WorldWideScience

Sample records for 3d observer variation

  1. Generalized Method of Variational Analysis for 3-D Flow

    Institute of Scientific and Technical Information of China (English)

    兰伟仁; 黄思训; 项杰

    2004-01-01

    The generalized method of variational analysis (GMVA) suggested for 2-D wind observations by Huang et al. is extended to 3-D cases. Just as in 2-D cases, the regularization idea is applied. But due to the complexity of the 3-D cases, the vertical vorticity is taken as a stable functional. The results indicate that wind observations can be both variationally optimized and filtered. The efficiency of GMVA is also checked in a numerical test. Finally, 3-D wind observations with random disturbances are manipulated by GMVA after being filtered.

  2. Dual Variational Principles for 3-D Navier-Stokes Equations

    Science.gov (United States)

    Liu, G. L.

    Just recently the exact variational principles (VP) of the full 3-D Navier-Stokes equations of viscous flow have been successfully established for the first time by the present author by means of a systematic reversed deduction method via the undetermined function. As a continuation and further development of that - a pair of new dual (reciprocal)VP is generated herein by means of the Friedrichs involutory transformation. These VP have the advantage over the previous ones that they possess apparent physical meaning of energy, providing a new rigorous theoretical basis for the finite element analysis of 3-D viscous flow.

  3. Variational regularization of 3D data experiments with Matlab

    CERN Document Server

    Montegranario, Hebert

    2014-01-01

    Variational Regularization of 3D Data provides an introduction to variational methods for data modelling and its application in computer vision. In this book, the authors identify interpolation as an inverse problem that can be solved by Tikhonov regularization. The proposed solutions are generalizations of one-dimensional splines, applicable to n-dimensional data and the central idea is that these splines can be obtained by regularization theory using a trade-off between the fidelity of the data and smoothness properties.As a foundation, the authors present a comprehensive guide to the necessary fundamentals of functional analysis and variational calculus, as well as splines. The implementation and numerical experiments are illustrated using MATLAB®. The book also includes the necessary theoretical background for approximation methods and some details of the computer implementation of the algorithms. A working knowledge of multivariable calculus and basic vector and matrix methods should serve as an adequat...

  4. 2D vs. 3D mammography observer study

    Science.gov (United States)

    Fernandez, James Reza F.; Hovanessian-Larsen, Linda; Liu, Brent

    2011-03-01

    Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using a mammography phantom was performed to compare traditional 2D mammography with this ne 3D mammography technique. In comparing 3D and 2D mammography there was no difference in calcification detection, and mass detection was better in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Given the limitations of the mammography phantom used, however, a clearer picture in comparing 3D and 2D mammography may be better acquired with the incorporation of human studies in the future.

  5. 2 types of spicules "observed" in 3D realistic models

    CERN Document Server

    Martínez-Sykora, Juan

    2010-01-01

    Realistic numerical 3D models of the outer solar atmosphere show two different kind of spicule-like phenomena, as also observed on the solar limb. The numerical models are calculated using the 2 types of spicules "observed" in 3D realistic models Oslo Staggered Code (OSC) to solve the full MHD equations with non-grey and NLTE radiative transfer and thermal conduction along the magnetic field lines. The two types of spicules arise as a natural result of the dynamical evolution in the models. We discuss the different properties of these two types of spicules, their differences from observed spicules and what needs to be improved in the models.

  6. Center-to-Limb Variation of Solar 3-D Hydrodynamical Simulations

    CERN Document Server

    Koesterke, L; Lambert, D L

    2008-01-01

    We examine closely the solar Center-to-Limb variation of continua and lines and compare observations with predictions from both a 3-D hydrodynamic simulation of the solar surface (provided by M. Asplund and collaborators) and 1-D model atmospheres. Intensities from the 3-D time series are derived by means of the new synthesis code ASSET, which overcomes limitations of previously available codes by including a consistent treatment of scattering and allowing for arbitrarily complex line and continuum opacities. In the continuum, we find very similar discrepancies between synthesis and observation for both types of model atmospheres. This is in contrast to previous studies that used a ``horizontally'' and time averaged representation of the 3-D model and found a significantly larger disagreement with observations. The presence of temperature and velocity fields in the 3-D simulation provides a significant advantage when it comes to reproduce solar spectral line shapes. Nonetheless, a comparison of observed and s...

  7. Interobserver variation in measurements of Cesarean scar defect and myometrium with 3D ultrasonography

    DEFF Research Database (Denmark)

    Madsen, Lene Duch; Glavind, Julie; Uldbjerg, Niels;

    -16 months after their first Cesarean section with 2D transvaginal sonography and had 3D volumes recorded. Two observers independently evaluated “off-line” each of the 3D volumes stored. Residual myometrial thickness (RMT) and Cesarean scar defect depth (D) was measured in the sagittal plane with an interval...... of Cesarean section scar size and residual myometrium needs further investigation.......Objectives: To evaluate the Cesarean scar defect depth and the residual myometrial thickness with 3-dimensional (3D) sonography concerning interobserver variation. Methods: Ten women were randomly selected from a larger cohort of Cesarean scar ultrasound evaluations. All women were examined 6...

  8. Protein 3D structure computed from evolutionary sequence variation.

    Directory of Open Access Journals (Sweden)

    Debora S Marks

    Full Text Available The evolutionary trajectory of a protein through sequence space is constrained by its function. Collections of sequence homologs record the outcomes of millions of evolutionary experiments in which the protein evolves according to these constraints. Deciphering the evolutionary record held in these sequences and exploiting it for predictive and engineering purposes presents a formidable challenge. The potential benefit of solving this challenge is amplified by the advent of inexpensive high-throughput genomic sequencing.In this paper we ask whether we can infer evolutionary constraints from a set of sequence homologs of a protein. The challenge is to distinguish true co-evolution couplings from the noisy set of observed correlations. We address this challenge using a maximum entropy model of the protein sequence, constrained by the statistics of the multiple sequence alignment, to infer residue pair couplings. Surprisingly, we find that the strength of these inferred couplings is an excellent predictor of residue-residue proximity in folded structures. Indeed, the top-scoring residue couplings are sufficiently accurate and well-distributed to define the 3D protein fold with remarkable accuracy.We quantify this observation by computing, from sequence alone, all-atom 3D structures of fifteen test proteins from different fold classes, ranging in size from 50 to 260 residues, including a G-protein coupled receptor. These blinded inferences are de novo, i.e., they do not use homology modeling or sequence-similar fragments from known structures. The co-evolution signals provide sufficient information to determine accurate 3D protein structure to 2.7-4.8 Å C(α-RMSD error relative to the observed structure, over at least two-thirds of the protein (method called EVfold, details at http://EVfold.org. This discovery provides insight into essential interactions constraining protein evolution and will facilitate a comprehensive survey of the universe of

  9. Protein 3D structure computed from evolutionary sequence variation.

    Science.gov (United States)

    Marks, Debora S; Colwell, Lucy J; Sheridan, Robert; Hopf, Thomas A; Pagnani, Andrea; Zecchina, Riccardo; Sander, Chris

    2011-01-01

    The evolutionary trajectory of a protein through sequence space is constrained by its function. Collections of sequence homologs record the outcomes of millions of evolutionary experiments in which the protein evolves according to these constraints. Deciphering the evolutionary record held in these sequences and exploiting it for predictive and engineering purposes presents a formidable challenge. The potential benefit of solving this challenge is amplified by the advent of inexpensive high-throughput genomic sequencing.In this paper we ask whether we can infer evolutionary constraints from a set of sequence homologs of a protein. The challenge is to distinguish true co-evolution couplings from the noisy set of observed correlations. We address this challenge using a maximum entropy model of the protein sequence, constrained by the statistics of the multiple sequence alignment, to infer residue pair couplings. Surprisingly, we find that the strength of these inferred couplings is an excellent predictor of residue-residue proximity in folded structures. Indeed, the top-scoring residue couplings are sufficiently accurate and well-distributed to define the 3D protein fold with remarkable accuracy.We quantify this observation by computing, from sequence alone, all-atom 3D structures of fifteen test proteins from different fold classes, ranging in size from 50 to 260 residues, including a G-protein coupled receptor. These blinded inferences are de novo, i.e., they do not use homology modeling or sequence-similar fragments from known structures. The co-evolution signals provide sufficient information to determine accurate 3D protein structure to 2.7-4.8 Å C(α)-RMSD error relative to the observed structure, over at least two-thirds of the protein (method called EVfold, details at http://EVfold.org). This discovery provides insight into essential interactions constraining protein evolution and will facilitate a comprehensive survey of the universe of protein structures

  10. 3D reconstruction methods of coronal structures by radio observations

    Science.gov (United States)

    Aschwanden, Markus J.; Bastian, T. S.; White, Stephen M.

    1992-01-01

    The ability to carry out the three dimensional (3D) reconstruction of structures in the solar corona would represent a major advance in the study of the physical properties in active regions and in flares. Methods which allow a geometric reconstruction of quasistationary coronal structures (for example active region loops) or dynamic structures (for example flaring loops) are described: stereoscopy of multi-day imaging observations by the VLA (Very Large Array); tomography of optically thin emission (in radio or soft x-rays); multifrequency band imaging by the VLA; and tracing of magnetic field lines by propagating electron beams.

  11. 3D Orbit Visualization for Earth-Observing Missions

    Science.gov (United States)

    Jacob, Joseph C.; Plesea, Lucian; Chafin, Brian G.; Weiss, Barry H.

    2011-01-01

    This software visualizes orbit paths for the Orbiting Carbon Observatory (OCO), but was designed to be general and applicable to any Earth-observing mission. The software uses the Google Earth user interface to provide a visual mechanism to explore spacecraft orbit paths, ground footprint locations, and local cloud cover conditions. In addition, a drill-down capability allows for users to point and click on a particular observation frame to pop up ancillary information such as data product filenames and directory paths, latitude, longitude, time stamp, column-average dry air mole fraction of carbon dioxide, and solar zenith angle. This software can be integrated with the ground data system for any Earth-observing mission to automatically generate daily orbit path data products in Google Earth KML format. These KML data products can be directly loaded into the Google Earth application for interactive 3D visualization of the orbit paths for each mission day. Each time the application runs, the daily orbit paths are encapsulated in a KML file for each mission day since the last time the application ran. Alternatively, the daily KML for a specified mission day may be generated. The application automatically extracts the spacecraft position and ground footprint geometry as a function of time from a daily Level 1B data product created and archived by the mission s ground data system software. In addition, ancillary data, such as the column-averaged dry air mole fraction of carbon dioxide and solar zenith angle, are automatically extracted from a Level 2 mission data product. Zoom, pan, and rotate capability are provided through the standard Google Earth interface. Cloud cover is indicated with an image layer from the MODIS (Moderate Resolution Imaging Spectroradiometer) aboard the Aqua satellite, which is automatically retrieved from JPL s OnEarth Web service.

  12. 3D Observation of GEMS by Electron Tomography

    Science.gov (United States)

    Matsuno, Junya; Miyake, Akira; Tsuchiyama, Akira; Nakamura-Messenger, Keiko; Messenger, Scott

    2014-01-01

    Amorphous silicates in chondritic porous interplanetary dust particles (CP-IDPs) coming from comets are dominated by glass with embedded metal and sulfides (GEMS). GEMS grains are submicron-sized rounded objects (typically 100-500) nm in diameter) with anaometer-sized (10-50 nm) Fe-Ni metal and sulfide grains embedded in an amorphous silicate matrix. Several formation processes for GEMS grains have been proposed so far, but these models are still being debated [2-5]. Bradley et al. proposed that GEMS grains are interstellar silicate dust that survived various metamorphism or alteration processes in the protoplanetary disk and that they are amorphiation products of crystalline silicates in the interstellar medium by sputter-deposition of cosmic ray irradiation, similar to space weathering [2,4]. This consideration is based on the observation of nano-sized crystals (approximately 10 nm) called relict grains in GEMS grains and their shapes are pseudomorphs to the host GEMS grains. On the other hand, Keller and Messenger proposed that most GEMS formed in the protoplanetary disk as condensates from high temperature gas [3,5]. This model is based on the fact that most GEMS grains have solar isotopic compositions and have extremely heterogeneous and non-solar elemental compositions. Keller and Messenger (2011) also reported that amorphous silicates in GEMS grains are surrounded by sulfide grains, which formed as sulfidization of metallic iron grains located on the GEMS surface. The previous studies were performed with 2D observation by using transmission electron microscopy (TEM) or scanning TEM (STEM). In order to understand the structure of GEMS grains described above more clearly, we observed 3D structure of GEMS grains by electron tomography using a TEM/STEM (JEM-2100F, JEOL) at Kyoto University. Electron tomography gives not only 3D structures but also gives higher spatial resolution (approximately a few nm) than that in conventional 2D image, which is restricted by

  13. Implementation of a fully 3D system model for brain SPECT with fan- beam-collimator OSEM reconstruction with 3D total variation regularization

    Science.gov (United States)

    Ye, Hongwei; Krol, Andrzej; Lipson, Edward D.; Lu, Yao; Xu, Yuesheng; Lee, Wei; Feiglin, David H.

    2007-03-01

    In order to improve tomographically reconstructed image quality, we have implemented a fully 3D reconstruction, using an ordered subsets expectation maximization (OSEM) algorithm for fan-beam collimator (FBC) SPECT, along with a volumetric system model-fan-volume system model (FVSM), a modified attenuation compensation, a 3D depth- and angle-dependent resolution and sensitivity correction, and a 3D total variation (TV) regularization. SPECT data were acquired in a 128x64 matrix, in 120 views with a circular orbit. The numerical Zubal brain phantom was used to simulate a FBC HMPAO Tc-99m brain SPECT scan, and a low noise and scatter-free projection dataset was obtained using the SimSET Monte Carlo package. A SPECT scan for a mini-Defrise phantom and brain HMPAO SPECT scans for five patients were acquired with a triple-head gamma camera (Triad 88) equipped with a low-energy high-resolution (LEHR) FBC. The reconstructed images, obtained using clinical filtered back projection (FBP), OSEM with a line-length system model (LLSM) and 3D TV regularization, and OSEM with FVSM and 3D TV regularization were quantitatively studied. Overall improvement in the image quality has been observed, including better axial and transaxial resolution, better integral uniformity, higher contrast-to-noise ration between the gray matter and the white matter, and better accuracy and lower bias in OSEM-FVSM, compared with OSEM-LLSM and clinical FBP.

  14. An experimental analysis for the impact of 3D variation assi- milation of satellite data on typhoon track simulation

    Institute of Scientific and Technical Information of China (English)

    XIE Hongqin; WU Zengmao; GAO Shanhong

    2004-01-01

    A series of test simulations are performed to evaluate the impact of satellite-derived meteorological data on numerical typhoon track prediction. Geostationary meteorological satellite (GMS-5) and NOAA's TIROS operational vertical sounder (TOVS) observations are used in the experiments. A three-dimensional variational (3D-Var) assimilation scheme is developed to assimilate the satellite data directly into the Penn State-NCAR nonhydrostatic meteorological model (MM5). Three-dimensional objective analysis fields based on the T213 results and conventional observations are employed as the background fields of the initialization. The comparisons of the simulated typhoon tracks are carried out, which correspond respectively to assimilate different kinds of satellite data. It is found that, compared with the experiment without satellite data assimilation, the 3D-Var assimilation schemes lead to significant improvements on typhoon track prediction. Track errors reduce from approximately 25% at 24 h to approximately 30% at 48 h for 3D-Var assimilation experiments.

  15. Developing a 3D constrained variational analysis method to obtain accurate gridded atmospheric vertical velocity and horizontal advections

    Science.gov (United States)

    Tang, S.; Zhang, M.

    2013-12-01

    Based on the constrained variational analysis (CVA) algorithm developed by Zhang and Lin (1997), a 3-dimensional (3D) version of CVA is developed. The new algorithm used gridded surface and TOA observations as constraints to adjust atmospheric state variables in each grid point to satisfy column-integrated mass, moisture and static energy conservation. From the process of adjustment a set of high-quality 3D large-scale forcing data (vertical velocity and horizontal advections) can be derived to drive Single-Column models (SCM), Cloud-Resolving Models (CRM) and Large-Eddy Simulations (LES) to evaluate and improve parameterizations. Since the 3D CVA can adjust gridded state variables from any data source with observed precipitation, radiation and surface fluxes, it also gives a potential possibility to use this algorithm in data assimilation system to assimilate precipitation and radiation data.

  16. MRI assessment of internal acoustic canal variations using 3D-FIESTA sequences.

    Science.gov (United States)

    Erdogan, Nezahat; Altay, Canan; Akay, Emrah; Karakas, Levent; Uluc, Engin; Mete, Berna; Oygen, Aysegul; Oyar, Orhan; Gelal, Fazıl; Songu, Murat; Katilmis, Huseyin; Calli, Cağlar

    2013-02-01

    Magnetic resonance imaging (MRI) of the internal acoustic canal is the standard diagnostic tool for a wide range of indications in patients. This study aims to investigate the vascular variations and compression of the cranial nerves (CNs) VII and VIII at the cerebellopontine angle in patients with neuro-otologic symptoms using 3D-fast imaging employing steady-state acquisition (FIESTA) MR imaging. One hundred and eighty-seven patients (374 temporal bones) were examined on a 1.5-T MRI. In addition to conventional MR sequences, a 3D-FIESTA MR imaging was acquired. Magnetic resonance images thus obtained were evaluated with special regard to the presence of vascular contact to the CNs VII and VIII, as well as the presence of the vascular variations of the anterior inferior cerebellar artery (AICA) causing the compression of CNs. The Chi-squared test was used for statistical analysis. No statistically significant differences were found between the presence and absence of the AICA loop and/or vascular contact for the clinical symptoms of patients (P > 0.05). The cisternal and canalicular segments of CNs VII and VIII and adjacent vascular variations are well identified using 3D-FIESTA, especially by determining the relationship of the AICA variations between CNs.

  17. Serum induced degradation of 3D DNA box origami observed by high speed atomic force microscope

    DEFF Research Database (Denmark)

    Jiang, Zaixing; Zhang, Shuai; Yang, Chuanxu;

    2015-01-01

    3D DNA origami holds tremendous potential to encapsulate and selectively release therapeutic drugs. Observations of real-time performance of 3D DNA origami structures in physiological environment will contribute much to its further applications. Here, we investigate the degradation kinetics of 3D...... DNA box origami in serum using high-speed atomic force microscope optimized for imaging 3D DNA origami in real time. The time resolution allows characterizing the stages of serum effects on individual 3D DNA box origami with nanometer resolution. Our results indicate that the whole digest process...... is a combination of a rapid collapse phase and a slow degradation phase. The damages of box origami mainly happen in the collapse phase. Thus, the structure stability of 3D DNA box origami should be further improved, especially in the collapse phase, before clinical applications...

  18. Confocal 3D DNA Cytometry: Assessment of Required Coefficient of Variation by Computer Simulation

    Directory of Open Access Journals (Sweden)

    Lennert S. Ploeger

    2004-01-01

    Full Text Available Background: Confocal Laser Scanning Microscopy (CLSM provides the opportunity to perform 3D DNA content measurements on intact cells in thick histological sections. So far, sample size has been limited by the time consuming nature of the technology. Since the power of DNA histograms to resolve different stemlines depends on both the sample size and the coefficient of variation (CV of histogram peaks, interpretation of 3D CLSM DNA histograms might be hampered by both a small sample size and a large CV. The aim of this study was to analyze the required CV for 3D CLSM DNA histograms given a realistic sample size. Methods: By computer simulation, virtual histograms were composed for sample sizes of 20000, 10000, 5000, 1000, and 273 cells and CVs of 30, 25, 20, 15, 10 and 5%. By visual inspection, the histogram quality with respect to resolution of G0/1 and G2/M peaks of a diploid stemline was assessed. Results: As expected, the interpretability of DNA histograms deteriorated with decreasing sample sizes and higher CVs. For CVs of 15% and lower, a clearly bimodal peak pattern with well distinguishable G0/1 and G2/M peaks were still seen at a sample size of 273 cells, which is our current average sample size with 3D CLSM DNA cytometry. Conclusions: For unambiguous interpretation of DNA histograms obtained using 3D CLSM, a CV of at most 15% is tolerable at currently achievable sample sizes. To resolve smaller near diploid stemlines, a CV of 10% or better should be aimed at. With currently available 3D imaging technology, this CV is achievable.

  19. 3D computation of non-linear eddy currents: Variational method and superconducting cubic bulk

    Science.gov (United States)

    Pardo, Enric; Kapolka, Milan

    2017-09-01

    Computing the electric eddy currents in non-linear materials, such as superconductors, is not straightforward. The design of superconducting magnets and power applications needs electromagnetic computer modeling, being in many cases a three-dimensional (3D) problem. Since 3D problems require high computing times, novel time-efficient modeling tools are highly desirable. This article presents a novel computing modeling method based on a variational principle. The self-programmed implementation uses an original minimization method, which divides the sample into sectors. This speeds-up the computations with no loss of accuracy, while enabling efficient parallelization. This method could also be applied to model transients in linear materials or networks of non-linear electrical elements. As example, we analyze the magnetization currents of a cubic superconductor. This 3D situation remains unknown, in spite of the fact that it is often met in material characterization and bulk applications. We found that below the penetration field and in part of the sample, current flux lines are not rectangular and significantly bend in the direction parallel to the applied field. In conclusion, the presented numerical method is able to time-efficiently solve fully 3D situations without loss of accuracy.

  20. Variation in the measurement of cranial volume and surface area using 3D laser scanning technology.

    Science.gov (United States)

    Sholts, Sabrina B; Wärmländer, Sebastian K T S; Flores, Louise M; Miller, Kevin W P; Walker, Phillip L

    2010-07-01

    Three-dimensional (3D) laser scanner models of human crania can be used for forensic facial reconstruction, and for obtaining craniometric data useful for estimating age, sex, and population affinity of unidentified human remains. However, the use of computer-generated measurements in a casework setting requires the measurement precision to be known. Here, we assess the repeatability and precision of cranial volume and surface area measurements using 3D laser scanner models created by different operators using different protocols for collecting and processing data. We report intraobserver measurement errors of 0.2% and interobserver errors of 2% of the total area and volume values, suggesting that observer-related errors do not pose major obstacles for sharing, combining, or comparing such measurements. Nevertheless, as no standardized procedure exists for area or volume measurements from 3D models, it is imperative to report the scanning and postscanning protocols employed when such measurements are conducted in a forensic setting.

  1. Application of 3D variation-density interface inversion of gravity anomalies in South China Sea

    Science.gov (United States)

    Li, Shuling; Meng, Xiaohong

    2017-04-01

    The South China Sea (SCS) is a marginal basin with extremely complicated crustal structure and whose evolutional history is associated with continental rifting and seafloor spreading. The gravity data are among the most important data sets for studying deep crustal structures and the tectonic evolution. Density interface inversion by gravity anomalies can effectively estimate the depth of Moho interface. However, the Moho interface inversion in SCS are facing challenges due to the density contract of crust-mantle vary in three dimensions, which are associated with the complicated crustal structure (co-existing oceanic crust, continental crust and transitional crust). The regular inversion methods always assume the density contract on both sides of the interface would be constant, which is quite unrealistic since actual strata densities vary both vertically and laterally. To meet the challenges of 3D variation of density in SCS, we present an improved 3D variation-density interface inversion of gravity anomalies based on Parker-Oldenburg method. We first construct two variation density models with exponential density-depth relationships, which expressed the variation of stratum density depending on the depth in oceanic and continental crust respectively. Meanwhile, to minimize multiple solutions for potential field inversion, we collect deep seismic sounding data and employ the gravity inversion by joint using seismic data to be constraint for depth of Moho. Finally, we have estimated the depth of Moho interface which infers the tectonic significance in SCS. The inversion results agree well with seismic data in SCS show this approach is more effective and precise to quantitative estimate the depth of interface. Keywords: South China Sea; Gravity anomalies; Density interface inversion;

  2. Comparison of 2D versus 3D mammography with screening cases: an observer study

    Science.gov (United States)

    Fernandez, James Reza; Deshpande, Ruchi; Hovanessian-Larsen, Linda; Liu, Brent

    2012-02-01

    Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using human studies collected from was performed to compare traditional 2D mammography with this new 3D mammography technique. A prior study using a mammography phantom revealed no difference in calcification detection, but improved mass detection in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Data for this current study is currently being obtained, and a full report should be available in the next few weeks.

  3. UAV Control on the Basis of 3D Landmark Bearing-Only Observations.

    Science.gov (United States)

    Karpenko, Simon; Konovalenko, Ivan; Miller, Alexander; Miller, Boris; Nikolaev, Dmitry

    2015-11-27

    The article presents an approach to the control of a UAV on the basis of 3D landmark observations. The novelty of the work is the usage of the 3D RANSAC algorithm developed on the basis of the landmarks' position prediction with the aid of a modified Kalman-type filter. Modification of the filter based on the pseudo-measurements approach permits obtaining unbiased UAV position estimation with quadratic error characteristics. Modeling of UAV flight on the basis of the suggested algorithm shows good performance, even under significant external perturbations.

  4. UAV Control on the Basis of 3D Landmark Bearing-Only Observations

    Directory of Open Access Journals (Sweden)

    Simon Karpenko

    2015-11-01

    Full Text Available The article presents an approach to the control of a UAV on the basis of 3D landmark observations. The novelty of the work is the usage of the 3D RANSAC algorithm developed on the basis of the landmarks’ position prediction with the aid of a modified Kalman-type filter. Modification of the filter based on the pseudo-measurements approach permits obtaining unbiased UAV position estimation with quadratic error characteristics. Modeling of UAV flight on the basis of the suggested algorithm shows good performance, even under significant external perturbations.

  5. MOND and IMF variations in early-type galaxies from $\\rm ATLAS^{3D}$

    CERN Document Server

    Tortora, C; Cardone, V F; Napolitano, N R; Jetzer, Ph

    2013-01-01

    MOdified Newtonian dynamics (MOND) represents a phenomenological alternative to dark matter (DM) for the missing mass problem in galaxies and clusters of galaxies. We analyze the central regions of a local sample of $\\sim 220$ early-type galaxies from the $\\rm ATLAS^{3D}$ survey, to see if the data can be reproduced without recourse to DM. We estimate dynamical masses in the MOND context through Jeans analysis, and compare to $\\rm ATLAS^{3D}$ stellar masses from stellar population synthesis. We find that the observed stellar mass--velocity dispersion relation is steeper than expected assuming MOND with a fixed stellar initial mass function (IMF) and a standard value for the acceleration parameter $a_{\\rm 0}$. Turning from the space of observables to model space, a) fixing the IMF, a universal value for $a_{\\rm 0}$ cannot be fitted, while, b) fixing $a_{\\rm 0}$ and leaving the IMF free to vary, we find that it is "lighter" (Chabrier-like) for low-dispersion galaxies, and "heavier" (Salpeter-like) for high disp...

  6. MOND and IMF variations in early-type galaxies from ATLAS3D

    Science.gov (United States)

    Tortora, C.; Romanowsky, A. J.; Cardone, V. F.; Napolitano, N. R.; Jetzer, Ph.

    2014-02-01

    Modified Newtonian Dynamics (MOND) represents a phenomenological alternative to dark matter (DM) for the missing mass problem in galaxies and clusters of galaxies. We analyse the central regions of a local sample of ˜220 early-type galaxies from the ATLAS3D survey, to see if the data can be reproduced without recourse to DM. We estimate dynamical masses in the MOND context through Jeans analysis and compare to ATLAS3D stellar masses from stellar population synthesis. We find that the observed stellar mass-velocity dispersion relation is steeper than expected assuming MOND with a fixed stellar initial mass function (IMF) and a standard value for the acceleration parameter a0. Turning from the space of observables to model space (a) fixing the IMF, a universal value for a0 cannot be fitted, while, (b) fixing a0 and leaving the IMF free to vary, we find that it is `lighter' (Chabrier like) for low-dispersion galaxies and `heavier' (Salpeter like) for high dispersions. This MOND-based trend matches inferences from Newtonian dynamics with DM and from the detailed analysis of spectral absorption lines, adding to the converging lines of evidence for a systematically varying IMF.

  7. Towards high resolution mapping of 3-D mesoscale dynamics from observations

    Directory of Open Access Journals (Sweden)

    B. Buongiorno Nardelli

    2012-10-01

    Full Text Available The MyOcean R&D project MESCLA (MEsoSCaLe dynamical Analysis through combined model, satellite and in situ data was devoted to the high resolution 3-D retrieval of tracer and velocity fields in the oceans, based on the combination of in situ and satellite observations and quasi-geostrophic dynamical models. The retrieval techniques were also tested and compared with the output of a primitive equation model, with particular attention to the accuracy of the vertical velocity field as estimated through the Q vector formulation of the omega equation. The project focused on a test case, covering the region where the Gulf Stream separates from the US East Coast. This work demonstrated that innovative methods for the high resolution mapping of 3-D mesoscale dynamics from observations can be used to build the next generations of operational observation-based products.

  8. Spatial Distribution of Nucleosynthesis Products in Cassiopeia A: Comparison Between Observations and 3D Explosion Models

    CERN Document Server

    Young, Patrick; Timmes, Francis X; Arnett, David; Fryer, Christopher L; Rockefeller, Gabriel; Hungerford, Aimee; Diehl, Steven; Bennett, Michael; Hirschi, Raphael; Pignatari, Marco; Herwig, Falk; Magkotsios, Georgios

    2008-01-01

    We examine observed heavy element abundances in the Cassiopeia A supernova remnant as a constraint on the nature of the Cas A supernova. We compare bulk abundances from 1D and 3D explosion models and spatial distribution of elements in 3D models with those derived from X-ray observations. We also examine the cospatial production of 26Al with other species. We find that the most reliable indicator of the presence of 26Al in unmixed ejecta is a very low S/Si ratio (~0.05). Production of N in O/S/Si-rich regions is also indicative. The biologically important element P is produced at its highest abundance in the same regions. Proxies should be detectable in supernova ejecta with high spatial resolution multiwavelength observations.

  9. Electric current in flares ribbons: from the standard model in 3D to observations

    CERN Document Server

    Janvier, Miho; Bommier, V; Schmieder, B; Démoulin, P; Pariat, E

    2014-01-01

    The paper presents for the first time a quantification of the photospheric electric current ribbon evolutions during an eruptive flare, accurately predicted by the standard 3D flare model. The standard flare model in 3D has been developed with the MHD code OHM, which models the evolution of an unstable flux rope. Through a series of paper, the model has been successful in explaining observational characteristics of eruptive flares, as well as the intrinsic 3D reconnection mechanism. Such a model also explains the increase of the photospheric currents as a consequence of the evolution of the coronal current layer where reconnection takes place. The photospheric footprints of the 3D current layer reveal a ribbon shape structure. In the present paper, the evolution of the current density is analyzed for the X-class flare that occurred on 15/02/2011 in AR 11158. We first describe the structural evolution of the high vertical current density regions derived with the UNNOFIT inversion code from magnetograms (HMI, e...

  10. A 3D shape retrieval method for orthogonal fringe projection based on a combination of variational image decomposition and variational mode decomposition

    Science.gov (United States)

    Li, Biyuan; Tang, Chen; Zhu, Xinjun; Chen, Xia; Su, Yonggang; Cai, Yuanxue

    2016-11-01

    The orthogonal fringe projection technique has as wide as long practical application nowadays. In this paper, we propose a 3D shape retrieval method for orthogonal composite fringe projection based on a combination of variational image decomposition (VID) and variational mode decomposition (VMD). We propose a new image decomposition model to extract the orthogonal fringe. Then we introduce the VMD method to separate the horizontal and vertical fringe from the orthogonal fringe. Lastly, the 3D shape information is obtained by the differential 3D shape retrieval method (D3D). We test the proposed method on a simulated pattern and two actual objects with edges or abrupt changes in height, and compare with the recent, related and advanced differential 3D shape retrieval method (D3D) in terms of both quantitative evaluation and visual quality. The experimental results have demonstrated the validity of the proposed method.

  11. 3D palaeogeographic reconstructions of the Phanerozoic versus sea-level and Sr-ratio variations

    Institute of Scientific and Technical Information of China (English)

    Christian Vérard; Cyril Hochard; Peter O. Baumgartner; Gérard M. Stamplfi

    2015-01-01

    AbstractA full global geodynamical model over 600 million years (Ma) has been de-veloped at the University of Lausanne during the past 20 years. We show herein how the 2D maps were converted into 3D (i.e., full hypsometry and bathymetry), using a heuristic-based approach. Although the synthetic topography may be viewed as relatively crude, it has the advantage of being applicable anywhere on the globe and at any geological time. The model allows estimating the sea-level changes throughout the Phanerozoic, with the possibility, for the ifrst time, to lfood accordingly continental areas. One of the most striking results is the good correlation with “measured” sea-level changes, implying that long-term variations are predominantly tectonically-driven. Volumes of mountain relief are also estimated through time and compared with strontium isotopic ratio (Sr-ratio), commonly thought to relfect mountain belt erosion. The tectonic impact upon the general Sr-ratio trend is shown herein for the ifrst time, although such inlfuence was long been inferred.

  12. Assessing endocranial variations in great apes and humans using 3D data from virtual endocasts.

    Science.gov (United States)

    Bienvenu, Thibaut; Guy, Franck; Coudyzer, Walter; Gilissen, Emmanuel; Roualdès, Georges; Vignaud, Patrick; Brunet, Michel

    2011-06-01

    Modern humans are characterized by their large, complex, and specialized brain. Human brain evolution can be addressed through direct evidence provided by fossil hominid endocasts (i.e. paleoneurology), or through indirect evidence of extant species comparative neurology. Here we use the second approach, providing an extant comparative framework for hominid paleoneurological studies. We explore endocranial size and shape differences among great apes and humans, as well as between sexes. We virtually extracted 72 endocasts, sampling all extant great ape species and modern humans, and digitized 37 landmarks on each for 3D generalized Procrustes analysis. All species can be differentiated by their endocranial shape. Among great apes, endocranial shapes vary from short (orangutans) to long (gorillas), perhaps in relation to different facial orientations. Endocranial shape differences among African apes are partly allometric. Major endocranial traits distinguishing humans from great apes are endocranial globularity, reflecting neurological reorganization, and features linked to structural responses to posture and bipedal locomotion. Human endocasts are also characterized by posterior location of foramina rotunda relative to optic canals, which could be correlated to lesser subnasal prognathism compared to living great apes. Species with larger brains (gorillas and humans) display greater sexual dimorphism in endocranial size, while sexual dimorphism in endocranial shape is restricted to gorillas, differences between males and females being at least partly due to allometry. Our study of endocranial variations in extant great apes and humans provides a new comparative dataset for studies of fossil hominid endocasts.

  13. Exact and variational solutions of 3D eigenmodes in high gain FELs [Exact and variational solutions of 3D eigenmodes in high gain free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Ming [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2000-05-18

    Exact solution and variational approximation of eigenmodes in high gain FELs are presented. These eigenmodes specify transverse profiles and exponential growth rates of the laser field before saturation. They are self-consistent solutions of coupled Maxwell–Vlasov equations describing FEL interaction taking into account the effects due to energy spread, emittance and betatron oscillations of the electron beam, as well as diffraction and optical guiding of the laser field. A new formalism of scaling is introduced and based on which solutions in various limiting cases are discussed. Additionally, a fitting formula is obtained from interpolating the variational solution for quick calculation of exponential growth rate of the fundamental mode.

  14. Real-time interactive 3D manipulation of particles viewed in two orthogonal observation planes

    DEFF Research Database (Denmark)

    Perch-Nielsen, I.; Rodrigo, P.J.; Glückstad, J.

    2005-01-01

    The generalized phase contrast (GPC) method has been applied to transform a single TEM00 beam into a manifold of counterpropagating-beam traps capable of real-time interactive manipulation of multiple microparticles in three dimensions (3D). This paper reports on the use of low numerical aperture...... (NA), non-immersion, objective lenses in an implementation of the GPC-based 3D trapping system. Contrary to high-NA based optical tweezers, the GPC trapping system demonstrated here operates with long working distance (>10 mm), and offers a wider manipulation region and a larger field of view...... for imaging through each of the two opposing objective lenses. As a consequence of the large working distance, simultaneous monitoring of the trapped particles in a second orthogonal observation plane is demonstrated. (C) 2005 Optical Society of America....

  15. 3D in situ observations of glass fibre/matrix interfacial debonding

    DEFF Research Database (Denmark)

    Martyniuk, Karolina; Sørensen, Bent F.; Modregger, Peter

    2013-01-01

    X-ray microtomography was used for 3D in situ observations of the evolution of fibre/matrix interfacial debonding. A specimen with a single fibre oriented perpendicular to the tensile direction was tested at a synchrotron facility using a special loading rig which allowed for applying a load...... transverse to the fibre. Three distinguishable damage stages were observed: (i) interfacial debond initiation at the free surface, (ii) debond propagation from the surface into the specimen and (iii) unstable debonding along the full length of the scanned volume. The high resolution microtomography provides...

  16. Expected IPS variations due to a disturbance described by a 3-D MHD model

    Science.gov (United States)

    Tappin, S. J.; Dryer, M.; Han, S. M.; Wu, S. T.

    1988-01-01

    The variations of interplanetary scintillation due to a disturbance described by a three-dimensional, time-dependent, MHD model of the interplanetary medium are calculated. The resulting simulated IPS maps are compared with observations of real disturbances and it is found that there is some qualitative agreement. It is concluded that the MHD model with a more realistic choice of input conditions would probably provide a useful description of many interplanetary disturbances.

  17. Observationally driven 3D MHD model of the solar corona above an active region

    CERN Document Server

    Bourdin, Ph -A; Peter, H

    2013-01-01

    Aims. The goal is to employ a 3D magnetohydrodynamics (MHD) model including spectral synthesis to model the corona in an observed solar active region. This will allow us to judge the merits of the coronal heating mechanism built into the 3D model. Methods. Photospheric observations of the magnetic field and horizontal velocities in an active region are used to drive our coronal simulation from the bottom. The currents induced by this heat the corona through Ohmic dissipation. Heat conduction redistributes the energy that is lost in the end through optically thin radiation. Based on the MHD model, we synthesized profiles of coronal emission lines which can be directly compared to actual coronal observations of the very same active region. Results. In the synthesized model data we find hot coronal loops which host siphon flows or which expand and lose mass through draining. These synthesized loops are at the same location as and show similar dynamics in terms of Doppler shifts to the observed structures. This m...

  18. Sedimentary basin effects in Seattle, Washington: Ground-motion observations and 3D simulations

    Science.gov (United States)

    Frankel, Arthur; Stephenson, William; Carver, David

    2009-01-01

    Seismograms of local earthquakes recorded in Seattle exhibit surface waves in the Seattle basin and basin-edge focusing of S waves. Spectral ratios of Swaves and later arrivals at 1 Hz for stiff-soil sites in the Seattle basin show a dependence on the direction to the earthquake, with earthquakes to the south and southwest producing higher average amplification. Earthquakes to the southwest typically produce larger basin surface waves relative to S waves than earthquakes to the north and northwest, probably because of the velocity contrast across the Seattle fault along the southern margin of the Seattle basin. S to P conversions are observed for some events and are likely converted at the bottom of the Seattle basin. We model five earthquakes, including the M 6.8 Nisqually earthquake, using 3D finite-difference simulations accurate up to 1 Hz. The simulations reproduce the observed dependence of amplification on the direction to the earthquake. The simulations generally match the timing and character of basin surface waves observed for many events. The 3D simulation for the Nisqually earth-quake produces focusing of S waves along the southern margin of the Seattle basin near the area in west Seattle that experienced increased chimney damage from the earthquake, similar to the results of the higher-frequency 2D simulation reported by Stephenson et al. (2006). Waveforms from the 3D simulations show reasonable agreement with the data at low frequencies (0.2-0.4 Hz) for the Nisqually earthquake and an M 4.8 deep earthquake west of Seattle.

  19. Observed 3D Structure, Generation, and Dissipation of Oceanic Mesoscale Eddies in the South China Sea

    Science.gov (United States)

    Zhang, Zhiwei; Tian, Jiwei; Qiu, Bo; Zhao, Wei; Chang, Ping; Wu, Dexing; Wan, Xiuquan

    2016-04-01

    Oceanic mesoscale eddies with horizontal scales of 50–300 km are the most energetic form of flows in the ocean. They are the oceanic analogues of atmospheric storms and are effective transporters of heat, nutrients, dissolved carbon, and other biochemical materials in the ocean. Although oceanic eddies have been ubiquitously observed in the world oceans since 1960s, our understanding of their three-dimensional (3D) structure, generation, and dissipation remains fragmentary due to lack of systematic full water-depth measurements. To bridge this knowledge gap, we designed and conducted a multi-months field campaign, called the South China Sea Mesoscale Eddy Experiment (S-MEE), in the northern South China Sea in 2013/2014. The S-MEE for the first time captured full-depth 3D structures of an anticyclonic and cyclonic eddy pair, which are characterized by a distinct vertical tilt of their axes. By observing the eddy evolution at an upstream versus downstream location and conducting an eddy energy budget analysis, the authors further proposed that generation of submesoscale motions most likely constitutes the dominant dissipation mechanism for the observed eddies.

  20. Weld line optimization on thermoplastic elastomer micro injection moulded components using 3D focus variation optical microscopy

    DEFF Research Database (Denmark)

    Hasnaes, F.B.; Elsborg, R.; Tosello, G.;

    2015-01-01

    The presented study investigates weld line depth development across a micro suspension ring. A focus variation microscope was used to obtain 3D images of the weld line area. Suspension rings produced with different micro injection moulding process parameters were examined to identify the correlat...

  1. Anatomical Variations of the Circle of Willis in Males and Females on 3D MR Angiograms

    Directory of Open Access Journals (Sweden)

    Kawther A. Hafez, Nahla M. Afifi, Fardous Z. Saudi

    2007-03-01

    Full Text Available Objective: The objective of the present work was to study the anatomical variations of the circle of Willis as regard its component vessels and their average diameters in a sample of adult Egyptians and to detect any sex-related differences in these variations. Material and Methods: One hundred and twenty adult patients were observed (60 males and 60 females. They all had problems unrelated to any ischemic or vascular diseases, so they were considered as healthy control, concerning the morphology of the circle of Willis. In addition, ten cadavers' brains were obtained from the Anatomy department, Faculty of Medicine Ain Shams University for examination of the circle of Willis and for detection of any variations. Results: The anatomical variations of the anterior part, posterior part and completeness of the circle were inspected. Also, the diameters of all component vessels were assessed. The results indicated that, the anterior part of the circle was completed in 70% males and 75% females of the study sample. No statistically significant difference was detected between sexes. The most common variant of the anterior part was the single anterior communicating artery followed by the hypoplastic or absent anterior communicating artery. The posterior part of the circle was completed in 44% males and 58% females. The most common variant was the bilateral posterior communicating arteries, followed by the unilateral posterior communicating artery. An entirely complete circle was found only in 45% of the entire population; and it was higher in the females than the in males. The vessels diameters were smaller in the females than in the males, except for the diameter of the posterior communicating artery. Cadavers' examination revealed six cases with complete circle, 3 cases of unilateral fetal posterior communicating and one case of absent posterior communicating artery. Conclusion: The present study showed the amazing great variability of the anatomy of

  2. 3-D microphysical model studies of Arctic denitrification: comparison with observations

    Directory of Open Access Journals (Sweden)

    S. Davies

    2005-01-01

    Full Text Available Simulations of Arctic denitrification using a 3-D chemistry-microphysics transport model are compared with observations for the winters 1994/1995, 1996/1997 and 1999/2000. The model of Denitrification by Lagrangian Particle Sedimentation (DLAPSE couples the full chemical scheme of the 3-D chemical transport model, SLIMCAT, with a nitric acid trihydrate (NAT growth and sedimentation scheme. We use observations from the Microwave Limb Sounder (MLS and Improved Limb Atmospheric Sounder (ILAS satellite instruments, the balloon-borne Michelsen Interferometer for Passive Atmospheric Sounding (MIPAS-B, and the in situ NOy instrument on-board the ER-2. As well as directly comparing model results with observations, we also assess the extent to which these observations are able to validate the modelling approach taken. For instance, in 1999/2000 the model captures the temporal development of denitrification observed by the ER-2 from late January into March. However, in this winter the vortex was already highly denitrified by late January so the observations do not provide a strong constraint on the modelled rate of denitrification. The model also reproduces the MLS observations of denitrification in early February 2000. In 1996/1997 the model captures the timing and magnitude of denitrification as observed by ILAS, although the lack of observations north of ~67° N make it difficult to constrain the actual timing of onset. The comparison for this winter does not support previous conclusions that denitrification must be caused by an ice-mediated process. In 1994/1995 the model notably underestimates the magnitude of denitrification observed during a single balloon flight of the MIPAS-B instrument. Agreement between model and MLS HNO3 at 68 hPa in mid-February 1995 was significantly better. Sensitivity tests show that a 1.5 K overall decrease in vortex temperatures or a factor 4 increase in assumed NAT nucleation rates produce the best

  3. 3-D microphysical model studies of Arctic denitrification: comparison with observations

    Directory of Open Access Journals (Sweden)

    S. Davies

    2005-01-01

    Full Text Available Simulations of Arctic denitrification using a 3-D chemistry-microphysics transport model are compared with observations for the winters 1994/95, 1996/97 and 1999/2000. The model of Denitrification by Lagrangian Particle Sedimentation (DLAPSE couples the full chemical scheme of the 3-D chemical transport model, SLIMCAT, with a nitric acid trihydrate (NAT growth and sedimentation scheme. We use observations from the Microwave Limb Sounder (MLS and Improved Limb Atmospheric Sounder (ILAS satellite instruments, the balloon-borne Michelsen Interferometer for Passive Atmospheric Sounding (MIPAS-B, and the in situ NOy instrument on-board the ER-2. As well as directly comparing model results with observations, we also assess the extent to which these observations are able to validate the modelling approach taken. For instance, in 1999/2000 the model captures the temporal development of denitrification observed by the ER-2 from late January into March. However, in this winter the vortex was already highly denitrified by late January so the observations do not provide a strong constraint on the modelled rate of denitrification. The model also reproduces the MLS observations of denitrification in early February 2000. In 1996/97 the model captures the timing and magnitude of denitrification as observed by ILAS, although the lack of observations north of ~67° N in the beginning of February make it difficult to constrain the actual timing of onset. The comparison for this winter does not support previous conclusions that denitrification must be caused by an ice-mediated process. In 1994/95 the model notably underestimates the magnitude of denitrification observed during a single balloon flight of the MIPAS-B instrument. Agreement between model and MLS HNO3 at 68 hPa in mid-February 1995 is significantly better. Sensitivity tests show that a 1.5 K overall decrease in vortex temperatures, or a factor 4 increase in assumed NAT nucleation rates, produce the best

  4. KAGLVis - On-line 3D Visualisation of Earth-observing-satellite Data

    Science.gov (United States)

    Szuba, Marek; Ameri, Parinaz; Grabowski, Udo; Maatouki, Ahmad; Meyer, Jörg

    2015-04-01

    One of the goals of the Large-Scale Data Management and Analysis project is to provide a high-performance framework facilitating management of data acquired by Earth-observing satellites such as Envisat. On the client-facing facet of this framework, we strive to provide visualisation and basic analysis tool which could be used by scientists with minimal to no knowledge of the underlying infrastructure. Our tool, KAGLVis, is a JavaScript client-server Web application which leverages modern Web technologies to provide three-dimensional visualisation of satellite observables on a wide range of client systems. It takes advantage of the WebGL API to employ locally available GPU power for 3D rendering; this approach has been demonstrated to perform well even on relatively weak hardware such as integrated graphics chipsets found in modern laptop computers and with some user-interface tuning could even be usable on embedded devices such as smartphones or tablets. Data is fetched from the database back-end using a ReST API and cached locally, both in memory and using HTML5 Web Storage, to minimise network use. Computations, calculation of cloud altitude from cloud-index measurements for instance, can depending on configuration be performed on either the client or the server side. Keywords: satellite data, Envisat, visualisation, 3D graphics, Web application, WebGL, MEAN stack.

  5. The 3D structure of an active region filament as extrapolated from photospheric and chromospheric observations

    CERN Document Server

    Chaouche, L Yelles; Pillet, V Martínez; Moreno-Insertis, F

    2012-01-01

    The 3D structure of an active region (AR) filament is studied using nonlinear force-free field (NLFFF) extrapolations based on simultaneous observations at a photospheric and a chromospheric height. To that end, we used the Si I 10827 \\AA\\ line and the He I 10830 \\AA\\ triplet obtained with the Tenerife Infrared Polarimeter (TIP) at the VTT (Tenerife). The two extrapolations have been carried out independently from each other and their respective spatial domains overlap in a considerable height range. This opens up new possibilities for diagnostics in addition to the usual ones obtained through a single extrapolation from, typically, a photospheric layer. Among those possibilities, this method allows the determination of an average formation height of the He I 10830 \\AA\\ signal of \\approx 2 Mm above the surface of the sun. It allows, as well, to cross-check the obtained 3D magnetic structures in view of verifying a possible deviation from the force- free condition especially at the photosphere. The extrapolati...

  6. 3-d Circulation In The PalamÓs Canyon: Observations and Modeling

    Science.gov (United States)

    Pascual, A.; Jordi, A.; Marcos, M.; Ruiz, S.; Basterretxea, G.; Gomis, D.; Emelianov, M.; Martín, J.; Font, J.; Tintoré, J.; Palanques, A.

    Along the northeast Spanish coast the Northern current interacts with abrupt canyon topography. Previous studies in the region have shown some evidences of flow modi- fications (in terms of meanders, eddies, shelf-slope exchanges) that are likely related to the presence of the canyons. Moreover, these canyons are known to be areas of en- hanced biological production compared to the surrounding shelf. However, the physi- cal mechanisms governing this increased activity are poorly understood since most of the existing samplings are too coarse for an accurate inference of dynamical variables. In this work we present results from an intensive field study (CAÑONES II) in the Palamós Canyon, which took place between 24 and 31 May 2001. An area of 80x70 km2 was covered by CTD stations separated 4 km just over the canyon (a subdomain of 25x40 km2) and 8 km elsewhere. The data were interpolated onto a regular grid and the quasi-geostrophic 3D circulation was computed. The horizontal geostrophic velocity is in good agreement with ADCP and current-meter observations. Down- welling occurs in the upstream wall of the canyon whereas vertical upward velocities of up to 50 m/day are obtained in the canyon axis. The relative importance of strati- fication and relative vorticity in the Rossby-Ertel potential vorticity is also examined along selected isopycnals, in order to understand the physical mechanisms governing the observed circulation. Particle trajectories were also computed from the 3D velocity field (assumed to be stationary) with the aim to understand the possible implications of these physical features on the marine ecosystem. All the inferred circulation features have been compared with numerical simulations obtained from a primitive equation coastal ocean model initialized with the in situ observed data.

  7. Observation of Majorization Principle for quantum algorithms via 3-D integrated photonic circuits

    CERN Document Server

    Flamini, Fulvio; Giordani, Taira; Bentivegna, Marco; Spagnolo, Nicoló; Crespi, Andrea; Corrielli, Giacomo; Osellame, Roberto; Martin-Delgado, Miguel Angel; Sciarrino, Fabio

    2016-01-01

    The Majorization Principle is a fundamental statement governing the dynamics of information processing in optimal and efficient quantum algorithms. While quantum computation can be modeled to be reversible, due to the unitary evolution undergone by the system, these quantum algorithms are conjectured to obey a quantum arrow of time dictated by the Majorization Principle: the probability distribution associated to the outcomes gets ordered step-by-step until achieving the result of the computation. Here we report on the experimental observation of the effects of the Majorization Principle for two quantum algorithms, namely the quantum fast Fourier transform and a recently introduced validation protocol for the certification of genuine many-boson interference. The demonstration has been performed by employing integrated 3-D photonic circuits fabricated via femtosecond laser writing technique, which allows to monitor unambiguously the effects of majorization along the execution of the algorithms. The measured ob...

  8. A 3-D variational assimilation scheme in coupled transport-biogeochemical models: Forecast of Mediterranean biogeochemical properties.

    Science.gov (United States)

    Teruzzi, Anna; Dobricic, Srdjan; Solidoro, Cosimo; Cossarini, Gianpiero

    2014-01-01

    [1] Increasing attention is dedicated to the implementation of suitable marine forecast systems for the estimate of the state of the ocean. Within the framework of the European MyOcean infrastructure, the pre-existing short-term Mediterranean Sea biogeochemistry operational forecast system has been upgraded by assimilating remotely sensed ocean color data in the coupled transport-biogeochemical model OPATM-BFM using a 3-D variational data assimilation (3D-VAR) procedure. In the present work, the 3D-VAR scheme is used to correct the four phytoplankton functional groups included in the OPATM-BFM in the period July 2007 to September 2008. The 3D-VAR scheme decomposes the error covariance matrix using a sequence of different operators that account separately for vertical covariance, horizontal covariance, and covariance among biogeochemical variables. The assimilation solution is found in a reduced dimensional space, and the innovation for the biogeochemical variables is obtained by the sequential application of the covariance operators. Results show a general improvement in the forecast skill, providing a correction of the basin-scale bias of surface chlorophyll concentration and of the local-scale spatial and temporal dynamics of typical bloom events. Further, analysis of the assimilation skill provides insights into the functioning of the model. The computational costs of the assimilation scheme adopted are low compared to other assimilation techniques, and its modular structure facilitates further developments. The 3D-VAR scheme results especially suitable for implementation within a biogeochemistry operational forecast system.

  9. Tidal dynamics of the Terminos Lagoon, Mexico: observations and 3D numerical modelling

    Science.gov (United States)

    Contreras Ruiz Esparza, Adolfo; Douillet, Pascal; Zavala-Hidalgo, Jorge

    2014-09-01

    The tidal circulation patterns in the Terminos Lagoon were studied based on the analysis of 1 year of measurements and numerical simulations using a baroclinic 3D hydrodynamic model, the MARS3D. A gauging network was installed consisting of six self-recording pressure-temperature sensors, a tide gauge station and two current profilers, with pressure and temperature sensors moored in the main lagoon inlets. Model simulations were validated against current and sea level observations and were used to analyse the circulation patterns caused by the tidal forcing. The numerical model was forced with eight harmonic components, four diurnal ( K 1, O 1, P 1, Q 1) and four semi-diurnal ( M 2, S 2, N 2, K 2), extracted from the TPX0.7 database. The tidal patterns in the study area vary from mixed, mainly diurnal in the two main inlets of the lagoon, to diurnal in its interior. The tidal residual circulation inside the lagoon is dominated by a cyclonic gyre. The results indicate a net flux from the southwest Ciudad del Carmen inlet (CdC) towards the northeast Puerto Real inlet (PtR) along the southern side of the lagoon and the opposite in the northern side. The results indicate two areas of strong currents in the vicinity of the inlets and weak currents inside the lagoon. The area of strong currents in the vicinity of the CdC inlet is larger than that observed in the PtR inlet. Nevertheless, the current analysis indicates that the highest current speeds, which can reach a magnitude of 1.9 m s-1, occurred in PtR. A further analysis of the tide distortion in the inlets revealed that both passages are ebb dominated.

  10. Does spatial variation in environmental conditions affect recruitment? A study using a 3-D model of Peruvian anchovy

    Science.gov (United States)

    Xu, Yi; Rose, Kenneth A.; Chai, Fei; Chavez, Francisco P.; Ayón, Patricia

    2015-11-01

    We used a 3-dimensional individual-based model (3-D IBM) of Peruvian anchovy to examine how spatial variation in environmental conditions affects larval and juvenile growth and survival, and recruitment. Temperature, velocity, and phytoplankton and zooplankton concentrations generated from a coupled hydrodynamic Nutrients-Phytoplankton-Zooplankton-Detritus (NPZD) model, mapped to a three dimensional rectangular grid, were used to simulate anchovy populations. The IBM simulated individuals as they progressed from eggs to recruitment at 10 cm. Eggs and yolk-sac larvae were followed hourly through the processes of development, mortality, and movement (advection), and larvae and juveniles were followed daily through the processes of growth, mortality, and movement (advection plus behavior). A bioenergetics model was used to grow larvae and juveniles. The NPZD model provided prey fields which influence both food consumption rate as well as behavior mediated movement with individuals going to grids cells having optimal growth conditions. We compared predicted recruitment for monthly cohorts for 1990 through 2004 between the full 3-D IBM and a point (0-D) model that used spatially-averaged environmental conditions. The 3-D and 0-D versions generated similar interannual patterns in monthly recruitment for 1991-2004, with the 3-D results yielding consistently higher survivorship. Both versions successfully captured the very poor recruitment during the 1997-1998 El Niño event. Higher recruitment in the 3-D simulations was due to higher survival during the larval stage resulting from individuals searching for more favorable temperatures that lead to faster growth rates. The strong effect of temperature was because both model versions provided saturating food conditions for larval and juvenile anchovies. We conclude with a discussion of how explicit treatment of spatial variation affected simulated recruitment, other examples of fisheries modeling analyses that have used a

  11. 3D evolution of a filament disappearance event observed by STEREO

    CERN Document Server

    Gosain, S; Venkatakrishnan, P; Chandra, R; Artzner, G

    2009-01-01

    A filament disappearance event was observed on 22 May 2008 during our recent campaign JOP 178. The filament, situated in the southern hemisphere, showed sinistral chirality consistent with the hemispheric rule. The event was well observed by several observatories in particular by THEMIS. One day before the disappearance, H$\\alpha$ observations showed up and down flows in adjacent locations along the filament, which suggest plasma motions along twisted flux rope. THEMIS and GONG observations show shearing photospheric motions leading to magnetic flux canceling around barbs. STEREO A, B spacecraft with separation angle 52.4 degrees, showed quite different views of this untwisting flux rope in He II 304 \\AA\\ images. Here, we reconstruct the 3D geometry of the filament during its eruption phase using STEREO EUV He II 304 \\AA\\ images and find that the filament was highly inclined to the solar normal. The He II 304 \\AA\\ movies show individual threads, which oscillate and rise to an altitude of about 120 Mm with app...

  12. Observation of the $^1$S$_0$ to $^3$D$_1$ clock transition in $^{175}$Lu$^+$

    CERN Document Server

    Arnold, Kyle J; Roy, A; Paez, E; Wang, S; Barrett, M D

    2016-01-01

    We report the first laser spectroscopy of the $^1$S$_0$ to $^3$D$_1$ clock transition in $^{175}$Lu$^+$. Clock operation is demonstrated on three pairs of Zeeman transitions, one pair from each hyperfine manifold of the $^3$D$_1$ term. We measure the hyperfine intervals of the $^3$D$_1$ to 10 ppb uncertainty and infer the optical frequency averaged over the three hyperfine transitions to be 353.639 915 952 2 (6) THz. The lifetime of the $^3$D$_1$ state is inferred to be $174^{+23}_{-32}$ hours from the M1 coupling strength.

  13. High resolution 3-D temperature and salinity fields derived from in situ and satellite observations

    Directory of Open Access Journals (Sweden)

    S. Guinehut

    2012-10-01

    Full Text Available This paper describes an observation-based approach that efficiently combines the main components of the global ocean observing system using statistical methods. Accurate but sparse in situ temperature and salinity profiles (mainly from Argo for the last 10 yr are merged with the lower accuracy but high-resolution synthetic data derived from satellite altimeter and sea surface temperature observations to provide global 3-D temperature and salinity fields at high temporal and spatial resolution. The first step of the method consists in deriving synthetic temperature fields from altimeter and sea surface temperature observations, and salinity fields from altimeter observations, through multiple/simple linear regression methods. The second step of the method consists in combining the synthetic fields with in situ temperature and salinity profiles using an optimal interpolation method. Results show the revolutionary nature of the Argo observing system. Argo observations now allow a global description of the statistical relationships that exist between surface and subsurface fields needed for step 1 of the method, and can constrain the large-scale temperature and mainly salinity fields during step 2 of the method. Compared to the use of climatological estimates, results indicate that up to 50% of the variance of the temperature fields can be reconstructed from altimeter and sea surface temperature observations and a statistical method. For salinity, only about 20 to 30% of the signal can be reconstructed from altimeter observations, making the in situ observing system essential for salinity estimates. The in situ observations (step 2 of the method further reduce the differences between the gridded products and the observations by up to 20% for the temperature field in the mixed layer, and the main contribution is for salinity and the near surface layer with an improvement up to 30%. Compared to estimates derived using in situ observations only, the

  14. High Resolution 3-D temperature and salinity fields derived from in situ and satellite observations

    Directory of Open Access Journals (Sweden)

    S. Guinehut

    2012-03-01

    Full Text Available This paper describes an observation-based approach that combines efficiently the main components of the global ocean observing system using statistical methods. Accurate but sparse in situ temperature and salinity profiles (mainly from Argo for the last 10 years are merged with the lower accuracy but high-resolution synthetic data derived from altimeter and sea surface temperature satellite observations to provide global 3-D temperature and salinity fields at high temporal and spatial resolution. The first step of the method consists in deriving synthetic temperature fields from altimeter and sea surface temperature observations and salinity fields from altimeter observations through multiple/simple linear regression methods. The second step of the method consists in combining the synthetic fields with in situ temperature and salinity profiles using an optimal interpolation method. Results show the revolution of the Argo observing system. Argo observations now allow a global description of the statistical relationships that exist between surface and subsurface fields needed for step 1 of the method and can constrain the large-scale temperature and mainly salinity fields during step 2 of the method. Compared to the use of climatological estimates, results indicate that up to 50 % of the variance of the temperature fields can be reconstructed from altimeter and sea surface temperature observations and a statistical method. For salinity, only about 20 to 30 % of the signal can be reconstructed from altimeter observations, making the in situ observing system mandatory for salinity estimates. The in situ observations (step 2 of the method reduce additionally the error by up to 20 % for the temperature field in the mixed layer and the main contribution is for salinity and the near surface layer with an improvement up to 30 %. Compared to estimates derived using in situ observations only, the merged fields provide a better reconstruction of the high

  15. Exact variational principle for 3-D unsteady heat conduction with second sound

    Science.gov (United States)

    Liu, Gaolian

    2006-12-01

    The exact variational formulation of the extended unsteady heat conduction equation with finite propagation speed (the 2nd sound speed) of hyperbolic type is derived herein via a systematic and natural way. Moreover, the boundary-and the physically acceptable initial-value conditions are accommodated in the variational principle by a novel method suggested just recently. In this way a perfect justification of the variational theory of transient heat conduction and a rigorous theoretical basis for the finite element analysis of heat conduction are provided.

  16. Exact Variational Principle For 3-D Unsteady Heat Conduction With Second Sound

    Institute of Scientific and Technical Information of China (English)

    Gaolian LIU

    2006-01-01

    The exact variational formulation of the extended unsteady heat conduction equation with finite propagation speed (the 2nd sound speed) of hyperbolic type is derived herein via a systematic and natural way.Moreover,the boundary- and the physically acceptable initial-value conditions are accommodated in the variational principle by a novel method suggested just recently.In this way a perfect justification of the variational theory of transient heat conduction and a rigorous theoretical basis for the finite element analysis of heat conduction are provided.

  17. Assessing soil water storage distribution under sprinkler irrigation by coupling 3D simulations and field observations

    Science.gov (United States)

    Taha, Uday; Shabeeb, Ahmed; dragonetti, giovanna; Lamaddalena, Nicola; Coppola, Antonio

    2016-04-01

    This work analyzed the variability of sprinkler irrigation application over a bare soil, both in terms of water application efficiency and uniformity, by integrating and comparing the information on the irrigation depth data (ID), as measured by catch cans, soil water storage in the upper root zone, as measured by TDR probes, and a 3D simulations of water flow in soils. Three irrigation tests were performed at three different pressures (2, 3 and 4 bar). A lateral water redistribution was observed and simulated after each irrigation event by comparing spatial distributions of site-specific water application efficiency (AEs), as well as ratios of site-specific actual water storage increase (SWEs) and irrigation depth (IDs) to the water content before irrigation. Because of soil water redistribution processes, distribution uniformity based on soil storages was systematically higher than the catch can uniformity. The obvious consequence of lateral water redistribution processes was that the soil smoothing action on non-uniformity observed at the surface increased both with depth and over time. At a given depth the uniformity of soil water storages always attained the same value, whatever the pressure considered and the catch can-based uniformity coefficient. It was concluded that, for the case of random distribution of ID, the uniformity of water storages is driven by the soil behavior rather than by the irrigation system.

  18. Spicule-like structures observed in 3D realistic MHD simulations

    CERN Document Server

    Martinez-Sykora, J; De Pontieu, B; Carlsson, M

    2009-01-01

    We analyze features that resemble type i spicules in two different 3D numerical simulations in which we include horizontal magnetic flux emergence in a computational domain spanning the upper layers of the convection zone to the lower corona. The two simulations differ mainly in the preexisting ambient magnetic field strength and in the properties of the inserted flux tube. We use the Oslo Staggered Code (OSC) to solve the full MHD equations with non-grey and non-LTE radiative transfer and thermal conduction along the magnetic field lines. We find a multitude of features that show a spatiotemporal evolution that is similar to that observed in type i spicules, which are characterized by parabolic height vs. time profiles, and are dominated by rapid upward motion at speeds of 10-30 km/s, followed by downward motion at similar velocities. We measured the parameters of the parabolic profile of the spicules and find similar correlations between the parameters as those found in observations. The values for height (...

  19. The Shock Dynamics of Heterogeneous YSO Jets: 3-D Simulations Meet Multi-Epoch Observations

    CERN Document Server

    Hansen, E C; Hartigan, P; Lebedev, S V

    2016-01-01

    High resolution observations of Young Stellar Object (YSO) jets show them to be composed of many small-scale knots or clumps. In this paper we report results of 3-D numerical simulations designed to study how such clumps interact and create morphologies and kinematic patterns seen in emission line observations. Our simulations focus on clump scale dynamics by imposing velocity differences between spherical, over-dense regions which then lead to the formation of bow shocks as faster clumps overtake slower material. We show that much of the spatial structure apparent in emission line images of jets arises from the dynamics and interactions of these bow shocks. Our simulations show a variety of time-dependent features, including bright knots associated with Mach stems where the shocks intersect, a "frothy" emission structure that arises from the presence of the Non-linear Thin Shell Instability (NTSI) along the surfaces of the bow shocks, and the merging and fragmentation of clumps. Our simulations use a new non...

  20. Serum-induced degradation of 3D DNA box origami observed with high-speed atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    Zaixing Jiang[1,2,3; Shuai Zhang[2,3; Chuanxu Yang[2; Jorgen Kjems[2; Yudong Huang[1; Flemming Besenbacher[2; Mingdong Dong[2

    2015-01-01

    3D DNA origami holds tremendous potential for the encapsulation and selective release of therapeutic drugs. Observations of the real-time performance of these structures in physiological environments will contribute to the development of future applications. We investigated the degradation kinetics of 3D DNA box origami in serum by using high-speed atomic force microscope optimized for imaging 3D DNA origami in real time. The time resolution allowed to characterize the stages of serum effects on individual 3D DNA boxes origami with nanometer resolution. Our results indicate that the digestion process is a combination of rapid collapse and slow degradation phases. Damage to box origami occurs mainly in the collapse phase. Thus, the structural stability of 3D DNA box origami should be improved, especially in the collapse phase, before these structures are used in clinical applications.

  1. Are there side effects to watching 3D movies? A prospective crossover observational study on visually induced motion sickness.

    Directory of Open Access Journals (Sweden)

    Angelo G Solimini

    Full Text Available BACKGROUND: The increasing popularity of commercial movies showing three dimensional (3D images has raised concern about possible adverse side effects on viewers. METHODS AND FINDINGS: A prospective carryover observational study was designed to assess the effect of exposure (3D vs. 2D movie views on self reported symptoms of visually induced motion sickness. The standardized Simulator Sickness Questionnaire (SSQ was self administered on a convenience sample of 497 healthy adult volunteers before and after the vision of 2D and 3D movies. Viewers reporting some sickness (SSQ total score>15 were 54.8% of the total sample after the 3D movie compared to 14.1% of total sample after the 2D movie. Symptom intensity was 8.8 times higher than baseline after exposure to 3D movie (compared to the increase of 2 times the baseline after the 2D movie. Multivariate modeling of visually induced motion sickness as response variables pointed out the significant effects of exposure to 3D movie, history of car sickness and headache, after adjusting for gender, age, self reported anxiety level, attention to the movie and show time. CONCLUSIONS: Seeing 3D movies can increase rating of symptoms of nausea, oculomotor and disorientation, especially in women with susceptible visual-vestibular system. Confirmatory studies which include examination of clinical signs on viewers are needed to pursue a conclusive evidence on the 3D vision effects on spectators.

  2. Planet gaps in the dust layer of 3D protoplanetary disks. II. Observability with ALMA

    CERN Document Server

    Gonzalez, J -F; Maddison, S T; Ménard, F; Fouchet, L

    2012-01-01

    [Abridged] Aims: We provide predictions for ALMA observations of planet gaps that account for the specific spatial distribution of dust that results from consistent gas+dust dynamics. Methods: In a previous work, we ran full 3D, two-fluid Smoothed Particle Hydrodynamics (SPH) simulations of a planet embedded in a gas+dust T Tauri disk for different planet masses and grain sizes. In this work, the resulting dust distributions are passed to the Monte Carlo radiative transfer code MCFOST to construct synthetic images in the ALMA wavebands. We then use the ALMA simulator to produce images that include thermal and phase noise for a range of angular resolutions, wavelengths, and integration times, as well as for different inclinations, declinations and distances. We also produce images which assume that gas and dust are well mixed with a gas-to-dust ratio of 100 to compare with previous ALMA predictions, all made under this hypothesis. Results: Our findings clearly demonstrate the importance of correctly incorporat...

  3. 3D modeling of GJ1214b's atmosphere: formation of inhomogeneous high clouds and observational implications

    CERN Document Server

    Charnay, Benjamin; Misra, Amit; Leconte, Jérémy; Arney, Giada

    2015-01-01

    The warm sub-Neptune GJ1214b has a featureless transit spectrum which may be due to the presence of high and thick clouds or haze. Here, we simulate the atmosphere of GJ1214b with a 3D General Circulation Model for cloudy hydrogen-dominated atmospheres, including cloud radiative effects. We show that the atmospheric circulation is strong enough to transport micrometric cloud particles to the upper atmosphere and generally leads to a minimum of cloud at the equator. By scattering stellar light, clouds increase the planetary albedo to 0.4-0.6 and cool the atmosphere below 1 mbar. However, the heating by ZnS clouds leads to the formation of a stratospheric thermal inversion above 10 mbar, with temperatures potentially high enough on the dayside to evaporate KCl clouds. We show that flat transit spectra consistent with HST observations are possible if cloud particle radii are around 0.5 micron, and that such clouds should be optically thin at wavelengths > 3 microns. Using simulated cloudy atmospheres that fit th...

  4. 3-D-Observation of Matrix of MIL 090657 Meteorite by Absorption-Phase Tomography

    Science.gov (United States)

    Miyama, Sugimoto; Tsuchiyama, Akira; Matsuno, Junya; Miyake, Akira; Nakano, Tsukasa; Uesugi, Kentaro; Takeuchi, Akihisa; Takigawa, Aki; Takayama, Akiko; Nakamura-Messenger, Keiko; hide

    2017-01-01

    MIL 090657 meteorite (CR2.7) is one of the least altered primitive carbonaceous c hondrites [1]. This meteorite has amorphous silicates like GEMS (glass with embedded metal and sulfide), which are characteristically contained in cometary dust, in matrix [2,3] as with the Paris meteorite [4]. Three lithologies have been recognized; lithology-1 (L 1) dominated by submicron anhydrous silicates, lithology-2 (L2) by GEMS-like amorphous silicates and lithology-3 (L3) by phyllosilicates [2]. Organic materials are abundant in L 1 and L2 [2,3]. L 1 and L2 were further divided into sub-lithology respectively based on their textures and compositions [5]. These studies were performed by 2D SEM and TEM observations of sample surfaces and thin sections that are unable to reveal what constitute each lithology and how these lithologies are distributed and related to each other. This information will provide important insights into alteration and aggregation processes on asteroids and in the early solar nebula. In this study, MIL 090657 matrix was examined in 3D using two types of X-ray tomography; DET (dual-energy tomography) [6] and SIXM (scanning-imaging X-ray microscopy) [7]. Mineral phases can be discriminated based on absorption contrasts at two different X-ray energies in DET. In SIXM, materials composed of light elements such as water or organic materials can be identified based on phase and absorption contrasts. By combining these methods, we can discriminate not only organic materials from voids but also hydrous alteration products, such as hydrated silicates and carbonates, from anhydrous minerals [8]. In this study, we first observed cross sections of MIL 090657 matrix fragments C1 00 mm) in detail using FE-SEM/ EDS. Based on the results, three house-shaped samples (3 0 -50 mm) were extracted from L 1, L2 and their boundary (H1, H3 and H5, respectively) using FIB. 3D imaging of these samples were conducted at BL47XU of SPring-8, a synchrotron radiation facility, with

  5. 3D electroplated inductors with thickness variation for improved broadband performance

    Science.gov (United States)

    Farm-Guoo Tseng, Victor; Bedair, Sarah S.; Lazarus, Nathan

    2017-01-01

    The performance of an RF spiral inductor is based on the balance between ohmic losses in the outer turns and eddy current losses dominant in the inner turns where the magnetic field is the strongest. In this work, air-core spiral inductors with winding trace thicknesses decreasing towards the center are demonstrated, achieving quality factor improvement over a wide frequency range compared to uniform thickness inductors. A custom 3D copper electroplating process was used to produce spiral inductors with varying winding thicknesses in a single plating step, with patterned gaps in a seed layer used to create delays in the vertical plating. The fabricated center-lowered coil inductors were 80 nH within a one square millimeter area with thickness varying from 60 µm to 10 µm from outer to inner winding. Within the 16 MHz-160 MHz range, the center-lowered inductors were shown to have a maximum to minimum quality factor improvement of 90%-10% when compared to uniform thickness inductors with thicknesses ranging from 60 µm to 10 µm. Compared to the 20 µm uniform thickness inductor which has the optimal performance among all uniform thickness inductors in this frequency range, the center-lowered inductors were shown to achieve a maximum quality factor improvement of 20% at the edge frequencies of 16 MHz and 160 MHz, and a minimum quality factor improvement of 10% near the geometric mean center frequency of 46 MHz.

  6. Observation of wavelength-dependent Brewster angle shift in 3D photonic crystals

    CERN Document Server

    Priya,

    2016-01-01

    The interaction of polarized light with photonic crystals exhibit unique features due to its sub-wavelength nature on the surface and the periodic variation of refractive index in the depth of the crystals. Here, we present a detailed study of polarization anisotropy in light scattering associated with three-dimensional photonic crystals with face centered cubic symmetry over a broad wavelength and angular range. The polarization anisotropy leads to a shift in the conventional Brewster angle defined for a planar interface with certain refractive index. The observed shift in Brewster angle strongly depends on the index contrast and lattice constant. Polarization-dependent stop gap measurements are performed on photonic crystals with different index contrast and lattice constants. These measurements indicate unique stop gap branching at high-symmetry points in the Brillouin zone of the photonic crystals. The inherited stop gap branching is observed for TE polarization whereas that is suppressed for TM polarizat...

  7. Variation in spectral and mass dimension on 3D soil image processing

    Science.gov (United States)

    Sanchez, M. E.; Tarquis, A. M.; Fabregat, J.; Andina, D.; Jimenez, J.; Crawford, J. W.

    2009-04-01

    Knowledge on three dimensional soil pore architecture is important for understanding soil processes as it controls biological, chemical and physical processes on various scales. Recent advances in non-destructive imaging, such as X-ray Computed Tomography (CT), provide several ways to analyze pore space features mainly concentrating on the visualization of soil structure. Fractal formalism has revealed as useful tool in these cases where highly complex and heterogeneous medium are studied. One of these quantifications is mass dimension (Dm) and spectral dimension (d) applied for water and gas diffusion coefficient in soil. At the same time that these techniques give a unique opportunity to quantify and describe pore space, they presents steps in their procedures on which the results depend. In this work, intact soil samples were collected from four horizons of a Brazilian soil and 3D images, of 45.1 micro-m resolution (256x256x256 voxels), were obtained. Four different threshold criteria were used to transform CT grey-scale imagery in binary imagery (pore/solid), based on the frequency of CT units. Then the threshold effect on the estimation of Dm and d, as well as their ratio was studied. Each threshold criteria had a direct influence on Dm as it has been previously reported [1], through the increase on porosity obtained. Meanwhile Dm showed a clear logarithmic relation with the apparent porosity in the image obtained for each threshold, d showed an almost linear one. In any case the increase of each one of them respect to porosity was different for each horizon. The Dm/d ratio was practically constant through all the porosity achieved in this study when Dm was estimated using all the scale range available. On the other hand, when Dm was estimated based on smaller scales this ratio depended on the threshold criteria applied to the image. This fact has a direct implication in diffusion parameters for a pore network modeling based on both fractal dimensions. [1] A

  8. Comparison of a unidirectional panoramic 3D endoluminal interpretation technique to traditional 2D and bidirectional 3D interpretation techniques at CT colonography: preliminary observations

    Energy Technology Data Exchange (ETDEWEB)

    Lenhart, D.K.; Babb, J.; Bonavita, J.; Kim, D. [Department of Radiology, NYU Medical Center, 560 First Avenue, Suite HW-202, New York, NY 10016 (United States); Bini, E.J. [Department of Medicine, NYU School of Medicine, NYU Medical Center, 560 First Avenue, Suite HW-202, New York, NY 10016 (United States); Megibow, A.J. [Department of Radiology, NYU Medical Center, 560 First Avenue, Suite HW-202, New York, NY 10016 (United States); Macari, M., E-mail: michael.macari@med.nyu.ed [Department of Radiology, NYU Medical Center, 560 First Avenue, Suite HW-202, New York, NY 10016 (United States)

    2010-02-15

    Aim: To compare the evaluation times and accuracy of unidirectional panoramic three-dimensional (3D) endoluminal interpretation to traditional two-dimensional (2D) and bidirectional 3D endoluminal techniques. materials and methods: Sixty-nine patients underwent computed tomography colonography (CTC) after bowel cleansing. Forty-five had no polyps and 24 had at least one polyp >=6 mm. Patients underwent same-day colonoscopy with segmental unblinding. Three experienced abdominal radiologists evaluated the data using one of three primary interpretation techniques: (1) 2D; (2) bidirectional 3D; (3) panoramic 3D. Mixed model analysis of variance and logistic regression for correlated data were used to compare techniques with respect to time and sensitivity and specificity. Results: Mean evaluation times were 8.6, 14.6, and 12.1 min, for 2D, 3D, and panoramic, respectively. 2D was faster than either 3D technique (p < 0.0001), and the panoramic technique was faster than bidirectional 3D (p = 0.0139). The overall sensitivity of each technique per polyp and per patient was 68.4 and 76.7% for 2D, 78.9 and 93.3% for 3D; and 78.9 and 86.7% for panoramic 3D. Conclusion: 2D interpretation was the fastest overall, the panoramic technique was significantly faster than the bidirectional with similar sensitivity and specificity. The sensitivity for a single reader was significantly lower using the 2D technique. Each reader should select the technique with which they are most successful.

  9. BioPhotonics Workstation: 3D interactive manipulation, observation and characterization

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    2011-01-01

    In ppo.dk we have invented the BioPhotonics Workstation to be applied in 3D research on regulated microbial cell growth including their underlying physiological mechanisms, in vivo characterization of cell constituents and manufacturing of nanostructures and new materials.......In ppo.dk we have invented the BioPhotonics Workstation to be applied in 3D research on regulated microbial cell growth including their underlying physiological mechanisms, in vivo characterization of cell constituents and manufacturing of nanostructures and new materials....

  10. Two developmental modules establish 3D beak-shape variation in Darwin's finches.

    Science.gov (United States)

    Mallarino, Ricardo; Grant, Peter R; Grant, B Rosemary; Herrel, Anthony; Kuo, Winston P; Abzhanov, Arhat

    2011-03-08

    Bird beaks display tremendous variation in shape and size, which is closely associated with the exploitation of multiple ecological niches and likely played a key role in the diversification of thousands of avian species. Previous studies have demonstrated some of the molecular mechanisms that regulate morphogenesis of the prenasal cartilage, which forms the initial beak skeleton. However, much of the beak diversity in birds depends on variation in the premaxillary bone. It forms later in development and becomes the most prominent functional and structural component of the adult upper beak/jaw, yet its regulation is unknown. Here, we studied a group of Darwin's finch species with different beak shapes. We found that TGFβIIr, β-catenin, and Dickkopf-3, the top candidate genes from a cDNA microarray screen, are differentially expressed in the developing premaxillary bone of embryos of species with different beak shapes. Furthermore, our functional experiments demonstrate that these molecules form a regulatory network governing the morphology of the premaxillary bone, which differs from the network controlling the prenasal cartilage, but has the same species-specific domains of expression. These results offer potential mechanisms that may explain how the tightly coupled depth and width dimensions can evolve independently. The two-module program of development involving independent regulating molecules offers unique insights into how different developmental pathways may be modified and combined to induce multidimensional shifts in beak morphology. Similar modularity in development may characterize complex traits in other organisms to a greater extent than is currently appreciated.

  11. 3D-seismic observations of Late Pleistocene glacial dynamics on the central West Greenland margin

    Science.gov (United States)

    Hofmann, Julia; Knutz, Paul; Cofaigh, Colm Ó.

    2016-04-01

    Fast-flowing ice streams and outlet glaciers exert a major control on glacial discharge from contemporary and palaeo ice sheets. Improving our understanding of the extent and dynamic behaviour of these palaeo-ice streams is therefore crucial for predictions of the response of ice sheets to present and future climate warming and the associated implications for global sea level. This poster presents results from two 3D-seismic surveys located on the shelf adjoining the Disko Bay trough-mouth fan (TMF), one of the largest glacial outlet systems in Greenland. Located at the seaward terminus of the c. 370 km long cross-shelf Disko Trough, the Disko Bay TMF was generated by highly efficient subglacial sediment delivery onto the continental slopes during repeated ice-stream advances. A variety of submarine glacial landform assemblages are recognised on the seabed reflecting past ice-stream activity presumably related to glacial-interglacial cycles. The 3D-seismic volumes cover the shallow banks located north and south of the Disko Trough. The focus of this study is the seabed and the uppermost stratigraphic interval associated with the Late Stage of TMF development, presumably covering the late Pleistocene (Hofmann et al., submitted). Seabed morphologies include multiple sets of ridges up to 20 m high that extend in NW-SE direction for c. 30 km, and cross-cutting curvilinear furrows with maximum lengths of c. 9 km and average depths of c. 4.5 m. Back-stepping, arcuate scarps facing NW define the shelf break on the northern survey, comprising average widths of c. 4.5 km and incision depths of c. 27.5 m. The large transverse ridge features on the southern survey are likely ice-marginal and are interpreted as terminal moraine ridges recording the existence of a shelf-edge terminating, grounded Late Weichselian ice sheet. The furrows, most prominent on the outer shelf adjoining the shallow banks and partly incising the moraine ridges, are interpreted as iceberg ploughmarks

  12. Simultaneous observation of low temperature 4f-4f and 3d-3d emission spectra in a series of Cr(III)(ox)Ln(III) assembly

    CERN Document Server

    Subhan, M A; Suzuki, T; Choi, J H; Kaizaki, S

    2003-01-01

    We report here the low temperature emission spectra in the heterometal dinuclear 3d-4f assembled molecular system [(acac) sub 2 Cr sup I sup I sup I (mu-ox)Ln sup I sup I sup I (HBpz sub 3) sub 2] (Cr(ox)Ln:acac sup - =acetylacetonate, ox sup 2 sup - =oxalate, HBpz sub 3 sup - =hydrotris(pyrazol-1-yl)borate; Ln=La, Nd, Ho, Er , Tm and Yb) in comparison with those of Na[Cr(acac) sub 2 (ox)] and [(HBpz sub 3) sub 2 Ln(mu-ox)Ln(HBpz sub 3) sub 2](Ln=Nd and Er). From 10 to 150 K the Cr(ox)Ln complexes show a broad emission band around 800 nm from the sup 2 E state of Cr(III) moiety. At room temperature no sup 2 E- sup 4 A sub 2 emission was observed in the Cr(ox)Ln except for the La and Lu complexes. On warming from 10 to 300 K rapid quenching of the sup 2 E- sup 4 A sub 2 emission of Cr(III) is suggested to result from the energy transfer from Cr to Ln in the Cr(ox)Ln. The excitation spectra and the life-time were also measured with monitoring the 4f-4f emission peaks of the Cr(ox)Yb complex.

  13. Direct observation of 3-D grain growth in Al–0.1% Mn

    DEFF Research Database (Denmark)

    Schmidt, Søren; Olsen, Ulrik Lund; Poulsen, Henning Friis

    2008-01-01

    Grain growth in an Al-0.1% Mn sample has been measured non-destructively using a three-dimensional X-ray diffraction (3DXRD) microscope. The 3-D grain morphology as well as the crystallographic orientation was determined for 483 grains in the illuminated volume prior to annealing. After annealing...

  14. BioPhotonics Workstation: 3D interactive manipulation, observation and characterization

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    2011-01-01

    In ppo.dk we have invented the BioPhotonics Workstation to be applied in 3D research on regulated microbial cell growth including their underlying physiological mechanisms, in vivo characterization of cell constituents and manufacturing of nanostructures and new materials....

  15. Efficient and robust 3D CT image reconstruction based on total generalized variation regularization using the alternating direction method.

    Science.gov (United States)

    Chen, Jianlin; Wang, Linyuan; Yan, Bin; Zhang, Hanming; Cheng, Genyang

    2015-01-01

    Iterative reconstruction algorithms for computed tomography (CT) through total variation regularization based on piecewise constant assumption can produce accurate, robust, and stable results. Nonetheless, this approach is often subject to staircase artefacts and the loss of fine details. To overcome these shortcomings, we introduce a family of novel image regularization penalties called total generalized variation (TGV) for the effective production of high-quality images from incomplete or noisy projection data for 3D reconstruction. We propose a new, fast alternating direction minimization algorithm to solve CT image reconstruction problems through TGV regularization. Based on the theory of sparse-view image reconstruction and the framework of augmented Lagrange function method, the TGV regularization term has been introduced in the computed tomography and is transformed into three independent variables of the optimization problem by introducing auxiliary variables. This new algorithm applies a local linearization and proximity technique to make the FFT-based calculation of the analytical solutions in the frequency domain feasible, thereby significantly reducing the complexity of the algorithm. Experiments with various 3D datasets corresponding to incomplete projection data demonstrate the advantage of our proposed algorithm in terms of preserving fine details and overcoming the staircase effect. The computation cost also suggests that the proposed algorithm is applicable to and is effective for CBCT imaging. Theoretical and technical optimization should be investigated carefully in terms of both computation efficiency and high resolution of this algorithm in application-oriented research.

  16. Refilling process in the plasmasphere: a 3-D statistical characterization based on Cluster density observations

    Directory of Open Access Journals (Sweden)

    G. Lointier

    2013-02-01

    Full Text Available The Cluster mission offers an excellent opportunity to investigate the evolution of the plasma population in a large part of the inner magnetosphere, explored near its orbit's perigee, over a complete solar cycle. The WHISPER sounder, on board each satellite of the mission, is particularly suitable to study the electron density in this region, between 0.2 and 80 cm−3. Compiling WHISPER observations during 1339 perigee passes distributed over more than three years of the Cluster mission, we present first results of a statistical analysis dedicated to the study of the electron density morphology and dynamics along and across magnetic field lines between L = 2 and L = 10. In this study, we examine a specific topic: the refilling of the plasmasphere and trough regions during extended periods of quiet magnetic conditions. To do so, we survey the evolution of the ap index during the days preceding each perigee crossing and sort out electron density profiles along the orbit according to three classes, namely after respectively less than 2 days, between 2 and 4 days, and more than 4 days of quiet magnetic conditions (ap ≤ 15 nT following an active episode (ap > 15 nT. This leads to three independent data subsets. Comparisons between density distributions in the 3-D plasmasphere and trough regions at the three stages of quiet magnetosphere provide novel views about the distribution of matter inside the inner magnetosphere during several days of low activity. Clear signatures of a refilling process inside an expended plasmasphere in formation are noted. A plasmapause-like boundary, at L ~ 6 for all MLT sectors, is formed after 3 to 4 days and expends somewhat further after that. In the outer part of the plasmasphere (L ~ 8, latitudinal profiles of median density values vary essentially according to the MLT sector considered rather than according to the refilling duration. The shape of these density profiles

  17. Direct observation in 3d of structural crossover in binary hard sphere mixtures

    Science.gov (United States)

    Statt, Antonia; Pinchaipat, Rattachai; Turci, Francesco; Evans, Robert; Royall, C. Patrick

    2016-04-01

    For binary fluid mixtures of spherical particles in which the two species are sufficiently different in size, the dominant wavelength of oscillations of the pair correlation functions is predicted to change from roughly the diameter of the large species to that of the small species along a sharp crossover line in the phase diagram [C. Grodon et al., J. Chem. Phys. 121, 7869 (2004)]. Using particle-resolved colloid experiments in 3d we demonstrate that crossover exists and that its location in the phase diagram is in quantitative agreement with the results of both theory and our Monte-Carlo simulations. In contrast with previous work [J. Baumgartl et al., Phys. Rev. Lett. 98, 198303 (2007)], where a correspondence was drawn between crossover and percolation of both species, in our 3d study we find that structural crossover is unrelated to percolation.

  18. Intuitive Terrain Reconstruction Using Height Observation-Based Ground Segmentation and 3D Object Boundary Estimation

    Directory of Open Access Journals (Sweden)

    Sungdae Sim

    2012-12-01

    Full Text Available Mobile robot operators must make rapid decisions based on information about the robot’s surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot’s array of sensors, but some upper parts of objects are beyond the sensors’ measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances.

  19. Intuitive terrain reconstruction using height observation-based ground segmentation and 3D object boundary estimation.

    Science.gov (United States)

    Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae

    2012-12-12

    Mobile robot operators must make rapid decisions based on information about the robot's surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot's array of sensors, but some upper parts of objects are beyond the sensors' measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances.

  20. Electric current variations and 3D magnetic configuration of coronal jets

    Science.gov (United States)

    Schmieder, Brigitte; Harra, Louise K.; Aulanier, Guillaume; Guo, Yang; Demoulin, Pascal; Moreno-Insertis, Fernando, , Prof

    Coronal jets (EUV) were observed by SDO/AIA on September 17, 2010. HMI and THEMIS measured the vector magnetic field from which we derived the magnetic flux, the phostospheric velocity and the vertical electric current. The magnetic configuration was computed with a non linear force-free approach. The phostospheric current pattern of the recurrent jets were associated with the quasi-separatrix layers deduced from the magnetic extrapolation. The large twisted near-by Eiffel-tower-shape jet was also caused by reconnection in current layers containing a null point. This jet cannot be classified precisely within either the quiescent or the blowout jet types. We will show the importance of the existence of bald patches in the low atmosphere

  1. Validation of INSAT-3D sounder data with in situ measurements and other similar satellite observations over India

    Science.gov (United States)

    Venkat Ratnam, Madineni; Hemanth Kumar, Alladi; Jayaraman, Achuthan

    2016-11-01

    To date, several satellites measurements are available which can provide profiles of temperature and water vapour with reasonable accuracies. However, the temporal resolution has remained poor, particularly over the tropics, as most of them are polar orbiting. At this juncture, the launch of INSAT-3D (Indian National Satellite System) by the Indian Space Research Organization (ISRO) on 26 July 2013 carrying a multi-spectral imager covering visible to long-wave infrared made it possible to obtain profiles of temperature and water vapour over India with higher temporal and vertical resolutions and altitude coverage, besides other parameters. The initial validation of INSAT-3D data is made with the high temporal (3 h) resolution radiosonde observations launched over Gadanki (13.5° N, 79.2° E) during a special campaign and routine evening soundings obtained at 12:00 UTC (17:30 LT). We also compared INSAT-3D data with the radiosonde observations obtained from 34 India Meteorological Department stations. Comparisons were also made over India with data from other satellites like AIRS, MLS and SAPHIR and from ERA-Interim and NCEP reanalysis data sets. INSAT-3D is able to show better coverage over India with high spatial and temporal resolutions as expected. Good correlation in temperature between INSAT-3D and in situ measurements is noticed except in the upper tropospheric and lower stratospheric regions (positive bias of 2-3 K). There is a mean dry bias of 20-30 % in the water vapour mixing ratio. Similar biases are noticed when compared to other satellites and reanalysis data sets. INSAT-3D shows a large positive bias in temperature above 25° N in the lower troposphere. Thus, caution is advised when using these data for tropospheric studies. Finally it is concluded that temperature data from INSAT-3D are of high quality and can be directly assimilated for better forecasts over India.

  2. Field observations of swash zone flow patterns and 3D morphodynamics

    Science.gov (United States)

    Puelo, Jack A.; Holland, K. Todd; Kooney, Timothy N.; Sallenger,, Asbury H.; Edge, Billy L.

    2001-01-01

    Rapid video measurements of foreshore morphology and velocity were collected at Duck, NC in 1997 to investigate sediment transport processes in the swash zone. Estimates of foreshore evolution over a roughly 30 m cross-shore by 80 m alongshore study area were determined using a stereogrammetric technique. During the passage of a small storm (offshore wave heights increased from 1.4 to 2.5 m), the foreshore eroded nearly 40 cm in less than 4 hours. Dense, horizontal surface velocities were measured over a sub-region (roughly 30 m by 40 m) of the study area using a new particle image velocimetry technique. This technique was able to quantify velocities across the bore front approaching 5 m s–1 as well as the rapid velocities in the very shallow backwash flows. The velocity and foreshore topography measurements were used to test a three-dimensional energetics-based sediment transport model. Even though these data represent the most extensive and highly resolved swash measurements to date, the results showed that while the model could predict some of the qualitative trends in the observed foreshore change, it was a poor predictor of the observed magnitudes of foreshore change. Model — data comparisons differed by roughly an order of magnitude with observed foreshore changes on the order of 10's of centimeters and model predictions on the order of meters. This poor comparison suggests that future models of swash-zone sediment transport may require the inclusion of other physical processes such as bore turbulence, fluid accelerations and skewness, infiltration/exfiltration, water depth variations, and variable friction factors (to name a few).

  3. High Resolution 3D Earth Observation Data Analysis for Safeguards Activities

    OpenAIRE

    d'Angelo, Pablo; Rossi, Cristian; Minet, Christian; Eineder, Michael; Flory, Michael; Niemeyer, Irmgard

    2014-01-01

    This paper provides an overview of the investigations performed at DLR with respect to the application of high resolution SAR and optical data for 3D analysis in the context of Safeguards. The Research Center Jülich and the adjacent open cut mines were used as main test sites, and a comprehensive stack of ascending and descending TerraSAR data was acquired over two years. TerraSAR data acquisition was performed, and various ways to visualize and analyze stacks of radar images w...

  4. Can mastication in children with cerebral palsy be analyzed by clinical observation, dynamic ultrasound and 3D kinematics?

    NARCIS (Netherlands)

    Remijn, L.; Groen, B.E.; Speyer, R.; Limbeek, J. van; Vermaire, J.A.; Engel-Hoek, L. van den; Nijhuis-Van der Sanden, M.W.G.

    2017-01-01

    The aim of this study was to explore the feasibility of the Mastication Observation and Evaluation (MOE) instrument, dynamic ultrasound and 3D kinematic measurements to describe mastication in children with spastic cerebral palsy and typically developing children. Masticatory movements during five t

  5. How Students and Field Geologists Reason in Integrating Spatial Observations from Outcrops to Visualize a 3-D Geological Structure

    Science.gov (United States)

    Kastens, Kim A.; Agrawal, Shruti; Liben, Lynn S.

    2009-01-01

    Geologists and undergraduate students observed eight artificial "rock outcrops" in a realistically scaled field area, and then tried to envision a geological structure that might plausibly be formed by the layered rocks in the set of outcrops. Students were videotaped as they selected which of fourteen 3-D models they thought best…

  6. Oxygen lines in solar granulation. I. Testing 3D models against new observations with high spatial and spectral resolution

    CERN Document Server

    Pereira, Tiago M D; Asplund, Martin

    2009-01-01

    Aims: we seek to provide additional tests of the line formation of theoretical 3D solar photosphere models. In particular, we set out to test the spatially-resolved line formation at several viewing angles, from the solar disk-centre to the limb and focusing on atomic oxygen lines. The purpose of these tests is to provide additional information on whether the 3D model is suitable to derive the solar oxygen abundance. We also aim to empirically constrain the NLTE recipes for neutral hydrogen collisions, using the spatially-resolved observations of the OI 777 nm lines. Methods: using the Swedish 1-m Solar Telescope we obtained high-spatial-resolution observations of five atomic oxygen lines (along with lines for other species) for five positions on the solar disk. These observations have a high spatial and spectral resolution, and a continuum intensity contrast up to 9% at 615 nm. The theoretical line profiles were computed using the 3D model, with a full 3D NLTE treatment for oxygen and LTE for the other lines...

  7. Combining a wavelet transform with a channelized Hotelling observer for tumor detection in 3D PET oncology imaging

    Science.gov (United States)

    Lartizien, Carole; Tomei, Sandrine; Maxim, Voichita; Odet, Christophe

    2007-03-01

    This study evaluates new observer models for 3D whole-body Positron Emission Tomography (PET) imaging based on a wavelet sub-band decomposition and compares them with the classical constant-Q CHO model. Our final goal is to develop an original method that performs guided detection of abnormal activity foci in PET oncology imaging based on these new observer models. This computer-aided diagnostic method would highly benefit to clinicians for diagnostic purpose and to biologists for massive screening of rodents populations in molecular imaging. Method: We have previously shown good correlation of the channelized Hotelling observer (CHO) using a constant-Q model with human observer performance for 3D PET oncology imaging. We propose an alternate method based on combining a CHO observer with a wavelet sub-band decomposition of the image and we compare it to the standard CHO implementation. This method performs an undecimated transform using a biorthogonal B-spline 4/4 wavelet basis to extract the features set for input to the Hotelling observer. This work is based on simulated 3D PET images of an extended MCAT phantom with randomly located lesions. We compare three evaluation criteria: classification performance using the signal-to-noise ratio (SNR), computation efficiency and visual quality of the derived 3D maps of the decision variable λ. The SNR is estimated on a series of test images for a variable number of training images for both observers. Results: Results show that the maximum SNR is higher with the constant-Q CHO observer, especially for targets located in the liver, and that it is reached with a smaller number of training images. However, preliminary analysis indicates that the visual quality of the 3D maps of the decision variable λ is higher with the wavelet-based CHO and the computation time to derive a 3D λ-map is about 350 times shorter than for the standard CHO. This suggests that the wavelet-CHO observer is a good candidate for use in our guided

  8. Poster: Observing change in crowded data sets in 3D space - Visualizing gene expression in human tissues

    KAUST Repository

    Rogowski, Marcin

    2013-03-01

    We have been confronted with a real-world problem of visualizing and observing change of gene expression between different human tissues. In this paper, we are presenting a universal representation space based on two-dimensional gel electrophoresis as opposed to force-directed layouts encountered most often in similar problems. We are discussing the methods we devised to make observing change more convenient in a 3D virtual reality environment. © 2013 IEEE.

  9. Mid-Infrared Observations of Planetary Nebulae detected in the GLIMPSE 3D Survey

    Directory of Open Access Journals (Sweden)

    J. A. Quino-Mendoza

    2011-01-01

    Full Text Available Presentamos mapas, perfiles y fotometría de 24 nebulosas planetarias (NPs detectadas en el estudio del plano galáctico en el infrarrojo medio (MIR de GLIMPSE 3D. Las NPs muestran muchas de las propiedades observadas en estudios previos de estas fuentes, incluyendo la evidencia de emisión a mayores longitudes de onda afuera de las zonas ionizadas, una consecuencia probable de la emisión de hidrocarburos aromáticos policíclicos (PAHs dentro de las regiones de fotodisociación (PDRs. Notamos también variaciones en los cocientes de flujo 5.8 µm/4.5 µm y 8.0 µm/4.5 µm con respecto a la distancia del núcleo; presentamos evidencia de un aumento en la emisión MIR en los halos de las fuentes y encontramos evidencia de variaciones en color respecto de la evolución nebular.

  10. System Configuration and Operation Plan of Hayabusa2 DCAM3-D Camera System for Scientific Observation During SCI Impact Experiment

    Science.gov (United States)

    Ogawa, Kazunori; Shirai, Kei; Sawada, Hirotaka; Arakawa, Masahiko; Honda, Rie; Wada, Koji; Ishibashi, Ko; Iijima, Yu-ichi; Sakatani, Naoya; Nakazawa, Satoru; Hayakawa, Hajime

    2017-07-01

    An artificial impact experiment is scheduled for 2018-2019 in which an impactor will collide with asteroid 162137 Ryugu (1999 JU3) during the asteroid rendezvous phase of the Hayabusa2 spacecraft. The small carry-on impactor (SCI) will shoot a 2-kg projectile at 2 km/s to create a crater 1-10 m in diameter with an expected subsequent ejecta curtain of a 100-m scale on an ideal sandy surface. A miniaturized deployable camera (DCAM3) unit will separate from the spacecraft at about 1 km from impact, and simultaneously conduct optical observations of the experiment. We designed and developed a camera system (DCAM3-D) in the DCAM3, specialized for scientific observations of impact phenomenon, in order to clarify the subsurface structure, construct theories of impact applicable in a microgravity environment, and identify the impact point on the asteroid. The DCAM3-D system consists of a miniaturized camera with a wide-angle and high-focusing performance, high-speed radio communication devices, and control units with large data storage on both the DCAM3 unit and the spacecraft. These components were successfully developed under severe constraints of size, mass and power, and the whole DCAM3-D system has passed all tests verifying functions, performance, and environmental tolerance. Results indicated sufficient potential to conduct the scientific observations during the SCI impact experiment. An operation plan was carefully considered along with the configuration and a time schedule of the impact experiment, and pre-programed into the control unit before the launch. In this paper, we describe details of the system design concept, specifications, and the operating plan of the DCAM3-D system, focusing on the feasibility of scientific observations.

  11. System Configuration and Operation Plan of Hayabusa2 DCAM3-D Camera System for Scientific Observation During SCI Impact Experiment

    Science.gov (United States)

    Ogawa, Kazunori; Shirai, Kei; Sawada, Hirotaka; Arakawa, Masahiko; Honda, Rie; Wada, Koji; Ishibashi, Ko; Iijima, Yu-ichi; Sakatani, Naoya; Nakazawa, Satoru; Hayakawa, Hajime

    2017-03-01

    An artificial impact experiment is scheduled for 2018-2019 in which an impactor will collide with asteroid 162137 Ryugu (1999 JU3) during the asteroid rendezvous phase of the Hayabusa2 spacecraft. The small carry-on impactor (SCI) will shoot a 2-kg projectile at 2 km/s to create a crater 1-10 m in diameter with an expected subsequent ejecta curtain of a 100-m scale on an ideal sandy surface. A miniaturized deployable camera (DCAM3) unit will separate from the spacecraft at about 1 km from impact, and simultaneously conduct optical observations of the experiment. We designed and developed a camera system (DCAM3-D) in the DCAM3, specialized for scientific observations of impact phenomenon, in order to clarify the subsurface structure, construct theories of impact applicable in a microgravity environment, and identify the impact point on the asteroid. The DCAM3-D system consists of a miniaturized camera with a wide-angle and high-focusing performance, high-speed radio communication devices, and control units with large data storage on both the DCAM3 unit and the spacecraft. These components were successfully developed under severe constraints of size, mass and power, and the whole DCAM3-D system has passed all tests verifying functions, performance, and environmental tolerance. Results indicated sufficient potential to conduct the scientific observations during the SCI impact experiment. An operation plan was carefully considered along with the configuration and a time schedule of the impact experiment, and pre-programed into the control unit before the launch. In this paper, we describe details of the system design concept, specifications, and the operating plan of the DCAM3-D system, focusing on the feasibility of scientific observations.

  12. Data Assimilation of Lightning using 1D+3D/4D WRF Var Assimilation Schemes with Non-Linear Observation Operators

    Science.gov (United States)

    Navon, M. I.; Stefanescu, R.; Fuelberg, H. E.; Marchand, M.

    2012-12-01

    NASA's launch of the GOES-R Lightning Mapper (GLM) in 2015 will provide continuous, full disc, high resolution total lightning (IC + CG) data. The data will be available at a horizontal resolution of approximately 9 km. Compared to other types of data, the assimilation of lightning data into operational numerical models has received relatively little attention. Previous efforts of lightning assimilation mostly have employed nudging. This paper will describe the implementation of 1D+3D/4D Var assimilation schemes of existing ground-based WTLN (Worldwide Total Lightning Network) lightning observations using non-linear observation operators in the incremental WRFDA system. To mimic the expected output of GLM, the WTLN data were used to generate lightning super-observations characterized by flash rates/81 km2/20 min. A major difficulty associated with variational approaches is the complexity of the observation operator that defines the model equivalent of lightning. We use Convective Available Potential Energy (CAPE) as a proxy between lightning data and model variables. This operator is highly nonlinear. Marecal and Mahfouf (2003) have shown that nonlinearities can prevent direct assimilation of rainfall rates in the ECMWF 4D-VAR (using the incremental formulation proposed by Courtier et al. (1994)) from being successful. Using data from the 2011 Tuscaloosa, AL tornado outbreak, we have proved that the direct assimilation of lightning data into the WRF 3D/4D - Var systems is limited due to this incremental approach. Severe threshold limits must be imposed on the innovation vectors to obtain an improved analysis. We have implemented 1D+3D/4D Var schemes to assimilate lightning observations into the WRF model. Their use avoids innovation vector constrains from preventing the inclusion of a greater number of lightning observations Their use also minimizes the problem that nonlinearities in the moist convective scheme can introduce discontinuities in the cost function

  13. Ground-based Transit Observation of the Habitable-zone super-Earth K2-3d

    CERN Document Server

    Fukui, Akihiko; Narita, Norio; Hirano, Teruyuki; Onitsuka, Masahiro; Ryu, Tsuguru; Kusakabe, Nobuhiko

    2016-01-01

    We report the first ground-based transit observation of K2-3d, a 1.5 R_Earth planet supposedly within the habitable zone around a bright M-dwarf host star, using the Okayama 188-cm telescope and the multi(grz)-band imager MuSCAT. Although the depth of the transit (0.7 mmag) is smaller than the photometric precisions (1.2, 0.9, and 1.2 mmag per 60 s for g, r, and z bands, respectively), we marginally but consistently identify the transit signal in all three bands, by taking advantage of the transit parameters from K2, and by introducing a novel technique that leverages multi-band information to reduce the systematics caused by second-order extinction. We also revisit previously analyzed Spitzer transit observations of K2-3d to investigate the possibility of systematic offsets in transit timing, and find that all the timing data can be explained well by a linear ephemeris. We revise the orbital period of K2-3d to be 44.55612 \\pm 0.00021 days, which corrects the predicted transit times in 2019, i.e., the JWST er...

  14. Reconciling Glyoxal Observations Over Oceans with Model Simulations: A 3D sensitivity study

    Science.gov (United States)

    Myriokefalitakis, S.; Daskalakis, N.; Tsigaridis, K.; Baidar, S.; Dix, B. K.; Coburn, S.; Sinreich, R.; Volkamer, R. M.; Kanakidou, M.

    2012-12-01

    Glyoxal, the smallest dicarbonyl can be observed from space, is expected to provide indications on volatile organic compounds (VOC) oxidation and secondary aerosol formation in the troposphere. Glyoxal (CHOCHO) is known to be both of natural origin as a by-product of biogenic VOC oxidation and also produced during anthropogenically emitted hydrocarbon tropospheric chemical transformations, like acetylene and aromatics. CHOCHO's short chemical lifetime in the boundary layer and the lower troposphere makes it an excellent indicator of photochemical hotspots and rapidly changing atmospheric conditions around the globe. Although over land CHOCHO atmospheric load is well established, concentrations over ocean deserts observed by satellite instruments and in-situ measurements remain a challenge for all state of the art chemistry transport models (CTM). High column amounts and concentrations of CHOCHO above oceans are observed close to upwelling areas and above regions with large concentrations of phytoplankton that suggest strong maritime biological activity. In addition, the short lifetime of CHOCHO limits long range transport from continental regions. The observed enhancement of CHOCHO load over the tropical ocean during the TORERO campaign corroborate with satellite retrieval points to the existence of primary and/or secondary tropical oceanic sources of CHOCHO; currently neglected or underestimated these chemical pathways by current knowledge. This hypothesis is investigated based on simulations using global TM4-ECPL CTM. The modeling focuses in the TORERO region and reconciles TORERO ship and aircraft observations with the model results.

  15. A comparative study on 3-D solar wind structure observed by Ulysses and MHD simulation

    Institute of Scientific and Technical Information of China (English)

    FENG Xueshang; XIANG Changqing; ZHONG Dingkun; FAN Quanlin

    2005-01-01

    During Ulysses' first rapid pole-to-pole transit from September 1994 to June 1995, its observations showed that middle- or high-speed solar winds covered all latitudes except those between -20° and +20° near the ecliptic plane,where the velocity was 300-450 km/s. At poleward 40°,however, only fast solar winds at the speed of 700-870 km/s were observed. In addition, the transitions from low-speed wind to high-speed wind or vice versa were abrupt. In this paper, the large-scale structure of solar wind observed by Ulysses near solar minimum is simulated by using the three-dimensional numerical MHD model. The model combines TVD Lax-Friedrich scheme and MacCormack Ⅱ scheme and decomposes the calculation region into two regions: one from 1 to 22 Rs and the other from 18 Rs to 1 AU.Based on the observations of the solar photospheric magnetic field and an addition of the volumetric heating to MHD equations, the large-scale solar wind structure mentioned above is reproduced by using the three-dimensional MHD model and the numerical results are roughly consistent with Ulysses' observations. Our simulation shows that the initial magnetic field topology and the addition of volume heating may govern the bimodal structure of solar wind observed by Ulysses and also demonstrates that the three-dimensional MHD numerical model used here is efficient in modeling the large-scale solar wind structure.

  16. Comparisons of Observations with Results from 3D Simulations and Implications for Predictions of Ozone Recovery

    Science.gov (United States)

    Douglass, Anne R.; Stolarski, Richard S.; Strahan, Susan E.; Steenrod, Stephen D.; Polarsky, Brian C.

    2004-01-01

    Although chemistry and transport models (CTMs) include the same basic elements (photo- chemical mechanism and solver, photolysis scheme, meteorological fields, numerical transport scheme), they produce different results for the future recovery of stratospheric ozone as chlorofluorcarbons decrease. Three simulations will be contrasted: the Global Modeling Initiative (GMI) CTM driven by a single year\\'s winds from a general circulation model; the GMI CTM driven by a single year\\'s winds from a data assimilation system; the NASA GSFC CTM driven by a winds from a multi-year GCM simulation. CTM results for ozone and other constituents will be compared with each other and with observations from ground-based and satellite platforms to address the following: Does the simulated ozone tendency and its latitude, altitude and seasonal dependence match that derived from observations? Does the balance from analysis of observations? Does the balance among photochemical processes match that expected from observations? Can the differences in prediction for ozone recovery be anticipated from these comparisons?

  17. Observations and 3D hydrodynamical models of planetary nebulae with Wolf-Rayet type central stars

    Science.gov (United States)

    Rechy-García, J. S.; Velázquez, P. F.; Peña, M.; Raga, A. C.

    2017-01-01

    We present high-resolution, long-slit spectroscopic observations of two planetary nebulae, M 1-32 and M 3-15, with [WC] central stars located near the Galactic bulge. The observations were obtained with the 2.1-m telescope of the Observatorio Astronómico Nacional, San Pedro Mártir. M 1-32 shows wide wings on the base of its emission lines and M 3-15 has two very faint high-velocity knots. In order to model both planetary nebulae, we built a three-dimensional model consisting of a jet interacting with an equatorially concentrated slow wind, emulating the presence of a dense torus, using the Yguazú hydrodynamical code. From our hydrodynamical models, we obtained position-velocity diagrams in the [N II]λ6583 line for comparison with the observations. We find that the spectral characteristics of M 1-32 and M 3-15 can be explained with the same physical model - a jet moving inside an asymptotic giant branch wind - using different parameters (physical conditions and position angles of the jet). In agreement with our model and observations, these objects contain a dense torus seeing pole-on and a bipolar jet escaping through the poles. Then, we propose to classify this kind of objects as spectroscopic bipolar nebulae, although they have been classified morphologically as compact, round, or elliptical nebulae or with `close collimated lobes'.

  18. Observations and 3D Hydrodynamical models of planetary nebulae with Wolf Rayet type central stars

    Science.gov (United States)

    Rechy-García, J. S.; Velázquez, P. F.; Peña, M.; Raga, A. C.

    2016-10-01

    We present high-resolution, long-slit spectroscopic observations of two planetary nebulae with [WC] central stars located near the galactic bulge, M 1-32 and M 3-15. The observations were obtained with the 2.1-m telescope at the Observatorio Astronómico Nacional, San Pedro Mártir. M 1-32 shows wide wings on the base of its emission lines and M 3-15 has two very faint high-velocity knots. In order to model both PNe we built a three-dimensional model consisting of a jet interacting with an equatorially concentrated slow wind, emulating the presence of a dense torus, using the Yguazú hydrodynamical code. From our hydrodynamical models, we obtained position-velocity (PV) diagrams in the [N II]λ6583 line for comparison with the observations. We find that the spectral characteristics of M 1-32 and M 3-15 can be explained with the same physical model -a jet moving inside an AGB wind- using different parameters (physical conditions and position angles of the jet). In agreement with our model and observations, these objects contain a dense torus seeing pole-on and a bipolar jet escaping thorough the poles. Then we propose to classify this kind of objects as spectroscopic bipolar nebulae, although they have been classified morphologically as compact, round, or elliptical nebulae or with "close collimated lobes".

  19. Moored Observations of Internal Waves in Luzon Strait: 3-D Structure, Dissipation, and Evolution

    Science.gov (United States)

    2016-03-01

    dramatically over the 50 day observation period, much more so than accounted for by the barotropic forcing. Hypotheses for this variability include 1...only) projects. Launch and recovery positions are indicated by the triangles and circles, respectively. Figure 10: Top left: Phase

  20. A simulation study of microwave field effects on a 3D orthorhombic lattice of rotating dipoles: short-range potential energy variation

    Science.gov (United States)

    Kapranov, Sergey V.; Kouzaev, Guennadi A.

    2016-05-01

    Variation of the short-range potential energy of interaction of nearest dipoles in a three-dimensional (3D) orthorhombic lattice exposed to microwave electric fields is studied by means of the Langevin dynamics simulations. The global increase of the mean potential energy is typical for all the frequencies and intensities at lower temperatures, whereas separate potential energy peaks or peak chains are observed at intermediate temperatures. A simple statistical model proposed to account for the temperature dependence of the field intensity for potential energy peaks suggests the concerted collective rotation of the dipoles. The temperature dependence of the peak frequency is explained using a combination of the one-dimensional Kramers and the resonant activation theories applied to the field-driven collective rotation, with the nearly degenerate angular coordinates of the dipoles being used as a single effective coordinate.

  1. 3D Evolution of a Filament Disappearance Event Observed by STEREO

    Science.gov (United States)

    Gosain, S.; Schmieder, B.; Venkatakrishnan, P.; Chandra, R.; Artzner, G.

    2009-10-01

    A filament disappearance event was observed on 22 May 2008 during our recent campaign JOP 178. The filament, situated in the Southern Hemisphere, showed sinistral chirality consistent with the hemispheric rule. The event was well observed by several observatories, in particular by THEMIS. One day, before the disappearance, Hα observations showed up- and down-flows in adjacent locations along the filament, which suggest plasma motions along twisted flux rope. THEMIS and GONG observations show shearing photospheric motions leading to magnetic flux canceling around barbs. STEREO A, B spacecraft with separation angle 52.4°, showed quite different views of this untwisting flux rope in He ii 304 Å images. Here, we reconstruct the three-dimensional geometry of the filament during its eruption phase using STEREO EUV He ii 304 Å images and find that the filament was highly inclined to the solar normal. The He ii 304 Å movies show individual threads, which oscillate and rise to an altitude of about 120 Mm with apparent velocities of about 100 km s-1 during the rapid evolution phase. Finally, as the flux rope expands into the corona, the filament disappears by becoming optically thin to undetectable levels. No CME was detected by STEREO, only a faint CME was recorded by LASCO at the beginning of the disappearance phase at 02:00 UT, which could be due to partial filament eruption. Further, STEREO Fe xii 195 Å images showed bright loops beneath the filament prior to the disappearance phase, suggesting magnetic reconnection below the flux rope.

  2. Adaptive Optics Assisted 3D spectroscopy observations for black hole mass measurements

    OpenAIRE

    Pastorini, Guia

    2006-01-01

    The very high spatial resolution provided by Adaptive Optics assisted spectroscopic observations at 8m-class telescopes (e.g. with SINFONI at the VLT) will allow to greatly increase the number of direct black hole (BH) mass measurements which is currently very small. This is a fundamental step to investigate the tight link between galaxy evolution and BH growth, revealed by the existing scaling relations between $M_{BH}$ and galaxy structural parameters. I present preliminary results from SIN...

  3. Observations and 3D Hydrodynamical models of planetary nebulae with Wolf Rayet type central stars

    CERN Document Server

    Rechy-García, J S; Peña, M; Raga, A C

    2016-01-01

    We present high-resolution, long-slit spectroscopic observations of two planetary nebulae with [WC] central stars located near the galactic bulge, M 1-32 and M 3-15. The observations were obtained with the 2.1-m telescope at the Observatorio Astron\\'omico Nacional, San Pedro M\\'artir. M 1-32 shows wide wings on the base of its emission lines and M 3-15 has two very faint high-velocity knots. In order to model both PNe we built a three-dimensional model consisting of a jet interacting with an equatorially concentrated slow wind, emulating the presence of a dense torus, using the Yguaz\\'u hydrodynamical code. From our hydrodynamical models, we obtained position-velocity (PV) diagrams in the [N II]$\\lambda$6583 line for comparison with the observations. We find that the spectral characteristics of M 1-32 and M 3-15 can be explained with the same physical model -a jet moving inside an AGB wind- using different parameters (physical conditions and position angles of the jet). In agreement with our model and observa...

  4. Observation of Magnetic reconnection at a 3D null point associated with a solar eruption

    CERN Document Server

    Sun, J Q; Yang, K; Cheng, X; Ding, M D

    2016-01-01

    Magnetic null has long been recognized as a special structure serving as a preferential site for magnetic reconnection (MR). However, the direct observational study of MR at null-points is largely lacking. Here, we show the observations of MR around a magnetic null associated with an eruption that resulted in an M1.7 flare and a coronal mass ejection. The GOES X- ray profile of the flare exhibited two peaks at 02:23 UT and 02:40 UT on 2012 November 8, respectively. Based on the imaging observations, we find that the first and also primary X- ray peak was originated from MR in the current sheet underneath the erupting magnetic flux rope (MFR). On the other hand, the second and also weaker X-ray peak was caused by MR around a null-point located above the pre-eruption MFR. The interaction of the null-point and the erupting MFR can be described as a two-step process. During the first step, the erupting and fast expanding MFR passed through the null-point, resulting in a significant displacement of the magnetic fi...

  5. Vertebral artery variations and osseous anomaly at the C1-2 level diagnosed by 3D CT angiography in normal subjects

    Energy Technology Data Exchange (ETDEWEB)

    Wakao, Norimitsu; Kamiya, Mitsuhiro [Aichi Medical University, Department of Spine Center, Aichi (Japan); Aichi Medical University, Department of Orthopedic Surgery, Nagakute, Aichi (Japan); Takeuchi, Mikinobu; Hirasawa, Atsuhiko; Kawanami, Katsuhisa; Takayasu, Masakazu [Aichi Medical University, Department of Spine Center, Aichi (Japan); Nishimura, Manabu [Aichi Medical University, Department of Radiology, Nagakute, Aichi (Japan); Riew, K.D. [Washington University, Department of Orthopedic Surgery, St. Louis, MO (United States); Imagama, Shiro [Nagoya University, Department of Orthopedic Surgery, Nagoya, Aichi (Japan); Sato, Keiji [Aichi Medical University, Department of Orthopedic Surgery, Nagakute, Aichi (Japan)

    2014-10-15

    The craniovertebral junction is anatomically complicated. Representative vertebral artery (VA) variations include the persistent first intersegmental artery (FIA), fenestration of the VA above and below C1 (FEN), posterior inferior cerebellar artery (PICA) from C1/2, and high-riding VA (HRVA). The ponticulus posticus (PP) is a well-known osseous anomaly at C1. Although those anomalies are frequent in patients with cervical deformity, the prevalence of these in subjects with normal cervical spines is still unknown. The aim of this study is to investigate the variations and prevalence of vascular and osseous anomalies based on three-dimensional computed tomographic (3D CT) angiography in patients without any cervical diseases, such as rheumatoid arthritis, Klippel-Feil syndrome, or Down syndrome. Eligible subjects were patients who underwent 3D CT angiography by the Department of Otorhinolaryngology and Internal Medicine from January 2009 to October 2013 in our institution. The authors defined a HRVA as a C2 pedicle with a maximum diameter of 4 mm or less. Among 480 subjects with a mean age of 63.1 years, 387 patients were eligible. One hundred and eighteen subjects were female, and 269 were male. HRVA was observed in 10.1 % of patients (39 out of 387 cases), FIA in 1.8 % (7 cases), FEN in 1.3 % (5 cases), and PICA in 1.3 % (5 cases). PP was observed in 6.2 % of patients (24 cases). According to past reports, many VA anomalies could be attributed to congenital or acquired conditions (e.g., rheumatoid arthritis). However, VA anomalies appear to exist even in patients without any such cervical diseases. (orig.)

  6. Horizontal structure and propagation characteristics of mesospheric gravity waves observed by Antarctic Gravity Wave Imaging/Instrument Network (ANGWIN), using a 3-D spectral analysis technique

    Science.gov (United States)

    Matsuda, Takashi S.; Nakamura, Takuji; Murphy, Damian; Tsutsumi, Masaki; Moffat-Griffin, Tracy; Zhao, Yucheng; Pautet, Pierre-Dominique; Ejiri, Mitsumu K.; Taylor, Michael

    2016-07-01

    ANGWIN (Antarctic Gravity Wave Imaging/Instrument Network) is an international airglow imager/instrument network in the Antarctic, which commenced observations in 2011. It seeks to reveal characteristics of mesospheric gravity waves, and to study sources, propagation, breaking of the gravity waves over the Antarctic and the effects on general circulation and upper atmosphere. In this study, we compared distributions of horizontal phase velocity of the gravity waves at around 90 km altitude observed in the mesospheric airglow imaging over different locations using our new statistical analysis method of 3-D Fourier transform, developed by Matsuda et al. (2014). Results from the airglow imagers at four stations at Syowa (69S, 40E), Halley (76S, 27W), Davis (69S, 78E) and McMurdo (78S, 156E) out of the ANGWIN imagers have been compared, for the observation period between April 6 and May 21 in 2013. In addition to the horizontal distribution of propagation and phase speed, gravity wave energies have been quantitatively compared, indicating a smaller GW activity in higher latitude stations. We further investigated frequency dependence of gravity wave propagation direction, as well as nightly variation of the gravity wave direction and correlation with the background wind variations. We found that variation of propagation direction is partly due to the effect of background wind in the middle atmosphere, but variation of wave sources could play important role as well. Secondary wave generation is also needed to explain the observed results.

  7. Observation of Magnetic Reconnection at a 3D Null Point Associated with a Solar Eruption

    Science.gov (United States)

    Sun, J. Q.; Zhang, J.; Yang, K.; Cheng, X.; Ding, M. D.

    2016-10-01

    Magnetic null has long been recognized as a special structure serving as a preferential site for magnetic reconnection (MR). However, the direct observational study of MR at null-points is largely lacking. Here, we show the observations of MR around a magnetic null associated with an eruption that resulted in an M1.7 flare and a coronal mass ejection. The Geostationary Operational Environmental Satellites X-ray profile of the flare exhibited two peaks at ∼02:23 UT and ∼02:40 UT on 2012 November 8, respectively. Based on the imaging observations, we find that the first and also primary X-ray peak was originated from MR in the current sheet (CS) underneath the erupting magnetic flux rope (MFR). On the other hand, the second and also weaker X-ray peak was caused by MR around a null point located above the pre-eruption MFR. The interaction of the null point and the erupting MFR can be described as a two-step process. During the first step, the erupting and fast expanding MFR passed through the null point, resulting in a significant displacement of the magnetic field surrounding the null. During the second step, the displaced magnetic field started to move back, resulting in a converging inflow and subsequently the MR around the null. The null-point reconnection is a different process from the current sheet reconnection in this flare; the latter is the cause of the main peak of the flare, while the former is the cause of the secondary peak of the flare and the conspicuous high-lying cusp structure.

  8. TAMDAR Observation Assimilation in WRF 3D-Var and Its Impact on Hurricane Ike (2008) Forecast

    Institute of Scientific and Technical Information of China (English)

    Hong-Li WANG; Xiang-Yu HUANG

    2012-01-01

    This study evaluates the impact of atmospheric observations from the Tropospheric Airborne Meteorological Data Reporting (TAMDAR) observing system on numerical weather prediction of hurricane Ike (2008) using three-dimensional data assimilation system for the Weather Research and Forecast (WRF) model (WRF 3D-Var). The TAMDAR data assimilation capability is added to WRF 3D-Var by incorporating the TAMDAR observation operator and corresponding observation processing procedure. Two 6-h cycling data assimilation and forecast experiments are conducted. Track and intensity forecasts are verified against the best track data from the National Hurricane Center. The results show that, on average, assimilating TAMDAR observations has a positive impact on the forecasts of hurricane Ike. The TAMDAR data assimilation reduces the track errors by about 30 km for 72-h forecasts. Improvements in intensity forecasts are also seen after four 6-h data assimilation cycles. Diagnostics show that assimilation of TAMDAR data improves subtropical ridge and steering flow in regions along Ike's track, resulting in better forecasts.

  9. Adaptive Optics Assisted 3D spectroscopy observations for black hole mass measurements

    CERN Document Server

    Pastorini, G

    2006-01-01

    The very high spatial resolution provided by Adaptive Optics assisted spectroscopic observations at 8m-class telescopes (e.g. with SINFONI at the VLT) will allow to greatly increase the number of direct black hole (BH) mass measurements which is currently very small. This is a fundamental step to investigate the tight link between galaxy evolution and BH growth, revealed by the existing scaling relations between $M_{BH}$ and galaxy structural parameters. I present preliminary results from SINFONI K-band spectroscopic observations of a sample of 5 objects with $M_{BH}$ measurements obtained with the Reverberation Mapping (RM) technique. This technique is the starting point to derive the so-called virial $M_{BH}$ estimates, currently the only way to measure $M_{BH}$ at high redshift. Our goal is to assess the reliability of RM by measuring $M_{BH}$ with both gas and stellar kinematical methods and to investigate whether active galaxies follow the same $M_{BH}$-galaxy correlations as normal ones.

  10. Radio Emission from 3D Relativistic Hydrodynamic Jets Observational Evidence of Jet Stratification

    CERN Document Server

    Aloy, M A; Ibáñez, J M; Martí, J M; Müller, E; Aloy, Miguel-Angel; Gomez, Jose-Luis; Ibanez, Jose-Maria; Marti, Jose-Maria; Mueller, Ewald

    1999-01-01

    We present the first radio emission simulations from high resolution three dimensional relativistic hydrodynamic jets, which allow for a study of the observational implications of the interaction between the jet and external medium. This interaction gives rise to a stratification of the jet where a fast spine is surrounded by a slow high energy shear layer. The stratification, and in particular the large specific internal energy and slow flow in the shear layer largely determines the emission from the jet. If the magnetic field in the shear layer becomes helical (e.g., resulting from an initial toroidal field and an aligned field component generated by shear) the emission shows a cross section asymmetry, in which either the top or the bottom of the jet dominates the emission. This, as well as limb or spine brightening, is a function of the viewing angle and flow velocity, and the top/bottom jet emission predominance can be reversed if the jet changes direction with respect to the observer, or presents a chang...

  11. Performance evaluation of medical LCD displays using 3D channelized Hotelling observers

    Science.gov (United States)

    Platiša, Ljiljana; Marchessoux, Cédric; Goossens, Bart; Philips, Wilfried

    2011-03-01

    High performance of the radiologists in the task of image lesion detection is crucial for successful medical practice. One relevant factor in clinical image reading is the quality of the medical display. With the current trends of stack-mode liquid crystal displays (LCDs), the slow temporal response of the display plays a significant role in image quality assurance. In this paper, we report on the experimental study performed to evaluate the quality of a novel LCD with advanced temporal response compensation, and compare it to an existing state-of-the-art display of the same category but with no temporal response compensation. The data in the study comprise clinical digital tomosynthesis images of the breast with added simulated mass lesions. The detectability for the two displays is estimated using the recent multi-slice channelized Hotelling observer (msCHO) model which is especially designed for multi-slice image data. Our results suggest that the novel LCD allows higher detectability than the existing one. Moreover, the msCHO results are used to advise on the parameters for the follow up image reading study with real medical doctors as observers. Finally, the main findings of the msCHO study were confirmed by a human reader study (details to be published in a separate paper).

  12. Ground-based Transit Observation of the Habitable-zone Super-Earth K2-3d

    Science.gov (United States)

    Fukui, Akihiko; Livingston, John; Narita, Norio; Hirano, Teruyuki; Onitsuka, Masahiro; Ryu, Tsuguru; Kusakabe, Nobuhiko

    2016-12-01

    We report the first ground-based transit observation of K2-3d, a 1.5 R ⊕ planet supposedly within the habitable zone around a bright M-dwarf host star, using the Okayama 188 cm telescope and the multi(grz)-band imager MuSCAT. Although the depth of the transit (0.7 mmag) is smaller than the photometric precisions (1.2, 0.9, and 1.2 mmag per 60 s for the g, r, and z bands, respectively), we marginally but consistently identify the transit signal in all three bands, by taking advantage of the transit parameters from K2, and by introducing a novel technique that leverages multi-band information to reduce the systematics caused by second-order extinction. We also revisit previously analyzed Spitzer transit observations of K2-3d to investigate the possibility of systematic offsets in transit timing, and find that all the timing data can be explained well by a linear ephemeris. We revise the orbital period of K2-3d to be 44.55612 ± 0.00021 days, which corrects the predicted transit times for 2019, i.e., the era of the James Webb Space Telescope, by ∼80 minutes. Our observation demonstrates that (1) even ground-based, 2 m class telescopes can play an important role in refining the transit ephemeris of small-sized, long-period planets, and (2) a multi-band imager is useful to reduce the systematics of atmospheric origin, in particular for bluer bands and for observations conducted at low-altitude observatories.

  13. Direct observation of multistep energy transfer in LHCII with fifth-order 3D electronic spectroscopy

    Science.gov (United States)

    Zhang, Zhengyang; Lambrev, Petar H.; Wells, Kym L.; Garab, Győző; Tan, Howe-Siang

    2015-07-01

    During photosynthesis, sunlight is efficiently captured by light-harvesting complexes, and the excitation energy is then funneled towards the reaction centre. These photosynthetic excitation energy transfer (EET) pathways are complex and proceed in a multistep fashion. Ultrafast two-dimensional electronic spectroscopy (2DES) is an important tool to study EET processes in photosynthetic complexes. However, the multistep EET processes can only be indirectly inferred by correlating different cross peaks from a series of 2DES spectra. Here we directly observe multistep EET processes in LHCII using ultrafast fifth-order three-dimensional electronic spectroscopy (3DES). We measure cross peaks in 3DES spectra of LHCII that directly indicate energy transfer from excitons in the chlorophyll b (Chl b) manifold to the low-energy level chlorophyll a (Chl a) via mid-level Chl a energy states. This new spectroscopic technique allows scientists to move a step towards mapping the complete complex EET processes in photosynthetic systems.

  14. Calibration of 3-d.o.f. Translational Parallel Manipulators Using Leg Observations

    CERN Document Server

    Pashkevich, Anatoly; Wenger, Philippe; Gomolitsky, Roman

    2009-01-01

    The paper proposes a novel approach for the geometrical model calibration of quasi-isotropic parallel kinematic mechanisms of the Orthoglide family. It is based on the observations of the manipulator leg parallelism during motions between the specific test postures and employs a low-cost measuring system composed of standard comparator indicators attached to the universal magnetic stands. They are sequentially used for measuring the deviation of the relevant leg location while the manipulator moves the TCP along the Cartesian axes. Using the measured differences, the developed algorithm estimates the joint offsets and the leg lengths that are treated as the most essential parameters. Validity of the proposed calibration technique is confirmed by the experimental results.

  15. A New Approach for 3D Ocean Reconstruction from Limited Observations

    Science.gov (United States)

    Xiao, X.

    2014-12-01

    Satellites can measure ocean surface height and temperature with sufficient spatial and temporal resolution to capture mesoscale features across the globe. Measurements of the ocean's interior, however, remain sparse and irregular, thus the dynamical inference of subsurface flows is necessary to interpret surface measurements. The most common (and accurate) approach is to incorporate surface measurements into a data-assimilating forward ocean model, but this approach is expensive and slow, and thus completely impractical for time-critical needs, such as offering guidance to ship-based observational campaigns. Two recently-developed approaches have made use of the apparent partial consistency of upper ocean dynamics with quasigeostrophic flows that take into account surface buoyancy gradients (i.e. the "surface quasigeostrophic" (SQG) model) to "reconstruct" the interior flow from knowledge of surface height and buoyancy. Here we improve on these methods in three ways: (1) we adopt a modal decomposition that represents the surface and interior dynamics in an efficient way, allowing the separation of surface energy from total energy; (2) we make use of instantaneous vertical profile observations (e.g. from ARGO data) to improve the reconstruction of eddy variables at depth; and (3) we use advanced statistical methods to choose the optimal modes for the reconstruction. The method is tested using a series of high horizontal and vertical resolution quasigeostrophic simulation, with a wide range of surface buoyancy and interior potential vorticity gradient combinations. In addtion, we apply the method to output from a very high resolution primitive equation simulation of a forced and dissipated baroclinic front in a channel. Our new method is systematically compared to the existing methods as well. Its advantages and limitations will be discussed.

  16. Present-Day 3D Velocity Field of Eastern North America Based on Continuous GPS Observations

    Science.gov (United States)

    Goudarzi, Mohammad Ali; Cocard, Marc; Santerre, Rock

    2016-07-01

    The Saint Lawrence River valley in eastern Canada was studied using observations of continuously operating GPS (CGPS) stations. The area is one of the most seismically active regions in eastern North America characterized by many earthquakes, which is also subject to an ongoing glacial isostatic adjustment. We present the current three-dimensional velocity field of eastern North America obtained from more than 14 years (9 years on average) of data at 112 CGPS stations. Bernese GNSS and GITSA software were used for CGPS data processing and position time series analysis, respectively. The results show the counterclockwise rotation of the North American plate in the No-Net-Rotation model with the average of 16.8 ± 0.7 mm/year constrained to ITRF 2008. We also present an ongoing uplift model for the study region based on the present-day CGPS observations. The model shows uplift all over eastern Canada with the maximum rate of 13.7 ± 1.2 mm/year and subsidence to the south mainly over northern USA with a typical rate of -1 to -2 mm/year and the minimum value of -2.7 ± 1.4 mm/year. We compared our model with the rate of radial displacements from the ICE-5G model. Both models agree within 0.02 mm/year at the best stations; however, our model shows a systematic spatial tilt compared to ICE-5G. The misfits between two models amount to the maximum relative subsidence of -6.1 ± 1.1 mm/year to the east and maximum relative uplift of 5.9 ± 2.7 mm/year to the west. The intraplate horizontal velocities are radially outward from the centers of maximum uplift and are inward to the centers of maximum subsidence with the typical velocity of 1-1.6 ± 0.4 mm/year that is in agreement with the ICE-5G model to the first order.

  17. Quiescent Prominences in the Era of ALMA: Simulated Observations Using the 3D Whole-prominence Fine Structure Model

    Science.gov (United States)

    Gunár, Stanislav; Heinzel, Petr; Mackay, Duncan H.; Anzer, Ulrich

    2016-12-01

    We use the detailed 3D whole-prominence fine structure model to produce the first simulated high-resolution ALMA observations of a modeled quiescent solar prominence. The maps of synthetic brightness temperature and optical thickness shown in the present paper are produced using a visualization method for synthesis of the submillimeter/millimeter radio continua. We have obtained the simulated observations of both the prominence at the limb and the filament on the disk at wavelengths covering a broad range that encompasses the full potential of ALMA. We demonstrate here extent to which the small-scale and large-scale prominence and filament structures will be visible in the ALMA observations spanning both the optically thin and thick regimes. We analyze the relationship between the brightness and kinetic temperature of the prominence plasma. We also illustrate the opportunities ALMA will provide for studying the thermal structure of the prominence plasma from the cores of the cool prominence fine structure to the prominence-corona transition region. In addition, we show that detailed 3D modeling of entire prominences with their numerous fine structures will be important for the correct interpretation of future ALMA observations of prominences.

  18. Observing quantum interference in 3D integrated-photonic symmetric multiports

    Science.gov (United States)

    Crespi, Andrea; Osellame, Roberto; Ramponi, Roberta; Bentivegna, Marco; Flamini, Fulvio; Spagnolo, Nicolò; Viggianiello, Niko; Innocenti, Luca; Mataloni, Paolo; Sciarrino, Fabio

    2017-02-01

    The investigation of multi-photon quantum interference in symmetric multi-port splitters has both fundamental and applicative interest. Destructive quantum interference in devices with specific symmetry leads to the suppression of a large number of possible output states, generalizing the Hong-Ou-Mandel effect; simple suppression laws have been developed for interferometers implementing the Fourier or the Hadamard transform over the modes. In fact, these enhanced interference features in the output distribution can be used to assess the indistinguishability of single-photon sources, and symmetric interferometers have been envisaged as benchmark or validation devices for Boson-Sampling machines. In this work we devise an innovative approach to implement symmetric multi-mode interferometers that realize the Fourier and Hadamard transform over the optical modes, exploiting integrated waveguide circuits. Our design is based on the optical implementations of the Fast-Fourier and Fast-Hadamard transform algorithms, and exploits a novel three-dimensional layout which is made possible by the unique capabilities of femtosecond laser waveguide writing. We fabricate devices with m = 4 and m = 8 modes and we let two identical photons evolve in the circuit. By characterizing the coincidence output distribution we are able to observe experimentally the known suppression laws for the output states. In particular, we characterize the robustness of this approach to assess the photons' indistinguishability and to rule out alternative non-quantum states of light. The reported results pave the way to the adoption of symmetric multiport interferometers as pivotal tools in the diagnostics and certification of quantum photonic platforms.

  19. Constraining the Properties of the Eta Carinae System via 3-D SPH Models of Space-Based Observations: The Absolute Orientation of the Binary Orbit

    Science.gov (United States)

    Madura, Thomas I.; Gull, Theodore R.; Owocki, Stanley P.; Okazaki, Atsuo T.; Russell, Christopher M. P.

    2011-01-01

    The extremely massive (> 90 Stellar Mass) and luminous (= 5 x 10(exp 6) Stellar Luminosity) star Eta Carinae, with its spectacular bipolar "Homunculus" nebula, comprises one of the most remarkable and intensely observed stellar systems in the Galaxy. However, many of its underlying physical parameters remain unknown. Multiwavelength variations observed to occur every 5.54 years are interpreted as being due to the collision of a massive wind from the primary star with the fast, less dense wind of a hot companion star in a highly elliptical (e approx. 0.9) orbit. Using three-dimensional (3-D) Smoothed Particle Hydrodynamics (SPH) simulations of the binary wind-wind collision, together with radiative transfer codes, we compute synthetic spectral images of [Fe III] emission line structures and compare them to existing Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) observations. We are thus able, for the first time, to tightly constrain the absolute orientation of the binary orbit on the sky. An orbit with an inclination of approx. 40deg, an argument of periapsis omega approx. 255deg, and a projected orbital axis with a position angle of approx. 312deg east of north provides the best fit to the observations, implying that the orbital axis is closely aligned in 3-D space with the Homunculus symmetry axis, and that the companion star orbits clockwise on the sky relative to the primary.

  20. 3D-Stereoscopic Analysis of Solar Active Region Loops: I: SoHo/EIT Observations at Temperatures of 1.0-1.5 MK

    Science.gov (United States)

    Aschwanden, Markus J.; Newmark, Jeff; Delaboudiniere, Jean-Pierre; Neupert, Werner M.; Portier-Fozzani, Fabrice; Gary, G. Allen; Zucker, Arik

    1998-01-01

    The three-dimensional (3D) structure of solar active region NOAA 7986 observed on 1996 August 30 with the Extrem-ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SoHO) is analyzed. We develop a new method of Dynamic Stereoscopy to reconstruct the 3D geometry of dynamically changing loops, which allows us to determine the orientation of the loop plane with respect to the line-of-sight, a prerequisite to correct properly for projection effects in 3D loop models. With this method and the filter-ratio technique applied to EIT 171 A and 195 A images we determine the 3D coordinates (x(s), y(s), z(s)), the loop width) w(s), the electron density n(sub e)(s), and the electron temperature T(sub e)(s) as function of the loop length s for 30 loop segments. Fitting the loop densities with an exponential density model n(sub e)(h) we find that the so inferred scale height temperatures, T(sub e)(sup lambda) = 1.22 +/- 0.23 MK, match closely the EIT filter-ratio temperatures, T(sub e)(sup FIT) = 1.21 +/- 0.06 MK. We conclude that these rather large-scale loops (with heights of h approx. equals 50 - 200 Mm) that dominate EIT 171 A images are close to thermal equilibrium. Most of the loops show no significant thickness variation w(s), but many exhibit a trend of increasing temperature (dT/ds greater than 0) above the footpoint.

  1. 3D Visualization of near real-time remote-sensing observation for hurricanes field campaign using Google Earth API

    Science.gov (United States)

    Li, P.; Turk, J.; Vu, Q.; Knosp, B.; Hristova-Veleva, S. M.; Lambrigtsen, B.; Poulsen, W. L.; Licata, S.

    2009-12-01

    NASA is planning a new field experiment, the Genesis and Rapid Intensification Processes (GRIP), in the summer of 2010 to better understand how tropical storms form and develop into major hurricanes. The DC-8 aircraft and the Global Hawk Unmanned Airborne System (UAS) will be deployed loaded with instruments for measurements including lightning, temperature, 3D wind, precipitation, liquid and ice water contents, aerosol and cloud profiles. During the field campaign, both the spaceborne and the airborne observations will be collected in real-time and integrated with the hurricane forecast models. This observation-model integration will help the campaign achieve its science goals by allowing team members to effectively plan the mission with current forecasts. To support the GRIP experiment, JPL developed a website for interactive visualization of all related remote-sensing observations in the GRIP’s geographical domain using the new Google Earth API. All the observations are collected in near real-time (NRT) with 2 to 5 hour latency. The observations include a 1KM blended Sea Surface Temperature (SST) map from GHRSST L2P products; 6-hour composite images of GOES IR; stability indices, temperature and vapor profiles from AIRS and AMSU-B; microwave brightness temperature and rain index maps from AMSR-E, SSMI and TRMM-TMI; ocean surface wind vectors, vorticity and divergence of the wind from QuikSCAT; the 3D precipitation structure from TRMM-PR and vertical profiles of cloud and precipitation from CloudSAT. All the NRT observations are collected from the data centers and science facilities at NASA and NOAA, subsetted, re-projected, and composited into hourly or daily data products depending on the frequency of the observation. The data products are then displayed on the 3D Google Earth plug-in at the JPL Tropical Cyclone Information System (TCIS) website. The data products offered by the TCIS in the Google Earth display include image overlays, wind vectors, clickable

  2. Quantifying floral shape variation in 3D using microcomputed tomography: a case study of a hybrid line between actinomorphic and zygomorphic flowers

    Directory of Open Access Journals (Sweden)

    Chun-Neng eWang

    2015-09-01

    Full Text Available The quantification of floral shape variations is difficult because flower structures are both diverse and complex. Traditionally, floral shape variations are quantified using the qualitative and linear measurements of two-dimensional (2D images. The 2D images cannot adequately describe flower structures, and thus lead to unsatisfactory discrimination of the flower shape. This study aimed to acquire three-dimensional (3D images by using microcomputed tomography (μCT and to examine the floral shape variations by using geometric morphometrics (GM. To demonstrate the advantages of the 3D-µCT-GM approach, we applied the approach to a second-generation population of florist’s gloxinia (Sinningia speciosa crossed from parents of zygomorphic and actinomorphic flowers. The flowers in the population considerably vary in size and shape, thereby served as good materials to test the applicability of the proposed phenotyping approach. Procedures were developed to acquire 3D volumetric flower images using a μCT scanner, to segment the flower regions from the background, and to select homologous characteristic points (i.e., landmarks from the flower images for the subsequent GM analysis. The procedures identified 95 landmarks for each flower and thus improved the capability of describing and illustrating the flower shapes, compared with typically lower number of landmarks in 2D analyses. The GM analysis demonstrated that flower opening and dorsoventral symmetry were the principal shape variations of the flowers. The degrees of flower opening and corolla asymmetry were then subsequently quantified directly from the 3D flower images. The 3D-µCT-GM approach revealed shape variations that could not be identified using typical 2D approaches and accurately quantified the flower traits that presented a challenge in 2D images. The approach opens new avenues to investigate floral shape variations.

  3. Can 3-D models explain the observed fractions of fossil and non-fossil carbon in and near Mexico City?

    Directory of Open Access Journals (Sweden)

    A. Hodzic

    2010-06-01

    Full Text Available A 3-D chemistry-transport model has been applied to the Mexico City metropolitan area to investigate the origin of elevated levels of non-fossil (NF carbonaceous aerosols observed in this highly urbanized region. High time resolution measurements of the fine aerosol concentration and composition, and 12 or 24 h integrated 14C measurements of aerosol modern carbon have been performed in and near Mexico City during the March 2006 MILAGRO field experiment. The non-fossil carbon fraction (fCNF, which is lower than the measured modern fraction (fCM due to the elevated 14C in the atmosphere caused by nuclear bomb testing, is estimated from the measured fCM and the available source information. The fCNF contained in PM1 total carbon (fCNFTC ranged from 0.37 to 0.67 at the downtown location (T0, and from 0.50 to 0.86 at the suburban site T1. Substantially lower values (i.e. 0.24–0.49 were found for PM10 filters at T0 by an independent set of measurements, which are inconsistent with the modeled and known differences between the size ranges, suggesting higher than expected uncertainties in the measurement techniques of 14C. An increase in the non-fossil organic carbon (OC fraction (fCNFOC by 0.10–0.15 was observed for both sets of filters during periods with enhanced wildfire activity in comparison to periods when fires were suppressed by rain, which is consistent with the wildfire impacts estimated with other methods. Model results show that the relatively high fraction of non-fossil carbon found in Mexico City seems to arise from the combination of regional biogenic SOA, biomass burning OA, as well as non-fossil urban OA. Similar spatial and temporal variations for fCNFOC are predicted between the urban vs. suburban sites, and high

  4. Rapidities and Observable 3-Velocities in the Flat Finslerian Event Space with Entirely Broken 3D Isotropy

    Directory of Open Access Journals (Sweden)

    George Yu. Bogoslovsky

    2008-05-01

    Full Text Available We study the geometric phase transitions that accompany the dynamic rearrangement of vacuum under spontaneous violation of initial gauge symmetry. The rearrangement may give rise to condensates of three types, namely the scalar, axially symmetric, and entirely anisotropic condensates. The flat space-time keeps being the Minkowski space in the only case of scalar condensate. The anisotropic condensate having arisen, the respective anisotropy occurs also in space-time. In this case the space-time filled with axially symmetric condensate proves to be a flat relativistically invariant Finslerian space with partially broken 3D isotropy, while the space-time filled with entirely anisotropic condensate proves to be a flat relativistically invariant Finslerian space with entirely broken 3D isotropy. The two Finslerian space types are described briefly in the extended introduction to the work, while the original part of the latter is devoted to determining observable 3-velocities in the entirely anisotropic Finslerian event space. The main difficulties that are overcome in solving that problem arose from the nonstandard form of the light cone equation and from the necessity of correct introducing of a norm in the linear vector space of rapidities.

  5. 3D Online Submicron Scale Observation of Mixed Metal Powder's Microstructure Evolution in High Temperature and Microwave Compound Fields

    Directory of Open Access Journals (Sweden)

    Dan Kang

    2014-01-01

    Full Text Available In order to study the influence on the mechanical properties caused by microstructure evolution of metal powder in extreme environment, 3D real-time observation of the microstructure evolution of Al-Ti mixed powder in high temperature and microwave compound fields was realized by using synchrotron radiation computerized topography (SR-CT technique; the spatial resolution was enhanced to 0.37 μm/pixel through the designed equipment and the introduction of excellent reconstruction method for the first time. The process of microstructure evolution during sintering was clearly distinguished from 2D and 3D reconstructed images. Typical sintering parameters such as sintering neck size, porosity, and particle size of the sample were presented for quantitative analysis of the influence on the mechanical properties and the sintering kinetics during microwave sintering. The neck size-time curve was obtained and the neck growth exponent was 7.3, which indicated that surface diffusion was the main diffusion mechanism; the reason was the eddy current loss induced by the external microwave fields providing an additional driving force for mass diffusion on the particle surface. From the reconstructed images and the curve of porosity and average particle size versus temperature, it was believed that the presence of liquid phase aluminum accelerated the densification and particle growth.

  6. 3D online submicron scale observation of mixed metal powder's microstructure evolution in high temperature and microwave compound fields.

    Science.gov (United States)

    Kang, Dan; Xu, Feng; Hu, Xiao-fang; Dong, Bo; Xiao, Yu; Xiao, Ti-qiao

    2014-01-01

    In order to study the influence on the mechanical properties caused by microstructure evolution of metal powder in extreme environment, 3D real-time observation of the microstructure evolution of Al-Ti mixed powder in high temperature and microwave compound fields was realized by using synchrotron radiation computerized topography (SR-CT) technique; the spatial resolution was enhanced to 0.37  μm/pixel through the designed equipment and the introduction of excellent reconstruction method for the first time. The process of microstructure evolution during sintering was clearly distinguished from 2D and 3D reconstructed images. Typical sintering parameters such as sintering neck size, porosity, and particle size of the sample were presented for quantitative analysis of the influence on the mechanical properties and the sintering kinetics during microwave sintering. The neck size-time curve was obtained and the neck growth exponent was 7.3, which indicated that surface diffusion was the main diffusion mechanism; the reason was the eddy current loss induced by the external microwave fields providing an additional driving force for mass diffusion on the particle surface. From the reconstructed images and the curve of porosity and average particle size versus temperature, it was believed that the presence of liquid phase aluminum accelerated the densification and particle growth.

  7. Relativistic radiation belt electron responses to GEM magnetic storms: Comparison of CRRES observations with 3-D VERB simulations

    Science.gov (United States)

    Kim, Kyung-Chan; Shprits, Yuri; Subbotin, Dmitriy; Ni, Binbin

    2012-08-01

    Understanding the dynamics of relativistic electron acceleration, loss, and transport in the Earth's radiation belt during magnetic storms is a challenging task. The U.S. National Science Foundation's Geospace Environment Modeling (GEM) has identified five magnetic storms for in-depth study that occurred during the second half of the Combined Release and Radiation Effects Satellite (CRRES) mission in the year 1991. In this study, we show the responses of relativistic radiation belt electrons to the magnetic storms by comparing the time-dependent 3-D Versatile Electron Radiation Belt (VERB) simulations with the CRRES MEA 1 MeV electron observations in order to investigate the relative roles of the competing effects of previously proposed scattering mechanisms at different storm phases, as well as to examine the extent to which the simulations can reproduce observations. The major scattering processes in our model are radial transport due to Ultra Low Frequency (ULF) electromagnetic fluctuations, pitch angle and energy diffusion including mixed diffusion by whistler mode chorus waves outside the plasmasphere, and pitch angle scattering by plasmaspheric hiss inside the plasmasphere. The 3-D VERB simulations show that during the storm main phase and early recovery phase the estimated plasmapause is located deep in the inner region, indicating that pitch angle scattering by chorus waves can be a dominant loss process in the outer belt. We have also confirmed the important role played by mixed energy-pitch angle diffusion by chorus waves, which tends to reduce the fluxes enhanced by local acceleration, resulting in comparable levels of computed and measured fluxes. However, we cannot reproduce the more pronounced flux dropout near the boundary of our simulations during the main phase, which indicates that non-adiabatic losses may extend toL-shells lower than our simulation boundary. We also provide a detailed description of simulations for each of the GEM storm events.

  8. Quantitative Assessment of Variational Surface Reconstruction from Sparse Point Clouds in Freehand 3D Ultrasound Imaging during Image-Guided Tumor Ablation

    Directory of Open Access Journals (Sweden)

    Shuangcheng Deng

    2016-04-01

    Full Text Available Surface reconstruction for freehand 3D ultrasound is used to provide 3D visualization of a VOI (volume of interest during image-guided tumor ablation surgery. This is a challenge because the recorded 2D B-scans are not only sparse but also non-parallel. To solve this issue, we established a framework to reconstruct the surface of freehand 3D ultrasound imaging in 2011. The key technique for surface reconstruction in that framework is based on variational interpolation presented by Greg Turk for shape transformation and is named Variational Surface Reconstruction (VSR. The main goal of this paper is to evaluate the quality of surface reconstructions, especially when the input data are extremely sparse point clouds from freehand 3D ultrasound imaging, using four methods: Ball Pivoting, Power Crust, Poisson, and VSR. Four experiments are conducted, and quantitative metrics, such as the Hausdorff distance, are introduced for quantitative assessment. The experiment results show that the performance of the proposed VSR method is the best of the four methods at reconstructing surface from sparse data. The VSR method can produce a close approximation to the original surface from as few as two contours, whereas the other three methods fail to do so. The experiment results also illustrate that the reproducibility of the VSR method is the best of the four methods.

  9. Variations of the 3-D coronal magnetic field associated with the X3.4-class solar flare event of AR 10930

    CERN Document Server

    He, Han; Yan, Yihua; Chen, P F; Fang, Cheng

    2016-01-01

    The variations of the 3-D coronal magnetic fields associated with the X3.4-class flare of active region 10930 are studied in this paper. The coronal magnetic field data are reconstructed from the photospheric vector magnetograms obtained by the Hinode satellite and using the nonlinear force-free field extrapolation method developed in our previous work (He et al., 2011). The 3-D force-free factor $\\alpha$, 3-D current density, and 3-D magnetic energy density are employed to analyze the coronal data. The distributions of $\\alpha$ and current density reveal a prominent magnetic connectivity with strong negative $\\alpha$ values and strong current density before the flare. This magnetic connectivity extends along the main polarity inversion line and is found to be totally broken after the flare. The distribution variation of magnetic energy density reveals the redistribution of magnetic energy before and after the flare. In the lower space of the modeling volume the increase of magnetic energy dominates, and in t...

  10. Structure, Kinematics and Origin of Radial Faults: 3D Seismic Observations from the Santos Basin, offshore Brazil

    Science.gov (United States)

    Coleman, Alexander; Jackson, Christopher A.-L.

    2017-04-01

    are buried adjacent to the salt stock. Significant variations in the radial fault structural style exist at different structural levels, with the radial fault distribution, length and position of the throw maxima changing with depth. The results of this study not only provide a fundamental understanding of radial fault growth around salt stocks, but also show that radial faults can grow and interact to create complex 3D throw distributions.

  11. 3D Faulting Numerical Model Related To 2009 L'Aquila Earthquake Based On DInSAR Observations

    Science.gov (United States)

    Castaldo, Raffaele; Tizzani, Pietro; Solaro, Giuseppe; Pepe, Susi; Lanari, Riccardo

    2014-05-01

    We investigate the surface displacements in the area affected by the April 6, 2009 L'Aquila earthquake (Central Italy) through an advanced 3D numerical modeling approach, by exploiting DInSAR deformation velocity maps based on ENVISAT (Ascending and Descending orbits) and COSMO-SkyMed data (Ascending orbit). We benefited from the available geological and geophysical information to investigate the impact of known buried structures on the modulation of the observed ground deformation field; in this context we implemented the a priori information in a Finite Element (FE) Environment considering a structural mechanical physical approach. The performed analysis demonstrate that the displacement pattern associated with the Mw 6.3 main-shock event is consistent with the activation of several fault segments of the Paganica fault. In particular, we analyzed the seismic events in a structural mechanical context under the plane stress mode approximation to solve for the retrieved displacements. We defined the sub-domain setting of the 3D FEM model using the information derived from the CROOP M-15 seismic line. We assumed stationarity and linear elasticity of the involved materials by considering a solution of classical equilibrium mechanical equations. We evolved our model through two stages: the model compacted under the weight of the rock successions (gravity loading) until it reached a stable equilibrium. At the second stage (co-seismic), where the stresses were released through a slip along the faults, by using an optimization procedure we retrieved: (i) the active seismogenic structures responsible for the observed ground deformation, (ii) the effects of the different mechanical constraints on the ground deformation pattern and (iii) the spatial distribution of the retrieved stress field. We evaluated the boundary setting best fit configuration responsible for the observed ground deformation. To this aim, we first generated several forward structural mechanical models

  12. Advanced morphological 3D magnetic resonance observation of cartilage repair tissue (MOCART) scoring using a new isotropic 3D proton-density, turbo spin echo sequence with variable flip angle distribution (PD-SPACE) compared to an isotropic 3D steady-state free precession sequence (True-FISP) and standard 2D sequences.

    Science.gov (United States)

    Welsch, Goetz H; Zak, Lukas; Mamisch, Tallal C; Paul, Dominik; Lauer, Lars; Mauerer, Andreas; Marlovits, Stefan; Trattnig, Siegfried

    2011-01-01

    To evaluate a new isotropic 3D proton-density, turbo-spin-echo sequence with variable flip-angle distribution (PD-SPACE) sequence compared to an isotropic 3D true-fast-imaging with steady-state-precession (True-FISP) sequence and 2D standard MR sequences with regard to the new 3D magnetic resonance observation of cartilage repair tissue (MOCART) score. Sixty consecutive MR scans on 37 patients (age: 32.8 ± 7.9 years) after matrix-associated autologous chondrocyte transplantation (MACT) of the knee were prospectively included. The 3D MOCART score was assessed using the standard 2D sequences and the multiplanar-reconstruction (MPR) of both isotropic sequences. Statistical, Bonferroni-corrected correlation as well as subjective quality analysis were performed. The correlation of the different sequences was significant for the variables defect fill, cartilage interface, bone interface, surface, subchondral lamina, chondral osteophytes, and effusion (Pearson coefficients 0.514-0.865). Especially between the standard sequences and the 3D True-FISP sequence, the variables structure, signal intensity, subchondral bone, and bone marrow edema revealed lower, not significant, correlation values (0.242-0.383). Subjective quality was good for all sequences (P ≥ 0.05). Artifacts were most often visible on the 3D True-FISP sequence (P < 0.05). Different isotropic sequences can be used for the 3D evaluation of cartilage repair with the benefits of isotropic 3D MRI, MPR, and a significantly reduced scan time, where the 3D PD-SPACE sequence reveals the best results. Copyright © 2010 Wiley-Liss, Inc.

  13. Can 3-D models explain the observed fractions of fossil and non-fossil carbon in and near Mexico City?

    Directory of Open Access Journals (Sweden)

    A. Hodzic

    2010-11-01

    Full Text Available A 3-D chemistry-transport model has been applied to the Mexico City metropolitan area to investigate the origin of elevated levels of non-fossil (NF carbonaceous aerosols observed in this highly urbanized region. High time resolution measurements of the fine aerosol concentration and composition, and 12 or 24 h integrated 14C measurements of aerosol modern carbon have been performed in and near Mexico City during the March 2006 MILAGRO field experiment. The non-fossil carbon fraction (fNF, which is lower than the measured modern fraction (fM due to the elevated 14C in the atmosphere caused by nuclear bomb testing, is estimated from the measured fM and the source-dependent information on modern carbon enrichment. The fNF contained in PM1 total carbon analyzed by a US team (fNFTC ranged from 0.37 to 0.67 at the downtown location, and from 0.50 to 0.86 at the suburban site. Substantially lower values (i.e. 0.24–0.49 were found for PM10 filters downtown by an independent set of measurements (Swiss team, which are inconsistent with the modeled and known differences between the size ranges, suggesting higher than expected uncertainties in the measurement techniques of 14C. An increase in the non-fossil organic carbon (OC fraction (fNFOC by 0.10–0.15 was observed for both sets of filters during periods with enhanced wildfire activity in comparison to periods when fires were suppressed by rain, which is consistent with the wildfire impacts estimated with other methods. Model results show that the relatively high fraction of non-fossil carbon found in Mexico City seems to arise from the combination in about equal proportions of regional biogenic SOA, biomass burning POA and SOA, as well as non-fossil urban POA and SOA. Predicted spatial and temporal variations for

  14. Developing a 3D Constrained Variational Analysis Method to Calculate Large Scale Forcing Data and the Applications

    Science.gov (United States)

    Tang, S.; Zhang, M. H.

    2014-12-01

    Large-scale forcing data (vertical velocities and advective tendencies) are important atmospheric fields to drive single-column models (SCM), cloud-resolving models (CRM) and large-eddy simulations (LES), but they are difficult to calculate accurately. The current 1-dimensional constrained variational analysis (1D CVA) method (Zhang and Lin, 1997) used by the Atmospheric Radiation Measurement (ARM) program is limited to represent the average of a sounding network domain. We extended the original 1D CVA algorithm into 3-dimensional along with other improvements, calculated gridded large-scale forcing data, apparent heating sources (Q1) and moisture sinks (Q2), and compared with 5 reanalyses: ERA-Interim, NCEP CFSR, MERRA, JRA55 and NARR for a mid-latitude spring cyclone case. The results from a case study for in March 3rd 2000 at the Southern Great Plain (SGP) show that reanalyses generally captured the structure of the mid-latitude cyclone, but they have serious biases in the 2nd order derivative terms (divergences and horizontal derivations) at regional scales of less than a few hundred kilometers. Our algorithm provides a set of atmospheric fields consistent with the observed constraint variables at the surface and top of the atmosphere better than reanalyses. The analyzed atmospheric fields can be used in SCM, CRM and LES to provide 3-dimensional dynamical forcing, or be used to evaluate reanalyses or model simulations.

  15. Design and verification of a simple 3D dynamic model of speed skating which mimics observed forces and motions.

    Science.gov (United States)

    van der Kruk, E; Veeger, H E J; van der Helm, F C T; Schwab, A L

    2017-09-14

    Advice about the optimal coordination pattern for an individual speed skater, could be addressed by simulation and optimization of a biomechanical speed skating model. But before getting to this optimization approach one needs a model that can reasonably match observed behaviour. Therefore, the objective of this study is to present a verified three dimensional inverse skater model with minimal complexity, which models the speed skating motion on the straights. The model simulates the upper body transverse translation of the skater together with the forces exerted by the skates on the ice. The input of the model is the changing distance between the upper body and the skate, referred to as the leg extension (Euclidean distance in 3D space). Verification shows that the model mimics the observed forces and motions well. The model is most accurate for the position and velocity estimation (respectively 1.2% and 2.9% maximum residuals) and least accurate for the force estimations (underestimation of 4.5-10%). The model can be used to further investigate variables in the skating motion. For this, the input of the model, the leg extension, can be optimized to obtain a maximal forward velocity of the upper body. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  16. Optimal Estimation of Sulfuryl Fluoride Emissions on Regional and Global Scales Using Advanced 3D Inverse Modeling and AGAGE Observations

    Science.gov (United States)

    Gressent, A.; Muhle, J.; Rigby, M. L.; Lunt, M. F.; Ganesan, A.; Prinn, R. G.; Krummel, P. B.; Fraser, P. J.; Steele, P.; Weiss, R. F.; Harth, C. M.; O'Doherty, S.; Young, D.; Park, S.; Li, S.; Yao, B.; Reimann, S.; Vollmer, M. K.; Maione, M.; Arduini, I.; Lunder, C. R.

    2016-12-01

    Sulfuryl fluoride (SO2F2) is used increasingly as a fumigant to replace methyl bromide (CH3Br), which was regulated under the Montreal Protocol (1986). Mühle et al., J. Geophys. Res., 2009) showed that SO2F2 had been accumulating in the global atmosphere with a growth rate of 5±1% per year from 1978 to 2007. They also determined, using the 2D AGAGE box model, that SO2F2 has a total atmospheric lifetime of 36±11 years mainly driven by the oceanic uptake. In addition, the global warming potential of SO2F2 has been estimated to be ≈4780 for a 100-year time horizon (Papadimitriou et al., J. Phys. Chem., 2008), which is similar to the CFC-11 (CCl3F) GWP. Thus it is a potent greenhouse gas and its emissions are expected to continue to increase in the future. Here we report the first estimations of the SO2F2 emissions and its ocean sink from January 2006 to the end of 2015 on both the global scale using a 3D Eulerian chemical transport model (MOZART-4) solving a Main Chain Monte Carlo (MCMC) inversion, and on the regional scale using a 3D Lagrangian dispersion model (NAME) via the reversible-jump trans-dimensional MCMC approach (Lunt et al., Geosci. Model Dev., 2016). The mole fractions calculated on the global scale are used as boundary conditions for emission calculations over the NAME regions in North America, Europe, East Asia and Australia. For this 10-year inversion we use observations from the AGAGE (Advanced Global Atmospheric Gases Experiment) starting with six stations in 2006, which are La Jolla (California), Mace Head (Ireland), Cape Grim (Australia), Ragged Point (Barbados), Trinidad Head (California) and Cape Matatula (Samoa). We then add observations from Gosan (South Korea) in 2007, Jungfraujoch (Switzerland) in 2008, Shandiangzi (China) and Ny-Alesund (Norway) in 2010, and Monte Cimone (Italy) in 2011, reducing the uncertainty associated with the regions located close to these stations. Results are compared to (i) the total global SO2F2 emissions

  17. Along-strike variation in subducting plate velocity induced by along-strike variation in overriding plate structure: Insights from 3D numerical models

    Science.gov (United States)

    Rodríguez-González, Juan; Billen, Magali I.; Negredo, Ana M.; Montesi, Laurent G. J.

    2016-10-01

    Subduction dynamics can be understood as the result of the balance between driving and resisting forces. Previous work has traditionally regarded gravitational slab pull and viscous mantle drag as the main driving and resistive forces for plate motion respectively. However, this paradigm fails to explain many of the observations in subduction zones. For example, subducting plate velocity varies significantly along-strike in many subduction zones and this variation is not correlated to the age of subducting lithosphere. Here we present three-dimensional and time-dependent numerical models of subduction. We show that along-strike variations of the overriding plate thermal structure can lead to along-strike variations in subducting plate velocity. In turn, velocity variations lead to significant migration of the Euler pole over time. Our results show that the subducting plate is slower beneath the colder portion of the overriding plate due to two related mechanisms. First, the mantle wedge beneath the colder portion of the overriding plate is more viscous, which increases mantle drag. Second, where the mantle wedge is more viscous, hydrodynamic suction increases, leading to a lower slab dip. Both factors contribute to decreasing subducting plate velocity in the region; therefore, if the overriding plate is not uniform, the resulting velocity varies significantly along-strike, which causes the Euler pole to migrate closer to the subducting plate. We present a new mechanism to explain observations of subducting plate velocity in the Cocos and Nazca plates. These results shed new light on the balance of forces that control subduction dynamics and prove that future studies should take into consideration the three-dimensional structure of the overriding plate.

  18. 3D MODELING OF GJ1214b's ATMOSPHERE: FORMATION OF INHOMOGENEOUS HIGH CLOUDS AND OBSERVATIONAL IMPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Charnay, B.; Meadows, V.; Misra, A.; Arney, G. [Astronomy Department, University of Washington, Seattle, WA 98125 (United States); Leconte, J., E-mail: bcharnay@uw.edu [Canadian Institute for Theoretical Astrophysics, 60 St George Street, University of Toronto, Toronto, ON M5S 3H8 (Canada)

    2015-11-01

    The warm sub-Neptune GJ1214b has a featureless transit spectrum that may be due to the presence of high and thick clouds or haze. Here, we simulate the atmosphere of GJ1214b with a 3D General Circulation Model for cloudy hydrogen-dominated atmospheres, including cloud radiative effects. We show that the atmospheric circulation is strong enough to transport micrometric cloud particles to the upper atmosphere and generally leads to a minimum of cloud at the equator. By scattering stellar light, clouds increase the planetary albedo to 0.4–0.6 and cool the atmosphere below 1 mbar. However, the heating by ZnS clouds leads to the formation of a stratospheric thermal inversion above 10 mbar, with temperatures potentially high enough on the dayside to evaporate KCl clouds. We show that flat transit spectra consistent with Hubble Space Telescope observations are possible if cloud particle radii are around 0.5 μm, and that such clouds should be optically thin at wavelengths >3 μm. Using simulated cloudy atmospheres that fit the observed spectra we generate transit, emission, and reflection spectra and phase curves for GJ1214b. We show that a stratospheric thermal inversion would be readily accessible in near- and mid-infrared atmospheric spectral windows. We find that the amplitude of the thermal phase curves is strongly dependent on metallicity, but only slightly impacted by clouds. Our results suggest that primary and secondary eclipses and phase curves observed by the James Webb Space Telescope in the near- to mid-infrared should provide strong constraints on the nature of GJ1214b's atmosphere and clouds.

  19. Observations of 3-D transverse dispersion and dilution in natural consolidated rock by X-ray tomography

    Science.gov (United States)

    Boon, Maartje; Bijeljic, Branko; Niu, Ben; Krevor, Sam

    2016-10-01

    Recent studies have demonstrated the importance of transverse dispersion for dilution and mixing of solutes but most observations have remained limited to two-dimensional sand-box models. We present a new core-flood test to characterize solute transport in 3-D natural-rock media. A device consisting of three annular regions was used for fluid injection into a cylindrical rock core. Pure water was injected into the center and outer region and a NaI solution into the middle region. Steady state transverse dispersion of NaI was visualized with an X-ray medical CT-scanner for a range of Peclét numbers. Three methods were used to calculate Dt: (1) fitting an analytical solution, (2) analyzing the second-central moment, and (3) analyzing the dilution index and reactor ratio. Transverse dispersion decreased with distance due to flow focusing. Furthermore, Dt in the power-law regime showed sub-linear behavior. Overall, the reactor ratios were high confirming the homogeneity of Berea sandstone.

  20. Direct observation of current-induced motion of a 3D vortex domain wall in cylindrical nanowires

    KAUST Repository

    Ivanov, Yurii P.

    2017-05-08

    The current-induced dynamics of 3D magnetic vortex domain walls in cylindrical Co/Ni nanowires are revealed experimentally using Lorentz microscopy and theoretically using micromagnetic simulations. We demonstrate that a spin-polarized electric current can control the reversible motion of 3D vortex domain walls, which travel with a velocity of a few hundred meters per second. This finding is a key step in establishing fast, high-density memory devices based on vertical arrays of cylindrical magnetic nanowires.

  1. 3D mapping of existing observing capabilities in the frame of GAIA-CLIM H2020 project

    Science.gov (United States)

    Emanuele, Tramutola; Madonna, Fabio; Marco, Rosoldi; Francesco, Amato

    2017-04-01

    The aim of the Gap Analysis for Integrated Atmospheric ECV CLImate Monitoring (GAIA-CLIM) project is to improve our ability to use ground-based and sub-orbital observations to characterise satellite observations for a number of atmospheric Essential Climate Variables (ECVs). The key outcomes will be a "Virtual Observatory" (VO) facility of co-locations and their uncertainties and a report on gaps in capabilities or understanding, which shall be used to inform subsequent Horizon 2020 activities. In particular, Work Package 1 (WP1) of the GAIA-CLIM project is devoted to the geographical mapping of existing non-satellite measurement capabilities for a number of ECVs in the atmospheric, oceanic and terrestrial domains. The work carried out within WP1 has allowed to provide the users with an up-to-date geographical identification, at the European and global scales, of current surface-based, balloon-based and oceanic (floats) observing capabilities on an ECV by ECV basis for several parameters which can be obtained using space-based observations from past, present and planned satellite missions. Having alighted on a set of metadata schema to follow, a consistent collection of discovery metadata has been provided into a common structure and will be made available to users through the GAIA-CLIM VO in 2018. Metadata can be interactively visualized through a 3D Graphical User Interface. The metadataset includes 54 plausible networks and 2 aircraft permanent infrastructures for EO Characterisation in the context of GAIA-CLIM currently operating on different spatial domains and measuring different ECVs using one or more measurement techniques. Each classified network has in addition been assessed for suitability against metrological criteria to identifyy those with a level of maturity which enables closure on a comparison with satellite measurements. The metadata GUI is based on Cesium, a virtual globe freeware and open source written in Javascript. It allows users to apply

  2. The image variations in mastoid segment of facial nerve and sinus tympani in congenital aural atresia by HRCT and 3D VR CT.

    Science.gov (United States)

    Wang, Zhen; Hou, Qian; Wang, Pu; Sun, Zhaoyong; Fan, Yue; Wang, Yun; Xue, Huadan; Jin, Zhengyu; Chen, Xiaowei

    2015-09-01

    To find the variations of middle ear structures including the spatial pattern of mastoid segment of facial nerve and the shapes of the sinus tympani in patients with congenital aural atresia (CAA) by using the high-resolution (HR) CT and 3D volume rendered (VR) CT images. HRCT was performed in 25 patients with congenital aural atresia including six bilateral atresia patients (n=25, 21 males, 4 females, mean age 13.8 years, range 6-19). Along the long axis of the posterior semicircular canal ampulla, the oblique axial multiplanar reconstruction (MPR) was set to view the depiction of the round window and the mastoid segment of facial nerve. Volumetric rending technique was used to demonstrate the morphologic features. HRCT and 3D VR findings in atresia ears were compared with those in 19 normal ears of the unilateral ears of atresia patients. On the basic plane, the horizontal line distances between the mastoid segment of the facial nerve and the round window (h-RF) in atresia ears significantly decreased compared to the control ears (PVR CT images. HRCT and 3D VR CT could help a better understanding of different kinds of variations in mastoid segment of facial nerve and sinus tympani in CAA ears. And it may further help surgeons to make the correct decision for hearing rehabilitation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. 3D Numerical Optimization Modelling of Ivancich landslides (Assisi, Italy) via integration of remote sensing and in situ observations.

    Science.gov (United States)

    Castaldo, Raffaele; De Novellis, Vincenzo; Lollino, Piernicola; Manunta, Michele; Tizzani, Pietro

    2015-04-01

    The new challenge that the research in slopes instabilities phenomena is going to tackle is the effective integration and joint exploitation of remote sensing measurements with in situ data and observations to study and understand the sub-surface interactions, the triggering causes, and, in general, the long term behaviour of the investigated landslide phenomenon. In this context, a very promising approach is represented by Finite Element (FE) techniques, which allow us to consider the intrinsic complexity of the mass movement phenomena and to effectively benefit from multi source observations and data. In this context, we perform a three dimensional (3D) numerical model of the Ivancich (Assisi, Central Italy) instability phenomenon. In particular, we apply an inverse FE method based on a Genetic Algorithm optimization procedure, benefitting from advanced DInSAR measurements, retrieved through the full resolution Small Baseline Subset (SBAS) technique, and an inclinometric array distribution. To this purpose we consider the SAR images acquired from descending orbit by the COSMO-SkyMed (CSK) X-band radar constellation, from December 2009 to February 2012. Moreover the optimization input dataset is completed by an array of eleven inclinometer measurements, from 1999 to 2006, distributed along the unstable mass. The landslide body is formed of debris material sliding on a arenaceous marl substratum, with a thin shear band detected using borehole and inclinometric data, at depth ranging from 20 to 60 m. Specifically, we consider the active role of this shear band in the control of the landslide evolution process. A large field monitoring dataset of the landslide process, including at-depth piezometric and geological borehole observations, were available. The integration of these datasets allows us to develop a 3D structural geological model of the considered slope. To investigate the dynamic evolution of a landslide, various physical approaches can be considered

  4. 3D Face Apperance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Astrom, K

    2006-01-01

    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations......We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations...

  5. 3D Face Appearance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Åström, Kalle

    2006-01-01

    We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}......We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}...

  6. A study on variation types in celiac axis and superior mesenteric artery using 3D volume rendering of MDCT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Keun; Jang, Seong Joo [Dept. of Radiological physics Graduate School of Dongshin University, Naju (Korea, Republic of); Jang, Young Ill [Dept. of Radiological Technology of Kwangyang Health College, Kwangyang (Korea, Republic of)

    2013-06-15

    The aim of this study was to evaluate the variation which based on Celiac axis and SMA using by CT volume rendering images. 613 patients underwent abdominal CTA, there were 552 patients (99.05%, TypeⅠ, Ⅱ ) with normal anatomical form and 61 (9.95%, Type Ⅲ-Ⅻ) with variation. TypeⅠ was 339(55.31%), Type Ⅱ was 213 (34.74%), Type Ⅲ was 18 (2.93%), Type Ⅳ was 12 patients (1.95%), Type Ⅴ was 11 patient (1.79%), Type Ⅵ was 9 patients (1.46%), Type Ⅶ was 6 patients (0.97%), Type Ⅷ was 1 patient (0.16%), Type Ⅸ was 1 patient (0.16%), Type Ⅹ was 1 patient (0.16%), Type Ⅺ was 1 patient (0.16%), and Type Ⅻ was 1 patient (0.16%) into totally new types of variation. In conclusion, we could found 9 new types of variation by classifying based on celiac axis and superior mesenteric artery. These results were considered to be an important opportunity for a new vessel map.

  7. Global atmospheric budget of acetaldehyde: 3-D model analysis and constraints from in-situ and satellite observations

    Directory of Open Access Journals (Sweden)

    D. B. Millet

    2010-04-01

    Full Text Available We construct a global atmospheric budget for acetaldehyde using a 3-D model of atmospheric chemistry (GEOS-Chem, and use an ensemble of observations to evaluate present understanding of its sources and sinks. Hydrocarbon oxidation provides the largest acetaldehyde source in the model (128 Tg a−1, a factor of 4 greater than the previous estimate, with alkanes, alkenes, and ethanol the main precursors. There is also a minor source from isoprene oxidation. We use an updated chemical mechanism for GEOS-Chem, and photochemical acetaldehyde yields are consistent with the Master Chemical Mechanism. We present a new approach to quantifying the acetaldehyde air-sea flux based on the global distribution of light absorption due to colored dissolved organic matter (CDOM derived from satellite ocean color observations. The resulting net ocean emission is 57 Tg a−1, the second largest global source of acetaldehyde. A key uncertainty is the acetaldehyde turnover time in the ocean mixed layer, with quantitative model evaluation over the ocean complicated by known measurement artifacts in clean air. Simulated concentrations in surface air over the ocean generally agree well with aircraft measurements, though the model tends to overestimate the vertical gradient. PAN:NOx ratios are well-simulated in the marine boundary layer, providing some support for the modeled ocean source. We introduce the Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1 for acetaldehyde and ethanol and use it to quantify their net flux from living terrestrial plants. Including emissions from decaying plants the total direct acetaldehyde source from the land biosphere is 23 Tg a−1. Other terrestrial acetaldehyde sources include biomass burning (3 Tg a−1 and anthropogenic emissions (2 Tg a−1. Simulated concentrations in the continental boundary layer are generally unbiased and capture the spatial

  8. 3D Digital Modelling

    DEFF Research Database (Denmark)

    Hundebøl, Jesper

    wave of new building information modelling tools demands further investigation, not least because of industry representatives' somewhat coarse parlance: Now the word is spreading -3D digital modelling is nothing less than a revolution, a shift of paradigm, a new alphabet... Research qeustions. Based...... on empirical probes (interviews, observations, written inscriptions) within the Danish construction industry this paper explores the organizational and managerial dynamics of 3D Digital Modelling. The paper intends to - Illustrate how the network of (non-)human actors engaged in the promotion (and arrest) of 3......D Modelling (in Denmark) stabilizes - Examine how 3D Modelling manifests itself in the early design phases of a construction project with a view to discuss the effects hereof for i.a. the management of the building process. Structure. The paper introduces a few, basic methodological concepts...

  9. 3-D observations of a red tide event in the offshore water along the western Guangdong coast

    Institute of Scientific and Technical Information of China (English)

    XIE Lingling; QI Yiquan; CHEN Qingxiang; HU Jianyu; ZHANG Shuwen; YI Xiaofei; CHEN Fajin; DENG Rui; DENG Xiaodong; WANG Jing

    2015-01-01

    From November 24 to 26, 2014, a red tide event occurred in the offshore water off the Hailing Island located at the western Guangdong coast. The red tide appeared as pink strips distributed within 3 km in the offshore water and extended for about 10 km along the shoreline. During the flood tide, the pink seawater rushed to the beach with breaking waves, forming foam strips on the beach. Guangdong Province Key Laboratory for Coastal Ocean Variation and Disaster Prediction Technologies, Guangdong Ocean University, emergently responded to the event and organized three-dimensional observations from the air, onboard and on beach. The preliminary analyses of the cruise data and water samples indicate that the event was induced by non-toxicNoctiluca scintillans, of which the concentration reaches as high as 4 200 cells/L near the surface and 2 600 cells/L at the bottom.

  10. Characterization of the 3D distribution of ozone and coarse aerosols in the Troposphere using IASI thermal infrared satellite observations

    Science.gov (United States)

    Cuesta, J.; Eremenko, M.; Dufour, G.; Hoepfner, M.; Orphal, J.

    2012-04-01

    Both tropospheric ozone and aerosols significantly affect air quality in megacities during pollution events. Moreover, living conditions may be seriously aggravated when such agglomerations are affected by wildfires (e.g. Russian fires over Moscow in 2010), which produce smoke and pollutant precursors, or even during dense desert dust outbreaks (e.g. recurrently over Beijing or Cairo). Moreover, since aerosols diffuse and absorb solar radiation, they have a direct impact on the photochemical production of tropospheric ozone. These interactions during extreme events of high aerosol loads are nowadays poorly known, even though they may significantly affect the tropospheric photochemical equilibrium. In order to address these issues, we have developed a new retrieval technique to jointly characterize the 3D distribution of both tropospheric ozone and coarse aerosols, using spaceborne observations of the infrared spectrometer IASI onboard MetOp-A satellite. Our methodology is based on the inversion of Earth radiance spectra in the atmospheric window from 8 to 12 μm measured by IASI and a «Tikhonov-Philipps»-type regularisation with constraints varying in altitude (as in [Eremenko et al., 2008, GRL; Dufour et al., 2010 ACP]) to simultaneously retrieve ozone profiles, aerosol optical depths at 10 μm and aerosol layer effective heights. Such joint retrieval prevents biases in the ozone profile retrieval during high aerosol load conditions. Aerosol retrievals using thermal infrared radiances mainly account for desert dust and the coarse fraction of biomass burning aerosols. We use radiances from 15 micro-windows within the 8-12 μm atmospheric window, which were carefully chosen (following [Worden et al., 2006 JGR]) for extracting the maximum information on aerosols and ozone and minimizing contamination by other species. We use the radiative transfer code KOPRA, including line-by-line calculations of gas absorption and single scattering for aerosols [Hoepfner et al

  11. Anterior communicating artery aneurysms and an unusual variations of anterior comminicating artery detected by 3-D CT angiography

    Directory of Open Access Journals (Sweden)

    Hasan Emre Aydın

    2014-04-01

    Full Text Available Aneurysmal subarachnoid haemorrhage which has a serious mortality and morbitity ratio, occurs approximately 10/100 000 population per year and it is usally caused by rupture of a cerebral artery aneurysm. Aneurysms are classified sacculer, fusiform or dissecan by morphlogical description. Vascular congenital anomalies of the cerebral vessels contribute to saccular aneurysm formation by increasing hemodynamic stress on the vessel wall. Although anterior communicating artery (ACoA is the most seen site of vascular anomalies associated with aneurysmal formation, the agenesis of the anterior commmunicating artery is very rare. Here, we present unusual anatomical variations of ACoA detected by three-dimensional CT angiography after subarachnoid hemorrhage.

  12. Observations and 3D hydrodynamics-based modeling of decadal-scale shoreline change along the Outer Banks, North Carolina

    Science.gov (United States)

    Safak, Ilgar; List, Jeffrey; Warner, John C.; Kumar, Nirnimesh

    2017-01-01

    Long-term decadal-scale shoreline change is an important parameter for quantifying the stability of coastal systems. The decadal-scale coastal change is controlled by processes that occur on short time scales (such as storms) and long-term processes (such as prevailing waves). The ability to predict decadal-scale shoreline change is not well established and the fundamental physical processes controlling this change are not well understood. Here we investigate the processes that create large-scale long-term shoreline change along the Outer Banks of North Carolina, an uninterrupted 60 km stretch of coastline, using both observations and a numerical modeling approach. Shoreline positions for a 24-yr period were derived from aerial photographs of the Outer Banks. Analysis of the shoreline position data showed that, although variable, the shoreline eroded an average of 1.5 m/yr throughout this period. The modeling approach uses a three-dimensional hydrodynamics-based numerical model coupled to a spectral wave model and simulates the full 24-yr time period on a spatial grid running on a short (second scale) time-step to compute the sediment transport patterns. The observations and the model results show similar magnitudes (O(105 m3/yr)) and patterns of alongshore sediment fluxes. Both the observed and the modeled alongshore sediment transport rates have more rapid changes at the north of our section due to continuously curving coastline, and possible effects of alongshore variations in shelf bathymetry. The southern section with a relatively uniform orientation, on the other hand, has less rapid transport rate changes. Alongshore gradients of the modeled sediment fluxes are translated into shoreline change rates that have agreement in some locations but vary in others. Differences between observations and model results are potentially influenced by geologic framework processes not included in the model. Both the observations and the model results show higher rates of

  13. Simulation of phytoplankton distribution and variation in the Bering-Chukchi Sea using a 3-D physical-biological model

    Science.gov (United States)

    Hu, Haoguo; Wang, Jia; Liu, Hui; Goes, Joaquim

    2016-06-01

    A three-dimensional physical-biological model has been used to simulate seasonal phytoplankton variations in the Bering and Chukchi Seas with a focus on understanding the physical and biogeochemical mechanisms involved in the formation of the Bering Sea Green Belt (GB) and the Subsurface Chlorophyll Maxima (SCM). Model results suggest that the horizontal distribution of the GB is controlled by a combination of light, temperature, and nutrients. Model results indicated that the SCM, frequently seen below the thermocline, exists because of a rich supply of nutrients and sufficient light. The seasonal onset of phytoplankton blooms is controlled by different factors at different locations in the Bering-Chukchi Sea. In the off-shelf central region of the Bering Sea, phytoplankton blooms are regulated by available light. On the Bering Sea shelf, sea ice through its influence on light and temperature plays a key role in the formation of blooms, whereas in the Chukchi Sea, bloom formation is largely controlled by ambient seawater temperatures. A numerical experiment conducted as part of this study revealed that plankton sinking is important for simulating the vertical distribution of phytoplankton and the seasonal formation of the SCM. An additional numerical experiment revealed that sea ice algae account for 14.3-36.9% of total phytoplankton production during the melting season, and it cannot be ignored when evaluating primary productivity in the Arctic Ocean.

  14. Analytical investigation on 3D non-Boussinesq mountain wave drag for wind profiles with vertical variations

    Institute of Scientific and Technical Information of China (English)

    TANG Jin-yun; TANG Jie; WANG Yuan

    2007-01-01

    A new analytical model was developed to predict the gravity wave drag (GWD) induced by an isolated 3-dimensional mountain, over which a stratified, nonrotating non-Boussinesq sheared flow is impinged. The model is confined to small amplitude motion and assumes the ambient velocity varying slowly with height. The modified Taylor-Goldstein equation with variable coefficients is solved with a Wentzel-KramersBrillouin (WKB) approximation, formally valid at high Richardson numbers. With this WKB solution, generic formulae of second order accuracy, for the GWD and surface pressure perturbation (both for hydrostatic and non-hydrostatic flow) are presented, enabling a rigorous treatment on the effects by vertical variations in wind profiles. In an ideal test to the circular bell-shaped mountain, it was found that when the wind is linearly sheared,that the GWD decreases as the Richardson number decreases. However, the GWD for a forward sheared wind (wind increases with height) decreases always faster than that for the backward sheared wind (wind deceases with height). This difference is evident whenever the model is hydrostatic or not.

  15. Limb darkening laws for two exoplanet host stars derived from 3D stellar model atmospheres. Comparison with 1D models and HST light curve observations

    Science.gov (United States)

    Hayek, W.; Sing, D.; Pont, F.; Asplund, M.

    2012-03-01

    We compare limb darkening laws derived from 3D hydrodynamical model atmospheres and 1D hydrostatic MARCS models for the host stars of two well-studied transiting exoplanet systems, the late-type dwarfs HD 209458 and HD 189733. The surface brightness distribution of the stellar disks is calculated for a wide spectral range using 3D LTE spectrum formation and opacity sampling⋆. We test our theoretical predictions using least-squares fits of model light curves to wavelength-integrated primary eclipses that were observed with the Hubble Space Telescope (HST). The limb darkening law derived from the 3D model of HD 209458 in the spectral region between 2900 Å and 5700 Å produces significantly better fits to the HST data, removing systematic residuals that were previously observed for model light curves based on 1D limb darkening predictions. This difference arises mainly from the shallower mean temperature structure of the 3D model, which is a consequence of the explicit simulation of stellar surface granulation where 1D models need to rely on simplified recipes. In the case of HD 189733, the model atmospheres produce practically equivalent limb darkening curves between 2900 Å and 5700 Å, partly due to obstruction by spectral lines, and the data are not sufficient to distinguish between the light curves. We also analyze HST observations between 5350 Å and 10 500 Å for this star; the 3D model leads to a better fit compared to 1D limb darkening predictions. The significant improvement of fit quality for the HD 209458 system demonstrates the higher degree of realism of 3D hydrodynamical models and the importance of surface granulation for the formation of the atmospheric radiation field of late-type stars. This result agrees well with recent investigations of limb darkening in the solar continuum and other observational tests of the 3D models. The case of HD 189733 is no contradiction as the model light curves are less sensitive to the temperature stratification of

  16. Copernicus observations of Iota Herculis velocity variations

    Science.gov (United States)

    Rogerson, J. B., Jr.

    1984-01-01

    Observations of Iota Her at 109.61-109.67 nm obtained with the U1 channel of the Copernicus spectrophotometer at resolution 5 pm during 3.6 days in May, 1979, are reported. Radial-velocity variations are detected and analyzed as the sum of two sinusoids with frequencies 0.660 and 0.618 cycles/day and amplitudes 9.18 and 8.11 km/s, respectively. Weak evidence supporting the 13.9-h periodicity seen in line-profile variations by Smith (1978) is found.

  17. 3-D multi-observable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. II: General methodology and resolution analysis

    Science.gov (United States)

    Afonso, J. C.; Fullea, J.; Yang, Y.; Connolly, J. A. D.; Jones, A. G.

    2013-04-01

    Here we present a 3-D multi-observable probabilistic inversion method, particularly designed for high-resolution (regional) thermal and compositional mapping of the lithosphere and sub-lithospheric upper mantle that circumvents the problems associated with traditional inversion methods. The key aspects of the method are as follows: (a) it exploits the increasing amount and quality of geophysical datasets; (b) it combines multiple geophysical observables (Rayleigh and Love dispersion curves, body-wave tomography, magnetotelluric, geothermal, petrological, gravity, elevation, and geoid) with different sensitivities to deep/shallow, thermal/compositional anomalies into a single thermodynamic-geophysical framework; (c) it uses a general probabilistic (Bayesian) formulation to appraise the data; (d) no initial model is needed; (e) compositional a priori information relies on robust statistical analyses of a large database of natural mantle samples; and (f) it provides a natural platform to estimate realistic uncertainties. In addition, the modular nature of the method/algorithm allows for incorporating or isolating specific forward operators according to available data. The strengths and limitations of the method are thoroughly explored with synthetic models. It is shown that the a posteriori probability density function (i.e., solution to the inverse problem) satisfactorily captures spatial variations in bulk composition and temperature with high resolution, as well as sharp discontinuities in these fields. Our results indicate that only temperature anomalies of ΔT ⪆150°C and large compositional anomalies of ΔMg# > 3 (or bulk ΔAl2O3 > 1.5) can be expected to be resolved simultaneously when combining high-quality geophysical data. This resolving power is sufficient to explore some long-standing problems regarding the nature and evolution of the lithosphere (e.g., vertical stratification of cratonic mantle, compositional versus temperature signatures in seismic

  18. Observational appearance of inefficient accretion flows and jets in 3D GRMHD simulations: Application to Sgr~A*

    CERN Document Server

    Moscibrodzka, Monika; Shiokawa, Hotaka; Gammie, Charles F

    2014-01-01

    Radiatively inefficient accretion flows (RIAFs) are believed to power supermassive black holes (SMBH) in the underluminous cores of galaxies. Such black holes are typically accompanied by flat-spectrum radio cores indicating the presence of moderately relativistic jets. One of the best constrained RIAFs is associated with the SMBH in the Galactic center, Sgr A*. Since the plasma in RIAFs is only weakly collisional, the dynamics and the radiative properties of these systems are very uncertain. Here we want to study the impact of varying electron temperature on the appearance of accretion flows and jets. Using 3-D GRMHD accretion flow simulations, we use ray tracing methods to predict spectra and radio images of RIAFs allowing for different electron heating mechanisms in the in- and outflowing parts of the simulations. We find that small changes in the electron temperature can result in dramatic differences in the relative dominance of jets and accretion flows. Application to Sgr A* shows that radio spectrum an...

  19. Reproducing Electric Field Observations during Magnetic Storms by means of Rigorous 3-D Modelling and Distortion Matrix Co-estimation

    Science.gov (United States)

    Püthe, Christoph; Manoj, Chandrasekharan; Kuvshinov, Alexey

    2015-04-01

    Electric fields induced in the conducting Earth during magnetic storms drive currents in power transmission grids, telecommunication lines or buried pipelines. These geomagnetically induced currents (GIC) can cause severe service disruptions. The prediction of GIC is thus of great importance for public and industry. A key step in the prediction of the hazard to technological systems during magnetic storms is the calculation of the geoelectric field. To address this issue for mid-latitude regions, we developed a method that involves 3-D modelling of induction processes in a heterogeneous Earth and the construction of a model of the magnetospheric source. The latter is described by low-degree spherical harmonics; its temporal evolution is derived from observatory magnetic data. Time series of the electric field can be computed for every location on Earth's surface. The actual electric field however is known to be perturbed by galvanic effects, arising from very local near-surface heterogeneities or topography, which cannot be included in the conductivity model. Galvanic effects are commonly accounted for with a real-valued time-independent distortion matrix, which linearly relates measured and computed electric fields. Using data of various magnetic storms that occurred between 2000 and 2003, we estimated distortion matrices for observatory sites onshore and on the ocean bottom. Strong correlations between modellings and measurements validate our method. The distortion matrix estimates prove to be reliable, as they are accurately reproduced for different magnetic storms. We further show that 3-D modelling is crucial for a correct separation of galvanic and inductive effects and a precise prediction of electric field time series during magnetic storms. Since the required computational resources are negligible, our approach is suitable for a real-time prediction of GIC. For this purpose, a reliable forecast of the source field, e.g. based on data from satellites

  20. Pore-scale observation and 3D simulation of wettability effects on supercritical CO2 - brine immiscible displacement in drainage

    Science.gov (United States)

    Hu, R.; Wan, J.; Chen, Y.

    2016-12-01

    Wettability is a factor controlling the fluid-fluid displacement pattern in porous media and significantly affects the flow and transport of supercritical (sc) CO2 in geologic carbon sequestration. Using a high-pressure micromodel-microscopy system, we performed drainage experiments of scCO2 invasion into brine-saturated water-wet and intermediate-wet micromodels; we visualized the scCO2 invasion morphology at pore-scale under reservoir conditions. We also performed pore-scale numerical simulations of the Navier-Stokes equations to obtain 3D details of fluid-fluid displacement processes. Simulation results are qualitatively consistent with the experiments, showing wider scCO2 fingering, higher percentage of scCO2 and more compact displacement pattern in intermediate-wet micromodel. Through quantitative analysis based on pore-scale simulation, we found that the reduced wettability reduces the displacement front velocity, promotes the pore-filling events in the longitudinal direction, delays the breakthrough time of invading fluid, and then increases the displacement efficiency. Simulated results also show that the fluid-fluid interface area follows a unified power-law relation with scCO2 saturation, and show smaller interface area in intermediate-wet case which suppresses the mass transfer between the phases. These pore-scale results provide insights for the wettability effects on CO2 - brine immiscible displacement in geologic carbon sequestration.

  1. Synthesis of solid textures based on a 2D example: application to the synthesis of 3D carbon structures observed by transmission electronic microscopy

    Science.gov (United States)

    Da Costa, Jean-Pierre; Germain, Christian

    2010-01-01

    We propose a novel parametric approach which aims at the synthesis of anisotropic solid textures from the analysis of a single 2D exemplar. This approach is an extension of the pyramidal scheme of Portilla and Simoncelli. It proceeds in three main steps: first, a 2D analysis of the example is performed which produces a set of reference statistics. Then, 3D reference statistics are inferred from the 2D ones thanks to specific anisotropy assumptions. The final step aims at the synthesis itself: the 3D target statistics are imposed on a random 3D block according to a specific multi resolution pyramidal scheme. The approach is applied to the synthesis of solid textures representative of the structure of dense pre-graphitic carbons. The samples are lattice fringe images obtained by high resolution transmission electronic microscopy (HRTEM). HRTEM samples with increasing structural order are used for the experimental evaluation. The produced solid textures exhibit anisotropy properties similar to those observed in the HRTEM samples. Such an approach can easily be extended to any 3D anisotropic structures showing stacks of layers such as wood grain images, seismic data, etc.

  2. A New Method of Absorption-Phase Nanotomography for 3D Observation of Mineral-Organic-Water Textiles and its Application to Pristine Carbonaceous Chondrites

    Science.gov (United States)

    Tsuchiyama, A.; Nakato, A.; Matsuno, J.; Sugimoto, M.; Uesugi, K.; Takeuchi, A.; Nakano, T.; Vaccaro, E.; Russel, S.; Nakamura-Messenger, K.; hide

    2017-01-01

    Pristine carbonaceous chondrites contain fine-grained matrix, which is composed largely of amorphous silicates, sub-micron silicate and sulfide crystals, and organic materials. They are regarded as primitive dust in the early Solar System that have suffered minimal alteration in their parent bodies. The matrix generally has different lithologies; some of them are unaltered but some are more or less aqueously altered. Their textures have been examined in 2D usually by FE-SEM/EDS, TEM/EDS, nano-SIMS and micro-XRD. Observation of their complex fine textures, such as spatial relation between different lithologies in 3D, is important for understanding aggregation and alteration processes. Synchrotron radiation (SR)-based X-ray tomography reveals 3D structures nondestructively with high spatial resolution of approximately greater than 100 nm. We have developed a new technique using absorption contrasts called "dual-energy tomography" (DET) to obtain 3D distribution of minerals at SPring-8, SR facility in Japan, and applied successfully to Itokawa particles. Phase and absorption contrast images can be simultaneously obtained in 3D by using "scanning-imaging x-ray microscopy" (SIXM) at SPring-8, which can discriminate between void, water and organic materials. We applied this technique combined with FIB micro-sampling to carbonaceous chondrites to search for primitive liquid water. In this study, we combined the DET and SIXM to obtain three dimensional submicron-scale association between minerals, organic materials and water and applied this to pristine carbonaceous chondrites.

  3. 3D photoacoustic imaging

    Science.gov (United States)

    Carson, Jeffrey J. L.; Roumeliotis, Michael; Chaudhary, Govind; Stodilka, Robert Z.; Anastasio, Mark A.

    2010-06-01

    Our group has concentrated on development of a 3D photoacoustic imaging system for biomedical imaging research. The technology employs a sparse parallel detection scheme and specialized reconstruction software to obtain 3D optical images using a single laser pulse. With the technology we have been able to capture 3D movies of translating point targets and rotating line targets. The current limitation of our 3D photoacoustic imaging approach is its inability ability to reconstruct complex objects in the field of view. This is primarily due to the relatively small number of projections used to reconstruct objects. However, in many photoacoustic imaging situations, only a few objects may be present in the field of view and these objects may have very high contrast compared to background. That is, the objects have sparse properties. Therefore, our work had two objectives: (i) to utilize mathematical tools to evaluate 3D photoacoustic imaging performance, and (ii) to test image reconstruction algorithms that prefer sparseness in the reconstructed images. Our approach was to utilize singular value decomposition techniques to study the imaging operator of the system and evaluate the complexity of objects that could potentially be reconstructed. We also compared the performance of two image reconstruction algorithms (algebraic reconstruction and l1-norm techniques) at reconstructing objects of increasing sparseness. We observed that for a 15-element detection scheme, the number of measureable singular vectors representative of the imaging operator was consistent with the demonstrated ability to reconstruct point and line targets in the field of view. We also observed that the l1-norm reconstruction technique, which is known to prefer sparseness in reconstructed images, was superior to the algebraic reconstruction technique. Based on these findings, we concluded (i) that singular value decomposition of the imaging operator provides valuable insight into the capabilities of

  4. Magnetic Resonance Materials in Physics, Biology and Medicine Fast Reduction of Undersampling Artifacts in Radial MR Angiography with 3D Total Variation on Graphics Hardware

    Science.gov (United States)

    Knoll, Florian; Unger, Markus; Diwoky, Clemens; Clason, Christian; Pock, Thomas; Stollberger, Rudolf

    2014-01-01

    Objective Subsampling of radially encoded MRI acquisitions in combination with sparsity promoting methods opened a door to significantly increased imaging speed, which is crucial for many important clinical applications. In particular, it has been shown recently that total variation (TV) regularization efficiently reduces undersampling artifacts. The drawback of the method is the long reconstruction time which makes it impossible to use in daily clinical practice, especially if the TV optimization problem has to be solved repeatedly to select a proper regularization parameter. Materials and Methods The goal of this work was to show that for the case of MR-Angiography, TV filtering can be performed as a post-processing step, in contrast to the common approach of integrating TV penalties in the image reconstruction process. With this approach it is possible to use TV algorithms with data fidelity terms in image space, which can be implemented very efficiently on graphic processing units (GPUs). The combination of a special radial sampling trajectory and a full 3D formulation of the TV minimization problem is crucial for the effectiveness of the artifact elimination process. Results and Conclusion The computation times of GPU-TV show that interactive elimination of undersampling artifacts is possible even for large volume data sets, in particular allowing the interactive determination of the regularization parameter. Results from phantom measurements and in vivo angiography data sets show that 3D TV, together with the proposed sampling trajectory, leads to pronounced improvements in image quality. However, while artifact removal was very efficient for angiography data sets in this work, it cannot be expected that the proposed method of TV post-processing will work for arbitrary types of scans. PMID:20352289

  5. Observed variations of monopile foundation stiffness

    DEFF Research Database (Denmark)

    Kallehave, Dan; Thilsted, C.L.; Diaz, Alberto Troya

    2015-01-01

    The soil-structure stiffness of monopile foundations for offshore wind turbines has a high impact on the fatigue loading during normal operating conditions. Thus, a robust design must consider the evolution of pile-soil stiffness over the lifetime of the wind farm. This paper present and discuss...... full-scale measurements obtained from one offshore wind turbine structure located within Horns Reef II offshore wind farm. Data are presented for a 2.5 years period and covers normal operating conditions and one larger storm event. A reduction of the pile-soil stiffness was observed during the storm...... events, followed by a complete regain to a pre-storm level when the storm subsided. In additional, no long term variations of the pile-soil stiffness was observed. The wind turbine is located in dense to very dense sand deposits....

  6. 3D Spectroscopy in Astronomy

    Science.gov (United States)

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco

    2011-09-01

    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  7. 3D video

    CERN Document Server

    Lucas, Laurent; Loscos, Céline

    2013-01-01

    While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century.The chapters in this book cover a large spectrum of areas connected to 3D video, which are presented both theoretically and technologically, while taking into account both physiological and perceptual aspects. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide th

  8. 3D Animation Essentials

    CERN Document Server

    Beane, Andy

    2012-01-01

    The essential fundamentals of 3D animation for aspiring 3D artists 3D is everywhere--video games, movie and television special effects, mobile devices, etc. Many aspiring artists and animators have grown up with 3D and computers, and naturally gravitate to this field as their area of interest. Bringing a blend of studio and classroom experience to offer you thorough coverage of the 3D animation industry, this must-have book shows you what it takes to create compelling and realistic 3D imagery. Serves as the first step to understanding the language of 3D and computer graphics (CG)Covers 3D anim

  9. Expanding the degree of freedom of observation on depth-direction by the triple-separated slanted parallax barrier in autostereoscopic 3D display

    Science.gov (United States)

    Lee, Kwang-Hoon; Choe, Yeong-Seon; Lee, Dong-Kil; Kim, Yang-Gyu; Park, Youngsik; Park, Min-Chul

    2013-05-01

    Autostereoscopic multi-views 3D display system has a narrow freedom of degrees to the observational directions such as horizontal and perpendicular direction to the display plane than the glasses on type. In this paper, we proposed an innovative method that expanding a width of formed viewing zone on the depth direction keeping with the number of views on horizontal direction by using the triple segmented-slanted parallax barrier (TS-SPB) in the glasses-off type of 3D display. The validity of the proposal is verified by optical simulation based on the environment similar to an actual case. In benefits, the maximum number of views to display on horizontal direction is to be 2n and the width of viewing zone on depth direction is to be increased up to 3.36 times compared to the existing one-layered parallax barrier system.

  10. Variation of the characteristics of biofilm on the semi-suspended bio-carrier produced by a 3D printing technique: Investigation of a whole growing cycle.

    Science.gov (United States)

    Tang, Bing; Zhao, Yiliang; Bin, Liying; Huang, Shaosong; Fu, Fenglian

    2017-07-25

    The presented investigation focused on exploring the characteristics of the biofilm formed on a novel semi-suspended bio-carrier and revealing their variation during the whole growing cycle. This used semi-suspended bio-carrier was designed to be a spindle shape, and then fabricated by using a 3D printing technique. Results indicated the bio-carrier provided a suitable environment for the attachment of diverse microorganisms. During the experimental period lasted for 45days, the biofilm quickly attached on the surface of the bio-carrier and grew to maturity, but its characteristics, including the chemical compositions, adhesion force, surface roughness, structure of microbial communities, varied continuously along with the operational time, which greatly influenced the performance of the bioreactor. The shape and structure of bio-carrier, and the shearing force caused by the aeration are important factors that influence the microbial community and its structure, and also heavily affect the formation and growth of biofilm. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Variations in the vestibular cortical bone of permanent canine teeth in orthodontic patients. a comparative study: linear tomography vs. cbct (3d accuitomo).

    Science.gov (United States)

    Mateu, María E; Martínez, M E; Dagum, H; Benítez Rogé, Sandra C; Bruno, Gabriela I; Hecht, Pedro; Folco, Alejandra A

    2014-01-01

    The aim of this study was to compare the results of measuring the height of the vestibular cortical bone of canine teeth by linear tomography (LT) and 3-D Accuitomo cone beam computed tomography (CBCT) before and after aligning dental arches by orthodontic treatment. LT and CBCT were performed before and after orthodontic alignment on 12 canines in three patients undergoing orthodontic treatment, and the height of the canine vestibular cortical bones measured in mm. Measurements were taken by double-blinded operators. The mean variation in height of the vestibular cortical bone with orthodontic treatment was - 0,33 mm} 0.233 standard error using CBCT and -0,08mm } 0.55 standard error using LT. Analysis of variance (ANOVA) was performed to compare the techniques, the patients and upper and lower canines. No significant difference was found for any of the cases. Using LT to evaluate vestibular crest cortical bone in canines is comparable in efficiency to using CBCT. Height in millimeters is less in LT because image resolution is lower and when it is very thin it is not appreciable by this method.

  12. EUROPEANA AND 3D

    Directory of Open Access Journals (Sweden)

    D. Pletinckx

    2012-09-01

    Full Text Available The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  13. 3D quantitative evaluation of spine proprioceptive perception/motor control through instinctive self-correction manoeuvre in healthy young subjects' posture: an observational study.

    Science.gov (United States)

    D'Amico, Moreno; Kinel, Edyta; Roncoletta, Piero

    2017-07-18

    Conservative treatment in spine deformities and spine related disorders is mainly based on proper individual proprioceptive and motor control training. For these reasons, conservative treatment involves the stimulation of individual capability of perceiving/reducing deformities, blocks and/or improper spine posture by voluntary control. The literature describes that habitually adopted relaxed postures often exacerbate low back pain. Typically, youths can be referred to therapeutic programs aimed at improving the quality of body posture along with fostering the awareness of the importance of correct posture. Few studies in literature outline the subject's individual instinctive ability to perceive properly and control his/her posture and produce an improvement through a self- correction manoeuvre. How do healthy young adult subjects perceive and control their posture and spine shape? Are they able to modify them in a correct way through an instinctive self-correction manoeuvre? Cross-sectional observational study. A cohort of asymptomatic young adult university students and workers were recruited at Clinic of Rehabilitation, University of Medical Sciences, Poznan, Poland. 121 healthy subjects (57 females, 64 males), 19-34 years (μ=23.5±3.2). Subject's full body posture including 3D spine shape reconstruction, identified using 27 retro-reflective markers suitably located on anatomical landmarks has been measured by using a non-ionizing 3D optoelectronic stereo-photogrammetric approach and a 3D full skeleton biomechanical model. From the 3D full skeleton and spine reconstruction, eleven quantitative biomechanical parameters describing the nature of body posture have been computed to compare Natural erect Vs Self-corrected standing attitudes. A high percentage of healthy participants 105(87%) was unable to modify its spinal shape in the frontal plane. Conversely, the sagittal plane presented significant clinical changes in the thoracic spine, where Males showed to

  14. Sensitivity analysis with regard to variations of physical forcing including two possible future hydrographic regimes for the Oeregrundsgrepen. A follow-up baroclinic 3D-model study

    Energy Technology Data Exchange (ETDEWEB)

    Engqvist, A. [A and I Engqvist Konsult HB, Vaxholm (Sweden); Andrejev, O. [Finnish Inst. of Marine Research, Helsinki (Finland)

    2000-02-15

    A sensitivity analysis with regard to variations of physical forcing has been performed using a 3D baroclinic model of the Oeregrundsgrepen area for a whole-year period with data pertaining to 1992. The results of these variations are compared to a nominal run with unaltered physical forcing. This nominal simulation is based on the experience gained in an earlier whole-year modelling of the same area; the difference is mainly that the present nominal simulation is run with identical parameters for the whole year. From a computational economy point of view it has been necessary to vary the time step between the month-long simulation periods. For all simulations with varied forcing, the same time step as for the nominal run has been used. The analysis also comprises the water turnover of a hypsographically defined subsection, the Bio Model area, located above the SFR depository. The external forcing factors that have been varied are the following (with their found relative impact on the volume average of the retention time of the Bio Model area over one year given within parentheses): atmospheric temperature increased/reduced by 2.5 deg C (-0.1% resp. +0.6%), local freshwater discharge rate doubled/halved (-1.6% resp. +0.01%), salinity range at the border increased/reduced a factor 2 (-0.84% resp. 0.00%), wind speed forcing reduced 10% (+8.6%). The results of these simulations, at least the yearly averages, permit a reasonably direct physical explanation, while the detailed dynamics is for natural reasons more intricate. Two additional full-year simulations of possible future hydrographic regimes have also been performed. The first mimics a hypothetical situation with permanent ice cover, which increases the average retention time 87%. The second regime entails the future hypsography with its anticipated shoreline displacement by an 11 m land-rise in the year 4000 AD, which also considerably increases the average retention times for the two remaining layers of the

  15. Solar Wind Halo Formation by the Scattering of the Strahl via Direct Cluster/PEACE Observations of the 3D Velocity Distribution Function

    Science.gov (United States)

    Figueroa-Vinas, Adolfo; Gurgiolo, Chris A.; Nieves-Chinchilla, Teresa; Goldstein, Melvyn L.

    2010-01-01

    It has been suggested by a number of authors that the solar wind electron halo can be formed by the scattering of the strahl. On frequent occasions we have observed in electron angular skymaps (Phi/Theta-plots) of the electron 3D velocity distribution functions) a bursty-filament of particles connecting the strahl to the solar wind core-halo. These are seen over a very limited energy range. When the magnetic field is well off the nominal solar wind flow direction such filaments are inconsistent with any local forces and are probably the result of strong scattering. Furthermore, observations indicates that the strahl component is frequently and significantly anisotropic (Tper/Tpal approx.2). This provides a possible free energy source for the excitation of whistler waves as a possible scattering mechanism. The empirical observational evidence between the halo and the strahl suggests that the strahl population may be, at least in part, the source of the halo component.

  16. Generation of flat viewing zone in DFVZ autostereoscopic multiview 3D display by weighting factor

    Science.gov (United States)

    Kim, Sung-Kyu; Yoon, Seon-Kyu; Yoon, Ky-Hyuk

    2013-05-01

    A new method is introduced to reduce three crosstalk problems and the brightness variation in 3D image by means of the dynamic fusion of viewing zones (DFVZ) using weighting factor. The new method effectively generates the flat viewing zone at the center of viewing zone. The new type autostereoscopic 3D display can give less brightness variation of 3D image when observer moves.

  17. IZDELAVA TISKALNIKA 3D

    OpenAIRE

    Brdnik, Lovro

    2015-01-01

    Diplomsko delo analizira trenutno stanje 3D tiskalnikov na trgu. Prikazan je razvoj in principi delovanja 3D tiskalnikov. Predstavljeni so tipi 3D tiskalnikov, njihove prednosti in slabosti. Podrobneje je predstavljena zgradba in delovanje koračnih motorjev. Opravljene so meritve koračnih motorjev. Opisana je programska oprema za rokovanje s 3D tiskalniki in komponente, ki jih potrebujemo za izdelavo. Diploma se oklepa vprašanja, ali je izdelava 3D tiskalnika bolj ekonomična kot pa naložba v ...

  18. Variation of fundamental constants: theory and observations

    CERN Document Server

    Flambaum, V V

    2007-01-01

    Review of recent works devoted to the variation of the fundamental constants is presented including atomic clocks, quasar absorption spectra, and Oklo natural nuclear reactor data. Assuming linear variation with time we can compare different results. From the quasar absorption spectra: $\\dot{\\mu}/\\mu=(1 \\pm 3) \\times 10^{-16}$ yr$^{-1}$. A combination of this result and the atomic clock results gives the best limt on variation of $\\alpha$: $\\dot{\\alpha}/\\alpha=(-0.8 \\pm 0.8) \\times 10^{-16}$ yr$^{-1}$. The Oklo natural reactor gives the best limit on the variation of $m_s/\\Lambda_{QCD}$ where $m_s$ is the strange quark mass. Huge enhancement of the relative variation effects happens in transitions between close atomic, molecular and nuclear energy levels. We suggest several new cases where the levels are very narrow. Large enhancement of the variation effects is also possible in cold atomic and molecular collisions near Feshbach resonance. Massive bodies (stars or galaxies) can also affect physical constants....

  19. 3-D MHD Model of the Solar Wind-Interplanetary Space Combining System 1:Variation of Solar Wind Speed Associated with the Photospheric Magnetic Field

    Science.gov (United States)

    Nakamizo, A.; Tanaka, T.

    2006-12-01

    Existing global models of the solar-wind/IMF expanding to the Earth's orbit are basically grounded in the idea of "source surface." It is widely accepted that the sector structure and the solar wind speed are primarily controlled by the magnetic field at the source surface and the so-called "expansion factor." On the other hand, 3-D MHD model is still off from practical use because both of scientific and technical problems. One of the former problems is the reproduction of supersonic solar-wind. From the viewpoint of the physics of the solar wind, coronal heating and outward acceleration mechanisms are invoked to explain the supersonic evolution of the solar wind. Since the mechanism responsible for the heating/acceleration is still one of the primary subjects of the physics of the solar wind, many MHD models have taken into account their effects by incorporating additional source terms corresponding to promising candidates such as thermal conductions, radiation losses and wave pressures. However there are few MHD models considering the effect of the expansion factor, which determines the solar-wind speed in the series of source surface models. In this study we newly incorporate the flux tube expansion rate into the MHD equation system including heat source function in the energy equation. Appling the unstructured grid system, we achieved the dense grid spacing at the inner boundary, which enable us to adopt realistic solar magnetic fields, and a size of simulation space of 1AU. Photospheric magnetic field data is used as the inner boundary condition.The simulation results are summarized as: (1) The variation of solar wind speed is well controlled by the structure of magnetic fields at and little above the solar surface and (2) Far above the solar surface, the interface between high and low speed flows evolves to a structure suggestive of CIRs. Comparing the data from simulation with the actual solar wind data obtained by spacecrafts, we will discuss the future

  20. Perception of 3D spatial relations for 3D displays

    Science.gov (United States)

    Rosen, Paul; Pizlo, Zygmunt; Hoffmann, Christoph; Popescu, Voicu S.

    2004-05-01

    We test perception of 3D spatial relations in 3D images rendered by a 3D display (Perspecta from Actuality Systems) and compare it to that of a high-resolution flat panel display. 3D images provide the observer with such depth cues as motion parallax and binocular disparity. Our 3D display is a device that renders a 3D image by displaying, in rapid succession, radial slices through the scene on a rotating screen. The image is contained in a glass globe and can be viewed from virtually any direction. In the psychophysical experiment several families of 3D objects are used as stimuli: primitive shapes (cylinders and cuboids), and complex objects (multi-story buildings, cars, and pieces of furniture). Each object has at least one plane of symmetry. On each trial an object or its "distorted" version is shown at an arbitrary orientation. The distortion is produced by stretching an object in a random direction by 40%. This distortion must eliminate the symmetry of an object. The subject's task is to decide whether or not the presented object is distorted under several viewing conditions (monocular/binocular, with/without motion parallax, and near/far). The subject's performance is measured by the discriminability d', which is a conventional dependent variable in signal detection experiments.

  1. 相位中心偏差对机载阵列天线下视3D-SAR成像影响分析%Analysis of Impact of Phase Center Variations in Linear Array Antena Downward-looking 3D-SAR Imaging

    Institute of Scientific and Technical Information of China (English)

    朱海洋; 洪峻; 明峰

    2012-01-01

    阵列下视3D-SAR采用阵列天线实现3维分辨成像,阵列天线包含的大量阵元天线不可避免地会存在相位中心偏差,这会在回波信号中引入相位误差,影响阵列下视3D-SAR 3维成像.该文首先建立了相位中心偏差分析模型,然后在此基础上采用随机过程正交展开法,基于标准勒让德正交基将相位中心偏差带来的回波相位误差展开为正交多项式,分析了其对图像主副瓣性能及对比度的影响,并给出了统计规律上的积分旁瓣比与相位中心偏差方差的关系.最后通过仿真结果验证了理论分析的有效性.%The Linear Array Downward-Looking 3D-SAR (LADL 3D-SAR) achieves the ablity of resolving imaging in three dimensions using linear array antennas. The phase center variations of linear array antennas, which is unavoidable under real condition, will lead to echo phase errors that impact the imaging of 3D-SAR. In this paper, the analyzing model of the phase center variation is firstly established, then the impact of phase errors caused by phase center variations in LADL 3D-SAR is discussed based on stochastic process orthogonal expansion.The impact on sidlobe and the statistical relationship between ISLR and the deviation of phase center variations is derived analytically. Finally, the simulation results demonstrate the effectiveness of the theoretical analysis.

  2. 3D and Education

    Science.gov (United States)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  3. Non-LTE line formation of Fe in late-type stars - IV. Modelling of the solar centre-to-limb variation in 3D

    DEFF Research Database (Denmark)

    Lind, K.; Amarsi, A. M.; Asplund, M.

    2017-01-01

    and quantum mechanical calculations of collisional excitation and charge transfer with neutral hydrogen; the latter effectively remove a free parameter that has hampered all previous line formation studies of Fe in non-local thermodynamic equilibrium (NLTE). For the first time, we use realistic 3D NLTE...

  4. TEHNOLOGIJE 3D TISKALNIKOV

    OpenAIRE

    Kolar, Nataša

    2016-01-01

    Diplomsko delo predstavi razvoj tiskanja skozi čas. Podrobneje so opisani 3D tiskalniki, ki uporabljajo različne tehnologije 3D tiskanja. Predstavljene so različne tehnologije 3D tiskanja, njihova uporaba in narejeni prototipi oz. končni izdelki. Diplomsko delo opiše celoten postopek, od zamisli, priprave podatkov in tiskalnika do izdelave prototipa oz. končnega izdelka.

  5. What causes the large extensions of red-supergiant atmospheres? Comparisons of interferometric observations with 1-D hydrostatic, 3-D convection, and 1-D pulsating model atmospheres

    CERN Document Server

    Arroyo-Torres, B; Chiavassa, A; Scholz, M; Freytag, B; Marcaide, J M; Hauschildt, P H; Wood, P R; Abellan, F J

    2015-01-01

    We present the atmospheric structure and the fundamental parameters of three red supergiants, increasing the sample of RSGs observed by near-infrared spectro-interferometry. Additionally, we test possible mechanisms that may explain the large observed atmospheric extensions of RSGs. We carried out spectro-interferometric observations of 3 RSGs in the near-infrared K-band with the VLTI/AMBER instrument at medium spectral resolution. To comprehend the extended atmospheres, we compared our observational results to predictions by available hydrostatic PHOENIX, available 3-D convection, and new 1-D self-excited pulsation models of RSGs. Our near-infrared flux spectra are well reproduced by the PHOENIX model atmospheres. The continuum visibility values are consistent with a limb-darkened disk as predicted by the PHOENIX models, allowing us to determine the angular diameter and the fundamental parameters of our sources. Nonetheless, in the case of V602 Car and HD 95686, the PHOENIX model visibilities do not predict ...

  6. An Evaluation of the Observational Capabilities of A Scanning 95-GHz Radar in Studying the 3D Structures of Marine Stratocumulus Clouds

    Science.gov (United States)

    Bowley, Kevin

    Marine stratocumulus clouds play a critical role in Earth's radiative balance primarily due to the role of their high albedo reflecting incoming solar radiation, causing a cooling effect, while weakly reflecting outgoing infrared radiation. Characterization of the 3-Dimensional (3D) structure of these cloud systems over scales of 20-40 km is required to accurately account for the role of cloud inhomogeneity and structure on their shortwave forcing and lifetime, which has important applications for Global Climate Models. For first time, such 3D measurements in clouds were made available from a scanning cloud radar during the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) field campaign in the Azores Islands. The scanning radar observations were complemented by a suite of zenith-pointing active and passive remote sensors that were deployed to provide a detailed description of marine stratus over a long-term observation period in the ideal marine environment commonly found at the Azores. The scanning cloud radar observations present a shift from a multi-instrument, vertically pointing 'soda-straw' observation technique to a radar-only, 'radar-centric' observation technique. The scanning radar observations were gridded using a nearest-neighbor type scheme devised to take the natural variability of the observed field into account. The ability of the scheme to capture primary cloud properties (cloud fraction, cloud boundaries, drizzle detection) was assessed using measurements from the vertically pointing sensors. Despite the great sensitivity of the scanning cloud radar (-42.5 dBZ at 1 km range), the drop in sensitivity with range resulted in an artificial thinning of clouds with range from the radar. Drizzle-free cloud structures were undetectable beyond 5 km from the radar. Cloud fields containing drizzle were generally detectable to ranges exceeding 10 km from

  7. 3D-Stereoscopic Analysis of Solar Active Region Loops. 2; SoHo/EIT Observations at Temperatures of 1.5-2.5 MK

    Science.gov (United States)

    Aschwanden, Markus J.; Alexander, David; Hurlburt, Neal; Newmark, Jeffrey S.; Neupert, Werner M.; Klimchuk, J. A.; Gary, G. Allen

    1999-01-01

    In this paper we study the three-dimensional (3D) structure of hot (T(sub e) approximately equals 1.5 - 2.5 MK) loops in solar active region NOAA 7986, observed on 1996 August 30 with the Extreme-ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SoHO). This complements a first study on cooler (T(sub e) approximately equals 1.0 - 1.5 MK) loops of the same active region, using the same method of Dynamic Stereoscopy to reconstruct the 3D geometry. We reconstruct the 3D-coordinates x(s), y(s), z(s), the density n(sub e)(s), and temperature profile T(sub e)(s) of 35 individual loop segments (as function of the loop coordinate s) using EIT 195 A and 284 A images. The major findings are: (1) All loops are found to be in hydrostatic equilibrium, in the entire temperature regime of T(sub e) = 1.0 - 2.5 MK; (2) The analyzed loops have a height of 2-3 scale heights, and thus only segments extending over about one vertical scale height have sufficient emission measure contrast for detection; (3) The temperature gradient over the lowest scale height is of order dT/ds is approximately 1 - 4 K/km; (4) The radiative loss rate is found to exceed the conductive loss rate by about two orders or magnitude, making thermal conduction negligible to explain the temperature structure of the loops; (5) A steady-state can only be achieved when the heating rate E(sub H) matches the radiative loss rate in hydrostatic equilibrium, requiring a heat deposition length lambda(sub H) of the half density scale height lambda, predicting a scaling law with the loop base pressure, EH varies as p(sub 0 exp 2). This favors coronal heating mechanisms that operate near the loop footpoints; (6) We find a reciprocal correlation between the loop pressure p(sub 0) and loop length L, i.e. p(sub 0) varies as 1/L, implying a scaling law of the steady-state requirement with loop length, i.e. E(sub H ) varies as 1/L(exp 2). The heating rate shows no correlation with the loop

  8. Markerless 3D Face Tracking

    DEFF Research Database (Denmark)

    Walder, Christian; Breidt, Martin; Bulthoff, Heinrich

    2009-01-01

    We present a novel algorithm for the markerless tracking of deforming surfaces such as faces. We acquire a sequence of 3D scans along with color images at 40Hz. The data is then represented by implicit surface and color functions, using a novel partition-of-unity type method of efficiently...... combining local regressors using nearest neighbor searches. Both these functions act on the 4D space of 3D plus time, and use temporal information to handle the noise in individual scans. After interactive registration of a template mesh to the first frame, it is then automatically deformed to track...... the scanned surface, using the variation of both shape and color as features in a dynamic energy minimization problem. Our prototype system yields high-quality animated 3D models in correspondence, at a rate of approximately twenty seconds per timestep. Tracking results for faces and other objects...

  9. 3D virtuel udstilling

    DEFF Research Database (Denmark)

    Tournay, Bruno; Rüdiger, Bjarne

    2006-01-01

    3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s.......3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s....

  10. G.O.THERM.3D - Providing a 3D Atlas of Temperature in Ireland's Subsurface

    Science.gov (United States)

    Farrell, Thomas; Fullea, Javier

    2017-04-01

    We introduce the recently initiated project G.O.THERM.3D, which aims to develop a robust and unique model of temperature within Ireland's crust and to produce a 3D temperature atlas of the country. The temperature model will be made publicly available on an interactive online platform, and the project findings will be reported to appropriate state energy and geoscience bodies. The project objective is that an interactive, publicly available 3D temperature model will increase public awareness of geothermal energy. The aim is also that the project findings will focus and encourage geothermal resource exploration and will assist in the development of public policy on geothermal energy exploration, mapping, planning and exploitation. Previous maps of temperature at depth in Ireland's subsurface are heavily reliant on temperature observations in geographically-clustered, shallow boreholes. These maps also make insufficient allowance for near-surface perturbation effects (such as the palaeoclimatic effect), do not allow for the 3D variation of petrophysical parameters and do not consider the deep, lithospheric thermal structure. To develop a 3D temperature model of Ireland's crust, G.O.THERM.3D proposes to model both the compositional and thermal structure of the Irish crust using the LitMod3D geophysical-petrological modelling tool. LitMod3D uses an integrated approach that simultaneously accounts for multiple geophysical (heat-flow, gravity, topography, magnetotelluric, seismic) and petrological (thermal conductivity, heat-production, xenolith composition) datasets, where the main rock properties (density, electrical resistivity, seismic velocity) are thermodynamically computed based on the temperature and bulk rock composition. LitMod3D has been applied to study the lithosphere-asthenosphere boundary (LAB) beneath Ireland (at a depth of 100 km) and is typically used to investigate lithospheric-scale structures. In the previous studies focussing on the LAB beneath

  11. Workflow for the integration of a realistic 3D geomodel in process simulations using different cell types and advanced scientific visualization: Variations on a synthetic salt diapir

    Science.gov (United States)

    Görz, Ines; Herbst, Martin; Börner, Jana H.; Zehner, Björn

    2017-03-01

    The purpose of this study is to use one complex geological 3D model for numerical simulations of various physical processes in process-specific simulation software. To do this, the 3D model has to be discretized according to different cell types, depending on the requirements of the simulation method. We used a salt structure with a diapir and its deformed host rock to produce two 3D models describing the boundary surfaces of the structure: one very simplified model consisting of cuboid surfaces and a realistic model consisting of irregular boundary surfaces. We provide a workflow for how to generate hexahedral, tetrahedral and spherical volume representations of these two geometries. We utilized the volume representations to simulate temperature, displacement and transient electromagnetic fields. We can show that the simulation results closely reflect the input geometry and that it is worth the effort to produce geometric models that are as realistic as possible. Additionally, we provide a workflow for simultaneous visualization and analysis of the simulation results. Scientific visualization is an important tool for deriving knowledge from complex investigations.

  12. 3D-Barolo: 3D fitting tool for the kinematics of galaxies

    NARCIS (Netherlands)

    Di Teodoro, E. M.; Fraternali, F.

    3D-Barolo (3D-Based Analysis of Rotating Object via Line Observations) or BBarolo is a tool for fitting 3D tilted-ring models to emission-line datacubes. BBarolo works with 3D FITS files, i.e. image arrays with two spatial and one spectral dimensions. BBarolo recovers the true rotation curve and

  13. Demonstration of the applicability of 3D Slicer to Astronomical Data Using 13CO and C18O Observations of IC348

    CERN Document Server

    Borkin, M A; Goodman, A A; Halle, M; Borkin, Michelle A.; Ridge, Naomi A.; Goodman, Alyssa A.; Halle, Michael

    2005-01-01

    3D Slicer, a brain imaging and visualization computer application developed at Brigham and Women's Hospital's Surgical Planning Lab, was used to visualize the IC 348 star-forming complex in Perseus in RA-DEC-Velocity space. This project is part of a collaboration between Harvard University's Astronomy Department and Medical School, and serves as a proof-of-concept technology demonstration for Harvard's Institute for Innovative Computing (IIC). 3D Slicer is capable of displaying volumes (data cubes), slices in any direction through the volume, 3D models generated from the volume, and 3D models of label maps. The 3D spectral line maps of IC 348 were created using 13CO and C18O data collected at the FCRAO (Five College Radio Astronomy Observatory). The 3D visualization makes the identification of the cloud's inner dense cores and velocity structure components easier than current conventional astronomical methods. It is planned for 3D Slicer to be enhanced with astrophysics-specific features resulting in an astro...

  14. Blender 3D cookbook

    CERN Document Server

    Valenza, Enrico

    2015-01-01

    This book is aimed at the professionals that already have good 3D CGI experience with commercial packages and have now decided to try the open source Blender and want to experiment with something more complex than the average tutorials on the web. However, it's also aimed at the intermediate Blender users who simply want to go some steps further.It's taken for granted that you already know how to move inside the Blender interface, that you already have 3D modeling knowledge, and also that of basic 3D modeling and rendering concepts, for example, edge-loops, n-gons, or samples. In any case, it'

  15. Roughness and pH changes of enamel surface induced by soft drinks in vitro-applications of stylus profilometry, focus variation 3D scanning microscopy and micro pH sensor.

    Science.gov (United States)

    Fujii, Mie; Kitasako, Yuichi; Sadr, Alireza; Tagami, Junji

    2011-01-01

    This study aimed to evaluate enamel surface roughness (Ra) and pH before and after erosion by soft drinks. Enamel was exposed to a soft drink (cola, orange juice or green tea) for 1, 5 or 60 min; Ra was measured using contact-stylus surface profilometry (SSP) and non-contact focus variation 3D microscope (FVM). Surface pH was measured using a micro pH sensor. Data were analyzed at significance level of alpha=0.05. There was a significant correlation in Ra between SSP and FVM. FVM images showed no changes in the surface morphology after various periods of exposure to green tea. Unlike cola and orange juice, exposure to green tea did not significantly affect Ra or pH. A significant correlation was observed between surface pH and Ra change after exposure to the drinks. Optical surface analysis and micro pH sensor may be useful tools for non-damaging, quantitative assessment of soft drinks erosion on enamel.

  16. 3D-Analysis of a non-planispiral ammonoid from the Hunsrück Slate: natural or pathological variation?

    Directory of Open Access Journals (Sweden)

    Julia Stilkerich

    2017-06-01

    Full Text Available We herein examine the only known non-planispirally coiled early Devonian ammonoid, the holotype specimen of Ivoites opitzi, to investigate if the host was encrusted in vivo and if these sclerobionts were responsible for the trochospiral coiling observed in this unique specimen. To test if the presence of runner-like sclerobionts infested the historically collected specimen of Ivoites opitzi during its life, we used microCT to produce a three-dimensional model of the surface of the specimen. Our results indicate that sclerobionts grew across the outer rim (venter on both sides of the ammonoid conch at exactly the location where the deviation from the planispiral was recognized, and where subsequent ammonoid growth would likely preclude encrustation. This indicates in vivo encrustation of the I. opitzi specimen, and represents the earliest documentation of the phenomenon. Further, this suggests that non-planispiral coiling in I. opitzi was likely pathologically induced and does not represent natural morphological variation in the species. Despite the observed anomalies in coiling, the specimen reached adulthood and retains important identifying morphological features, suggesting the ammonoid was minimally impacted by encrustation in life. As such, appointing a new type specimen—as suggested by some authors—for the species is not necessary. In addition, we identify the sclerobionts responsible for modifying the coiling of this specimen as hederelloids, a peculiar group of sclerobionts likely related to phoronids. Hederelloids in the Devonian are commonly found encrusting on fossils collected in moderately deep environments within the photic zone and are rarely documented in dysphotic and aphotic samples. This indicates that when the ammonoid was encrusted it lived within the euphotic zone and supports the latest interpretations of the Hunsrück Slate depositional environment in the Bundenbach-Gemünden area.

  17. Observation of the $\\psi(1^3D_2)$ state in $e^+e^-\\to\\pi^+\\pi^-\\gamma\\chi_{c1}$ at BESIII

    CERN Document Server

    Ablikim, M; Ai, X C; Albayrak, O; Albrecht, M; Ambrose, D J; Amoroso, A; An, F F; An, Q; Bai, J Z; Ferroli, R Baldini; Ban, Y; Bennett, D W; Bennett, J V; Bertani, M; Bettoni, D; Bian, J M; Bianchi, F; Boger, E; Bondarenko, O; Boyko, I; Briere, R A; Cai, H; Cai, X; Cakir, O; Calcaterra, A; Cao, G F; Cetin, S A; Chang, J F; Chelkov, G; Chen, G; Chen, H S; Chen, H Y; Chen, J C; Chen, M L; Chen, S J; Chen, X; Chen, X R; Chen, Y B; Cheng, H P; Chu, X K; Cibinetto, G; Cronin-Hennessy, D; Dai, H L; Dai, J P; Dbeyssi, A; Dedovich, D; Deng, Z Y; Denig, A; Denysenko, I; Destefanis, M; De Mori, F; Ding, Y; Dong, C; Dong, J; Dong, L Y; Dong, M Y; Du, S X; Duan, P F; Fan, J Z; Fang, J; Fang, S S; Fang, X; Fang, Y; Fava, L; Feldbauer, F; Felici, G; Feng, C Q; Fioravanti, E; Fritsch, M; Fu, C D; Gao, Q; Gao, Y; Gao, Z; Garzia, I; Geng, C; Goetzen, K; Gong, W X; Gradl, W; Greco, M; Gu, M H; Gu, Y T; Guan, Y H; Guo, A Q; Guo, L B; Guo, Y; Guo, Y P; Haddadi, Z; Hafner, A; Han, S; Han, Y L; Hao, X Q; Harris, F A; He, K L; He, Z Y; Held, T; Heng, Y K; Hou, Z L; Hu, C; Hu, H M; Hu, J F; Hu, T; Hu, Y; Huang, G M; Huang, G S; Huang, H P; Huang, J S; Huang, X T; Huang, Y; Hussain, T; Ji, Q; Ji, Q P; Ji, X B; Ji, X L; Jiang, L L; Jiang, L W; Jiang, X S; Jiao, J B; Jiao, Z; Jin, D P; Jin, S; Johansson, T; Julin, A; Kalantar-Nayestanaki, N; Kang, X L; Kang, X S; Kavatsyuk, M; Ke, B C; Kliemt, R; Kloss, B; Kolcu, O B; Kopf, B; Kornicer, M; Kuehn, W; Kupsc, A; Lai, W; Lange, J S; Lara, M; Larin, P; Leng, C; Li, C H; Li, Cheng; Li, D M; Li, F; Li, G; Li, H B; Li, J C; Li, Jin; Li, K; Li, Lei; Li, P R; Li, T; Li, W D; Li, W G; Li, X L; Li, X M; Li, X N; Li, X Q; Li, Z B; Liang, H; Liang, Y F; Liang, Y T; Liao, G R; Lin, D X; Liu, B J; Liu, C X; Liu, F H; Liu, Fang; Liu, Feng; Liu, H B; Liu, H H; Liu, H M; Liu, J; Liu, J P; Liu, J Y; Liu, K; Liu, K Y; Liu, L D; Liu, P L; Liu, Q; Liu, S B; Liu, X; Liu, X X; Liu, Y B; Liu, Z A; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H; Lou, X C; Lu, H J; Lu, J G; Lu, R Q; Lu, Y; Lu, Y P; Luo, C L; Luo, M X; Luo, T; Luo, X L; Lv, M; Lyu, X R; Ma, F C; Ma, H L; Ma, L L; Ma, Q M; Ma, S; Ma, T; Ma, X N; Ma, X Y; Maas, F E; Maggiora, M; Malik, Q A; Mao, Y J; Mao, Z P; Marcello, S; Messchendorp, J G; Min, J; Min, T J; Mitchell, R E; Mo, X H; Mo, Y J; Morales, C Morales; Moriya, K; Muchnoi, N Yu; Muramatsu, H; Nefedov, Y; Nerling, F; Nikolaev, I B; Ning, Z; Nisar, S; Niu, S L; Niu, X Y; Olsen, S L; Ouyang, Q; Pacetti, S; Patteri, P; Pelizaeus, M; Peng, H P; Peters, K; Ping, J L; Ping, R G; Poling, R; Pu, Y N; Qi, M; Qian, S; Qiao, C F; Qin, L Q; Qin, N; Qin, X S; Qin, Y; Qin, Z H; Qiu, J F; Rashid, K H; Redmer, C F; Ren, H L; Ripka, M; Rong, G; Ruan, X D; Santoro, V; Sarantsev, A; Savrié, M; Schoenning, K; Schumann, S; Shan, W; Shao, M; Shen, C P; Shen, P X; Shen, X Y; Sheng, H Y; Song, W M; Song, X Y; Sosio, S; Spataro, S; Sun, G X; Sun, J F; Sun, S S; Sun, Y J; Sun, Y Z; Sun, Z J; Sun, Z T; Tang, C J; Tang, X; Tapan, I; Thorndike, E H; Tiemens, M; Toth, D; Ullrich, M; Uman, I; Varner, G S; Wang, B; Wang, B L; Wang, D; Wang, D Y; Wang, K; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, Q J; Wang, S G; Wang, W; Wang, X F; Wang, Y D; Wang, Y F; Wang, Y Q; Wang, Z; Wang, Z G; Wang, Z H; Wang, Z Y; Weber, T; Wei, D H; Wei, J B; Weidenkaff, P; Wen, S P; Wiedner, U; Wolke, M; Wu, L H; Wu, Z; Xia, L G; Xia, Y; Xiao, D; Xiao, Z J; Xie, Y G; Xiu, Q L; Xu, G F; Xu, L; Xu, Q J; Xu, Q N; Xu, X P; Xu, Z R; Yan, L; Yan, W B; Yan, W C; Yan, Y H; Yang, H X; Yang, L; Yang, Y; Yang, Y X; Ye, H; Ye, M; Ye, M H; Yin, J H; Yu, B X; Yu, C X; Yu, H W; Yu, J S; Yuan, C Z; Yuan, W L; Yuan, Y; Yuncu, A; Zafar, A A; Zallo, A; Zeng, Y; Zhang, B X; Zhang, B Y; Zhang, C; Zhang, C C; Zhang, D H; Zhang, H H; Zhang, H Y; Zhang, J J; Zhang, J L; Zhang, J Q; Zhang, J W; Zhang, J Y; Zhang, J Z; Zhang, K; Zhang, L; Zhang, S H; Zhang, X Y; Zhang, Y; Zhang, Y H; Zhang, Y T; Zhang, Z H; Zhang, Z P; Zhang, Z Y; Zhao, G; Zhao, J W; Zhao, J Y; Zhao, J Z; Zhao, Lei; Zhao, Ling; Zhao, M G; Zhao, Q; Zhao, Q W; Zhao, S J; Zhao, T C; Zhao, Y B; Zhao, Z G; Zhemchugov, A; Zheng, B; Zheng, J P; Zheng, W J; Zheng, Y H; Zhong, B; Zhou, L; Zhou, Li; Zhou, X; Zhou, X K; Zhou, X R; Zhou, X Y; Zhu, K; Zhu, K J; Zhu, S; Zhu, X L; Zhu, Y C; Zhu, Y S; Zhu, Z A; Zhuang, J; Zotti, L; Zou, B S; Zou, J H

    2015-01-01

    We report the observation of the $X(3823)$ in the process $e^+e^-\\to \\pi^+\\pi^-X(3823) \\to \\pi^+\\pi^-\\gamma\\chi_{c1}$ with a statistical significance of $6.2\\sigma$, in data samples at center-of-mass energies $\\sqrt{s}=$4.230, 4.260, 4.360, 4.420 and 4.600~GeV collected with the BESIII detector at the BEPCII electron positron collider. The measured mass of the $X(3823)$ is $(3821.7\\pm 1.3\\pm 0.7)$~MeV/$c^2$, where the first error is statistical and the second systematic, and the width is less than $16$~MeV at the 90\\% confidence level. The products of the Born cross sections for $e^+e^-\\to \\pi^+\\pi^-X(3823)$ and the branching ratio $\\mathcal{B}[X(3823)\\to \\gamma\\chi_{c1,c2}]$ are also measured. These measurements are in good agreement with the assignment of the $X(3823)$ as the $\\psi(1^3D_2)$ charmonium state.

  18. A 3D-CTM with detailed online PSC-microphysics: analysis of the Antarctic winter 2003 by comparison with satellite observations

    Directory of Open Access Journals (Sweden)

    F. Daerden

    2007-01-01

    Full Text Available We present the first detailed microphysical simulations which are performed online within the framework of a global 3-D chemical transport model (CTM with full chemistry. The model describes the formation and evolution of four types of polar stratospheric cloud (PSC particles. Aerosol freezing and other relevant microphysical processes are treated in a full explicit way. Each particle type is described by a binned size distribution for the number density and chemical composition. This set-up allows for an accurate treatment of sedimentation and for detailed calculation of surface area densities and optical properties. Simulations are presented for the Antarctic winter of 2003 and comparisons are made to a diverse set of satellite observations (optical and chemical measurements of POAM III and MIPAS to illustrate the capabilities of the model. This study shows that a combined resolution approach where microphysical processes are simulated in coarse-grained conditions gives good results for PSC formation and its large-scale effect on the chemical environment through processes such as denitrification, dehydration and ozone loss.

  19. Abnormal distribution of ionospheric electron density during November 2004 super-storm by 3D CT reconstructions from IGS and LEO/GPS observations

    Institute of Scientific and Technical Information of China (English)

    XIAO Rui; XU JiSheng; MA ShuYing; XIONG Chao; Lühr H.

    2012-01-01

    Using time-dependent 3D tomography method,the electron density distributions in the low-latitude ionosphere during November 2004 super-storm are reconstructed from GPS observations of joint ground-based IGS network and onboard CHAMP/GRACE satellites.The reconstructed electron densities are validated by satellite in situ measurements of CHAMP and GRACE satellites.It is indicated by computer tomography (CT) reconstructions that the long-lived positive storm phase during the first main phase of the storm (November 8) is mainly attributed to enhancement of electron density in the upper F region above the F2 peak.It is found by the CT imaging that the top-hat-like F2-3 double layers occurred in the equatorial ionization anomaly region during the main phase of the storm (at forenoon of November 8).The structures of column-like enhanced electron density are found at the time near the minimum of Dst and in the longitudinal sector about 157°E,which extend from the topside ionosphere toward plasmasphere,reaching at least about 2000 km as high.Their footprints stand on the two peaks of the EIA.

  20. New ATCA, ALMA and VISIR observations of the candidate LBV SK-67266 (S61): the nebular mass from modelling 3D density distributions

    CERN Document Server

    Agliozzo, C; Pignata, G; Phillips, N M; Ingallinera, A; Buemi, C; Umana, G; Leto, P; Noriega-Crespo, A; Paladini, R; Bufano, F; Cavallaro, F

    2016-01-01

    We present new observations of the nebula around the Magellanic candidate Luminous Blue Variable S61. These comprise high-resolution data acquired with the Australia Telescope Compact Array (ATCA), the Atacama Large Millimetre/Submillimetre Array (ALMA), and VISIR at the Very Large Telescope (VLT). The nebula was detected only in the radio, up to 17 GHz. The 17 GHz ATCA map, with 0.8 arcsec resolution, allowed a morphological comparison with the H$\\alpha$ Hubble Space Telescope image. The radio nebula resembles a spherical shell, as in the optical. The spectral index map indicates that the radio emission is due to free-free transitions in the ionised, optically thin gas, but there are hints of inhomogeneities. We present our new public code RHOCUBE to model 3D density distributions, and determine via Bayesian inference the nebula's geometric parameters. We applied the code to model the electron density distribution in the S61 nebula. We found that different distributions fit the data, but all of them converge...

  1. Intraoral 3D scanner

    Science.gov (United States)

    Kühmstedt, Peter; Bräuer-Burchardt, Christian; Munkelt, Christoph; Heinze, Matthias; Palme, Martin; Schmidt, Ingo; Hintersehr, Josef; Notni, Gunther

    2007-09-01

    Here a new set-up of a 3D-scanning system for CAD/CAM in dental industry is proposed. The system is designed for direct scanning of the dental preparations within the mouth. The measuring process is based on phase correlation technique in combination with fast fringe projection in a stereo arrangement. The novelty in the approach is characterized by the following features: A phase correlation between the phase values of the images of two cameras is used for the co-ordinate calculation. This works contrary to the usage of only phase values (phasogrammetry) or classical triangulation (phase values and camera image co-ordinate values) for the determination of the co-ordinates. The main advantage of the method is that the absolute value of the phase at each point does not directly determine the coordinate. Thus errors in the determination of the co-ordinates are prevented. Furthermore, using the epipolar geometry of the stereo-like arrangement the phase unwrapping problem of fringe analysis can be solved. The endoscope like measurement system contains one projection and two camera channels for illumination and observation of the object, respectively. The new system has a measurement field of nearly 25mm × 15mm. The user can measure two or three teeth at one time. So the system can by used for scanning of single tooth up to bridges preparations. In the paper the first realization of the intraoral scanner is described.

  2. DELTA 3D PRINTER

    Directory of Open Access Journals (Sweden)

    ȘOVĂILĂ Florin

    2016-07-01

    Full Text Available 3D printing is a very used process in industry, the generic name being “rapid prototyping”. The essential advantage of a 3D printer is that it allows the designers to produce a prototype in a very short time, which is tested and quickly remodeled, considerably reducing the required time to get from the prototype phase to the final product. At the same time, through this technique we can achieve components with very precise forms, complex pieces that, through classical methods, could have been accomplished only in a large amount of time. In this paper, there are presented the stages of a 3D model execution, also the physical achievement after of a Delta 3D printer after the model.

  3. Postseismic Displacement Following the Sumatra-Andaman Earthquake Detected by Continuous GPS Observation and the Effect of Viscoelastic Relaxation Using 3D- FEM

    Science.gov (United States)

    Katagi, T.; Hashimoto, M.; Hashizume, M.; Choosakul, N.; Takemoto, S.; Fukuda, Y.; Fujimori, K.; Satomura, M.; Wu, P.; Otsuka, Y.; Takiguchi, H.; Saito, S.; Maruyama, T.; Kato, T.

    2007-12-01

    We have studied postseismic displacement following the Sumatra-Andaman earthquake of December 26, 2004 in Thailand and other Southeast Asian countries using continuous GPS observation. We will report the results of our GPS analysis from the beginning of 2001 to the end of October 2007. We have also constructed 3D-FEM to evaluate the effect of viscoelastic relaxation following the earthquake. We will also report this result. We used continuous GPS data from 6 sites operated by Chulalongkorn Univ. and Kyoto Univ. or JAMSTEC, 2 sites by Shizuoka Univ. and JAMSTEC, 3 sites by NICT in Thailand and Myanmar, 1 site by STE-Lab, Nagoya Univ., and IGS sites which are located in countries surrounding the Indian Ocean include Japan, China and Australia. Bernese 5.0 was used for the processing of 30 sec. sampling data to obtain static solutions. From our analysis, no significant motions were detected at each site until the day of the earthquake. Although postseismic displacements still have been detected at CHMI and SIS2 in northern Thailand, far from the epicenter, they seem to be decelerated. On the other hand, at SAMP and PHKT, close to the epicenter, where postseismic displacements also became smaller, but still may take a time to stop. An about 29 cm SW-ward motion was detected at PHKT from just after the Sumatra-Andaman earthquake to June 2007, which is larger than its coseismic displacement, about 26 cm. We have constructed 3D-FEM model to estimate how much viscoelastic relaxation affects postseismic displacements after the earthquake. We adopted a Maxwell viscoelastic body as well as Katagi et al. (2006), and modeled around the Andaman-Sea area using isoparametric hexahedral elements with 8 nodes (Zienkiewicz and Cheng, 1967). The Andaman-Sea is well known as a back arc basins, and its ocean floor is still spreading. Therefore, the mantle viscosity under the Sunda-plate may be smaller because of upwelling warm mantle. We are going to investigate and report the

  4. Resolving the impact of short-term variations in physical processes impacting on the spawning environment of eastern Baltic cod : application of a 3-D hydrodynamic model

    DEFF Research Database (Denmark)

    Hinrichsen, H.H.; St. John, Michael; Lehmann, A.;

    2002-01-01

    Variations in oxygen conditions below the permanent halocline influence the ecosystem of the Baltic Sea through a number of mechanisms. In this study, we examine the effects of physical forcing on variations in the volume of deep oxygenated water suitable for reproductive success of central Baltic...

  5. Professional Papervision3D

    CERN Document Server

    Lively, Michael

    2010-01-01

    Professional Papervision3D describes how Papervision3D works and how real world applications are built, with a clear look at essential topics such as building websites and games, creating virtual tours, and Adobe's Flash 10. Readers learn important techniques through hands-on applications, and build on those skills as the book progresses. The companion website contains all code examples, video step-by-step explanations, and a collada repository.

  6. AE3D

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-20

    AE3D solves for the shear Alfven eigenmodes and eigenfrequencies in a torodal magnetic fusion confinement device. The configuration can be either 2D (e.g. tokamak, reversed field pinch) or 3D (e.g. stellarator, helical reversed field pinch, tokamak with ripple). The equations solved are based on a reduced MHD model and sound wave coupling effects are not currently included.

  7. The European-Alpine collision during the last 45Myrs - constraints obtained from comparing 3-D numerical subduction models and tomographic observations

    Science.gov (United States)

    Morra, G.; Regenauer-Lieb, K.; Kissling, E.; Lippitsch, R.

    2003-04-01

    We analyze the interaction of Adriatic and the European Plates driven self-consistently by slab pull in order to seperate out the roles of (1) intrinsic dynamics of the slab driven Adriatic microplate system, (2) interaction with the subducting European plate, (3) the pushing African plate and (4) the feedback of slab induced flow within the mantle. The simulation is based on a new three-dimensional solid-fluid solver that we developed for plate tectonics reconstruction. The method embeds a Lagrangian Finite Element model of the lithosphere into a creeping medium (Stokeslet Method see poster) representing the mantle. Density inhomogeneities within the subducting plate are inserted to obtain realistic reconstructions of tomographically observed slab lengths in both the Central Mediterranean and European-Alpine subduction systems. In a first step we analyse the system in the absence of the African convergence. With this asssumption the model is only driven by gravity and thus gives an insight into the internal dynamics of the Central-European microplate evolution. In a second step we add the African convergence as a large scale distributed force. Using this method the mechanical origin of rotation of the Adriatic microplate in the vise of the African-European convergence can be analysed and its impact on the collision in the Alps derived. While our solution space is a first set, the aim of the analysis is to obtain constraints of the history of Adriatic-European collision using the new solver as a toolbox. The method has the potential to act as a filter between geological observation, tomographic data and mechanical constraints within the framework of a dynamic 3-D plate tectonic evolution.

  8. 3-D multiobservable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. I: a priori petrological information and geophysical observables

    Science.gov (United States)

    Afonso, J. C.; Fullea, J.; Griffin, W. L.; Yang, Y.; Jones, A. G.; D. Connolly, J. A.; O'Reilly, S. Y.

    2013-05-01

    of natural mantle samples collected from different tectonic settings (xenoliths, abyssal peridotites, ophiolite samples, etc.). This strategy relaxes more typical and restrictive assumptions such as the use of local/limited xenolith data or compositional regionalizations based on age-composition relations. We demonstrate that the combination of our ρ(m) with a L(m) that exploits the differential sensitivities of specific geophysical observables provides a general and robust inference platform to address the thermochemical structure of the lithosphere and sublithospheric upper mantle. An accompanying paper deals with the integration of these two functions into a general 3-D multiobservable Bayesian inversion method and its computational implementation.

  9. 3D Projection Installations

    DEFF Research Database (Denmark)

    Halskov, Kim; Johansen, Stine Liv; Bach Mikkelsen, Michelle

    2014-01-01

    Three-dimensional projection installations are particular kinds of augmented spaces in which a digital 3-D model is projected onto a physical three-dimensional object, thereby fusing the digital content and the physical object. Based on interaction design research and media studies, this article...... contributes to the understanding of the distinctive characteristics of such a new medium, and identifies three strategies for designing 3-D projection installations: establishing space; interplay between the digital and the physical; and transformation of materiality. The principal empirical case, From...... Fingerplan to Loop City, is a 3-D projection installation presenting the history and future of city planning for the Copenhagen area in Denmark. The installation was presented as part of the 12th Architecture Biennale in Venice in 2010....

  10. 3D Spectroscopic Instrumentation

    CERN Document Server

    Bershady, Matthew A

    2009-01-01

    In this Chapter we review the challenges of, and opportunities for, 3D spectroscopy, and how these have lead to new and different approaches to sampling astronomical information. We describe and categorize existing instruments on 4m and 10m telescopes. Our primary focus is on grating-dispersed spectrographs. We discuss how to optimize dispersive elements, such as VPH gratings, to achieve adequate spectral resolution, high throughput, and efficient data packing to maximize spatial sampling for 3D spectroscopy. We review and compare the various coupling methods that make these spectrographs ``3D,'' including fibers, lenslets, slicers, and filtered multi-slits. We also describe Fabry-Perot and spatial-heterodyne interferometers, pointing out their advantages as field-widened systems relative to conventional, grating-dispersed spectrographs. We explore the parameter space all these instruments sample, highlighting regimes open for exploitation. Present instruments provide a foil for future development. We give an...

  11. Radiochromic 3D Detectors

    Science.gov (United States)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  12. Interaktiv 3D design

    DEFF Research Database (Denmark)

    Villaume, René Domine; Ørstrup, Finn Rude

    2002-01-01

    Projektet undersøger potentialet for interaktiv 3D design via Internettet. Arkitekt Jørn Utzons projekt til Espansiva blev udviklet som et byggesystem med det mål, at kunne skabe mangfoldige planmuligheder og mangfoldige facade- og rumudformninger. Systemets bygningskomponenter er digitaliseret som...... 3D elementer og gjort tilgængelige. Via Internettet er det nu muligt at sammenstille og afprøve en uendelig  række bygningstyper som  systemet blev tænkt og udviklet til....

  13. From 3D view to 3D print

    Science.gov (United States)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  14. Circadian and diurnal variation of circulating immune complexes, complement-mediated solubilization, and the complement split product C3d in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Petersen, Ivan; Baatrup, Gunnar; Brandslund, I;

    1986-01-01

    Nine patients with active classical rheumatoid arthritis (ARA criteria) were studied with reference to circadian variation of immunological and clinical parameters. Complement-mediated solubilization (CMS) of immune complexes (IC) and the level of circulating IC were found to be inversely related...

  15. 3D Wire 2015

    DEFF Research Database (Denmark)

    Jordi, Moréton; F, Escribano; J. L., Farias

    This document is a general report on the implementation of gamification in 3D Wire 2015 event. As the second gamification experience in this event, we have delved deeply in the previous objectives (attracting public areas less frequented exhibition in previous years and enhance networking) and ha......, improves socialization and networking, improves media impact, improves fun factor and improves encouragement of the production team....

  16. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data...

  17. Tangible 3D Modelling

    DEFF Research Database (Denmark)

    Hejlesen, Aske K.; Ovesen, Nis

    2012-01-01

    This paper presents an experimental approach to teaching 3D modelling techniques in an Industrial Design programme. The approach includes the use of tangible free form models as tools for improving the overall learning. The paper is based on lecturer and student experiences obtained through facil...

  18. RT3D tutorials for GMS users

    Energy Technology Data Exchange (ETDEWEB)

    Clement, T.P. [Pacific Northwest National Lab., Richland, WA (United States); Jones, N.L. [Brigham Young Univ., Provo, UT (United States)

    1998-02-01

    RT3D (Reactive Transport in 3-Dimensions) is a computer code that solves coupled partial differential equations that describe reactive-flow and transport of multiple mobile and/or immobile species in a three dimensional saturated porous media. RT3D was developed from the single-species transport code, MT3D (DoD-1.5, 1997 version). As with MT3D, RT3D also uses the USGS groundwater flow model MODFLOW for computing spatial and temporal variations in groundwater head distribution. This report presents a set of tutorial problems that are designed to illustrate how RT3D simulations can be performed within the Department of Defense Groundwater Modeling System (GMS). GMS serves as a pre- and post-processing interface for RT3D. GMS can be used to define all the input files needed by RT3D code, and later the code can be launched from within GMS and run as a separate application. Once the RT3D simulation is completed, the solution can be imported to GMS for graphical post-processing. RT3D v1.0 supports several reaction packages that can be used for simulating different types of reactive contaminants. Each of the tutorials, described below, provides training on a different RT3D reaction package. Each reaction package has different input requirements, and the tutorials are designed to describe these differences. Furthermore, the tutorials illustrate the various options available in GMS for graphical post-processing of RT3D results. Users are strongly encouraged to complete the tutorials before attempting to use RT3D and GMS on a routine basis.

  19. Unoriented 3d TFTs

    CERN Document Server

    Bhardwaj, Lakshya

    2016-01-01

    This paper generalizes two facts about oriented 3d TFTs to the unoriented case. On one hand, it is known that oriented 3d TFTs having a topological boundary condition admit a state-sum construction known as the Turaev-Viro construction. This is related to the string-net construction of fermionic phases of matter. We show how Turaev-Viro construction can be generalized to unoriented 3d TFTs. On the other hand, it is known that the "fermionic" versions of oriented TFTs, known as Spin-TFTs, can be constructed in terms of "shadow" TFTs which are ordinary oriented TFTs with an anomalous Z_2 1-form symmetry. We generalize this correspondence to Pin+ TFTs by showing that they can be constructed in terms of ordinary unoriented TFTs with anomalous Z_2 1-form symmetry having a mixed anomaly with time-reversal symmetry. The corresponding Pin+ TFT does not have any anomaly for time-reversal symmetry however and hence it can be unambiguously defined on a non-orientable manifold. In case a Pin+ TFT admits a topological bou...

  20. Resolving the impact of short-term variations in physical processes impacting on the spawning environment of eastern Baltic cod : application of a 3-D hydrodynamic model

    DEFF Research Database (Denmark)

    Hinrichsen, H.H.; St. John, Michael; Lehmann, A.

    2002-01-01

    cod. Recent research has identified the importance of inflows of saline and oxygenated North Sea water into the Baltic Sea for the recruitment of Baltic cod. However, other processes have been suggested to modify this reproduction volume including variations in timing and volume of terrestrial runoff...... water into the Baltic, modifying wind stress, freshwater runoff and thermal inputs. The model is started from three-dimensional fields of temperature, salinity and oxygen obtained from a previous model run and forced by realistic atmospheric conditions. Results of this realistic reference run were...... compared to runs with modified meteorological forcing conditions and river runoff. From these simulations, it is apparent that processes other than major Baltic inflows have the potential to alter the reproduction volume of Baltic cod. Low near-surface air temperatures in the North Sea, the Skagerrak...

  1. Medical 3D thermography system

    OpenAIRE

    GRUBIŠIĆ, IVAN

    2011-01-01

    Infrared (IR) thermography determines the surface temperature of an object or human body using thermal IR measurement camera. It is an imaging technology which is contactless and completely non-invasive. These propertiesmake IR thermography a useful method of analysis that is used in various industrial applications to detect, monitor and predict irregularities in many fields from engineering to medical and biological observations. This paper presents a conceptual model of Medical 3D Thermo...

  2. Observations of the Dynamic Connectivity of the Non-Wetting Phase During Steady State Flow at the Pore Scale Using 3D X-ray Microtomography

    Science.gov (United States)

    Reynolds, C. A.; Menke, H. P.; Blunt, M. J.; Krevor, S. C.

    2015-12-01

    We observe a new type of non-wetting phase flow using time-resolved pore scale imaging. The traditional conceptual model of drainage involves a non-wetting phase invading a porous medium saturated with a wetting phase as either a fixed, connected flow path through the centres of pores or as discrete ganglia which move individually through the pore space, depending on the capillary number. We observe a new type of flow behaviour at low capillary number in which the flow of the non-wetting phase occurs through networks of persistent ganglia that occupy the large pores but continuously rearrange their connectivity (Figure 1). Disconnections and reconnections occur randomly to provide short-lived pseudo-steady state flow paths between pores. This process is distinctly different to the notion of flowing ganglia which coalesce and break-up. The size distribution of ganglia is dependent on capillary number. Experiments were performed by co-injecting N2and 25 wt% KI brine into a Bentheimer sandstone core (4mm diameter, 35mm length) at 50°C and 10 MPa. Drainage was performed at three flow rates (0.04, 0.3 and 1 ml/min) at a constant fractional flow of 0.5 and the variation in ganglia populations and connectivity observed. We obtained images of the pore space during steady state flow with a time resolution of 43 s over 1-2 hours. Experiments were performed at the Diamond Light Source synchrotron. Figure 1. The position of N2 in the pore space during steady state flow is summed over 40 time steps. White indicates that N2 occupies the space over >38 time steps and red <5 time steps.

  3. An observational correlation between stellar brightness variations and surface gravity

    CERN Document Server

    Bastien, Fabienne A; Basri, Gibor; Pepper, Joshua

    2013-01-01

    Surface gravity is one of a star's basic properties, but it is difficult to measure accurately, with typical uncertainties of 25-50 per cent if measured spectroscopically and 90-150 per cent photometrically. Asteroseismology measures gravity with an uncertainty of about two per cent but is restricted to relatively small samples of bright stars, most of which are giants. The availability of high-precision measurements of brightness variations for >150,000 stars provides an opportunity to investigate whether the variations can be used to determine surface gravities. The Fourier power of granulation on a star's surface correlates physically with surface gravity; if brightness variations on timescales of hours arise from granulation, then such variations should correlate with surface gravity. Here we report an analysis of archival data that reveals an observational correlation between surface gravity and the root-mean-square brightness variations on timescales of less than eight hours for stars with temperatures ...

  4. Direct Observations of PMC Local Time Variations by Aura OMI

    Science.gov (United States)

    DeLand, Matthew T.; Shettle, Eric P.; Thomas, Gary E.; Olivero, John J.

    2010-01-01

    The Ozone Monitoring Instrument (OMI) on the Aura satellite obtains unique measurements for polar mesospheric cloud (PMC) analysis. Its wide cross-track viewing swath and high along-track spatial resolution makes it possible to directly evaluate PMC occurrence frequency and brightness variations between 6S" and 8S' latitude as a function of local time over a 12-14 h continuous period. OMI PMC local time variations are closely coupled to concurrent variations in measurement scattering angle, so that ice phase function effects must be considered when interpreting the observations. Two different phase functions corresponding to bright and faint clouds are examined in this analysis. OMI observations show maximum frequency and albedo values at 8-10 h local time in the Northern Hemisphere, with decreasing amplitude at higher latitudes. Southern Hemisphere values reach a minimum at 18-20 h LT. Larger variations are seen in Northern Hemisphere data. No statistically significant longitudinal dependence was seen.

  5. Direct Observations of PMC Local Time Variations by Aura OMI

    Science.gov (United States)

    DeLand, Matthew T.; Shettle, Eric P.; Thomas, Gary E.; Olivero, John J.

    2010-01-01

    The Ozone Monitoring Instrument (OMI) on the Aura satellite obtains unique measurements for polar mesospheric cloud (PMC) analysis. Its wide cross-track viewing swath and high along-track spatial resolution makes it possible to directly evaluate PMC occurrence frequency and brightness variations between 6S" and 8S' latitude as a function of local time over a 12-14 h continuous period. OMI PMC local time variations are closely coupled to concurrent variations in measurement scattering angle, so that ice phase function effects must be considered when interpreting the observations. Two different phase functions corresponding to bright and faint clouds are examined in this analysis. OMI observations show maximum frequency and albedo values at 8-10 h local time in the Northern Hemisphere, with decreasing amplitude at higher latitudes. Southern Hemisphere values reach a minimum at 18-20 h LT. Larger variations are seen in Northern Hemisphere data. No statistically significant longitudinal dependence was seen.

  6. Spectroscopic observations of spatial and temporal variations on Venus

    Science.gov (United States)

    Young, A. T.; Young, L. G.; Woszczyk, A.

    1974-01-01

    Details of the Table Mountain spectroscopic patrol of Venus in September-October 1972 are given. The data indicate systematic variation over the disc, with more CO2 absorption near the terminator than at the limb, and slightly more in the southern than in the northern hemisphere. The semiregular four-day variation, reported to occur simultaneously over the disk at 8689 A by Young et al. (1973), is confirmed by observations of the 7820 A and 7883 A CO2 bands.

  7. PubChem3D: Biologically relevant 3-D similarity

    Directory of Open Access Journals (Sweden)

    Kim Sunghwan

    2011-07-01

    "active/inactive" spaces, respectively, each of the 1,389 biological assays was examined by their 3-D similarity score differences between the NN and NI pairs and analyzed across all assays and by assay category types. While a consistent trend of separation was observed, this result was not statistically unambiguous after considering the respective standard deviations. While not all "actives" in a biological assay are amenable to this type of analysis, e.g., due to different mechanisms of action or binding configurations, the ambiguous separation may also be due to employing a single conformer per compound in this study. With that said, there were a subset of biological assays where a clear separation between the NN and NI pairs found. In addition, use of combo Tanimoto (ComboT alone, independent of superposition optimization type, appears to be the most efficient 3-D score type in identifying these cases. Conclusion This study provides a statistical guideline for analyzing biological assay data in terms of 3-D similarity and PubChem structure-activity analysis tools. When using a single conformer per compound, a relatively small number of assays appear to be able to separate "active/active" space from "active/inactive" space.

  8. Biaxial loading of arterial tissues with 3D in situ observations of adventitia fibrous microstructure: A method coupling multi-photon confocal microscopy and bulge inflation test.

    Science.gov (United States)

    Cavinato, Cristina; Helfenstein-Didier, Clementine; Olivier, Thomas; du Roscoat, Sabine Rolland; Laroche, Norbert; Badel, Pierre

    2017-10-01

    Disorders in the wall microstructure underlie all forms of vascular disease, such as the aortic aneurysm, the rupture of which is necessarily triggered at the microscopic level. In this context, we developed an original experimental approach, coupling a bulge inflation test to multiphoton confocal microscopy, for visualizing the 3D micro-structure of porcine, human non-aneurysmal and aneurysmal aortic adventitial collagen under increasing pressurization. The experiment complexity on such tissues led to deeply address the acquisition major hurdles. The important innovative features of the methodology are presented, especially regarding region-of-interest tracking, definition of a stabilization period prior to imaging and correction of z-motion, z being the objective's axis. Such corrections ensured consistent 3D qualitative and quantitative analyses without z-motion. Qualitative analyses of the stable 3D images showed dense undulated collagen fiber bundles in the unloaded state which tended to progressive straightening and separation into a network of thinner bundles at high pressures. Quantitative analyses were made using a combination of weighted 2D structure tensors and fitting of 4 independent Gaussian functions to measure parameters related to straightening and orientation of the fibers. They denoted 3 principal fibers directions, approximately 45°, 135° and 90° with respect to the circumferential axis in the circumferential-axial plane without any evident reorientation of the fibers under pressurization. Results also showed that fibers at zero-pressure state were straighter and less dispersed in orientation for human samples - especially aneurysms - than for pigs. Progressive straightening and decrease in dispersion were quantified during the inflation. These findings provide further insight into the micro-architectural changes within the arterial wall. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. 3D and beyond

    Science.gov (United States)

    Fung, Y. C.

    1995-05-01

    This conference on physiology and function covers a wide range of subjects, including the vasculature and blood flow, the flow of gas, water, and blood in the lung, the neurological structure and function, the modeling, and the motion and mechanics of organs. Many technologies are discussed. I believe that the list would include a robotic photographer, to hold the optical equipment in a precisely controlled way to obtain the images for the user. Why are 3D images needed? They are to achieve certain objectives through measurements of some objects. For example, in order to improve performance in sports or beauty of a person, we measure the form, dimensions, appearance, and movements.

  10. A New 3D Multi-fluid Model: A Study of Kinetic Effects and Variations of Physical Conditions in the Cometary Coma

    Science.gov (United States)

    Shou, Y.; Combi, M.; Toth, G.; Tenishev, V.; Fougere, N.; Jia, X.; Rubin, M.; Huang, Z.; Hansen, K.; Gombosi, T.; Bieler, A.

    2016-12-01

    Physics-based numerical coma models are desirable whether to interpret the spacecraft observations of the inner coma or to compare with the ground-based observations of the outer coma. In this work, we develop a multi-neutral-fluid model based on the BATS-R-US code of the University of Michigan, which is capable of computing both the inner and outer coma and simulating time-variable phenomena. It treats H2O, OH, H2, O, and H as separate fluids and each fluid has its own velocity and temperature, with collisions coupling all fluids together. The self-consistent collisional interactions decrease the velocity differences, re-distribute the excess energy deposited by chemical reactions among all species, and account for the varying heating efficiency under various physical conditions. Recognizing that the fluid approach has limitations in capturing all of the correct physics for certain applications, especially for very low density environment, we applied our multi-fluid coma model to comet 67P/Churyumov-Gerasimenko at various heliocentric distances and demonstrated that it yields comparable results to the Direct Simulation Monte Carlo (DSMC) model, which is based on a kinetic approach that is valid under these conditions. Therefore, our model may be a powerful alternative to the particle-based model, especially for some computationally intensive simulations. In addition, by running the model with several combinations of production rates and heliocentric distances, we characterize the cometary H2O expansion speeds and demonstrate the nonlinear dependencies of production rate and heliocentric distance. Our results are also compared to previous modeling work and remote observations, which serve as further validation of our model.

  11. A new 3D multi-fluid model: a study of kinetic effects and variations of physical conditions in the cometary coma

    Science.gov (United States)

    Shou, Yinsi; Combi, Michael R.; Toth, Gabor; Huang, Zhenguang; Jia, Xianzhe; Fougere, Nicolas; Tenishev, Valeriy; Gombosi, T. I.; Hansen, Kenneth C.; Bieler, Andre

    2016-10-01

    Physics-based numerical coma models are desirable whether to interpret the spacecraft observations of the inner coma or to compare with the ground-based observations of the outer coma. In this work, we develop a multi-neutral-fluid model based on BATS-R-US in the University of Michigan's SWMF (Space Weather Modeling Framework), which is capable of computing both the inner and the outer coma and simulating time-variable phenomena. It treats H2O, OH, H2, O, and H as separate fluids and each fluid has its own velocity and temperature, with collisions coupling all fluids together. The self-consistent collisional interactions decrease the velocity differences, re-distribute the excess energy deposited by chemical reactions among all species, and account for the varying heating efficiency under various physical conditions. Recognizing that the fluid approach has limitations in capturing all of the correct physics for certain applications, especially for very low density environment, we applied our multi-fluid coma model to comet 67P/Churyumov–Gerasimenko (CG) at various heliocentric distances and demonstrated that it is able to yield comparable results as the Direct Simulation Monte Carlo (DSMC) model, which is based on a kinetic approach that is valid under these conditions. Therefore, our model may be a powerful alternative to the particle-based model, especially for some computationally intensive simulations. In addition, by running the model with several combinations of production rates and heliocentric distances, we can characterize the cometary H2O expansion speeds and demonstrate the nonlinear effect of production rates or photochemical heating. Our results are also compared to previous modeling work (e.g., Bockelee-Morvan & Crovisier 1987) and remote observations (e.g., Tseng et al. 2007), which serve as further validation of our model. This work has been partially supported by grant NNX14AG84G from the NASA Planetary Atmospheres Program, and US Rosetta

  12. Upgrading and testing the 3D reconstruction of gamma-ray air showers as observed with an array of Imaging Atmospheric Cherenkov telescopes

    CERN Document Server

    Naumann-Godó, M; Degrange, B

    2009-01-01

    Stereoscopic arrays of Imaging Atmospheric Cherenkov Telescopes allow to reconstruct gamma-ray-induced showers in 3 dimensions, which offers several advantages: direct access to the shower parameters in space and straightforward calorimetric measurement of the incident energy. In addition, correlations between the different images of the same shower are taken into account. An analysis method based on a simple 3D-model of electromagnetic showers was recently implemented in the framework of the H.E.S.S. experiment. In the present article, the method is completed by an additional quality criterion, which reduces the background contamination by a factor of about 2 in the case of extended sources, while keeping gamma-ray efficiency at a high level. On the other hand, the dramatic flares of the blazar PKS 2155-304 in July 2006, which provided H.E.S.S. data with an almost pure gamma-ray sample, offered the unique opportunity of a precision test of the 3D-reconstruction method as well as of the H.E.S.S. simulations u...

  13. Clinical observation of three-dimensional conformal radiotherapy(3D-CRT)with concurrent chemotherapy in treatment of recurrent cervical cancers

    Institute of Scientific and Technical Information of China (English)

    Hongbing Ma; Minghua Bai; Xijing Wang; Hongtao Ren

    2010-01-01

    Objective:The aim of the study was to explore the efficacy of three-dimensional conformal radiotherapy(3DCRT)combined with TP concurrent chemotherapy in treatment of recurrent cervical cancers.Methods:From May 2005 to May 2009,36 patients with recurrent cervical cancer were treated by 3D-CRT of 60-66 Gy and TP(docetaxel 70 mg/m2,d1;cisplatin 20 mg/m2,d1-d3;21 days per cycle,totally 2 cycles)concurrent chemotherapy.Results:All of the patients had finished the 3D-CRT,the total response rate,complete response rate and partial response rate were 80.0%(28/35),45.7%(16/35),and 34.3%(12/35),respectively.The pain-alleviation rate was 91.4%(32/35).The hemorrhage control rate was 94.3%(33/35).The median overall survival was 21.2 months.The 1-,2- and 3-year survival rates were 54.3%,37.1% and 22.8%,respectively.The life qualities of the patients were improved,without any treatment related death.Conclusion:Radiotherapy is effective and well-tolerated for recurrent cervical cancers,and it can promote regional control of the disease and prolong survival time.

  14. 3D Surgical Simulation

    Science.gov (United States)

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  15. TOWARDS: 3D INTERNET

    Directory of Open Access Journals (Sweden)

    Ms. Swapnali R. Ghadge

    2013-08-01

    Full Text Available In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot of discussions. Basically, one can look into this matter from a few different perspectives: visualization and representation of information, and creation and transportation of information, among others. All of them still constitute research challenges, as no products or services are yet available or foreseen for the near future. Nevertheless, one can try to envisage the directions that can be taken towards achieving this goal. People who take part in virtual worlds stay online longer with a heightened level of interest. To take advantage of that interest, diverse businesses and organizations have claimed an early stake in this fast-growing market. They include technology leaders such as IBM, Microsoft, and Cisco, companies such as BMW, Toyota, Circuit City, Coca Cola, and Calvin Klein, and scores of universities, including Harvard, Stanford and Penn State.

  16. 3D-kompositointi

    OpenAIRE

    Piirainen, Jere

    2015-01-01

    Opinnäytetyössä käydään läpi yleisimpiä 3D-kompositointiin liittyviä tekniikoita sekä kompositointiin käytettyjä ohjelmia ja liitännäisiä. Työssä esitellään myös kompositoinnin juuret 1800-luvun lopulta aina nykyaikaiseen digitaaliseen kompositointiin asti. Kompositointi on yksinkertaisimmillaan usean kuvan liittämistä saumattomasti yhdeksi uskottavaksi kokonaisuudeksi. Vaikka prosessi vaatii visuaalista silmää, vaatii se myös paljon teknistä osaamista. Tämän lisäksi perusymmärrys kamera...

  17. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data......, making them different from typical, existing box shaping techniques. The basis of the proposed techniques is a new algorithm for constructing a full box from just three of its corners. The evaluation of the new techniques compares their precision and completion times in a 9 degree-of-freedom (Do......F) docking experiment against an existing technique, which requires the user to perform the rotation and scaling of the box explicitly. The precision of the users' box construction is evaluated by a novel error metric measuring the difference between two boxes. The results of the experiment strongly indicate...

  18. Analysis of 3-D Propagation Effects Due to Environmental Variability

    Science.gov (United States)

    2014-09-30

    presence of 3-D environmental variations, especially shelf break canyons . Work was also performed in support of 2-D propagation in shallow water to...propagation in the Monterey Bay Canyon . This was motivated by observations of highly variable directional features in measured acoustic vector data...Rev. 8-98) Prescribed by ANSI Std Z39-18 2 the Monterey Bay Canyon were used as inputs to the model, and broadband calculations were performed

  19. Atmospheric diurnal variations observed with GPS radio occultation soundings

    Directory of Open Access Journals (Sweden)

    F. Xie

    2010-07-01

    Full Text Available The diurnal variation, driven by solar forcing, is a fundamental mode in the Earth's weather and climate system. Radio occultation (RO measurements from the six COSMIC satellites (Constellation Observing System for Meteorology, Ionosphere and Climate provide nearly uniform global coverage with high vertical resolution, all-weather and diurnal sampling capability. This paper analyzes the diurnal variations of temperature and refractivity from three-year (2007–2009 COSMIC RO measurements in the troposphere and stratosphere between 30° S and 30° N. The RO observations reveal both propagating and trapped vertical structures of diurnal variations, including transition regions near the tropopause where data with high vertical resolution are critical. In the tropics the diurnal amplitude in refractivity shows the minimum around 14 km and increases to a local maximum around 32 km in the stratosphere. The upward propagating component of the migrating diurnal tides in the tropics is clearly captured by the GPS RO measurements, which show a downward progression in phase from stratopause to the upper troposphere with a vertical wavelength of about 25 km. At ~32 km the seasonal variation of the tidal amplitude maximizes at the opposite side of the equator relative to the solar forcing. The vertical structure of tidal amplitude shows strong seasonal variations and becomes asymmetric along the equator and tilted toward the summer hemisphere in the solstice months. Such asymmetry becomes less prominent in equinox months.

  20. Poliarquia em 3D

    Directory of Open Access Journals (Sweden)

    Santos Wanderley Guilherme dos

    1998-01-01

    Full Text Available The article takes issue with positions that reduce representative systems to democratic linearity, considering how the latter is restricted to variations in forms of government and electoral systems that do not correspond to the growing complexity of national organizations. It is proposed that a third dimension be added to Robert Dahl?s bidimensional model that is, eligibility from which it is possible to derive minimalist yet strict definitions of authoritarian systems, of representative systems in general, and of their oligarchical and polyarchical variations.

  1. Study of Chinese pollution with the 3D regional chemistry transport CHIMERE model and remote sensing observations, with a focus on mineral dust impacts

    Science.gov (United States)

    Lachatre, Mathieu; Foret, Gilles; Beekmann, Matthias; Cheiney, Audrey; Dufour, Gaëlle; Laurent, Benoit; Cuesta, Juan

    2017-04-01

    Since the end of the 20th century, China has observed important growth in numerous sectors. China's Gross Domestic Product (GDP) has been multiply by 4 during the 2000-2010 decade (National Bureau of Statistics of China), mostly because of the industry's growth. These evolutions have been accompanied by important increases of atmospheric pollutants emissions (Yinmin et al, Atmo Env, 2016). As a consequence and for about 10 years now, Chinese authorities have been working to reduce pollutant levels, because atmospheric pollution is a major health issue for Chinese population especially within cities, for which World Health Organisation's standards for major pollutants (Ozone, PM2.5, PM10) are often exceeded. Particles have multiple issues, as they impact on health and global warming. Their impacts will depend on their sources (primary or secondary pollutants) and natures (Particle size distribution, chemical composition…). Controlling particles loading is a complex task as their sources are various and dispersed on the Chinese territories: mineral dust can be emitted from Chinese deserts in large amount (Laurent et al., GPC, 2006), ammonia can be emitted from agriculture and livestock (Kang et al., ACP, 2016) and lots of urban primary pollutants can be emitted from urbanized areas. It is then necessary to work from a continental to local scales to understand more precisely pollution of urbanized areas. It is then mandatory to discriminate and quantify pollution sources and to estimate the impact of natural pollution and the major contributing sources. We propose here an approach based on a model and satellite observation synergy to estimate what controls Chinese pollution. We use the regional chemistry transport model CHIMERE (Menut et al., GMD, 2013) to simulate atmospheric pollutants concentrations. A large domain (72°E-145°E; 17.5°N-55°N), with a ¼°x¼° resolution is used to make multi-annual simulations. CHIMERE model include most of the pollutants

  2. Martian terrain - 3D

    Science.gov (United States)

    1997-01-01

    This area of terrain near the Sagan Memorial Station was taken on Sol 3 by the Imager for Mars Pathfinder (IMP). 3D glasses are necessary to identify surface detail.The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  3. 3D Printing and 3D Bioprinting in Pediatrics.

    Science.gov (United States)

    Vijayavenkataraman, Sanjairaj; Fuh, Jerry Y H; Lu, Wen Feng

    2017-07-13

    Additive manufacturing, commonly referred to as 3D printing, is a technology that builds three-dimensional structures and components layer by layer. Bioprinting is the use of 3D printing technology to fabricate tissue constructs for regenerative medicine from cell-laden bio-inks. 3D printing and bioprinting have huge potential in revolutionizing the field of tissue engineering and regenerative medicine. This paper reviews the application of 3D printing and bioprinting in the field of pediatrics.

  4. 3D printing for dummies

    CERN Document Server

    Hausman, Kalani Kirk

    2014-01-01

    Get started printing out 3D objects quickly and inexpensively! 3D printing is no longer just a figment of your imagination. This remarkable technology is coming to the masses with the growing availability of 3D printers. 3D printers create 3-dimensional layered models and they allow users to create prototypes that use multiple materials and colors.  This friendly-but-straightforward guide examines each type of 3D printing technology available today and gives artists, entrepreneurs, engineers, and hobbyists insight into the amazing things 3D printing has to offer. You'll discover methods for

  5. Hydrology Induced Gravity Variation Observed at Vienna and Conrad Observatory

    Science.gov (United States)

    Mikolaj, Michal; Meurers, Bruno

    2013-04-01

    Mass transport associated with hydrological processes induces gravity variations observed by superconducting gravimeter (SG) and thus can mask essential geodynamical signals. The presented study analyses time series acquired by superconducting gravimeter GWR C025 with a focus on hydrological effects. This gravimeter was transported from Vienna to Conrad Observatory in the end of year 2007. The gravimeter was in both cases installed in an underground laboratory, but Conrad Observatory is located in a mountain area, while Vienna represents an urbanized area. This affords an opportunity to study the hydrological gravity response for two different environments. Several global hydrological models are used to estimate the contribution of global hydrology to gravity variations. Local hydrology is analysed using in-situ meteorological measurements. Significant influence of heavy rain on gravity is observed for both underground stations. The gravity variation observed at Conrad Observatory is additionally strongly affected by snow accumulation and melting phase. The SG installation in an underground laboratory together with a specific topographic situation at the place of observation may lead to an interference of local and global hydrological effect.

  6. Poliarquia em 3D

    OpenAIRE

    Santos Wanderley Guilherme dos

    1998-01-01

    The article takes issue with positions that reduce representative systems to democratic linearity, considering how the latter is restricted to variations in forms of government and electoral systems that do not correspond to the growing complexity of national organizations. It is proposed that a third dimension be added to Robert Dahl?s bidimensional model that is, eligibility from which it is possible to derive minimalist yet strict definitions of authoritarian systems, of representative sys...

  7. Scientific Objectives of Small Carry-on Impactor (SCI) and Deployable Camera 3 Digital (DCAM3-D): Observation of an Ejecta Curtain and a Crater Formed on the Surface of Ryugu by an Artificial High-Velocity Impact

    Science.gov (United States)

    Arakawa, M.; Wada, K.; Saiki, T.; Kadono, T.; Takagi, Y.; Shirai, K.; Okamoto, C.; Yano, H.; Hayakawa, M.; Nakazawa, S.; Hirata, N.; Kobayashi, M.; Michel, P.; Jutzi, M.; Imamura, H.; Ogawa, K.; Sakatani, N.; Iijima, Y.; Honda, R.; Ishibashi, K.; Hayakawa, H.; Sawada, H.

    2016-10-01

    The Small Carry-on Impactor (SCI) equipped on Hayabusa2 was developed to produce an artificial impact crater on the primitive Near-Earth Asteroid (NEA) 162173 Ryugu (Ryugu) in order to explore the asteroid subsurface material unaffected by space weathering and thermal alteration by solar radiation. An exposed fresh surface by the impactor and/or the ejecta deposit excavated from the crater will be observed by remote sensing instruments, and a subsurface fresh sample of the asteroid will be collected there. The SCI impact experiment will be observed by a Deployable CAMera 3-D (DCAM3-D) at a distance of ˜1 km from the impact point, and the time evolution of the ejecta curtain will be observed by this camera to confirm the impact point on the asteroid surface. As a result of the observation of the ejecta curtain by DCAM3-D and the crater morphology by onboard cameras, the subsurface structure and the physical properties of the constituting materials will be derived from crater scaling laws. Moreover, the SCI experiment on Ryugu gives us a precious opportunity to clarify effects of microgravity on the cratering process and to validate numerical simulations and models of the cratering process.

  8. Scientific Objectives of Small Carry-on Impactor (SCI) and Deployable Camera 3 Digital (DCAM3-D): Observation of an Ejecta Curtain and a Crater Formed on the Surface of Ryugu by an Artificial High-Velocity Impact

    Science.gov (United States)

    Arakawa, M.; Wada, K.; Saiki, T.; Kadono, T.; Takagi, Y.; Shirai, K.; Okamoto, C.; Yano, H.; Hayakawa, M.; Nakazawa, S.; Hirata, N.; Kobayashi, M.; Michel, P.; Jutzi, M.; Imamura, H.; Ogawa, K.; Sakatani, N.; Iijima, Y.; Honda, R.; Ishibashi, K.; Hayakawa, H.; Sawada, H.

    2017-07-01

    The Small Carry-on Impactor (SCI) equipped on Hayabusa2 was developed to produce an artificial impact crater on the primitive Near-Earth Asteroid (NEA) 162173 Ryugu (Ryugu) in order to explore the asteroid subsurface material unaffected by space weathering and thermal alteration by solar radiation. An exposed fresh surface by the impactor and/or the ejecta deposit excavated from the crater will be observed by remote sensing instruments, and a subsurface fresh sample of the asteroid will be collected there. The SCI impact experiment will be observed by a Deployable CAMera 3-D (DCAM3-D) at a distance of ˜1 km from the impact point, and the time evolution of the ejecta curtain will be observed by this camera to confirm the impact point on the asteroid surface. As a result of the observation of the ejecta curtain by DCAM3-D and the crater morphology by onboard cameras, the subsurface structure and the physical properties of the constituting materials will be derived from crater scaling laws. Moreover, the SCI experiment on Ryugu gives us a precious opportunity to clarify effects of microgravity on the cratering process and to validate numerical simulations and models of the cratering process.

  9. 3D game environments create professional 3D game worlds

    CERN Document Server

    Ahearn, Luke

    2008-01-01

    The ultimate resource to help you create triple-A quality art for a variety of game worlds; 3D Game Environments offers detailed tutorials on creating 3D models, applying 2D art to 3D models, and clear concise advice on issues of efficiency and optimization for a 3D game engine. Using Photoshop and 3ds Max as his primary tools, Luke Ahearn explains how to create realistic textures from photo source and uses a variety of techniques to portray dynamic and believable game worlds.From a modern city to a steamy jungle, learn about the planning and technological considerations for 3D modelin

  10. 3D Printing an Octohedron

    OpenAIRE

    Aboufadel, Edward F.

    2014-01-01

    The purpose of this short paper is to describe a project to manufacture a regular octohedron on a 3D printer. We assume that the reader is familiar with the basics of 3D printing. In the project, we use fundamental ideas to calculate the vertices and faces of an octohedron. Then, we utilize the OPENSCAD program to create a virtual 3D model and an STereoLithography (.stl) file that can be used by a 3D printer.

  11. Salient Local 3D Features for 3D Shape Retrieval

    CERN Document Server

    Godil, Afzal

    2011-01-01

    In this paper we describe a new formulation for the 3D salient local features based on the voxel grid inspired by the Scale Invariant Feature Transform (SIFT). We use it to identify the salient keypoints (invariant points) on a 3D voxelized model and calculate invariant 3D local feature descriptors at these keypoints. We then use the bag of words approach on the 3D local features to represent the 3D models for shape retrieval. The advantages of the method are that it can be applied to rigid as well as to articulated and deformable 3D models. Finally, this approach is applied for 3D Shape Retrieval on the McGill articulated shape benchmark and then the retrieval results are presented and compared to other methods.

  12. Interactive 3D Mars Visualization

    Science.gov (United States)

    Powell, Mark W.

    2012-01-01

    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.

  13. Wireless 3D Chocolate Printer

    Directory of Open Access Journals (Sweden)

    FROILAN G. DESTREZA

    2014-02-01

    Full Text Available This study is for the BSHRM Students of Batangas State University (BatStateU ARASOF for the researchers believe that the Wireless 3D Chocolate Printer would be helpful in their degree program especially on making creative, artistic, personalized and decorative chocolate designs. The researchers used the Prototyping model as procedural method for the successful development and implementation of the hardware and software. This method has five phases which are the following: quick plan, quick design, prototype construction, delivery and feedback and communication. This study was evaluated by the BSHRM Students and the assessment of the respondents regarding the software and hardware application are all excellent in terms of Accuracy, Effecitveness, Efficiency, Maintainability, Reliability and User-friendliness. Also, the overall level of acceptability of the design project as evaluated by the respondents is excellent. With regard to the observation about the best raw material to use in 3D printing, the chocolate is good to use as the printed material is slightly distorted,durable and very easy to prepare; the icing is also good to use as the printed material is not distorted and is very durable but consumes time to prepare; the flour is not good as the printed material is distorted, not durable but it is easy to prepare. The computation of the economic viability level of 3d printer with reference to ROI is 37.14%. The recommendation of the researchers in the design project are as follows: adding a cooling system so that the raw material will be more durable, development of a more simplified version and improving the extrusion process wherein the user do not need to stop the printing process just to replace the empty syringe with a new one.

  14. Thin slice three dimentional (3D reconstruction versus CT 3D reconstruction of human breast cancer

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2013-01-01

    Full Text Available Background & objectives: With improvement in the early diagnosis of breast cancer, breast conserving therapy (BCT is being increasingly used. Precise preoperative evaluation of the incision margin is, therefore, very important. Utilizing three dimentional (3D images in a preoperative evaluation for breast conserving surgery has considerable significance, but the currently 3D CT scan reconstruction commonly used has problems in accurately displaying breast cancer. Thin slice 3D reconstruction is also widely used now to delineate organs and tissues of breast cancers. This study was aimed to compare 3D CT with thin slice 3D reconstruction in breast cancer patients to find a better technique for accurate evaluation of breast cancer. Methods: A total of 16-slice spiral CT scans and 3D reconstructions were performed on 15 breast cancer patients. All patients had been treated with modified radical mastectomy; 2D and 3D images of breast and tumours were obtained. The specimens were fixed and sliced at 2 mm thickness to obtain serial thin slice images, and reconstructed using 3D DOCTOR software to gain 3D images. Results: Compared with 2D CT images, thin slice images showed more clearly the morphological characteristics of tumour, breast tissues and the margins of different tissues in each slice. After 3D reconstruction, the tumour shapes obtained by the two reconstruction methods were basically the same, but the thin slice 3D reconstruction showed the tumour margins more clearly. Interpretation & conclusions: Compared with 3D CT reconstruction, thin slice 3D reconstruction of breast tumour gave clearer images, which could provide guidance for the observation and application of CT 3D reconstructed images and contribute to the accurate evaluation of tumours using CT imaging technology.

  15. 3D models of slow motions in the Earth's crust and upper mantle in the source zones of seismically active regions and their comparison with highly accurate observational data: I. Main relationships

    Science.gov (United States)

    Molodenskii, S. M.; Molodenskii, M. S.; Begitova, T. A.

    2016-09-01

    Constructing detailed models for postseismic and coseismic deformations of the Earth's surface has become particularly important because of the recently established possibility to continuously monitor the tectonic stresses in the source zones based on the data on the time variations in the tidal tilt amplitudes. Below, a new method is suggested for solving the inverse problem about the coseismic and postseismic deformations in the real non-ideally elastic, radially and horizontally heterogeneous, self-gravitating Earth with a hydrostatic distribution of the initial stresses from the satellite data on the ground surface displacements. The solution of this problem is based on decomposing the parameters determining the geometry of the fault surface and the distribution of the dislocation vector on this surface and elastic modules in the source in the orthogonal bases. The suggested approach includes four steps: 1. Calculating (by the perturbation method) the variations in Green's function for the radial and tangential ground surface displacements with small 3D variations in the mechanical parameters and geometry of the source area (i.e., calculating the functional derivatives of the three components of Green's function on the surface from the distributions of the elastic moduli and creep function within the volume of the source area and Burgers' vector on the surface of the dislocations); 2. Successive orthogonalization of the functional derivatives; 3. Passing from the decompositions of the residuals between the observed and modeled surface displacements in the system of nonorthogonalized functional derivatives to their decomposition in the system of orthogonalized derivatives; finding the corrections to the distributions of the sought parameters from the coefficients of their decompositions in the orthogonalized basis; and 4. Analyzing the ambiguity of the inverse problem solution by constructing the orthogonal complement to the obtained basis. The described

  16. Chemical variations observed on Aeolis Mons in Gale Crater, Mars

    Science.gov (United States)

    Frydenvang, Jens; Gasda, Patrick J.; Thompson, Lucy; Hurowitz, Joel; Grotzinger, John P.; Blaney, Diana L.; Gellert, Ralf; Wiens, Roger; Vasavada, Ashwin R.; MSL Science Team

    2016-10-01

    The extraordinarily extensive exposure of hematite-, clay-, sulfate-bearing stratigraphic layers in the lower part of Aeolis Mons was the primary reason Gale Crater was selected as the landing site for the Mars Science Laboratory rover, Curiosity. 753 martian solar days (sols) after the Curiosity rover landed in Gale Crater in August 2012, and after driving more than 9 km, the Curiosity rover arrived at the first exposure of the Murray formation, the basal layer of Aeolis Mons. The Murray formation is a thinly laminated lacustrine mudstone showing stratification down to the millimeter scale. This supports the idea that the stratigraphic layers of Aeolis Mons are sedimentary, and likely deposited in a series of long-lived lakes extending into the early Hesperian time, as recently described by Grotzinger et al. (Science, vol. 350, 2015). The chemical variations observed throughout the Murray formation by the ChemCam and APXS instruments in the 600+ sols since first arriving at Aeolis Mons will be presented. While Murray remains thinly laminated throughout the 30+ vertical meters of stratigraphy explored, large chemical variations are observed. The most extreme variations arise from likely co-located detrital and diagenetic silica enrichments in Murray. Remarkably, an associated diagenetic silica enrichment is also observed in the unconformably overlying eolian sandstone of the Stimson formation in that location. The detrital enrichment provides evidence of how the source region chemistry varied as the sedimentary layers of Aeolis Mons were deposited. Conversely, the diagenetic enrichment observed across both the Murray and Stimson formations provides compelling evidence for the presence of subsurface fluids in Gale Crater, thousands to millions of years after the crater lakes disappeared. This evidence of liquid water greatly extends the timescale in which Gale Crater might have been habitable.

  17. STMAS中雷达反射率数据三维变分同化方案%3D Variational assimilation schemes of Doppler radar reflectivity data in STMAS

    Institute of Scientific and Technical Information of China (English)

    刘淑媛; 王奇; 刘海霞; 朱晓林

    2013-01-01

    介绍了在时空多尺度分析系统(STMAS)中以雨水含量作为控制变量,利用Z-qr关系,实现对区域中多部雷达回波强度资料三维变分同化方案,和水汽惩罚项模块方案.方案避免了利用Z-qr关系直接以回波强度或雨水混合比为控制变量会造成一阶导数不连续的问题.实例分析同化后初始场表明,从同化后的雨水混合比反算出来的回波强度与观测结果保持了较好的一致性.以2009年8月的MORA-KOT台风个例为例,设计实验来分析本文提出的雷达回波强度资料同化和水汽惩罚项方案效果.结果表明:雷达回波强度资料的同化方案(STMAS方案),提高了降水位置和强度预报的准确性;加入惩罚项和对雷达回波强度资料的同化模块后(HYDRO方案),削弱了水汽影响并加强了其他物理量的变化,相对STMAS方案,台风总降水增强了,但在强降水区域的降水强度减弱;相对控制试验,2种方案均改善了降水位置和强度的预报.%The schemes of Doppler radar reflectivity data 3D variational assimilation and hydrostatic balance in STMAS were introduced.The hydrostatic balance code was added into the STMAS cost function.The test shows that the reflectivity retrieved from the analysis field of STMAS is quite similar to that observed by doppler radar.Experiments using data from a typhoon case were conducted for comparing the different assimilation schemes.According to the experiments,the conclusions could be made that assimilating the reflectivity (STMAS scheme,test1)can result in a good performance,with the forecast of the rainfall area and cumulative precipitation improved,that adding hydrostatic balance penalty term and assimilating the reflectivity scheme together (HYDRO scheme,test1) can enhanced the total precipitation,but the maximal precipitation became smaller than sensitivity test 1,and that the forcast rainfall area and precipitation in HYDRO scheme and STMAS scheme were Improvement

  18. MISTiC Winds: A micro-satellite constellation approach to high resolution observations of the atmosphere using infrared sounding and 3D winds measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-09-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  19. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere using Infrared Sounding and 3D Winds Measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Susskind, J.; Aumann, H. H.

    2015-12-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sun-synchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's Atmospheric Infrared Sounder that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  20. Mistic winds, a microsatellite constellation approach to high-resolution observations of the atmosphere using infrared sounding and 3d winds measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-10-01

    MISTiC Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  1. Towards next generation 3D cameras

    Science.gov (United States)

    Gupta, Mohit

    2017-03-01

    We are in the midst of a 3D revolution. Robots enabled by 3D cameras are beginning to autonomously drive cars, perform surgeries, and manage factories. However, when deployed in the real-world, these cameras face several challenges that prevent them from measuring 3D shape reliably. These challenges include large lighting variations (bright sunlight to dark night), presence of scattering media (fog, body tissue), and optically complex materials (metal, plastic). Due to these factors, 3D imaging is often the bottleneck in widespread adoption of several key robotics technologies. I will talk about our work on developing 3D cameras based on time-of-flight and active triangulation that addresses these long-standing problems. This includes designing `all-weather' cameras that can perform high-speed 3D scanning in harsh outdoor environments, as well as cameras that recover shape of objects with challenging material properties. These cameras are, for the first time, capable of measuring detailed (<100 microns resolution) scans in extremely demanding scenarios with low-cost components. Several of these cameras are making a practical impact in industrial automation, being adopted in robotic inspection and assembly systems.

  2. Observations of time variation in the sun's rotation

    Science.gov (United States)

    Woodard, M. F.; Libbrecht, K. G.

    1993-01-01

    Observations of solar p-mode frequency splittings obtained at Big Bear Solar Observatory in 1986 and during 1988-90 reveal small (about 1 percent) changes in the sun's subsurface angular velocity with solar cycle. An asymptotic inversion of the splitting data yields the latitude dependence of the rotation rate and shows that the largest changes in the angular velocity, about 4 nanoHz, occurred between 1986 and the later years, at high (about 60 deg) solar latitudes. Earlier helioseismic observations suggest that solar cycle changes in the ratio of magnetic to turbulent pressure in the solar convection zone are large enough to account for the magnitude of the observed angular velocity variations, but a detailed model of the phenomenon does not exist.

  3. Holography of 3d-3d correspondence at Large N

    OpenAIRE

    Gang, Dongmin; Kim, Nakwoo; Lee, Sangmin

    2014-01-01

    We study the physics of multiple M5-branes compactified on a hyperbolic 3-manifold. On the one hand, it leads to the 3d-3d correspondence which maps an N = 2 $$ \\mathcal{N}=2 $$ superconformal field theory to a pure Chern-Simons theory on the 3-manifold. On the other hand, it leads to a warped AdS 4 geometry in M-theory holographically dual to the superconformal field theory. Combining the holographic duality and the 3d-3d correspondence, we propose a conjecture for the large N limit of the p...

  4. Adaptive interrogation for 3D-PIV

    Science.gov (United States)

    Novara, Matteo; Ianiro, Andrea; Scarano, Fulvio

    2013-02-01

    A method to adapt the shape and orientation of interrogation volumes for 3D-PIV motion analysis is introduced, aimed to increase the local spatial resolution. The main application of this approach is the detailed analysis of complex 3D and vortex-dominated flows that exhibit high vorticity in confined regions like shear layers and vortex filaments. The adaptive criterion is based on the analysis of the components of the local velocity gradient tensor, which returns the level of anisotropy of velocity spatial fluctuations. The principle to increase the local spatial resolution is based on the deformation of spherical isotropic interrogation regions, obtained by means of Gaussian weighting, into ellipsoids, with free choice of the principal axes and their directions. The interrogation region is contracted in the direction of the maximum velocity variation and elongated in the minimum one in order to maintain a constant interrogation volume. The adaptivity technique for three-dimensional PIV data takes advantage of the 3D topology of the flow, allowing increasing the spatial resolution not only in the case of shear layers, but also for vortex filaments, which is not possible for two-dimensional measurement in the plane normal to the vortex axis. The definition of the ellipsoidal interrogation region semi-axes is based on the singular values and singular directions of the local velocity gradient tensor as obtained by the singular values decomposition technique (SVD). The working principle is verified making use of numerical simulations of a shear layer and of a vortex filament. The application of the technique to data from a Tomo-PIV experiment conducted on a round jet, shows that the resolution of the shear layer at the jet exit can be considerably improved and an increase of about 25% in the vorticity peak is attained when the adaptive approach is applied. On the other hand, the peak vorticity description in the core of vortex rings is only slightly improved with

  5. Improving correlations between MODIS aerosol optical thickness and ground-based PM 2.5 observations through 3D spatial analyses

    Science.gov (United States)

    Hutchison, Keith D.; Faruqui, Shazia J.; Smith, Solar

    The Center for Space Research (CSR) continues to focus on developing methods to improve correlations between satellite-based aerosol optical thickness (AOT) values and ground-based, air pollution observations made at continuous ambient monitoring sites (CAMS) operated by the Texas commission on environmental quality (TCEQ). Strong correlations and improved understanding of the relationships between satellite and ground observations are needed to formulate reliable real-time predictions of air quality using data accessed from the moderate resolution imaging spectroradiometer (MODIS) at the CSR direct-broadcast ground station. In this paper, improvements in these correlations are demonstrated first as a result of the evolution in the MODIS retrieval algorithms. Further improvement is then shown using procedures that compensate for differences in horizontal spatial scales between the nominal 10-km MODIS AOT products and CAMS point measurements. Finally, airborne light detection and ranging (lidar) observations, collected during the Texas Air Quality Study of 2000, are used to examine aerosol profile concentrations, which may vary greatly between aerosol classes as a result of the sources, chemical composition, and meteorological conditions that govern transport processes. Further improvement in correlations is demonstrated with this limited dataset using insights into aerosol profile information inferred from the vertical motion vectors in a trajectory-based forecast model. Analyses are ongoing to verify these procedures on a variety of aerosol classes using data collected by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (Calipso) lidar.

  6. Large power factor and anomalous Hall effect and their correlation with observed linear magneto resistance in Co-doped Bi2Se3 3D topological insulator

    Science.gov (United States)

    Singh, Rahul; Shukla, K. K.; Kumar, A.; Okram, G. S.; Singh, D.; Ganeshan, V.; Lakhani, Archana; Ghosh, A. K.; Chatterjee, Sandip

    2016-09-01

    Magnetoresistance (MR), thermo power, magnetization and Hall effect measurements have been performed on Co-doped Bi2Se3 topological insulators. The undoped sample shows that the maximum MR as a destructive interference due to a π-Berry phase leads to a decrease of MR. As the Co is doped, the linearity in MR is increased. The observed MR of Bi2Se3 can be explained with the classical model. The low temperature MR behavior of Co doped samples cannot be explained with the same model, but can be explained with the quantum linear MR model. Magnetization behavior indicates the establishment of ferromagnetic ordering with Co doping. Hall effect data also supports the establishment of ferromagnetic ordering in Co-doped Bi2Se3 samples by showing the anomalous Hall effect. Furthermore, when spectral weight suppression is insignificant, Bi2Se3 behaves as a dilute magnetic semiconductor. Moreover, the maximum power factor is observed when time reversal symmetry (TRS) is maintained. As the TRS is broken the power factor value is decreased, which indicates that with the rise of Dirac cone above the Fermi level the anomalous Hall effect and linearity in MR increase and the power factor decreases.

  7. Observation of overlapping spin-1 and spin-3 D0K- resonances at mass 2.86 GeV/c2.

    Science.gov (United States)

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H-M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, Rf; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gavardi, L; Gavrilov, G; Geraci, A; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gianì, S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lu, H; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A

    2014-10-17

    The resonant substructure of B(s)(0) → D(0)K(-)π(+) decays is studied using a data sample corresponding to an integrated luminosity of 3.0 fb(-1) of pp collision data recorded by the LHCb detector. An excess at m(D(0)K(-))≈ 2.86 GeV/c(2) is found to be an admixture of spin-1 and spin-3 resonances. Therefore, the D(sJ)*(2860)(-) state previously observed in inclusive e(+)e(-) → D(0)K(-)X and pp → D(0)K(-)X processes consists of at least two particles. This is the first observation of a heavy flavored spin-3 resonance, and the first time that any spin-3 particle has been seen to be produced in B decays. The masses and widths of the new states and of the D(s2)*(2573)(-) meson are measured, giving the most precise determinations to date.

  8. Large power factor and anomalous Hall effect and their correlation with observed linear magneto resistance in Co-doped Bi2Se3 3D topological insulator.

    Science.gov (United States)

    Singh, Rahul; Shukla, K K; Kumar, A; Okram, G S; Singh, D; Ganeshan, V; Lakhani, Archana; Ghosh, A K; Chatterjee, Sandip

    2016-09-21

    Magnetoresistance (MR), thermo power, magnetization and Hall effect measurements have been performed on Co-doped Bi2Se3 topological insulators. The undoped sample shows that the maximum MR as a destructive interference due to a π-Berry phase leads to a decrease of MR. As the Co is doped, the linearity in MR is increased. The observed MR of Bi2Se3 can be explained with the classical model. The low temperature MR behavior of Co doped samples cannot be explained with the same model, but can be explained with the quantum linear MR model. Magnetization behavior indicates the establishment of ferromagnetic ordering with Co doping. Hall effect data also supports the establishment of ferromagnetic ordering in Co-doped Bi2Se3 samples by showing the anomalous Hall effect. Furthermore, when spectral weight suppression is insignificant, Bi2Se3 behaves as a dilute magnetic semiconductor. Moreover, the maximum power factor is observed when time reversal symmetry (TRS) is maintained. As the TRS is broken the power factor value is decreased, which indicates that with the rise of Dirac cone above the Fermi level the anomalous Hall effect and linearity in MR increase and the power factor decreases.

  9. Spherical 3D isotropic wavelets

    Science.gov (United States)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2012-04-01

    Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html

  10. Density Index:Extension of Shape Index in Describing Local Intensity Variations in a 3D Image%密度指数:形状指数在描述三维图像时的推广

    Institute of Scientific and Technical Information of China (English)

    杨四海; 徐建武; Kenji Suzuki

    2016-01-01

    针对将形状指数(SI)应用于三维图像时缺乏对应的推广形式,常通过计算三维图像的3个截面的 SI 来组合表达,导致在肠道肿瘤检测等应用中造成了大量的误检的问题,研究了三维情形 SI 的推广.首先选取球坐标系表达的单位球面以消除灰度变化尺度的影响;然后分析了球面的6个等价区域,并选取其一作为灰度变化的表征区域;由于 SI 原有的表达式不利于推广到三维空间,因此推导了一种等价的表达式,并通过分析此表达式在三维情形的推广,得到了描述三维图像局部灰度变化的指标——密度指数(DI).通过研究 DI 所表征区域的几何特性,得到了一条具有重要性质的曲线——逆Z线,并分析了其上典型特征点所对应的灰度变化模式.仿真实验结果表明,对于肠道肿瘤检测的典型情况,使用DI检测的误检率明显低于SI.%When applying to the quantifying intensity variation of the neighborhood of a voxel in a 3D image, shape index (SI) lacks an extended form and currently uses the combination of the three computed SI values based on three orthogonal sections of the neighborhood, which results in massive false detection. To cope with the problem, the extended form of SI was studied. First, in a spherical coordinates system, an unit sphere was chosen to remove the interference stemmed from the variation of intensity scale; Second, in the unit sphere, 6 equivalent regions were analyzed and one of them was selected as the representative region; Third, because the original cal-culation formula of SI is hard to extend, an equivalent formula of SI was deduced and it was extended to the case of describing the variation of intensity for a local region of a 3D image and the derived index is density index (DI); Fourth, by analyzing the geometrical properties of the definition domain of DI, a curve with important qualities— inverse Z line was introduced and the

  11. 3D IBFV : Hardware-Accelerated 3D Flow Visualization

    NARCIS (Netherlands)

    Telea, Alexandru; Wijk, Jarke J. van

    2003-01-01

    We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique for 2D flow visualization in two main directions. First, we decompose the 3D flow visualization problem in a

  12. 3D Elevation Program—Virtual USA in 3D

    Science.gov (United States)

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  13. A 3-D Contextual Classifier

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    1997-01-01

    . This includes the specification of a Gaussian distribution for the pixel values as well as a prior distribution for the configuration of class variables within the cross that is m ade of a pixel and its four nearest neighbours. We will extend this algorithm to 3-D, i.e. we will specify a simultaneous Gaussian...... distr ibution for a pixel and its 6 nearest 3-D neighbours, and generalise the class variable configuration distribution within the 3-D cross. The algorithm is tested on a synthetic 3-D multivariate dataset....

  14. 3D Bayesian contextual classifiers

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    2000-01-01

    We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours.......We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours....

  15. Using 3D in Visualization

    DEFF Research Database (Denmark)

    Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen

    2005-01-01

    to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...... with abstracted representations embedded in a 3D space. The interactions between development of geovisualization, the technology used to implement it and the theory surrounding cartographic representation are explored. The dominance of computing technologies, driven particularly by the gaming industry...

  16. Interactive 3D multimedia content

    CERN Document Server

    Cellary, Wojciech

    2012-01-01

    The book describes recent research results in the areas of modelling, creation, management and presentation of interactive 3D multimedia content. The book describes the current state of the art in the field and identifies the most important research and design issues. Consecutive chapters address these issues. These are: database modelling of 3D content, security in 3D environments, describing interactivity of content, searching content, visualization of search results, modelling mixed reality content, and efficient creation of interactive 3D content. Each chapter is illustrated with example a

  17. 3D for Graphic Designers

    CERN Document Server

    Connell, Ellery

    2011-01-01

    Helping graphic designers expand their 2D skills into the 3D space The trend in graphic design is towards 3D, with the demand for motion graphics, animation, photorealism, and interactivity rapidly increasing. And with the meteoric rise of iPads, smartphones, and other interactive devices, the design landscape is changing faster than ever.2D digital artists who need a quick and efficient way to join this brave new world will want 3D for Graphic Designers. Readers get hands-on basic training in working in the 3D space, including product design, industrial design and visualization, modeling, ani

  18. 3-D printers for libraries

    CERN Document Server

    Griffey, Jason

    2014-01-01

    As the maker movement continues to grow and 3-D printers become more affordable, an expanding group of hobbyists is keen to explore this new technology. In the time-honored tradition of introducing new technologies, many libraries are considering purchasing a 3-D printer. Jason Griffey, an early enthusiast of 3-D printing, has researched the marketplace and seen several systems first hand at the Consumer Electronics Show. In this report he introduces readers to the 3-D printing marketplace, covering such topics asHow fused deposition modeling (FDM) printing workBasic terminology such as build

  19. Supernova Remnant in 3-D

    Science.gov (United States)

    2009-01-01

    of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through. The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave. This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron. High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these structures, but their orientation and

  20. Micro-CT observations of the 3D distribution of calcium oxalate crystals in cotyledons during maturation and germination in Lotus miyakojimae seeds.

    Science.gov (United States)

    Yamauchi, Daisuke; Tamaoki, Daisuke; Hayami, Masato; Takeuchi, Miyuki; Karahara, Ichirou; Sato, Mayuko; Toyooka, Kiminori; Nishioka, Hiroshi; Terada, Yasuko; Uesugi, Kentaro; Takano, Hidekazu; Kagoshima, Yasushi; Mineyuki, Yoshinobu

    2013-06-01

    The cotyledon of legume seeds is a storage organ that provides nutrients for seed germination and seedling growth. The spatial and temporal control of the degradation processes within cotyledons has not been elucidated. Calcium oxalate (CaOx) crystals, a common calcium deposit in plants, have often been reported to be present in legume seeds. In this study, micro-computed tomography (micro-CT) was employed at the SPring-8 facility to examine the three-dimensional distribution of crystals inside cotyledons during seed maturation and germination of Lotus miyakojimae (previously Lotus japonicus accession Miyakojima MG-20). Using this technique, we could detect the outline of the embryo, void spaces in seeds and the cotyledon venation pattern. We found several sites that strongly inhibited X-ray transmission within the cotyledons. Light and polarizing microscopy confirmed that these areas corresponded to CaOx crystals. Three-dimensional observations of dry seeds indicated that the CaOx crystals in the L. miyakojimae cotyledons were distributed along lateral veins; however, their distribution was limited to the abaxial side of the procambium. The CaOx crystals appeared at stage II (seed-filling stage) of seed development, and their number increased in dry seeds. The number of crystals in cotyledons was high during germination, suggesting that CaOx crystals are not degraded for their calcium supply. Evidence for the conservation of CaOx crystals in cotyledons during the L. miyakojimae germination process was also supported by the biochemical measurement of oxalic acid levels.

  1. Eyes on the Earth 3D

    Science.gov (United States)

    Kulikov, anton I.; Doronila, Paul R.; Nguyen, Viet T.; Jackson, Randal K.; Greene, William M.; Hussey, Kevin J.; Garcia, Christopher M.; Lopez, Christian A.

    2013-01-01

    Eyes on the Earth 3D software gives scientists, and the general public, a realtime, 3D interactive means of accurately viewing the real-time locations, speed, and values of recently collected data from several of NASA's Earth Observing Satellites using a standard Web browser (climate.nasa.gov/eyes). Anyone with Web access can use this software to see where the NASA fleet of these satellites is now, or where they will be up to a year in the future. The software also displays several Earth Science Data sets that have been collected on a daily basis. This application uses a third-party, 3D, realtime, interactive game engine called Unity 3D to visualize the satellites and is accessible from a Web browser.

  2. Copper Electrodeposition for 3D Integration

    CERN Document Server

    Beica, Rozalia; Ritzdorf, Tom

    2008-01-01

    Two dimensional (2D) integration has been the traditional approach for IC integration. Due to increasing demands for providing electronic devices with superior performance and functionality in more efficient and compact packages, has driven the semiconductor industry to develop more advanced packaging technologies. Three-dimensional (3D) approaches address both miniaturization and integration required for advanced and portable electronic products. Vertical integration proved to be essential in achieving a greater integration flexibility of disparate technologies, reason for which a general trend of transition from 2D to 3D integration is currently being observed in the industry. 3D chip integration using through silicon via (TSV) copper is considered one of the most advanced technologies among all different types of 3D packaging technologies. Copper electrodeposition is one of technologies that enable the formation of TSV structures. Because of its well-known application for copper damascene, it was believed ...

  3. Measuring Visual Closeness of 3-D Models

    KAUST Repository

    Gollaz Morales, Jose Alejandro

    2012-09-01

    Measuring visual closeness of 3-D models is an important issue for different problems and there is still no standardized metric or algorithm to do it. The normal of a surface plays a vital role in the shading of a 3-D object. Motivated by this, we developed two applications to measure visualcloseness, introducing normal difference as a parameter in a weighted metric in Metro’s sampling approach to obtain the maximum and mean distance between 3-D models using 3-D and 6-D correspondence search structures. A visual closeness metric should provide accurate information on what the human observers would perceive as visually close objects. We performed a validation study with a group of people to evaluate the correlation of our metrics with subjective perception. The results were positive since the metrics predicted the subjective rankings more accurately than the Hausdorff distance.

  4. 3D Printed Multimaterial Microfluidic Valve

    Science.gov (United States)

    Patrick, William G.; Sharma, Sunanda; Kong, David S.; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics. PMID:27525809

  5. 3D face analysis for demographic biometrics

    Energy Technology Data Exchange (ETDEWEB)

    Tokola, Ryan A [ORNL; Mikkilineni, Aravind K [ORNL; Boehnen, Chris Bensing [ORNL

    2015-01-01

    Despite being increasingly easy to acquire, 3D data is rarely used for face-based biometrics applications beyond identification. Recent work in image-based demographic biometrics has enjoyed much success, but these approaches suffer from the well-known limitations of 2D representations, particularly variations in illumination, texture, and pose, as well as a fundamental inability to describe 3D shape. This paper shows that simple 3D shape features in a face-based coordinate system are capable of representing many biometric attributes without problem-specific models or specialized domain knowledge. The same feature vector achieves impressive results for problems as diverse as age estimation, gender classification, and race classification.

  6. Observer variation in vascular CT measurements of the abdominal aorta

    Energy Technology Data Exchange (ETDEWEB)

    England, Andrew [Department of Radiology, South Manchester University Hospitals NHS Trust, Southmoor Road, Manchester M23 9LT (United Kingdom); Department of Medical Imaging and Radiotherapy, University of Liverpool, Johnson Building, Quadrangle, Brownlow Hill, Liverpool L69 3GB (United Kingdom)], E-mail: a.england@liverpool.ac.uk; Butterfield, John S.; Ashleigh, Raymond J. [Department of Radiology, South Manchester University Hospitals NHS Trust, Southmoor Road, Manchester M23 9LT (United Kingdom)

    2008-11-15

    Aim: To assess the inter-observer variation between a radiographer and radiologist when performing CT measurement of the abdominal aorta before endovascular aortic aneurysm repair (EVAR). Methods: A total of 30 consecutive patients who were considered anatomically suitable for EVAR had aortic measurements performed independently by a vascular radioogist and then by a radiographer training vascular and CT imaging. All measurements were performed on a computer workstation using electronic callipers, each patient had 12 anatomical sites evaluated (eight diameters, four vessel lengths). Statistical analysis was performed by the computer package SPSS for Windows 11.01. Results: Of the 30 patients, mean difference in measurements between observers was 2.3 mm {+-} 1.2 mm and 6.0 mm {+-} 6.4 mm for diameter and vessel length measurements, respectively. Two hundred and seven (86%) diameter measurements were {<=}2 mm of each other and 233 (97%) were within {<=}5 mm. Eighty-two (57%) length measurements were within {<=}5 mm, and 100 (83%) within 10 mm or less. Widest variation existed for measurements of common iliac diameter and aortic neck length, where coefficients of variance were 38.2 (95% CI 35.7-41.0) and 40.0 (95% CI 36.2-44.6), respectively. Conclusion: A good level of agreement exists between a trained radiographer and radiologist when comparing vascular CT measurements of the aorta. It is technically feasible for a radiographer to perform these measurements, and improvements in variability may be achieved from a more standardised technique and automated vessel analysis software. Further research is required to establish the overall variability between different observer types when undertaking vascular CT measurements.

  7. AntigenMap 3D: an online antigenic cartography resource.

    Science.gov (United States)

    Barnett, J Lamar; Yang, Jialiang; Cai, Zhipeng; Zhang, Tong; Wan, Xiu-Feng

    2012-05-01

    Antigenic cartography is a useful technique to visualize and minimize errors in immunological data by projecting antigens to 2D or 3D cartography. However, a 2D cartography may not be sufficient to capture the antigenic relationship from high-dimensional immunological data. AntigenMap 3D presents an online, interactive, and robust 3D antigenic cartography construction and visualization resource. AntigenMap 3D can be applied to identify antigenic variants and vaccine strain candidates for pathogens with rapid antigenic variations, such as influenza A virus. http://sysbio.cvm.msstate.edu/AntigenMap3D

  8. 3D Printing for Bricks

    OpenAIRE

    ECT Team, Purdue

    2015-01-01

    Building Bytes, by Brian Peters, is a project that uses desktop 3D printers to print bricks for architecture. Instead of using an expensive custom-made printer, it uses a normal standard 3D printer which is available for everyone and makes it more accessible and also easier for fabrication.

  9. Market study: 3-D eyetracker

    Science.gov (United States)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  10. Spherical 3D Isotropic Wavelets

    CERN Document Server

    Lanusse, F; Starck, J -L

    2011-01-01

    Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D Spherical Fourier-Bessel (SFB) analysis in is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the Fourier-Bessel decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. 2006. We also present a new fast Discrete Spherical Fourier-Bessel Transform (DSFBT) based on both a discrete Bessel Transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large...

  11. Improvement of 3D Scanner

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The disadvantage remaining in 3D scanning system and its reasons are discussed. A new host-and-slave structure with high speed image acquisition and processing system is proposed to quicken the image processing and improve the performance of 3D scanning system.

  12. Atmospheric Variations as observed by IceCube

    CERN Document Server

    Tilav, Serap; Kuwabara, Takao; Rocco, Dominick; Rothmaier, Florian; Simmons, Matt; Wissing, Henrike

    2010-01-01

    We have measured the correlation of rates in IceCube with long and short term variations in the South Pole atmosphere. The yearly temperature variation in the middle stratosphere (30-60 hPa) is highly correlated with the high energy muon rate observed deep in the ice, and causes a +/-10% seasonal modulation in the event rate. The counting rates of the surface detectors, which are due to secondary particles of relatively low energy (muons, electrons and photons), have a negative correlation with temperatures in the lower layers of the stratosphere (40-80 hPa), and are modulated at a level of +/-5%. The region of the atmosphere between pressure levels 20-120 hPa, where the first cosmic ray interactions occur and the produced pions/kaons interact or decay to muons, is the Antarctic ozone layer. The anticorrelation between surface and deep ice trigger rates reflects the properties of pion/kaon decay and interaction as the density of the stratospheric ozone layer changes. Therefore, IceCube closely probes the ozon...

  13. Advanced 3-D Ultrasound Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer

    to produce high quality 3-D images. Because of the large matrix transducers with integrated custom electronics, these systems are extremely expensive. The relatively low price of ultrasound scanners is one of the factors for the widespread use of ultrasound imaging. The high price tag on the high quality 3-D......The main purpose of the PhD project was to develop methods that increase the 3-D ultrasound imaging quality available for the medical personnel in the clinic. Acquiring a 3-D volume gives the medical doctor the freedom to investigate the measured anatomy in any slice desirable after the scan has...... been completed. This allows for precise measurements of organs dimensions and makes the scan more operator independent. Real-time 3-D ultrasound imaging is still not as widespread in use in the clinics as 2-D imaging. A limiting factor has traditionally been the low image quality achievable using...

  14. Using 3D in Visualization

    DEFF Research Database (Denmark)

    Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen

    2005-01-01

    The notion of three-dimensionality is applied to five stages of the visualization pipeline. While 3D visulization is most often associated with the visual mapping and representation of data, this chapter also identifies its role in the management and assembly of data, and in the media used...... to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...... with abstracted representations embedded in a 3D space. The interactions between development of geovisualization, the technology used to implement it and the theory surrounding cartographic representation are explored. The dominance of computing technologies, driven particularly by the gaming industry...

  15. 3D printing in dentistry.

    Science.gov (United States)

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  16. 3D vision system assessment

    Science.gov (United States)

    Pezzaniti, J. Larry; Edmondson, Richard; Vaden, Justin; Hyatt, Bryan; Chenault, David B.; Kingston, David; Geulen, Vanilynmae; Newell, Scott; Pettijohn, Brad

    2009-02-01

    In this paper, we report on the development of a 3D vision system consisting of a flat panel stereoscopic display and auto-converging stereo camera and an assessment of the system's use for robotic driving, manipulation, and surveillance operations. The 3D vision system was integrated onto a Talon Robot and Operator Control Unit (OCU) such that direct comparisons of the performance of a number of test subjects using 2D and 3D vision systems were possible. A number of representative scenarios were developed to determine which tasks benefited most from the added depth perception and to understand when the 3D vision system hindered understanding of the scene. Two tests were conducted at Fort Leonard Wood, MO with noncommissioned officers ranked Staff Sergeant and Sergeant First Class. The scenarios; the test planning, approach and protocols; the data analysis; and the resulting performance assessment of the 3D vision system are reported.

  17. PLOT3D user's manual

    Science.gov (United States)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  18. Tidally induced variations in vertical and horizontal motion on Rutford Ice Stream, West Antarctica, inferred from remotely sensed observations

    Science.gov (United States)

    Minchew, B. M.; Simons, M.; Riel, B.; Milillo, P.

    2017-01-01

    To better understand the influence of stress changes over floating ice shelves on grounded ice streams, we develop a Bayesian method for inferring time-dependent 3-D surface velocity fields from synthetic aperture radar (SAR) and optical remote sensing data. Our specific goal is to observe ocean tide-induced variability in vertical ice shelf position and horizontal ice stream flow. Thus, we consider the special case where observed surface displacement at a given location can be defined by a 3-D secular velocity vector, a family of 3-D sinusoidal functions, and a correction to the digital elevation model used to process the SAR data. Using nearly 9 months of SAR data collected from multiple satellite viewing geometries with the COSMO-SkyMed 4-satellite constellation, we infer the spatiotemporal response of Rutford Ice Stream, West Antarctica, to ocean tidal forcing. Consistent with expected tidal uplift, inferred vertical motion over the ice shelf is dominated by semidiurnal and diurnal tidal constituents. Horizontal ice flow variability, on the other hand, occurs primarily at the fortnightly spring-neap tidal period (Msf). We propose that periodic grounding of the ice shelf is the primary mechanism for translating vertical tidal motion into horizontal flow variability, causing ice flow to accelerate first and most strongly over the ice shelf. Flow variations then propagate through the grounded ice stream at a mean rate of ˜29 km/d and decay quasi-linearly with distance over ˜85 km upstream of the grounding zone.

  19. Random-Profiles-Based 3D Face Recognition System

    Directory of Open Access Journals (Sweden)

    Joongrock Kim

    2014-03-01

    Full Text Available In this paper, a noble nonintrusive three-dimensional (3D face modeling system for random-profile-based 3D face recognition is presented. Although recent two-dimensional (2D face recognition systems can achieve a reliable recognition rate under certain conditions, their performance is limited by internal and external changes, such as illumination and pose variation. To address these issues, 3D face recognition, which uses 3D face data, has recently received much attention. However, the performance of 3D face recognition highly depends on the precision of acquired 3D face data, while also requiring more computational power and storage capacity than 2D face recognition systems. In this paper, we present a developed nonintrusive 3D face modeling system composed of a stereo vision system and an invisible near-infrared line laser, which can be directly applied to profile-based 3D face recognition. We further propose a novel random-profile-based 3D face recognition method that is memory-efficient and pose-invariant. The experimental results demonstrate that the reconstructed 3D face data consists of more than 50 k 3D point clouds and a reliable recognition rate against pose variation.

  20. ADT-3D Tumor Detection Assistant in 3D

    Directory of Open Access Journals (Sweden)

    Jaime Lazcano Bello

    2008-12-01

    Full Text Available The present document describes ADT-3D (Three-Dimensional Tumor Detector Assistant, a prototype application developed to assist doctors diagnose, detect and locate tumors in the brain by using CT scan. The reader may find on this document an introduction to tumor detection; ADT-3D main goals; development details; description of the product; motivation for its development; result’s study; and areas of applicability.

  1. Charge collection characterization of a 3D silicon radiation detector by using 3D simulations

    CERN Document Server

    Kalliopuska, J; Orava, R

    2007-01-01

    In 3D detectors, the electrodes are processed within the bulk of the sensor material. Therefore, the signal charge is collected independently of the wafer thickness and the collection process is faster due to shorter distances between the charge collection electrodes as compared to a planar detector structure. In this paper, 3D simulations are used to assess the performance of a 3D detector structure in terms of charge sharing, efficiency and speed of charge collection, surface charge, location of the primary interaction and the bias voltage. The measured current pulse is proposed to be delayed due to the resistance–capacitance (RC) product induced by the variation of the serial resistance of the pixel electrode depending on the depth of the primary interaction. Extensive simulations are carried out to characterize the 3D detector structures and to verify the proposed explanation for the delay of the current pulse. A method for testing the hypothesis experimentally is suggested.

  2. Unassisted 3D camera calibration

    Science.gov (United States)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  3. Bioprinting of 3D hydrogels.

    Science.gov (United States)

    Stanton, M M; Samitier, J; Sánchez, S

    2015-08-07

    Three-dimensional (3D) bioprinting has recently emerged as an extension of 3D material printing, by using biocompatible or cellular components to build structures in an additive, layer-by-layer methodology for encapsulation and culture of cells. These 3D systems allow for cell culture in a suspension for formation of highly organized tissue or controlled spatial orientation of cell environments. The in vitro 3D cellular environments simulate the complexity of an in vivo environment and natural extracellular matrices (ECM). This paper will focus on bioprinting utilizing hydrogels as 3D scaffolds. Hydrogels are advantageous for cell culture as they are highly permeable to cell culture media, nutrients, and waste products generated during metabolic cell processes. They have the ability to be fabricated in customized shapes with various material properties with dimensions at the micron scale. 3D hydrogels are a reliable method for biocompatible 3D printing and have applications in tissue engineering, drug screening, and organ on a chip models.

  4. Tuotekehitysprojekti: 3D-tulostin

    OpenAIRE

    Pihlajamäki, Janne

    2011-01-01

    Opinnäytetyössä tutustuttiin 3D-tulostamisen teknologiaan. Työssä käytiin läpi 3D-tulostimesta tehty tuotekehitysprojekti. Sen lisäksi esiteltiin yleisellä tasolla tuotekehitysprosessi ja syntyneiden tulosten mahdollisia suojausmenetelmiä. Tavoitteena tässä työssä oli kehittää markkinoilta jo löytyvää kotitulostin-tasoista 3D-laiteteknologiaa lähemmäksi ammattilaistason ratkaisua. Tavoitteeseen pyrittiin keskittymällä parantamaan laitteella saavutettavaa tulostustarkkuutta ja -nopeutt...

  5. Color 3D Reverse Engineering

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper presents a principle and a method of col or 3D laser scanning measurement. Based on the fundamental monochrome 3D measureme nt study, color information capture, color texture mapping, coordinate computati on and other techniques are performed to achieve color 3D measurement. The syste m is designed and composed of a line laser light emitter, one color CCD camera, a motor-driven rotary filter, a circuit card and a computer. Two steps in captu ring object's images in the measurement process: Firs...

  6. Exploration of 3D Printing

    OpenAIRE

    Lin, Zeyu

    2014-01-01

    3D printing technology is introduced and defined in this Thesis. Some methods of 3D printing are illustrated and their principles are explained with pictures. Most of the essential parts are presented with pictures and their effects are explained within the whole system. Problems on Up! Plus 3D printer are solved and a DIY product is made with this machine. The processes of making product are recorded and the items which need to be noticed during the process are the highlight in this th...

  7. Handbook of 3D integration

    CERN Document Server

    Garrou , Philip; Ramm , Peter

    2014-01-01

    Edited by key figures in 3D integration and written by top authors from high-tech companies and renowned research institutions, this book covers the intricate details of 3D process technology.As such, the main focus is on silicon via formation, bonding and debonding, thinning, via reveal and backside processing, both from a technological and a materials science perspective. The last part of the book is concerned with assessing and enhancing the reliability of the 3D integrated devices, which is a prerequisite for the large-scale implementation of this emerging technology. Invaluable reading fo

  8. Infrared Observations Of Saturn's Rings : Azimuthal Variations And Thermal Modeling

    Science.gov (United States)

    Leyrat, C.; Spilker, L. J.; Altobelli, N.; Pilorz, S.; Ferrari, C.; Edgington, S. G.; Wallis, B. D.; Nugent, C.; Flasar, M.

    2007-12-01

    Saturn's rings represent a collection of icy centimeter to meter size particles with their local dynamic dictated by self gravity, mutual collisions, surface roughness and thickness of the rings themselves. The infrared observations obtained by the CIRS infrared spectrometer on board Cassini over the last 3.5 year contain informations on the local dynamic, as the thermal signature of planetary rings is influenced both by the ring structure and the particle properties. The ring temperature is very dependent on the solar phase angle (Spilker et al., this issue), and on the local hour angle around Saturn, depending on whether or not particles' visible hemispheres are heated by the Sun. The geometric filling factor, which can be estimated from CIRS spectra, is less dependent on the local hour angle, suggesting that the non isothermal behavior of particles' surfaces have low impact, but it is very dependent on the spacecraft elevation for the A and C rings. The ring small scale structure can be explored using CIRS data. Variations of the filling factor with the local hour angle relative to the spacecraft azimuth reveals self-gravity wakes. We derive morphological parameters of such wakes in both A and B rings assuming that wakes can be modeled either by regularly spaced bars with infinite or finite optical depth. Our results indicates that wakes in the A ring are almost flat, with a ratio height/width ≈ 0.44 ± 0.16 and with a pitch angle relative to the orbital motion direction of ≍ 27deg. This is consistent with UVIS (Colwell et al., 2006) and VIMS data (Hedman et al., 2007). Such models are more difficult to constrain in the B ring, but small variations of the filling factor indicate that the pitch angle decreases drastically in this ring. We also present a new thermal bar model to explain azimuthal variations of temperatures in the A ring. We compare results with previous ring thermal models of spherical particles. The Cassini/CIRS azimuthal scans data set is

  9. Conducting polymer 3D microelectrodes

    DEFF Research Database (Denmark)

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...

  10. Accepting the T3D

    Energy Technology Data Exchange (ETDEWEB)

    Rich, D.O.; Pope, S.C.; DeLapp, J.G.

    1994-10-01

    In April, a 128 PE Cray T3D was installed at Los Alamos National Laboratory`s Advanced Computing Laboratory as part of the DOE`s High-Performance Parallel Processor Program (H4P). In conjunction with CRI, the authors implemented a 30 day acceptance test. The test was constructed in part to help them understand the strengths and weaknesses of the T3D. In this paper, they briefly describe the H4P and its goals. They discuss the design and implementation of the T3D acceptance test and detail issues that arose during the test. They conclude with a set of system requirements that must be addressed as the T3D system evolves.

  11. 3-D Vector Flow Imaging

    DEFF Research Database (Denmark)

    Holbek, Simon

    For the last decade, the field of ultrasonic vector flow imaging has gotten an increasingly attention, as the technique offers a variety of new applications for screening and diagnostics of cardiovascular pathologies. The main purpose of this PhD project was therefore to advance the field of 3-D...... ultrasonic vector flow estimation and bring it a step closer to a clinical application. A method for high frame rate 3-D vector flow estimation in a plane using the transverse oscillation method combined with a 1024 channel 2-D matrix array is presented. The proposed method is validated both through phantom......, if this significant reduction in the element count can still provide precise and robust 3-D vector flow estimates in a plane. The study concludes that the RC array is capable of estimating precise 3-D vector flow both in a plane and in a volume, despite the low channel count. However, some inherent new challenges...

  12. 3D Convection-pulsation Simulations with the HERACLES Code

    Science.gov (United States)

    Felix, S.; Audit, E.; Dintrans, B.

    2015-10-01

    We present 3D simulations of the coupling between surface convection and pulsations due to the κ-mechanism in classical Cepheids of the red edge of Hertzsprung-Russell diagram's instability strip. We show that 3D convection is less powerful than 2D convection and does not quench the radiative pulsations, leading to an efficient 3D κ-mechanism. Thus, the 3D instability strip is closer to the observed one than the 1D or 2D were.

  13. Main: TATCCAYMOTIFOSRAMY3D [PLACE

    Lifescience Database Archive (English)

    Full Text Available TATCCAYMOTIFOSRAMY3D S000256 01-August-2006 (last modified) kehi TATCCAY motif foun...d in rice (O.s.) RAmy3D alpha-amylase gene promoter; Y=T/C; a GATA motif as its antisense sequence; TATCCAY ...motif and G motif (see S000130) are responsible for sugar repression (Toyofuku et al. 1998); GATA; amylase; sugar; repression; rice (Oryza sativa) TATCCAY ...

  14. Development of 3D statistical mandible models for cephalometric measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Goo; Yi, Won Jin; Hwang, Soon Jung; Choi, Soon Chul; Lee, Sam Sun; Heo, Min Suk; Huh, Kyung Hoe; Kim, Tae Il [School of Dentistry, Seoul National University, Seoul (Korea, Republic of); Hong, Helen; Yoo, Ji Hyun [Division of Multimedia Engineering, Seoul Women' s University, Seoul (Korea, Republic of)

    2012-09-15

    The aim of this study was to provide sex-matched three-dimensional (3D) statistical shape models of the mandible, which would provide cephalometric parameters for 3D treatment planning and cephalometric measurements in orthognathic surgery. The subjects used to create the 3D shape models of the mandible included 23 males and 23 females. The mandibles were segmented semi-automatically from 3D facial CT images. Each individual mandible shape was reconstructed as a 3D surface model, which was parameterized to establish correspondence between different individual surfaces. The principal component analysis (PCA) applied to all mandible shapes produced a mean model and characteristic models of variation. The cephalometric parameters were measured directly from the mean models to evaluate the 3D shape models. The means of the measured parameters were compared with those from other conventional studies. The male and female 3D statistical mean models were developed from 23 individual mandibles, respectively. The male and female characteristic shapes of variation produced by PCA showed a large variability included in the individual mandibles. The cephalometric measurements from the developed models were very close to those from some conventional studies. We described the construction of 3D mandibular shape models and presented the application of the 3D mandibular template in cephalometric measurements. Optimal reference models determined from variations produced by PCA could be used for craniofacial patients with various types of skeletal shape.

  15. NGT-3D: a simple nematode cultivation system to study Caenorhabditis elegans biology in 3D

    Science.gov (United States)

    Lee, Tong Young; Yoon, Kyoung-hye; Lee, Jin Il

    2016-01-01

    ABSTRACT The nematode Caenorhabditis elegans is one of the premier experimental model organisms today. In the laboratory, they display characteristic development, fertility, and behaviors in a two dimensional habitat. In nature, however, C. elegans is found in three dimensional environments such as rotting fruit. To investigate the biology of C. elegans in a 3D controlled environment we designed a nematode cultivation habitat which we term the nematode growth tube or NGT-3D. NGT-3D allows for the growth of both nematodes and the bacteria they consume. Worms show comparable rates of growth, reproduction and lifespan when bacterial colonies in the 3D matrix are abundant. However, when bacteria are sparse, growth and brood size fail to reach levels observed in standard 2D plates. Using NGT-3D we observe drastic deficits in fertility in a sensory mutant in 3D compared to 2D, and this defect was likely due to an inability to locate bacteria. Overall, NGT-3D will sharpen our understanding of nematode biology and allow scientists to investigate questions of nematode ecology and evolutionary fitness in the laboratory. PMID:26962047

  16. NGT-3D: a simple nematode cultivation system to study Caenorhabditis elegans biology in 3D

    Directory of Open Access Journals (Sweden)

    Tong Young Lee

    2016-04-01

    Full Text Available The nematode Caenorhabditis elegans is one of the premier experimental model organisms today. In the laboratory, they display characteristic development, fertility, and behaviors in a two dimensional habitat. In nature, however, C. elegans is found in three dimensional environments such as rotting fruit. To investigate the biology of C. elegans in a 3D controlled environment we designed a nematode cultivation habitat which we term the nematode growth tube or NGT-3D. NGT-3D allows for the growth of both nematodes and the bacteria they consume. Worms show comparable rates of growth, reproduction and lifespan when bacterial colonies in the 3D matrix are abundant. However, when bacteria are sparse, growth and brood size fail to reach levels observed in standard 2D plates. Using NGT-3D we observe drastic deficits in fertility in a sensory mutant in 3D compared to 2D, and this defect was likely due to an inability to locate bacteria. Overall, NGT-3D will sharpen our understanding of nematode biology and allow scientists to investigate questions of nematode ecology and evolutionary fitness in the laboratory.

  17. Seasonal Variations of Mercury's Magnesium Dayside Exosphere from MESSENGER Observations

    Science.gov (United States)

    Merkel, Aimee W.; Cassidy, Timothy A.; Vervack, Ronald J., Jr.; McClintock, William E.; Sarantos, Menelaos; Burger, Matthew H.; Killen, Rosemary M.

    2017-01-01

    The Ultraviolet and Visible Spectrometer channel of the Mercury Atmospheric and Surface Composition Spectrometer instrument aboard the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft made near-daily observations of solar-scattered resonant emission from magnesium in Mercury's exosphere during the mission's orbital phase (March 2011-April 2015, approx.17 Mercury years). In this paper, a subset of these data (March 2013-April 2015) is described and analyzed to illustrate Mg's spatial and temporal variations. Dayside altitude profiles of emission are used to make estimates of the Mg density and temperature. The main characteristics of the Mg exosphere are (a) a predominant enhancement of emission in the morning (6 am-10 am) near perihelion, (b) a bulk temperature of approx. 6000 K, consistent with impact vaporization as the predominant ejection process, (c) a near-surface density that varies from 5/cu cm to 50/cu cm and (d) a production rate that is strongest in the morning on the inbound leg of Mercury's orbit with rates ranging from 1×10(exp 5)/sq cm/s to 8×10(exp 5)/sq cm/s.

  18. Seasonal Variations of Mercury's Magnesium Dayside Exosphere from MESSENGER Observations

    Science.gov (United States)

    Merkel, Aimee W.; Cassidy, Timothy A.; Vervack, Ronald J., Jr.; McClintock, William E.; Sarantos, Menelaos; Burger, Matthew H.; Killen, Rosemary M.

    2017-01-01

    The Ultraviolet and Visible Spectrometer channel of the Mercury Atmospheric and Surface Composition Spectrometer instrument aboard the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft made near-daily observations of solar-scattered resonant emission from magnesium in Mercury's exosphere during the mission's orbital phase (March 2011-April 2015, approx.17 Mercury years). In this paper, a subset of these data (March 2013-April 2015) is described and analyzed to illustrate Mg's spatial and temporal variations. Dayside altitude profiles of emission are used to make estimates of the Mg density and temperature. The main characteristics of the Mg exosphere are (a) a predominant enhancement of emission in the morning (6 am-10 am) near perihelion, (b) a bulk temperature of approx. 6000 K, consistent with impact vaporization as the predominant ejection process, (c) a near-surface density that varies from 5/cu cm to 50/cu cm and (d) a production rate that is strongest in the morning on the inbound leg of Mercury's orbit with rates ranging from 1×10(exp 5)/sq cm/s to 8×10(exp 5)/sq cm/s.

  19. Observations on variational and projector Monte Carlo methods.

    Science.gov (United States)

    Umrigar, C J

    2015-10-28

    Variational Monte Carlo and various projector Monte Carlo (PMC) methods are presented in a unified manner. Similarities and differences between the methods and choices made in designing the methods are discussed. Both methods where the Monte Carlo walk is performed in a discrete space and methods where it is performed in a continuous space are considered. It is pointed out that the usual prescription for importance sampling may not be advantageous depending on the particular quantum Monte Carlo method used and the observables of interest, so alternate prescriptions are presented. The nature of the sign problem is discussed for various versions of PMC methods. A prescription for an exact PMC method in real space, i.e., a method that does not make a fixed-node or similar approximation and does not have a finite basis error, is presented. This method is likely to be practical for systems with a small number of electrons. Approximate PMC methods that are applicable to larger systems and go beyond the fixed-node approximation are also discussed.

  20. Seasonal variations of Mercury's magnesium dayside exosphere from MESSENGER observations

    Science.gov (United States)

    Merkel, Aimee W.; Cassidy, Timothy A.; Vervack, Ronald J.; McClintock, William E.; Sarantos, Menelaos; Burger, Matthew H.; Killen, Rosemary M.

    2017-01-01

    The Ultraviolet and Visible Spectrometer channel of the Mercury Atmospheric and Surface Composition Spectrometer instrument aboard the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft made near-daily observations of solar-scattered resonant emission from magnesium in Mercury's exosphere during the mission's orbital phase (March 2011-April 2015, ∼17 Mercury years). In this paper, a subset of these data (March 2013-April 2015) is described and analyzed to illustrate Mg's spatial and temporal variations. Dayside altitude profiles of emission are used to make estimates of the Mg density and temperature. The main characteristics of the Mg exosphere are (a) a predominant enhancement of emission in the morning (6 am-10 am) near perihelion, (b) a bulk temperature of ∼6000 K, consistent with impact vaporization as the predominant ejection process, (c) a near-surface density that varies from 5 cm-3 to 50 cm-3 and (d) a production rate that is strongest in the morning on the inbound leg of Mercury's orbit with rates ranging from 1 × 105 cm-2 s-1 to 8 × 105 cm-2 s-1.

  1. MPML3D: Scripting Agents for the 3D Internet.

    Science.gov (United States)

    Prendinger, Helmut; Ullrich, Sebastian; Nakasone, Arturo; Ishizuka, Mitsuru

    2011-05-01

    The aim of this paper is two-fold. First, it describes a scripting language for specifying communicative behavior and interaction of computer-controlled agents ("bots") in the popular three-dimensional (3D) multiuser online world of "Second Life" and the emerging "OpenSimulator" project. While tools for designing avatars and in-world objects in Second Life exist, technology for nonprogrammer content creators of scenarios involving scripted agents is currently missing. Therefore, we have implemented new client software that controls bots based on the Multimodal Presentation Markup Language 3D (MPML3D), a highly expressive XML-based scripting language for controlling the verbal and nonverbal behavior of interacting animated agents. Second, the paper compares Second Life and OpenSimulator platforms and discusses the merits and limitations of each from the perspective of agent control. Here, we also conducted a small study that compares the network performance of both platforms.

  2. 3D-mallinnus ja 3D-animaatiot biovoimalaitoksesta

    OpenAIRE

    Hiltula, Tytti

    2014-01-01

    Opinnäytetyössä tehtiin biovoimalaitoksen piirustuksista 3D-mallinnus ja animaatiot. Työn tarkoituksena oli saada valmiiksi Recwell Oy:lle markkinointiin tarkoitetut kuva- ja videomateriaalit. Työssä perehdyttiin 3D-mallintamisen perustietoihin ja lähtökohtiin sekä animaation laatimiseen. Työ laadittiin kokonaisuudessaan AutoCAD-ohjelmalla, ja työn aikana tutustuttiin huolellisesti myös ohjelman käyttöohjeisiin. Piirustusten mitoituksessa huomattiin jo alkuvaiheessa suuria puutteita, ...

  3. Automated analysis of 3D echocardiography

    NARCIS (Netherlands)

    Stralen, Marijn van

    2009-01-01

    In this thesis we aim at automating the analysis of 3D echocardiography, mainly targeting the functional analysis of the left ventricle. Manual analysis of these data is cumbersome, time-consuming and is associated with inter-observer and inter-institutional variability. Methods for reconstruction o

  4. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    Science.gov (United States)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  5. Materialedreven 3d digital formgivning

    DEFF Research Database (Denmark)

    Hansen, Flemming Tvede

    2010-01-01

    Formålet med forskningsprojektet er for det første at understøtte keramikeren i at arbejde eksperimenterende med digital formgivning, og for det andet at bidrage til en tværfaglig diskurs om brugen af digital formgivning. Forskningsprojektet fokuserer på 3d formgivning og derved på 3d digital...... formgivning og Rapid Prototyping (RP). RP er en fællesbetegnelse for en række af de teknikker, der muliggør at overføre den digitale form til 3d fysisk form. Forskningsprojektet koncentrerer sig om to overordnede forskningsspørgsmål. Det første handler om, hvordan viden og erfaring indenfor det keramiske...... fagområde kan blive udnyttet i forhold til 3d digital formgivning. Det andet handler om, hvad en sådan tilgang kan bidrage med, og hvordan den kan blive udnyttet i et dynamisk samspil med det keramiske materiale i formgivningen af 3d keramiske artefakter. Materialedreven formgivning er karakteriseret af en...

  6. Novel 3D media technologies

    CERN Document Server

    Dagiuklas, Tasos

    2015-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The contributions are based on the results of the FP7 European Project ROMEO, which focuses on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the future Internet. The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of consistent video quality to fixed and mobile users. ROMEO will present hybrid networking solutions that combine the DVB-T2 and DVB-NGH broadcas...

  7. 3D future internet media

    CERN Document Server

    Dagiuklas, Tasos

    2014-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The main contributions are based on the results of the FP7 European Projects ROMEO, which focus on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the Future Internet (www.ict-romeo.eu). The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of constant video quality to both fixed and mobile users. ROMEO will design and develop hybrid-networking solutions that co...

  8. Speaking Volumes About 3-D

    Science.gov (United States)

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  9. Estimation of subsurface structures in a Minami Noshiro 3D seismic survey region by seismic-array observations of microtremors; Minami Noshiro sanjigen jishin tansa kuikinai no hyoso kozo ni tsuite. Bido no array kansoku ni yoru suitei

    Energy Technology Data Exchange (ETDEWEB)

    Okada, H.; Ling, S.; Ishikawa, K. [Hokkaido University, Sapporo (Japan); Tsuburaya, Y.; Minegishi, M. [Japan National Oil Corp., Tokyo (Japan). Technology Research Center

    1997-05-27

    Japan National Oil Corporation Technology Research Center has carried out experiments on the three-dimensional seismic survey method which is regarded as an effective means for petroleum exploration. The experiments were conducted at the Minami Noshiro area in Akita Prefecture. Seismometer arrays were developed in radii of 30 to 300 m at seven points in the three-dimensional seismic exploration region to observe microtremors. The purpose is to estimate S-wave velocities from the ground surface to the foundation by using surface waves included in microtremors. Estimation of the surface bed structure is also included in the purpose since this is indispensable in seismic exploration using the reflection method. This paper reports results of the microtremor observations and the estimation on S-wave velocities (microtremor exploration). One or two kinds of arrays with different sizes composed of seven observation points per area were developed to observe microtremors independently. The important point in the result obtained in the present experiments is that a low velocity bed suggesting existence of faults was estimated. It will be necessary to repeat experiments and observations in the future to verify whether this microtremor exploration method has that much of exploration capability. For the time being, however, interest is addressed to considerations on comparison with the result of 3D experiments using the reflection method. 4 refs., 7 figs.

  10. A microfluidic device for 2D to 3D and 3D to 3D cell navigation

    Science.gov (United States)

    Shamloo, Amir; Amirifar, Leyla

    2016-01-01

    Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be obtained by diffusion. The device was designed by a numerical simulation so that the uniformity of the concentration gradients throughout the cell culture chamber was obtained. Adult neural cells were cultured within this device and they showed different branching and axonal navigation phenotypes within varying nerve growth factor (NGF) concentration profiles. Neural stem cells were also cultured within varying collagen matrix densities while exposed to NGF concentrations and they experienced 3D to 3D collective migration. By generating vascular endothelial growth factor concentration gradients, adult human dermal microvascular endothelial cells also migrated in a 2D to 3D manner and formed a stable lumen within a specific collagen matrix density. It was observed that a minimum absolute concentration and concentration gradient were required to stimulate migration of all types of the cells. This device has the advantage of changing multiple parameters simultaneously and is expected to have wide applicability in cell studies.

  11. Modification of 3D milling machine to 3D printer

    OpenAIRE

    Halamíček, Lukáš

    2015-01-01

    Tato práce se zabývá přestavbou gravírovací frézky na 3D tiskárnu. V první části se práce zabývá možnými technologiemi 3D tisku a možností jejich využití u přestavby. Dále jsou popsány a vybrány vhodné součásti pro přestavbu. V další části je realizováno řízení ohřevu podložky, trysky a řízení posuvu drátu pomocí softwaru TwinCat od společnosti Beckhoff na průmyslovém počítači. Výsledkem práce by měla být oživená 3D tiskárna. This thesis deals with rebuilding of engraving machine to 3D pri...

  12. Aspects of defects in 3d-3d correspondence

    Energy Technology Data Exchange (ETDEWEB)

    Gang, Dongmin [Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo,Chiba 277-8583 (Japan); Kim, Nakwoo [Department of Physics and Research Institute of Basic Science, Kyung Hee University,Seoul 02447 (Korea, Republic of); School of Physics, Korea Institute for Advanced Study,Seoul 02455 (Korea, Republic of); Romo, Mauricio; Yamazaki, Masahito [Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo,Chiba 277-8583 (Japan); School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States)

    2016-10-12

    In this paper we study supersymmetric co-dimension 2 and 4 defects in the compactification of the 6d (2,0) theory of type A{sub N−1} on a 3-manifold M. The so-called 3d-3d correspondence is a relation between complexified Chern-Simons theory (with gauge group SL(N,ℂ)) on M and a 3d N=2 theory T{sub N}[M]. We study this correspondence in the presence of supersymmetric defects, which are knots/links inside the 3-manifold. Our study employs a number of different methods: state-integral models for complex Chern-Simons theory, cluster algebra techniques, domain wall theory T[SU(N)], 5d N=2 SYM, and also supergravity analysis through holography. These methods are complementary and we find agreement between them. In some cases the results lead to highly non-trivial predictions on the partition function. Our discussion includes a general expression for the cluster partition function, which can be used to compute in the presence of maximal and certain class of non-maximal punctures when N>2. We also highlight the non-Abelian description of the 3d N=2T{sub N}[M] theory with defect included, when such a description is available. This paper is a companion to our shorter paper http://dx.doi.org/10.1088/1751-8113/49/30/30LT02, which summarizes our main results.

  13. Aspects of defects in 3d-3d correspondence

    Science.gov (United States)

    Gang, Dongmin; Kim, Nakwoo; Romo, Mauricio; Yamazaki, Masahito

    2016-10-01

    In this paper we study supersymmetric co-dimension 2 and 4 defects in the compactification of the 6d (2, 0) theory of type A N -1 on a 3-manifold M . The so-called 3d-3d correspondence is a relation between complexified Chern-Simons theory (with gauge group SL(N,C) ) on M and a 3d N=2 theory T N [ M ]. We study this correspondence in the presence of supersymmetric defects, which are knots/links inside the 3-manifold. Our study employs a number of different methods: state-integral models for complex Chern-Simons theory, cluster algebra techniques, domain wall theory T [SU( N )], 5d N=2 SYM, and also supergravity analysis through holography. These methods are complementary and we find agreement between them. In some cases the results lead to highly non-trivial predictions on the partition function. Our discussion includes a general expression for the cluster partition function, which can be used to compute in the presence of maximal and certain class of non-maximal punctures when N > 2. We also highlight the non-Abelian description of the 3d N=2 T N [ M ] theory with defect included, when such a description is available. This paper is a companion to our shorter paper [1], which summarizes our main results.

  14. Holography of 3d-3d correspondence at large N

    Energy Technology Data Exchange (ETDEWEB)

    Gang, Dongmin [School of Physics, Korea Institute for Advanced Study,85 Hoegiro, Dongdaemun-gu, Seoul, 130-722 (Korea, Republic of); Kim, Nakwoo [Department of Physics and Research Institute of Basic Science, Kyung Hee University,26 Kyungheedaero, Dongdaemun-gu, Seoul, 130-701 (Korea, Republic of); Lee, Sangmin [School of Physics, Korea Institute for Advanced Study,85 Hoegiro, Dongdaemun-gu, Seoul, 130-722 (Korea, Republic of); Center for Theoretical Physics, Department of Physics and Astronomy, College of Liberal Studies,Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 151-742 (Korea, Republic of)

    2015-04-20

    We study the physics of multiple M5-branes compactified on a hyperbolic 3-manifold. On the one hand, it leads to the 3d-3d correspondence which maps an N=2 superconformal field theory to a pure Chern-Simons theory on the 3-manifold. On the other hand, it leads to a warped AdS{sub 4} geometry in M-theory holographically dual to the superconformal field theory. Combining the holographic duality and the 3d-3d correspondence, we propose a conjecture for the large N limit of the perturbative free energy of a Chern-Simons theory on hyperbolic 3-manifold. The conjecture claims that the tree, one-loop and two-loop terms all share the same N{sup 3} scaling behavior and are proportional to the volume of the 3-manifold, while the three-loop and higher terms are suppressed at large N. Under mild assumptions, we prove the tree and one-loop parts of the conjecture. For the two-loop part, we test the conjecture numerically in a number of examples and find precise agreement. We also confirm the suppression of higher loop terms in a few examples.

  15. 3D vector flow imaging

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes

    The main purpose of this PhD project is to develop an ultrasonic method for 3D vector flow imaging. The motivation is to advance the field of velocity estimation in ultrasound, which plays an important role in the clinic. The velocity of blood has components in all three spatial dimensions, yet...... conventional methods can estimate only the axial component. Several approaches for 3D vector velocity estimation have been suggested, but none of these methods have so far produced convincing in vivo results nor have they been adopted by commercial manufacturers. The basis for this project is the Transverse...... on the TO fields are suggested. They can be used to optimize the TO method. In the third part, a TO method for 3D vector velocity estimation is proposed. It employs a 2D phased array transducer and decouples the velocity estimation into three velocity components, which are estimated simultaneously based on 5...

  16. 3-D Vector Flow Imaging

    DEFF Research Database (Denmark)

    Holbek, Simon

    studies and in vivo. Phantom measurements are compared with their corresponding reference value, whereas the in vivo measurement is validated against the current golden standard for non-invasive blood velocity estimates, based on magnetic resonance imaging (MRI). The study concludes, that a high precision......, if this significant reduction in the element count can still provide precise and robust 3-D vector flow estimates in a plane. The study concludes that the RC array is capable of estimating precise 3-D vector flow both in a plane and in a volume, despite the low channel count. However, some inherent new challenges......For the last decade, the field of ultrasonic vector flow imaging has gotten an increasingly attention, as the technique offers a variety of new applications for screening and diagnostics of cardiovascular pathologies. The main purpose of this PhD project was therefore to advance the field of 3-D...

  17. Microfluidic 3D Helix Mixers

    Directory of Open Access Journals (Sweden)

    Georgette B. Salieb-Beugelaar

    2016-10-01

    Full Text Available Polymeric microfluidic systems are well suited for miniaturized devices with complex functionality, and rapid prototyping methods for 3D microfluidic structures are increasingly used. Mixing at the microscale and performing chemical reactions at the microscale are important applications of such systems and we therefore explored feasibility, mixing characteristics and the ability to control a chemical reaction in helical 3D channels produced by the emerging thread template method. Mixing at the microscale is challenging because channel size reduction for improving solute diffusion comes at the price of a reduced Reynolds number that induces a strictly laminar flow regime and abolishes turbulence that would be desired for improved mixing. Microfluidic 3D helix mixers were rapidly prototyped in polydimethylsiloxane (PDMS using low-surface energy polymeric threads, twisted to form 2-channel and 3-channel helices. Structure and flow characteristics were assessed experimentally by microscopy, hydraulic measurements and chromogenic reaction, and were modeled by computational fluid dynamics. We found that helical 3D microfluidic systems produced by thread templating allow rapid prototyping, can be used for mixing and for controlled chemical reaction with two or three reaction partners at the microscale. Compared to the conventional T-shaped microfluidic system used as a control device, enhanced mixing and faster chemical reaction was found to occur due to the combination of diffusive mixing in small channels and flow folding due to the 3D helix shape. Thus, microfluidic 3D helix mixers can be rapidly prototyped using the thread template method and are an attractive and competitive method for fluid mixing and chemical reactions at the microscale.

  18. 3D Printed Bionic Nanodevices.

    Science.gov (United States)

    Kong, Yong Lin; Gupta, Maneesh K; Johnson, Blake N; McAlpine, Michael C

    2016-06-01

    The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and 'living' platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the

  19. 3D Printed Bionic Nanodevices

    Science.gov (United States)

    Kong, Yong Lin; Gupta, Maneesh K.; Johnson, Blake N.; McAlpine, Michael C.

    2016-01-01

    Summary The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and ‘living’ platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with

  20. 3D measurement using circular gratings

    Science.gov (United States)

    Harding, Kevin

    2013-09-01

    3D measurement using methods of structured light are well known in the industry. Most such systems use some variation of straight lines, either as simple lines or with some form of encoding. This geometry assumes the lines will be projected from one side and viewed from another to generate the profile information. But what about applications where a wide triangulation angle may not be practical, particularly at longer standoff distances. This paper explores the use of circular grating patterns projected from a center point to achieve 3D information. Originally suggested by John Caulfield around 1990, the method had some interesting potential, particularly if combined with alternate means of measurement from traditional triangulation including depth from focus methods. The possible advantages of a central reference point in the projected pattern may offer some different capabilities not as easily attained with a linear grating pattern. This paper will explore the pros and cons of the method and present some examples of possible applications.

  1. Ideal 3D asymmetric concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Botella, Angel [Departamento Fisica Aplicada a los Recursos Naturales, Universidad Politecnica de Madrid, E.T.S.I. de Montes, Ciudad Universitaria s/n, 28040 Madrid (Spain); Fernandez-Balbuena, Antonio Alvarez; Vazquez, Daniel; Bernabeu, Eusebio [Departamento de Optica, Universidad Complutense de Madrid, Fac. CC. Fisicas, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2009-01-15

    Nonimaging optics is a field devoted to the design of optical components for applications such as solar concentration or illumination. In this field, many different techniques have been used for producing reflective and refractive optical devices, including reverse engineering techniques. In this paper we apply photometric field theory and elliptic ray bundles method to study 3D asymmetric - without rotational or translational symmetry - concentrators, which can be useful components for nontracking solar applications. We study the one-sheet hyperbolic concentrator and we demonstrate its behaviour as ideal 3D asymmetric concentrator. (author)

  2. 3D digitization of mosaics

    Directory of Open Access Journals (Sweden)

    Anna Maria Manferdini

    2012-11-01

    Full Text Available In this paper we present a methodology developed to access to Cultural Heritage information using digital 3d reality-based models as graphic interfaces. The case studies presented belong to the wide repertoire of mosaics of Ravenna. One of the most peculiar characteristics of mosaics that often limits their digital survey is their multi-scale complexity; nevertheless their models could be used in 3d information systems, for digital exhibitions, for reconstruction aims and to document their conservation conditions in order to conduct restoration interventions in digital environments aiming at speeding and performing more reliable evaluations.

  3. Automatic 2D-to-3D image conversion using 3D examples from the internet

    Science.gov (United States)

    Konrad, J.; Brown, G.; Wang, M.; Ishwar, P.; Wu, C.; Mukherjee, D.

    2012-03-01

    The availability of 3D hardware has so far outpaced the production of 3D content. Although to date many methods have been proposed to convert 2D images to 3D stereopairs, the most successful ones involve human operators and, therefore, are time-consuming and costly, while the fully-automatic ones have not yet achieved the same level of quality. This subpar performance is due to the fact that automatic methods usually rely on assumptions about the captured 3D scene that are often violated in practice. In this paper, we explore a radically different approach inspired by our work on saliency detection in images. Instead of relying on a deterministic scene model for the input 2D image, we propose to "learn" the model from a large dictionary of stereopairs, such as YouTube 3D. Our new approach is built upon a key observation and an assumption. The key observation is that among millions of stereopairs available on-line, there likely exist many stereopairs whose 3D content matches that of the 2D input (query). We assume that two stereopairs whose left images are photometrically similar are likely to have similar disparity fields. Our approach first finds a number of on-line stereopairs whose left image is a close photometric match to the 2D query and then extracts depth information from these stereopairs. Since disparities for the selected stereopairs differ due to differences in underlying image content, level of noise, distortions, etc., we combine them by using the median. We apply the resulting median disparity field to the 2D query to obtain the corresponding right image, while handling occlusions and newly-exposed areas in the usual way. We have applied our method in two scenarios. First, we used YouTube 3D videos in search of the most similar frames. Then, we repeated the experiments on a small, but carefully-selected, dictionary of stereopairs closely matching the query. This, to a degree, emulates the results one would expect from the use of an extremely large 3D

  4. Quantitative nanoscale analysis in 3D using electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kuebel, Christian [Karlsruhe Institute of Technology, INT, 76344 Eggenstein-Leopoldshafen (Germany)

    2011-07-01

    State-of-the-art electron tomography has been established as a powerful tool to image complex structures with nanometer resolution in 3D. Especially STEM tomography is used extensively in materials science in such diverse areas as catalysis, semiconductor materials, and polymer composites mainly providing qualitative information on morphology, shape and distribution of materials. However, for an increasing number of studies quantitative information, e.g. surface area, fractal dimensions, particle distribution or porosity are needed. A quantitative analysis is typically performed after segmenting the tomographic data, which is one of the main sources of error for the quantification. In addition to noise, systematic errors due to the missing wedge and due to artifacts from the reconstruction algorithm itself are responsible for these segmentation errors and improved algorithms are needed. This presentation will provide an overview of the possibilities and limitations of quantitative nanoscale analysis by electron tomography. Using catalysts and nano composites as applications examples, intensities and intensity variations observed for the 3D volume reconstructed by WBP and SIRT will be quantitatively compared to alternative reconstruction algorithms; implications for quantification of electron (or X-ray) tomographic data will be discussed and illustrated for quantification of particle size distributions, particle correlations, surface area, and fractal dimensions in 3D.

  5. Simulation of 3D diamond detectors

    Science.gov (United States)

    Forcolin, G. T.; Oh, A.; Murphy, S. A.

    2017-02-01

    3D diamond detectors present an interesting prospect for future Particle Physics experiments. They have been studied in detail at beam tests with 120 GeV protons and 4 MeV protons. To understand the observations that have been made, simulations have been carried out using Synopsys TCAD in order to explain the movement of charge carriers within the sample, as well as the effects of charge sharing. Reasonable agreement has been observed between simulation and experiment.

  6. 3D-microscopy of hydrogen in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Peeper, K., E-mail: katrin.peeper@unibw.de [Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, D-85577 München (Germany); Moser, M.; Reichart, P. [Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, D-85577 München (Germany); Markina, E.; Mayer, M.; Lindig, S.; Balden, M. [Max-Planck-Institute for Plasma Physics, EURATOM Association, Boltzmannstraße 2, D-85748 Garching (Germany); Dollinger, G. [Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, D-85577 München (Germany)

    2013-07-15

    The mapping of hydrogen distributions in 3 dimensions and its correlation with structural features allow further insight into mechanisms of hydrogen trapping in tungsten. We studied hydrogen distributions in 25 μm thick polycrystalline tungsten foils by 3D hydrogen microscopy using a proton–proton-scattering method. Two types of tungsten samples were prepared: (i) at 1200 K annealed foils and using 1.8 MeV implantation energy (ii) at 2000 K annealed foils using 200 eV implantation energy. It has been found that large variations of surface hydrogen contamination occur within different samples. Nevertheless, a statistically significant variation of the hydrogen content across grain boundaries has been observed.

  7. Viewing galaxies in 3D

    CERN Document Server

    Krajnović, Davor

    2016-01-01

    Thanks to a technique that reveals galaxies in 3D, astronomers can now show that many galaxies have been wrongly classified. Davor Krajnovi\\'c argues that the classification scheme proposed 85 years ago by Edwin Hubble now needs to be revised.

  8. 3D terahertz beam profiling

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Strikwerda, Andrew; Wang, Tianwu

    2013-01-01

    We present a characterization of THz beams generated in both a two-color air plasma and in a LiNbO3 crystal. Using a commercial THz camera, we record intensity images as a function of distance through the beam waist, from which we extract 2D beam profiles and visualize our measurements into 3D beam...

  9. 3D Printing: Exploring Capabilities

    Science.gov (United States)

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  10. When Art Meets 3D

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The presentation of the vanguard work,My Dream3D,the innovative production by the China Disabled People’s Performing Art Troupe(CDPPAT),directed by Joy Joosang Park,provided the film’s domestic premiere at Beijing’s Olympic Park onApril7.The show provided an intriguing insight not

  11. 3D Printing of Metals

    Directory of Open Access Journals (Sweden)

    Manoj Gupta

    2017-09-01

    Full Text Available The potential benefits that could be derived if the science and technology of 3D printing were to be established have been the crux behind monumental efforts by governments, in most countries, that invest billions of dollars to develop this manufacturing technology.[...

  12. Making Inexpensive 3-D Models

    Science.gov (United States)

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  13. 3D Printing: Exploring Capabilities

    Science.gov (United States)

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  14. The EISCAT_3D Science Case

    Science.gov (United States)

    Tjulin, A.; Mann, I.; McCrea, I.; Aikio, A. T.

    2013-05-01

    EISCAT_3D will be a world-leading international research infrastructure using the incoherent scatter technique to study the atmosphere in the Fenno-Scandinavian Arctic and to investigate how the Earth's atmosphere is coupled to space. The EISCAT_3D phased-array multistatic radar system will be operated by EISCAT Scientific Association and thus be an integral part of an organisation that has successfully been running incoherent scatter radars for more than thirty years. The baseline design of the radar system contains a core site with transmitting and receiving capabilities located close to the intersection of the Swedish, Norwegian and Finnish borders and five receiving sites located within 50 to 250 km from the core. The EISCAT_3D project is currently in its Preparatory Phase and can smoothly transit into implementation in 2014, provided sufficient funding. Construction can start 2016 and first operations in 2018. The EISCAT_3D Science Case is prepared as part of the Preparatory Phase. It is regularly updated with annual new releases, and it aims at being a common document for the whole future EISCAT_3D user community. The areas covered by the Science Case are atmospheric physics and global change; space and plasma physics; solar system research; space weather and service applications; and radar techniques, new methods for coding and analysis. Two of the aims for EISCAT_3D are to understand the ways natural variability in the upper atmosphere, imposed by the Sun-Earth system, can influence the middle and lower atmosphere, and to improve the predictivity of atmospheric models by providing higher resolution observations to replace the current parametrised input. Observations by EISCAT_3D will also be used to monitor the direct effects from the Sun on the ionosphere-atmosphere system and those caused by solar wind magnetosphere-ionosphere interaction. In addition, EISCAT_3D will be used for remote sensing the large-scale behaviour of the magnetosphere from its

  15. Variation of the Fundamental Constants:. Theory and Observations

    Science.gov (United States)

    Flambaum, V. V.

    2007-10-01

    Review of recent works devoted to the variation of the fine structure constant α, strong interaction and fundamental masses (Higgs vacuum) is presented. The results from Big Bang nucleosynthesis, quasar absorption spectra, and Oklo natural nuclear reactor data give us the space-time variation on the Universe lifetime scale. Comparison of different atomic clocks gives us the present time variation. Assuming linear variation with time we can compare different results. The best limit on the variation of the electron-to-proton mass ratio μ = me/Mp and Xe = me/ΛQCD follows from the quasar absorption spectra:1 ˙ {μ }/μ = ˙ {X}e/X_e = (1 ± 3) × 10-16 yr-1. A combination of this result and the atomic clock results2,3 gives the best limt on variation of α : ˙ {α }/α = (-0.8 ± 0.8) × 10-16 yr-1. The Oklo natural reactor gives the best limit on the variation of Xs = ms/ΛQCD where ms is the strange quark mass:4,5 ∣ ˙ {X}s/X_s∣ < 10-18 yr-1. Note that the Oklo data can not give us any limit on the variation of a since the effect of α there is much smaller than the effect of Xs and should be neglected. Huge enhancement of the relative variation effects happens in transitions between close atomic, molecular and nuclear energy levels. We suggest several new cases where the levels are very narrow. Large enhancement of the variation effects is also possible in cold atomic and molecular collisions near Feshbach resonance. How changing physical constants and violation of local position invariance may occur? Light scalar fields very naturally appear in modern cosmological models, affecting parameters of the Standard Model (e.g. α). Cosmological variations of these scalar fields should occur because of drastic changes of matter composition in Universe: the latest such event is rather recent (about 5 billion years ago), from matter to dark energy domination. Massive bodies (stars or galaxies) can also affect physical constants. They have large scalar charge S

  16. Priprava 3D modelov za 3D tisk

    OpenAIRE

    2015-01-01

    Po mnenju nekaterih strokovnjakov bo aditivna proizvodnja (ali 3D tiskanje) spremenila proizvodnjo industrijo, saj si bo vsak posameznik lahko natisnil svoj objekt po želji. V diplomski nalogi so predstavljene nekatere tehnologije aditivne proizvodnje. V nadaljevanju diplomske naloge je predstavljena izdelava makete hiše v merilu 1:100, vse od modeliranja do tiskanja. Poseben poudarek je posvečen predelavi modela, da je primeren za tiskanje, kjer je razvit pristop za hitrejše i...

  17. Post processing of 3D models for 3D printing

    OpenAIRE

    2015-01-01

    According to the opinion of some experts the additive manufacturing or 3D printing will change manufacturing industry, because any individual could print their own model according to his or her wishes. In this graduation thesis some of the additive manufacturing technologies are presented. Furthermore in the production of house scale model in 1:100 is presented, starting from modeling to printing. Special attention is given to postprocessing of the building model elements us...

  18. The Galicia 3D experiment: an Introduction.

    Science.gov (United States)

    Reston, Timothy; Martinez Loriente, Sara; Holroyd, Luke; Merry, Tobias; Sawyer, Dale; Morgan, Julia; Jordan, Brian; Tesi Sanjurjo, Mari; Alexanian, Ara; Shillington, Donna; Gibson, James; Minshull, Tim; Karplus, Marianne; Bayracki, Gaye; Davy, Richard; Klaeschen, Dirk; Papenberg, Cord; Ranero, Cesar; Perez-Gussinye, Marta; Martinez, Miguel

    2014-05-01

    In June and July 2013, scientists from 8 institutions took part in the Galicia 3D seismic experiment, the first ever crustal -scale academic 3D MCS survey over a rifted margin. The aim was to determine the 3D structure of a critical portion of the west Galicia rifted margin. At this margin, well-defined tilted fault blocks, bound by west-dipping faults and capped by synrift sediments are underlain by a bright reflection, undulating on time sections, termed the S reflector and thought to represent a major detachment fault of some kind. Moving west, the crust thins to zero thickness and mantle is unroofed, as evidence by the "Peridotite Ridge" first reported at this margin, but since observed at many other magma-poor margins. By imaging such a margin in detail, the experiment aimed to resolve the processes controlling crustal thinning and mantle unroofing at a type example magma poor margin. The experiment set out to collect several key datasets: a 3D seismic reflection volume measuring ~20x64km and extending down to ~14s TWT, a 3D ocean bottom seismometer dataset suitable for full wavefield inversion (the recording of the complete 3D seismic shots by 70 ocean bottom instruments), the "mirror imaging" of the crust using the same grid of OBS, a single 2D combined reflection/refraction profile extending to the west to determine the transition from unroofed mantle to true oceanic crust, and the seismic imaging of the water column, calibrated by regular deployment of XBTs to measure the temperature structure of the water column. We collected 1280 km2 of seismic reflection data, consisting of 136533 shots recorded on 1920 channels, producing 260 million seismic traces, each ~ 14s long. This adds up to ~ 8 terabytes of data, representing, we believe, the largest ever academic 3D MCS survey in terms of both the area covered and the volume of data. The OBS deployment was the largest ever within an academic 3D survey.

  19. Immersive 3D geovisualisation in higher education

    Science.gov (United States)

    Philips, Andrea; Walz, Ariane; Bergner, Andreas; Graeff, Thomas; Heistermann, Maik; Kienzler, Sarah; Korup, Oliver; Lipp, Torsten; Schwanghart, Wolfgang; Zeilinger, Gerold

    2014-05-01

    Through geovisualisation we explore spatial data, we analyse it towards a specific questions, we synthesise results, and we present and communicate them to a specific audience (MacEachren & Kraak 1997). After centuries of paper maps, the means to represent and visualise our physical environment and its abstract qualities have changed dramatically since the 1990s - and accordingly the methods how to use geovisualisation in teaching. Whereas some people might still consider the traditional classroom as ideal setting for teaching and learning geographic relationships and its mapping, we used a 3D CAVE (computer-animated virtual environment) as environment for a problem-oriented learning project called "GEOSimulator". Focussing on this project, we empirically investigated, if such a technological advance like the CAVE make 3D visualisation, including 3D geovisualisation, not only an important tool for businesses (Abulrub et al. 2012) and for the public (Wissen et al. 2008), but also for educational purposes, for which it had hardly been used yet. The 3D CAVE is a three-sided visualisation platform, that allows for immersive and stereoscopic visualisation of observed and simulated spatial data. We examined the benefits of immersive 3D visualisation for geographic research and education and synthesized three fundamental technology-based visual aspects: First, the conception and comprehension of space and location does not need to be generated, but is instantaneously and intuitively present through stereoscopy. Second, optical immersion into virtual reality strengthens this spatial perception which is in particular important for complex 3D geometries. And third, a significant benefit is interactivity, which is enhanced through immersion and allows for multi-discursive and dynamic data exploration and knowledge transfer. Based on our problem-oriented learning project, which concentrates on a case study on flood risk management at the Wilde Weisseritz in Germany, a river

  20. Use of 3D reconstruction cloacagrams and 3D printing in cloacal malformations.

    Science.gov (United States)

    Ahn, Jennifer J; Shnorhavorian, Margarett; Amies Oelschlager, Anne-Marie E; Ripley, Beth; Shivaram, Giridhar M; Avansino, Jeffrey R; Merguerian, Paul A

    2017-08-01

    , cloacagram measurements are shown to correlate well with endoscopic and intraoperative findings with regards to level of cloaca and Müllerian development. Measurement discrepancies may be due to technical variation indicating a need for further evaluation. The translation of the cloacagram images into a 3D printed model demonstrates potential applications of these models for pre-operative planning and education of both families and trainees. In our series, 3D reconstruction cloacagrams yielded accurate measurements of urethral length and level of cloaca common channel and urethral length, similar to those found on endoscopy. Three-dimensional models can be printed from using cloacagram images, and may be useful for surgical planning and education. Copyright © 2017 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  1. MSV3d: database of human MisSense Variants mapped to 3D protein structure.

    Science.gov (United States)

    Luu, Tien-Dao; Rusu, Alin-Mihai; Walter, Vincent; Ripp, Raymond; Moulinier, Luc; Muller, Jean; Toursel, Thierry; Thompson, Julie D; Poch, Olivier; Nguyen, Hoan

    2012-01-01

    The elucidation of the complex relationships linking genotypic and phenotypic variations to protein structure is a major challenge in the post-genomic era. We present MSV3d (Database of human MisSense Variants mapped to 3D protein structure), a new database that contains detailed annotation of missense variants of all human proteins (20 199 proteins). The multi-level characterization includes details of the physico-chemical changes induced by amino acid modification, as well as information related to the conservation of the mutated residue and its position relative to functional features in the available or predicted 3D model. Major releases of the database are automatically generated and updated regularly in line with the dbSNP (database of Single Nucleotide Polymorphism) and SwissVar releases, by exploiting the extensive Décrypthon computational grid resources. The database (http://decrypthon.igbmc.fr/msv3d) is easily accessible through a simple web interface coupled to a powerful query engine and a standard web service. The content is completely or partially downloadable in XML or flat file formats. Database URL: http://decrypthon.igbmc.fr/msv3d.

  2. Morphological observation and 3D reconstruction of the brain of Locusta migratoria manilansis%东亚飞蝗脑的形态学观察及三维重建

    Institute of Scientific and Technical Information of China (English)

    连国云; 李德智; 陈义昆; 娄延霞; 刘志刚

    2013-01-01

    本文主要研究东亚飞蝗Locusta migratoria manilansis (Meyen)脑部的形态结构及其三维重建模型.采用石蜡包埋切片,在光镜下观察了东亚飞蝗脑部的形态结构,其由前脑、中脑和后脑3部分组成.为了获得整只蝗虫的连续、完整的图像数据集,采用冰冻切片技术将冰冻包埋剂(OCT)包埋的飞蝗成虫做连续切片.然后利用图像处理方法对飞蝗脑部的连续切片进行配准、分割,再用三维重建软件Image-Pro Plus (IPP)对分割后的脑部二维图像序列进行三维重建,构建出的飞蝗脑部三维结构模型可以任意旋转,能从不同角度观察.其结果为蝗虫生理和防蝗治蝗提供科学依据.%The morphological structure of the brain of Locusta migratoria manilansis (Meyen) was observed and a 3D digital model of the brain developed. The brain was dissected and observed under light microscopy. The brain was found to consist of a protocerebrum, deutocerebrum and tritocerebrum. In order to obtain a 2D sectional image dataset of the locust, male adults were embedded in frozen embedding medium (OCT) and sliced into sections, and a 2D image of each section was stored in a dataset. After registering and segmenting the brain regions in the serial section images using image processing methods, Image-Pro Plus (IPP) was used to reconstruct a 3D model of the brain which can be freely rotated and observed from any angle. This model provides a basis for scientific research on grasshopper physiology and locust control.

  3. Large observer variation of clinical assessment of dyspnoeic wheezing children

    NARCIS (Netherlands)

    Bekhof, Jolita; Reimink, Roelien; Bartels, Ine-Marije; Eggink, Hendriekje; Brand, Paul L. P.

    2015-01-01

    Background In children with acute dyspnoea, the assessment of severity of dyspnoea and response to treatment is often performed by different professionals, implying that knowledge of the interobserver variation of this clinical assessment is important. Objective To determine intraobserver and intero

  4. Estimating 3D Human Shapes from Measurements

    CERN Document Server

    Wuhrer, Stefanie

    2011-01-01

    We describe a solution to the problem of estimating 3D human shapes (either faces or full body shapes) based on a set of anthropometric measurements. We use statistical learning to model the relationship between the shape and a set of measurements. We learn the relationship using a database of human shapes. When predicting a shape, our approach finds an initial solution using a variant of feature analysis and refines the solution to fit the measurements using non-linear optimization. This way, we can predict likely human shapes with local variations that are outside the shape space spanned by the database used for learning.

  5. Vel-IO 3D: A tool for 3D velocity model construction, optimization and time-depth conversion in 3D geological modeling workflow

    Science.gov (United States)

    Maesano, Francesco E.; D'Ambrogi, Chiara

    2017-02-01

    We present Vel-IO 3D, a tool for 3D velocity model creation and time-depth conversion, as part of a workflow for 3D model building. The workflow addresses the management of large subsurface dataset, mainly seismic lines and well logs, and the construction of a 3D velocity model able to describe the variation of the velocity parameters related to strong facies and thickness variability and to high structural complexity. Although it is applicable in many geological contexts (e.g. foreland basins, large intermountain basins), it is particularly suitable in wide flat regions, where subsurface structures have no surface expression. The Vel-IO 3D tool is composed by three scripts, written in Python 2.7.11, that automate i) the 3D instantaneous velocity model building, ii) the velocity model optimization, iii) the time-depth conversion. They determine a 3D geological model that is consistent with the primary geological constraints (e.g. depth of the markers on wells). The proposed workflow and the Vel-IO 3D tool have been tested, during the EU funded Project GeoMol, by the construction of the 3D geological model of a flat region, 5700 km2 in area, located in the central part of the Po Plain. The final 3D model showed the efficiency of the workflow and Vel-IO 3D tool in the management of large amount of data both in time and depth domain. A 4 layer-cake velocity model has been applied to a several thousand (5000-13,000 m) thick succession, with 15 horizons from Triassic up to Pleistocene, complicated by a Mesozoic extensional tectonics and by buried thrusts related to Southern Alps and Northern Apennines.

  6. Nuclear 3D organization and radiosensitivity

    Science.gov (United States)

    Eidelman, Y. A.; Slanina, S. V.; Aleshchenko, A. V.; Sen'ko, O. V.; Kononkova, A. D.; Andreev, S. G.

    2017-01-01

    Current mechanisms of radiation-induced chromosomal aberration (CA) formation suggest misrepair of chromosomal lesions being in spatial proximity. In this case CAs have to depend on pattern of chromosomal contacts and on chromosome spatial organization in a cell nucleus. We were interested in whether variation of nucleus 3D organization results in difference of radiation induced CA formation frequency. Experimental data available do not provide information sufficient for definite conclusions. To have more deep insight in this issue we developed the biophysical modeling technique taking into account different levels of chromosome/nuclear organization and radiation damage of DNA and chromosomes. Computer experiments on gamma irradiation were carried out for two types of cells with different 3D organization of nuclei, preferentially peripheral and internal. CA frequencies were found to depend on spatial positioning of chromosomes within a nucleus which determines a pattern of interchromosomal contacts. For individual chromosomes this effect can be more pronounced than for genome averaged. Since significant part of aberrations, for example dicentrics, results in cell death, the proposed technique is capable of evaluating radiosensitivity of cells, both normal and cancer, with the incorporation of 3D genome information. This predictive technology allows to reduce uncertainties of prognosis of biological effects of radiation compared to phenomenological methods and may have variety of biomedical applications, in particular, in cancer radiation therapy.

  7. 3D Printable Graphene Composite.

    Science.gov (United States)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-08

    In human being's history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today's personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite's linear thermal coefficient is below 75 ppm·°C(-1) from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  8. Forensic 3D Scene Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.

    1999-10-12

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  9. 3D Printed Robotic Hand

    Science.gov (United States)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  10. High solar cycle spectral variations inconsistent with stratospheric ozone observations

    CERN Document Server

    Ball, W T; Rozanov, E V; Kuchar, A; Sukhodolov, T; Tummon, F; Shapiro, A V; Schmutz, W

    2016-01-01

    Some of the natural variability in climate is understood to come from changes in the Sun. A key route whereby the Sun may influence surface climate is initiated in the tropical stratosphere by the absorption of solar ultraviolet (UV) radiation by ozone, leading to a modification of the temperature and wind structures and consequently to the surface through changes in wave propagation and circulation. While changes in total, spectrally-integrated, solar irradiance lead to small variations in global mean surface temperature, the `top-down' UV effect preferentially influences on regional scales at mid-to-high latitudes with, in particular, a solar signal noted in the North Atlantic Oscillation (NAO). The amplitude of the UV variability is fundamental in determining the magnitude of the climate response but understanding of the UV variations has been challenged recently by measurements from the SOlar Radiation and Climate Experiment (SORCE) satellite, which show UV solar cycle changes up to 10 times larger than p...

  11. Trends and Scales of Observed Soil Moisture Variations in China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A new soil moisture dataset from direct gravimetric measurements within the top 50-cm soil layers at 178 soil moisture stations in China covering the period 1981 1998 are used to study the long-term and seasonal trends of soil moisture variations, as well as estimate the temporal and spatial scales of soil moisture for different soil layers. Additional datasets of precipitation and temperature difference between land surface and air (TDSA) are analyzed to gain further insight into the changes of soil moisture. There are increasing trends for the top 10 cm, but decreasing trends for the top 50 cm of soil layers in most regions. Trends in precipitation appear to dominantly influence trends in soil moisture in both cases. Seasonal variation of soil moisture is mainly controlled by precipitation and evaporation, and in some regions can be affected by snow cover in winter. Timescales of soil moisture variation are roughly 1-3 months and increase with soil depth.Further influences of TDSA and precipitation on soil moisture in surface layers, rather than in deeper layers,cause this phenomenon. Seasonal variations of temporal scales for soil moisture are region-dependent and consistent in both layer depths. Spatial scales of soil moisture range from 200-600 km, with topography also having an affect on these. Spatial scales of soil moisture in plains are larger than in mountainous areas. In the former, the spatial scale of soil moisture follows the spatial patterns of precipitation and evaporation,whereas in the latter, the spatial scale is controlled by topography.

  12. 3D silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Parzefall, Ulrich [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany)], E-mail: ulrich.parzefall@physik.uni-freiburg.de; Bates, Richard [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Boscardin, Maurizio [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Dalla Betta, Gian-Franco [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Eckert, Simon [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Eklund, Lars; Fleta, Celeste [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Jakobs, Karl; Kuehn, Susanne [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Lozano, Manuel [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pahn, Gregor [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Parkes, Chris [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Pellegrini, Giulio [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pennicard, David [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Piemonte, Claudio; Ronchin, Sabina [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Szumlak, Tomasz [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Zoboli, Andrea [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Zorzi, Nicola [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy)

    2009-06-01

    While the Large Hadron Collider (LHC) at CERN has started operation in autumn 2008, plans for a luminosity upgrade to the Super-LHC (sLHC) have already been developed for several years. This projected luminosity increase by an order of magnitude gives rise to a challenging radiation environment for tracking detectors at the LHC experiments. Significant improvements in radiation hardness are required with respect to the LHC. Using a strawman layout for the new tracker of the ATLAS experiment as an example, silicon strip detectors (SSDs) with short strips of 2-3 cm length are foreseen to cover the region from 28 to 60 cm distance to the beam. These SSD will be exposed to radiation levels up to 10{sup 15}N{sub eq}/cm{sup 2}, which makes radiation resistance a major concern for the upgraded ATLAS tracker. Several approaches to increasing the radiation hardness of silicon detectors exist. In this article, it is proposed to combine the radiation hard 3D-design originally conceived for pixel-style applications with the benefits of the established planar technology for strip detectors by using SSDs that have regularly spaced doped columns extending into the silicon bulk under the detector strips. The first 3D SSDs to become available for testing were made in the Single Type Column (STC) design, a technological simplification of the original 3D design. With such 3D SSDs, a small number of prototype sLHC detector modules with LHC-speed front-end electronics as used in the semiconductor tracking systems of present LHC experiments were built. Modules were tested before and after irradiation to fluences of 10{sup 15}N{sub eq}/cm{sup 2}. The tests were performed with three systems: a highly focused IR-laser with 5{mu}m spot size to make position-resolved scans of the charge collection efficiency, an Sr{sup 90}{beta}-source set-up to measure the signal levels for a minimum ionizing particle (MIP), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of

  13. Measuring FeO variation using astronomical spectroscopic observations

    Science.gov (United States)

    Unterguggenberger, Stefanie; Noll, Stefan; Feng, Wuhu; Plane, John M. C.; Kausch, Wolfgang; Kimeswenger, Stefan; Jones, Amy; Moehler, Sabine

    2017-03-01

    Airglow emission lines of OH, O2, O and Na are commonly used to probe the MLT (mesosphere-lower thermosphere) region of the atmosphere. Furthermore, molecules like electronically excited NO, NiO and FeO emit a (pseudo-) continuum. These continua are harder to investigate than atomic emission lines. So far, limb-sounding from space and a small number of ground-based low-to-medium resolution spectra have been used to measure FeO emission in the MLT. In this study the medium-to-high resolution echelle spectrograph X-shooter at the Very Large Telescope (VLT) in the Chilean Atacama Desert (24°37' S, 70°24' W; 2635 m) is used to study the FeO pseudo-continuum in the range from 0.5 to 0.72 µm based on 3662 spectra. Variations of the FeO spectrum itself, as well as the diurnal and seasonal behaviour of the FeO and Na emission intensities, are reported. These airglow emissions are linked by their common origin, meteoric ablation, and they share O3 as a common reactant. Major differences are found in the main emission peak of the FeO airglow spectrum between 0.58 and 0.61 µm, compared with a theoretical spectrum. The FeO and Na airglow intensities exhibit a similar nocturnal variation and a semi-annual seasonal variation with equinoctial maxima. This is satisfactorily reproduced by a whole atmosphere chemistry climate model, if the quantum yields for the reactions of Fe and Na with O3 are 13 ± 3 and 11 ± 2 % respectively. However, a comparison between the modelled O3 in the upper mesosphere and measurements of O3 made with the SABER satellite instrument suggests that these quantum yields may be a factor of ˜ 2 smaller.

  14. Virtual 3-D Facial Reconstruction

    Directory of Open Access Journals (Sweden)

    Martin Paul Evison

    2000-06-01

    Full Text Available Facial reconstructions in archaeology allow empathy with people who lived in the past and enjoy considerable popularity with the public. It is a common misconception that facial reconstruction will produce an exact likeness; a resemblance is the best that can be hoped for. Research at Sheffield University is aimed at the development of a computer system for facial reconstruction that will be accurate, rapid, repeatable, accessible and flexible. This research is described and prototypical 3-D facial reconstructions are presented. Interpolation models simulating obesity, ageing and ethnic affiliation are also described. Some strengths and weaknesses in the models, and their potential for application in archaeology are discussed.

  15. How 3-D Movies Work

    Institute of Scientific and Technical Information of China (English)

    吕铁雄

    2011-01-01

    难度:★★★★☆词数:450 建议阅读时间:8分钟 Most people see out of two eyes. This is a basic fact of humanity,but it’s what makes possible the illusion of depth(纵深幻觉) that 3-D movies create. Human eyes are spaced about two inches apart, meaning that each eye gives the brain a slightly different perspective(透视感)on the same object. The brain then uses this variance to quickly determine an object’s distance.

  16. When fast atom diffraction turns 3D

    Energy Technology Data Exchange (ETDEWEB)

    Zugarramurdi, Asier; Borisov, Andrei G., E-mail: andrei.borissov@u-psud.fr

    2013-12-15

    Fast atom diffraction at surfaces (FAD) in grazing incidence geometry is characterized by the slow motion in the direction perpendicular to the surface and fast motion parallel to the surface plane along a low index direction. It is established experimentally that for the typical surfaces the FAD reveals the 2D diffraction patterns associated with exchange of the reciprocal lattice vector perpendicular to the direction of fast motion. The reciprocal lattice vector exchange along the direction of fast motion is negligible. The usual approximation made in the description of the experimental data is then to assume that the effective potential leading to the diffraction results from the averaging of the 3D surface potential along the atomic strings forming the axial channel. In this work we use full quantum wave packet propagation calculations to study theoretically the possibility to observe the 3D diffraction in FAD experiments. We show that for the surfaces with large unit cell, such as can be the case for reconstructed or vicinal surfaces, the 3D diffraction can be observed. The reciprocal lattice vector exchange along the direction of fast motion leads to several Laue circles in the diffraction pattern.

  17. Observing and understanding the Earth system variations from space geodesy

    OpenAIRE

    Jin, Shuanggen; van Dam, Tonie; Wdowinski, Shimon

    2013-01-01

    The interaction and coupling of the Earth system components that include the atmosphere, hydrosphere, cryosphere, lithosphere, and other fluids in Earth's interior, influence the Earth's shape, gravity field and its rotation (the three pillars of geodesy). The effects of global climate change, such as sea level rise, glacier melting, and geoharzards, also affect these observables. However, observations and models of Earth's system change have large uncertainties due to the lack of direct high...

  18. 3D Visualization of Cooperative Trajectories

    Science.gov (United States)

    Schaefer, John A.

    2014-01-01

    Aerodynamicists and biologists have long recognized the benefits of formation flight. When birds or aircraft fly in the upwash region of the vortex generated by leaders in a formation, induced drag is reduced for the trail bird or aircraft, and efficiency improves. The major consequence of this is that fuel consumption can be greatly reduced. When two aircraft are separated by a large enough longitudinal distance, the aircraft are said to be flying in a cooperative trajectory. A simulation has been developed to model autonomous cooperative trajectories of aircraft; however it does not provide any 3D representation of the multi-body system dynamics. The topic of this research is the development of an accurate visualization of the multi-body system observable in a 3D environment. This visualization includes two aircraft (lead and trail), a landscape for a static reference, and simplified models of the vortex dynamics and trajectories at several locations between the aircraft.

  19. Positional Awareness Map 3D (PAM3D)

    Science.gov (United States)

    Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise

    2012-01-01

    The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.

  20. Free breathing whole-heart 3D CINE MRI with self-gated Cartesian trajectory.

    Science.gov (United States)

    Usman, M; Ruijsink, B; Nazir, M S; Cruz, G; Prieto, C

    2017-05-01

    To present a method that uses a novel free-running self-gated acquisition to achieve isotropic resolution in whole heart 3D Cartesian cardiac CINE MRI. 3D cardiac CINE MRI using navigator gating results in long acquisition times. Recently, several frameworks based on self-gated non-Cartesian trajectories have been proposed to accelerate this acquisition. However, non-Cartesian reconstructions are computationally expensive due to gridding, particularly in 3D. In this work, we propose a novel highly efficient self-gated Cartesian approach for 3D cardiac CINE MRI. Acquisition is performed using CArtesian trajectory with Spiral PRofile ordering and Tiny golden angle step for eddy current reduction (so called here CASPR-Tiger). Data is acquired continuously under free breathing (retrospective ECG gating, no preparation pulses interruption) for 4-5min and 4D whole-heart volumes (3D+cardiac phases) with isotropic spatial resolution are reconstructed from all available data using a soft gating technique combined with temporal total variation (TV) constrained iterative SENSE reconstruction. For data acquired on eight healthy subjects and three patients, the reconstructed images using the proposed method had good contrast and spatio-temporal variations, correctly recovering diastolic and systolic cardiac phases. Non-significant differences (P>0.05) were observed in cardiac functional measurements obtained with proposed 3D approach and gold standard 2D multi-slice breath-hold acquisition. The proposed approach enables isotropic 3D whole heart Cartesian cardiac CINE MRI in 4 to 5min free breathing acquisition. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Face recognition using SIFT features under 3D meshes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Cheng; GU Yu-zhang; HU Ke-li; WANG Ying-guan

    2015-01-01

    Expression, occlusion, and pose variations are three main challenges for 3D face recognition. A novel method is presented to address 3D face recognition using scale-invariant feature transform (SIFT) features on 3D meshes. After preprocessing, shape index extrema on the 3D facial surface are selected as keypoints in the difference scale space and the unstable keypoints are removed after two screening steps. Then, a local coordinate system for each keypoint is established by principal component analysis (PCA). Next, two local geometric features are extracted around each keypoint through the local coordinate system. Additionally, the features are augmented by the symmetrization according to the approximate left-right symmetry in human face. The proposed method is evaluated on the Bosphorus, BU-3DFE, and Gavab databases, respectively. Good results are achieved on these three datasets. As a result, the proposed method proves robust to facial expression variations, partial external occlusions and large pose changes.

  2. 3D Printable Graphene Composite

    Science.gov (United States)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  3. 3D medical thermography device

    Science.gov (United States)

    Moghadam, Peyman

    2015-05-01

    In this paper, a novel handheld 3D medical thermography system is introduced. The proposed system consists of a thermal-infrared camera, a color camera and a depth camera rigidly attached in close proximity and mounted on an ergonomic handle. As a practitioner holding the device smoothly moves it around the human body parts, the proposed system generates and builds up a precise 3D thermogram model by incorporating information from each new measurement in real-time. The data is acquired in motion, thus it provides multiple points of view. When processed, these multiple points of view are adaptively combined by taking into account the reliability of each individual measurement which can vary due to a variety of factors such as angle of incidence, distance between the device and the subject and environmental sensor data or other factors influencing a confidence of the thermal-infrared data when captured. Finally, several case studies are presented to support the usability and performance of the proposed system.

  4. 3D Printed Bionic Ears

    Science.gov (United States)

    Mannoor, Manu S.; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A.; Soboyejo, Winston O.; Verma, Naveen; Gracias, David H.; McAlpine, Michael C.

    2013-01-01

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the precise anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  5. 3D printed bionic ears.

    Science.gov (United States)

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.

  6. Forensic 3D documentation of skin injuries

    DEFF Research Database (Denmark)

    Villa, Chiara

    2017-01-01

    An accurate and precise documentation of injuries is fundamental in a forensic pathological context. Photographs and manual measurements are taken of all injuries during autopsies, but ordinary photography projects a 3D wound on a 2D space. Using technologies such as photogrammetry, it is possible...... methods (p > 0.05). The results of intra- and inter-observer tests indicated perfect agreement between the observers with mean value differences of ≤ 0.02 cm. This study demonstrated the validity of using photogrammetry for documentation of injuries in a forensic pathological context. Importantly...

  7. 3D MHD Simulations of Tokamak Disruptions

    Science.gov (United States)

    Woodruff, Simon; Stuber, James

    2014-10-01

    Two disruption scenarios are modeled numerically by use of the CORSICA 2D equilibrium and NIMROD 3D MHD codes. The work follows the simulations of pressure-driven modes in DIII-D and VDEs in ITER. The aim of the work is to provide starting points for simulation of tokamak disruption mitigation techniques currently in the CDR phase for ITER. Pressure-driven instability growth rates previously observed in simulations of DIIID are verified; Halo and Hiro currents produced during vertical displacements are observed in simulations of ITER with implementation of resistive walls in NIMROD. We discuss plans to exercise new code capabilities and validation.

  8. Multi-modal 2D-3D non-rigid registration

    Science.gov (United States)

    Prümmer, M.; Hornegger, J.; Pfister, M.; Dörfler, A.

    2006-03-01

    In this paper, we propose a multi-modal non-rigid 2D-3D registration technique. This method allows a non-rigid alignment of a patient pre-operatively computed tomography (CT) to few intra operatively acquired fluoroscopic X-ray images obtained with a C-arm system. This multi-modal approach is especially focused on the 3D alignment of high contrast reconstructed volumes with intra-interventional low contrast X-ray images in order to make use of up-to-date information for surgical guidance and other interventions. The key issue of non-rigid 2D-3D registration is how to define the distance measure between high contrast 3D data and low contrast 2D projections. In this work, we use algebraic reconstruction theory to handle this problem. We modify the Euler-Lagrange equation by introducing a new 3D force. This external force term is computed from the residual of the algebraic reconstruction procedures. In the multi-modal case we replace the residual between the digitally reconstructed radiographs (DRR) and observed X-ray images with a statistical based distance measure. We integrate the algebraic reconstruction technique into a variational registration framework, so that the 3D displacement field is driven to minimize the reconstruction distance between the volumetric data and its 2D projections using mutual information (MI). The benefits of this 2D-3D registration approach are its scalability in the number of used X-ray reference images and the proposed distance that can handle low contrast fluoroscopies as well. Experimental results are presented on both artificial phantom and 3D C-arm CT images.

  9. Application of 3D stereoscopic visualization technology in casting aspect

    Institute of Scientific and Technical Information of China (English)

    Kang Jinwu; Zhang Xiaopeng; Zhang Chi; Liu Baicheng

    2014-01-01

    3D stereoscopic visualization technology is coming into more and more common use in the field of entertainment, and this technology is also beginning to cut a striking ifgure in casting industry and scientiifc research. The history, fundamental principle, and devices of 3D stereoscopic visualization technology are reviewed in this paper. The authors’ research achievements on the 3D stereoscopic visualization technology in the modeling and simulation of the casting process are presented. This technology can be used for the observation of complex 3D solid models of castings and the simulated results of solidiifcation processes such as temperature, lfuid lfow, displacement, stress strain and microstructure, as wel as the predicted defects such as shrinkage/porosity, cracks, and deformation. It can also be used for other areas relating to 3D models, such as assembling of dies, cores, etc. Several cases are given to compare the illustration of simulated results by traditional images and red-blue 3D stereoscopic images. The spatial shape is observed better by the new method. The prospect of 3D stereoscopic visualization in the casting aspect is discussed as wel. The need for aided-viewing devices is stil the most prominent problem of 3D stereoscopic visualization technology. However, 3D stereoscopic visualization represents the tendency of visualization technology in the future; and as the problem is solved in the years ahead, great breakthroughs wil certainly be made for its application in casting design and modeling and simulation of the casting processes.

  10. 3D biometrics systems and applications

    CERN Document Server

    Zhang, David

    2013-01-01

    Includes discussions on popular 3D imaging technologies, combines them with biometric applications, and then presents real 3D biometric systems Introduces many efficient 3D feature extraction, matching, and fusion algorithms Techniques presented have been supported by experimental results using various 3D biometric classifications

  11. 3D fluorescence spectral data interpolation by using IDW.

    Science.gov (United States)

    He, Qinghang; Zhang, Zhenxi; Yi, Chao

    2008-12-01

    Because measured precision of some spectral instruments such as fluorescence spectrometer HITACHI F-4500 cannot reach the requirement of spectral analytical technique, and measured data is finite, which causes some three-dimensional (3D) fluorescence spectral data missed. The fact of missing data can result in errors in interpretations of 3D fluorescence spectral data. This paper takes ethanol solution (volume percentage phi(beta)=0.400) 3D fluorescence spectral data for example, applies inverse distance weighting (IDW) to 3D fluorescence spectral data interpolation. The results prove that the more details of 3D fluorescence spectra are expressed well by using IDW in contrast to that of original 3D fluorescence spectra. To evaluate the effectiveness of interpolation by using IDW, this paper compares standard deviation, coefficient of variation, and the mean, median, maximum and minimum values of original ethanol solution (phi(beta)=0.400) 3D fluorescence spectral data and that of the interpolated, whose results suggest that the interpolation of the 3D fluorescence spectra data by using IDW is exact.

  12. Reproducibility of Two 3-D Ultrasound Carotid Plaque Quantification Methods

    DEFF Research Database (Denmark)

    Graebe, Martin; Entrekin, Robert; Collet-Billon, Antoine;

    2014-01-01

    -sectional, 2-D freehand sweep and a mechanical 3-D ultrasound investigation of 62 carotid artery plaques is reported with intra-class correlation coefficients (with 95% confidence intervals). Inter-observer agreement was 0.60 (0.29-0.77) for the freehand method and 0.89 (0.83-0.93) for the mechanical 3-D...

  13. Novel Scalable 3-D MT Inverse Solver

    Science.gov (United States)

    Kuvshinov, A. V.; Kruglyakov, M.; Geraskin, A.

    2016-12-01

    We present a new, robust and fast, three-dimensional (3-D) magnetotelluric (MT) inverse solver. As a forward modelling engine a highly-scalable solver extrEMe [1] is used. The (regularized) inversion is based on an iterative gradient-type optimization (quasi-Newton method) and exploits adjoint sources approach for fast calculation of the gradient of the misfit. The inverse solver is able to deal with highly detailed and contrasting models, allows for working (separately or jointly) with any type of MT (single-site and/or inter-site) responses, and supports massive parallelization. Different parallelization strategies implemented in the code allow for optimal usage of available computational resources for a given problem set up. To parameterize an inverse domain a mask approach is implemented, which means that one can merge any subset of forward modelling cells in order to account for (usually) irregular distribution of observation sites. We report results of 3-D numerical experiments aimed at analysing the robustness, performance and scalability of the code. In particular, our computational experiments carried out at different platforms ranging from modern laptops to high-performance clusters demonstrate practically linear scalability of the code up to thousands of nodes. 1. Kruglyakov, M., A. Geraskin, A. Kuvshinov, 2016. Novel accurate and scalable 3-D MT forward solver based on a contracting integral equation method, Computers and Geosciences, in press.

  14. Conducting Polymer 3D Microelectrodes

    Directory of Open Access Journals (Sweden)

    Jenny Emnéus

    2010-12-01

    Full Text Available Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements.

  15. 3D Microstructural Architectures for Metal and Alloy Components Fabricated by 3D Printing/Additive Manufacturing Technologies

    Science.gov (United States)

    Martinez, E.; Murr, L. E.; Amato, K. N.; Hernandez, J.; Shindo, P. W.; Gaytan, S. M.; Ramirez, D. A.; Medina, F.; Wicker, R. B.

    The layer-by-layer building of monolithic, 3D metal components from selectively melted powder layers using laser or electron beams is a novel form of 3D printing or additive manufacturing. Microstructures created in these 3D products can involve novel, directional solidification structures which can include crystallographically oriented grains containing columnar arrays of precipitates characteristic of a microstructural architecture. These microstructural architectures are advantageously rendered in 3D image constructions involving light optical microscopy and scanning and transmission electron microscopy observations. Microstructural evolution can also be effectively examined through 3D image sequences which, along with x-ray diffraction (XRD) analysis in the x-y and x-z planes, can effectively characterize related crystallographic/texture variances. This paper compares 3D microstructural architectures in Co-base and Ni-base superalloys, columnar martensitic grain structures in 17-4 PH alloy, and columnar copper oxides and dislocation arrays in copper.

  16. Observed ozone response to variations in solar ultraviolet radiation

    Science.gov (United States)

    Gille, J. C.; Smythe, C. M.; Heath, D. F.

    1984-01-01

    During the winter of 1979, the solar ultraviolet irradiance varied with a period of 13.5 days and an amplitude of 1 percent. The zonal mean ozone values in the tropics varied with the solar irradiance, with an amplitude of 0.25 to 0.60 percent. This observation agrees with earlier calculations, although the response may be overestimated. These results imply changes in ozone at an altitude of 48 kilometers of up to 12 percent over an 11-year solar cycle. Interpretation of ozone changes in the upper stratosphere will require measurements of solar ultraviolet radiation at wavelengths near 200 nanometers.

  17. 3D Printing of Graphene Aerogels.

    Science.gov (United States)

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-01

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction.

  18. Developing an Ear Prosthesis Fabricated in Polyvinylidene Fluoride by a 3D Printer with Sensory Intrinsic Properties of Pressure and Temperature

    OpenAIRE

    Ernesto Suaste-Gómez; Grissel Rodríguez-Roldán; Héctor Reyes-Cruz; Omar Terán-Jiménez

    2016-01-01

    An ear prosthesis was designed in 3D computer graphics software and fabricated using a 3D printing process of polyvinylidene fluoride (PVDF) for use as a hearing aid. In addition, the prosthesis response to pressure and temperature was observed. Pyroelectric and piezoelectric properties of this ear prosthesis were investigated using an astable multivibrator circuit, as changes in PVDF permittivity were observed according to variations of pressure and temperature. The results show that this pr...

  19. 3-D force-balanced magnetospheric configurations

    Directory of Open Access Journals (Sweden)

    S. Zaharia

    2004-01-01

    Full Text Available The knowledge of plasma pressure is essential for many physics applications in the magnetosphere, such as computing magnetospheric currents and deriving mag-netosphere-ionosphere coupling. A thorough knowledge of the 3-D pressure distribution has, however, eluded the community, as most in situ pressure observations are either in the ionosphere or the equatorial region of the magnetosphere. With the assumption of pressure isotropy there have been attempts to obtain the pressure at different locations,by either (a mapping observed data (e.g. in the ionosphere along the field lines of an empirical magnetospheric field model, or (b computing a pressure profile in the equatorial plane (in 2-D or along the Sun-Earth axis (in 1-D that is in force balance with the magnetic stresses of an empirical model. However, the pressure distributions obtained through these methods are not in force balance with the empirical magnetic field at all locations. In order to find a global 3-D plasma pressure distribution in force balance with the magnetospheric magnetic field, we have developed the MAG-3-D code that solves the 3-D force balance equation ${vec J} times {vec B} = nabla P$ computationally. Our calculation is performed in a flux coordinate system in which the magnetic field is expressed in terms of Euler potentials as ${vec B} = nabla psi times nabla alpha$. The pressure distribution, $P = P(psi, alpha$, is prescribed in the equatorial plane and is based on satellite measurements. In addition, computational boundary conditions for ψ surfaces are imposed using empirical field models

  20. Gravity Variation in Siberia: GRACE Observation and Possible Causes

    Directory of Open Access Journals (Sweden)

    Benjamin Fong Chao

    2011-01-01

    Full Text Available We report the finding, from the GRACE observation, of an increasing trend in the gravity anomaly in Siberia at the rate of up to 0.5 ugal yr-1 during 2003/1 - 2009/12, in the backdrop of a negative anomaly of magnitude on the order of ~-10 mgal. In consideration of the non-uniqueness of the gravitational inverse problem, we examine in some detail the various possible geophysical causes to explain the increasing gravity signal. We find two geophysical mechanisms being the most plausible, namely the melting of permafrost and the GIA post-glacial rebound. We conclude that these two mechanisms cannot be ruled out as causes for the regional gravity increase in Siberia, based on gravity data and in want of ancillary geophysical data in the region. More definitive identification of the contributions of the various causes awaits further studies.

  1. Three-Dimensional Air Quality System (3D-AQS)

    Science.gov (United States)

    Engel-Cox, J.; Hoff, R.; Weber, S.; Zhang, H.; Prados, A.

    2007-12-01

    The 3-Dimensional Air Quality System (3DAQS) integrates remote sensing observations from a variety of platforms into air quality decision support systems at the U.S. Environmental Protection Agency (EPA), with a focus on particulate air pollution. The decision support systems are the Air Quality System (AQS) / AirQuest database at EPA, Infusing satellite Data into Environmental Applications (IDEA) system, the U.S. Air Quality weblog (Smog Blog) at UMBC, and the Regional East Atmospheric Lidar Mesonet (REALM). The project includes an end user advisory group with representatives from the air quality community providing ongoing feedback. The 3DAQS data sets are UMBC ground based LIDAR, and NASA and NOAA satellite data from MODIS, OMI, AIRS, CALIPSO, MISR, and GASP. Based on end user input, we are co-locating these measurements to the EPA's ground-based air pollution monitors as well as re-gridding to the Community Multiscale Air Quality (CMAQ) model grid. These data provide forecasters and the scientific community with a tool for assessment, analysis, and forecasting of U.S Air Quality. The third dimension and the ability to analyze the vertical transport of particulate pollution are provided by aerosol extinction profiles from the UMBC LIDAR and CALIPSO. We present examples of a 3D visualization tool we are developing to facilitate use of this data. We also present two specific applications of 3D-AQS data. The first is comparisons between PM2.5 monitor data and remote sensing aerosol optical depth (AOD) data, which show moderate agreement but variation with EPA region. The second is a case study for Baltimore, Maryland, as an example of 3D-analysis for a metropolitan area. In that case, some improvement is found in the PM2.5 /LIDAR correlations when using vertical aerosol information to calculate an AOD below the boundary layer.

  2. Software product for inversion of 3D seismic data

    Energy Technology Data Exchange (ETDEWEB)

    Bown, J.

    1997-03-01

    ISIS3D Seismic Inversion removes the effect of the wavelet from seismic data, and in so doing determines model for the subsurface variation of a real physical parameter, acoustic impedance. The displays based on the results produced by ISIS3D allow improved lithologic interpretation for reservoir delineation. ISIS3D assists the interpreter with respect to: Resolution of thin layers; Variations in lithology; Porosity variations within a reservoir; and Structural interpretation. The ISIS inversion process is divided into four fundamental steps: Calibration of the well logs and derivation of acoustic impedance and reflectivity logs; Determination of the optimal wavelet for the seismic inversion algorithm; Construction of a prior acoustic impedance model for use by the seismic inversion algorithm; and Globally optimised, multi-trace seismic inversion. (EG)

  3. 3D-SIFT-Flow for atlas-based CT liver image segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yan, E-mail: xuyan04@gmail.com [State Key Laboratory of Software Development Environment and Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing 100191, China and Research Institute of Beihang University in Shenzhen and Microsoft Research, Beijing 100080 (China); Xu, Chenchao, E-mail: chenchaoxu33@gmail.com; Kuang, Xiao, E-mail: kuangxiao.ace@gmail.com [School of Biological Science and Medical Engineering, Beihang University, Beijing 100191 (China); Wang, Hongkai, E-mail: wang.hongkai@gmail.com [Department of Biomedical Engineering, Dalian University of Technology, Dalian 116024 (China); Chang, Eric I-Chao, E-mail: eric.chang@microsoft.com [Microsoft Research, Beijing 100080 (China); Huang, Weimin, E-mail: wmhuang@i2r.a-star.edu.sg [Institute for Infocomm Research (I2R), Singapore 138632 (Singapore); Fan, Yubo, E-mail: yubofan@buaa.edu.cn [Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing 100191 (China)

    2016-05-15

    Purpose: In this paper, the authors proposed a new 3D registration algorithm, 3D-scale invariant feature transform (SIFT)-Flow, for multiatlas-based liver segmentation in computed tomography (CT) images. Methods: In the registration work, the authors developed a new registration method that takes advantage of dense correspondence using the informative and robust SIFT feature. The authors computed the dense SIFT features for the source image and the target image and designed an objective function to obtain the correspondence between these two images. Labeling of the source image was then mapped to the target image according to the former correspondence, resulting in accurate segmentation. In the fusion work, the 2D-based nonparametric label transfer method was extended to 3D for fusing the registered 3D atlases. Results: Compared with existing registration algorithms, 3D-SIFT-Flow has its particular advantage in matching anatomical structures (such as the liver) that observe large variation/deformation. The authors observed consistent improvement over widely adopted state-of-the-art registration methods such as ELASTIX, ANTS, and multiatlas fusion methods such as joint label fusion. Experimental results of liver segmentation on the MICCAI 2007 Grand Challenge are encouraging, e.g., Dice overlap ratio 96.27% ± 0.96% by our method compared with the previous state-of-the-art result of 94.90% ± 2.86%. Conclusions: Experimental results show that 3D-SIFT-Flow is robust for segmenting the liver from CT images, which has large tissue deformation and blurry boundary, and 3D label transfer is effective and efficient for improving the registration accuracy.

  4. 3D-SIFT-Flow for atlas-based CT liver image segmentation.

    Science.gov (United States)

    Xu, Yan; Xu, Chenchao; Kuang, Xiao; Wang, Hongkai; Chang, Eric I-Chao; Huang, Weimin; Fan, Yubo

    2016-05-01

    In this paper, the authors proposed a new 3D registration algorithm, 3D-scale invariant feature transform (SIFT)-Flow, for multiatlas-based liver segmentation in computed tomography (CT) images. In the registration work, the authors developed a new registration method that takes advantage of dense correspondence using the informative and robust SIFT feature. The authors computed the dense SIFT features for the source image and the target image and designed an objective function to obtain the correspondence between these two images. Labeling of the source image was then mapped to the target image according to the former correspondence, resulting in accurate segmentation. In the fusion work, the 2D-based nonparametric label transfer method was extended to 3D for fusing the registered 3D atlases. Compared with existing registration algorithms, 3D-SIFT-Flow has its particular advantage in matching anatomical structures (such as the liver) that observe large variation/deformation. The authors observed consistent improvement over widely adopted state-of-the-art registration methods such as ELASTIX, ANTS, and multiatlas fusion methods such as joint label fusion. Experimental results of liver segmentation on the MICCAI 2007 Grand Challenge are encouraging, e.g., Dice overlap ratio 96.27% ± 0.96% by our method compared with the previous state-of-the-art result of 94.90% ± 2.86%. Experimental results show that 3D-SIFT-Flow is robust for segmenting the liver from CT images, which has large tissue deformation and blurry boundary, and 3D label transfer is effective and efficient for improving the registration accuracy.

  5. High resolution 3D nonlinear integrated inversion

    Institute of Scientific and Technical Information of China (English)

    Li Yong; Wang Xuben; Li Zhirong; Li Qiong; Li Zhengwen

    2009-01-01

    The high resolution 3D nonlinear integrated inversion method is based on nonlinear theory. Under layer control, the log data from several wells (or all wells) in the study area and seismic trace data adjacent to the wells are input to a network with multiple inputs and outputs and are integratedly trained to obtain an adaptive weight function of the entire study area. Integrated nonlinear mapping relationships are built and updated by the lateral and vertical geologic variations of the reservoirs. Therefore, the inversion process and its inversion results can be constrained and controlled and a stable seismic inversion section with high resolution with velocity inversion, impedance inversion, and density inversion sections, can be gained. Good geologic effects have been obtained in model computation tests and real data processing, which verified that this method has high precision, good practicality, and can be used for quantitative reservoir analysis.

  6. 3D multiplexed immunoplasmonics microscopy

    Science.gov (United States)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  7. Advanced 3D visualization in student-centred medical education.

    Science.gov (United States)

    Silén, Charlotte; Wirell, Staffan; Kvist, Joanna; Nylander, Eva; Smedby, Orjan

    2008-06-01

    Healthcare students have difficulties achieving a conceptual understanding of 3D anatomy and misconceptions about physiological phenomena are persistent and hard to address. 3D visualization has improved the possibilities of facilitating understanding of complex phenomena. A project was carried out in which high quality 3D visualizations using high-resolution CT and MR images from clinical research were developed for educational use. Instead of standard stacks of slices (original or multiplanar reformatted) volume-rendering images in the quicktime VR format that enables students to interact intuitively were included. Based on learning theories underpinning problem based learning, 3D visualizations were implemented in the existing curricula of the medical and physiotherapy programs. The images/films were used in lectures, demonstrations and tutorial sessions. Self-study material was also developed. To support learning efficacy by developing and using 3D datasets in regular health care curricula and enhancing the knowledge about possible educational value of 3D visualizations in learning anatomy and physiology. Questionnaires were used to investigate the medical and physiotherapy students' opinions about the different formats of visualizations and their learning experiences. The 3D images/films stimulated the students will to understand more and helped them to get insights about biological variations and different organs size, space extent and relation to each other. The virtual dissections gave a clearer picture than ordinary dissections and the possibility to turn structures around was instructive. 3D visualizations based on authentic, viable material point out a new dimension of learning material in anatomy, physiology and probably also pathophysiology. It was successful to implement 3D images in already existing themes in the educational programs. The results show that deeper knowledge is required about students' interpretation of images/films in relation to

  8. Crowdsourcing Based 3d Modeling

    Science.gov (United States)

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  9. Vrste i tehnike 3D modeliranja

    OpenAIRE

    Bernik, Andrija

    2010-01-01

    Proces stvaranja 3D stvarnih ili imaginarnih objekata naziva se 3D modeliranje. Razvoj računalne tehnologije omogućuje korisniku odabir raznih metoda i tehnika kako bi se postigla optimalna učinkovitost. Odabir je vezan za klasično 3D modeliranje ili 3D skeniranje pomoću specijaliziranih programskih i sklopovskih rješenja. 3D tehnikama modeliranja korisnik može izraditi 3D model na nekoliko načina: koristi poligone, krivulje ili hibrid dviju spomenutih tehnika pod nazivom subdivizijsko modeli...

  10. Kuvaus 3D-tulostamisesta hammastekniikassa

    OpenAIRE

    Munne, Mauri; Mustonen, Tuomas; Vähäjylkkä, Jaakko

    2013-01-01

    3D-tulostaminen kehittyy nopeasti ja yleistyy koko ajan. Tulostimien tarkkuuksien kehittyessä 3D-tulostus on ottamassa myös jalansijaa hammastekniikan alalta. Tämän opinnäytetyön tarkoituksena on kuvata 3D-tulostamisen tilaa hammastekniikassa. 3D-tulostaminen on Suomessa vielä melko harvinaista, joten opinnäytetyön tavoitteena on koota yhteen kaikki mahdollinen tieto liittyen 3D-tulostamiseen hammastekniikassa. Tavoitteena on myös 3D-tulostimen testaaminen käytännössä aina suun skannaami...

  11. 3-D template simulation system in Total Hip Arthroplasty

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Nobuhiko [Nagoya City Univ. (Japan). Medical School

    2000-09-01

    In Total Hip Arthroplastry, 2D template on Plain X-ray is usually used for preoperative planning. But deformity and contracture can cause malposition and measurement error. To reduce those problems, a 3D preoperative simulation system was developed. Three methods were compared in this study. One is to create very accurate AP and ML images which can use for standard 2D template. One is fully 3D preoperative template system using computer graphics. Last one is substantial simulation using stereo-lithography model. 3D geometry data of the bone was made from Helical 3-D CT data. AP and ML surface cutting 3D images of the femur were created using workstation (Advantage Workstation; GE Medical Systems). The extracted 3D geometry was displayed on personal computer using Magics (STL data visualization software), then 3D geometry of the stem was superimposed in it. The full 3D simulation system made it possible to observe the bone and stem geometry from any direction and by any section view. Stereo-lithography model was useful for detailed observation of the femur anatomy. (author)

  12. The Atlas3D project - XX. Mass-size and Mass-sigma projections of the Virial Plane of early-type galaxies: variation of morphology, kinematics, mass-to-light ratio and stellar initial mass function

    CERN Document Server

    Cappellari, Michele; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frederic; Bureau, M; Crocker, Alison F; Davies, Roger L; Davis, Timothy A; de Zeeuw, P T; Duc, Pierre-Alain; Khochfar, Sadegh; Krajnovic, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M

    2013-01-01

    In the companion Paper XIX we derive accurate total (M/L)_JAM within a sphere of radius r=Re, as well as stellar (M/L)_stars for the volume-limited Atlas3D sample of 260 early-type galaxies. Here we study the two projections (M_JAM,sigma_e) and (M_JAM,R_e^max) of the thin Virial Plane (VP)(M_JAM,sigma_e,R_e^max) which describes the distribution of the galaxy population. The distribution of galaxy properties on both projections of the VP is characterized by (i) a boundary in the galaxy distribution, described by two power-laws, joined by a break at a characteristic mass M_JAM ~ 3*10^10 Msun, which corresponds to the minimum Re and maximum stellar density, and (ii) a characteristic mass M_JAM ~ 2*10^11 Msun which separates a population dominated by fast rotator with disks at lower masses, from one dominated by quite round slow rotators at larger masses. The distribution of ETGs properties on the two projections of the VP tends to be constant along lines of constant sigma_e, and forms a continuous and parallel s...

  13. Fully Automatic 3D Reconstruction of Histological Images

    CERN Document Server

    Bagci, Ulas

    2009-01-01

    In this paper, we propose a computational framework for 3D volume reconstruction from 2D histological slices using registration algorithms in feature space. To improve the quality of reconstructed 3D volume, first, intensity variations in images are corrected by an intensity standardization process which maps image intensity scale to a standard scale where similar intensities correspond to similar tissues. Second, a subvolume approach is proposed for 3D reconstruction by dividing standardized slices into groups. Third, in order to improve the quality of the reconstruction process, an automatic best reference slice selection algorithm is developed based on an iterative assessment of image entropy and mean square error of the registration process. Finally, we demonstrate that the choice of the reference slice has a significant impact on registration quality and subsequent 3D reconstruction.

  14. Forward ramp in 3D

    Science.gov (United States)

    1997-01-01

    Mars Pathfinder's forward rover ramp can be seen successfully unfurled in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This ramp was not used for the deployment of the microrover Sojourner, which occurred at the end of Sol 2. When this image was taken, Sojourner was still latched to one of the lander's petals, waiting for the command sequence that would execute its descent off of the lander's petal.The image helped Pathfinder scientists determine whether to deploy the rover using the forward or backward ramps and the nature of the first rover traverse. The metallic object at the lower left of the image is the lander's low-gain antenna. The square at the end of the ramp is one of the spacecraft's magnetic targets. Dust that accumulates on the magnetic targets will later be examined by Sojourner's Alpha Proton X-Ray Spectrometer instrument for chemical analysis. At right, a lander petal is visible.The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  15. A Mechanical Study of a Glass Fabric-Thermoplastic Resin Composite: 3D-DIC and X-ray tomographic observations explained by numerical simulations based on a spectral solver

    CERN Document Server

    Boufaida, Zakariya; André, Stéphane; Farge, Laurent

    2016-01-01

    In the study presented in this paper, we analyzed the mechanical response of a glass fiber plain weave/polymer composite at the fabric millimetric mesoscale. The detail of the stress and strain fields in a fabric repeating unit cell was numerically calculated using CraFT (Composite response and Fourier Transforms), a code specifically conceived for simulating the mechanical behaviour of materials with complex microstructure. The local strain fields obtained by simulation were found to be in very good agreement with measurements carried out using 3D Digital Image Correlation (3D DIC). From numerical stress fields calculated with the CraFT solver, we also highlighted the subregions inside the periodic mesostructure where there is maximum stress. Furthermore, with X-ray tomography post mortem measurements, we were able to confirm that certain damage modes were well initiated in these microstructure subregions of stress concentration.

  16. Torsional oscillations and observed rotational period variations in early-type stars

    CERN Document Server

    Krticka, J; Henry, G W; Kurfurst, P; Karlicky, M

    2016-01-01

    Some chemically peculiar stars in the upper main sequence show rotational period variations of unknown origin. We propose these variations are a consequence of the propagation of internal waves in magnetic rotating stars that lead to the torsional oscillations of the star. We simulate the magnetohydrodynamic waves and calculate resonant frequencies for two stars that show rotational variations: CU Vir and HD 37776. We provide updated analyses of rotational period variations in these stars and compare our results with numerical models. For CU Vir, the length of the observed rotational-period cycle, $\\mathit\\Pi=67.6(5)$ yr, can be well reproduced by the models, which predict a cycle length of 51 yr. However, for HD 37776, the observed lower limit of the cycle length, $\\mathit\\Pi\\geq100$ yr, is significantly longer than the numerical models predict. We conclude that torsional oscillations provide a reasonable explanation at least for the observed period variations in CU Vir.

  17. Surface Plasmons in 3D Topological Insulators

    Science.gov (United States)

    Kogar, Anshul; Vig, Sean; Cho, Gil; Thaler, Alexander; Xiao, Yiran; Hughes, Taylor; Wong, Man-Hong; Chiang, Tai-Chang; MacDougall, Greg; Abbamonte, Peter

    2015-03-01

    Most studies of three-dimensional (3D) topological insulators have concentrated on their one-electron properties as exhibited by angle-resolved photoemission spectroscopy (ARPES) or by scanning tunneling microscopy (STM). Many-body interactions are often neglected in the treatment of models of topological insulators, such as in the Kane-Mele and Bernevig-Hughes-Zhang models. Using angle-resolved inelastic electron scattering from the surface, I will present data on the collective mode that owes its existence to the presence of many-body interactions, the surface plasmon (SP), in two known 3D topological insulators, Bi2Se3 and Bi0.5Sb1.5Se1 . 5 + xTe1 . 5 - x. Surprisingly, the SP was prominent even after depressing the Fermi energy into the bulk band gap. Having studied the SP as a function of doping, momentum transfer and its aging properties, I will present evidence to suggest that bulk-surface coupling is crucial in explaining many of its properties. A simple model with dynamic bulk screening will be presented showing qualitative agreement with the observations. Lastly, the relation of the observed surface plasmon to the predicted spin-plasmon mode and to the kinks seen in the electronic dispersion as measured by ARPES will be discussed. The work was supported as part of the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science.

  18. 3D P-Wave Velocity Structure of the Deep Galicia Rifted Margin

    Science.gov (United States)

    Bayrakci, Gaye; Minshull, Timothy; Davy, Richard; Sawyer, Dale; Klaeschen, Dirk; Papenberg, Cord; Reston, Timothy; Shillington, Donna; Ranero, Cesar

    2015-04-01

    The combined wide-angle reflection-refraction and multi-channel seismic (MCS) experiment, Galicia 3D, was carried out in 2013 at the Galicia rifted margin in the northeast Atlantic Ocean, west of Spain. The main geological features within the 64 by 20 km (1280 km²) 3D box investigated by the survey are the peridotite ridge (PR), the fault bounded, rotated basement blocks and the S reflector, which has been interpreted to be a low angle detachment fault. 44 short period four-component ocean bottom seismometers and 28 ocean bottom hydrophones were deployed in the 3D box. 3D MCS profiles sampling the whole box were acquired with two airgun arrays of 3300 cu.in. fired alternately every 37.5 m. We present the results from 3D first-arrival time tomography that constrains the P-wave velocity in the 3D box, for the entire depth sampled by reflection data. Results are validated by synthetic tests and by the comparison with Galicia 3D MCS lines. The main outcomes are as follows: 1- The 3.5 km/s iso-velocity contour mimics the top of the acoustic basement observed on MCS profiles. Block bounding faults are imaged as velocity contrasts and basement blocks exhibit 3D topographic variations. 2- On the southern profiles, the top of the PR rises up to 5.5 km depth whereas, 20 km northward, its basement expression (at 6.5 km depth) nearly disappears. 3- The 6.5 km/s iso-velocity contour matches the topography of the S reflector where the latter is visible on MCS profiles. Within a depth interval of 0.6 km (in average), velocities beneath the S reflector increase from 6.5 km/s to 7 km/s, which would correspond to a decrease in the degree of serpentinization from ~45 % to ~30 % if these velocity variations are caused solely by variations in hydration. At the intersections between the block bounding normal faults and the S reflector, this decrease happens over a larger depth interval (> 1 km), suggesting that faults act as conduit for the water flow in the upper mantle.

  19. Sliding Adjustment for 3D Video Representation

    Directory of Open Access Journals (Sweden)

    Galpin Franck

    2002-01-01

    Full Text Available This paper deals with video coding of static scenes viewed by a moving camera. We propose an automatic way to encode such video sequences using several 3D models. Contrary to prior art in model-based coding where 3D models have to be known, the 3D models are automatically computed from the original video sequence. We show that several independent 3D models provide the same functionalities as one single 3D model, and avoid some drawbacks of the previous approaches. To achieve this goal we propose a novel algorithm of sliding adjustment, which ensures consistency of successive 3D models. The paper presents a method to automatically extract the set of 3D models and associate camera positions. The obtained representation can be used for reconstructing the original sequence, or virtual ones. It also enables 3D functionalities such as synthetic object insertion, lightning modification, or stereoscopic visualization. Results on real video sequences are presented.

  20. An interactive multiview 3D display system

    Science.gov (United States)

    Zhang, Zhaoxing; Geng, Zheng; Zhang, Mei; Dong, Hui

    2013-03-01

    The progresses in 3D display systems and user interaction technologies will help more effective 3D visualization of 3D information. They yield a realistic representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them. In this paper, we describe an autostereoscopic multiview 3D display system with capability of real-time user interaction. Design principle of this autostereoscopic multiview 3D display system is presented, together with the details of its hardware/software architecture. A prototype is built and tested based upon multi-projectors and horizontal optical anisotropic display structure. Experimental results illustrate the effectiveness of this novel 3D display and user interaction system.

  1. Will 3D printers manufacture your meals?

    NARCIS (Netherlands)

    Bommel, K.J.C. van

    2013-01-01

    These days, 3D printers are laying down plastics, metals, resins, and other materials in whatever configurations creative people can dream up. But when the next 3D printing revolution comes, you'll be able to eat it.

  2. 3D ultrasound in fetal spina bifida.

    Science.gov (United States)

    Schramm, T; Gloning, K-P; Minderer, S; Tutschek, B

    2008-12-01

    3D ultrasound can be used to study the fetal spine, but skeletal mode can be inconclusive for the diagnosis of fetal spina bifida. We illustrate a diagnostic approach using 2D and 3D ultrasound and indicate possible pitfalls.

  3. 3D Flash LIDAR Space Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc. (ASC) is a small business that has developed 3D Flash LIDAR systems for space and terrestrial applications. 3D Flash LIDAR is...

  4. Eesti 3D jaoks kitsas / Virge Haavasalu

    Index Scriptorium Estoniae

    Haavasalu, Virge

    2009-01-01

    Produktsioonifirma Digitaalne Sputnik: Kaur ja Kaspar Kallas tegelevad filmide produtseerimise ning 3D digitaalkaamerate tootearendusega (Silicon Imaging LLC). Vendade Kallaste 3D-kaamerast. Kommenteerib Eesti Filmi Sihtasutuse direktor Marge Liiske

  5. Will 3D printers manufacture your meals?

    NARCIS (Netherlands)

    Bommel, K.J.C. van

    2013-01-01

    These days, 3D printers are laying down plastics, metals, resins, and other materials in whatever configurations creative people can dream up. But when the next 3D printing revolution comes, you'll be able to eat it.

  6. 3D printing of microscopic bacterial communities

    National Research Council Canada - National Science Library

    Jodi L. Connell; Eric T. Ritschdorff; Marvin Whiteley; Jason B. Shear

    2013-01-01

    .... Here, we describe a microscopic threedimensional (3D) printing strategy that enables multiple populations of bacteria to be organized within essentially any 3D geometry, including adjacent, nested, and free-floating...

  7. 3D Scanning technology for offshore purposes

    DEFF Research Database (Denmark)

    Christoffersen, Morten Thoft

    2005-01-01

    New scanning technology makes for construction of precision 3D models of production plants and offshore production facilities......New scanning technology makes for construction of precision 3D models of production plants and offshore production facilities...

  8. Drift Transport in Al2O3-Sheathed 3-D Transparent Conducting Oxide Photoanodes Observed in Liquid Electrolyte-Based Dye-Sensitized Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fa-Qian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhu, Kai [National Renewable Energy Lab. (NREL), Golden, CO (United States); Li, Tao [Argonne National Lab. (ANL), Argonne, IL (United States); Xu, Tao [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-04-25

    It has long been taken for granted that electron transport in liquid-electrolyte-based dye-sensitized solar cells (DSSCs) undergoes an ambipolar diffusive transport due to the strong coupling between electrons in the photoanode and the nearby mobile cations in liquid electrolyte, which, therefore, screens off any electric field in the photoanodes and consequently eliminates the possibility for drift transport. In this work, we demonstrate the existence of drift transport in liquid electrolyte-based DSSCs using a thin Al2O3-sheathed 3-dimentional (3-D) fluorinated tin oxide (FTO), as photoanodes. The electron diffusion rate in such 3-D TCO based DSSC exhibits a striking enhancement to the value of ~10–2 cm2/s, about 104 times faster than that of the TiO2 nanoparticle-based DSSCs. The electron diffusion coefficient is independent of the photoelectron density, while intensity modulated photocurrent spectroscopy (IMPS) suggests that the time constants of electron transport exhibit a linear dependence on the bias voltage, a strong indication of drift transport behavior in this 3-D FTO hollow nanobeads-based DSSC, despite the use of liquid I/I3 electrolyte.

  9. Full-Waveform Validation of a 3D Seismic Model for Western US

    Science.gov (United States)

    Maceira, M.; Larmat, C. S.; Ammon, C. J.; Chai, C.; Herrmann, R. B.

    2014-12-01

    Since the initiation of tomographic studies in the 1970s, geoscientists have advanced the art of inferring 3D variations in the subsurface using collections of geophysical (primarily seismic) observables recorded at or near Earth's surface. Advances have come from improvement and enhancement of the available data and from research on theoretical and computational improvements to tomographic and generalized inverse methods. In the last decade, utilizing dense array datasets, these efforts have led to unprecedented 3D images of the subsurface. Understandably, less effort has been expended on model validation to provide an absolute assessment of model uncertainty. Generally models constructed with different data sets and independent computational codes are assessed with geological reasonability and compared other models to gain confidence. The question of "How good is a particular 3D geophysical model at representing the Earth's true nature?" remains largely unaddressed at a time when 3D Earth models are used for both societal and energy security. In the last few years, opportunities have arisen in earth-structure imaging, including the advent of new methods in computational seismology and statistical sciences. We use the unique and extensive High Performance Computing resources available at Los Alamos National Laboratory to explore approaches to realistic model validation. We present results from a study focused on validating a 3D model for the western United States generated using a joint inversion simultaneously fitting interpolated teleseismic P-wave receiver functions, Rayleigh-wave group-velocity estimates between 7 and 250 s period, and high-wavenumber filtered Bouguer gravity observations. Validation of the obtained model is performed through systematic comparison of observed and predicted seismograms generated using the Spectral Element Method, which is a direct numerical solution for full waveform modeling in 3D models, with accuracy of spectral methods.

  10. Laser Based 3D Volumetric Display System

    Science.gov (United States)

    1993-03-01

    Literature, Costa Mesa, CA July 1983. 3. "A Real Time Autostereoscopic Multiplanar 3D Display System", Rodney Don Williams, Felix Garcia, Jr., Texas...8217 .- NUMBERS LASER BASED 3D VOLUMETRIC DISPLAY SYSTEM PR: CD13 0. AUTHOR(S) PE: N/AWIU: DN303151 P. Soltan, J. Trias, W. Robinson, W. Dahlke 7...laser generated 3D volumetric images on a rotating double helix, (where the 3D displays are computer controlled for group viewing with the naked eye

  11. 3D-Printed Millimeter Wave Structures

    Science.gov (United States)

    2016-03-14

    demonstrates the resolution of the printer with a 10 micron nozzle. Figure 2: Measured loss tangent of SEBS and SBS samples. 3D - Printed Millimeter... 3D printing of styrene-butadiene-styrene (SBS) and styrene ethylene/butylene-styrene (SEBS) is used to demonstrate the feasibility of 3D - printed ...Additionally, a dielectric lens is printed which improves the antenna gain of an open-ended WR-28 waveguide from 7 to 8.5 dBi. Keywords: 3D printing

  12. Face recognition based on matching of local features on 3D dynamic range sequences

    Science.gov (United States)

    Echeagaray-Patrón, B. A.; Kober, Vitaly

    2016-09-01

    3D face recognition has attracted attention in the last decade due to improvement of technology of 3D image acquisition and its wide range of applications such as access control, surveillance, human-computer interaction and biometric identification systems. Most research on 3D face recognition has focused on analysis of 3D still data. In this work, a new method for face recognition using dynamic 3D range sequences is proposed. Experimental results are presented and discussed using 3D sequences in the presence of pose variation. The performance of the proposed method is compared with that of conventional face recognition algorithms based on descriptors.

  13. Vertical observation method for implementation of width azimuth and high density 3D collection%实现高密度宽方位三维地震采集的垂直观测法

    Institute of Scientific and Technical Information of China (English)

    白旭明; 叶秋焱; 胜辉; 陈敬国; 朱敏; 李海东; 柳溪; 刘颖

    2014-01-01

    Seismic exploration has been conducted fairly well in eastern China, and has mostly entered into the second 3D and 3D seis-mic acquisition phase. With the development of such geophysical technologies as width azimuth and high-density acquisition method,a accurate migration image is required to improve substantially velocity analysis accuracy. If the acquisition cost is not increased in east-ern China,such an aim can't be achieved. Therefore, this paper presents a width azimuth and high density acquisition method, which was applied to Z42 burial hill structure in Jizhong depression. This method could position the viewing direction of objective 3D acquisi-tion perpendicular to directions of the second 3D by means of 3D data amalgam of different periods,so as to achieve width azimuth and high-density data sampling and eventually improve seismic imaging results.%中国东部地区地震勘探程度较高,目前大多进入全面二次三维、目标三维地震采集阶段,要求实现宽方位、高密度地震数据采集而又不增加采集成本。为达此目的,笔者提出一种实现宽方位、高密度采集的方法,将目标三维采集的观测方向与二次三维的观测方向相互垂直,通过不同期次三维数据的融合处理,实现全方位、高密度观测,改善了地震资料的成像效果。以冀中坳陷Z42潜山构造目标三维采集为例,展示了这种方法的效果。

  14. Impact Performance of 3D Integrated Cellular Woven Composite Panel

    Institute of Scientific and Technical Information of China (English)

    TIAN Wei; ZHU Cheng-yan

    2006-01-01

    This paper studied the impact resistance of 3D integrated cellular woven composite panel under persudo-static impact,comprised the test result with property of typical 3D woven composites, analyzed some parameters that maybe affect composites' impact resistance and at last used SEM to observe the damage process and mechanism of samples. The result shows that the impact resistance of 3D integrated cellular woven composites is much better than the performance of typical 3D woven composites; it is an active method to improve the impact resistance of composites that developing preform with cellular on the basis of typical 3D woven structure; for different 3D integrated cellular woven structure, the value of absorbed-energy is incrensing with the hollow percentage; tiny deformation will not emerge on samples until the acting force gets to 85% of the maximum;similar with typical 3D woven composites, the delaminated phenomenon of 3D integrated cellular woven composites is also unapparent during impact process.

  15. 3D Printing and Its Urologic Applications

    Science.gov (United States)

    Soliman, Youssef; Feibus, Allison H; Baum, Neil

    2015-01-01

    3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology. PMID:26028997

  16. Beowulf 3D: a case study

    Science.gov (United States)

    Engle, Rob

    2008-02-01

    This paper discusses the creative and technical challenges encountered during the production of "Beowulf 3D," director Robert Zemeckis' adaptation of the Old English epic poem and the first film to be simultaneously released in IMAX 3D and digital 3D formats.

  17. Expanding Geometry Understanding with 3D Printing

    Science.gov (United States)

    Cochran, Jill A.; Cochran, Zane; Laney, Kendra; Dean, Mandi

    2016-01-01

    With the rise of personal desktop 3D printing, a wide spectrum of educational opportunities has become available for educators to leverage this technology in their classrooms. Until recently, the ability to create physical 3D models was well beyond the scope, skill, and budget of many schools. However, since desktop 3D printers have become readily…

  18. Imaging a Sustainable Future in 3D

    Science.gov (United States)

    Schuhr, W.; Lee, J. D.; Kanngieser, E.

    2012-07-01

    It is the intention of this paper, to contribute to a sustainable future by providing objective object information based on 3D photography as well as promoting 3D photography not only for scientists, but also for amateurs. Due to the presentation of this article by CIPA Task Group 3 on "3D Photographs in Cultural Heritage", the presented samples are masterpieces of historic as well as of current 3D photography concentrating on cultural heritage. In addition to a report on exemplarily access to international archives of 3D photographs, samples for new 3D photographs taken with modern 3D cameras, as well as by means of a ground based high resolution XLITE staff camera and also 3D photographs taken from a captive balloon and the use of civil drone platforms are dealt with. To advise on optimum suited 3D methodology, as well as to catch new trends in 3D, an updated synoptic overview of the 3D visualization technology, even claiming completeness, has been carried out as a result of a systematic survey. In this respect, e.g., today's lasered crystals might be "early bird" products in 3D, which, due to lack in resolution, contrast and color, remember to the stage of the invention of photography.

  19. 3D Printing and Its Urologic Applications.

    Science.gov (United States)

    Soliman, Youssef; Feibus, Allison H; Baum, Neil

    2015-01-01

    3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology.

  20. Expanding Geometry Understanding with 3D Printing

    Science.gov (United States)

    Cochran, Jill A.; Cochran, Zane; Laney, Kendra; Dean, Mandi

    2016-01-01

    With the rise of personal desktop 3D printing, a wide spectrum of educational opportunities has become available for educators to leverage this technology in their classrooms. Until recently, the ability to create physical 3D models was well beyond the scope, skill, and budget of many schools. However, since desktop 3D printers have become readily…

  1. 3D immersive and interactive learning

    CERN Document Server

    Cai, Yiyu

    2014-01-01

    This book reviews innovative uses of 3D for immersive and interactive learning, covering gifted programs, normal stream and special needs education. Reports on curriculum-based 3D learning in classrooms, and co-curriculum-based 3D student research projects.

  2. A workflow for 3D model building in fold-thrust belts

    Science.gov (United States)

    Watkins, Hannah; Bond, Clare; Butler, Rob

    2016-04-01

    3D geological models can be used in fold-thrust belts for many purposes such as analysing geometric variation in folds, kinematic modelling to restore fold surfaces, generating strain distribution maps and predicting fracture network distribution. We present a workflow for 3D model building using outcrop bedding data, geological maps, Digital Terrain Models (DTM's), air photos and field photographs. We discuss the challenges of software limitations for 3D kinematic restoration and forward modelling in fold-thrust belt settings. We then discuss the sensitivity of model building approaches to the application of 3D geological models in fold-thrust belts for further analysis e.g. changes in along strike fold geometry, restoration using kinematic and geomechanical modelling, strain prediction and Discrete Fracture Network (DFN) modelling. To create 3D models geological maps and bedding data are digitised using Move software; digitised maps and data are then draped onto DTM's. A series of closely spaced cross section lines are selected; the orientation of these is calculated by determining the average orientation of bedding dip direction. Fault and horizon line intersections, along with bedding data from within a narrow margin of the section lines are projected onto each cross section. Field photographs and sketches are integrated into the cross sections to determine thrust angles at the surface. Horizon lines are then constructed using bedding data. Displacement profiles for thrusts are plotted to ensure thrust displacements are valid with respect to neighbouring cross section interpretations; any discrepancies are alleviated by making minor adjustments to horizon and thrust lines, while ensuring that resultant cross section geometries still adhere to bedding data and other field observations. Once the cross sections have been finalised, 3D surfaces are created using the horizon and thrust line interpretations on each cross section. The simple curvature of 3D surfaces

  3. Fabrication of Nanostructured Poly-ε-caprolactone 3D Scaffolds for 3D Cell Culture Technology

    KAUST Repository

    Schipani, Rossana

    2015-04-21

    Tissue engineering is receiving tremendous attention due to the necessity to overcome the limitations related to injured or diseased tissues or organs. It is the perfect combination of cells and biomimetic-engineered materials. With the appropriate biochemical factors, it is possible to develop new effective bio-devices that are capable to improve or replace biological functions. Latest developments in microfabrication methods, employing mostly synthetic biomaterials, allow the production of three-dimensional (3D) scaffolds that are able to direct cell-to-cell interactions and specific cellular functions in order to drive tissue regeneration or cell transplantation. The presented work offers a rapid and efficient method of 3D scaffolds fabrication by using optical lithography and micro-molding techniques. Bioresorbable polymer poly-ε-caprolactone (PCL) was the material used thanks to its high biocompatibility and ability to naturally degrade in tissues. 3D PCL substrates show a particular combination in the designed length scale: cylindrical shaped pillars with 10μm diameter, 10μm height, arranged in a hexagonal lattice with spacing of 20μm were obtained. The sidewalls of the pillars were nanostructured by attributing a 3D architecture to the scaffold. The suitability of these devices as cell culture technology supports was evaluated by plating NIH/3T3 mouse embryonic fibroblasts and human Neural Stem Cells (hNSC) on them. Scanning Electron Microscopy (SEM) analysis was carried out in order to examine the micro- and nano-patterns on the surface of the supports. In addition, after seeding of cells, SEM and immunofluorescence characterization of the fabricated systems were performed to check adhesion, growth and proliferation. It was observed that cells grow and develop healthy on the bio-polymeric devices by giving rise to well-interconnected networks. 3D PCL nano-patterned pillared scaffold therefore may have considerable potential as effective tool for

  4. Quasi-3D Waveform Inversion for Velocity Structures and Source Process Analyses Using its Results

    Science.gov (United States)

    Hikima, K.; Koketsu, K.

    2007-12-01

    compare them with the models determined using the 1-D structures (Hikima and Koketsu, 2004). The synthesized waveforms in the 3-D structure better explain the observed waveforms than those in the 1-D structures. While the large slip area (asperity) of the mainshock is recovered at the shallow southern part of the northern subplane in the 1-D inversion result, the asperity of the 3-D inversion result is located on the deep central part of the northern subplane. Most of the aftershocks occurred around the asperity of the 3-D result. The asperity of the 3-D result is consistent with that of a previous study from geodetic data. In addition, the 3-D inversion result is in good agreement with the distribution of estimated strong motions in the source area. To examine the reason why the different slip distributions were recovered using the 1-D and 3-D structures, we performed synthetic comparisons. The variations of the Green's functions due to changes in the subfault depths were different between the 1-D and 3-D models, and this difference results in the difference of the two inversion results. Because the waveform difference is larger mostly in a later part, an inversion of body wave parts alone did not produce such difference, which we confirmed by a synthetic calculation. However, in some situation, we cannot extract clear body waves not contaminated by later phases. Therefore, a source process inversion should be performed using accurate Green's functions which include later phases based on well-calibrated 3-D velocity models.

  5. Using Ignorance in 3D Scene Understanding

    Directory of Open Access Journals (Sweden)

    Bogdan Harasymowicz-Boggio

    2014-01-01

    Full Text Available Awareness of its own limitations is a fundamental feature of the human sight, which has been almost completely omitted in computer vision systems. In this paper we present a method of explicitly using information about perceptual limitations of a 3D vision system, such as occluded areas, limited field of view, loss of precision along with distance increase, and imperfect segmentation for a better understanding of the observed scene. The proposed mechanism integrates metric and semantic inference using Dempster-Shafer theory, which makes it possible to handle observations that have different degrees and kinds of uncertainty. The system has been implemented and tested in a real indoor environment, showing the benefits of the proposed approach.

  6. Towards 3D Facial Reconstruction from Uncalibrated CCTV Footage

    NARCIS (Netherlands)

    van Dam, C.; Veldhuis, Raymond N.J.; Spreeuwers, Lieuwe Jan

    2012-01-01

    Facial comparison in 2D is an accepted method in law enforcement and forensic investigation, but pose variations, varying light conditions and low resolution video data can reduce the evidential value of the comparison. Some of these problems might be solved by comparing 3D face models: a face model

  7. Estimation of shape model parameters for 3D surfaces

    DEFF Research Database (Denmark)

    Erbou, Søren Gylling Hemmingsen; Darkner, Sune; Fripp, Jurgen;

    2008-01-01

    Statistical shape models are widely used as a compact way of representing shape variation. Fitting a shape model to unseen data enables characterizing the data in terms of the model parameters. In this paper a Gauss-Newton optimization scheme is proposed to estimate shape model parameters of 3D s...

  8. Towards 3D facial reconstruction from uncalibrated CCTV footage

    NARCIS (Netherlands)

    Dam, van Chris; Veldhuis, Raymond; Spreeuwers, Luuk

    2012-01-01

    Facial comparison in 2D is an accepted method in law enforcement and forensic investigation, but pose variations, varying light conditions and low resolution video data can reduce the evidential value of the comparison. Some of these problems might be solved by comparing 3D face models: a face model

  9. Wafer level 3-D ICs process technology

    CERN Document Server

    Tan, Chuan Seng; Reif, L Rafael

    2009-01-01

    This book focuses on foundry-based process technology that enables the fabrication of 3-D ICs. The core of the book discusses the technology platform for pre-packaging wafer lever 3-D ICs. However, this book does not include a detailed discussion of 3-D ICs design and 3-D packaging. This is an edited book based on chapters contributed by various experts in the field of wafer-level 3-D ICs process technology. They are from academia, research labs and industry.

  10. View-based 3-D object retrieval

    CERN Document Server

    Gao, Yue

    2014-01-01

    Content-based 3-D object retrieval has attracted extensive attention recently and has applications in a variety of fields, such as, computer-aided design, tele-medicine,mobile multimedia, virtual reality, and entertainment. The development of efficient and effective content-based 3-D object retrieval techniques has enabled the use of fast 3-D reconstruction and model design. Recent technical progress, such as the development of camera technologies, has made it possible to capture the views of 3-D objects. As a result, view-based 3-D object retrieval has become an essential but challenging res

  11. Investigating Mobile Stereoscopic 3D Touchscreen Interaction

    OpenAIRE

    Colley, Ashley; Hakkila, Jonna; SCHOENING, Johannes; Posti, Maaret

    2013-01-01

    3D output is no longer limited to large screens in cinemas or living rooms. Nowadays more and more mobile devices are equipped with autostereoscopic 3D (S3D) touchscreens. As a consequence interaction with 3D content now also happens whilst users are on the move. In this paper we carried out a user study with 27 participants to assess how mobile interaction, i.e. whilst walking, with mobile S3D devices, differs from interaction with 2D mobile touchscreens. We investigate the difference in tou...

  12. A New 3D Tool for Assessing the Accuracy of Bimaxillary Surgery: The OrthoGnathicAnalyser.

    Directory of Open Access Journals (Sweden)

    Frank Baan

    Full Text Available The purpose of this study was to present and validate an innovative semi-automatic approach to quantify the accuracy of the surgical outcome in relation to 3D virtual orthognathic planning among patients who underwent bimaxillary surgery.For the validation of this new semi-automatic approach, CBCT scans of ten patients who underwent bimaxillary surgery were acquired pre-operatively. Individualized 3D virtual operation plans were made for all patients prior to surgery. During surgery, the maxillary and mandibular segments were positioned as planned by using 3D milled interocclusal wafers. Consequently, post-operative CBCT scan were acquired. The 3D rendered pre- and postoperative virtual head models were aligned by voxel-based registration upon the anterior cranial base. To calculate the discrepancies between the 3D planning and the actual surgical outcome, the 3D planned maxillary and mandibular segments were segmented and superimposed upon the postoperative maxillary and mandibular segments. The translation matrices obtained from this registration process were translated into translational and rotational discrepancies between the 3D planning and the surgical outcome, by using the newly developed tool, the OrthoGnathicAnalyser. To evaluate the reproducibility of this method, the process was performed by two independent observers multiple times.Low intra-observer and inter-observer variations in measurement error (mean error 0.97 were found, supportive of the observer independent character of the OrthoGnathicAnalyser. The pitch of the maxilla and mandible showed the highest discrepancy between the 3D planning and the postoperative results, 2.72° and 2.75° respectively.This novel method provides a reproducible tool for the evaluation of bimaxillary surgery, making it possible to compare larger patient groups in an objective and time-efficient manner in order to optimize the current workflow in orthognathic surgery.

  13. A New 3D Tool for Assessing the Accuracy of Bimaxillary Surgery: The OrthoGnathicAnalyser.

    Science.gov (United States)

    Baan, Frank; Liebregts, Jeroen; Xi, Tong; Schreurs, Ruud; de Koning, Martien; Bergé, Stefaan; Maal, Thomas

    2016-01-01

    The purpose of this study was to present and validate an innovative semi-automatic approach to quantify the accuracy of the surgical outcome in relation to 3D virtual orthognathic planning among patients who underwent bimaxillary surgery. For the validation of this new semi-automatic approach, CBCT scans of ten patients who underwent bimaxillary surgery were acquired pre-operatively. Individualized 3D virtual operation plans were made for all patients prior to surgery. During surgery, the maxillary and mandibular segments were positioned as planned by using 3D milled interocclusal wafers. Consequently, post-operative CBCT scan were acquired. The 3D rendered pre- and postoperative virtual head models were aligned by voxel-based registration upon the anterior cranial base. To calculate the discrepancies between the 3D planning and the actual surgical outcome, the 3D planned maxillary and mandibular segments were segmented and superimposed upon the postoperative maxillary and mandibular segments. The translation matrices obtained from this registration process were translated into translational and rotational discrepancies between the 3D planning and the surgical outcome, by using the newly developed tool, the OrthoGnathicAnalyser. To evaluate the reproducibility of this method, the process was performed by two independent observers multiple times. Low intra-observer and inter-observer variations in measurement error (mean error 0.97) were found, supportive of the observer independent character of the OrthoGnathicAnalyser. The pitch of the maxilla and mandible showed the highest discrepancy between the 3D planning and the postoperative results, 2.72° and 2.75° respectively. This novel method provides a reproducible tool for the evaluation of bimaxillary surgery, making it possible to compare larger patient groups in an objective and time-efficient manner in order to optimize the current workflow in orthognathic surgery.

  14. Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion

    Science.gov (United States)

    Handy Turner, Tara

    2010-02-01

    From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.

  15. Web-based interactive visualization of 3D video mosaics using X3D standard

    Institute of Scientific and Technical Information of China (English)

    CHON Jaechoon; LEE Yang-Won; SHIBASAKI Ryosuke

    2006-01-01

    We present a method of 3D image mosaicing for real 3D representation of roadside buildings, and implement a Web-based interactive visualization environment for the 3D video mosaics created by 3D image mosaicing. The 3D image mosaicing technique developed in our previous work is a very powerful method for creating textured 3D-GIS data without excessive data processing like the laser or stereo system. For the Web-based open access to the 3D video mosaics, we build an interactive visualization environment using X3D, the emerging standard of Web 3D. We conduct the data preprocessing for 3D video mosaics and the X3D modeling for textured 3D data. The data preprocessing includes the conversion of each frame of 3D video mosaics into concatenated image files that can be hyperlinked on the Web. The X3D modeling handles the representation of concatenated images using necessary X3D nodes. By employing X3D as the data format for 3D image mosaics, the real 3D representation of roadside buildings is extended to the Web and mobile service systems.

  16. NASA 3D Models: Aqua

    Data.gov (United States)

    National Aeronautics and Space Administration — Aqua carries six state-of-the-art instruments to observe the Earth's oceans, atmosphere, land, ice and snow covers, and vegetation, providing high measurement...

  17. NASA 3D Models: ICESat

    Data.gov (United States)

    National Aeronautics and Space Administration — ICESat (Ice, Cloud, and land Elevation Satellite) is the benchmark Earth Observing System mission for measuring ice sheet mass balance, cloud and aerosol heights, as...

  18. NASA 3D Models: Aquarius

    Data.gov (United States)

    National Aeronautics and Space Administration — Aquarius is making NASA's first space-based global observations of ocean surface salinity, flying 657 kilometers (408 miles) above Earth in a sun-synchronous polar...

  19. NASA 3D Models: Aura

    Data.gov (United States)

    National Aeronautics and Space Administration — Aura observes the chemical content of the atmosphere to track the state of the ozone layer and the dispersion of airborne pollution. Polygons: 6 Vertices: 4

  20. NASA 3D Models: Terra

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA launched the Earth Observing System's flagship satellite Terra, named for Earth, on December 18, 1999. Terra has been collecting data about Earth's changing...

  1. NASA 3D Models: CALIPSO

    Data.gov (United States)

    National Aeronautics and Space Administration — The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite provides new insight into the role that clouds and atmospheric aerosols...

  2. User-centered 3D geovisualisation

    DEFF Research Database (Denmark)

    Nielsen, Anette Hougaard

    2004-01-01

    3D Geovisualisation is a multidisciplinary science mainly utilizing geographically related data, developing software systems for 3D visualisation and producing relevant models. In this paper the connection between geoinformation stored as 3D objects and the end user is of special interest....... In a broader perspective, the overall aim is to develop a language in 3D Geovisualisation gained through usability projects and the development of a theoretical background. A conceptual level of user-centered 3D Geovisualisation is introduced by applying a categorisation originating from Virtual Reality....... The conceptual level is used to structure and organise user-centered 3D Geovisualisation into four categories: representation, rendering, interface and interaction. The categories reflect a process of development of 3D Geovisualisation where objects can be represented verisimilar to the real world...

  3. 3D laptop for defense applications

    Science.gov (United States)

    Edmondson, Richard; Chenault, David

    2012-06-01

    Polaris Sensor Technologies has developed numerous 3D display systems using a US Army patented approach. These displays have been developed as prototypes for handheld controllers for robotic systems and closed hatch driving, and as part of a TALON robot upgrade for 3D vision, providing depth perception for the operator for improved manipulation and hazard avoidance. In this paper we discuss the prototype rugged 3D laptop computer and its applications to defense missions. The prototype 3D laptop combines full temporal and spatial resolution display with the rugged Amrel laptop computer. The display is viewed through protective passive polarized eyewear, and allows combined 2D and 3D content. Uses include robot tele-operation with live 3D video or synthetically rendered scenery, mission planning and rehearsal, enhanced 3D data interpretation, and simulation.

  4. Embedding objects during 3D printing to add new functionalities.

    Science.gov (United States)

    Yuen, Po Ki

    2016-07-01

    A novel method for integrating and embedding objects to add new functionalities during 3D printing based on fused deposition modeling (FDM) (also known as fused filament fabrication or molten polymer deposition) is presented. Unlike typical 3D printing, FDM-based 3D printing could allow objects to be integrated and embedded during 3D printing and the FDM-based 3D printed devices do not typically require any post-processing and finishing. Thus, various fluidic devices with integrated glass cover slips or polystyrene films with and without an embedded porous membrane, and optical devices with embedded Corning(®) Fibrance™ Light-Diffusing Fiber were 3D printed to demonstrate the versatility of the FDM-based 3D printing and embedding method. Fluid perfusion flow experiments with a blue colored food dye solution were used to visually confirm fluid flow and/or fluid perfusion through the embedded porous membrane in the 3D printed fluidic devices. Similar to typical 3D printed devices, FDM-based 3D printed devices are translucent at best unless post-polishing is performed and optical transparency is highly desirable in any fluidic devices; integrated glass cover slips or polystyrene films would provide a perfect optical transparent window for observation and visualization. In addition, they also provide a compatible flat smooth surface for biological or biomolecular applications. The 3D printed fluidic devices with an embedded porous membrane are applicable to biological or chemical applications such as continuous perfusion cell culture or biocatalytic synthesis but without the need for any post-device assembly and finishing. The 3D printed devices with embedded Corning(®) Fibrance™ Light-Diffusing Fiber would have applications in display, illumination, or optical applications. Furthermore, the FDM-based 3D printing and embedding method could also be utilized to print casting molds with an integrated glass bottom for polydimethylsiloxane (PDMS) device replication

  5. Simulating nanoparticle transport in 3D geometries with MNM3D

    Science.gov (United States)

    Bianco, Carlo; Tosco, Tiziana; Sethi, Rajandrea

    2017-04-01

    The application of NP transport to real cases, such as the design of a field-scale injection or the prediction of the long term fate of nanoparticles (NPs) in the environment, requires the support of mathematical tools to effectively assess the expected NP mobility at the field scale. In general, micro- and nanoparticle transport in porous media is controlled by particle-particle and particle-porous media interactions, which are in turn affected by flow velocity and pore water chemistry. During the injection, a strong perturbation of the flow field is induced around the well, and the NP transport is mainly controlled by the consequent sharp variation of pore-water velocity. Conversely, when the injection is stopped, the particles are transported solely due to the natural flow, and the influence of groundwater geochemistry (ionic strength, IS, in particular) on the particle behaviour becomes predominant. Pore-water velocity and IS are therefore important parameters influencing particle transport in groundwater, and have to be taken into account by the numerical codes used to simulate NP transport. Several analytical and numerical tools have been developed in recent years to model the transport of colloidal particles in simplified geometry and boundary conditions. For instance, the numerical tool MNMs was developed by the authors of this work to simulate colloidal transport in 1D Cartesian and radial coordinates. Only few simulation tools are instead available for 3D colloid transport, and none of them implements direct correlations accounting for variations of groundwater IS and flow velocity. In this work a new modelling tool, MNM3D (Micro and Nanoparticle transport Model in 3D geometries), is proposed for the simulation of injection and transport of nanoparticle suspensions in generic complex scenarios. MNM3D implements a new formulation to account for the simultaneous dependency of the attachment and detachment kinetic coefficients on groundwater IS and velocity

  6. 3D morphological measurement of whole slide histological vasculature reconstructions

    Science.gov (United States)

    Xu, Yiwen; Pickering, J. G.; Nong, Zengxuan; Ward, Aaron D.

    2016-03-01

    Properties of the microvasculature that contribute to tissue perfusion can be assessed using immunohistochemistry on 2D histology sections. However, the vasculature is inherently 3D and the ability to measure and visualize the vessel wall components in 3D will aid in detecting focal pathologies. Our objectives were (1) to develop a method for 3D measurement and visualization of microvasculature in 3D, (2) to compare the normal and regenerated post-ischemia mouse hind limb microvasculature, and (3) to compare the 2D and 3D vessel morphology measures. Vessels were stained for smooth muscle using 3,3'-Diaminobenzidine (DAB) immunostain for both normal (n = 6 mice) and regenerated vasculature (n = 5 mice). 2D vessel segmentations were reconstructed into 3D using landmark based registration. No substantial bias was found in the 2D measurements relative to 3D, but larger differences were observed for individual vessels oriented non-orthogonally to the plane of sectioning. A larger value of area, perimeter, and vessel wall thickness was found in the normal vasculature as compared to the regenerated vasculature, for both the 2D and 3D measurements (p < 0.01). Aggregated 2D measurements are sufficient for identifying morphological differences between groups of mice; however, one must interpret individual 2D measurements with caution if the vessel centerline direction is unknown. Visualization of 3D measurements permits the detection of localized vessel morphology aberrations that are not revealed by 2D measurements. With vascular measure visualization methodologies in 3D, we are now capable of locating focal pathologies on a whole slide level.

  7. The Depth Map Construction from a 3D Point Cloud

    OpenAIRE

    Chmelar Pavel; Beran Ladislav; Rejfek Lubos

    2016-01-01

    A depth map transforms 3D points into a 2D image and gives a different view of an observed scene. This paper deals with a depth map construction. It describes the whole process, how to transform any 3D point cloud into a 2D depth map. The described method uses 3D rotation matrixes and the line equation. This process allows to create the desired view from arbitrary point and rotation in an exploration space. Using of a depth map allows to apply image processing methods on depth data to get add...

  8. 3-D Radiative Transfer Modeling of Structured Winds in Massive Hot Stars with Wind3D

    CERN Document Server

    Lobel, A; Blomme, R

    2010-01-01

    We develop 3-D models of the structured winds of massive hot stars with the Wind3D radiative transfer (RT) code. We investigate the physical properties of large-scale structures observed in the wind of the B-type supergiant HD 64760 with detailed line profile fits to Discrete Absorption Components (DACs) and rotational modulations observed with IUE in Si IV {\\lambda}1395. We develop parameterized input models Wind3D with large-scale equatorial wind density- and velocity-structures, or so-called `Co-rotating Interaction Regions' (CIRs) and `Rotational Modulation Regions' (RMRs). The parameterized models offer important advantages for high-performance RT calculations over ab-initio hydrodynamic input models. The acceleration of the input model calculations permits us to simulate and investigate a wide variety of physical conditions in the extended winds of massive hot stars. The new modeling method is very flexible for constraining the dynamic and geometric wind properties of RMRs in HD 64760. We compute that t...

  9. 3-D analysis of grain selection process

    Science.gov (United States)

    Arao, Tomoka; Esaka, Hisao; Shinozuka, Kei

    2012-07-01

    It is known that the grain selection plays an important role in the manufacturing process for turbine blades. There are some analytical or numerical models to treat the grain selection. However, the detailed mechanism of grain selection in 3-D is still uncertain. Therefore, an experimental research work using Al-Cu alloy has been carried out in order to understand the grain selection in 3-D.A mold made by Al2O3 was heated to 600 °C ( = liquids temperature of the alloy) and was set on a water-colded copper chill plate. Molten Al-20 wt%Cu alloy was cast into the mold and unidirectional solidified ingot was prepared. The size of ingot was approximately phi25×65H mm. To obtain the thermal history, 4 thermocouples were placed in the mold. It is confirmed that the alloy solidified unidirectionally from bottom to top. Solidified structure on a longitudinal cross section was observed and unidirectional solidification up to 40 mm was ensured. EBSD analysis has been performed on horizontal cross section at an interval of ca.200 μm. These observations were carried out 7-5 mm from the bottom surface. Crystallographic orientation of primary Al phase and size of solidified grains were characterized. A large solidified grain, the crystallographic orientation of which is approximately along heat flow direction, is observed near the lowest cross section. The area of grain decreased as solidification proceeded. On the other hand, it is found that the area of grain increased.

  10. FROM 3D MODEL DATA TO SEMANTICS

    Directory of Open Access Journals (Sweden)

    My Abdellah Kassimi

    2012-01-01

    Full Text Available The semantic-based 3D models retrieval systems have become necessary since the increase of 3D modelsdatabases. In this paper, we propose a new method for the mapping problem between 3D model data andsemantic data involved in semantic based retrieval for 3D models given by polygonal meshes. First, wefocused on extracting invariant descriptors from the 3D models and analyzing them to efficient semanticannotation and to improve the retrieval accuracy. Selected shape descriptors provide a set of termscommonly used to describe visually a set of objects using linguistic terms and are used as semanticconcept to label 3D model. Second, spatial relationship representing directional, topological anddistance relationships are used to derive other high-level semantic features and to avoid the problem ofautomatic 3D model annotation. Based on the resulting semantic annotation and spatial concepts, anontology for 3D model retrieval is constructed and other concepts can be inferred. This ontology is usedto find similar 3D models for a given query model. We adopted the query by semantic example approach,in which the annotation is performed mostly automatically. The proposed method is implemented in our3D search engine (SB3DMR, tested using the Princeton Shape Benchmark Database.

  11. 3D change detection - Approaches and applications

    Science.gov (United States)

    Qin, Rongjun; Tian, Jiaojiao; Reinartz, Peter

    2016-12-01

    Due to the unprecedented technology development of sensors, platforms and algorithms for 3D data acquisition and generation, 3D spaceborne, airborne and close-range data, in the form of image based, Light Detection and Ranging (LiDAR) based point clouds, Digital Elevation Models (DEM) and 3D city models, become more accessible than ever before. Change detection (CD) or time-series data analysis in 3D has gained great attention due to its capability of providing volumetric dynamics to facilitate more applications and provide more accurate results. The state-of-the-art CD reviews aim to provide a comprehensive synthesis and to simplify the taxonomy of the traditional remote sensing CD techniques, which mainly sit within the boundary of 2D image/spectrum analysis, largely ignoring the particularities of 3D aspects of the data. The inclusion of 3D data for change detection (termed 3D CD), not only provides a source with different modality for analysis, but also transcends the border of traditional top-view 2D pixel/object-based analysis to highly detailed, oblique view or voxel-based geometric analysis. This paper reviews the recent developments and applications of 3D CD using remote sensing and close-range data, in support of both academia and industry researchers who seek for solutions in detecting and analyzing 3D dynamics of various objects of interest. We first describe the general considerations of 3D CD problems in different processing stages and identify CD types based on the information used, being the geometric comparison and geometric-spectral analysis. We then summarize relevant works and practices in urban, environment, ecology and civil applications, etc. Given the broad spectrum of applications and different types of 3D data, we discuss important issues in 3D CD methods. Finally, we present concluding remarks in algorithmic aspects of 3D CD.

  12. Automatic respiration tracking for radiotherapy using optical 3D camera

    Science.gov (United States)

    Li, Tuotuo; Geng, Jason; Li, Shidong

    2013-03-01

    Rapid optical three-dimensional (O3D) imaging systems provide accurate digitized 3D surface data in real-time, with no patient contact nor radiation. The accurate 3D surface images offer crucial information in image-guided radiation therapy (IGRT) treatments for accurate patient repositioning and respiration management. However, applications of O3D imaging techniques to image-guided radiotherapy have been clinically challenged by body deformation, pathological and anatomical variations among individual patients, extremely high dimensionality of the 3D surface data, and irregular respiration motion. In existing clinical radiation therapy (RT) procedures target displacements are caused by (1) inter-fractional anatomy changes due to weight, swell, food/water intake; (2) intra-fractional variations from anatomy changes within any treatment session due to voluntary/involuntary physiologic processes (e.g. respiration, muscle relaxation); (3) patient setup misalignment in daily reposition due to user errors; and (4) changes of marker or positioning device, etc. Presently, viable solution is lacking for in-vivo tracking of target motion and anatomy changes during the beam-on time without exposing patient with additional ionized radiation or high magnet field. Current O3D-guided radiotherapy systems relay on selected points or areas in the 3D surface to track surface motion. The configuration of the marks or areas may change with time that makes it inconsistent in quantifying and interpreting the respiration patterns. To meet the challenge of performing real-time respiration tracking using O3D imaging technology in IGRT, we propose a new approach to automatic respiration motion analysis based on linear dimensionality reduction technique based on PCA (principle component analysis). Optical 3D image sequence is decomposed with principle component analysis into a limited number of independent (orthogonal) motion patterns (a low dimension eigen-space span by eigen-vectors). New

  13. Lattice radial quantization: 3D Ising

    Energy Technology Data Exchange (ETDEWEB)

    Brower, R.C., E-mail: brower@bu.edu [Department of Physics, Boston University, Boston, MA 02215 (United States); Fleming, G.T., E-mail: george.fleming@yale.edu [Department of Physics, Yale University, New Haven, CT 06520 (United States); Neuberger, H., E-mail: neuberg@physics.rutgers.edu [Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08855 (United States)

    2013-04-25

    Lattice radial quantization is introduced as a nonperturbative method intended to numerically solve Euclidean conformal field theories that can be realized as fixed points of known Lagrangians. As an example, we employ a lattice shaped as a cylinder with a 2D Icosahedral cross-section to discretize dilatations in the 3D Ising model. Using the integer spacing of the anomalous dimensions of the first two descendants (l=1,2), we obtain an estimate for η=0.034(10). We also observed small deviations from integer spacing for the 3rd descendant, which suggests that a further improvement of our radial lattice action will be required to guarantee conformal symmetry at the Wilson–Fisher fixed point in the continuum limit.

  14. Dynamics of 3D isolated thermal filaments

    CERN Document Server

    Walkden, N R; Militello, F; Omotani, J T

    2016-01-01

    Simulations have been carried out to establish how electron thermal physics, introduced in the form of a dynamic electron temperature, affects isolated filament motion and dynamics in 3D. It is found that thermal effects impact filament motion in two major ways when the filament has a significant temperature perturbation compared to its density perturbation: They lead to a strong increase in filament propagation in the bi-normal direction and a significant decrease in net radial propagation. Both effects arise from the temperature dependence of the sheath current which leads to a non-uniform floating potential, with the latter effect supplemented by faster pressure loss. The reduction in radial velocity can only occur when the filament cross-section loses angular symmetry. The behaviour is observed across different filament sizes and suggests that filaments with much larger temperature perturbations than density perturbations are more strongly confined to the near SOL region.

  15. Radiative Transfer in 3D Numerical Simulations

    CERN Document Server

    Stein, R; Stein, Robert; Nordlund, Aake

    2002-01-01

    We simulate convection near the solar surface, where the continuum optical depth is of order unity. Hence, to determine the radiative heating and cooling in the energy conservation equation, we must solve the radiative transfer equation (instead of using the diffusion or optically thin cooling approximations). A method efficient enough to calculate the radiation for thousands of time steps is needed. We assume LTE and a non-gray opacity grouped into 4 bins according to strength. We perform a formal solution of the Feautrier equation along a vertical and four straight, slanted, rays (at four azimuthal angles which are rotated 15 deg. every time step). We present details of our method. We also give some results: comparing simulated and observed line profiles for the Sun, showing the importance of 3D transfer for the structure of the mean atmosphere and the eigenfrequencies of p-modes, illustrating Stokes profiles for micropores, and analyzing the effect of radiation on p-mode asymmetries.

  16. Dynamics of 3D isolated thermal filaments

    Science.gov (United States)

    Walkden, N. R.; Easy, L.; Militello, F.; Omotani, J. T.

    2016-11-01

    Simulations have been carried out to establish how electron thermal physics, introduced in the form of a dynamic electron temperature, affects isolated filament motion and dynamics in 3D. It is found that thermal effects impact filament motion in two major ways when the pressure perturbation within the filament is supported primarily through a temperature increase as opposed to density: they lead to a strong increase in filament propagation in the bi-normal direction and a significant decrease in net radial propagation. Both effects arise from the temperature dependence of the sheath current which leads to a non-uniform floating potential, with the latter effect supplemented by faster pressure loss. The reduction in radial velocity can only occur when the filament cross-section loses angular symmetry. The behaviour is observed across different filament sizes and suggests that filaments with much larger temperature perturbations than density perturbations are more strongly confined to the near SOL region.

  17. 3D Printed Graphene Based Energy Storage Devices

    Science.gov (United States)

    Foster, Christopher W.; Down, Michael P.; Zhang, Yan; Ji, Xiaobo; Rowley-Neale, Samuel J.; Smith, Graham C.; Kelly, Peter J.; Banks, Craig E.

    2017-03-01

    3D printing technology provides a unique platform for rapid prototyping of numerous applications due to its ability to produce low cost 3D printed platforms. Herein, a graphene-based polylactic acid filament (graphene/PLA) has been 3D printed to fabricate a range of 3D disc electrode (3DE) configurations using a conventional RepRap fused deposition moulding (FDM) 3D printer, which requires no further modification/ex-situ curing step. To provide proof-of-concept, these 3D printed electrode architectures are characterised both electrochemically and physicochemically and are advantageously applied as freestanding anodes within Li-ion batteries and as solid-state supercapacitors. These freestanding anodes neglect the requirement for a current collector, thus offering a simplistic and cheaper alternative to traditional Li-ion based setups. Additionally, the ability of these devices’ to electrochemically produce hydrogen via the hydrogen evolution reaction (HER) as an alternative to currently utilised platinum based electrodes (with in electrolysers) is also performed. The 3DE demonstrates an unexpectedly high catalytic activity towards the HER (‑0.46 V vs. SCE) upon the 1000th cycle, such potential is the closest observed to the desired value of platinum at (‑0.25 V vs. SCE). We subsequently suggest that 3D printing of graphene-based conductive filaments allows for the simple fabrication of energy storage devices with bespoke and conceptual designs to be realised.

  18. Application of 3D Visual Techniques in Daliuta Coal Mine

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    3D visualization is one of major problems in "Digital Mine" theory and its technological research field. Through the observation of 3D geological models, spatial structural information, connected with the information of production management hidden in geological data, could be detected. In order to meet the requirement of more efficient coal exploration, a case study of geological characters of the Daliuta Coal Mine is presented in which 3D visual models of the ground surface and geologic bodies are established on the basis of data models and data structures of 3D geology modeling. The main conclusions of this study are as follows: (1) Through analysis and organization of spatial discrete data, the drillhole database is designed with the data of the Daliuta mine; the connections amomg drillhole data are realized and displayed in a 3D environment. (2) Combining real data of the Daliuta mine, drillhole visualization is realized in a 3D environment by using the CoalMiner system. (3) The ground surface modeling of the Daliuta coal mine adopted a surface-data model and a TIN data structure. (4) 3D models of coal seams and rock formations of the Daliuta mine are established, which provide a method for the simulation of complex surfaces of geologic bodies. In the end, the models are applied to the Daliuta coal mine and the result shows that better geological effects are obtained.

  19. 3D Printed Graphene Based Energy Storage Devices.

    Science.gov (United States)

    Foster, Christopher W; Down, Michael P; Zhang, Yan; Ji, Xiaobo; Rowley-Neale, Samuel J; Smith, Graham C; Kelly, Peter J; Banks, Craig E

    2017-03-03

    3D printing technology provides a unique platform for rapid prototyping of numerous applications due to its ability to produce low cost 3D printed platforms. Herein, a graphene-based polylactic acid filament (graphene/PLA) has been 3D printed to fabricate a range of 3D disc electrode (3DE) configurations using a conventional RepRap fused deposition moulding (FDM) 3D printer, which requires no further modification/ex-situ curing step. To provide proof-of-concept, these 3D printed electrode architectures are characterised both electrochemically and physicochemically and are advantageously applied as freestanding anodes within Li-ion batteries and as solid-state supercapacitors. These freestanding anodes neglect the requirement for a current collector, thus offering a simplistic and cheaper alternative to traditional Li-ion based setups. Additionally, the ability of these devices' to electrochemically produce hydrogen via the hydrogen evolution reaction (HER) as an alternative to currently utilised platinum based electrodes (with in electrolysers) is also performed. The 3DE demonstrates an unexpectedly high catalytic activity towards the HER (-0.46 V vs. SCE) upon the 1000th cycle, such potential is the closest observed to the desired value of platinum at (-0.25 V vs. SCE). We subsequently suggest that 3D printing of graphene-based conductive filaments allows for the simple fabrication of energy storage devices with bespoke and conceptual designs to be realised.

  20. De la manipulation des images 3D

    Directory of Open Access Journals (Sweden)

    Geneviève Pinçon

    2012-04-01

    Full Text Available Si les technologies 3D livrent un enregistrement précis et pertinent des graphismes pariétaux, elles offrent également des applications particulièrement intéressantes pour leur analyse. À travers des traitements sur nuage de points et des simulations, elles autorisent un large éventail de manipulations touchant autant à l’observation qu’à l’étude des œuvres pariétales. Elles permettent notamment une perception affinée de leur volumétrie, et deviennent des outils de comparaison de formes très utiles dans la reconstruction des chronologies pariétales et dans l’appréhension des analogies entre différents sites. Ces outils analytiques sont ici illustrés par les travaux originaux menés sur les sculptures pariétales des abris du Roc-aux-Sorciers (Angles-sur-l’Anglin, Vienne et de la Chaire-à-Calvin (Mouthiers-sur-Boëme, Charente.If 3D technologies allow an accurate and relevant recording of rock art, they also offer several interesting applications for its analysis. Through spots clouds treatments and simulations, they permit a wide range of manipulations concerning figurations observation and study. Especially, they allow a fine perception of their volumetry. They become efficient tools for forms comparisons, very useful in the reconstruction of graphic ensemble chronologies and for inter-sites analogies. These analytical tools are illustrated by the original works done on the sculptures of Roc-aux-Sorciers (Angles-sur-l’Anglin, Vienne and Chaire-à-Calvin (Mouthiers-sur-Boëme, Charente rock-shelters.

  1. 3D Systems” ‘Stuck in the Middle’ of the 3D Printer Boom?

    NARCIS (Netherlands)

    A. Hoffmann (Alan)

    2014-01-01

    textabstract3D Systems, the pioneer of 3D printing, predicted a future where "kids from 8 to 80" could design and print their ideas at home. By 2013, 9 years after the creation of the first working 3D printer, there were more than 30 major 3D printing companies competing for market share. 3DS and it

  2. 3D Systems” ‘Stuck in the Middle’ of the 3D Printer Boom?

    NARCIS (Netherlands)

    A. Hoffmann (Alan)

    2014-01-01

    textabstract3D Systems, the pioneer of 3D printing, predicted a future where "kids from 8 to 80" could design and print their ideas at home. By 2013, 9 years after the creation of the first working 3D printer, there were more than 30 major 3D printing companies competing for market share. 3DS and

  3. Observer-based H-infinity output feedback control with feedback gain and observer gain variations for Delta operator system

    Institute of Scientific and Technical Information of China (English)

    Ruiquan LIN; Fuwen YANG; Renchong PENG

    2009-01-01

    Considering that the controller feedback gain and the observer gain are of additive norm-bounded variations, a design method of observer-based H-infinity output feedback controller for uncertain Delta operator systems is proposed in this paper. A sufficient condition of such controllers is presented in linear matrix inequality (LMI) forms. A numerical example is then given to illustrate the effectiveness of this method, that is, the obtained controller guarantees the closed-loop system asymptotically stable and the expected H-infinity performance even if the controller feedback gain and the observer gain are varied.

  4. Stability Criteria of 3D Inviscid Shears

    CERN Document Server

    Li, Y Charles

    2009-01-01

    The classical plane Couette flow, plane Poiseuille flow, and pipe Poiseuille flow share some universal 3D steady coherent structure in the form of "streak-roll-critical layer". As the Reynolds number approaches infinity, the steady coherent structure approaches a 3D limiting shear of the form ($U(y,z), 0, 0$) in velocity variables. All such 3D shears are steady states of the 3D Euler equations. This raises the importance of investigating the stability of such inviscid 3D shears in contrast to the classical Rayleigh theory of inviscid 2D shears. Several general criteria of stability for such inviscid 3D shears are derived. In the Appendix, an argument is given to show that a 2D limiting shear can only be the classical laminar shear.

  5. 3D-tulostus : case Printrbot

    OpenAIRE

    Arvekari, Lassi

    2013-01-01

    Opinnäytetyön tavoitteena on selvittää 3D-tulostustekniikan perusteita ja 3D-tulostuksen nykytilannetta. 3D-tulostukseen sopivien mallien luomista tutkitaan ja mallin tekemiseen on etsitty toimivia ohjesääntöjä. Tärkeä osa työtä on tutkia mitä vaiheita 3D-tulostimen hankinnassa kotikäyttöön tulee vastaan. Käytännön kokeita varten opinnäytetyössä on case Printrbot, jossa on tutustuttu edulliseen 3D-tulostuslaitteeseen kokoonpanosta lähtien. Työn kuluessa selvisi että edulliset 3D-tulos...

  6. Modeling Three-Dimensional Shock Initiation of PBX 9501 in ALE3D

    Energy Technology Data Exchange (ETDEWEB)

    Leininger, L; Springer, H K; Mace, J; Mas, E

    2008-07-08

    A recent SMIS (Specific Munitions Impact Scenario) experimental series performed at Los Alamos National Laboratory has provided 3-dimensional shock initiation behavior of the HMX-based heterogeneous high explosive, PBX 9501. A series of finite element impact calculations have been performed in the ALE3D [1] hydrodynamic code and compared to the SMIS results to validate and study code predictions. These SMIS tests used a powder gun to shoot scaled NATO standard fragments into a cylinder of PBX 9501, which has a PMMA case and a steel impact cover. This SMIS real-world shot scenario creates a unique test-bed because (1) SMIS tests facilitate the investigation of 3D Shock to Detonation Transition (SDT) within the context of a considerable suite of diagnostics, and (2) many of the fragments arrive at the impact plate off-center and at an angle of impact. A particular goal of these model validation experiments is to demonstrate the predictive capability of the ALE3D implementation of the Tarver-Lee Ignition and Growth reactive flow model [2] within a fully 3-dimensional regime of SDT. The 3-dimensional Arbitrary Lagrange Eulerian (ALE) hydrodynamic model in ALE3D applies the Ignition and Growth (I&G) reactive flow model with PBX 9501 parameters derived from historical 1-dimensional experimental data. The model includes the off-center and angle of impact variations seen in the experiments. Qualitatively, the ALE3D I&G calculations reproduce observed 'Go/No-Go' 3D Shock to Detonation Transition (SDT) reaction in the explosive, as well as the case expansion recorded by a high-speed optical camera. Quantitatively, the calculations show good agreement with the shock time of arrival at internal and external diagnostic pins. This exercise demonstrates the utility of the Ignition and Growth model applied for the response of heterogeneous high explosives in the SDT regime.

  7. Strategy and software for the statistical spatial analysis of 3D intracellular distributions.

    Science.gov (United States)

    Biot, Eric; Crowell, Elizabeth; Burguet, Jasmine; Höfte, Herman; Vernhettes, Samantha; Andrey, Philippe

    2016-07-01

    The localization of proteins in specific domains or compartments in the 3D cellular space is essential for many fundamental processes in eukaryotic cells. Deciphering spatial organization principles within cells is a challenging task, in particular because of the large morphological variations between individual cells. We present here an approach for normalizing variations in cell morphology and for statistically analyzing spatial distributions of intracellular compartments from collections of 3D images. The method relies on the processing and analysis of 3D geometrical models that are generated from image stacks and that are used to build representations at progressively increasing levels of integration, ultimately revealing statistical significant traits of spatial distributions. To make this methodology widely available to end-users, we implemented our algorithmic pipeline into a user-friendly, multi-platform, and freely available software. To validate our approach, we generated 3D statistical maps of endomembrane compartments at subcellular resolution within an average epidermal root cell from collections of image stacks. This revealed unsuspected polar distribution patterns of organelles that were not detectable in individual images. By reversing the classical 'measure-then-average' paradigm, one major benefit of the proposed strategy is the production and display of statistical 3D representations of spatial organizations, thus fully preserving the spatial dimension of image data and at the same time allowing their integration over individual observations. The approach and software are generic and should be of general interest for experimental and modeling studies of spatial organizations at multiple scales (subcellular, cellular, tissular) in biological systems.

  8. ERP system for 3D printing industry

    Directory of Open Access Journals (Sweden)

    Deaky Bogdan

    2017-01-01

    Full Text Available GOCREATE is an original cloud-based production management and optimization service which helps 3D printing service providers to use their resources better. The proposed Enterprise Resource Planning system can significantly increase income through improved productivity. With GOCREATE, the 3D printing service providers get a much higher production efficiency at a much lower licensing cost, to increase their competitiveness in the fast growing 3D printing market.

  9. Reconhecimento de faces 3D com Kinect

    OpenAIRE

    Cardia Neto, João Baptista [UNESP

    2014-01-01

    For person identification, facil recognition has several advantages over other biometric traits due mostly to its high universelly, collectability, and acceptability. When dealing with 2D face images several problems arise related to pose, illumination, and facial expressions. To increase the performance of facial recognition, 3D mehtods have been proposed and developedm since working with 3D objects allow us to handle better the aforementioned problems. With 3D object, it is possible to rota...

  10. Ultrasonic Sensor Based 3D Mapping & Localization

    Directory of Open Access Journals (Sweden)

    Shadman Fahim Ahmad

    2016-04-01

    Full Text Available This article provides a basic level introduction to 3D mapping using sonar sensors and localization. It describes the methods used to construct a low-cost autonomous robot along with the hardware and software used as well as an insight to the background of autonomous robotic 3D mapping and localization. We have also given an overview to what the future prospects of the robot may hold in 3D based mapping.

  11. Present day sea level changes: observation and causes; Les variations actuelles du niveau de la mer: observations et causes

    Energy Technology Data Exchange (ETDEWEB)

    Lombard, A

    2005-11-15

    Whereas sea level has changed little over the last 2000 years, it has risen at a rate of about 2 mm/year during the 20. century. This unexpected sea level rise has been attributed to the anthropogenic global warming, recorded over several decades. Sea level variations have been measured globally and precisely for about 12 years due to satellite altimeter missions Topex/Poseidon and Jason-1. These observations indicate a global mean sea level rise of about 3 mm/year since 1993, a value significantly larger than observed during previous decades. Recent observations have allowed us to quantify the various climatic factors contributing to observed sea level change: thermal expansion of sea water due to ocean warming, melting of mountain glaciers and ice sheets, and changes in the land water reservoirs. A water budget based on these new observations allows us to partly explain the observed sea level rise. In particular, we show that the thermal expansion explains only 25% of the secular sea level rise as recorded by tide-gauges over the last 50 years, while it contributes about 50% of sea level rise observed over the last decade. Meanwhile, recent studies show that glacier and ice sheet melting could contribute the equivalent of 1 mm/year in sea level rise over the last decade. In addition, the high regional variability of sea level trends revealed by satellite altimetry is mainly due to thermal expansion. There is also an important decadal spatio-temporal variability in the ocean thermal expansion over the last 50 years, which seems to be controlled by natural climate fluctuations. We question for the first time the link between the decadal fluctuations in the ocean thermal expansion and in the land reservoirs, and indeed their climatic contribution to sea level change. Finally a preliminary analysis of GRACE spatial gravimetric observations over the oceans allows us to estimate the seasonal variations in mean sea level due to ocean water mass balance variations

  12. Discrete elements for 3D microfluidics.

    Science.gov (United States)

    Bhargava, Krisna C; Thompson, Bryant; Malmstadt, Noah

    2014-10-21

    Microfluidic systems are rapidly becoming commonplace tools for high-precision materials synthesis, biochemical sample preparation, and biophysical analysis. Typically, microfluidic systems are constructed in monolithic form by means of microfabrication and, increasingly, by additive techniques. These methods restrict the design and assembly of truly complex systems by placing unnecessary emphasis on complete functional integration of operational elements in a planar environment. Here, we present a solution based on discrete elements that liber