses. • Analysis result shows that applied voltage and electrode shape are factors that affect the surface conditions. - Abstract: In this study, Invar alloy (Fe 63.5%, Ni 36.5%) was electrochemically polished by PECM (Pulse Electro Chemical Machining) in a mixture of NaCl, glycerin, and distilled water. A series of PECM experiments were carried out with different voltages and different electrode shapes, and then the surfaces of polished Invar alloy were investigated. The polished Invar alloy surfaces were investigated by optical microscope, scanning electron microscope (SEM), and non-contact 3D measurement (white light microscopes) and it was found that different applied voltages produced different surface characteristics on the Invar alloy surface because of the locally concentrated applied voltage on the Invar alloy surface. Moreover, we found that the shapes of electrode also have an effect on the surface characteristics on Invar alloy surface by influencing the applied voltage. These experimental findings provide fundamental knowledge for PECM of Invar alloy by surface analysis.

  18. A 3D Multiport Scattering Matrix Based-Method for Educing Wall Impedance of Cylindrical Lined Duct Section: Simulation and Error Evaluation

    Directory of Open Access Journals (Sweden)

    Mohamed Taktak

    2009-01-01

    Full Text Available The first step to achieve the development of an original indirect method to educe the wall normalized acoustic impedance of a cylindrical lined duct section which includes frequency and modal content pressure field dependence is introduced. It is based on the minimization of the difference between numerical and experimental acoustic power dissipations deduced from the 3D numerical and experimental scattering matrices of a lined duct element. The work presented in this paper is a step toward conducting experiments with a flow duct facility developed during the European DUCAT program. To validate this eduction technique, a simulation of the experiment is performed for no flow conditions assuming an axi-symmetric wall lined with a locally reacting material whose impedance was measured with the two microphone method (TMM. The simulation conducted for two incident pressure vectors with a Monte Carlo's technique also provides an assessment of the uncertainty in three predominant experimental parameters on the scattering matrix coefficients, the acoustic power dissipation, and the educed impedance whose results will be useful during the experiments being conducted.

  19. Stroboscobic near-field scanning optical microscopy for 3D mapping of mode profiles of plasmonic nanostructures (Conference Presentation)

    Science.gov (United States)

    Dana, Aykutlu; Ozgur, Erol; Torunoglu, Gamze

    2016-09-01

    We present a dynamic approach to scanning near field optical microscopy that extends the measurement technique to the third dimension, by strobing the illumination in sync with the cantilever oscillation. Nitrogen vacancy (NV) centers in nanodiamonds placed on cantilever tips are used as stable emitters for emission enhancement. Local field enhancement and modulation of optical density states are mapped in three dimensions based on fluorescence intensity and spectrum changes as the tip is scanned over plasmonic nanostructures. The excitation of NV centers is done using a total internal reflection setup. Using a digital phase locked loop to pulse the excitation in various tip sample separations, 2D slices of fluorescence enhancement can be recorded. Alternatively, a conventional SNOM tip can be used to selectively couple wideband excitation to the collection path, with subdiffraction resolution of 60 nm in x and y and 10 nm in z directions. The approach solves the problem of tip-sample separation stabilization over extended periods of measurement time, required to collect data resolved in emission wavelength and three spatial dimensions. The method can provide a unique way of accessing the three dimensional field and mode profiles of nanophotonics structures.

  20. Complex angular momentum theory of state-to-state integral cross sections: resonance effects in the F + HD → HF(v' = 3) + D reaction.

    Science.gov (United States)

    Sokolovski, D; Akhmatskaya, E; Echeverría-Arrondo, C; De Fazio, D

    2015-07-28

    State-to-state reactive integral cross sections (ICSs) are often affected by quantum mechanical resonances, especially near a reactive threshold. An ICS is usually obtained by summing partial waves at a given value of energy. For this reason, the knowledge of pole positions and residues in the complex energy plane is not sufficient for a quantitative description of the patterns produced by resonance. Such description is available in terms of the poles of an S-matrix element in the complex plane of the total angular momentum. The approach was recently implemented in a computer code ICS_Regge, available in the public domain [Comput. Phys. Commun., 2014, 185, 2127]. In this paper, we employ the ICS_Regge package to analyse in detail, for the first time, the resonance patterns predicted for integral cross sections (ICSs) of the benchmark F + HD → HF(v' = 3) + D reaction. The v = 0, j = 0, Ω = 0 → v' = 3, j' = 0, 1, 2, and Ω' = 0, 1, 2 transitions are studied for collision energies from 58.54 to 197.54 meV. For these energies, we find several resonances, whose contributions to the ICS vary from symmetric and asymmetric Fano shapes to smooth sinusoidal Regge oscillations. Complex energies of metastable states and Regge pole positions and residues are found by Padé reconstruction of the scattering matrix elements. The accuracy of the ICS_Regge code, relation between complex energies and Regge poles, various types of Regge trajectories, and the origin of the J-shifting approximation are also discussed.

  1. 3D video

    CERN Document Server

    Lucas, Laurent; Loscos, Céline

    2013-01-01

    While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century.The chapters in this book cover a large spectrum of areas connected to 3D video, which are presented both theoretically and technologically, while taking into account both physiological and perceptual aspects. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide th

  2. 3D Animation Essentials

    CERN Document Server

    Beane, Andy

    2012-01-01

    The essential fundamentals of 3D animation for aspiring 3D artists 3D is everywhere--video games, movie and television special effects, mobile devices, etc. Many aspiring artists and animators have grown up with 3D and computers, and naturally gravitate to this field as their area of interest. Bringing a blend of studio and classroom experience to offer you thorough coverage of the 3D animation industry, this must-have book shows you what it takes to create compelling and realistic 3D imagery. Serves as the first step to understanding the language of 3D and computer graphics (CG)Covers 3D anim

  3. Non-homogeneous stereological properties of the rat hippocampus from high-resolution 3D serial reconstruction of thin histological sections.

    Science.gov (United States)

    Ropireddy, D; Bachus, S E; Ascoli, G A

    2012-03-15

    Integrating hippocampal anatomy from neuronal dendrites to whole system may help elucidate its relation to function. Toward this aim, we digitally traced the cytoarchitectonic boundaries of the dentate gyrus (DG) and areas CA3/CA1 throughout their entire longitudinal extent from high-resolution images of thin cryostatic sections of adult rat brain. The 3D computational reconstruction identified all isotropic 16 μm voxels with appropriate subregions and layers (http://krasnow1.gmu.edu/cn3/hippocampus3d). Overall, DG, CA3, and CA1 occupied comparable volumes (15.3, 12.2, and 18.8 mm(3), respectively), but displayed substantial rostrocaudal volumetric gradients: CA1 made up more than half of the posterior hippocampus, whereas CA3 and DG were more prominent in the anterior regions. The CA3/CA1 ratio increased from ∼0.4 to ∼1 septo-temporally because of a specific change in stratum radiatum volume. Next we virtually embedded 1.8 million neuronal morphologies stochastically resampled from 244 digital reconstructions, emulating the dense packing of granular and pyramidal layers, and appropriately orienting the principal dendritic axes relative to local curvature. The resulting neuropil occupancy reproduced recent electron microscopy data measured in a restricted location. Extension of this analysis across each layer and subregion over the whole hippocampus revealed highly non-homogeneous dendritic density. In CA1, dendritic occupancy was >60% higher temporally than septally (0.46 vs. 0.28, s.e.m. ∼0.05). CA3 values varied both across subfields (from 0.35 in CA3b/CA3c to 0.50 in CA3a) and layers (0.48, 0.34, and 0.27 in oriens, radiatum, and lacunosum-moleculare, respectively). Dendritic occupancy was substantially lower in DG, especially in the supra-pyramidal blade (0.18). The computed probability of dendrodendritic collision significantly correlated with expression of the membrane repulsion signal Down syndrome cell adhesion molecule (DSCAM). These heterogeneous

  4. Miniaturized 3D microscope imaging system

    Science.gov (United States)

    Lan, Yung-Sung; Chang, Chir-Weei; Sung, Hsin-Yueh; Wang, Yen-Chang; Chang, Cheng-Yi

    2015-05-01

    We designed and assembled a portable 3-D miniature microscopic image system with the size of 35x35x105 mm3 . By integrating a microlens array (MLA) into the optical train of a handheld microscope, the biological specimen's image will be captured for ease of use in a single shot. With the light field raw data and program, the focal plane can be changed digitally and the 3-D image can be reconstructed after the image was taken. To localize an object in a 3-D volume, an automated data analysis algorithm to precisely distinguish profundity position is needed. The ability to create focal stacks from a single image allows moving or specimens to be recorded. Applying light field microscope algorithm to these focal stacks, a set of cross sections will be produced, which can be visualized using 3-D rendering. Furthermore, we have developed a series of design rules in order to enhance the pixel using efficiency and reduce the crosstalk between each microlens for obtain good image quality. In this paper, we demonstrate a handheld light field microscope (HLFM) to distinguish two different color fluorescence particles separated by a cover glass in a 600um range, show its focal stacks, and 3-D position.

  5. In vivo and 3D visualization of coronary artery development by optical coherence tomography - art. no. 662709

    DEFF Research Database (Denmark)

    Thrane, Lars; Norozi, K.; Männer, J.

    2007-01-01

    One of the most critical but poorly understood processes during cardiovascular development is the establishment of a functioning coronary artery (CA) system. Due to the lack of suitable imaging technologies, it is currently impossible to visualize this complex dynamic process on living human...... embryos. Furthermore, due to methodological limitations, this intriguing process has not been unveiled in living animal embryos, too. We present here, to the best of our knowledge, the first in vivo images of developing CAs obtained from the hearts of chick embryos grown in shell-less cultures....... The in vivo images were generated by optical coherence tomography (OCT). The OCT system used in this study is a mobile fiber-based time-domain real-time OCT system operating with a center wavelength of 1330 nm, an A-scan rate of 4 kHz, and a typical frame rate of 8 frames/s. The axial resolution is 17 mu m...

  6. Saucer-and Rod-like WO_3 3-D Microstructures:Synthesis,Characterization,and Optical Properties

    Institute of Scientific and Technical Information of China (English)

    CHEN Lin; YAN Ting-Jiang; ZHENG Jing; LI Li-Ping

    2011-01-01

    Three-dimensional(3-D)saucer-and rod-like WO3 microstructures have been synthesized by a simple hydrothermal route using tartaric acid as the assistant agent.X-ray powder diffraction(XRD)patterns indicate that the as-prepared samples are the pure hexagonal phase WO3.The morphologies are characterized by scanning electron microscope(SEM)and are found to be highly sensitized to the reaction temperature.A probable formation mechanism of the WO3 microstructures from saucer-like at low temperatures to rod-like at high temperatures is proposed.The optical properties of the novel WO3 microstructures are studied by UV-vis diffuse reflectance spectroscopy(DRS).The mechanism of strong absorption at visible region and red shift of calcined sample is also discussed.

  7. Description of an evaluation system for knee kinematics in ligament lesions, by means of optical tracking and 3D tomography,

    Directory of Open Access Journals (Sweden)

    Tiago Lazzaretti Fernandes

    2014-10-01

    Full Text Available Objective:To describe and demonstrate the viability of a method for evaluating knee kine matics, by means of a continuous passive motion (CPM machine, before and after anterio cruciate ligament (ACL injury.Methods:This study was conducted on a knee from a cadaver, in a mechanical pivot-shif simulator, with evaluations using optical tracking, and also using computed tomography.Results:This study demonstrated the viability of a protocol for measuring the rotation an translation of the knee, using reproducible and objective tools (error<0.2mm. The mech anized provocation system of the pivot-shift test was independent of the examiner an always allowed the same angular velocity and traction of 20 N throughout the movement.Conclusion:The clinical relevance of this method lies in making inferences about the in viv behavior of a knee with an ACL injury and providing greater methodological quality in futur studies for measuring surgical techniques with grafts in relatively close positions.

  8. Effect of light source instability on uniformity of 3D reconstructions from a cone beam optical CT scanner.

    Science.gov (United States)

    Begg, J; Taylor, M L; Holloway, L; Kron, T; Franich, R D

    2014-12-01

    Temporally varying light intensity during acquisition of projection images in an optical CT scanner can potentially be misinterpreted as physical properties of the sample. This work investigated the impact of LED light source intensity instability on measured attenuation coefficients. Different scenarios were investigated by conducting one or both of the reference and data scans in a 'cold' scanner, where the light source intensity had not yet stabilised. Uniform samples were scanned to assess the impact on measured uniformity. The orange (590 nm) light source decreased in intensity by 29 % over the first 2 h, while the red (633 nm) decreased by 9 %. The rates of change of intensity at 2 h were 0.1 and 0.03 % respectively over a 5 min period-corresponding to the scan duration. The normalisation function of the reconstruction software does not fully account for the intensity differences and discrepancies remain. Attenuation coefficient inaccuracies of up to 8 % were observed for data reconstructed from projection images acquired with a cold scanner. Increased noise was observed for most cases where one or both of the scans was acquired without sufficient warm-up. The decrease in accuracy and increase in noise were most apparent for data reconstructed from reference and data scans acquired with a cold scanner on different days.

  9. Multi-surface and multi-field co-segmentation of 3-D retinal optical coherence tomography.

    Science.gov (United States)

    Bogunovic, Hrvoje; Sonka, Milan; Kwon, Young H; Kemp, Pavlina; Abramoff, Michael D; Wu, Xiaodong

    2014-12-01

    When segmenting intraretinal layers from multiple optical coherence tomography (OCT) images forming a mosaic or a set of repeated scans, it is attractive to exploit the additional information from the overlapping areas rather than discarding it as redundant, especially in low contrast and noisy images. However, it is currently not clear how to effectively combine the multiple information sources available in the areas of overlap. In this paper, we propose a novel graph-theoretic method for multi-surface multi-field co-segmentation of intraretinal layers, assuring consistent segmentation of the fields across the overlapped areas. After 2-D en-face alignment, all the fields are segmented simultaneously, imposing a priori soft interfield-intrasurface constraints for each pair of overlapping fields. The constraints penalize deviations from the expected surface height differences, taken to be the depth-axis shifts that produce the maximum cross-correlation of pairwise-overlapped areas. The method's accuracy and reproducibility are evaluated qualitatively and quantitatively on 212 OCT images (20 nine-field, 32 single-field acquisitions) from 26 patients with glaucoma. Qualitatively, the obtained thickness maps show no stitching artifacts, compared to pronounced stitches when the fields are segmented independently. Quantitatively, two ophthalmologists manually traced four intraretinal layers on 10 patients, and the average error ( 4.58 ±1.46 μm) was comparable to the average difference between the observers ( 5.86±1.72 μm). Furthermore, we show the benefit of the proposed approach in co-segmenting longitudinal scans. As opposed to segmenting layers in each of the fields independently, the proposed co-segmentation method obtains consistent segmentations across the overlapped areas, producing accurate, reproducible, and artifact-free results.

  10. Correlative 3D-imaging of Pipistrellus penis micromorphology: Validating quantitative microCT images with undecalcified serial ground section histomorphology.

    Science.gov (United States)

    Herdina, Anna Nele; Plenk, Hanns; Benda, Petr; Lina, Peter H C; Herzig-Straschil, Barbara; Hilgers, Helge; Metscher, Brian D

    2015-06-01

    Detailed knowledge of histomorphology is a prerequisite for the understanding of function, variation, and development. In bats, as in other mammals, penis and baculum morphology are important in species discrimination and phylogenetic studies. In this study, nondestructive 3D-microtomographic (microCT, µCT) images of bacula and iodine-stained penes of Pipistrellus pipistrellus were correlated with light microscopic images from undecalcified surface-stained ground sections of three of these penes of P. pipistrellus (1 juvenile). The results were then compared with µCT-images of bacula of P. pygmaeus, P. hanaki, and P. nathusii. The Y-shaped baculum in all studied Pipistrellus species has a proximal base with two club-shaped branches, a long slender shaft, and a forked distal tip. The branches contain a medullary cavity of variable size, which tapers into a central canal of variable length in the proximal baculum shaft. Both are surrounded by a lamellar and a woven bone layer and contain fatty marrow and blood vessels. The distal shaft consists of woven bone only, without a vascular canal. The proximal ends of the branches are connected with the tunica albuginea of the corpora cavernosa via entheses. In the penis shaft, the corpus spongiosum-surrounded urethra lies in a ventral grove of the corpora cavernosa, and continues in the glans under the baculum. The glans penis predominantly comprises an enlarged corpus spongiosum, which surrounds urethra and baculum. In the 12 studied juvenile and subadult P. pipistrellus specimens the proximal branches of the baculum were shorter and without marrow cavity, while shaft and distal tip appeared already fully developed. The present combination with light microscopic images from one species enabled a more reliable interpretation of histomorphological structures in the µCT-images from all four Pipistrellus species.

  11. Automated 3D-2D registration of X-ray microcomputed tomography with histological sections for dental implants in bone using chamfer matching and simulated annealing.

    Science.gov (United States)

    Becker, Kathrin; Stauber, Martin; Schwarz, Frank; Beißbarth, Tim

    2015-09-01

    We propose a novel 3D-2D registration approach for micro-computed tomography (μCT) and histology (HI), constructed for dental implant biopsies, that finds the position and normal vector of the oblique slice from μCT that corresponds to HI. During image pre-processing, the implants and the bone tissue are segmented using a combination of thresholding, morphological filters and component labeling. After this, chamfer matching is employed to register the implant edges and fine registration of the bone tissues is achieved using simulated annealing. The method was tested on n=10 biopsies, obtained at 20 weeks after non-submerged healing in the canine mandible. The specimens were scanned with μCT 100 and processed for hard tissue sectioning. After registration, we assessed the agreement of bone to implant contact (BIC) using automated and manual measurements. Statistical analysis was conducted to test the agreement of the BIC measurements in the registered samples. Registration was successful for all specimens and agreement of the respective binary images was high (median: 0.90, 1.-3. Qu.: 0.89-0.91). Direct comparison of BIC yielded that automated (median 0.82, 1.-3. Qu.: 0.75-0.85) and manual (median 0.61, 1.-3. Qu.: 0.52-0.67) measures from μCT were significant positively correlated with HI (median 0.65, 1.-3. Qu.: 0.59-0.72) between μCT and HI groups (manual: R(2)=0.87, automated: R(2)=0.75, p<0.001). The results show that this method yields promising results and that μCT may become a valid alternative to assess osseointegration in three dimensions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. On the feasibility of polyurethane based 3D dosimeters with optical CT for dosimetric verification of low energy photon brachytherapy seeds

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, Justus, E-mail: justus.adamson@duke.edu; Yang, Yun; Juang, Titania; Chisholm, Kelsey; Rankine, Leith; Yin, Fang Fang; Oldham, Mark [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Adamovics, John [Department of Chemistry, Rider University, Lawrenceville, New Jersey 08648 (United States)

    2014-07-15

    Purpose: To investigate the feasibility of and challenges yet to be addressed to measure dose from low energy (effective energy <50 keV) brachytherapy sources (Pd-103, Cs-131, and I-125) using polyurethane based 3D dosimeters with optical CT. Methods: The authors' evaluation used the following sources: models 200 (Pd-103), CS-1 Rev2 (Cs-131), and 6711 (I-125). The authors used the Monte Carlo radiation transport code MCNP5, simulations with the ScanSim optical tomography simulation software, and experimental measurements with PRESAGE{sup ®} dosimeters/optical CT to investigate the following: (1) the water equivalency of conventional (density = 1.065 g/cm{sup 3}) and deformable (density = 1.02 g/cm{sup 3}) formulations of polyurethane dosimeters, (2) the scatter conditions necessary to achieve accurate dosimetry for low energy photon seeds, (3) the change in photon energy spectrum within the dosimeter as a function of distance from the source in order to determine potential energy sensitivity effects, (4) the optimal delivered dose to balance optical transmission (per projection) with signal to noise ratio in the reconstructed dose distribution, and (5) the magnitude and characteristics of artifacts due to the presence of a channel in the dosimeter. Monte Carlo simulations were performed using both conventional and deformable dosimeter formulations. For verification, 2.8 Gy at 1 cm was delivered in 92 h using an I-125 source to a PRESAGE{sup ®} dosimeter with conventional formulation and a central channel with 0.0425 cm radius for source placement. The dose distribution was reconstructed with 0.02 and 0.04 cm{sup 3} voxel size using the Duke midsized optical CT scanner (DMOS). Results: While the conventional formulation overattenuates dose from all three sources compared to water, the current deformable formulation has nearly water equivalent attenuation properties for Cs-131 and I-125, while underattenuating for Pd-103. The energy spectrum of each source is

  13. On the feasibility of polyurethane based 3D dosimeters with optical CT for dosimetric verification of low energy photon brachytherapy seeds.

    Science.gov (United States)

    Adamson, Justus; Yang, Yun; Juang, Titania; Chisholm, Kelsey; Rankine, Leith; Adamovics, John; Yin, Fang Fang; Oldham, Mark

    2014-07-01

    To investigate the feasibility of and challenges yet to be addressed to measure dose from low energy (effective energy brachytherapy sources (Pd-103, Cs-131, and I-125) using polyurethane based 3D dosimeters with optical CT. The authors' evaluation used the following sources: models 200 (Pd-103), CS-1 Rev2 (Cs-131), and 6711 (I-125). The authors used the Monte Carlo radiation transport code MCNP5, simulations with the ScanSim optical tomography simulation software, and experimental measurements with PRESAGE(®) dosimeters/optical CT to investigate the following: (1) the water equivalency of conventional (density = 1.065 g/cm(3)) and deformable (density = 1.02 g/cm(3)) formulations of polyurethane dosimeters, (2) the scatter conditions necessary to achieve accurate dosimetry for low energy photon seeds, (3) the change in photon energy spectrum within the dosimeter as a function of distance from the source in order to determine potential energy sensitivity effects, (4) the optimal delivered dose to balance optical transmission (per projection) with signal to noise ratio in the reconstructed dose distribution, and (5) the magnitude and characteristics of artifacts due to the presence of a channel in the dosimeter. Monte Carlo simulations were performed using both conventional and deformable dosimeter formulations. For verification, 2.8 Gy at 1 cm was delivered in 92 h using an I-125 source to a PRESAGE(®) dosimeter with conventional formulation and a central channel with 0.0425 cm radius for source placement. The dose distribution was reconstructed with 0.02 and 0.04 cm(3) voxel size using the Duke midsized optical CT scanner (DMOS). While the conventional formulation overattenuates dose from all three sources compared to water, the current deformable formulation has nearly water equivalent attenuation properties for Cs-131 and I-125, while underattenuating for Pd-103. The energy spectrum of each source is relatively stable within the first 5 cm especially for I-125

  14. A comparison of porosity analysis using 2D stereology estimates and 3D serial sectioning for additively manufactured Ti 6Al 2Sn 4Zr 2Mo alloy; Vergleich der Porositaetsanalyse einer Ti 6Al 2Sn 4Zr 2Mo-Legierung aus additiver Fertigung mittels stereologischer Schaetzungen (2D) und mit Serienschnitten (3D)

    Energy Technology Data Exchange (ETDEWEB)

    Ganti, Satya R.; Velez, Michael A.; Geier, Brian A.; Hayes, Brian J.; Turner, Bryan J.; Jenkins, Elizabeth J. [UES Inc., Dayton, OH (United States)

    2017-02-15

    Porosity is a typical defect in additively manufactured (AM) parts. Such defects limit the properties and performance of AM parts, and therefore need to be characterized accurately. Current methods for characterization of defects and microstructure rely on classical stereological methods that extrapolate information from two dimensional images. The automation of serial sectioning provides an opportunity to precisely and accurately quantify porosity in three dimensions in materials. In this work, we analyzed the porosity of an additively manufactured Ti 6Al 2Sn 4Zr 2Mo sample using Robo-Met.3D {sup registered}, an automated serial sectioning system. Image processing for three dimensional reconstruction of the serial-sectioned two dimensional images was performed using open source image analysis software (Fiji/ImageJ, Dream.3D, Paraview). The results from this 3D serial sectioning analysis were then compared to classical 2D stereological methods (Saltykov stereological theory). We found that for this dataset, the classical 2D methods underestimated the porosity size and distributions of the larger pores; a critical attribute to fatigue behavior of the AM part. The results suggest that acquiring experimental data with equipment such as Robo-Met.3D {sup registered} to measure the number and size of particles such as pores in a volume irrespective of knowing their shape is a better choice.

  15. 3D mechanical analysis of aeronautical plain bearings: Validation of a finite element model from measurement of displacement fields by digital volume correlation and optical scanning tomography

    Science.gov (United States)

    Germaneau, A.; Peyruseigt, F.; Mistou, S.; Doumalin, P.; Dupré, J.-C.

    2010-06-01

    On Airbus aircraft, spherical plain bearings are used on many components; in particular to link engine to pylon or pylon to wing. Design of bearings is based on contact pressure distribution on spherical surfaces. To determine this distribution, a 3D analysis of the mechanical behaviour of aeronautical plain bearing is presented in this paper. A numerical model has been built and validated from a comparison with 3D experimental measurements of kinematic components. For that, digital volume correlation (DVC) coupled with optical scanning tomography (OST) is employed to study the mechanical response of a plain bearing model made in epoxy resin. Experimental results have been compared with the ones obtained from the simulated model. This comparison enables us to study the influence of various boundary conditions to build the FE model. Some factors have been highlighted like the fitting behaviour which can radically change contact pressure distribution. This work shows the contribution of a representative mechanical environment to study precisely mechanical response of aeronautical plain bearings.

  16. 3D characterization of the forces in optical traps based on counter-propagation beams shaped by a spatial light modulator

    DEFF Research Database (Denmark)

    Kristensen, M. V.; Lindballe, T.; Kylling, A.

    2010-01-01

    An experimental characterization of the 3D forces, acting on a trapped polystyrene bead in a counter-propagating beam geometry, is reported. Using a single optical trap with a large working distance (in the BioPhotonics Workstation), we simultaneously measure the transverse and longitudinal trapp...... power of 2x35 mW) for displacements in opposite directions. The Equipartition method is limited by mechanical noise and is shown to be applicable only when the total laser power in a single 10 µm counter-propagating trap is below 2x20 mW....... trapping force constants. Two different methods were used: The Drag force method and the Equipartition method. We show that the counterpropagating beams traps are simple harmonic for small displacements. The force constants reveal a transverse asymmetry as - = 9.7 pN/µm and + = 11.3 pN/µm (at a total laser...

  17. Adaptive-optics SLO imaging combined with widefield OCT and SLO enables precise 3D localization of fluorescent cells in the mouse retina.

    Science.gov (United States)

    Zawadzki, Robert J; Zhang, Pengfei; Zam, Azhar; Miller, Eric B; Goswami, Mayank; Wang, Xinlei; Jonnal, Ravi S; Lee, Sang-Hyuck; Kim, Dae Yu; Flannery, John G; Werner, John S; Burns, Marie E; Pugh, Edward N

    2015-06-01

    Adaptive optics scanning laser ophthalmoscopy (AO-SLO) has recently been used to achieve exquisite subcellular resolution imaging of the mouse retina. Wavefront sensing-based AO typically restricts the field of view to a few degrees of visual angle. As a consequence the relationship between AO-SLO data and larger scale retinal structures and cellular patterns can be difficult to assess. The retinal vasculature affords a large-scale 3D map on which cells and structures can be located during in vivo imaging. Phase-variance OCT (pv-OCT) can efficiently image the vasculature with near-infrared light in a label-free manner, allowing 3D vascular reconstruction with high precision. We combined widefield pv-OCT and SLO imaging with AO-SLO reflection and fluorescence imaging to localize two types of fluorescent cells within the retinal layers: GFP-expressing microglia, the resident macrophages of the retina, and GFP-expressing cone photoreceptor cells. We describe in detail a reflective afocal AO-SLO retinal imaging system designed for high resolution retinal imaging in mice. The optical performance of this instrument is compared to other state-of-the-art AO-based mouse retinal imaging systems. The spatial and temporal resolution of the new AO instrumentation was characterized with angiography of retinal capillaries, including blood-flow velocity analysis. Depth-resolved AO-SLO fluorescent images of microglia and cone photoreceptors are visualized in parallel with 469 nm and 663 nm reflectance images of the microvasculature and other structures. Additional applications of the new instrumentation are discussed.

  18. EUROPEANA AND 3D

    Directory of Open Access Journals (Sweden)

    D. Pletinckx

    2012-09-01

    Full Text Available The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  19. Unassisted 3D camera calibration

    Science.gov (United States)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  20. SU-E-T-296: Dosimetric Analysis of Small Animal Image-Guided Irradiator Using High Resolution Optical CT Imaging of 3D Dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Na, Y; Qian, X; Wuu, C [Columbia University, New York, NY (United States); Adamovics, J [John Adamovics, Skillman, NJ (United States)

    2015-06-15

    Purpose: To verify the dosimetric characteristics of a small animal image-guided irradiator using a high-resolution of optical CT imaging of 3D dosimeters. Methods: PRESAEGE 3D dosimeters were used to determine dosimetric characteristics of a small animal image-guided irradiator and compared with EBT2 films. Cylindrical PRESAGE dosimeters with 7cm height and 6cm diameter were placed along the central axis of the beam. The films were positioned between 6×6cm{sup 2} cubed plastic water phantoms perpendicular to the beam direction with multiple depths. PRESAGE dosimeters and EBT2 films were then irradiated with the irradiator beams at 220kVp and 13mA. Each of irradiated PRESAGE dosimeters named PA1, PA2, PB1, and PB2, was independently scanned using a high-resolution single laser beam optical CT scanner. The transverse images were reconstructed with a 0.1mm high-resolution pixel. A commercial Epson Expression 10000XL flatbed scanner was used for readout of irradiated EBT2 films at a 0.4mm pixel resolution. PDD curves and beam profiles were measured for the irradiated PRESAGE dosimeters and EBT2 films. Results: The PDD agreements between the irradiated PRESAGE dosimeter PA1, PA2, PB1, PB2 and the EB2 films were 1.7, 2.3, 1.9, and 1.9% for the multiple depths at 1, 5, 10, 15, 20, 30, 40 and 50mm, respectively. The FWHM measurements for each PRESAEGE dosimeter and film agreed with 0.5, 1.1, 0.4, and 1.7%, respectively, at 30mm depth. Both PDD and FWHM measurements for the PRESAGE dosimeters and the films agreed overall within 2%. The 20%–80% penumbral widths of each PRESAGE dosimeter and the film at a given depth were respectively found to be 0.97, 0.91, 0.79, 0.88, and 0.37mm. Conclusion: Dosimetric characteristics of a small animal image-guided irradiator have been demonstrated with the measurements of PRESAGE dosimeter and EB2 film. With the high resolution and accuracy obtained from this 3D dosimetry system, precise targeting small animal irradiation can be

  1. Fast Calcium Imaging with Optical Sectioning via HiLo Microscopy.

    Science.gov (United States)

    Lauterbach, Marcel A; Ronzitti, Emiliano; Sternberg, Jenna R; Wyart, Claire; Emiliani, Valentina

    2015-01-01

    Imaging intracellular calcium concentration via reporters that change their fluorescence properties upon binding of calcium, referred to as calcium imaging, has revolutionized our way to probe neuronal activity non-invasively. To reach neurons densely located deep in the tissue, optical sectioning at high rate of acquisition is necessary but difficult to achieve in a cost effective manner. Here we implement an accessible solution relying on HiLo microscopy to provide robust optical sectioning with a high frame rate in vivo. We show that large calcium signals can be recorded from dense neuronal populations at high acquisition rates. We quantify the optical sectioning capabilities and demonstrate the benefits of HiLo microscopy compared to wide-field microscopy for calcium imaging and 3D reconstruction. We apply HiLo microscopy to functional calcium imaging at 100 frames per second deep in biological tissues. This approach enables us to discriminate neuronal activity of motor neurons from different depths in the spinal cord of zebrafish embryos. We observe distinct time courses of calcium signals in somata and axons. We show that our method enables to remove large fluctuations of the background fluorescence. All together our setup can be implemented to provide efficient optical sectioning in vivo at low cost on a wide range of existing microscopes.

  2. Two-photon photo-ionization of the Ca 4s3d 1D2 level in an optical dipole trap

    OpenAIRE

    Daily, J. E.; Gommers, R.; Cummings, E. A.; Durfee, D. S.; S. D. Bergeson

    2004-01-01

    We report an optical dipole trap for calcium. The trap is created by focusing a 488 nm argon-ion laser beam into a calcium magneto-optical trap. The argon-ion laser photo-ionizes atoms in the trap because of a near-resonance with the 4s4f 1F3 level. By measuring the dipole trap decay rate as a function of argon-ion laser intensity, we determine the 1F3 photo-ionization cross section at our wavelength to be approximately 230 Mb.

  3. The properties of SIRT, TVM, and DART for 3D imaging of tubular domains in nanocomposite thin-films and sections

    NARCIS (Netherlands)

    Chen, D.; Goris, B.; Bleichrodt, F.; Mezerji, H.H.; Bals, S.; Batenburg, K.J.; With, G. de; Friedrich, H.

    2014-01-01

    In electron tomography, the fidelity of the 3D reconstruction strongly depends on the employed reconstruction algorithm. In this paper, the properties of SIRT, TVM and DART reconstructions are studied with respect to having only a limited number of electrons available for imaging and applying differ

  4. Design and Evaluation of a Fiber-Optic Grip Force Sensor with Compliant 3D-Printable Structure for (fMRI Applications

    Directory of Open Access Journals (Sweden)

    Tobias L. Bützer

    2016-01-01

    Full Text Available Grip force sensors compatible with magnetic resonance imaging (MRI are used in human motor control and decision-making research, providing objective and sensitive behavioral outcome measures. Commercial sensors are expensive, cover limited force ranges, rely on pneumatic force transmission that cannot detect fast force changes, or are electrically active, which increases the risk of electromagnetic interference. We present the design and evaluation of a low-cost, 3D-printed, inherently MRI-compatible grip force sensor based on a commercial intensity-based fiber-optic sensor. A compliant monobloc structure with flexible hinges transduces grip force to a linear displacement captured by the fiber-optic sensor. The structure can easily be adapted for different force ranges by changing the hinge thickness. A prototype designed for forces up to 800 N was manufactured and showed a highly linear behavior (nonlinearity of 2.37% and an accuracy of 1.57% in a range between zero and 500 N. It can be printed and assembled within one day and for less than $300. Accurate performance was confirmed, both inside and outside a 3 T MRI scanner within a pilot study. Given its simple design allowing for customization of sensing properties and ergonomics for different applications and requirements, the proposed grip force handle offers researchers a valuable scientific tool.

  5. Optical 3D motion measurement

    NARCIS (Netherlands)

    Sabel, J.C.

    1996-01-01

    This paper presents a CCD-camera based system for high-speed and accurate measurement of the three-dimensional movement of reflective targets. These targets are attached to the moving object under study. The system has been developed at TU Delft and consists of specialized hardware for real-time mul

  6. Studies of 3D-cloud optical depth from small to very large values, and of the radiation and remote sensing impacts of larger-drop clustering

    Energy Technology Data Exchange (ETDEWEB)

    Wiscombe, Warren [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); Marshak, Alexander [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); Knyazikhin, Yuri [Boston Univ., MA (United States); Chiu, Christine [Univ. of Maryland Baltimore County (UMBC), Baltimore, MD (United States)

    2007-05-04

    We have basically completed all the goals stated in the previous proposal and published or submitted journal papers thereon, the only exception being First-Principles Monte Carlo which has taken more time than expected. We finally finished the comprehensive book on 3D cloud radiative transfer (edited by Marshak and Davis and published by Springer), with many contributions by ARM scientists; this book was highlighted in the 2005 ARM Annual Report. We have also completed (for now) our pioneering work on new models of cloud drop clustering based on ARM aircraft FSSP data, with applications both to radiative transfer and to rainfall. This clustering work was highlighted in the FY07 “Our Changing Planet” (annual report of the US Climate Change Science Program). Our group published 22 papers, one book, and 5 chapters in that book, during this proposal period. All are listed at the end of this section. Below, we give brief highlights of some of those papers.

  7. Groping for Quantitative Digital 3-D Image Analysis: An Approach to Quantitative Fluorescence In Situ Hybridization in Thick Tissue Sections of Prostate Carcinoma

    Directory of Open Access Journals (Sweden)

    Karsten Rodenacker

    1997-01-01

    Full Text Available In molecular pathology numerical chromosome aberrations have been found to be decisive for the prognosis of malignancy in tumours. The existence of such aberrations can be detected by interphase fluorescence in situ hybridization (FISH. The gain or loss of certain base sequences in the desoxyribonucleic acid (DNA can be estimated by counting the number of FISH signals per cell nucleus. The quantitative evaluation of such events is a necessary condition for a prospective use in diagnostic pathology. To avoid occlusions of signals, the cell nucleus has to be analyzed in three dimensions. Confocal laser scanning microscopy is the means to obtain series of optical thin sections from fluorescence stained or marked material to fulfill the conditions mentioned above. A graphical user interface (GUI to a software package for display, inspection, count and (semi‐automatic analysis of 3‐D images for pathologists is outlined including the underlying methods of 3‐D image interaction and segmentation developed. The preparative methods are briefly described. Main emphasis is given to the methodical questions of computer‐aided analysis of large 3‐D image data sets for pathologists. Several automated analysis steps can be performed for segmentation and succeeding quantification. However tumour material is in contrast to isolated or cultured cells even for visual inspection, a difficult material. For the present a fully automated digital image analysis of 3‐D data is not in sight. A semi‐automatic segmentation method is thus presented here.

  8. Phenomenological dirac optical potential for neutron cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Shin-ichi; Kitsuki, Hirohiko; Shigyo, Nobuhiro; Ishibashi, Kenji [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering

    1997-03-01

    Because of limitation on neutron-incident data, it is difficult to obtain global optical model potential for neutrons. In contrast, there are some global optical model potentials for proton in detail. It is interesting to convert the proton-incident global optical potentials into neutron-incident ones. In this study we introduce (N-Z)/A dependent symmetry potential terms into the global proton-incident optical potentials, and then obtain neutron-incident ones. The neutron potentials reproduce total cross sections in an acceptable degree. However, a comparison with potentials proposed by other authors brings about a confused situation in the sign of the symmetry terms. (author)

  9. IZDELAVA TISKALNIKA 3D

    OpenAIRE

    Brdnik, Lovro

    2015-01-01

    Diplomsko delo analizira trenutno stanje 3D tiskalnikov na trgu. Prikazan je razvoj in principi delovanja 3D tiskalnikov. Predstavljeni so tipi 3D tiskalnikov, njihove prednosti in slabosti. Podrobneje je predstavljena zgradba in delovanje koračnih motorjev. Opravljene so meritve koračnih motorjev. Opisana je programska oprema za rokovanje s 3D tiskalniki in komponente, ki jih potrebujemo za izdelavo. Diploma se oklepa vprašanja, ali je izdelava 3D tiskalnika bolj ekonomična kot pa naložba v ...

  10. Recent improvement of a FIB-SEM serial-sectioning method for precise 3D image reconstruction - application of the orthogonally-arranged FIB-SEM.

    Science.gov (United States)

    Hara, Toru

    2014-11-01

    IntroductionWe installed the first "orthogonally-arranged" FIB-SEM in 2011. The most characteristic point of this instrument is that the FIB and SEM columns are perpendicularly mounted; this is specially designed to obtain a serial-sectioning dataset more accurately and precisely with higher contrast and higher spatial resolution compare to other current FIB-SEMs [1]. Since the installation in 2011, we have developed the hardware and methodology of the serial-sectioning based on this orthogonal FIB-SEM. In order to develop this technique, we have widely opened this instrument to every researcher of all fields. In the presentation, I would like to introduce some of application results that are obtained by users of this instrument. The characteristic points of the orthogonal systemFigure 1 shows a difference between the standard and the orthogonal FIB-SEM systems: In the standard system, shown in Fig.1(a), optical axes of a FIB and a SEM crosses around 60deg., while in the orthogonal system (Fig.1(b)), they are perpendicular to each other. The standard arrangement (a) is certainly suitable for TEM lamellae preparation etc. because the FIB and the SEM can see the same position simultaneously. However, for a serial-sectioning, it is not to say the best arrangement. One of the reasons is that the sliced plane by the FIB is not perpendicular to the electron beam so that the background contrast is not uniform and observed plane is distorted. On the other hand, in case of the orthogonally-arranged system,(b), these problems are resolved. In addition, spatial resolution can keep high enough even in a low accelerating voltage (e.g. 500V) because a working distance is set very small, 2mm. From these special design, we can obtain the serial-sectioning dataset from rather wide area (∼100um) with high spatial resolution (Max. 2×2×2nm). As this system has many kinds of detectors: SE, ET, Backscatter Electron(Energy-selective), EDS, EBSD, STEM(BF&ADF), with Ar+ ion-gun and a

  11. SU-E-J-164: An Investigation of a Low-Cost ‘dry’ Optical-CT Scanning System for 3D Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bache, S; Malcolm, J [Duke University Medical Physics Graduate Program, Durham, NC (United States); Adamovics, J [Rider University, Lawrenceville, NJ (United States); Oldham, M [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States)

    2014-06-01

    Purpose: To characterize and explore the efficacy of a novel low-cost, lowfluid, broad-beam optical-CT system for 3D-dosimetry in radiochromic Presage dosimeters. Leading current optical-CT systems incorporate expensive glass-based telecentric lens technology, and a fluid bath with substantial amounts of fluid (which introduces an inconvenience factor) to minimize refraction artifacts. Here we introduce a novel system which addresses both these limitations by: (1) the use of Fresnel lenses in a telecentric arrangement, and (2) a ‘solid’ fluid bath which dramatically reduces the amount of fluid required for refractive-index (RI) matching. Materials Methods: A fresnel based telecentric optical-CT system was constructed which expands light from a single red LED source into a nominally parallel beam into which a cubic ‘dry-tank’ is placed. The drytank consists of a solid polyurethane cube (with the same RI as Presage) but containing a cylindrical cavity (11.5cm diameter × 11cm ) into which the dosimeter is placed for imaging. A narrow (1-3mm) gap between the walls of the dosimeter and dry-tank is filled with a fluid of similar RI. This arrangement reduces the amount of RI fluid from about 1000cc to 75cc, yielding substantial practical benefit in convenience and cost. The new system was evaluated in direct comparison against Eclipse planning system from a 4-field parallel-opposed treatmen Results: Gamma calculations of dose from DFOS-dry system versus Eclipse showed 92% and 97% agreement with 4mm/4% and 5mm/5% criteria, respectively, in the central 80% of dose distribution. Reconstructions showed some edge artifacts, as well as some dose underestimation towards the dosimeter edge. Conclusion: The implementation of Fresnel based ‘dry’ optical-CT for 3Ddosimetry would represent an important advance enhancing costeffectiveness and practical viability. The performance of the prototype presented here is not yet comparable to the state-of-the-art, but shows

  12. 3D and Education

    Science.gov (United States)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  13. An interactive multiview 3D display system

    Science.gov (United States)

    Zhang, Zhaoxing; Geng, Zheng; Zhang, Mei; Dong, Hui

    2013-03-01

    The progresses in 3D display systems and user interaction technologies will help more effective 3D visualization of 3D information. They yield a realistic representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them. In this paper, we describe an autostereoscopic multiview 3D display system with capability of real-time user interaction. Design principle of this autostereoscopic multiview 3D display system is presented, together with the details of its hardware/software architecture. A prototype is built and tested based upon multi-projectors and horizontal optical anisotropic display structure. Experimental results illustrate the effectiveness of this novel 3D display and user interaction system.

  14. Risk reduction in dimension inspection of the plastic injection-molded parts from mechatronic devices by using optical 3D measuring techniques

    Directory of Open Access Journals (Sweden)

    Braga Ion Cristian

    2017-01-01

    Full Text Available As of the definition presented by Harashima, Tomizuka, and Fukada in 1996, the mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. The most of the mechatronic devices need the precise dimensions of the plastic parts, as long as the combination of those parts leads to a final haptic characteristic defined within specific limits or when the certain travel way is linked with an electrical contact. The increasing of the risks to produce bad mechatronic devices are directly related to the combination of the plastic injectionmolded parts out of different cavities. The paper’s aim is to present reducing of the risks to have bad final parts assembled with the components out of plastic injection-molded parts by using optical 3D measuring techniques at first validation of the parts out of the tool and setting parameters in the injection machines. The shrinkage and the warpage are more easily detected in that way and this will support first article inspection, but also during the entire production process. A case study presents the analysis of the data coming from the measurements of the plastic parts from each cavity and the combination of those parts, by using the ATOS inspection software. The CAD data are compared with the measured ones and the differences will be visible in the colored plotted areas, also the differences of the parts out of distinct cavities will be also displayed by overlaying of the measurements.

  15. Protein-Assisted Assembly of Modular 3D Plasmonic Raspberry-like Core/Satellite Nanoclusters: Correlation of Structure and Optical Properties.

    Science.gov (United States)

    Höller, Roland P M; Dulle, Martin; Thomä, Sabrina; Mayer, Martin; Steiner, Anja Maria; Förster, Stephan; Fery, Andreas; Kuttner, Christian; Chanana, Munish

    2016-06-28

    We present a bottom-up assembly route for a large-scale organization of plasmonic nanoparticles (NPs) into three-dimensional (3D) modular assemblies with core/satellite structure. The protein-assisted assembly of small spherical gold or silver NPs with a hydrophilic protein shell (as satellites) onto larger metal NPs (as cores) offers high modularity in sizes and composition at high satellite coverage (close to the jamming limit). The resulting dispersions of metal/metal nanoclusters exhibit high colloidal stability and therefore allow for high concentrations and a precise characterization of the nanocluster architecture in dispersion by small-angle X-ray scattering (SAXS). Strong near-field coupling between the building blocks results in distinct regimes of dominant satellite-to-satellite and core-to-satellite coupling. High robustness against satellite disorder was proved by UV/vis diffuse reflectance (integrating sphere) measurements. Generalized multiparticle Mie theory (GMMT) simulations were employed to describe the electromagnetic coupling within the nanoclusters. The close correlation of structure and optical property allows for the rational design of core/satellite nanoclusters with tailored plasmonics and well-defined near-field enhancement, with perspectives for applications such as surface-enhanced spectroscopies.

  16. Ages of massive galaxies at $0.5 < z < 2.0$ from 3D-HST rest-frame optical spectroscopy

    CERN Document Server

    Fumagalli, Mattia; van Dokkum, Pieter; Whitaker, Katherine E; Skelton, Rosalind E; Brammer, Gabriel; Nelson, Erica; Maseda, Michael; Momcheva, Ivelina; Kriek, Mariska; Labbé, Ivo; Lundgren, Britt; Rix, Hans-Walter

    2016-01-01

    We present low-resolution near-infrared stacked spectra from the 3D-HST survey up to $z=2.0$ and fit them with commonly used stellar population synthesis models: BC03 (Bruzual & Charlot, 2003), FSPS10 (Flexible Stellar Population Synthesis, Conroy & Gunn 2010), and FSPS-C3K (Conroy, Kurucz, Cargile, Castelli, in prep). The accuracy of the grism redshifts allows the unambiguous detection of many emission and absorption features, and thus a first systematic exploration of the rest-frame optical spectra of galaxies up to $z=2$. We select massive galaxies ($\\rm log(M_{*} / M_{\\odot}) > 10.8$), we divide them into quiescent and star-forming via a rest-frame color-color technique, and we median-stack the samples in 3 redshift bins between $z=0.5$ and $z=2.0$. We find that stellar population models fit the observations well at wavelengths below $\\rm 6500 \\AA$ rest-frame, but show systematic residuals at redder wavelengths. The FSPS-C3K model generally provides the best fits (evaluated with a $\\chi^2_{red}$ s...

  17. The Atlas-3D project - IX. The merger origin of a fast and a slow rotating Early-Type Galaxy revealed with deep optical imaging: first results

    CERN Document Server

    Duc, Pierre-Alain; Serra, Paolo; Michel-Dansac, Leo; Ferriere, Etienne; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frederic; Bureau, Martin; Cappellari, Michele; Davies, Roger L; Davis, Timothy A; de Zeeuw, P T; Emsellem, Eric; Khochfar, Sadegh; Krajnovic, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Weijmans, Anne-Marie; Young, Lisa M

    2011-01-01

    The mass assembly of galaxies leaves imprints in their outskirts, such as shells and tidal tails. The frequency and properties of such fine structures depend on the main acting mechanisms - secular evolution, minor or major mergers - and on the age of the last substantial accretion event. We use this to constrain the mass assembly history of two apparently relaxed nearby Early-Type Galaxies (ETGs) selected from the Atlas-3D sample, NGC 680 and NGC 5557. Our ultra deep optical images obtained with MegaCam on the Canada-France-Hawaii Telescope reach 29 mag/arcsec^2 in the g-band. They reveal very low-surface brightness (LSB) filamentary structures around these ellipticals. Among them, a gigantic 160 kpc long tail East of NGC 5557 hosts gas-rich star-forming objects. NGC 680 exhibits two major diffuse plumes apparently connected to extended HI tails, as well as a series of arcs and shells. Comparing the outer stellar and gaseous morphology of the two ellipticals with that predicted from models of colliding galax...

  18. TEHNOLOGIJE 3D TISKALNIKOV

    OpenAIRE

    Kolar, Nataša

    2016-01-01

    Diplomsko delo predstavi razvoj tiskanja skozi čas. Podrobneje so opisani 3D tiskalniki, ki uporabljajo različne tehnologije 3D tiskanja. Predstavljene so različne tehnologije 3D tiskanja, njihova uporaba in narejeni prototipi oz. končni izdelki. Diplomsko delo opiše celoten postopek, od zamisli, priprave podatkov in tiskalnika do izdelave prototipa oz. končnega izdelka.

  19. SU-E-T-294: Simulations to Investigate the Feasibility of ‘dry’ Optical-CT Imaging for 3D Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, K [Duke University, Durham, NC (United States); Rankine, L [Washington University, Saint Louis, MO (United States); Oldham, M [Duke University Medical Center, Durham, NC (United States)

    2014-06-01

    Purpose: To perform simulations investigating the feasibility of “dry” optical-CT, and determine optimal design and scanning parameters for a novel dry tank telecentric optical-CT 3D dosimetry system. Such a system would have important advantages in terms of practical convenience and reduced cost. Methods: A Matlab based ray-tracing simulation platform, ScanSim, was used to model a telecentric system with a polyurethane dry tank, cylindrical dosimeter, and surrounding fluid. This program's capabilities were expanded for the geometry and physics of dry scanning. To categorize the effects of refractive index (RI) mismatches, simulations were run for several dosimeter (RI = 1.5−1.48) and fluid (RI = 1.55−1.33) combinations. Additional simulations examined the effect of increasing gap size (1–5mm) between the dosimeter and tank wall, and of changing the telecentric lens tolerance (0.5°−5°). The evaluation metric is the usable radius; the distance from the dosimeter center where the measured and true doses differ by less than 2%. Results: As the tank/dosimeter RI mismatch increases from 0–0.02, the usable radius decreases from 97.6% to 50.2%. The fluid RI for matching is lower than either the tank or dosimeter RI. Changing gap sizes has drastic effects on the usable radius, requiring more closely matched fluid at large gap sizes. Increasing the telecentric tolerance through a range from 0.5°–5.0° improved the usable radius for every combination of media. Conclusion: Dry optical-CT with telecentric lenses is feasible when the dosimeter and tank RIs are closely matched (<0.01 difference), or when data in the periphery is not required. The ScanSim tool proved very useful in situations when the tank and dosimeter have slight differences in RI by enabling estimation of the optimal choice of RI of the small amount of fluid still required. Some spoiling of the telecentric beam and increasing the tolerance helps recover the usable radius.

  20. 3D virtuel udstilling

    DEFF Research Database (Denmark)

    Tournay, Bruno; Rüdiger, Bjarne

    2006-01-01

    3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s.......3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s....

  1. Non-destructive testing of layer-to-layer fusion of a 3D print using ultrahigh resolution optical coherence tomography

    DEFF Research Database (Denmark)

    Israelsen, Niels Møller; Maria, Michael; Feuchter, Thomas

    2017-01-01

    Within the last decade, 3D printing has moved from a costly approach of building mechanical items to the present state-of-the-art phase where access to 3D printers is now common, both in industry and in private places. The plastic printers are the most common type of 3D printers providing prints...... on volume imaging of a 3D printed block made with 100% PLA fill. By employing ultrahigh resolution OCT (UHR-OCT) we show that some parts of the PLA volume reveal highly scattering interfaces which likely correspond to transitions from one layer to another. In doing so, we document that UHR-OCT can act...... as a powerful tool that can be used in detecting fractures between layers stemming from insufficient fusion between printed structure layers. UHR-OCT can therefore serve as an useful assessment method of quality of 3D prints....

  2. Imaging mesenchymal stem cells containing single wall nanotube nanoprobes in a 3D scaffold using photo-thermal optical coherence tomography

    Science.gov (United States)

    Connolly, Emma; Subhash, Hrebesh M.; Leahy, Martin; Rooney, Niall; Barry, Frank; Murphy, Mary; Barron, Valerie

    2014-02-01

    Despite the fact, that a range of clinically viable imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), photo emission tomography (PET), ultrasound and bioluminescence imaging are being optimised to track cells in vivo, many of these techniques are subject to limitations such as the levels of contrast agent required, toxic effects of radiotracers, photo attenuation of tissue and backscatter. With the advent of nanotechnology, nanoprobes are leading the charge to overcome these limitations. In particular, single wall nanotubes (SWNT) have been shown to be taken up by cells and as such are effective nanoprobes for cell imaging. Consequently, the main aim of this research is to employ mesenchymal stem cells (MSC) containing SWNT nanoprobes to image cell distribution in a 3D scaffold for cartilage repair. To this end, MSC were cultured in the presence of 32μg/ml SWNT in cell culture medium (αMEM, 10% FBS, 1% penicillin/streptomycin) for 24 hours. Upon confirmation of cell viability, the MSC containing SWNT were encapsulated in hyaluronic acid gels and loaded on polylactic acid polycaprolactone scaffolds. After 28 days in complete chondrogenic medium, with medium changes every 2 days, chondrogenesis was confirmed by the presence of glycosaminoglycan. Moreover, using photothermal optical coherence tomography (PT-OCT), the cells were seen to be distributed through the scaffold with high resolution. In summary, these data reveal that MSC containing SWNT nanoprobes in combination with PT-OCT offer an exciting opportunity for stem cell tracking in vitro for assessing seeding scaffolds and in vivo for determining biodistribution.

  3. Blender 3D cookbook

    CERN Document Server

    Valenza, Enrico

    2015-01-01

    This book is aimed at the professionals that already have good 3D CGI experience with commercial packages and have now decided to try the open source Blender and want to experiment with something more complex than the average tutorials on the web. However, it's also aimed at the intermediate Blender users who simply want to go some steps further.It's taken for granted that you already know how to move inside the Blender interface, that you already have 3D modeling knowledge, and also that of basic 3D modeling and rendering concepts, for example, edge-loops, n-gons, or samples. In any case, it'

  4. Morphometric Optic Nerve Head Analysis in Glaucoma Patients: A Comparison between the Simultaneous Nonmydriatic Stereoscopic Fundus Camera (Kowa Nonmyd WX3D and the Heidelberg Scanning Laser Ophthalmoscope (HRT III

    Directory of Open Access Journals (Sweden)

    Siegfried Mariacher

    2016-01-01

    Full Text Available Purpose. To investigate the agreement between morphometric optic nerve head parameters assessed with the confocal laser ophthalmoscope HRT III and the stereoscopic fundus camera Kowa nonmyd WX3D retrospectively. Methods. Morphometric optic nerve head parameters of 40 eyes of 40 patients with primary open angle glaucoma were analyzed regarding their vertical cup-to-disc-ratio (CDR. Vertical CDR, disc area, cup volume, rim volume, and maximum cup depth were assessed with both devices by one examiner. Mean bias and limits of agreement (95% CI were obtained using scatter plots and Bland-Altman analysis. Results. Overall vertical CDR comparison between HRT III and Kowa nonmyd WX3D measurements showed a mean difference (limits of agreement of −0.06 (−0.36 to 0.24. For the CDR < 0.5 group (n=24 mean difference in vertical CDR was −0.14 (−0.34 to 0.06 and for the CDR ≥ 0.5 group (n=16 0.06 (−0.21 to 0.34. Conclusion. This study showed a good agreement between Kowa nonmyd WX3D and HRT III with regard to widely used optic nerve head parameters in patients with glaucomatous optic neuropathy. However, data from Kowa nonmyd WX3D exhibited the tendency to measure larger CDR values than HRT III in the group with CDR < 0.5 group and lower CDR values in the group with CDR ≥ 0.5.

  5. From 3D view to 3D print

    Science.gov (United States)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    thickness, in the Z direction, and in drop-per-inch, in X and Y directions. 3D printing is also an easy and quick production technique, which can become useful in the ad-hoc realization of mechanical components for optical setups to be used in a laboratory for new concept studies and validation, reducing the manufacturing time. With this technique, indeed, it is possible to realize in few hours custom-made mechanical parts, without any specific knowledge and expertise in tool machinery, as long as the resolution and size are compliant with the requirements.

  6. The properties of SIRT, TVM, and DART for 3D imaging of tubular domains in nanocomposite thin-films and sections.

    Science.gov (United States)

    Chen, Delei; Goris, Bart; Bleichrodt, Folkert; Mezerji, Hamed Heidari; Bals, Sara; Batenburg, Kees Joost; de With, Gijsbertus; Friedrich, Heiner

    2014-12-01

    In electron tomography, the fidelity of the 3D reconstruction strongly depends on the employed reconstruction algorithm. In this paper, the properties of SIRT, TVM and DART reconstructions are studied with respect to having only a limited number of electrons available for imaging and applying different angular sampling schemes. A well-defined realistic model is generated, which consists of tubular domains within a matrix having slab-geometry. Subsequently, the electron tomography workflow is simulated from calculated tilt-series over experimental effects to reconstruction. In comparison with the model, the fidelity of each reconstruction method is evaluated qualitatively and quantitatively based on global and local edge profiles and resolvable distance between particles. Results show that the performance of all reconstruction methods declines with the total electron dose. Overall, SIRT algorithm is the most stable method and insensitive to changes in angular sampling. TVM algorithm yields significantly sharper edges in the reconstruction, but the edge positions are strongly influenced by the tilt scheme and the tubular objects become thinned. The DART algorithm markedly suppresses the elongation artifacts along the beam direction and moreover segments the reconstruction which can be considered a significant advantage for quantification. Finally, no advantage of TVM and DART to deal better with fewer projections was observed.

  7. 3D Digital Modelling

    DEFF Research Database (Denmark)

    Hundebøl, Jesper

    wave of new building information modelling tools demands further investigation, not least because of industry representatives' somewhat coarse parlance: Now the word is spreading -3D digital modelling is nothing less than a revolution, a shift of paradigm, a new alphabet... Research qeustions. Based...... on empirical probes (interviews, observations, written inscriptions) within the Danish construction industry this paper explores the organizational and managerial dynamics of 3D Digital Modelling. The paper intends to - Illustrate how the network of (non-)human actors engaged in the promotion (and arrest) of 3......D Modelling (in Denmark) stabilizes - Examine how 3D Modelling manifests itself in the early design phases of a construction project with a view to discuss the effects hereof for i.a. the management of the building process. Structure. The paper introduces a few, basic methodological concepts...

  8. DELTA 3D PRINTER

    Directory of Open Access Journals (Sweden)

    ȘOVĂILĂ Florin

    2016-07-01

    Full Text Available 3D printing is a very used process in industry, the generic name being “rapid prototyping”. The essential advantage of a 3D printer is that it allows the designers to produce a prototype in a very short time, which is tested and quickly remodeled, considerably reducing the required time to get from the prototype phase to the final product. At the same time, through this technique we can achieve components with very precise forms, complex pieces that, through classical methods, could have been accomplished only in a large amount of time. In this paper, there are presented the stages of a 3D model execution, also the physical achievement after of a Delta 3D printer after the model.

  9. Professional Papervision3D

    CERN Document Server

    Lively, Michael

    2010-01-01

    Professional Papervision3D describes how Papervision3D works and how real world applications are built, with a clear look at essential topics such as building websites and games, creating virtual tours, and Adobe's Flash 10. Readers learn important techniques through hands-on applications, and build on those skills as the book progresses. The companion website contains all code examples, video step-by-step explanations, and a collada repository.

  10. AE3D

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-20

    AE3D solves for the shear Alfven eigenmodes and eigenfrequencies in a torodal magnetic fusion confinement device. The configuration can be either 2D (e.g. tokamak, reversed field pinch) or 3D (e.g. stellarator, helical reversed field pinch, tokamak with ripple). The equations solved are based on a reduced MHD model and sound wave coupling effects are not currently included.

  11. The properties of SIRT, TVM, and DART for 3D imaging of tubular domains in nanocomposite thin-films and sections

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Delei [Laboratory of Materials and Interface Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven (Netherlands); Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven (Netherlands); Goris, Bart [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Bleichrodt, Folkert [Centrum Wiskunde and Informatica, Science Park 123, NL-1098XG Amsterdam (Netherlands); Mezerji, Hamed Heidari; Bals, Sara [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Batenburg, Kees Joost [Centrum Wiskunde and Informatica, Science Park 123, NL-1098XG Amsterdam (Netherlands); With, Gijsbertus de [Laboratory of Materials and Interface Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven (Netherlands); Friedrich, Heiner, E-mail: h.friedrich@tue.nl [Laboratory of Materials and Interface Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven (Netherlands)

    2014-12-15

    In electron tomography, the fidelity of the 3D reconstruction strongly depends on the employed reconstruction algorithm. In this paper, the properties of SIRT, TVM and DART reconstructions are studied with respect to having only a limited number of electrons available for imaging and applying different angular sampling schemes. A well-defined realistic model is generated, which consists of tubular domains within a matrix having slab-geometry. Subsequently, the electron tomography workflow is simulated from calculated tilt-series over experimental effects to reconstruction. In comparison with the model, the fidelity of each reconstruction method is evaluated qualitatively and quantitatively based on global and local edge profiles and resolvable distance between particles. Results show that the performance of all reconstruction methods declines with the total electron dose. Overall, SIRT algorithm is the most stable method and insensitive to changes in angular sampling. TVM algorithm yields significantly sharper edges in the reconstruction, but the edge positions are strongly influenced by the tilt scheme and the tubular objects become thinned. The DART algorithm markedly suppresses the elongation artifacts along the beam direction and moreover segments the reconstruction which can be considered a significant advantage for quantification. Finally, no advantage of TVM and DART to deal better with fewer projections was observed. - Highlights: • Dose and tilt-scheme dependence of SIRT, TVM and DART tomograms are quantified. • SIRT is the most stable method and insensitive to changes in angular sampling. • TVM significantly reduces noise but objects become thinned. • DART markedly suppresses the elongation artifacts. • No advantage of TVM and DART for fewer projections is observed.

  12. Absolute cross sections for photoionization of Xe$^{q+}$ ions (1 $\\le$ q $\\le$ 5) at the 3d ionization threshold

    CERN Document Server

    Schippers, S; Buhr, T; Borovik, A; Hellhund, J; Holste, K; Huber, K; Schäfer, H -J; Schury, D; Klumpp, S; Mertens, K; Martins, M; Flesch, R; Ulrich, G; Rühl, E; Jahnke, T; Lower, J; Metz, D; Schmidt, L P H; Schöffler, M; Williams, J B; Glaser, L; Scholz, F; Seltmann, J; Viefhaus, J; Dorn, A; Wolf, A; Ullrich, J; Müller, A

    2014-01-01

    The photon-ion merged-beams technique has been employed at the new Photon-Ion spectrometer at PETRA III (PIPE) for measuring multiple photoionization of Xe$^{q+}$ (q=1-5) ions. Total ionization cross sections have been obtained on an absolute scale for the dominant ionization reactions of the type h\

  13. 31 CFR 30.10 - Q-10: What actions are necessary for a TARP recipient to comply with section 111(b)(3)(D) of EESA...

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Q-10: What actions are necessary for....10 Section 30.10 Money and Finance: Treasury Office of the Secretary of the Treasury TARP STANDARDS FOR COMPENSATION AND CORPORATE GOVERNANCE § 30.10 Q-10: What actions are necessary for a TARP...

  14. Performance evaluation of an improved optical computed tomography polymer gel dosimeter system for 3D dose verification of static and dynamic phantom deliveries.

    Science.gov (United States)

    Lopatiuk-Tirpak, O; Langen, K M; Meeks, S L; Kupelian, P A; Zeidan, O A; Maryanski, M J

    2008-09-01

    The performance of a next-generation optical computed tomography scanner (OCTOPUS-5X) is characterized in the context of three-dimensional gel dosimetry. Large-volume (2.2 L), muscle-equivalent, radiation-sensitive polymer gel dosimeters (BANG-3) were used. Improvements in scanner design leading to shorter acquisition times are discussed. The spatial resolution, detectable absorbance range, and reproducibility are assessed. An efficient method for calibrating gel dosimeters using the depth-dose relationship is applied, with photon- and electron-based deliveries yielding equivalent results. A procedure involving a preirradiation scan was used to reduce the edge artifacts in reconstructed images, thereby increasing the useful cross-sectional area of the dosimeter by nearly a factor of 2. Dose distributions derived from optical density measurements using the calibration coefficient show good agreement with the treatment planning system simulations and radiographic film measurements. The feasibility of use for motion (four-dimensional) dosimetry is demonstrated on an example comparing dose distributions from static and dynamic delivery of a single-field photon plan. The capability to visualize three-dimensional dose distributions is also illustrated.

  15. Electromagnetic Propagation of Fiber Probe for Near-field Optical Recording Using 3-D FDTD Method%用3D-FDTD法分析用于近场光存储的光纤探针电磁波传输特性

    Institute of Scientific and Technical Information of China (English)

    刘凯; 白明; 鲁拥华; 唐麟; 王超; 明海

    2001-01-01

    The data density of the near-field optical recording is mainlydetermined by near-field electromagnetic distribution of probe fiber such as transmission efficiency, near-field light spot size, polarization keeping and the grade of the electromagnetic field. The optical characters and light wave propagation of various fiber probes for near-field optical recording are numerically simulated using 3D finite-difference time-domain (3D-FDTD) method in this paper. The possible application in near-field optical recording with these probes is discussed. The entirely metal coat probe is pointed out to have an extremely small near-field spot size about 10 nm, which is far less than that of the conventional probe.%提高近场光存储的存储信息密度的关键主要在于掌握近场存储光纤探针的透光率、近场光斑直径尺寸以及场梯度等近场物理量。采用三维时域有限差分(3D-FDTD)法分析了可用于近场光存储的光纤探针尖的光学性质,对不同类型光纤的近场光场分布进行了数值计算,给出结果并进行比较,从光学性质的角度对其在近场光存储中的应用加以讨论。完全镀膜光纤尖在极近场处的光斑可获得10nm的尺寸,远小于传统光纤光学聚焦的光斑尺寸大小。

  16. 3D Projection Installations

    DEFF Research Database (Denmark)

    Halskov, Kim; Johansen, Stine Liv; Bach Mikkelsen, Michelle

    2014-01-01

    Three-dimensional projection installations are particular kinds of augmented spaces in which a digital 3-D model is projected onto a physical three-dimensional object, thereby fusing the digital content and the physical object. Based on interaction design research and media studies, this article...... contributes to the understanding of the distinctive characteristics of such a new medium, and identifies three strategies for designing 3-D projection installations: establishing space; interplay between the digital and the physical; and transformation of materiality. The principal empirical case, From...... Fingerplan to Loop City, is a 3-D projection installation presenting the history and future of city planning for the Copenhagen area in Denmark. The installation was presented as part of the 12th Architecture Biennale in Venice in 2010....

  17. 3D Spectroscopic Instrumentation

    CERN Document Server

    Bershady, Matthew A

    2009-01-01

    In this Chapter we review the challenges of, and opportunities for, 3D spectroscopy, and how these have lead to new and different approaches to sampling astronomical information. We describe and categorize existing instruments on 4m and 10m telescopes. Our primary focus is on grating-dispersed spectrographs. We discuss how to optimize dispersive elements, such as VPH gratings, to achieve adequate spectral resolution, high throughput, and efficient data packing to maximize spatial sampling for 3D spectroscopy. We review and compare the various coupling methods that make these spectrographs ``3D,'' including fibers, lenslets, slicers, and filtered multi-slits. We also describe Fabry-Perot and spatial-heterodyne interferometers, pointing out their advantages as field-widened systems relative to conventional, grating-dispersed spectrographs. We explore the parameter space all these instruments sample, highlighting regimes open for exploitation. Present instruments provide a foil for future development. We give an...

  18. Interaktiv 3D design

    DEFF Research Database (Denmark)

    Villaume, René Domine; Ørstrup, Finn Rude

    2002-01-01

    Projektet undersøger potentialet for interaktiv 3D design via Internettet. Arkitekt Jørn Utzons projekt til Espansiva blev udviklet som et byggesystem med det mål, at kunne skabe mangfoldige planmuligheder og mangfoldige facade- og rumudformninger. Systemets bygningskomponenter er digitaliseret som...... 3D elementer og gjort tilgængelige. Via Internettet er det nu muligt at sammenstille og afprøve en uendelig  række bygningstyper som  systemet blev tænkt og udviklet til....

  19. Improving Adaptive Learning Rate of BP Neural Network for the Modelling of 3D Woven Composites Using the Golden Section Law

    Institute of Scientific and Technical Information of China (English)

    易洪雷; 丁辛

    2001-01-01

    Focused on various BP algorithms with variable learning rate based on network system error gradient, a modified learning strategy for training non-linear network models is developed with both the incremental and the decremental factors of network learning rate being adjusted adaptively and dynamically. The golden section law is put forward to build a relationship between the network training parameters, and a series of data from an existing model is used to train and test the network parameters. By means of the evaluation of network performance in respect to convergent speed and predicting precision, the effectiveness of the proposed learning strategy can be illustrated.

  20. Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic integrated circuit.

    Science.gov (United States)

    Guan, Binbin; Scott, Ryan P; Qin, Chuan; Fontaine, Nicolas K; Su, Tiehui; Ferrari, Carlo; Cappuzzo, Mark; Klemens, Fred; Keller, Bob; Earnshaw, Mark; Yoo, S J B

    2014-01-13

    We demonstrate free-space space-division-multiplexing (SDM) with 15 orbital angular momentum (OAM) states using a three-dimensional (3D) photonic integrated circuit (PIC). The hybrid device consists of a silica planar lightwave circuit (PLC) coupled to a 3D waveguide circuit to multiplex/demultiplex OAM states. The low excess loss hybrid device is used in individual and two simultaneous OAM states multiplexing and demultiplexing link experiments with a 20 Gb/s, 1.67 b/s/Hz quadrature phase shift keyed (QPSK) signal, which shows error-free performance for 379,960 tested bits for all OAM states.

  1. Serial sectioning and electron microscopy of large tissue volumes for 3D analysis and reconstruction: a case study of the calyx of Held.

    Science.gov (United States)

    Hoffpauir, Brian K; Pope, Brian A; Spirou, George A

    2007-01-01

    Serial section electron microscopy is typically applied to investigation of small tissue volumes encompassing subcellular structures. However, in neurobiology, the need to relate subcellular structure to organization of neural circuits can require investigation of large tissue volumes at ultrastructural resolution. Analysis of ultrastructure and three-dimensional reconstruction of even one to a few cells is time consuming, and still does not generate the necessary numbers of observations to form well-grounded insights into biological principles. We describe an assemblage of existing computer-based methods and strategies for graphical analysis of large photographic montages to accomplish the study of multiple neurons through large tissue volumes. Sample preparation, data collection and subsequent analyses can be completed within 3-4 months. These methods generate extremely large data sets that can be mined in future studies of nervous system organization.

  2. 3D Wire 2015

    DEFF Research Database (Denmark)

    Jordi, Moréton; F, Escribano; J. L., Farias

    This document is a general report on the implementation of gamification in 3D Wire 2015 event. As the second gamification experience in this event, we have delved deeply in the previous objectives (attracting public areas less frequented exhibition in previous years and enhance networking) and ha......, improves socialization and networking, improves media impact, improves fun factor and improves encouragement of the production team....

  3. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data...

  4. Tangible 3D Modelling

    DEFF Research Database (Denmark)

    Hejlesen, Aske K.; Ovesen, Nis

    2012-01-01

    This paper presents an experimental approach to teaching 3D modelling techniques in an Industrial Design programme. The approach includes the use of tangible free form models as tools for improving the overall learning. The paper is based on lecturer and student experiences obtained through facil...

  5. Unoriented 3d TFTs

    CERN Document Server

    Bhardwaj, Lakshya

    2016-01-01

    This paper generalizes two facts about oriented 3d TFTs to the unoriented case. On one hand, it is known that oriented 3d TFTs having a topological boundary condition admit a state-sum construction known as the Turaev-Viro construction. This is related to the string-net construction of fermionic phases of matter. We show how Turaev-Viro construction can be generalized to unoriented 3d TFTs. On the other hand, it is known that the "fermionic" versions of oriented TFTs, known as Spin-TFTs, can be constructed in terms of "shadow" TFTs which are ordinary oriented TFTs with an anomalous Z_2 1-form symmetry. We generalize this correspondence to Pin+ TFTs by showing that they can be constructed in terms of ordinary unoriented TFTs with anomalous Z_2 1-form symmetry having a mixed anomaly with time-reversal symmetry. The corresponding Pin+ TFT does not have any anomaly for time-reversal symmetry however and hence it can be unambiguously defined on a non-orientable manifold. In case a Pin+ TFT admits a topological bou...

  6. Experimental validation of an extended Jones matrix calculus model to study the 3D structural orientation of the collagen fibers in articular cartilage using polarization-sensitive optical coherence tomography.

    Science.gov (United States)

    Kasaragod, Deepa K; Lu, Zenghai; Jacobs, James; Matcher, Stephen J

    2012-03-01

    We report results to verify a theoretical framework to analyze the 3D depth-wise structural organization of collagen fibers in articular cartilage using polarization-sensitive optical coherence tomography. Apparent birefringence data obtained from multi-angle measurements using a time domain polarization-sensitive optical coherence tomography system has been compared with simulated data based on the extended Jones matrix calculus. Experimental data has been shown to agree with the lamellar model previously proposed for the cartilage microstructure based on scanning electron microscopy data. This tool could have potential application in mapping the collagen structural orientation information of cartilage non-invasively during arthroscopy.

  7. 2D/3D switchable displays

    Science.gov (United States)

    Dekker, T.; de Zwart, S. T.; Willemsen, O. H.; Hiddink, M. G. H.; IJzerman, W. L.

    2006-02-01

    A prerequisite for a wide market acceptance of 3D displays is the ability to switch between 3D and full resolution 2D. In this paper we present a robust and cost effective concept for an auto-stereoscopic switchable 2D/3D display. The display is based on an LCD panel, equipped with switchable LC-filled lenticular lenses. We will discuss 3D image quality, with the focus on display uniformity. We show that slanting the lenticulars in combination with a good lens design can minimize non-uniformities in our 20" 2D/3D monitors. Furthermore, we introduce fractional viewing systems as a very robust concept to further improve uniformity in the case slanting the lenticulars and optimizing the lens design are not sufficient. We will discuss measurements and numerical simulations of the key optical characteristics of this display. Finally, we discuss 2D image quality, the switching characteristics and the residual lens effect.

  8. New method of 3D detection based on straight-line optical flow%基于直线光流场的三维检测新方法

    Institute of Scientific and Technical Information of China (English)

    陈震; 许强; 闫军; 江少锋

    2012-01-01

    提出了基于直线光流场的三维检测计算方法.在透视投影下,将表示二维直线的参数对时间的导数定义成直线光流场,详细推导出基于直线光流场检测三维刚体运动参数的模型.使用最小二乘法,求出刚体的三维旋转运动参数、平移运动参数和空间直线坐标,从而实现了刚体的三维检测.该方法利用单目图像序列中连续3幅图像的2对直线光流,能够检测出物体的运动参数和结构参数,有助于全面检测和识别物体.多组实验表明该方法是稳定的,具有较好的鲁棒性能.%In this paper, a new method of solving 3D rigid body motion and structure based on straight-light optical flow is proposed. Under the perspective projection, the derivatives of the three parameters of a 2D line to time are defined as the straight-line optical flow; and the motion parameter model of a 3D rigid body based on straight-line optical flow is established. The rotation motion parameters, translational motion parameters and 3D coordinates of the 3D rigid body can be solved. In order to detect and recognize the details, the presented algorithm uses two pairs of straight-line optical flows of three consecutive image frames in the image sequence and can reconstruct the 3D motion and structure parameters from the straight-line optical flows. Experiments on synthesized image sequences and real image sequences show that this method is stable and robust.

  9. Measurement of intracellular calcium gradients in single living cells using optical sectioning microscopy

    Science.gov (United States)

    Yelamarty, Rao V.; Cheung, Joseph Y.

    1992-06-01

    Intracellular free calcium has been recognized as a regulator of many cellular processes and plays a key role in mediating actions of many drugs. To elucidate subcellular spatial calcium changes throughout the cell in three dimensions (3-D), optical sectioning microscopy was applied using digital imaging coupled fluorescence microscopy. The cell was loaded with a fluorescent indicator, fura-2, and a stack of sectional fluorescent images were acquired, digitized and finally stored on-line for post image analysis. Each sectional image was then deconvolved, to remove contaminating light signals from adjacent planes, using the Nearest Neighboring Deconvolution Algorithm (NNDA) and the overall imaging system's empirical Point Spread Function (PSF) that is measured with a 0.25 micrometers fluorescent bead. Using this technique, we measured that the addition of growth factors caused a 2 - 3 fold increase (1) in nuclear calcium compared to cytosolic calcium in blood cells and (2) in both nuclear and cytosolic calcium in liver cells. Such spatial information, which is important in understanding subcellular processes, would not be possible to measure with other methods.

  10. 3D Surgical Simulation

    Science.gov (United States)

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  11. TOWARDS: 3D INTERNET

    Directory of Open Access Journals (Sweden)

    Ms. Swapnali R. Ghadge

    2013-08-01

    Full Text Available In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot of discussions. Basically, one can look into this matter from a few different perspectives: visualization and representation of information, and creation and transportation of information, among others. All of them still constitute research challenges, as no products or services are yet available or foreseen for the near future. Nevertheless, one can try to envisage the directions that can be taken towards achieving this goal. People who take part in virtual worlds stay online longer with a heightened level of interest. To take advantage of that interest, diverse businesses and organizations have claimed an early stake in this fast-growing market. They include technology leaders such as IBM, Microsoft, and Cisco, companies such as BMW, Toyota, Circuit City, Coca Cola, and Calvin Klein, and scores of universities, including Harvard, Stanford and Penn State.

  12. The Atlas3D project -- XXIX. The new look of early-type galaxies and surrounding fields disclosed by extremely deep optical images

    CERN Document Server

    Duc, Pierre-Alain; Karabal, Emin; Cappellari, Michele; Alatalo, Katherine; Blitz, Leo; Bournaud, Frederic; Bureau, Martin; Crocker, Alison F; Davies, Roger L; Davis, Timothy A; de Zeeuw, P T; Emsellem, Eric; Khochfar, Sadegh; Krajnovic, Davor; Kuntschner, Harald; McDermid, Richard M; Michel-Dansac, Leo; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Paudel, Sanjaya; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M

    2014-01-01

    Galactic archeology based on star counts is instrumental to reconstruct the past mass assembly of Local Group galaxies. The development of new observing techniques and data-reduction, coupled with the use of sensitive large field of view cameras, now allows us to pursue this technique in more distant galaxies exploiting their diffuse low surface brightness (LSB) light. As part of the Atlas3D project, we have obtained with the MegaCam camera at the Canada-France Hawaii Telescope extremely deep, multi--band, images of nearby early-type galaxies. We present here a catalog of 92 galaxies from the Atlas3D sample, that are located in low to medium density environments. The observing strategy and data reduction pipeline, that achieve a gain of several magnitudes in the limiting surface brightness with respect to classical imaging surveys, are presented. The size and depth of the survey is compared to other recent deep imaging projects. The paper highlights the capability of LSB--optimized surveys at detecting new pr...

  13. Optic disc boundary segmentation from diffeomorphic demons registration of monocular fundus image sequences versus 3D visualization of stereo fundus image pairs for automated early stage glaucoma assessment

    Science.gov (United States)

    Gatti, Vijay; Hill, Jason; Mitra, Sunanda; Nutter, Brian

    2014-03-01

    Despite the current availability in resource-rich regions of advanced technologies in scanning and 3-D imaging in current ophthalmology practice, world-wide screening tests for early detection and progression of glaucoma still consist of a variety of simple tools, including fundus image-based parameters such as CDR (cup to disc diameter ratio) and CAR (cup to disc area ratio), especially in resource -poor regions. Reliable automated computation of the relevant parameters from fundus image sequences requires robust non-rigid registration and segmentation techniques. Recent research work demonstrated that proper non-rigid registration of multi-view monocular fundus image sequences could result in acceptable segmentation of cup boundaries for automated computation of CAR and CDR. This research work introduces a composite diffeomorphic demons registration algorithm for segmentation of cup boundaries from a sequence of monocular images and compares the resulting CAR and CDR values with those computed manually by experts and from 3-D visualization of stereo pairs. Our preliminary results show that the automated computation of CDR and CAR from composite diffeomorphic segmentation of monocular image sequences yield values comparable with those from the other two techniques and thus may provide global healthcare with a cost-effective yet accurate tool for management of glaucoma in its early stage.

  14. Fluorescence in situ hybridization applications for super-resolution 3D structured illumination microscopy.

    Science.gov (United States)

    Markaki, Yolanda; Smeets, Daniel; Cremer, Marion; Schermelleh, Lothar

    2013-01-01

    Fluorescence in situ hybridization on three-dimensionally preserved cells (3D-FISH) is an efficient tool to analyze the subcellular localization and spatial arrangement of targeted DNA sequences and RNA transcripts at the single cell level. 3D reconstructions from serial optical sections obtained by confocal laser scanning microscopy (CLSM) have long been considered the gold standard for 3D-FISH analyses. Recent super-resolution techniques circumvent the diffraction-limit of optical resolution and have defined a new state-of-the-art in bioimaging. Three-dimensional structured illumination microscopy (3D-SIM) represents one of these technologies. Notably, 3D-SIM renders an eightfold improved volumetric resolution over conventional imaging, and allows the simultaneous visualization of differently labeled target structures. These features make this approach highly attractive for the analysis of spatial relations and substructures of nuclear targets that escape detection by conventional light microscopy. Here, we focus on the application of 3D-SIM for the visualization of subnuclear 3D-FISH preparations. In comparison with conventional fluorescence microscopy, the quality of 3D-SIM data is dependent to a much greater extent on the optimal sample preparation, labeling and acquisition conditions. We describe typical problems encountered with super-resolution imaging of in situ hybridizations in mammalian tissue culture cells and provide optimized DNA-/(RNA)-FISH protocols including combinations with immunofluorescence staining (Immuno-FISH) and DNA replication labeling using click chemistry.

  15. 3D-kompositointi

    OpenAIRE

    Piirainen, Jere

    2015-01-01

    Opinnäytetyössä käydään läpi yleisimpiä 3D-kompositointiin liittyviä tekniikoita sekä kompositointiin käytettyjä ohjelmia ja liitännäisiä. Työssä esitellään myös kompositoinnin juuret 1800-luvun lopulta aina nykyaikaiseen digitaaliseen kompositointiin asti. Kompositointi on yksinkertaisimmillaan usean kuvan liittämistä saumattomasti yhdeksi uskottavaksi kokonaisuudeksi. Vaikka prosessi vaatii visuaalista silmää, vaatii se myös paljon teknistä osaamista. Tämän lisäksi perusymmärrys kamera...

  16. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data......, making them different from typical, existing box shaping techniques. The basis of the proposed techniques is a new algorithm for constructing a full box from just three of its corners. The evaluation of the new techniques compares their precision and completion times in a 9 degree-of-freedom (Do......F) docking experiment against an existing technique, which requires the user to perform the rotation and scaling of the box explicitly. The precision of the users' box construction is evaluated by a novel error metric measuring the difference between two boxes. The results of the experiment strongly indicate...

  17. Diattenuation of brain tissue and its impact on 3D polarized light imaging

    Science.gov (United States)

    Menzel, Miriam; Reckfort, Julia; Weigand, Daniel; Köse, Hasan; Amunts, Katrin; Axer, Markus

    2017-01-01

    3D-polarized light imaging (3D-PLI) reconstructs nerve fibers in histological brain sections by measuring their birefringence. This study investigates another effect caused by the optical anisotropy of brain tissue – diattenuation. Based on numerical and experimental studies and a complete analytical description of the optical system, the diattenuation was determined to be below 4 % in rat brain tissue. It was demonstrated that the diattenuation effect has negligible impact on the fiber orientations derived by 3D-PLI. The diattenuation signal, however, was found to highlight different anatomical structures that cannot be distinguished with current imaging techniques, which makes Diattenuation Imaging a promising extension to 3D-PLI. PMID:28717561

  18. 2D and 3D modelling of the Linking Zone between the Iberian and the Catalan Coastal Ranges (NE Spain): Characterizing basement and cover deformation from geological and geophysical cross sections

    Science.gov (United States)

    Izquierdo-Llavall, Esther; Ayala, Concepción; Rubio, Félix Manuel; Pueyo, Emilio; Casas, Antonio; Oliva-Urcia, Belén; Rodríguez-Pintó, Adriana; Rey-Moral, Carmen

    2015-04-01

    New geological, geophysical and petrophysical information is presented in this work in order to improve the understanding of the Linking Zone, an E-W-trending fold and thrust system that connects the northeastern part of the Iberian Range (WNW-ESE-striking) and the Catalan Coastal Ranges (NNE-SSW-striking). It was formed during the Alpine Orogeny and it is characterized by (1) thick-skinned tectonics, partly controlled by reactivation of faults inherited from Mesozoic times and (2) thin-skinned tectonics, affecting the cover sequences above the regional detachment levels (Triassic gypsum and shales). The present study aims to obtain a 3D image of the structure of this area through the construction of balanced geological and geophysical cross sections. In the Linking Zone scarce subsurface information is available. Therefore, we have conducted data acquisition campaigns to improve this knowledge: A) about 3000 gravity stations distributed along 8 main profiles were measured, and these new stations were complemented with gravity data from IGME databases. These data were analyzed and processed to obtain a Bouguer anomaly map and a residual gravity map with reasonably good coverage; B) a petrophysical survey was also carried out; rock samples were acquired and analyzed obtaining density and susceptibility values of the main lithologies. The statistics of these physical properties is of key importance during the combined geophysical/geological modelling. Petrophysical data indicate a weak, progressive increase of density mean values from the top to the base of the stratigraphic pile with the exception of Triassic gypsum and shales, where the lowest density was obtained. The modelling has been made in three steps: First, a set of eight geological cross-sections based on surface geology and structural information were built, controlled and improved through gravity modelling and balanced to make them geometrically correct, consistent throughout the sections and closer to

  19. Temperature-stable and optically transparent thin-film zinc oxide aerogel electrodes as model systems for 3D interpenetrating organic-inorganic heterojunction solar cells.

    Science.gov (United States)

    Krumm, Michael; Pawlitzek, Fabian; Weickert, Jonas; Schmidt-Mende, Lukas; Polarz, Sebastian

    2012-12-01

    Novel, nanostructured electrode materials comprising porous ZnO films with aerogel morphology are presented. Almost any substrate including polymers, metals, or ceramics can be coated using a method that is suitable for mass production. The thin, porous films can be prepared from the wet gels via conventional drying, supercritical drying is not necessary. The filigree ZnO network is thermally very stable and exhibits sufficient electrical conductivity for advanced electronic applications. The latter was tested by realizing a highly desired architecture of organic-inorganic hybrid solar cells. After sensitizing of the ZnO with a purely organic squarine dye (SQ2), a nanostructured, interpenetrating 3D network of the inorganic semiconductor (ZnO) and organic semiconductor (P3HT) was prepared. The solar cell device was tested under illumination with AM 1.5G solar light (100 mW/cm(2)) and exhibited an energy conversion efficiency (η(eff)) of 0.69%.

  20. The ATLAS3D project - XXIX. The new look of early-type galaxies and surrounding fields disclosed by extremely deep optical images

    Science.gov (United States)

    Duc, Pierre-Alain; Cuillandre, Jean-Charles; Karabal, Emin; Cappellari, Michele; Alatalo, Katherine; Blitz, Leo; Bournaud, Frédéric; Bureau, Martin; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; McDermid, Richard M.; Michel-Dansac, Leo; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Paudel, Sanjaya; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2015-01-01

    Galactic archaeology based on star counts is instrumental to reconstruct the past mass assembly of Local Group galaxies. The development of new observing techniques and data reduction, coupled with the use of sensitive large field of view cameras, now allows us to pursue this technique in more distant galaxies exploiting their diffuse low surface brightness (LSB) light. As part of the ATLAS3D project, we have obtained with the MegaCam camera at the Canada-France-Hawaii Telescope extremely deep, multiband images of nearby early-type galaxies (ETGs). We present here a catalogue of 92 galaxies from the ATLAS3D sample, which are located in low- to medium-density environments. The observing strategy and data reduction pipeline, which achieve a gain of several magnitudes in the limiting surface brightness with respect to classical imaging surveys, are presented. The size and depth of the survey are compared to other recent deep imaging projects. The paper highlights the capability of LSB-optimized surveys at detecting new prominent structures that change the apparent morphology of galaxies. The intrinsic limitations of deep imaging observations are also discussed, among those, the contamination of the stellar haloes of galaxies by extended ghost reflections, and the cirrus emission from Galactic dust. The detection and systematic census of fine structures that trace the present and past mass assembly of ETGs are one of the prime goals of the project. We provide specific examples of each type of observed structures - tidal tails, stellar streams and shells - and explain how they were identified and classified. We give an overview of the initial results. The detailed statistical analysis will be presented in future papers.

  1. Are 3-D Movies Bad for Your Eyes?

    Medline Plus

    Full Text Available ... Sections Are 3-D Movies Bad for Your Eyes? Jul. 09, 2013 With the popularity of 3- ... if any, effect the technology has on your eyes. Is 3-D technology healthy for your or ...

  2. Are 3-D Movies Bad for Your Eyes?

    Medline Plus

    Full Text Available ... Español Eye Health / Tips & Prevention Sections Are 3-D Movies Bad for Your Eyes? Jul. 09, 2013 ... computer use and your eyes . Children and 3-D Technology Following the lead of Nintendo, several 3- ...

  3. Morphology and function of Bast's valve : additional insight in its functioning using 3D-reconstruction

    NARCIS (Netherlands)

    Hofman, R.; Segenhout, J. M.; Buytaert, J. A. N.; Dirckx, J. J. J.; Wit, H. P.

    2008-01-01

    The utriculo-endolymphatic valve was discovered by Bast in 1928. The function of Bast's valve is still unclear. By means of orthogonal-plane fluorescence optical sectioning (OPFOS) microscopy 3D-reconstructions of the valve and its surrounding region are depicted. The shape of the duct at the utricu

  4. Intraoral 3D scanner

    Science.gov (United States)

    Kühmstedt, Peter; Bräuer-Burchardt, Christian; Munkelt, Christoph; Heinze, Matthias; Palme, Martin; Schmidt, Ingo; Hintersehr, Josef; Notni, Gunther

    2007-09-01

    Here a new set-up of a 3D-scanning system for CAD/CAM in dental industry is proposed. The system is designed for direct scanning of the dental preparations within the mouth. The measuring process is based on phase correlation technique in combination with fast fringe projection in a stereo arrangement. The novelty in the approach is characterized by the following features: A phase correlation between the phase values of the images of two cameras is used for the co-ordinate calculation. This works contrary to the usage of only phase values (phasogrammetry) or classical triangulation (phase values and camera image co-ordinate values) for the determination of the co-ordinates. The main advantage of the method is that the absolute value of the phase at each point does not directly determine the coordinate. Thus errors in the determination of the co-ordinates are prevented. Furthermore, using the epipolar geometry of the stereo-like arrangement the phase unwrapping problem of fringe analysis can be solved. The endoscope like measurement system contains one projection and two camera channels for illumination and observation of the object, respectively. The new system has a measurement field of nearly 25mm × 15mm. The user can measure two or three teeth at one time. So the system can by used for scanning of single tooth up to bridges preparations. In the paper the first realization of the intraoral scanner is described.

  5. Martian terrain - 3D

    Science.gov (United States)

    1997-01-01

    This area of terrain near the Sagan Memorial Station was taken on Sol 3 by the Imager for Mars Pathfinder (IMP). 3D glasses are necessary to identify surface detail.The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  6. 3D Printing and 3D Bioprinting in Pediatrics.

    Science.gov (United States)

    Vijayavenkataraman, Sanjairaj; Fuh, Jerry Y H; Lu, Wen Feng

    2017-07-13

    Additive manufacturing, commonly referred to as 3D printing, is a technology that builds three-dimensional structures and components layer by layer. Bioprinting is the use of 3D printing technology to fabricate tissue constructs for regenerative medicine from cell-laden bio-inks. 3D printing and bioprinting have huge potential in revolutionizing the field of tissue engineering and regenerative medicine. This paper reviews the application of 3D printing and bioprinting in the field of pediatrics.

  7. 3D printing for dummies

    CERN Document Server

    Hausman, Kalani Kirk

    2014-01-01

    Get started printing out 3D objects quickly and inexpensively! 3D printing is no longer just a figment of your imagination. This remarkable technology is coming to the masses with the growing availability of 3D printers. 3D printers create 3-dimensional layered models and they allow users to create prototypes that use multiple materials and colors.  This friendly-but-straightforward guide examines each type of 3D printing technology available today and gives artists, entrepreneurs, engineers, and hobbyists insight into the amazing things 3D printing has to offer. You'll discover methods for

  8. Ultra Fast Optical Sectioning: Signal preserving filtering and surface reconstruction

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Poel, Mike van der; Larsen, Rasmus

    2011-01-01

    In 3D surface scanning it is desirable to lter away bad data without altering the quality of the remaining good data. Filtering of raw scanner data before surface reconstruction can minimize the induced er- ror and improve on the probability of reconstructing the true surface. If outliers consist...... to extract high quality 3D surface points from 2D images recorded at over 3000 fps. The scanner has been developed for digital impression taking in the dental area. Our work relates to future in-ear scanning for tting custom hearing aids without impression taking.......In 3D surface scanning it is desirable to lter away bad data without altering the quality of the remaining good data. Filtering of raw scanner data before surface reconstruction can minimize the induced er- ror and improve on the probability of reconstructing the true surface. If outliers consist...

  9. Using highly accurate 3D nanometrology to model the optical properties of highly irregular nanoparticles: a powerful tool for rational design of plasmonic devices.

    Science.gov (United States)

    Perassi, Eduardo M; Hernandez-Garrido, Juan C; Moreno, M Sergio; Encina, Ezequiel R; Coronado, Eduardo A; Midgley, Paul A

    2010-06-09

    The realization of materials at the nanometer scale creates new challenges for quantitative characterization and modeling as many physical and chemical properties at the nanoscale are highly size and shape-dependent. In particular, the accurate nanometrological characterization of noble metal nanoparticles (NPs) is crucial for understanding their optical response that is determined by the collective excitation of conduction electrons, known as localized surface plasmons. Its manipulation gives place to a variety of applications in ultrasensitive spectroscopies, photonics, improved photovoltaics, imaging, and cancer therapy. Here we show that by combining electron tomography with electrodynamic simulations an accurate optical model of a highly irregular gold NP synthesized by chemical methods could be achieved. This constitutes a novel and rigorous tool for understanding the plasmonic properties of real three-dimensional nano-objects.

  10. TODS BioCast User Manual, Forecasting 3D Satellite Derived Optical Properties Using Eulerian Advection Procedure, Version 1.0

    Science.gov (United States)

    2015-06-17

    materials) in aquatic environments. It requires a set of flow fields (North/South and East/West velocity components), bathymetric data, an initial...of forecasting applications and basic oceanographic/ aquatic research programs. A conceptual overview of forecasting the distribution of bio-optical...BioCast processing for Chesapeake Bay, Virginia during the Trident Warrior exercise using the MODIS satellite product for beam attenuation (proxy for

  11. Development of an online radiative module for the computation of aerosol optical properties in 3-D atmospheric models: validation during the EUCAARI campaign

    Directory of Open Access Journals (Sweden)

    B. Aouizerats

    2010-06-01

    Full Text Available Obtaining a good description of aerosol optical properties for a physically and chemically complex evolving aerosol is computationally very expensive at present. The goal of this work is to propose a new numerical module computing the optical properties for complex aerosol particles at low numerical cost so that it can be implemented in atmospheric models. This method aims to compute the optical properties online as a function of a given complex refractive index deduced from the aerosol chemical composition and the size parameters corresponding to the particles.

    The construction of look-up tables from the imaginary and the real part of the complex refractive index and size parameters will also be explained. This approach is validated for observations acquired during the EUCAARI campaign on the Cabauw tower during May 2008 and its computing cost is also estimated.

    These comparisons show that the module manages to reproduce the scattering and absorbing behaviour of the aerosol during most of the fifteen-day period of observation with a very cheap computationally cost.

  12. Supernova Remnant in 3-D

    Science.gov (United States)

    2009-01-01

    of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through. The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave. This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron. High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these structures, but their orientation and

  13. 3D game environments create professional 3D game worlds

    CERN Document Server

    Ahearn, Luke

    2008-01-01

    The ultimate resource to help you create triple-A quality art for a variety of game worlds; 3D Game Environments offers detailed tutorials on creating 3D models, applying 2D art to 3D models, and clear concise advice on issues of efficiency and optimization for a 3D game engine. Using Photoshop and 3ds Max as his primary tools, Luke Ahearn explains how to create realistic textures from photo source and uses a variety of techniques to portray dynamic and believable game worlds.From a modern city to a steamy jungle, learn about the planning and technological considerations for 3D modelin

  14. Holographic 3D tracking of microscopic tools

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Villangca, Mark Jayson; Bañas, Andrew Rafael

    2015-01-01

    We originally proposed and experimentally demonstrated the targeted-light delivery capability of so-called Wave-guided Optical Waveguides (WOWs) three years ago. As these WOWs are maneuvered in 3D space, it is important to maintain efficient light coupling through their integrated waveguide struc...

  15. 3D Reconstruction Technique for Tomographic PIV

    Institute of Scientific and Technical Information of China (English)

    姜楠; 包全; 杨绍琼

    2015-01-01

    Tomographic particle image velocimetry(Tomo-PIV) is a state-of-the-art experimental technique based on a method of optical tomography to achieve the three-dimensional(3D) reconstruction for three-dimensional three-component(3D-3C) flow velocity measurements. 3D reconstruction for Tomo-PIV is carried out herein. Meanwhile, a 3D simplified tomographic reconstruction model reduced from a 3D volume light inten-sity field with 2D projection images into a 2D Tomo-slice plane with 1D projecting lines, i.e., simplifying this 3D reconstruction into a problem of 2D Tomo-slice plane reconstruction, is applied thereafter. Two kinds of the most well-known algebraic reconstruction techniques, algebraic reconstruction technique(ART) and multiple algebraic reconstruction technique(MART), are compared as well. The principles of the two reconstruction algorithms are discussed in detail, which has been performed by a series of simulation images, yielding the corresponding recon-struction images that show different features between the ART and MART algorithm, and then their advantages and disadvantages are discussed. Further discussions are made for the standard particle image reconstruction when the background noise of the pre-initial particle image has been removed. Results show that the particle image recon-struction has been greatly improved. The MART algorithm is much better than the ART. Furthermore, the computa-tional analyses of two parameters(the particle density and the number of cameras), are performed to study their effects on the reconstruction. Lastly, the 3D volume particle field is reconstructed by using the improved algorithm based on the simplified 3D tomographic reconstruction model, which proves that the algorithm simplification is feasible and it can be applied to the reconstruction of 3D volume particle field in a Tomo-PIV system.

  16. 3D Printing an Octohedron

    OpenAIRE

    Aboufadel, Edward F.

    2014-01-01

    The purpose of this short paper is to describe a project to manufacture a regular octohedron on a 3D printer. We assume that the reader is familiar with the basics of 3D printing. In the project, we use fundamental ideas to calculate the vertices and faces of an octohedron. Then, we utilize the OPENSCAD program to create a virtual 3D model and an STereoLithography (.stl) file that can be used by a 3D printer.

  17. Salient Local 3D Features for 3D Shape Retrieval

    CERN Document Server

    Godil, Afzal

    2011-01-01

    In this paper we describe a new formulation for the 3D salient local features based on the voxel grid inspired by the Scale Invariant Feature Transform (SIFT). We use it to identify the salient keypoints (invariant points) on a 3D voxelized model and calculate invariant 3D local feature descriptors at these keypoints. We then use the bag of words approach on the 3D local features to represent the 3D models for shape retrieval. The advantages of the method are that it can be applied to rigid as well as to articulated and deformable 3D models. Finally, this approach is applied for 3D Shape Retrieval on the McGill articulated shape benchmark and then the retrieval results are presented and compared to other methods.

  18. Three-dimensional reconstruction of the guinea pig inner ear, comparison of OPFOS and light microscopy, applications of 3D reconstruction

    NARCIS (Netherlands)

    Hofman, R.; Segenhout, J. M.; Wit, H. P.

    2009-01-01

    Three-dimensional (3D) reconstruction of anatomical structures can give additional insight into the morphology and function of these structures. We compare 3D reconstructions of the guinea pig inner ear, using light microscopy and orthogonal plane fluorescence optical sectioning microscopy. Applicat

  19. Hybrid wide-field and scanning microscopy for high-speed 3D imaging.

    Science.gov (United States)

    Duan, Yubo; Chen, Nanguang

    2015-11-15

    Wide-field optical microscopy is efficient and robust in biological imaging, but it lacks depth sectioning. In contrast, scanning microscopic techniques, such as confocal microscopy and multiphoton microscopy, have been successfully used for three-dimensional (3D) imaging with optical sectioning capability. However, these microscopic techniques are not very suitable for dynamic real-time imaging because they usually take a long time for temporal and spatial scanning. Here, a hybrid imaging technique combining wide-field microscopy and scanning microscopy is proposed to accelerate the image acquisition process while maintaining the 3D optical sectioning capability. The performance was demonstrated by proof-of-concept imaging experiments with fluorescent beads and zebrafish liver.

  20. Optical and FT Infrared Absorption Spectra of 3d Transition Metal Ions Doped in NaF-CaF2-B2O3 Glass and Effects of Gamma Irradiation

    Directory of Open Access Journals (Sweden)

    F. H. A. Elbatal

    2014-01-01

    Full Text Available Combined optical and FTIR spectroscopy has been employed to investigate the undoped NaF-CaF2-B2O3 glass together with samples containing 0.2% dopant of 3d TM ions before and after gamma irradiation. The optical spectrum of the undoped glass reveals strong UV absorption with two peaks which are related to unavoidable trace iron impurity within the raw materials. Upon gamma irradiation, an induced visible broad band centered at 500 nm is resolved and is related to B-O hole center or nonbridging oxygen hole center. TMs-doped samples exhibit characteristic absorption due to each respective TM ion but with faint colors. Gamma irradiation of TMs-doped samples reveals the same induced visible band at 500–510 nm in most samples except CuO and Cr2O3-doped glasses. Infrared absorption spectra reveal characteristic vibrational bands due to triangular and tetrahedral borate groups. The introduction of NaF and CaF2 modifies the borate network forming BO3F tetrahedra. The introduction of 3d TMs as dopants did not make any obvious changes in the FTIR spectra due to their low content (0.2%. Gamma irradiation causes only minor variations in the intensities of the characteristic IR borate bands while the bands at about 1640 cm−1 and 3450 cm−1 reveal distinct growth in most samples.

  1. Printing, folding and assembly methods for forming 3D mesostructures in advanced materials

    Science.gov (United States)

    Zhang, Yihui; Zhang, Fan; Yan, Zheng; Ma, Qiang; Li, Xiuling; Huang, Yonggang; Rogers, John A.

    2017-03-01

    A rapidly expanding area of research in materials science involves the development of routes to complex 3D structures with feature sizes in the mesoscopic range (that is, between tens of nanometres and hundreds of micrometres). A goal is to establish methods for controlling the properties of materials systems and the function of devices constructed with them, not only through chemistry and morphology, but also through 3D architectures. The resulting systems, sometimes referred to as metamaterials, offer engineered behaviours with optical, thermal, acoustic, mechanical and electronic properties that do not occur in the natural world. Impressive advances in 3D printing techniques represent some of the most broadly recognized developments in this field, but recent successes with strategies based on concepts in origami, kirigami and deterministic assembly provide additional, unique options in 3D design and high-performance materials. In this Review, we highlight the latest progress and trends in methods for fabricating 3D mesostructures, beginning with the development of advanced material inks for nozzle-based approaches to 3D printing and new schemes for 3D optical patterning. In subsequent sections, we summarize more recent methods based on folding, rolling and mechanical assembly, including their application with materials such as designer hydrogels, monocrystalline inorganic semiconductors and graphene.

  2. New Optical Scanning Tomography using a rotating slicing for time-resolved measurements of 3D full field displacements in structures

    Science.gov (United States)

    Morandi, P.; Brémand, F.; Doumalin, P.; Germaneau, A.; Dupré, J. C.

    2014-07-01

    In this paper, a new optical tomography process is presented. It has been developed for time-resolved measurement of kinematic fields in the whole volume of structure. This new process is based on the scan of the specimen by a plane laser beam submitted to a motion of rotation. Calibration and reconstruction steps have been established and are described in this document. Acquisition is achieved by illuminating successive slices in the specimen using a rotating plane laser beam and data are recorded with a single CCD camera. The recorded volumes are analyzed by Digital Volume Correlation to measure the three displacement components in the bulk. This new acquisition process is assessed by performing sub-voxel rigid body translations along the three axes. We discuss the quality of a reconstructed volume and also the measurement accuracy in terms of mean error and standard deviation through rigid body displacement tests. Results are compared with those obtained using classical Optical Scanning Tomography (OST) and using X-ray Tomography.

  3. Stereoscopic reconstruction of 3D PIV data in T-junction with circular profile

    Directory of Open Access Journals (Sweden)

    Jašíková D.

    2013-04-01

    Full Text Available In this paper experimental study of flow in T-junction using 3D PIV method is presented. Motion of seeding particles was recorded by a pair of suitably located cameras in precisely defined cross sections of the junction. Based on this information, three-dimensional model of flow in different sections of junction was reconstructed. The reconstruction results from the projection matrixes of each camera, which are obtained from positions of objects in the scene and their projection positions in the image plane. Standard 3D PIV reconstruction was rejected, because of optical distortion in T-Junction.

  4. Towards next generation 3D cameras

    Science.gov (United States)

    Gupta, Mohit

    2017-03-01

    We are in the midst of a 3D revolution. Robots enabled by 3D cameras are beginning to autonomously drive cars, perform surgeries, and manage factories. However, when deployed in the real-world, these cameras face several challenges that prevent them from measuring 3D shape reliably. These challenges include large lighting variations (bright sunlight to dark night), presence of scattering media (fog, body tissue), and optically complex materials (metal, plastic). Due to these factors, 3D imaging is often the bottleneck in widespread adoption of several key robotics technologies. I will talk about our work on developing 3D cameras based on time-of-flight and active triangulation that addresses these long-standing problems. This includes designing `all-weather' cameras that can perform high-speed 3D scanning in harsh outdoor environments, as well as cameras that recover shape of objects with challenging material properties. These cameras are, for the first time, capable of measuring detailed (<100 microns resolution) scans in extremely demanding scenarios with low-cost components. Several of these cameras are making a practical impact in industrial automation, being adopted in robotic inspection and assembly systems.

  5. Modeling the Effects of Solar Cell Attitude Distribution on Optical Cross Section for Solar Panel Simulations

    Science.gov (United States)

    Feirstine, K.; Bush, K.; Crosher, C.; Klein, M.; Bowers, D.; Wellems, D.; Duggin, M.; Vaughn, L.

    2012-09-01

    The Air Force Research Laboratory (AFRL) Time-domain Analysis Simulation for Advanced Tracking (TASAT) was used to explore the variation of Optical Cross Section (OCS) with glint angle for a solar panel with different solar cell attitude distribution statistics. Simulations were conducted using a 3D model of a solar panel with various solar cell tip and tilt distribution statistics. Modeling a solar panel as a single sheet of "solar cell" material is not appropriate for OCS glint studies. However, modeling each individual solar cell on the panel, the tips and tilts of which come from a distribution of specified statistics (distribution type, mean, and standard deviation), accurately captures the solar panel OCS with glint angle. The objective of the simulations was to vary the glint measurement angle about the maximum glint position of the solar panel and observe the variations in OCS with angle for a bi-static illumination condition. OCS was calculated relative to the simulated scattering of a Spectralon material in the glint orientation. Results show the importance of solar cell attitude distribution statistics in modeling the OCS observed for a solar panel.

  6. Optical colours and spectral indices of z = 0.1 eagle galaxies with the 3D dust radiative transfer code skirt

    Science.gov (United States)

    Trayford, James W.; Camps, Peter; Theuns, Tom; Baes, Maarten; Bower, Richard G.; Crain, Robert A.; Gunawardhana, Madusha L. P.; Schaller, Matthieu; Schaye, Joop; Frenk, Carlos S.

    2017-09-01

    We present mock optical images, broad-band and H α fluxes, and D4000 spectral indices for 30 145 galaxies from the eagle hydrodynamical simulation at redshift z = 0.1, modelling dust with the skirt Monte Carlo radiative transfer code. The modelling includes a subgrid prescription for dusty star-forming regions, with both the subgrid obscuration of these regions and the fraction of metals in diffuse interstellar dust calibrated against far-infrared fluxes of local galaxies. The predicted optical colours as a function of stellar mass agree well with observation, with the skirt model showing marked improvement over a simple dust-screen model. The orientation dependence of attenuation is weaker than observed because eagle galaxies are generally puffier than real galaxies, due to the pressure floor imposed on the interstellar medium (ISM). The mock H α luminosity function agrees reasonably well with the data, and we quantify the extent to which dust obscuration affects observed H α fluxes. The distribution of D4000 break values is bimodal, as observed. In the simulation, 20 per cent of galaxies deemed 'passive' for the skirt model, i.e. exhibiting D4000 >1.8, are classified 'active' when ISM dust attenuation is not included. The fraction of galaxies with stellar mass greater than 1010 M⊙ that are deemed passive is slightly smaller than observed, which is due to low levels of residual star formation in these simulated galaxies. Colour images, fluxes and spectra of eagle galaxies are to be made available through the public eagle data base.

  7. 3D microfabrication technology

    Science.gov (United States)

    Tang, Esheng; FuTing, Yi; Tian, Yangchao; Liang, Jingqiu; Xian, Dingchang

    1998-08-01

    In the late of this century the great success of VSIC impacts into almost every fields of our social. Following this idea people starts to integrate microsensor microprocessor and microactuators into a small space to forming a Micro Electro and Mechanical System. Such small robot parts are applied to including satellites, computer communication, medical, chemical, biological and environment and so on research fields. The development of MEMS would strongly influence industrial revolution in the next century. LIGA technology including X-ray deep etching lithography; electroplating and plastic molding developed by Karlsruhe Nuclear Research Center, Germany since the beginning of 1980. Its advantages are: it could make three-dimensional microstructures with lateral dimension in several micron range and thickness of several hundred microns with sub-micron precision. In principle all kinds of materials such as polymer, metal and ceramic could be used as microcomponents and could be mass- produced by plastic molding to a commercially available fabrication. LIGA process has become one of the most promising Microfabrication technologies for producing micromechanical, microfluid and micro-optical elements. It opens an additional field in the microstructure market.

  8. Holography of 3d-3d correspondence at Large N

    OpenAIRE

    Gang, Dongmin; Kim, Nakwoo; Lee, Sangmin

    2014-01-01

    We study the physics of multiple M5-branes compactified on a hyperbolic 3-manifold. On the one hand, it leads to the 3d-3d correspondence which maps an N = 2 $$ \\mathcal{N}=2 $$ superconformal field theory to a pure Chern-Simons theory on the 3-manifold. On the other hand, it leads to a warped AdS 4 geometry in M-theory holographically dual to the superconformal field theory. Combining the holographic duality and the 3d-3d correspondence, we propose a conjecture for the large N limit of the p...

  9. Improving correlations between MODIS aerosol optical thickness and ground-based PM 2.5 observations through 3D spatial analyses

    Science.gov (United States)

    Hutchison, Keith D.; Faruqui, Shazia J.; Smith, Solar

    The Center for Space Research (CSR) continues to focus on developing methods to improve correlations between satellite-based aerosol optical thickness (AOT) values and ground-based, air pollution observations made at continuous ambient monitoring sites (CAMS) operated by the Texas commission on environmental quality (TCEQ). Strong correlations and improved understanding of the relationships between satellite and ground observations are needed to formulate reliable real-time predictions of air quality using data accessed from the moderate resolution imaging spectroradiometer (MODIS) at the CSR direct-broadcast ground station. In this paper, improvements in these correlations are demonstrated first as a result of the evolution in the MODIS retrieval algorithms. Further improvement is then shown using procedures that compensate for differences in horizontal spatial scales between the nominal 10-km MODIS AOT products and CAMS point measurements. Finally, airborne light detection and ranging (lidar) observations, collected during the Texas Air Quality Study of 2000, are used to examine aerosol profile concentrations, which may vary greatly between aerosol classes as a result of the sources, chemical composition, and meteorological conditions that govern transport processes. Further improvement in correlations is demonstrated with this limited dataset using insights into aerosol profile information inferred from the vertical motion vectors in a trajectory-based forecast model. Analyses are ongoing to verify these procedures on a variety of aerosol classes using data collected by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (Calipso) lidar.

  10. Optical and electrochemical dual channel sensing of Cu2 + using functionalized furo[2,3-d]pyrimidines-2,4[1H,3H]-diones

    Science.gov (United States)

    Kumar, Manoj; Kumawat, Lokesh Kumar; Bhatt, Priyanka; Jha, Anjali; Agarwal, Shilpi; Sharma, Anuj; Gupta, Vinod Kumar

    2017-06-01

    Owing to their easy accessibility and high degree of structural and functional diversity, many multicomponent reactions (MCRs) have been a rich source of conjugate π-systems, functionalised chromophores (or fluorophore) and redox active molecules. Despite their high explorative potential and practical benefits, only a few MCR products have been so far investigated for their metal sensing abilities. In the present report, two furopyrimidinones (FPys) based molecular systems have been synthesized by [4 + 1] cycloaddition based MCR sequence. Designed chemosensors displayed optic (absorption spectra) as well as electroanalytical (ion selective electrode) response toward Cu2 + ion in solution and membrane phase respectively (dual channel sensing). Different aspects of both the sensing phenomena such as selectivity, association constants, detection limit, membrane composition etc. were studied in detail using UV-Vis spectroscopy, NMR titration and cell assembly. Both the compounds showed excellent performance characteristics such as high selectivity, acceptable affinity and low detection limits (10- 7 M) in both sensing assays with potential utility in the area of sample monitoring.

  11. A 3D-Printed, Portable, Optical-Sensing Platform for Smartphones Capable of detecting the Herbicide 2,4-Dichlorophenoxyacetic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yijia; Zeinhom, Mohamed M.; Yang, Mingming; Sun, Rongrong; Wang, Shenfu; Smith, Jordan N.; Timchalk, Charles; Li, Lei; Lin, Yuehe; Du, Dan

    2017-09-05

    Onsite rapid detection of herbicide and herbicide residuals in environmental and biological specimens is important for agriculture, environment, food safety, and health care. Traditional method for herbicide detection requires expensive laboratory equipment and a long turn-round time. In this work, we developed a single-stripe microliter plate smartphone colorimetric device for rapid and low-cost in-field test. This portable smartphone platform is capable of screening 8 samples in a microplate single-stripe. The device combined the advantages of small size (50×100×160 mm3) and low cost ($10). The platform was calibrated by using two different dye solutions, i.e. methyl blue (MB) and Rhodamine B, for green and red channels. The results showed good correlation with results attained from a traditional laboratory reader. We demonstrated the application of this platform for an herbicide, 2,4-Dichlorophenoxyacetic acid detection in the range of 1 ppb to 80 ppb. Spiked samples of tap water, rat serum, plasma and human serum were tested by our device. Recoveries obtained varied from 95.6% to 105.2% for all spiked samples using the microplate reader and from 93.7% to 106.9% using the smartphone device. This work validated that the smartphone optical sensing platform is comparable to the commercial microplate reader, it is eligible for onsite rapid and low-cost detection of herbicide for environmental evaluation and biological monitoring.

  12. Long-range and wide field of view optical coherence tomography for in vivo 3D imaging of large volume object based on akinetic programmable swept source.

    Science.gov (United States)

    Song, Shaozhen; Xu, Jingjiang; Wang, Ruikang K

    2016-11-01

    Current optical coherence tomography (OCT) imaging suffers from short ranging distance and narrow imaging field of view (FOV). There is growing interest in searching for solutions to these limitations in order to expand further in vivo OCT applications. This paper describes a solution where we utilize an akinetic swept source for OCT implementation to enable ~10 cm ranging distance, associated with the use of a wide-angle camera lens in the sample arm to provide a FOV of ~20 x 20 cm(2). The akinetic swept source operates at 1300 nm central wavelength with a bandwidth of 100 nm. We propose an adaptive calibration procedure to the programmable akinetic light source so that the sensitivity of the OCT system over ~10 cm ranging distance is substantially improved for imaging of large volume samples. We demonstrate the proposed swept source OCT system for in vivo imaging of entire human hands and faces with an unprecedented FOV (up to 400 cm(2)). The capability of large-volume OCT imaging with ultra-long ranging and ultra-wide FOV is expected to bring new opportunities for in vivo biomedical applications.

  13. How well can pelvic floor muscles with major defects contract? A cross-sectional comparative study 6 weeks after delivery using transperineal 3D/4D ultrasound and manometer.

    Science.gov (United States)

    Hilde, G; Staer-Jensen, J; Siafarikas, F; Gjestland, K; Ellström Engh, M; Bø, K

    2013-10-01

    To investigate ability to contract, vaginal resting pressure (VRP), pelvic floor muscle (PFM) strength and PFM endurance 6 weeks after vaginal delivery in primiparous women, with and without major defects of the levator ani (LA) muscle. Cross-sectional comparative study. Akershus University Hospital, Norway. A cohort of 175 singleton primiparous women delivering vaginally after more than 32 weeks of gestation. Major LA defects were assessed by 3D/4D transperineal ultrasound at maximal PFM contraction, using tomographic imaging. VRP, PFM strength and PFM endurance were measured vaginally by manometer. Data were analysed by independent-samples Student's t test, chi-square test, and standard multiple and simple linear regression. VRP, PFM strength and PFM endurance. Of the women included in the study, 4% were not able to contract their PFM 6 weeks after delivery. Women with major LA defects (n = 55) had 47% lower PFM strength and 47% lower endurance when compared with women without major LA defects (n = 120). Mean differences were 7.5 cmH2O (95% CI 5.1-9.9, P VRP (P = 0.670). Women with major LA defects after vaginal delivery had pronounced lower PFM strength and endurance than women without such defects; however, most women with major LA defects were able to contract the PFM. This indicates a potential capacity by non-injured muscle fibres to compensate for loss in muscle strength, even at an early stage after delivery. © 2013 RCOG.

  14. Three-Dimensional Human Cardiac Tissue Engineered by Centrifugation of Stacked Cell Sheets and Cross-Sectional Observation of Its Synchronous Beatings by Optical Coherence Tomography.

    Science.gov (United States)

    Haraguchi, Yuji; Hasegawa, Akiyuki; Matsuura, Katsuhisa; Kobayashi, Mari; Iwana, Shin-Ichi; Kabetani, Yasuhiro; Shimizu, Tatsuya

    2017-01-01

    Three-dimensional (3D) tissues are engineered by stacking cell sheets, and these tissues have been applied in clinical regenerative therapies. The optimal fabrication technique of 3D human tissues and the real-time observation system for these tissues are important in tissue engineering, regenerative medicine, cardiac physiology, and the safety testing of candidate chemicals. In this study, for aiming the clinical application, 3D human cardiac tissues were rapidly fabricated by human induced pluripotent stem (iPS) cell-derived cardiac cell sheets with centrifugation, and the structures and beatings in the cardiac tissues were observed cross-sectionally and noninvasively by two optical coherence tomography (OCT) systems. The fabrication time was reduced to approximately one-quarter by centrifugation. The cross-sectional observation showed that multilayered cardiac cell sheets adhered tightly just after centrifugation. Additionally, the cross-sectional transmissions of beatings within multilayered human cardiac tissues were clearly detected by OCT. The observation showed the synchronous beatings of the thicker 3D human cardiac tissues, which were fabricated rapidly by cell sheet technology and centrifugation. The rapid tissue-fabrication technique and OCT technology will show a powerful potential in cardiac tissue engineering, regenerative medicine, and drug discovery research.

  15. The Engelbourg's ruins: from 3D TLS point cloud acquisition to 3D virtual and historic models

    Science.gov (United States)

    Koehl, Mathieu; Berger, Solveig; Nobile, Sylvain

    2014-05-01

    The Castle of Engelbourg was built at the beginning of the 13th century, at the top of the Schlossberg. It is situated on the territory of the municipality of Thann (France), at the crossroads of Alsace and Lorraine, and dominates the outlet of the valley of Thur. Its strategic position was one of the causes of its systematic destructions during the 17th century, and Louis XIV finished his fate by ordering his demolition in 1673. Today only few vestiges remain, of which a section of the main tower from about 7m of diameter and 4m of wide laying on its slice, unique characteristic in the regional castral landscape. It is visible since the valley, was named "the Eye of the witch", and became a key attraction of the region. The site, which extends over approximately one hectare, is for several years the object of numerous archaeological studies and is at the heart of a project of valuation of the vestiges today. It was indeed a key objective, among the numerous planned works, to realize a 3D model of the site in its current state, in other words, a virtual model "such as seized", exploitable as well from a cultural and tourist point of view as by scientists and in archaeological researches. The team of the ICube/INSA lab had in responsibility the realization of this model, the acquisition of the data until the delivery of the virtual model, thanks to 3D TLS and topographic surveying methods. It was also planned to integrate into this 3D model, data of 2D archives, stemming from series of former excavations. The objectives of this project were the following ones: • Acquisition of 3D digital data of the site and 3D modelling • Digitization of the 2D archaeological data and integration in the 3D model • Implementation of a database connected to the 3D model • Virtual Visit of the site The obtained results allowed us to visualize every 3D object individually, under several forms (point clouds, 3D meshed objects and models, etc.) and at several levels of detail

  16. 3D Spectroscopy in Astronomy

    Science.gov (United States)

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco

    2011-09-01

    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  17. Spherical 3D isotropic wavelets

    Science.gov (United States)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2012-04-01

    Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html

  18. 3D IBFV : Hardware-Accelerated 3D Flow Visualization

    NARCIS (Netherlands)

    Telea, Alexandru; Wijk, Jarke J. van

    2003-01-01

    We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique for 2D flow visualization in two main directions. First, we decompose the 3D flow visualization problem in a

  19. 3D Elevation Program—Virtual USA in 3D

    Science.gov (United States)

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  20. A 3-D Contextual Classifier

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    1997-01-01

    . This includes the specification of a Gaussian distribution for the pixel values as well as a prior distribution for the configuration of class variables within the cross that is m ade of a pixel and its four nearest neighbours. We will extend this algorithm to 3-D, i.e. we will specify a simultaneous Gaussian...... distr ibution for a pixel and its 6 nearest 3-D neighbours, and generalise the class variable configuration distribution within the 3-D cross. The algorithm is tested on a synthetic 3-D multivariate dataset....