WorldWideScience

Sample records for 3d numerical simulations

  1. Numerical Simulation of 3-D Wave Crests

    Institute of Scientific and Technical Information of China (English)

    YU Dingyong; ZHANG Hanyuan

    2003-01-01

    A clear definition of 3-D wave crest and a description of the procedures to detect the boundary of wave crest are presented in the paper. By using random wave theory and directional wave spectrum, a MATLAB-platformed program is designed to simulate random wave crests for various directional spectral conditions in deep water. Statistics of wave crests with different directional spreading parameters and different directional functions are obtained and discussed.

  2. Radiative Transfer in 3D Numerical Simulations

    CERN Document Server

    Stein, R; Stein, Robert; Nordlund, Aake

    2002-01-01

    We simulate convection near the solar surface, where the continuum optical depth is of order unity. Hence, to determine the radiative heating and cooling in the energy conservation equation, we must solve the radiative transfer equation (instead of using the diffusion or optically thin cooling approximations). A method efficient enough to calculate the radiation for thousands of time steps is needed. We assume LTE and a non-gray opacity grouped into 4 bins according to strength. We perform a formal solution of the Feautrier equation along a vertical and four straight, slanted, rays (at four azimuthal angles which are rotated 15 deg. every time step). We present details of our method. We also give some results: comparing simulated and observed line profiles for the Sun, showing the importance of 3D transfer for the structure of the mean atmosphere and the eigenfrequencies of p-modes, illustrating Stokes profiles for micropores, and analyzing the effect of radiation on p-mode asymmetries.

  3. Numerical Relativity Towards Simulations of 3D Black Hole Coalescence

    CERN Document Server

    Seidel, E

    1998-01-01

    I review recent developments in numerical relativity, focussing on progress made in 3D black hole evolution. Progress in development of black hole initial data, apparent horizon boundary conditions, adaptive mesh refinement, and characteristic evolution is highlighted, as well as full 3D simulations of colliding and distorted black holes. For true 3D distorted holes, with Cauchy evolution techniques, it is now possible to extract highly accurate, nonaxisymmetric waveforms from fully nonlinear simulations, which are verified by comparison to pertubration theory, and with characteristic techniques extremely long term evolutions of 3D black holes are now possible. I also discuss a new code designed for 3D numerical relativity, called Cactus, that will be made public.

  4. 3D numerical simulation of transient processes in hydraulic turbines

    Energy Technology Data Exchange (ETDEWEB)

    Cherny, S; Chirkov, D; Lapin, V; Eshkunova, I [Institute of Computational Technologies SB RAS Acad. Lavrentjev avenue 6, Novosibirsk, 630090 (Russian Federation); Bannikov, D; Avdushenko, A [Department of Mechanics and Mathematics, Novosibirsk State University Pirogov st. 2, Novosibirsk, 630090 (Russian Federation); Skorospelov, V, E-mail: chirkov@ict.nsc.r [Institute of Mathematics SB RAS Acad. Koptug avenue 4, Novosibirsk, 630090 (Russian Federation)

    2010-08-15

    An approach for numerical simulation of 3D hydraulic turbine flows in transient operating regimes is presented. The method is based on a coupled solution of incompressible RANS equations, runner rotation equation, and water hammer equations. The issue of setting appropriate boundary conditions is considered in detail. As an illustration, the simulation results for runaway process are presented. The evolution of vortex structure and its effect on computed runaway traces are analyzed.

  5. 3D numerical simulation of transient processes in hydraulic turbines

    Science.gov (United States)

    Cherny, S.; Chirkov, D.; Bannikov, D.; Lapin, V.; Skorospelov, V.; Eshkunova, I.; Avdushenko, A.

    2010-08-01

    An approach for numerical simulation of 3D hydraulic turbine flows in transient operating regimes is presented. The method is based on a coupled solution of incompressible RANS equations, runner rotation equation, and water hammer equations. The issue of setting appropriate boundary conditions is considered in detail. As an illustration, the simulation results for runaway process are presented. The evolution of vortex structure and its effect on computed runaway traces are analyzed.

  6. Advances in the numerical simulation of 3D FSW processes

    OpenAIRE

    Agelet de Saracibar Bosch, Carlos; Chiumenti, Michèle; Cervera Ruiz, Miguel; Dialami, Narges; Santiago, Diego de; Lombera, Guillermo

    2011-01-01

    This work deals with the computational modeling and numerical simulation of 3D Friction Stir Welding (FSW) processes. Eulerian and ALE formulations have been used to solve the quasi-static thermal transient governing equations. Mixed P2/P1/P2+SUPG and subgrid-scale stabilized P1/P1/P1 velocity/pressure/temperature elements have been implemented. Norton-Hoff and Sheppard-Wright rigid thermoplastic material models have been considered. Computational visualization techniques using tracers have b...

  7. 3D numerical simulation and analysis of railgun gouging mechanism

    Institute of Scientific and Technical Information of China (English)

    Jin-guo WU; Bo TANG; Qing-hua LIN; Hai-yuan LI; Bao-ming LI

    2016-01-01

    A gouging phenomenon with a hypervelocity sliding electrical contact in railgun not only shortens the rail lifetime but also affects the interior ballistic performance. In this paper, a 3-D numerical model was introduced to simulate and analyze the generation mechanism and evolution of the rail gouging phenomenon. The results show that a rail surface bulge is an important factor to induce gouging. High density and high pressure material flow on the contact surface, obliquely extruded into the rail when accelerating the armature to a high velocity, can produce gouging. Both controlling the bulge size to a certain range and selecting suitable materials for rail surface coating will suppress the formation of gouging. The numerical simulation had a good agreement with experiments, which validated the computing model and methodology are reliable.

  8. 3D numerical simulation and analysis of railgun gouging mechanism

    Directory of Open Access Journals (Sweden)

    Jin-guo Wu

    2016-04-01

    Full Text Available A gouging phenomenon with a hypervelocity sliding electrical contact in railgun not only shortens the rail lifetime but also affects the interior ballistic performance. In this paper, a 3-D numerical model was introduced to simulate and analyze the generation mechanism and evolution of the rail gouging phenomenon. The results show that a rail surface bulge is an important factor to induce gouging. High density and high pressure material flow on the contact surface, obliquely extruded into the rail when accelerating the armature to a high velocity, can produce gouging. Both controlling the bulge size to a certain range and selecting suitable materials for rail surface coating will suppress the formation of gouging. The numerical simulation had a good agreement with experiments, which validated the computing model and methodology are reliable.

  9. Using 3-D Numerical Weather Data in Piloted Simulations

    Science.gov (United States)

    Daniels, Taumi S.

    2016-01-01

    This report describes the process of acquiring and using 3-D numerical model weather data sets in NASA Langley's Research Flight Deck (RFD). A set of software tools implement the process and can be used for other purposes as well. Given time and location information of a weather phenomenon of interest, the user can download associated numerical weather model data. These data are created by the National Oceanic and Atmospheric Administration (NOAA) High Resolution Rapid Refresh (HRRR) model, and are then processed using a set of Mathworks' Matlab(TradeMark) scripts to create the usable 3-D weather data sets. Each data set includes radar re ectivity, water vapor, component winds, temperature, supercooled liquid water, turbulence, pressure, altitude, land elevation, relative humidity, and water phases. An open-source data processing program, wgrib2, is available from NOAA online, and is used along with Matlab scripts. These scripts are described with sucient detail to make future modi cations. These software tools have been used to generate 3-D weather data for various RFD experiments.

  10. 3-D numerical simulations of coronal loops oscillations

    Directory of Open Access Journals (Sweden)

    M. Selwa

    2009-10-01

    Full Text Available We present numerical results of 3-D MHD model of a dipole active region field containing a loop with a higher density than its surroundings. We study different ways of excitation of vertical kink oscillations by velocity perturbation: as an initial condition, and as an impulsive excitation with a pulse of a given position, duration, and amplitude. These properties are varied in the parametric studies. We find that the amplitude of vertical kink oscillations is significantly amplified in comparison to horizontal kink oscillations for exciters located centrally (symmetrically below the loop, but not if the exciter is located a significant distance to the side of the loop. This explains why the pure vertical kink mode is so rarely observed in comparison to the horizontally polarized one. We discuss the role of curved magnetic field lines and the pulse overlapping at one of the loop's footpoints in 3-D active regions (AR's on the excitation and the damping of slow standing waves. We find that footpoint excitation becomes more efficient in 3-D curved loops than in 2-D curved arcades and that slow waves can be excited within an interval of time that is comparable to the observed one wave-period due to the combined effect of the pulse inside and outside the loop. Additionally, we study the effect of AR topology on the excitation and trapping of loop oscillations. We find that a perturbation acting directly on a single loop excites oscillations, but results in an increased leakage compared to excitation of oscillations in an AR field by an external source.

  11. Numerical Simulation of Effective Properties of 3D Piezoelectric Composites

    Directory of Open Access Journals (Sweden)

    Ri-Song Qin

    2014-01-01

    Full Text Available The prediction of the overall effective properties of fibre-reinforced piezocomposites has drawn much interest from investigators recently. In this work, an algorithm used in two-dimensional (2D analysis for calculating transversely isotropic material properties is developed. Since the finite element (FE meshing patterns on the opposite areas are the same, constraint equations can be applied directly to generate appropriate load. The numerical results derived using this model have found a good agreement with those in the literature. The 2D algorithm is then modified and improved in such a way that it is valid for three-dimensional (3D analysis in the case of random distributed shorts and inclusions. Linear interpolation of displacement field is employed to establish constraint equations of nodal displacements between two adjacent elements.

  12. Simulation of Fully Nonlinear 3-D Numerical Wave Tank

    Institute of Scientific and Technical Information of China (English)

    张晓兔; 滕斌; 宁德志

    2004-01-01

    A fully nonlinear numerical wave tank (NWT) has been simulated by use of a three-dimensional higher order boundary element method (HOBEM) in the time domain. Within the frame of potential flow and the adoption of simply Rankine source, the resulting boundary integral equation is repeatedly solved at each time step and the fully nonlinear free surface boundary conditions are integrated with time to update its position and boundary values. A smooth technique is also adopted in order to eliminate the possible saw-tooth numerical instabilities. The incident wave at the uptank is given as theoretical wave in this paper. The outgoing waves are absorbed inside a damping zone by spatially varying artificial damping on the free surface at the wave tank end. The numerical results show that the NWT developed by these approaches has a high accuracy and good numerical stability.

  13. 3-D numerical simulations of volcanic ash transport and deposition

    Science.gov (United States)

    Suzuki, Y. J.; Koyaguchi, T.

    2012-12-01

    During an explosive volcanic eruption, volcanic gas and pyroclasts are ejected from the volcanic vent. The pyroclasts are carried up within a convective plume, advected by the surrounding wind field, and sediment on the ground depending on their terminal velocity. The fine ash are expected to have atmospheric residence, whereas the coarser particles form fall deposits. Accurate modeling of particle transport and deposition is of critical importance from the viewpoint of disaster prevention. Previously, some particle-tracking models (e.g., PUFF) and advection-diffusion models (e.g., TEPHRA2 and FALL3D) tried to forecast particle concentration in the atmosphere and particle loading at ground level. However, these models assumed source conditions (the grain-size distribution, plume height, and mass release location) based on the simple 1-D model of convective plume. In this study, we aim to develop a new 3-D model which reproduces both of the dynamics of convective plume and the ash transport. The model is designed to describe the injection of eruption cloud and marker particles from a circular vent above a flat surface into the stratified atmosphere. Because the advection is the predominant mechanism of particle transport near the volcano, the diffusive process is not taken into account in this model. The distribution of wind velocity is given as an initial condition. The model of the eruption cloud dynamics is based on the 3-D time-dependent model of Suzuki et al. (2005). We apply a pseudo-gas model to calculate the eruption cloud dynamics: the effect of particle separation on the cloud dynamics is not considered. In order to reproduce the drastic change of eruption cloud density, we change the effective gas constant and heat capacity of the mixture in the equation of state for ideal gases with the mixing ratio between the ejected material and entrained air. In order to calculate the location and movement of ash particles, the present model employs Lagrangian marker

  14. 3D Numerical Simulation of Projectile Penetration into Concrete Target

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Basing on the explicit instantaneous dynamics software MSC-Dytran and the general coupling arithmetic, the process of the projectile penetration into concrete target was simulated with the point-line-surface-body modeling method. Simulation results are in agreement with experimental results. The simulated data could provide design reference for the defense engineering construction and penetrator design.

  15. Single-sided sheet-to-tube spot welding investigated by 3D numerical simulations

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Chergui, Azeddine; Zhang, Wenqi

    The single-sided resistance spot welding process is analyzed by a 3D numerical study of sheet-to-tube joining. Finite element simulations are carried out in SORPAS® 3D. Two levels of electrode force and five levels of welding current are simulated. The overall effects of changing current and force...

  16. 3D Numerical simulations of vesicle and inextensible capsule dynamics

    OpenAIRE

    2014-01-01

    published in Journal of Computational Physics; International audience; Vesicles are locally-inextensible fluid membranes while inextensible capsules are in addition endowed with in-plane shear elasticity mimicking the cytoskeleton of red blood cells (RBCs). Boundary integral (BI) methods based on the Green's function techniques are used to describe their dynamics, that falls into the category of highly nonlinear and nonlocal dynamics. Numerical solutions raise several obstacles and challenges...

  17. 3D numerical simulations of vesicle and inextensible capsule dynamics

    Science.gov (United States)

    Farutin, Alexander; Biben, Thierry; Misbah, Chaouqi

    2014-10-01

    Vesicles are locally-inextensible fluid membranes, capsules are endowed with in-plane shear elasticity mimicking the cytoskeleton of red blood cells (RBCs), but are extensible, while RBCs are inextensible. We use boundary integral (BI) methods based on the Green function techniques to model and solve numerically their dynamics. We regularize the single layer integral by subtraction of exact identities for the terms involving the normal and the tangential components of the force. The stability and precision of BI calculation is enhanced by taking advantage of additional quadrature nodes located in vertices of an auxiliary mesh, constructed by a standard refinement procedure from the main mesh. We extend the partition of unity technique to boundary integral calculation on triangular meshes. The proposed algorithm offers the same treatment of near-singular integration regardless whether the source and the target points belong to the same surface or not. Bending forces are calculated by using expressions derived from differential geometry. Membrane incompressibility is handled by using two penalization parameters per suspended entity: one for deviation of the global area from prescribed value and another for the sum of squares of local strains defined on each vertex. Extensible or inextensible capsules, a model of RBC, are studied by storing the position in the reference configuration for each vertex. The elastic force is then calculated by direct variation of the elastic energy. Various nonequilibrium physical examples on vesicles and capsules will be presented and the convergence and precision tests highlighted. Overall, a good convergence is observed with numerical error inversely proportional to the number of vertices used for surface discretization, the highest order of convergence allowed by piece-wise linear interpolation of the surface.

  18. Numerical simulation of 3D backward facing step flows at various Reynolds numbers

    Directory of Open Access Journals (Sweden)

    Louda Petr

    2015-01-01

    Full Text Available The work deals with the numerical simulation of 3D turbulent flow over backward facing step in a narrow channel. The mathematical model is based on the RANS equations with an explicit algebraic Reynolds stress model (EARSM. The numerical method uses implicit finite volume upwind discretization. While the eddy viscosity models fail in predicting complex 3D flows, the EARSM model is shown to provide results which agree well with experimental PIV data. The reference experimental data provide the 3D flow field. The simulations are compared with experiment for 3 values of Reynolds number.

  19. Study of 3-D Numerical Simulation for Gas Transfer in the Goaf of the Coal Mining

    Institute of Scientific and Technical Information of China (English)

    WU Zheng-yan; JIANG Shu-guang; HE Xin-jian; WANG Lan-yun; LIN Bai-quan

    2007-01-01

    In order to simulate field distribution rules, mathematical models for 3-D air flows and gas transfer in the goaf of the coal mining are established, based on theories of permeability and dynamic dispersion through porous media. A gas dispersion equation in a 3-D field is calculated by use of numerical method on a weighted upstream multi-element balance. Based on data of an example with a U type ventilation mode, surface charts of air pressure distribution and gas concentration are drawn by Graphtool software. Finally, a comparison between actually measured results in the model test and the numerical simulation results is made to proves the numerical implementation feasible.

  20. Application of 3-D numerical simulation software SRIFCAST to produce ductile iron castings

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Based on a method using numerical simulation equations and their solution schemes for liquid metal flows and heat transfer during mold filling and the solidification process of casting, 3-D numerical simulation software SRIFCAST was created. This includes enmeshment of casting; velocity and temperature fields calculation; displaying iso-temperature lines;velocity vectors and 3-D temperature fields on a Windows 9x operating system. SRIFCAST was applied to produce sound castings of automobile and diesel engines, and also to connect with microstructure simulation for ductile iron castings.

  1. Calculation of residual stresses by means of a 3D numerical weld simulation

    Energy Technology Data Exchange (ETDEWEB)

    Nicak, Tomas; Huemmer, Matthias [AREVA NP GmbH, Postfach 1109 (Germany)

    2008-07-01

    The numerical weld simulation has developed very fast in recent years. The problem complexity has increased from simple 2D models to full 3D models, which can describe the entire welding process more realistically. As recent research projects indicate, a quantitative assessment of the residual stresses by means of a 3D analysis is possible. The structure integrity can be assessed based on the weld simulation results superimposed with the operating load. Moreover, to support the qualification of welded components parametric studies for optimization of the residual stress distribution in the weld region can be performed. In this paper a full 3D numerical weld simulation for a man-hole drainage nozzle in a steam generator will be presented. The residual stresses are calculated by means of an uncoupled transient thermal and mechanical FE analysis. The paper will present a robust procedure allowing reasonable predictions of the residual stresses for complex structures in industrial practice. (authors)

  2. 3D Numerical Simulation Analysis of Passive Drag near Free Surface in Swimming

    Institute of Scientific and Technical Information of China (English)

    詹杰民; 李天赠; 陈学彬; 李毓湘; 韦永康

    2015-01-01

    The aim of this work is to build a 3D numerical model to study the characteristics of passive drag on competitive swimmers taking into account the impact of the free surface. This model solves the 3D incompressible Navier-Stokes equations using RNG k-εturbulence closure. The volume of fluid (VOF) method is used to locate the free surface. The 3D virtual model is created by Computer Aided Industrial Design (CAID) software, Rhinoceros. Firstly, a specific posture of swimming is studied. The simulation results are in good agreement with the data from mannequin towing experiments. The effects of a swimmer’s arms and legs positions on swimming performance are then studied. Finally, it is demonstrated that the present method is capable of simulating gliding near the free surface.

  3. 3D numerical simulation analysis of passive drag near free surface in swimming

    Science.gov (United States)

    Zhan, Jie-min; Li, Tian-zeng; Chen, Xue-bin; Li, Yok-sheung; Wai, Wing-hong Onyx

    2015-04-01

    The aim of this work is to build a 3D numerical model to study the characteristics of passive drag on competitive swimmers taking into account the impact of the free surface. This model solves the 3D incompressible Navier-Stokes equations using RNG k- ɛ turbulence closure. The volume of fluid (VOF) method is used to locate the free surface. The 3D virtual model is created by Computer Aided Industrial Design (CAID) software, Rhinoceros. Firstly, a specific posture of swimming is studied. The simulation results are in good agreement with the data from mannequin towing experiments. The effects of a swimmer's arms and legs positions on swimming performance are then studied. Finally, it is demonstrated that the present method is capable of simulating gliding near the free surface.

  4. The Vajont disaster: a 3D numerical simulation for the slide and the waves

    Science.gov (United States)

    Rubino, Angelo; Androsov, Alexey; Vacondio, Renato; Zanchettin, Davide; Voltzinger, Naum

    2016-04-01

    A very high resolution O(5 m), 3D hydrostatic nonlinear numerical model was used to simulate the dynamics of both the slide and the surface waves produced during the Vajont disaster (north Italy, 1963), one of the major landslide-induced tsunamis ever documented. Different simulated wave phenomena like, e.g., maximum run-up on the opposite shore, maximum height, and water velocity were analyzed and compared with data available in literature, including the results of a fully 3D simulation obtained with a Smoothed Particle Hydrodynamic code. The difference between measured and simulated after-slide bathymetries was calculated and used in an attempt to quantify the relative magnitude and extension of rigid and fluid motion components during the event.

  5. Numerical Simulation of Transient Flows around a 3D Pitching Hydrofoil

    Directory of Open Access Journals (Sweden)

    Qin Wu

    2015-02-01

    Full Text Available The objective of this paper is to investigate the hydrodynamic characteristics of the transient flows around a 3D pitching hydrofoil via numerical studies, where the effects of tunnel wall boundary layer and gap flows are considered. Simulations are performed using an unsteady Reynolds Average Navier-Stokes solver and the k-ω SST turbulence model, coupled with a two-equation γ-Reθ transition model. Hydrodynamic forces and flow structures are compared to the results with the equivalent 2D computations. During the upward pitching stage, the transition phenomenon is accurately captured by both the 2D and 3D simulations. The slightly lower lift and suction side loading coefficients predicted by the 3D simulation are due to the pressure effects caused by the tip gap flow. During the dynamic stall stage, the 2D case exhibits a clear overshoot on the hydrodynamic force coefficients and the 3D simulation results better agree with the experimental results. During the downward pitching stage, the flow transitions back to laminar. As for the effect of gap flow and the wall boundary condition, the gap flow causes disturbances to the formation and development of the vortex structures, resulting in the complex distribution of the three-dimensional streamlines and the particle path.

  6. 3D Nonlinear Numerical Simulation of Intact and Debonded Reinforced Concrete Beams

    Institute of Scientific and Technical Information of China (English)

    Chen Quan(陈权); Marcus L.

    2004-01-01

    To study the behaviour of reinforced concrete (RC) structures with sections of concrete removed and the reinforcement exposed, 3D nonlinear numerical analysis was performed upon both intact and debonded RC beams by using finite element techniques. The deformational characteristics and the ultimate loads were obtained through numerical models, as well as crack and stress distributions. The failure modes can also be deduced from computational results. Compared with intact beams, the normal assumptions of plane section behaviour is not hold true and the patterns of stress and strain are different in debonded RC beams. The numerical results show good consistency with experimental data. This kind of numerical simulation is a supplement to existing codes.

  7. Numerical simulations of self-propelled swimming of 3D bionic fish school

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Numerical simulations of self-propelled swimming of a three dimensional bionic fish and fish school in a viscous fluid are carried out. This is done with the assistance of a parallel software package produced for 3D moving boundary problems. This computational fluid dynamics package combines the adaptive multi-grid finite volume method, the immersed boundary method and VOF (volume of fluid) method. By using the package results of the self-propelled swimming of a 3D bionic fish and fish school in a vis- cous fluid are obtained. With comparison to the existing experimental measurements of living fishes, the predicted structure of vortical wakes is in good agreement with the measurements.

  8. An innovative 3-D numerical modelling procedure for simulating repository-scale excavations in rock - SAFETI

    Energy Technology Data Exchange (ETDEWEB)

    Young, R. P.; Collins, D.; Hazzard, J.; Heath, A. [Department of Earth Sciences, Liverpool University, 4 Brownlow street, UK-0 L69 3GP Liverpool (United Kingdom); Pettitt, W.; Baker, C. [Applied Seismology Consultants LTD, 10 Belmont, Shropshire, UK-S41 ITE Shrewsbury (United Kingdom); Billaux, D.; Cundall, P.; Potyondy, D.; Dedecker, F. [Itasca Consultants S.A., Centre Scientifique A. Moiroux, 64, chemin des Mouilles, F69130 Ecully (France); Svemar, C. [Svensk Karnbranslemantering AB, SKB, Aspo Hard Rock Laboratory, PL 300, S-57295 Figeholm (Sweden); Lebon, P. [ANDRA, Parc de la Croix Blanche, 7, rue Jean Monnet, F-92298 Chatenay-Malabry (France)

    2004-07-01

    This paper presents current results from work performed within the European Commission project SAFETI. The main objective of SAFETI is to develop and test an innovative 3D numerical modelling procedure that will enable the 3-D simulation of nuclear waste repositories in rock. The modelling code is called AC/DC (Adaptive Continuum/ Dis-Continuum) and is partially based on Itasca Consulting Group's Particle Flow Code (PFC). Results are presented from the laboratory validation study where algorithms and procedures have been developed and tested to allow accurate 'Models for Rock' to be produced. Preliminary results are also presented on the use of AC/DC with parallel processors and adaptive logic. During the final year of the project a detailed model of the Prototype Repository Experiment at SKB's Hard Rock Laboratory will be produced using up to 128 processors on the parallel super computing facility at Liverpool University. (authors)

  9. Numerical methods for 3D tokamak simulations using a flux-surface independent grid

    Energy Technology Data Exchange (ETDEWEB)

    Stegmeir, A.; Coster, D.; Maj, O.; Lackner, K. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85748 Garching (Germany)

    2014-06-15

    A numerical approach for 3D Tokamak simulations using a flux surface independent grid is presented. The grid consists of few poloidal planes with a Cartesian isotropic grid within each poloidal plane. Perpendicular operators can be discretised within a poloidal plane using standard second order finite difference methods. The discretisation of parallel operators is achieved with a field line following map and an interpolation. The application of the support operator method to the parallel diffusion operator conserves the self-adjointness of the operator on the discrete level and keeps the numerical decay rate at a low level. The developed numerical methods can be applied to geometries where an X-point is present. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. 3-D-numerical approach to simulate an avalanche impact into a reservoir

    Directory of Open Access Journals (Sweden)

    R. Gabl

    2015-06-01

    Full Text Available The impact of an avalanche into a reservoir induces an impulse wave, which poses a threat to population and infrastructure. For a good approximation of the generated wave height and length as well as the resulting outflow volume over structures and dams, formulas, which base on different simplifying assumptions, can be used. Further project-specific investigations by means of a scale model test or numerical simulations are advisable for complex reservoirs as well as the inclusion of hydraulic structures such as spillways. The paper presents a new approach for a 3-D-numerical simulation of an avalanche impact into a reservoir. In this model concept the energy and mass of the avalanche are represented by accelerated water on the real hill slope. Instead of snow, only water and air are used to simulate the moving avalanche with the software FLOW-3D. A significant advantage of this assumption is the self-adaptation of the model avalanche onto the terrain. In order to reach good comparability of the results with existing research at the ETH Zürich, a simplified reservoir geometry is investigated. Thus, a reference case has been analysed including a variation of three geometry parameters (still water depth in the reservoir, freeboard of the dam and reservoir width.

  11. Numerical Simulations of Flow in a 3-D Supersonic Intake at High Mach Numbers

    Directory of Open Access Journals (Sweden)

    R. Sivakumar

    2006-10-01

    Full Text Available Numerical simulations of the compressible, 3-D non reacting flow in the engine inlet sectionof a concept hypersonic air-breathing vehicle are presented. These simulations have been carriedout using FLUENT. For all the results reported, the mesh has been refined to achieve areaaveragedwall y+ about 105. Mass flow rate through the intake and stagnation pressure recoveryare used to compare the performance at various angles of attack. The calculations are able topredict the mode of air-intake operation (critical and subcritical for different angles of attack.Flow distortion at the intake for various angles of attack is also calculated and discussed. Thenumerical results are validated by simulating the flow through a 2-D mixed compression hypersonicintake model and comparing with the experimental data.

  12. Comparison between the 3D numerical simulation and experiment of the bubble near different boundaries

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on the potential flow theory, the vortex ring is introduced to simulate the toroidal bubble, and the boundary element method is applied to simulate the evo- lution of the bubble. Elastic-plasticity of structure being taken into account, the interaction between the bubble and the elastic-plastic structure is computed by combining the boundary element method (BEM) and the finite element method (FEM), and a corresponding 3D computing program is developed. This program is used to simulate the three-dimensional bubble dynamics in free field, near wall and near the elastic-plastic structure, and the numerical results are compared with the existing experimental results. The error is within 10%. The effects of different boundaries upon the bubble dynamics are presented by studying the bubble dy- namics near different boundaries.

  13. Terascale direct numerical simulations of turbulent combustion using S3D.

    Energy Technology Data Exchange (ETDEWEB)

    Sankaran, Ramanan; Mellor-Crummy, J.; DeVries, M.; Yoo, Chun Sang; Ma, K. L.; Podhorski, N.; Liao, W. K.; Klasky, S.; de Supinski, B.; Choudhary, A.; Hawkes, Evatt R.; Chen, Jacqueline H.; Shende, Sameer

    2008-08-01

    Computational science is paramount to the understanding of underlying processes in internal combustion engines of the future that will utilize non-petroleum-based alternative fuels, including carbon-neutral biofuels, and burn in new combustion regimes that will attain high efficiency while minimizing emissions of particulates and nitrogen oxides. Next-generation engines will likely operate at higher pressures, with greater amounts of dilution and utilize alternative fuels that exhibit a wide range of chemical and physical properties. Therefore, there is a significant role for high-fidelity simulations, direct numerical simulations (DNS), specifically designed to capture key turbulence-chemistry interactions in these relatively uncharted combustion regimes, and in particular, that can discriminate the effects of differences in fuel properties. In DNS, all of the relevant turbulence and flame scales are resolved numerically using high-order accurate numerical algorithms. As a consequence terascale DNS are computationally intensive, require massive amounts of computing power and generate tens of terabytes of data. Recent results from terascale DNS of turbulent flames are presented here, illustrating its role in elucidating flame stabilization mechanisms in a lifted turbulent hydrogen/air jet flame in a hot air co-flow, and the flame structure of a fuel-lean turbulent premixed jet flame. Computing at this scale requires close collaborations between computer and combustion scientists to provide optimized scaleable algorithms and software for terascale simulations, efficient collective parallel I/O, tools for volume visualization of multiscale, multivariate data and automating the combustion workflow. The enabling computer science, applied to combustion science, is also required in many other terascale physics and engineering simulations. In particular, performance monitoring is used to identify the performance of key kernels in the DNS code, S3D and especially memory

  14. Terascale direct numerical simulations of turbulent combustion using S3D

    Science.gov (United States)

    Chen, J. H.; Choudhary, A.; de Supinski, B.; DeVries, M.; Hawkes, E. R.; Klasky, S.; Liao, W. K.; Ma, K. L.; Mellor-Crummey, J.; Podhorszki, N.; Sankaran, R.; Shende, S.; Yoo, C. S.

    2009-01-01

    Computational science is paramount to the understanding of underlying processes in internal combustion engines of the future that will utilize non-petroleum-based alternative fuels, including carbon-neutral biofuels, and burn in new combustion regimes that will attain high efficiency while minimizing emissions of particulates and nitrogen oxides. Next-generation engines will likely operate at higher pressures, with greater amounts of dilution and utilize alternative fuels that exhibit a wide range of chemical and physical properties. Therefore, there is a significant role for high-fidelity simulations, direct numerical simulations (DNS), specifically designed to capture key turbulence-chemistry interactions in these relatively uncharted combustion regimes, and in particular, that can discriminate the effects of differences in fuel properties. In DNS, all of the relevant turbulence and flame scales are resolved numerically using high-order accurate numerical algorithms. As a consequence terascale DNS are computationally intensive, require massive amounts of computing power and generate tens of terabytes of data. Recent results from terascale DNS of turbulent flames are presented here, illustrating its role in elucidating flame stabilization mechanisms in a lifted turbulent hydrogen/air jet flame in a hot air coflow, and the flame structure of a fuel-lean turbulent premixed jet flame. Computing at this scale requires close collaborations between computer and combustion scientists to provide optimized scaleable algorithms and software for terascale simulations, efficient collective parallel I/O, tools for volume visualization of multiscale, multivariate data and automating the combustion workflow. The enabling computer science, applied to combustion science, is also required in many other terascale physics and engineering simulations. In particular, performance monitoring is used to identify the performance of key kernels in the DNS code, S3D and especially memory

  15. Numerical Simulation of the Protective Effect of Complex Boundaries Toward Shock Waves in a 3D Explosive Field

    Institute of Scientific and Technical Information of China (English)

    吴开腾; 宁建国

    2003-01-01

    A numerical method is presented that simulates 3D explosive field problems. A code MMIC3D using this method can be used to simulate the propagation and reflected effects of all kinds of rigid boundaries to shock waves produced by an explosive source. These numerical results indicate that the code MMIC3D has the ability in computing cases such as 3D shock waves produced by air explosion, vortex region of the shock wave, the Mach wave, and reflected waves behind rigid boundaries.

  16. 3D numerical simulation of the evolutionary process of aeolian downsized crescent-shaped dunes

    Science.gov (United States)

    Zhou, Xiaosi; Zhang, Yang; Wang, Yuan; Li, Min

    2016-06-01

    A dune constitutive model was coupled with a large eddy simulation (LES) with the Smagorinsky subgrid-scale (SGS) model to accurately describe the evolutionary process of dunes from the macroscopic perspective of morphological dynamics. A 3D numerical simulation of the evolution of aeolian downsized crescent-shaped dunes was then performed. The evolution of the 3D structure of Gaussian-shaped dunes was simulated under the influence of gravity modulation, which was the same with the vertical oscillation of the sand bed to adjust the threshold of sand grain liftoff in wind tunnel experiments under the same wind speed. The influence of gravity modulation intensity on the characteristic scale parameter of the dune was discussed. Results indicated that the crescent shape of the dune was reproduced with the action of gravity during regulation of the saturation of wind-sand flow at specific times. The crescent shape was not dynamically maintained as time passed, and the dunes dwindled until they reached final decomposition because of wind erosion. The height of the dunes decreased over time, and the height-time curve converged as the intensity of modulation increased linearly. The results qualitatively agreed with those obtained from wind tunnel experiments.

  17. A NUMERICAL SIMULATION OF 3-D INNER FLOW IN UP-STREAM PUMPING MECHANICAL SEAL

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-feng; YUAN Shou-qi; FU Yong-hong; FANG Yu-jian

    2006-01-01

    Numerical simulation of 3-D inner flow between Up-stream Pumping Mechanical Face Seals (UPMFS) faces was initially done by CFD software, which made the flow visualization come true.Simulation results directly discover the action of hydrodynamic lubrication, and by comparison with that of Conventional Mechanic Face Seals (CMFS), the advantage over bigger bearing capability, less friction and much less leakage are explained clearly.Otherwise there are also some different ideas and results from precedent analysis and computational research results: dynamic and static pressure profiles can be obtained respectively instead of the analytic total pressure distribution only, pressure distribution is nonlinear, while always be solved as linear, lower pressure is observed at the area of inner diameter caused by the grooves, but its possible cavitations effects to the performance of UPMFS still need further study.

  18. 3-D transient numerical simulation on the process of laser cladding by powder feeding

    Institute of Scientific and Technical Information of China (English)

    Yanlu Huang; Gongying Liang; Junyi Su

    2004-01-01

    A 3-D transient mathematical model for laser cladding by powder feeding was developed to examine the macroscopic heat and momentum transport during the process, based on which a novel method for determining the configuration and thickness of cladding layer was presented. By using Lambert-Beer theorem and Mie′s theory, the interaction between powder stream and laser beam was treated to evoke their subtle effects on heat transfer and fluid flow in laser molten pool. The numerical study was performed in a co-ordinate system moving with the laser at a constant scanning speed. A fixed grid enthalpy-porosity approach was used,which predicted the evolutionary development of the laser molten pool. The commercial software PHOENICS, to which several modules were appended, was used to accomplish the simulation. The results obtained by the simulation were coincident with those measured in experiment basically.

  19. The Making of FR Is I. Numerical Hydrodynamic 3D Simulations of Low Power Jets

    CERN Document Server

    Massaglia, S; Rossi, P; Capetti, S; Mignone, A

    2016-01-01

    Extragalactic radiosources have been classified in two classes, Fanaroff-Riley I and II, which differ in morphology and radio power. Strongly emitting sources belong to the edge brightened FR II class while the weak ones to the edge darkened FR I class. The origin of this dichotomy is not yet fully understood. Numerical simulations are successful in generating FR~II morphologies but they fail to reproduce the diffuse structure of FR Is. By means of hydro-dynamical 3D simulations of supersonic jets, we investigate how the displayed morphologies depend on the jet parameters. Bow shocks and Mach disks at the jet's head, likely responsible for the presence of hot spots in the FR II sources, disappear for a jet kinetic power less than 10^43 erg/s. This threshold compares favorably with the luminosity at which the FR~I/FR~II transition is observed. The problem is addressed by numerical means carrying out three-dimensional HD simulations of supersonic jets that propagate in a non homogeneous medium with the ambient ...

  20. Numerical simulation of unsteady flow characteristics for cavitation around a 3-D hydrofoil

    Science.gov (United States)

    Ahn, S. H.; Xiao, Y. X.; Wang, Z. W.

    2015-01-01

    At present it is possible to predict more accurately by various numerical methods established for cavitation simulation around a hydrofoil. However, for the solution of the complex unsteady cavity flow, it is still marginal. In this paper, numerical method is adopted to simulate cavitation around 3-D NACA0015 hydrofoil with homogeneous two-phase flow calculation using commercial code CFX-solver with two turbulence models, the standard RNG k-epsilon turbulence model and the modified RNG k-epsilon turbulence model respectively. First, pressure coefficient for non-cavitating flow, time averaged values of unsteady cavity flow around a hydrofoil are verified to simulate more closely to an actual cavity flow. And then frequency analysis is performed with Fast Fourier Transform. The results show that the calculation results with modified RNG k-epsilon turbulence model agree with experimental results in terms of mean cavity length and pressure drop, but the unsteady flow characteristics of oscillating cavitation still deviate slightly in terms of unsteady cavity flow.

  1. Insights from 3D numerical simulations on the dynamics of the India-Asia collision zone

    Science.gov (United States)

    Pusok, A. E.; Kaus, B.; Popov, A.

    2013-12-01

    The dynamics of the India-Asia collision zone remains one of the most remarkable topics of the current research interest: the transition from subduction to collision and uplift, followed by the rise of the abnormally thick Tibetan plateau, and the deformation at its Eastern and Western syntaxes, are processes still not fully understood. Models that have addressed this topic include wholescale underthrusting of Indian lithospheric mantle under Tibet, distributed homogeneous shortening or the thin-sheet model, slip-line field model for lateral extrusion or lower crustal flow models for the exhumation of the Himalayan units and lateral spreading of the Tibetan plateau. Of these, the thin-sheet model has successfully illustrated some of the basic physics of continental collision and has the advantage of a 3D model being reduced to 2D, but one of its major shortcomings is that it cannot simultaneously represent channel flow and gravitational collapse of the mantle lithosphere, since these mechanisms require the lithosphere to interact with the underlying mantle, or to have a vertically non-homogeneous rheology. As a consequence, 3D models are emerging as powerful tools to understand the dynamics of coupled systems. However, because of yet recent developments and various complexities, the current 3D models simulating the dynamics of continent collision zones have relied on certain explicit assumptions, such as replacing part of the asthenosphere with various types of boundary conditions that mimic the effect of mantle flow, in order to focus on the lithospheric/crustal deformation. Here, we employ the parallel 3D code LaMEM (Lithosphere and Mantle Evolution Model), with a finite difference staggered grid solver, which is capable of simulating lithospheric deformation while simultaneously taking mantle flow and a free surface into account. We present qualitative results on lithospheric and upper-mantle scale simulations in which the Indian lithosphere is subducted and

  2. 3-D NUMERICAL SIMULATION OF CONVOY-GENERATED WAVES IN A RESTRICTED WATERWAY

    Institute of Scientific and Technical Information of China (English)

    JI Sheng Cheng; OUAHSINE Abdellatif; SMAOUI Hassan; SERGENT Philippe

    2012-01-01

    We consider waves generated by the passing of convoys in a restricted waterway.The magnitude of these waves depends mainly on the geometrical and kinematical parameters of the convoy,such as the speed and the hull geometry.The objective of this study is to predict the relationship between these geometrical and kinematical parameters and the amplitude of ship-generated waves as well as the water plane drawdown.Numerical simulations are conducted by solving the 3-D Navier-Stokes equations along with the standard k-ε model for turbulent processes.The results are compared first with the empirical model and second with experimental measurements performed by the French company Compagnie National du Rh(o)ne (CNR).

  3. Transient 3D numerical simulations of column collapse and pyroclastic density current scenarios at Vesuvius

    Science.gov (United States)

    Esposti Ongaro, T.; Neri, A.; Menconi, G.; de'Michieli Vitturi, M.; Marianelli, P.; Cavazzoni, C.; Erbacci, G.; Baxter, P. J.

    2008-12-01

    Numerical simulations of column collapse and pyroclastic density current (PDC) scenarios at Vesuvius were carried out using a transient 3D flow model based on multiphase transport laws. The model describes the dynamics of the collapse as well as the effects of the 3D topography of the volcano on PDC propagation. Source conditions refer to a medium-scale sub-Plinian event and consider a pressure-balanced jet. Simulation results provide new insights into the complex dynamics of these phenomena. In particular: 1) column collapse can be characterized by different regimes, from incipient collapse to partial or nearly total collapse, thus confirming the possibility of a transitional field of behaviour of the column characterized by the contemporaneous and/or intermittent occurrence of ash fallout and PDCs; 2) the collapse regime can be characterized by its fraction of eruptive mass reaching the ground and generating PDCs; 3) within the range of the investigated source conditions, the propagation and hazard potential of PDCs appear to be directly correlated with the flow-rate of the mass collapsing to the ground, rather than to the collapse height of the column (this finding is in contrast with predictions based on the energy-line concept, which simply correlates the PDC runout and kinetic energy with the collapse height of the column); 4) first-order values of hazard variables associated with PDCs (i.e., dynamic pressure, temperature, airborne ash concentration) can be derived from simulation results, thereby providing initial estimates for the quantification of damage scenarios; 5) for scenarios assuming a location of the central vent coinciding with that of the present Gran Cono, Mount Somma significantly influences the propagation of PDCs, largely reducing their propagation in the northern sector, and diverting mass toward the west and southeast, accentuating runouts and hazard variables for these sectors; 6) the 2D modelling approximation can force an artificial

  4. 3D numerical model of the Omega Nebula (M17): simulated thermal X-ray emission

    CERN Document Server

    Reyes-Iturbide, J; Rosado, M; Rodríguez-Gónzalez, A; González, R F; Esquivel, A

    2009-01-01

    We present 3D hydrodynamical simulations of the superbubble M17, also known as the Omega nebula, carried out with the adaptive grid code yguazu'-a, which includes radiative cooling. The superbubble is modelled considering the winds of 11 individual stars from the open cluster inside the nebula (NGC 6618), for which there are estimates of the mass loss rates and terminal velocities based on their spectral types. These stars are located inside a dense interstellar medium, and they are bounded by two dense molecular clouds. We carried out three numerical models of this scenario, considering different line of sight positions of the stars (the position in the plane of the sky is known, thus fixed). Synthetic thermal X-ray emission maps are calculated from the numerical models and compared with ROSAT observations of this astrophysical object. Our models reproduce successfully both the observed X-ray morphology and the total X-ray luminosity, without taking into account thermal conduction effects.

  5. The thermal regime of the Campi Flegrei magmatic system reconstructed through 3D numerical simulations

    Science.gov (United States)

    Di Renzo, Valeria; Wohletz, Kenneth; Civetta, Lucia; Moretti, Roberto; Orsi, Giovanni; Gasparini, Paolo

    2016-12-01

    We illustrate a quantitative conductive/convective thermal model incorporating a wide range of geophysical, petrological, geological, geochemical and isotopical observations that constrain the thermal evolution and present state of the Campi Flegrei caldera (CFc) magmatic system. The proposed model has been computed on the basis of the current knowledge of: (1) the volcanic and magmatic history of the volcano over the last 44 ka, (2) its underlying crustal structure, and (3) the physical properties of the erupted magmas. 3D numerical simulations of heat conduction and convection within heterogeneous rock/magma materials with evolving heat sources and boundary conditions that simulate magma rise from a deep (≥ 8 km depth) to shallow (2-6 km) reservoirs, magma chamber formation, magma extrusion, caldera collapse, and intra-caldera hydrothermal convection, have been carried out. The evolution of the CFc magmatic system through time has been simulated through different steps related to its changes in terms of depth, location and size of magma reservoirs and their replenishment. The thermal modeling results show that both heat conduction and convection have played an important role in the CFc thermal evolution, although with different timing. The simulated present heat distribution is in agreement with the measured geothermal profiles (Agip, 1987), reproduces the thermal gradient peaks at the CFc margins in correspondence to the anomalies in surface gradients (Corrado et al., 1998), and suggests temperatures of 700 °C at depth of 4 km in the central portion of the caldera, in agreement with the estimated temperature for the brittle-ductile transition (Hill, 1992).

  6. Assessing and improving seismic tomography models using 3-D numerical wave simulations. Geologica Ultraiectina (308)

    NARCIS (Netherlands)

    Bozdag, H.E.

    2009-01-01

    We have reached a stage in seismic tomography where further refinements with classical techniques become very difficult. Advances in numerical methods and computational facilities are providing new opportunities in seismic tomography to enhance the resolution of tomographic mantle images. 3-D numeri

  7. Method of internal 3D flow field numerical simulation for hydrodynamic torque converter

    Institute of Scientific and Technical Information of China (English)

    Tao SHANG; Dingxuan ZHAO; Yuankun ZHANG; Xiangen GUO; Xiangzhong SHI

    2008-01-01

    To enhance the performance of a hydrody-namic torque converter and thoroughly understand the trait of inside flow, a numerical simulation method of internal 3D flow for the three-element centrifugal hydrodynamic torque converter was systematically researched and expatiated in this paper. First, the internal flow field of each impeller was calculated. The curves that illustrate the relationships between the pressure differences of the inlet and outlet versus flux were drawn. Second, the concurrent working point of each impeller was approximately estimated. Finally, a calculation was performed considering the influence on each impeller. The flow field of a working point was solved by multiple calculations and the actual working condition was gradually determined. The pressure and velocity distributions of the flow field were proposed. The performance parameters of the hydrodynamic torque converter were predicted. The calculation method, and the proposed pressure and velocity distribution of the flow field, have practical significance for the design and improvement of a hydrodynamic torque converter.

  8. Numerical Simulation of Injection Molding Cooling Process Based on 3D Surface Model

    Institute of Scientific and Technical Information of China (English)

    CUIShu-biao; ZHOUHua-min; LIDe-qun

    2004-01-01

    The design of the coohng system of injection molds directly affects both productivity and the quality of the final part. Using the cooling process CAE system to instruct the mold design, the efficiency and quality of design can be improved greatly. At the same time, it is helpful to confirm the cooling system structure and optimize the process conditions. In this paper, the 3D surface model of mold cavity is used to replace the middle-plane model in the simulation by Boundary Element Method, which break the bottleneck of the application of the injection molding simulation softwares base on the middle-plane model. With the improvements of this paper, a practical and commercial simulation software of injection molding cooling process named as HsCAE3D6.0 is developed.

  9. Numerical Simulation and Experimental Investigation of 3-D Separated Flow Field around a Blunt Body

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    @@Motivated by re-designing a fuselage in engineering application, the numerical and experimental investigation of the separated flow field around a special blunt body is described in this thesis. The aerodynamic response of the blunt body is successively studied. The thesis consists of four parts: the numerical simulation of the flow field around a two-dimensional blunt body; the numerical simulation of the flow field around a three-dimensional blunt body; the flow

  10. Numerical simulation of 3D boundary-driven acoustic streaming in microfluidic devices.

    Science.gov (United States)

    Lei, Junjun; Hill, Martyn; Glynne-Jones, Peter

    2014-02-07

    This article discusses three-dimensional (3D) boundary-driven streaming in acoustofluidic devices. Firstly, the 3D Rayleigh streaming pattern in a microchannel is simulated and its effect on the movement of microparticles of various sizes is demonstrated. The results obtained from this model show good comparisons with 3D experimental visualisations and demonstrate the fully 3D nature of the acoustic streaming field and the associated acoustophoretic motion of microparticles in acoustofluidic devices. This method is then applied to another acoustofluidic device in order to gain insights into an unusual in-plane streaming pattern. The origin of this streaming has not been fully described and its characteristics cannot be explained from the classical theory of Rayleigh streaming. The simulated in-plane streaming pattern was in good agreement with the experimental visualisation. The mechanism behind it is shown to be related to the active sound intensity field, which supports our previous findings on the mechanism of the in-plane acoustic streaming pattern visualised and modelled in a thin-layered capillary device.

  11. The 3D numerical simulation of waste heat inside the end-pumped DPAL

    Science.gov (United States)

    Hua, Weihong; Yang, Zining; Wang, Hongyan

    2012-01-01

    The thermal effect produced by quantum defect is an important factor that affects the performance of DPAL. We report on 3D simulation results of temperature distribution inside the alkali gain medium. The results show a high and non-uniform temperature rise under CW pumped condition, and the current models that assume uniform alkali density distribution needs to be modified. A convective cooling scheme should be applied for high power DPALs.

  12. Numerical simulation of 'X-wing' type biplane flapping wings in 3D using the Immersed Boundary Method (IBM)

    NARCIS (Netherlands)

    Tay, W.B.; Van Oudheusden, B.W.; Bijl, H.

    2013-01-01

    The numerical simulation of a “X-wing” type biplane flapping wings, has been performed in 3D using the Immersed Boundary Method (IBM). This “X-wing” type flapping configuration draws its inspiration from Delfly [1], a family of ornithopters developed by the Delft University of Technology, as shown i

  13. NUMERICAL SIMULATION OF 3-D FLOW FIELD IN ARCIFORM PLUNGE POOL

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The 3-D complex turbulent flow fields in aplunge pool with arciform bottom are simulated by using thek-ε model in body-fitted coordinates. The calculated results re-veal the flow characteristics in the arciform plunge pool underthe different flood discharge conditions, which can not be easi-ly obtained in the physical model test because the measure-ment of the complex velocity is very difficult. The calculatedflow fields are helpful to understand in depth the hydrauliccharacteristics of plunge pool. The calculated and the meas-ured pressure distributions on the pool bottom are comparedand in good agreement.

  14. Numerical simulation of a combined oxidation ditch flow using 3D k-εturbulence model

    Institute of Scientific and Technical Information of China (English)

    LUO Lin; LI Wei-min; DENG Yong-sen; WANG Tao

    2005-01-01

    The standard three dimensional(3D) k-ε turbulence model was applied to simulate the flow field of a small scale combined oxidation ditch. The moving mesh approach was used to model the rotor of the ditch. Comparison of the computed and the measured data is acceptable. A vertical reverse flow zone in the ditch was found, and it played a very important role in the ditch flow behavior. The flow pattern in the ditch is discussed in detail, and approaches are suggested to improve the hydrodynamic performance in the ditch.

  15. Numerical Simulation of 3D Solid-Liquid Turbulent Flow in a Low Specific Speed Centrifugal Pump: Flow Field Analysis

    Directory of Open Access Journals (Sweden)

    Baocheng Shi

    2014-06-01

    Full Text Available For numerically simulating 3D solid-liquid turbulent flow in low specific speed centrifugal pumps, the iteration convergence problem caused by complex internal structure and high rotational speed of pump is always a problem for numeral simulation researchers. To solve this problem, the combination of three measures of dynamic underrelaxation factor adjustment, step method, and rotational velocity control means according to residual curves trends of operating parameters was used to improve the numerical convergence. Numeral simulation of 3D turbulent flow in a low specific speed solid-liquid centrifugal pump was performed, and the results showed that the improved solution strategy is greatly helpful to the numerical convergence. Moreover, the 3D turbulent flow fields in pumps have been simulated for the bottom ash-particles with the volume fraction of 10%, 20%, and 30% at the same particle diameter of 0.1 mm. The two-phase calculation results are compared with those of single-phase clean water flow. The calculated results gave the main region of the abrasion of the impeller and volute casing and improve the hydraulic design of the impeller in order to decrease the abrasion and increase the service life of the pump.

  16. 3D NUMERICAL SIMULATIONS OF THE THERMAL PROCESSES IN THE SHELL AND TUBE HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    Mića V. Vukić

    2014-01-01

    Full Text Available A shell and tube heat exchanger (STHE is one of the most often used apparatuses in chemical industry. One of the main goals of the STHE manufacturers is to improve their exploitation reliability and efficiency. Two approaches to the STHE design improvement are possible: experimental investigation, which is very expensive and time-consuming because of the shell side complex geometry, and numerical investigations. Numerical simulations can be used to check the old and to develop new and more efficient STHE designs. In this paper, the results of the numerical investigations of fluid flow and heat transfer in the laboratory experimental STHE are presented. Numerical simulation has been performed by using the PHOENICS code. The tube bundle has been modeled by using the concept of porous media. Standard k-e turbulence model is used.

  17. Numerical Simulation of the Effect of 3D Needle Movement on Cavitation and Spray Formation in a Diesel Injector

    Science.gov (United States)

    Mandumpala Devassy, B.; Edelbauer, W.; Greif, D.

    2015-12-01

    Cavitation and its effect on spray formation and its dispersion play a crucial role in proper engine combustion and controlled emission. This study focuses on these effects in a typical common rail 6-hole diesel injector accounting for 3D needle movement and flow compressibility effects. Coupled numerical simulations using 1D and 3D CFD codes are used for this investigation. Previous studies in this direction have already presented a detailed structure of the adopted methodology. Compared to the previous analysis, the present study investigates the effect of 3D needle movement and cavitation on the spray formation for pilot and main injection events for a typical diesel engine operating point. The present setup performs a 3D compressible multiphase simulation coupled with a standalone 1D high pressure flow simulation. The simulation proceeds by the mutual communication between 1D and 3D solvers. In this work a typical common rail injector with a mini-sac nozzle is studied. The lateral and radial movement of the needle and its effect on the cavitation generation and the subsequent spray penetration are analyzed. The result indicates the effect of compressibility of the liquid on damping the needle forces, and also the difference in the spray penetration levels due to the asymmetrical flow field. Therefore, this work intends to provide an efficient and user-friendly engineering tool for simulating a complete fuel injector including spray propagation.

  18. Direct Numerical Simulation of 3D Salt Fingers: From Secondary Instability to Chaotic Convection

    CERN Document Server

    Simeonov, Julian A; Radko, Timour

    2009-01-01

    The amplification and equilibration of three-dimensional salt fingers in unbounded uniform vertical gradients of temperature and salinity is studied with a Direct Numerical Simulation in a triply periodic computational domain. A fluid dynamics video of the simulation shows that the secondary instability of the fastest growing square-planform finger mode is a combination of the well-known vertical shear instability of two-dimensional fingers [Holyer, 1984] and a new horizontal shear mode.

  19. 3-D Numerical Simulation on the Chip Machining Process of a Metal Block

    Institute of Scientific and Technical Information of China (English)

    Yan Yixia; Yin Yihui; Li Weifen

    2004-01-01

    In this paper, the cutting process of a metal block is numerically simulated by the dynamic explicit FE code ABAQUS. Taking thermo-mechanical coupling effect into consideration, the simulation presents the variation of temperature, stress and strain distribution in the workpiece and chip. The effective plastic strain failure criterion is applied to modeling the chip separation and plastic formation. And the phenomenon of the contact and friction between the workpiece and the cutting tool are described in the paper.

  20. Numerical scheme for riser motion calculation during 3-D VIV simulation

    Science.gov (United States)

    Huang, Kevin; Chen, Hamn-Ching; Chen, Chia-Rong

    2011-10-01

    This paper presents a numerical scheme for riser motion calculation and its application to riser VIV simulations. The discretisation of the governing differential equation is studied first. The top tensioned risers are simplified as tensioned beams. A centered space and forward time finite difference scheme is derived from the governing equations of motion. Then an implicit method is adopted for better numerical stability. The method meets von Neumann criteria and is shown to be unconditionally stable. The discretized linear algebraic equations are solved using a LU decomposition method. This approach is then applied to a series of benchmark cases with known solutions. The comparisons show good agreement. Finally the method is applied to practical riser VIV simulations. The studied cases cover a wide range of riser VIV problems, i.e. different riser outer diameter, length, tensioning conditions, and current profiles. Reasonable agreement is obtained between the numerical simulations and experimental data on riser motions and cross-flow VIV a/D . These validations and comparisons confirm that the present numerical scheme for riser motion calculation is valid and effective for long riser VIV simulation.

  1. Numerical validation framework for micromechanical simulations based on synchrotron 3D imaging

    Science.gov (United States)

    Buljac, Ante; Shakoor, Modesar; Neggers, Jan; Bernacki, Marc; Bouchard, Pierre-Olivier; Helfen, Lukas; Morgeneyer, Thilo F.; Hild, François

    2017-03-01

    A combined computational-experimental framework is introduced herein to validate numerical simulations at the microscopic scale. It is exemplified for a flat specimen with central hole made of cast iron and imaged via in-situ synchrotron laminography at micrometer resolution during a tensile test. The region of interest in the reconstructed volume, which is close to the central hole, is analyzed by digital volume correlation (DVC) to measure kinematic fields. Finite element (FE) simulations, which account for the studied material microstructure, are driven by Dirichlet boundary conditions extracted from DVC measurements. Gray level residuals for DVC measurements and FE simulations are assessed for validation purposes.

  2. Numerical validation framework for micromechanical simulations based on synchrotron 3D imaging

    Science.gov (United States)

    Buljac, Ante; Shakoor, Modesar; Neggers, Jan; Bernacki, Marc; Bouchard, Pierre-Olivier; Helfen, Lukas; Morgeneyer, Thilo F.; Hild, François

    2016-11-01

    A combined computational-experimental framework is introduced herein to validate numerical simulations at the microscopic scale. It is exemplified for a flat specimen with central hole made of cast iron and imaged via in-situ synchrotron laminography at micrometer resolution during a tensile test. The region of interest in the reconstructed volume, which is close to the central hole, is analyzed by digital volume correlation (DVC) to measure kinematic fields. Finite element (FE) simulations, which account for the studied material microstructure, are driven by Dirichlet boundary conditions extracted from DVC measurements. Gray level residuals for DVC measurements and FE simulations are assessed for validation purposes.

  3. Internal wave attractors examined using laboratory experiments and 3D numerical simulations

    CERN Document Server

    Brouzet, Christophe; Scolan, H; Ermanyuk, E V; Dauxois, Thierry

    2016-01-01

    In the present paper, we combine numerical and experimental approaches to study the dynamics of stable and unstable internal wave attractors. The problem is considered in a classic trapezoidal setup filled with a uniformly stratified fluid. Energy is injected into the system at global scale by the small-amplitude motion of a vertical wall. Wave motion in the test tank is measured with the help of conventional synthetic schlieren and PIV techniques. The numerical setup closely reproduces the experimental one in terms of geometry and the operational range of the Reynolds and Schmidt numbers. The spectral element method is used as a numerical tool to simulate the nonlinear dynamics of a viscous salt-stratified fluid. We show that the results of three-dimensional calculations are in excellent qualitative and quantitative agreement with the experimental data, including the spatial and temporal parameters of the secondary waves produced by triadic resonance instability. Further, we explore experimentally and numeri...

  4. A 3D numerical simulation of different phases of friction stir welding

    Science.gov (United States)

    Guerdoux, S.; Fourment, L.

    2009-10-01

    An adaptive arbitrary Lagrangian-Eulerian formulation is developed to compute the material flow and the temperature evolution during the three phases of the friction stir welding (FSW) process. It follows a splitting approach: after the calculations of the velocity/pressure and temperature fields, the mesh velocity is derived from the domain boundary evolution and from an adaptive refinement criterion provided by error estimation, and finally state variables are remapped. In this way, the unilateral contact conditions between the plate and the tool are accurately taken into account, so allowing one to model various instabilities that may occur during the process, such as the role played by the plunge depth of the tool on the formations of flashes, the possible appearance of non-steady voids or tunnel holes and the influence of the threads on the material flow, the temperature field and the welding efforts. This formulation is implemented in the 3D Forge3 FE software with automatic remeshing. The non-steady phases of FSW can so be simulated, as well as the steady welding phase. The study of different process conditions shows that the main phenomena taking place during FSW can be simulated with the right sensitivities.

  5. 3D Surgical Simulation

    Science.gov (United States)

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  6. 3D numerical simulation of gaseous flows structure in semidetached binaries

    CERN Document Server

    Bisikalo, D V; Chechetkin, V M; Kuznetsov, O A; Molteni, D

    1998-01-01

    The results of 3D hydrodynamic simulation of mass transfer in semidetached binaries of different types (cataclysmic variables and low-mass X-ray binaries) are presented. We find that taking into account of a circumbinary envelope leads to significant changes in the stream-disc morphology. In particular, the obtained steady-state self-consistent solutions show an absence of impact between gas stream from the inner Lagrangian point L1 and forming accretion disc. The stream deviates under the action of gas of circumbinary envelope, and does not cause the shock perturbation of the disc boundary (traditional `hotspot'). At the same time, the gas of circumbinary envelope interacts with the stream and causes the formation of an extended shock wave, located on the stream edge. We discuss the implication of this model without `hotspot' (but with a shock wave located outside the disc) for interpretation of observations. The comparison of synthetic light curves with observations proves the validity of the discussed hydr...

  7. Numerical simulation on the evolution of cloud particles in 3-D convective cloud

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A 3-D convective cloud model with compressible non-hydrostatic dynamics and the spectral bin microphysics of a 2-D slab-symmetric model has been used to simulate an observed supercell storm occurring on 29 June, 2000 near Bird City, Kansas, USA. The main objective of this paper is to study the evolution of particles in this convective storm with bin spectral microphysics scheme. Graupels form and grow through two mechanisms, deposition and riming, with the riming process dominant on top of the inflow and in the upper portion of main updraft. Over the outflow and during the developing and mature stages of the storm, graupel particles mainly grow through deposition with dominant unimodal spectra. Most fall out after growing up. Reducing initial relative humidity disturbance (increasing initial potential temperature disturbance) has negative impact on the formation and growth of graupels over the inflow (outflow). This study shows that large graupel and hail could be suppressed by altering the deposition and coalescence process over the inflow and main updraft. At different locations of the convective cells and with different initial humidity and potential temperature disturbance, the graupel formation and growth mechanisms are different, so as to the feasible hail suppression locations and methods.

  8. 3D Numerical Simulations of f-Mode Propagation Through Magnetic Flux Tubes

    CERN Document Server

    Daiffallah, K; Bendib, A; Cameron, R; Gizon, L

    2010-01-01

    Three-dimensional numerical simulations have been used to study the scattering of a surface-gravity wave packet by vertical magnetic flux tubes, with radii from 200 km to 3 Mm, embedded in stratified polytropic atmosphere. The scattered wave was found to consist primarily of m=0 (axisymmetric) and m=1 modes. It was found that the ratio of the amplitude of these two modes is strongly dependant on the radius of the flux tube: The kink mode is the dominant mode excited in tubes with a small radius while the sausage mode is dominant for large tubes. Simulations of this type provide a simple, efficient and robust way to start understanding the seismic signature of flux tubes, which have recently began to be observed.

  9. 3D numerical simulation and structural optimization of the rod baffle heat exchanger

    Institute of Scientific and Technical Information of China (English)

    YAN Liang-wen; PAN Lei; KAN Shu-lin

    2009-01-01

    Because of the complexities of fluid dynamics equations and the structure of heat exchangers, few theoretical solutions have been acquired to specify the shell side characteristics of the rod baffle heat exchanger (RBHE). Based on the platform of PHEONICS version 3.5.1, a three-dimensionai numerical method for predicting the turbulent fluid flow behavior in the shell side of the rod baffle heat exchangers is developed in this paper. With this method, modeling of the tube bundle is carried out based on the porous media concept using volumetric porosities and applicable flow resistance correlations. Turbulence effects are modeled using a standard κ-ε model. It is shown that the simulation results and experimental results are in good agreement in the shell side. The maximum absolute deviation value of pressure drops is less than 5%, and that of the heat transfer coefficients is less than 8%. Furthermore, the numerical model is used to optimize the structure of the RBHE and improves its performance.

  10. 3D Finite Element Numerical Simulation of Residual Stresses on Electron Beam Welded BT20 Plates

    Institute of Scientific and Technical Information of China (English)

    Lixing HUO; Furong CHEN; Yufeng ZHANG; Li ZHANG; Fangjun LIU; Gang CHEN

    2004-01-01

    A three-dimensional finite-element model (FEM) used for calculating electron beam (EB) welding temperature and stresses fields of thin plates of BT20 titanium has been developed in which the nonlinear thermophysical and thermo-mechanical properties of the material has been considered. The welding temperature field, the distributions of residual stresses in aswelded (AW) and electron beam local post-weld heat treatment (EBLPWHT) conditions have been successfully simulated.The results show that: (1) In the weld center, the maximum magnitude of residual tensile stresses of BT20 thin plates of Ti alloy is equal to 60%~ 70% of its yield strength σs. (2) The residual tensile stresses in weld center can be even decreased after EBLPWHT and the longitudinal tensile stresses are decreased about 50% compared to joints in AW conditions. (3)The numerical calculating results of residual stresses by using FEM are basically in agreement with the experimental results.Combined with numerical calculating results, the effects of electron beam welding and EBLPWHT on the distribution of welding residual stresses in thin plates of BT20 have been analyzed in detail.

  11. Numerical simulation of behavior of gas bubbles using a 3-D front-tracking method

    NARCIS (Netherlands)

    Sint Annaland, van M.; Dijkhuizen, W.; Deen, N.G.; Kuipers, J.A.M.

    2005-01-01

    In this paper a three-dimensional (3-D) front-tracking (FT) model is presented featuring a new method to evaluate the surface force model that circumvents the explicit computation of the interface curvature. This method is based on a direct calculation of the net tensile forces acting on a different

  12. Numerical simulation of the filling stage in injection molding based on a 3D model

    Institute of Scientific and Technical Information of China (English)

    GENG Tie; LI De-qun; ZHOU Hua-min

    2005-01-01

    Most injection molded parts are three-dimensional, with complex geometrical configurations and thick/thin wall sections. The change of the thickness of parts has significant influence on flow during injection molding. This paper presents a 3D finite element model to deal with the three-dimensional flow, which can more accurately predict the filling process than a 2. 5D model. In this model, equal-order velocity-pressure interpolation method is successfully employed and the relation between velocity and pressure is obtained from the discretized momentum equation in order to derive the pressure equation. A 3D control volume scheme is employed to track the flow front. The validity of the model has been tested through the analysis of the flow in a cavity.

  13. First 3D numerical simulations validated with experimental measurements during a LOVA reproduction inside the new facility STARDUST-Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Ciparisse, J.F.; Malizia, A. [Associazione EUROFUSION-ENEA, Department of Industrial Engineering, University of Rome “Tor Vergata”, Rome 00133 (Italy); Poggi, L.A., E-mail: poggi@ing.uniroma2.it [Associazione EUROFUSION-ENEA, Department of Industrial Engineering, University of Rome “Tor Vergata”, Rome 00133 (Italy); Gelfusa, M. [Associazione EUROFUSION-ENEA, Department of Industrial Engineering, University of Rome “Tor Vergata”, Rome 00133 (Italy); Murari, A. [Consorzio RFX-Associazione EUROFUSION-ENEA per la Fusione, Padova I-35127 (Italy); Mancini, A.; Gaudio, P. [Associazione EUROFUSION-ENEA, Department of Industrial Engineering, University of Rome “Tor Vergata”, Rome 00133 (Italy)

    2015-12-15

    Highlights: • We model supersonic, turbulent 3D flow in the “STARDUST-Upgrade” facility. • We simulate air expansion into a low pressure vessel. • We compare numerical results with experimental results. - Abstract: The aim of this work is to simulate a Loss of Vacuum Accident (LOVA) in the STARDUST (Small Tank for Aerosol Removal and DUST)-UPGRADE facility. These events are one of the major safety concerns in Tokamaks, since they can cause the mobilization and the dispersion of radioactive dust contained in a fusion reactor. The first step in the study of a LOVA event is the estimation, by means of numerical simulations, of the pressurization transient in the vacuum chamber. The STARDUST-UPGRADE facility, which has a cylindrical shape, is considered as a case study. An air inlet is located in a radial position with respect to the facility, so the numerical domain is symmetric and, therefore, only a half of it has been considered in the simulation. A time-dependent mass flow rate is imposed at the inlet, in a range consistent with experimental estimates. The simulation takes 20 s and the attention is focused on the mean pressure value over time and on the Mach number distribution. The results are presented and discussed in the perspective of simulating LOVAs in ITER (International Thermonuclear Experimental Reactor).

  14. Numerical 3-D heat flux simulations on flat plate solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Villar, N. Molero; Lopez, J.M. Cejudo; Munoz, F. Dominguez; Garcia, E. Rodriguez; Andres, A. Carrillo [Grupo de Energetica, Escuela Tecnica Superior de Ingenieros Industriales, UMA, Plaza El Ejido s/n, 29013 Malaga (Spain)

    2009-07-15

    A transient 3-D mathematical model for solar flat plate collectors has been developed. The model is based on setting mass and energy balances on finite volumes. The model allows the comparison of different configurations: parallel tubes collectors (PTC), serpentine tube collectors (STC), two parallel plate collectors (TPPC), and other non-usual possibilities like the use of absorbent fluids with semitransparent or transparent plates. Transparent honeycomb insulation between plate and cover can also be modelled. The effect of temperature on the thermal properties of the materials has also been considered. The model has been validated experimentally with a commercial PTC. The model is a useful tool to improve the design of plate solar collectors and to compare different configurations. In order to show the capabilities of the model, the performance of a PTC collector with non-uniformity flow is analysed and compared with experimental data from literature with good agreement. (author)

  15. NUMERICAL SIMULATION OF 3-D TURBULENT FLOW IN THE MULTI- INTAKES SUMP OF THE PUMP STATION

    Institute of Scientific and Technical Information of China (English)

    CHEN Hong-xun; GUO Jia-hong

    2007-01-01

    In this article, a numerical model for three-dimensional turbulent flow in the sump of the pump station was presented. A reasonable boundary condition for the flow in the sump with several water intakes at different flow rates was proposed. The finite volume method was employed to solve the governing equations with the body fitted grid generated by the multi-block grid technique. By using the Fluent software, the fluid flow in a model sump of the pump station was calculated. Compared with the experimental result, the numerical result of the example is fairly good.

  16. Making Faranoff-Riley I radio sources. I. Numerical hydrodynamic 3D simulations of low-power jets

    Science.gov (United States)

    Massaglia, S.; Bodo, G.; Rossi, P.; Capetti, S.; Mignone, A.

    2016-11-01

    Context. Extragalactic radio sources have been classified into two classes, Fanaroff-Riley I and II, which differ in morphology and radio power. Strongly emitting sources belong to the edge-brightened FR II class, and weakly emitting sources to the edge-darkened FR I class. The origin of this dichotomy is not yet fully understood. Numerical simulations are successful in generating FR II morphologies, but they fail to reproduce the diffuse structure of FR Is. Aims: By means of hydro-dynamical 3D simulations of supersonic jets, we investigate how the displayed morphologies depend on the jet parameters. Bow shocks and Mach disks at the jet head, which are probably responsible for the hot spots in the FR II sources, disappear for a jet kinetic power ℒkin ≲ 1043 erg s-1. This threshold compares favorably with the luminosity at which the FR I/FR II transition is observed. Methods: The problem is addressed by numerical means carrying out 3D HD simulations of supersonic jets that propagate in a non-homogeneous medium with the ambient temperature that increases with distance from the jet origin, which maintains constant pressure. Results: The jet energy in the lower power sources, instead of being deposited at the terminal shock, is gradually dissipated by the turbulence. The jets spread out while propagating, and they smoothly decelerate while mixing with the ambient medium and produce the plumes characteristic of FR I objects. Conclusions: Three-dimensionality is an essential ingredient to explore the FR I evolution becausethe properties of turbulence in two and three dimensions are very different, since there is no energy cascade to small scales in two dimensions, and two-dimensional simulations with the same parameters lead to FRII-like behavior.

  17. Turbulent mixing and layer formation in double-diffusive convection: 3D numerical simulations and theory

    CERN Document Server

    Rosenblum, Erica; Traxler, Adrienne; Stellmach, Stephan

    2010-01-01

    Double-diffusive convection, often referred to as semi-convection in astrophysics, occurs in thermally and compositionally stratified systems which are stable according to the Ledoux-criterion but unstable according to the Schwarzchild criterion. This process has been given relatively little attention so far, and its properties remain poorly constrained. In this paper, we present and analyze a set of three-dimensional simulations of this phenomenon in a Cartesian domain under the Boussinesq approximation. We find that in some cases the double-diffusive convection saturates into a state of homogeneous turbulence, but with turbulent fluxes several orders of magnitude smaller than those expected from direct overturning convection. In other cases the system rapidly and spontaneously develops closely-packed thermo-compositional layers, which later successively merge until a single layer is left. We compare the output of our simulations with an existing theory of layer formation in the oceanographic context, and fi...

  18. Numerical simulation of 3-D incompressible, multi-phase flows over cavitating projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Owis, F.M.; Nayfeh, A.H. [Blacksburg State University, Dept. of Engineering Science and Mechanics, MC 0219, Virginia Polytechnic Institute, VA (United States)

    2004-04-01

    The hydrodynamic cavitation over axisymmetric projectiles is computed using the unsteady incompressible Navier-Stokes equations for multi-fluid elements. The governing equations are discretized on a structured grid using an upwind difference scheme with flux limits. A preconditioning dual-time stepping method is used for the unsteady computations. The Eigen-system is derived for the Jacobian matrices. This Eigen-system is suitable for high-density ratio multi-fluid flows and it provides high numerical stability and fast convergence. This method can be used to compute single- as well as multi-phase flows. Cavitating flows over projectiles with different geometries are computed and the results are in good agreement with available experimental data and other published computations. (authors)

  19. Numerical Simulation for Three-Dimensional (3D) Unsteady State Temperature Field in Circumferential Laser Oxygen Cutting of Pipes

    Institute of Scientific and Technical Information of China (English)

    Kaijin HUANG; Dawen ZENG; Changsheng XIE; Desheng XU

    2003-01-01

    A 3D unsteady state numerical model of heat transfer in the circumferential laser oxygen cutting of pipes wasdeveloped. In order to minimize the computing time required for solving the finite difference equations as much aspossible, the alternating direct

  20. 3D numerical simulation of projection welding of square nuts to sheets

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Zhang, W.; Martins, P. A. F.;

    2015-01-01

    formulation inorder to model the frictional sliding between the square nut projections and the sheets during the weld-ing process. It is proved that the implementation of friction increases the accuracy of the simulations,and the dynamic influence of friction on the process is explained.© 2014 Elsevier B......The challenge of developing a three-dimensional finite element computer program for electro-thermo-mechanical industrial modeling of resistance welding is presented, and the program is applied to thesimulation of projection welding of square nuts to sheets. Results are compared with experimental...

  1. Numerical 3D-simulation of micromorph silicon thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Geissendoerfer, Stefan; Lacombe, Juergen; Maydell, Karsten von; Agert, Carsten [EWE-Forschungszentrum fuer Energietechnologie e.V. NEXT ENERGY, Carl-von-Ossietzky-Str. 15, 26129 Oldenburg (Germany)

    2011-07-01

    In this contribution 3-dimensional simulations of micromorph silicon thin film solar cells, which have a tandem structure consisting of amorphous and microcrystalline subcells, are presented. The variety of different active layers leads to a very complex structure. Additionally, randomly textured surfaces and interfaces have to be taken into account. Our goal is to create physical models to describe the coupled optical and electrical behaviour of the whole structure in three dimensions to determine the theoretical limits and dominant material parameters. To simulate solar cells with rough interfaces, the surfaces topography was measured via atomic force microscopy (AFM) and transferred to the commercial software Sentaurus TCAD from the company Synopsys. The virtual structure includes layer thicknesses and optoelectronic parameters. Results of the space resolved optical generation rates by using the optical solver ''Raytracer'' are presented. The space resolved optical generation rate inside the semiconductor layers depends on the structure of the TCO interface. Therefore, regions with higher charge carrier densities can be observed which has an influence on the current transport through the stack. These investigations and the influence to the IV characteristic are presented.

  2. 3-D numerical simulations of rotating jets. The case of the DG Tau microjet

    Science.gov (United States)

    Cerqueira, A. H.; de Gouveia Dal Pino, E. M.

    2004-11-01

    We here present results of three-dimensional Smoothed Particle hydro and magnetohydrodynamics simulations of rotating jets, also including the effects of radiative cooling, precession and velocity variability. Using initial conditions and parameters which are particularly suitable for the DG Tau microjet, we have been able to approximately reproduce its complex knotty morphology and kinematics. We have also obtained radial velocity maps which are in good agreement with the data obtained by Bacciotti et al., thus indicating that their interpretation that the DG Tau microjet is rotating is correct. Finally, we have found that a magnetic field of the order of ≈0.5 mG is sufficient to collimate the jet against the lateral expansion that is caused by the centrifugal forces.

  3. 3-D numerical simulations of rotating jets: The case of the DG Tau microjet

    CERN Document Server

    Cerqueira, A H; Cerqueira, Adriano H.; Pino, Elisabete M. de Gouveia Dal

    2004-01-01

    We here present results of three-dimensional Smoothed Particle hydro and magnetohydrodynamics simulations of rotating jets, also including the effects of radiative cooling, precession and velocity variability. Using initial conditions and parameters which are particularly suitable for the DG Tau microjet, we have been able to approximately reproduce its complex knotty morphology and kinematics. We have also obtained radial velocity maps which are in good agreement with the data obtained by Bacciotti et al., thus indicating that their interpretation that the DG Tau microjet is rotating is correct. Finally, we have found that a magnetic field of the order of ~ 0.5 mG is sufficient to collimate the jet against the lateral expansion that is caused by the centrifugal forces.

  4. Fast algorithm and numerical simulation for ray-tracing in 3D structure

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Beginning with the method of whole path iterative ray-tracing and according to the positive definiteness of the coefficient matrix of the systems of linear equations,a symmetry block tridiagonai matrix was decomposed into the product of block bidiagonal triangular matrix and its transpose by means of Cholesky decomposition.Then an algorithm for solving systems of block bidiagonal triangular linear equations was given,which is not necessary to treat with the zero elements out of banded systems.A fast algorithm for solving the systems of symmetry block tridiagonal linear equations was deduced,which can quicken the speed of ray-tracing.Finally,the simulation based on this algorithm for ray-tracing in three dimensional media was carried out.Meanwhile,the segmentally-iterative ray-tracing method and banded method for solving the systems of block tridiagonal linear equations were compared in the same model mentioned above.The convergence condition was assumed that the L-2 norm summation for mk,1 and mk,2 in the whole ray path was limited in 10-6.And the calculating speeds of these methods were compared.The results show that the calculating speed of this algorithm is faster than that of conventional method and the calculated results are accurate enough.In addition,its precision can be controlled according to the requirement of ray-tracing.

  5. 3-D BAROCLINIC NUMERICAL SIMULATION OF THE SOUTH CHINA SEA I. UPPER CIRCULATION

    Institute of Scientific and Technical Information of China (English)

    蔡树群; 甘子钧; 刘秦玉

    2001-01-01

    A three-dimensional baroclinic shelf sea model was employed to simulate the seasonal characteristics of the South China Sea (SCS) upper circulation. The results showed that: in summer, an anticyclonic eddy, after its formation between the Bashi Channel and Dongsha Islands in the northeastern SCS, moves southwestward until it disperses slowly. There exists a northward western boundary current along the east shore of the Indo-China Peninsula in the western SCS and an anticyclonic gyre in the southern SCS. But at the end of summer and beginning of autumn, a weak local cyclonic eddy forms in the Nansha Trough, then grows slowly and moves westward till it becomes a cyclonic gyre in the southern SCS in autumn. At the beginning of winter, there exists a cyclonic gyre in the northern and southern SCS, and there is a southward western boundary current along the east shore of the Indo-China Peninsula. But at the end of winter, an anticyclonic eddy grows and moves toward the western boundary after forming in the Nansha Trough. The eddy's movement induces a new opposite sign eddy on its eastern side, while the strength of the southward western boundary current gets weakened. This phenomenon continues till spring and causes eddies in the southern SCS.

  6. MODELING STATISTICAL PROPERTIES OF SOLAR ACTIVE REGIONS THROUGH DIRECT NUMERICAL SIMULATIONS OF 3D-MHD TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Malapaka, Shiva Kumar; Mueller, Wolf-Christian [Max-Planck Institute for Plasma Physics, Boltzmannstrasse 2, D-85748 Garching bei Muenchen (Germany)

    2013-09-01

    Statistical properties of the Sun's photospheric turbulent magnetic field, especially those of the active regions (ARs), have been studied using the line-of-sight data from magnetograms taken by the Solar and Heliospheric Observatory and several other instruments. This includes structure functions and their exponents, flatness curves, and correlation functions. In these works, the dependence of structure function exponents ({zeta}{sub p}) of the order of the structure functions (p) was modeled using a non-intermittent K41 model. It is now well known that the ARs are highly turbulent and are associated with strong intermittent events. In this paper, we compare some of the observations from Abramenko et al. with the log-Poisson model used for modeling intermittent MHD turbulent flows. Next, we analyze the structure function data obtained from the direct numerical simulations (DNS) of homogeneous, incompressible 3D-MHD turbulence in three cases: sustained by forcing, freely decaying, and a flow initially driven and later allowed to decay (case 3). The respective DNS replicate the properties seen in the plots of {zeta}{sub p} against p of ARs. We also reproduce the trends and changes observed in intermittency in flatness and correlation functions of ARs. It is suggested from this analysis that an AR in the onset phase of a flare can be treated as a forced 3D-MHD turbulent system in its simplest form and that the flaring stage is representative of decaying 3D-MHD turbulence. It is also inferred that significant changes in intermittency from the initial onset phase of a flare to its final peak flaring phase are related to the time taken by the system to reach the initial onset phase.

  7. Numerical simulations of full-wave fields and analysis of channel wave characteristics in 3-D coal mine roadway models

    Science.gov (United States)

    Yang, Si-Tong; Wei, Jiu-Chuan; Cheng, Jiu-Long; Shi, Long-Qing; Wen, Zhi-Jie

    2016-12-01

    Currently, numerical simulations of seismic channel waves for the advance detection of geological structures in coal mine roadways focus mainly on modeling twodimensional wave fields and therefore cannot accurately simulate three-dimensional (3-D) full-wave fields or seismic records in a full-space observation system. In this study, we use the first-order velocity-stress staggered-grid finite difference algorithm to simulate 3-D full-wave fields with P-wave sources in front of coal mine roadways. We determine the three components of velocity V x, V y, and V z for the same node in 3-D staggered-grid finite difference models by calculating the average value of V y, and V z of the nodes around the same node. We ascertain the wave patterns and their propagation characteristics in both symmetrical and asymmetric coal mine roadway models. Our simulation results indicate that the Rayleigh channel wave is stronger than the Love channel wave in front of the roadway face. The reflected Rayleigh waves from the roadway face are concentrated in the coal seam, release less energy to the roof and floor, and propagate for a longer distance. There are surface waves and refraction head waves around the roadway. In the seismic records, the Rayleigh wave energy is stronger than that of the Love channel wave along coal walls of the roadway, and the interference of the head waves and surface waves with the Rayleigh channel wave is weaker than with the Love channel wave. It is thus difficult to identify the Love channel wave in the seismic records. Increasing the depth of the receivers in the coal walls can effectively weaken the interference of surface waves with the Rayleigh channel wave, but cannot weaken the interference of surface waves with the Love channel wave. Our research results also suggest that the Love channel wave, which is often used to detect geological structures in coal mine stopes, is not suitable for detecting geological structures in front of coal mine roadways

  8. The development of topographic plateaus in an India-Asia-like collision zone using 3D numerical simulations

    Science.gov (United States)

    Pusok, Adina E.; Kaus, Boris; Popov, Anton

    2014-05-01

    The Himalayas and the adjacent Tibetan Plateau represent the most remarkable feature of the Earth's surface as the largest region of elevated topography and anomalously thick crust. Understanding the formation and evolution of the Himalayan-Tibetan region has become of high interest in the scientific community and different models have emerged over the last decades. They range from wholescale underthrusting of Indian lithospheric mantle under Tibet, distributed homogeneous shortening or the thin-sheet model, slip-line field model to the lower crustal flow model for the exhumation of the Himalayan units and lateral spreading of the Tibetan plateau. While some of these models have successfully illustrated some of the basic physics of continental collision, none can simultaneously represent active processes such as subduction, underthrusting, delamination, channel flow or extrusion, which are thought to be important during continental convergence, since these mechanisms require the lithosphere to interact with the underlying mantle. As such, 3D numerical models prove to be powerful tools in understanding the dynamics of coupled systems. However, because of yet recent developments and various complexities, the current 3D models simulating the dynamics of continental collision zones have relied on certain explicit assumptions, either focusing on crustal dynamics or slab-mantle dynamics. Here, we employ the parallel 3D code LaMEM (Lithosphere and Mantle Evolution Model), with a finite difference staggered grid solver, which is capable of simulating lithospheric deformation while simultaneously taking mantle flow and an internal free surface into account, which allows for the development of topography. We investigate the way deep processes affect continental tectonics at convergent margins, addressing the role continent subduction and collision have on the future of the subducting and overriding plates, and we discuss the implications these offer for the Asian tectonics

  9. 3D NUMERICAL SIMULATION ON WATER AND AIR TWO-PHASE FLOWS OF THE STEPS AND FLARING GATE PIER

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ting; WU Chao; LIAO Hua-sheng; HU Yao-hua

    2005-01-01

    A new-style flood discharging dam, which consolidates the flaring gate pier and the stepped spillway for discharging the flood through the dam surface, had been applied in China. The theoretical study on it is in a beginning stage at present. The three-dimensional numerical simulation has not been reported. In this paper, the 3D numerical calculation on the two-phase flow of water and air with discharge per unit width 195m3/s* m is presented . The results indicate that there is negative pressure on the juncture of the spillway surface and the first step. There forms obvious longitudinal and transverse eddies on the steps and the velocity decreases obviously compared with the smooth spillway. The figures of the velocity distributions and the water-air two-phase flows are plotted. The results calculated on the pressure are in agreement with the experimental data. Based on the position of the negative pressure obtained from calculation, measurement points of pressure are arranged in physical model. The experimental results validate the existence of the negative pressure. Being an applied and trial study, the results obtained are of theoretical and practical significance.

  10. NUMERICAL SIMULATION OF 3-D TURBULENT FLOWS IN A CUT-OFF VALVE AND ANALYSIS OF FLOW CHARACTERISTICS IN PIPE

    Institute of Scientific and Technical Information of China (English)

    He Zhi-guo; Mao Gen-hai; Yuan Xing-ming

    2003-01-01

    The 3-D turbulent flows in a valve pipe were described by the incompressible Reynolds-averaged Navier-Stokes equations with an RNG k-ε turbulence model. With the finite volume method and a body-fitted coordinate system, the discretised equations were solved by the SIMPLEST algorithm. The numerical result of a cut-off valve with curved inlet shows the flow characteristics and the main cause of energy loss when fluid flows through a valve. And then, the boundaries of valve were modified in order to reduce the energy loss. The computational results of modified valve show that the numerical value of turbulent kinetic energy is lower, and that the modified design of the 3-D valve boundaries is much better. The analysis of the result also shows that RNG k-ε turbulence model can successfully be used to predict the 3-D turbulent separated flows and the secondary flow inside valve pipes.

  11. Numerical simulation of standing wave with 3D predictor-corrector finite difference method for potential flow equations

    Institute of Scientific and Technical Information of China (English)

    罗志强; 陈志敏

    2013-01-01

    A three-dimensional (3D) predictor-corrector finite difference method for standing wave is developed. It is applied to solve the 3D nonlinear potential flow equa-tions with a free surface. The 3D irregular tank is mapped onto a fixed cubic tank through the proper coordinate transform schemes. The cubic tank is distributed by the staggered meshgrid, and the staggered meshgrid is used to denote the variables of the flow field. The predictor-corrector finite difference method is given to develop the difference equa-tions of the dynamic boundary equation and kinematic boundary equation. Experimental results show that, using the finite difference method of the predictor-corrector scheme, the numerical solutions agree well with the published results. The wave profiles of the standing wave with different amplitudes and wave lengths are studied. The numerical solutions are also analyzed and presented graphically.

  12. 3D numerical simulation of a lab-on-a-chip--increasing measurement sensitivity of interdigitated capacitors by passivation optimization.

    Science.gov (United States)

    Jungreuthmayer, Christian; Birnbaumer, Gerald M; Zanghellini, Juergen; Ertl, Peter

    2011-04-07

    Interdigital electrode structures (IDES) play a major role in many technical and analytical applications. In particular, they are a key technology in modern lab-on-a-chip (LOC) devices. As high sensitivity is a key component of any (bio)analytical method, the presented work is aimed at designing a novel dielectric sensing system, which exhibits maximum sensor sensitivity using passivated dielectric microsensors. Although the implementation of high-ε(r) dielectric passivation materials such as tantalum oxide or titanium oxide showed increased sensor sensitivity by a factor of 5, simulations revealed that sensor sensitivity is ultimately determined by the dielectric properties of the analyte. Ideally, dielectric properties of the passivation material need to be adjusted to the dielectric properties of the material under investigation and any deviations (e.g. higher or lower dielectric constants) will result in significant loss of sensitivity. To address these shortcomings we have developed a novel dielectric sensing concept based on a dual-material passivation geometry. The novel design consists of electric flux barriers that are layered between the finger electrodes, as well as electric flux guides which are located above the electrode structures that direct the entire generated electric flux to the object under investigation. Our 3D numerical results clearly show that the novel design offers two main advantages: firstly, the measurement sensitivity is further increased by more than a factor of two in comparison to a homogeneous passivation material sensing strategy. Secondly, maximum sensitivity for a given set of finger geometries can be achieved using a single sensor design regardless of the frequency-dependent dielectric properties of the measured objects. Hence, the novel approach is capable of reducing design and manufacturing costs of lab-on-a-chip devices.

  13. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method.

    Science.gov (United States)

    Tay, W B; van Oudheusden, B W; Bijl, H

    2014-09-01

    The numerical simulation of an insect-sized 'X-wing' type biplane flapping wing configuration is performed in 3D using an immersed boundary method solver at Reynolds numbers equal to 1000 (1 k) and 5 k, based on the wing's root chord length. This X-wing type flapping configuration draws its inspiration from Delfly, a bio-inspired ornithopter MAV which has two pairs of wings flapping in anti-phase in a biplane configuration. The objective of the present investigation is to assess the aerodynamic performance when the original Delfly flapping wing micro-aerial vehicle (FMAV) is reduced to the size of an insect. Results show that the X-wing configuration gives more than twice the average thrust compared with only flapping the upper pair of wings of the X-wing. However, the X-wing's average thrust is only 40% that of the upper wing flapping at twice the stroke angle. Despite this, the increased stability which results from the smaller lift and moment variation of the X-wing configuration makes it more suited for sharp image capture and recognition. These advantages make the X-wing configuration an attractive alternative design for insect-sized FMAVS compared to the single wing configuration. In the Reynolds number comparison, the vorticity iso-surface plot at a Reynolds number of 5 k revealed smaller, finer vortical structures compared to the simulation at 1 k, due to vortices' breakup. In comparison, the force output difference is much smaller between Re = 1 k and 5 k. Increasing the body inclination angle generates a uniform leading edge vortex instead of a conical one along the wingspan, giving higher lift. Understanding the force variation as the body inclination angle increases will allow FMAV designers to optimize the thrust and lift ratio for higher efficiency under different operational requirements. Lastly, increasing the spanwise flexibility of the wings increases the thrust slightly but decreases the efficiency. The thrust result is similar to one of the

  14. NUMERICAL SIMULATION OF THE EFFECTS OF WEIGHT SYSTEM ON THE HYDRODYNAMIC BEHAVIOR OF 3-D NET OF GRAVITY CAGE IN CURRENT

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this article, a model of 3-D net is set up by using lumped mass method. Model test results made by Lader and Enerhaug are cited to verify the numerical model. The aim of this paper is to investigate the effects of weight system on the hydrodynamic behavior of 3-D net of gravity cage in current. Using the 3-D net model, with different styles and masses of weight system, hydrodynamic behavior of gravity cage net in current is simulated. In this article, two styles of common weight system are used, which include: (1) sinker system , (2) bottom collar-sinker system. Under each style, three different masses of weight system are adopted. The numerical results indicate that the bottom collar-sinker system is practically feasible in improving the cage net volume deformation. Results of this study will give references for better knowledge of hydrodynamic behavior of gravity cage.

  15. Mode transformation and frequency change with height in 3D numerical simulations of magneto-acoustic wave propagation in sunspots

    CERN Document Server

    Felipe, T; Collados, M

    2010-01-01

    Three-dimensional numerical simulations of magnetoacoustic wave propagation are performed in a sunspot atmosphere with a computational domain covering from the photosphere to the chromosphere. The wave source, with properties resembling the solar spectrum, is located at different distances from the axis of the sunspot for each simulation. These results are compared with the theory of mode transformation and also with observational features. Simulations show that the dominant oscillation frequency in the chromosphere decreases with the radial distance from the sunspot axis. The energy flux of the different wave modes involved, including de Alfv\\'en mode, is evaluated and discussed.

  16. 3D FEM numerical simulation and experimental study on symmetric thin-wall tube neck-spinning

    Institute of Scientific and Technical Information of China (English)

    KUANG Wei-hua; XIA Qin-xiang; RUAN Feng

    2006-01-01

    A 3D FEM model for symmetric thin-wall tube neck-spinning is established. The spinning process is simulated by means of ANSYS software, and the dynamic boundary and contact problems in simulation are solved. The transient stress distribution of contact area, the transient strain distribution of nodes in typical section and the strain distribution of the whole part at last are attained, and the place and the cause of crack are analyzed. Simulation results show how the strain distribution of typical section, the thickness of some typical nodes, the Z coordinate in typical section and the spinning force of three rollers change with the time. According to study the variation curve, the material flow law along radial, tangential and axial direction is attained and the whole spinning process is studied. The experiment data reflect how the spinning force is influenced by different process parameters, such as feed rate, roundness radius and pass reduction. The simulation and the experiment results supply criteria for optimum design and reasonable parameter selection.

  17. Numerical simulation of perfect fluid flows around complex 3D configurations by a multidomain solver using the MUSCL approach

    Science.gov (United States)

    Guillen, Ph.; Borrel, M.; Dormieux, M.

    1990-10-01

    A numerical scheme of the MUSCL type used for the numerical simulation of gas flow of different types around complex configurations is described. Approximate Riemann solvers of the Van Leer, Roc, and Osher types, developed for perfect gas flows are used. These solvers have been extended to non-reactive mixtures of two species and real gas flows by Abgrall, Montagne and Vinokur. The architecture of the code, dictated by constraints in geometrical considerations, computational aspects, the specific nature of the flow, and ergonomy, is described.

  18. 3D numerical simulation of the long range propagation of acoustical shock waves through a heterogeneous and moving medium

    Energy Technology Data Exchange (ETDEWEB)

    Luquet, David; Marchiano, Régis; Coulouvrat, François, E-mail: francois.coulouvrat@upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7190, Institut Jean Le Rond d’Alembert, F-75005, Paris (France)

    2015-10-28

    Many situations involve the propagation of acoustical shock waves through flows. Natural sources such as lightning, volcano explosions, or meteoroid atmospheric entries, emit loud, low frequency, and impulsive sound that is influenced by atmospheric wind and turbulence. The sonic boom produced by a supersonic aircraft and explosion noises are examples of intense anthropogenic sources in the atmosphere. The Buzz-Saw-Noise produced by turbo-engine fan blades rotating at supersonic speed also propagates in a fast flow within the engine nacelle. Simulating these situations is challenging, given the 3D nature of the problem, the long range propagation distances relative to the central wavelength, the strongly nonlinear behavior of shocks associated to a wide-band spectrum, and finally the key role of the flow motion. With this in view, the so-called FLHOWARD (acronym for FLow and Heterogeneous One-Way Approximation for Resolution of Diffraction) method is presented with three-dimensional applications. A scalar nonlinear wave equation is established in the framework of atmospheric applications, assuming weak heterogeneities and a slow wind. It takes into account diffraction, absorption and relaxation properties of the atmosphere, quadratic nonlinearities including weak shock waves, heterogeneities of the medium in sound speed and density, and presence of a flow (assuming a mean stratified wind and 3D turbulent ? flow fluctuations of smaller amplitude). This equation is solved in the framework of the one-way method. A split-step technique allows the splitting of the non-linear wave equation into simpler equations, each corresponding to a physical effect. Each sub-equation is solved using an analytical method if possible, and finite-differences otherwise. Nonlinear effects are solved in the time domain, and others in the frequency domain. Homogeneous diffraction is handled by means of the angular spectrum method. Ground is assumed perfectly flat and rigid. Due to the 3D

  19. Numerical simulation of suspended sediment concentration by 3D coupled wave-current model in the Oujiang River Estuary, China

    Science.gov (United States)

    Xu, Ting; You, Xue-yi

    2017-04-01

    A 3D sediment transport model based on the modified environmental fluid dynamics code (EFDC) and the nearshore waves simulation model (SWAN) is developed to study the change of suspended sediment concentration and bottom shear stress under the actions of pure current and wave-current. After being validated by the field measured data, the proposed sediment transport model is applied in the Oujiang River Estuary, China. The results show that the ratios of both bottom shear stress and suspended sediment concentration of pure current to those of wave-current show a gradually increase from shallow nearshore water to deep open sea. The results also show that the proportion of wave contributions on bottom shear stress and sediment concentration are above 60%, approximately 20-30% and less than 10% for the water depth of less than 5 m, 5-10 m and more than 20 m, respectively. For the waters among islands, the proportion of wave contribution to bottom shear stress and sediment concentration is reduced to 10-20% for -5 m water depth and this is more obvious for the waves of large amplitude. The bottom stress and suspended sediment concentration between islands are mainly controlled by tidal current, and the effect of wave is not significant.

  20. Mixing behavior of the rhombic micromixers over a wide Reynolds number range using Taguchi method and 3D numerical simulations.

    Science.gov (United States)

    Chung, C K; Shih, T R; Chen, T C; Wu, B H

    2008-10-01

    A planar micromixer with rhombic microchannels and a converging-diverging element has been systematically investigated by the Taguchi method, CFD-ACE simulations and experiments. To reduce the footprint and extend the operation range of Reynolds number, Taguchi method was used to numerically study the performance of the micromixer in a L(9) orthogonal array. Mixing efficiency is prominently influenced by geometrical parameters and Reynolds number (Re). The four factors in a L(9) orthogonal array are number of rhombi, turning angle, width of the rhombic channel and width of the throat. The degree of sensitivity by Taguchi method can be ranked as: Number of rhombi > Width of the rhombic channel > Width of the throat > Turning angle of the rhombic channel. Increasing the number of rhombi, reducing the width of the rhombic channel and throat and lowering the turning angle resulted in better fluid mixing efficiency. The optimal design of the micromixer in simulations indicates over 90% mixing efficiency at both Re > or = 80 and Re < or = 0.1. Experimental results in the optimal simulations are consistent with the simulated one. This planar rhombic micromixer has simplified the complex fabrication process of the multi-layer or three-dimensional micromixers and improved the performance of a previous rhombic micromixer at a reduced footprint and lower Re.

  1. Numerical Simulation and Analysis on 3D Temperature Field of the Metal Ablated with Femtosecond Pulse Laser

    Energy Technology Data Exchange (ETDEWEB)

    Yang Li; Yang Wei [Science College, Civil Aviation University of China, Tianjin 300300 (China); Wang Chingyue, E-mail: y_lyang@yahoo.com.cn [Key Laboratory of Opto-electronic Information Science and Technology, Ministry of Education, Tianjin University, Tianjin 300072 (China)

    2011-02-01

    To describe femtosecond laser ablation on the metal, numerical simulation on the basis of the double-temperature equation for three-dimension temperature field of the copper ablated with femtosecond pulse laser was performed by finite-difference method. Based on imbalance of the electronic and lattice's temperatures, the calefactive process of the electron and the lattice was obtained, respectively. The dependence of the electron-lattice coupling time on irradiated laser fluence was studied. The ablation depth and the ablation radius of the copper for single pulse fluence were calculated. The dependence of the start ablation (phase explosion arises) time of the copper on irradiated laser fluence was studied. The results indicate that the material jet due to phase explosion is earlier and the duration of ablation is longer with the increase of the laser fluence. When the laser fluence is higher than 1.5 J/cm{sup 2} the ablation start time is about 2-3 ps.

  2. Identifying the origin of differences between 3D numerical simulations of ground motion in sedimentary basins: lessons from stringent canonical test models in the E2VP framework

    Science.gov (United States)

    Chaljub, Emmanuel; Maufroy, Emeline; Moczo, Peter; Kristek, Jozef; Priolo, Enrico; Klin, Peter; De Martin, Florent; Zhang, Zenghuo; Hollender, Fabrice; Bard, Pierre-Yves

    2013-04-01

    Numerical simulation is playing a role of increasing importance in the field of seismic hazard by providing quantitative estimates of earthquake ground motion, its variability, and its sensitivity to geometrical and mechanical properties of the medium. Continuous efforts to develop accurate and computationally efficient numerical methods, combined with increasing computational power have made it technically feasible to calculate seismograms in 3D realistic configurations and for frequencies of interest in seismic design applications. Now, in order to foster the use of numerical simulations in practical prediction of earthquake ground motion, it is important to evaluate the accuracy of current numerical methods when applied to realistic 3D sites. This process of verification is a necessary prerequisite to confrontation of numerical predictions and observations. Through the ongoing Euroseistest Verification and Validation Project (E2VP), which focuses on the Mygdonian basin (northern Greece), we investigated the capability of numerical methods to predict earthquake ground motion for frequencies up to 4 Hz. Numerical predictions obtained by several teams using a wide variety of methods were compared using quantitative goodness-of-fit criteria. In order to better understand the cause of misfits between different simulations, initially performed for the realistic geometry of the Mygdonian basin, we defined five stringent canonical configurations. The canonical models allow for identifying sources of misfits and quantify their importance. Detailed quantitative comparison of simulations in relation to dominant features of the models shows that even relatively simple heterogeneous models must be treated with maximum care in order to achieve sufficient level of accuracy. One important conclusion is that the numerical representation of models with strong variations (e.g. discontinuities) may considerably vary from one method to the other, and may become a dominant source of

  3. THE GLOBAL ARTIFICIAL BOUNDARY CONDITIONS FOR NUMERICAL SIMULATIONS OF THE 3D FLOW AROUND A SUBMERGED BODY

    Institute of Scientific and Technical Information of China (English)

    Hou-de Han; Xin Wen

    2003-01-01

    We consider the numerical approximations of the three-dimensional steady potential flow around a body moving in a liquid of finite constant depth at constant speed and distance below a free surface in a channel. One vertical side is introduced as the upstream artificial boundary and two vertical sides are introduced as the downstream artificial boundaries. On the artificial boundaries, a sequence of high-order global artificial boundary conditions are given. Then the original problem is reduced to a problem defined on a finite computational domain, which is equivalent to a variational problem. After solving the variational problem by the finite element method, we obtain the numerical approximation of the original problem. The numerical examples show that the artificial boundary conditions given in this paper are very effective.

  4. The Application of 3-D Numerical Simulation to Calculating the Waves in Surge Tanks%CFD在调压室涌浪水位模拟中的应用

    Institute of Scientific and Technical Information of China (English)

    刘飞; 杨建东; 李进平

    2011-01-01

    While a hydropower station is in its transition process, the unsteady flow in the tailrace surge tank has been simulated by using the method of CFD. In this paper, the surge wave and the bottom plate pressure difference are the focus of concern in the 3-D numerical simulation. Three turbulence models have been used to simulate the unsteady flow. We can illustrate the differences between the three turbulence models while they are used to simulate the transition process. Based on the advantage that the 3-D numerical simulation can capture the information of internal flow field, we are also able to explore the situation of free surface and flow regime in the surge tank through the entire wave process.%对某水电站的尾水隧洞及下游调压室过渡过程中的非恒定流流态进行三维数值模拟,着重观测调压室内涌浪波动及调压室内底板压差变化过程。采用3种湍流模型对下游调压室及尾水隧洞进行了模拟,将调压室涌浪波动过程与调压室底板压差变化过程的三维计算结果与物理模型实验、一维数值计算的相应结果予以对比分析,阐明了不同湍流模型对过渡过程模拟的影响。结合三维模拟能捕捉流场内部流态的优势,探讨了涌浪波动过程中调压室水面波动过程及水流流态。

  5. 3D numerical simulation of the three stages of Friction Stir Welding based on friction parameters calibration

    OpenAIRE

    Fourment, Lionel; Guerdoux, Simon

    2008-01-01

    International audience; An Arbitrary Lagrangian Eulerian (ALE) formulation was developed to simulate the different stages of the Friction Stir Welding (FSW) process with the FORGE3® F.E. software. A splitting method was utilized: a) the material velocity/pressure and temperature fields are calculated, b) the mesh velocity is derived from the domain boundary evolution and an adaptive refinement criterion provided by error estimation, c) P1 and P0 variables are remapped. The proposed ALE formul...

  6. Numerical Simulation of Tip Leakage Vortex Effect on Hydrogen-Combustion Flow around 3D Turbine Blade

    Institute of Scientific and Technical Information of China (English)

    Naoto Miyama; Kazuaki Inaba; Makoto Yamamoto

    2008-01-01

    In these years, a lot of environmental problems such as air pollution and exhaustion of fossil fuels have been discussed intensively. In our laboratory, a hydrogen-fueled propulsion system has been researched as an alternative to conventional systems. A hydrogen-fueled propulsion system is expected to have higher power, lighter weight and lower emissions. However, for the practical use, there exist many problems that must be overcome. Considering these backgrounds, jet engines with hydrogen-fueled combustion within a turbine blade passage have been studied. Although some studies have been made on injecting and burning hydrogen fuel from a stator surface, little is known about the interaction between a tip leakage vortex near the suction side of a rotor tip and hydrogen-fueled combustion.The purpose of this study is to clarify the influence of the tip leakage vortex on the characteristics of the 3-dimensional flow field with hydrogen-fueled combustion within a turbine blade passage. Reynolds-averaged compressible Navier-Stokes equations are solved with incorporating a k-ε turbulence and a reduced chemical mechanism models. Using the computational results, the 3-dimensional turbulent flow field with chemical reactions is numerically visualized, and the three-dimensional turbulent flow fields with hydrogen combustion and the structure of the tip leakage vortex are investigated.

  7. Numerical Simulation of Transient 3-D Turbulent Heated Jet into Crossflow in a Thick-Wall T-Junction Pipe

    Institute of Scientific and Technical Information of China (English)

    Wu Hailing; Chen Tingkuan; Luo Yushan; Wang Haijun

    2001-01-01

    The present work is to investigate the transient three-dimensional heated turbulent jet into crossflow in a thick wall T-junction pipe using CFD package. Two cases with the jet-to-crossflow velocity ratio of 0.05 and 0.5 are computed, with a finite-volume method utilizing k-ε turbulent model. Comparison of the steady-state computations with measured data shows good qualitative agreement. Transient process of injection is simulated to examine the thermal shock on the T-junction component. Temporal temperature of the component is acquired by thermal coupling with the fluid. Via analysis of the flow and thermal characteristics, factors causing the thermal shock are studied. Optimal flow rates are discussed to reduce the thermal shock.

  8. Robustness of numerical TIG welding simulation of 3D structures in stainless steel 316L; Robustesse de la simulation numerique du soudage TIG de structures 3D en acier 316L

    Energy Technology Data Exchange (ETDEWEB)

    El-Ahmar, W

    2007-04-15

    The numerical welding simulation is considered to be one of those mechanical problems that have the great level of nonlinearity and which requires a good knowledge in various scientific fields. The 'Robustness Analysis' is a suitable tool to control the quality and guarantee the reliability of numerical welding results. The robustness of a numerical simulation of welding is related to the sensitivity of the modelling assumptions on the input parameters. A simulation is known as robust if the result that it produces is not very sensitive to uncertainties of the input data. The term 'Robust' was coined in statistics by G.E.P. Box in 1953. Various definitions of greater or lesser mathematical rigor are possible for the term, but in general, referring to a statistical estimator, it means 'insensitive to small deviation from the idealized assumptions for which the estimator is optimized. In order to evaluate the robustness of numerical welding simulation, sensitivity analyses on thermomechanical models and parameters have been conducted. At the first step, we research a reference solution which gives the best agreement with the thermal and mechanical experimental results. The second step consists in determining through numerical simulations which parameters have the largest influence on residual stresses induced by the welding process. The residual stresses were predicted using finite element method performed with Code-Aster of EDF and SYSWELD of ESI-GROUP. An analysis of robustness can prove to be heavy and expensive making it an unjustifiable route. However, only with development such tool of analysis can predictive methods become a useful tool for industry. (author)

  9. Biofield potential simulation as a novel adjunt modality for continuous monitoring of breast lesions: a 3D numerical model.

    Science.gov (United States)

    Ng, E Y K; Ng, W K; Acharya, U Rajendra

    2008-01-01

    Breast cancer is a disease characterized by the uncontrolled growth of abnormal cells. Early detection of this disease is the most effective way to reduce mortality. Although several new technologies show promise for improved capability of diagnosis, none have yet proved superior to traditional, X-ray film mammography in screening for breast cancer. More evaluation and development of new imaging tools and of promising skin surface electrical potential techniques is required and warranted. In the present study, we propose a theoretical three-dimensional, simplified and realistic model of the female breast to distinguish the surface biopotential in different types of breast abnormalities. We developed an inhomogeneous female breast model, closer to the actual, by considering the breast as a hemisphere with various layers of unequal thickness in supine condition. In order to determine the potential distribution developed, isotropic homogeneous conductivity was assigned to each of these compartments and the volume conductor problem was solved using finite element method. Richardson extrapolation for grid invariance test was used to ensure the results are of reliable accuracy. The simulation results show that the surface potentials are sensitive to the presence of tumour, location and placement of the electrodes.

  10. 3D Numerical Simulation versus Experimental Assessment of Pressure Pulsations Using a Passive Method for Swirling Flow Control in Conical Diffusers of Hydraulic Turbines

    Science.gov (United States)

    TANASA, C.; MUNTEAN, S.; CIOCAN, T.; SUSAN-RESIGA, R. F.

    2016-11-01

    The hydraulic turbines operated at partial discharge (especially hydraulic turbines with fixed blades, i.e. Francis turbine), developing a swirling flow in the conical diffuser of draft tube. As a result, the helical vortex breakdown, also known in the literature as “precessing vortex rope” is developed. A passive method to mitigate the pressure pulsations associated to the vortex rope in the draft tube cone of hydraulic turbines is presented in this paper. The method involves the development of a progressive and controlled throttling (shutter), of the flow cross section at the bottom of the conical diffuser. The adjustable cross section is made on the basis of the shutter-opening of circular diaphragms, while maintaining in all positions the circular cross-sectional shape, centred on the axis of the turbine. The stagnant region and the pressure pulsations associated to the vortex rope are mitigated when it is controlled with the turbine operating regime. Consequently, the severe flow deceleration and corresponding central stagnant are diminished with an efficient mitigation of the precessing helical vortex. Four cases (one without diaphragm and three with diaphragm), are numerically and experimentally investigated, respectively. The present paper focuses on a 3D turbulent swirling flow simulation in order to evaluate the control method. Numerical results are compared against measured pressure recovery coefficient and Fourier spectra. The results prove the vortex rope mitigation and its associated pressure pulsations when employing the diaphragm.

  11. 基于 ArcGIS 与 FLAC3D 的矿山边坡三维可视化与数值模拟耦合研究%Research on the Coupling of Mine Slope 3D Visualized Model and Numerical Simulation Based on ArcGIS and FLAC3D

    Institute of Scientific and Technical Information of China (English)

    刘林贵; 李小双; 李晓军; 蔡永昌

    2015-01-01

    Taking the slope of a open-pit mine as an example,the 3D stratum visualized model is established,and the coupling of 3D stratum model and slope numerical simulation using FLAC3D software is realized preliminarily in a simplified transfer method,according to the characteristics of geotechnical engineering,based on the plug-in of ArcGIS software is developed.The coupling method of 3D stratum model and slope numerical simulation using FLAC3D software take the advantages of the 3D stratum visual-ized model which could express the geological condition in the research area,it extends the application of the visualized model,avoids the great difficulties of generating precise numerical model from visualized model in mesh shape,material area boundary and fault/joint element and simplifies the pre-process of nu-merical simulation.The numerical simulation results show that as the mesh size gets refined,the calcula-tion results obtained by the method in this paper gradually approaches the results of precise numerical model,which could satisfy the analysis requirements of geotechnical engineering,therefore,it has good en-gineering prospects.%以某矿山露采边坡为例,利用 ArcGIS 软件建立了边坡三维地层可视化模型,针对岩土工程特点,采用一种简化方法实现了从矿山边坡三维可视化模型到 FALC3D计算模型的耦合与自动转化,开发了相应的计算模型生成插件。该方法充分利用了地层三维可视化模型可较好地表达研究区域内地质体的空间几何形态的优点,拓展了可视化模型的应用范围,排除了从地层可视化模型全自动生成精确岩土工程数值计算模型在网格形状、材料区域边界、断层/节理单元等方面所面临的困难,极大地简化了数值模拟的前处理工作。数值模拟结果表明:随着网格尺寸的不断加密,本研究方法得到的计算结果可满足岩土工程分析的实际需求,具有良好的工程应用前景。

  12. Numerical simulations of the ablative Rayleigh-Taylor instability in planar inertial-confinement-fusion targets using the FastRad3D code

    Science.gov (United States)

    Bates, J. W.; Schmitt, A. J.; Karasik, M.; Zalesak, S. T.

    2016-12-01

    The ablative Rayleigh-Taylor (RT) instability is a central issue in the performance of laser-accelerated inertial-confinement-fusion targets. Historically, the accurate numerical simulation of this instability has been a challenging task for many radiation hydrodynamics codes, particularly when it comes to capturing the ablatively stabilized region of the linear dispersion spectrum and modeling ab initio perturbations. Here, we present recent results from two-dimensional numerical simulations of the ablative RT instability in planar laser-ablated foils that were performed using the Eulerian code FastRad3D. Our study considers polystyrene, (cryogenic) deuterium-tritium, and beryllium target materials, quarter- and third-micron laser light, and low and high laser intensities. An initial single-mode surface perturbation is modeled in our simulations as a small modulation to the target mass density and the ablative RT growth-rate is calculated from the time history of areal-mass variations once the target reaches a steady-state acceleration. By performing a sequence of such simulations with different perturbation wavelengths, we generate a discrete dispersion spectrum for each of our examples and find that in all cases the linear RT growth-rate γ is well described by an expression of the form γ = α [ k g / ( 1 + ɛ k L m ) ] 1 / 2 - β k V a , where k is the perturbation wavenumber, g is the acceleration of the target, Lm is the minimum density scale-length, Va is the ablation velocity, and ɛ is either one or zero. The dimensionless coefficients α and β in the above formula depend on the particular target and laser parameters and are determined from two-dimensional simulation results through the use of a nonlinear curve-fitting procedure. While our findings are generally consistent with those of Betti et al. (Phys. Plasmas 5, 1446 (1998)), the ablative RT growth-rates predicted in this investigation are somewhat smaller than the values previously reported for the

  13. 3-D numerical modelling of flow around a groin

    DEFF Research Database (Denmark)

    Miller, R.; Roulund, A.; Sumer, B. Mutlu;

    2003-01-01

    A 3-D flow code, EllipSys3D, has been implemented to simulate the 3-D flow around a groin in steady current. The k  turbulence model has been used for closure. Two kinds of groins are considered: (1) A vertical-wall groin, and (2) A groin with a side slope. Steady-flow simulations were conducted...

  14. Precessing jets and molecular outflows a 3-D numerical study

    CERN Document Server

    Cliffe, J A; Frank, Adam

    1996-01-01

    We present 3-D numerical hydrodynamical simulations of precessing supersonic heavy jets to explore how well they serve as a model for generating molecular outflows from Young Stellar Objects. The dynamics are studied with a number of high resolution simulations on a Cartesian grid (128x128x128 zones) using a high order finite difference method. A range of cone angles and precession rates were included in the study. Two higher resolution runs (256x256x256 zones) were made for comparison in order to confirm numerical convergence of global flow characteristics. Morphological, kinematical and dynamical characteristics of precessing jets are described and compared to important properties of straight jets and also to observations of YSOs. In order to examine the robustness of precessing jets as a mean to produce molecular outflows around Young Stellar Objects, ``synthetic observations'' of the momentum distributions of the simulated precessing jets are compared to observations of molecular outflows. It is found tha...

  15. Numerical 3-D Modelling of Overflows

    DEFF Research Database (Denmark)

    Larsen, Torben; Nielsen, L.; Jensen, B.;

    2008-01-01

    The present study uses laboratory experiments to evaluate the reliability of two types of numerical models of sewers systems: - 1-dimensional model based on the extended Saint-Venant equation including the term for curvature of the water surface (the so-called Boussinesq approximation) - 2- and 3...

  16. 混凝土损伤断裂的三维细观数值模拟%3-D mesoscopic numerical simulation of concrete damage and fracture

    Institute of Scientific and Technical Information of China (English)

    李朝红; 王海龙; 徐光兴

    2011-01-01

    On the meso-level, a method for establishing 3-D numerical model with random distribution of aggregate location and mechanical parameters was put forward. Based on damage mechanics and computational mechanics, two groups of numerical models of wet-screened concrete cube specimens were established with ANSYS software, i.e., the first group of models was designed to simulate three kinds of aggregate random distribution with the same gradation, and the second group of models was designed to simulate the random distribution of main material parameters of phases that composed concrete. By the numerical axial compression simulation of the two groups of models, the gradual process of damage crack appearance and the growth of concrete were revealed. The results show that the cubic compressive strength of concrete by numerical simulation approximates to that by physical test. The random distributing of aggregate location has influence on the generating location and expanding paths of crack, yet it has slight influence on the carrying capacity of samples. The material parameters heterogeneity of phases, which can be characterized well by Weibull distribution,reduces the carrying capacity of specimens.%提出一种在细观层次建立混凝土三维随机骨料随机力学参数模型的方法.将损伤力学与计算力学相结合,基于ANSYS软件平台进行二次开发,建立2组混凝土立方体湿筛试件的数值模犁:第1组模型模拟3种不同的骨料随机分布;第2组模型模拟混凝土各相材料主要力学参数的随机性,分别假定其参数符合对数正态分布和Weibull分布.通过对这2组模型的轴压进行模拟,揭示混凝土在轴向压力作用下单元的渐进损伤和裂缝的萌生与扩展过程.研究结果表明:数值模拟得到的混凝土立方体抗压强度与试验测得的抗压强度较接近;骨料的随机分布会影响试件裂缝产生的位置和扩展路径,但其对试件承载力的影响不大;混凝土

  17. INCORPORATING DYNAMIC 3D SIMULATION INTO PRA

    Energy Technology Data Exchange (ETDEWEB)

    Steven R Prescott; Curtis Smith

    2011-07-01

    Through continued advancement in computational resources, development that was previously done by trial and error production is now performed through computer simulation. These virtual physical representations have the potential to provide accurate and valid modeling results and are being used in many different technical fields. Risk assessment now has the opportunity to use 3D simulation to improve analysis results and insights, especially for external event analysis. By using simulations, the modeler only has to determine the likelihood of an event without having to also predict the results of that event. The 3D simulation automatically determines not only the outcome of the event, but when those failures occur. How can we effectively incorporate 3D simulation into traditional PRA? Most PRA plant modeling is made up of components with different failure modes, probabilities, and rates. Typically, these components are grouped into various systems and then are modeled together (in different combinations) as a “system” with logic structures to form fault trees. Applicable fault trees are combined through scenarios, typically represented by event tree models. Though this method gives us failure results for a given model, it has limitations when it comes to time-based dependencies or dependencies that are coupled to physical processes which may themselves be space- or time-dependent. Since, failures from a 3D simulation are naturally time related, they should be used in that manner. In our simulation approach, traditional static models are converted into an equivalent state diagram representation with start states, probabilistic driven movements between states and terminal states. As the state model is run repeatedly, it converges to the same results as the PRA model in cases where time-related factors are not important. In cases where timing considerations are important (e.g., when events are dependent upon each other), then the simulation approach will typically

  18. 3D numerical design of tunnel hood

    CERN Document Server

    Uystepruyst, David; Monnoyer, François

    2015-01-01

    This paper relates to the parametric study of tunnel hoods in order to reduce the shape, i.e the temporal gradient, of the pressure wave generated by the entry of a High speed train in tunnel. This is achieved by using an in-house three-dimensional numerical solver which solves the Eulerian equations on a Cartesian and unstructured mesh. The efficiency of the numerical methodology is demonstrated through comparisons with both experimental data and empirical formula. For the tunnel hood design, three parameters, that can influence the wave shape, are considered: the shape, the section and the length of the hood. The numerical results show, (i) that a constant section hood is the most efficient shape when compared to progressive (elliptic or conical) section hoods, (ii) an optimal ratio between hood's section and tunnel section where the temporal gradient of the pressure wave can be reduced by half, (iii) a significant efficiency of the hood's length in the range of 2 to 8 times the length of the train nose. Fi...

  19. Simulation of 3D diamond detectors

    Science.gov (United States)

    Forcolin, G. T.; Oh, A.; Murphy, S. A.

    2017-02-01

    3D diamond detectors present an interesting prospect for future Particle Physics experiments. They have been studied in detail at beam tests with 120 GeV protons and 4 MeV protons. To understand the observations that have been made, simulations have been carried out using Synopsys TCAD in order to explain the movement of charge carriers within the sample, as well as the effects of charge sharing. Reasonable agreement has been observed between simulation and experiment.

  20. Evolutions in 3D numerical relativity using fixed mesh refinement

    CERN Document Server

    Schnetter, E; Hawke, I; Schnetter, Erik; Hawley, Scott H.; Hawke, Ian

    2004-01-01

    We present results of 3D numerical simulations using a finite difference code featuring fixed mesh refinement (FMR), in which a subset of the computational domain is refined in space and time. We apply this code to a series of test cases including a robust stability test, a nonlinear gauge wave and an excised Schwarzschild black hole in an evolving gauge. We find that the mesh refinement results are comparable in accuracy, stability and convergence to unigrid simulations with the same effective resolution. At the same time, the use of FMR reduces the computational resources needed to obtain a given accuracy. Particular care must be taken at the interfaces between coarse and fine grids to avoid a loss of convergence at high resolutions. This FMR system, "Carpet", is a driver module in the freely available Cactus computational infrastructure, and is able to endow existing Cactus simulation modules ("thorns") with FMR with little or no extra effort.

  1. A numerical approach for 3D manufacturing tolerances synthesis

    CERN Document Server

    Vignat, Frédéric

    2007-01-01

    Making a product conform to the functional requirements indicated by the customer suppose to be able to manage the manufacturing process chosen to realise the parts. A simulation step is generally performed to verify that the expected generated deviations fit with these requirements. It is then necessary to assess the actual deviations of the process in progress. This is usually done by the verification of the conformity of the workpiece to manufacturing tolerances at the end of each set-up. It is thus necessary to determine these manufacturing tolerances. This step is called "manufacturing tolerance synthesis". In this paper, a numerical method is proposed to perform 3D manufacturing tolerances synthesis. This method uses the result of the numerical analysis of tolerances to determine influent mall displacement of surfaces. These displacements are described by small displacements torsors. An algorithm is then proposed to determine suitable ISO manufacturing tolerances.

  2. 3D flow numerical simulation of ball valve based on CFD%基于CFD的球阀三维流场数值模拟

    Institute of Scientific and Technical Information of China (English)

    张生昌; 张玉林; 方志明; 柯愈龙

    2013-01-01

    为了探索新型转子式油气混输泵出口球阀内流场规律,建立球阀流场的三维模型,利用Fluent软件,将标准k-ε湍流模型与多相流技术相结合,采用SIMPLE算法,对新型转子式油气混输泵出口球阀内的三维气液两相流场进行数值模拟.在容积含气率为25%,50%,75%的不同工况下,通过对球阀开启高度分别为3,5,7 mm时的速度场、压力场与气液相分布的分析,探讨在气液混输过程中阀的开启高度及不同气液比对阀内流场的影响规律.模拟结果表明:球阀开启高度越大,阀球上下压差越小;阀隙流速随着开启高度的增大而减小.在气液混输过程中气相介质主要靠近阀球壁流动,同一开启高度下气液比对阀隙流速的影响较小.研究结果直观展现了球阀内流场形态,在一定程度上揭示了气液两相介质在阀内的流动规律,为新型转子式油气混输泵出口球阀的设计与优化提供理论指导.%To explore the flow field law of the outlet ball valve of the new rotor oil-gas mixed pump, a 3D model of ball valve flow field was established. Using Fluent software, combining standard turbulent model and multiphase flow technology together, adopting SIMPLE algorithm, a 3D gas-liquid double-phase flow field in outlet ball valve of new rotor oil-gas mixed pump was numerically simulated. With gas fraction of 25% , 50% and 75% and valve's opening height at 3, 5 and 7 mm respectively, velocity field, pressure field and the distribution of liquid and gas was analyzed. The law of valve's opening height and different gas-liquid ratio's effect on outlet ball valves in the process of gas-liquid mixing was discussed. The simulation results show that, the greater the opening height, the smaller the pressure difference between ball valves: The gap flow velocity decreases as the open height increases. Gas mainly flows in the vicinity of the valve ball in the process of gas-liquid mixing. At the same

  3. Numerical modeling of 3-D terrain effect on MT field

    Institute of Scientific and Technical Information of China (English)

    徐世浙; 阮百尧; 周辉; 陈乐寿; 徐师文

    1997-01-01

    Using the boundary element method, the numerical modeling problem of three-dimensional terrain effect on magnetotelluric (MT) field is solved. This modeling technique can be run on PC in the case of adopting special net division. The result of modeling test for 2-D terrain by this modeling technique is basically coincident with that by 2-D modeling technique, but there is a great difference between the results of 3-D and 2-D modeling for 3-D terrain.

  4. A Mechanical Study of a Glass Fabric-Thermoplastic Resin Composite: 3D-DIC and X-ray tomographic observations explained by numerical simulations based on a spectral solver

    CERN Document Server

    Boufaida, Zakariya; André, Stéphane; Farge, Laurent

    2016-01-01

    In the study presented in this paper, we analyzed the mechanical response of a glass fiber plain weave/polymer composite at the fabric millimetric mesoscale. The detail of the stress and strain fields in a fabric repeating unit cell was numerically calculated using CraFT (Composite response and Fourier Transforms), a code specifically conceived for simulating the mechanical behaviour of materials with complex microstructure. The local strain fields obtained by simulation were found to be in very good agreement with measurements carried out using 3D Digital Image Correlation (3D DIC). From numerical stress fields calculated with the CraFT solver, we also highlighted the subregions inside the periodic mesostructure where there is maximum stress. Furthermore, with X-ray tomography post mortem measurements, we were able to confirm that certain damage modes were well initiated in these microstructure subregions of stress concentration.

  5. Implementation of virtual models from sheet metal forming simulation into physical 3D colour models using 3D printing

    Science.gov (United States)

    Junk, S.

    2016-08-01

    Today the methods of numerical simulation of sheet metal forming offer a great diversity of possibilities for optimization in product development and in process design. However, the results from simulation are only available as virtual models. Because there are any forming tools available during the early stages of product development, physical models that could serve to represent the virtual results are therefore lacking. Physical 3D-models can be created using 3D-printing and serve as an illustration and present a better understanding of the simulation results. In this way, the results from the simulation can be made more “comprehensible” within a development team. This paper presents the possibilities of 3D-colour printing with particular consideration of the requirements regarding the implementation of sheet metal forming simulation. Using concrete examples of sheet metal forming, the manufacturing of 3D colour models will be expounded upon on the basis of simulation results.

  6. 3-D Simulation of Vertical-Axial Tidal Current Turbine

    Directory of Open Access Journals (Sweden)

    Zhiyang Zhang

    2016-12-01

    Full Text Available Vertical-axial tidal current turbine is the key for the energy converter, which has the advantages of simple structure, adaptability to flow and uncomplex convection device. It has become the hot point for research and application recently. At present, the study on the hydrodynamic performance of vertical-axial tidal current turbine is almost on 2-D numerical simulation, without the consideration of 3-D effect. CFD (Computational Fluid Dynamics method and blade optimal control technique are used to improve accuracy in the prediction of tidal current turbine hydrodynamic performance. Numerical simulation of vertical-axial tidal current turbine is validated. Fixed and variable deflection angle turbine are comparatively studied to analysis the influence of 3-D effect and the character of fluid field and pressure field. The method, put the plate on the end of blade, of reduce the energy loss caused by 3-D effect is proposed. The 3-D CFD numerical model of vertical-axial tidal current turbine hydrodynamic performance in this study may provide theoretical, methodical and technical reference for the optimal design of turbine.

  7. 3-D Numerical Simulation and Analysis of Complex Fiber Geometry RaFC Materials with High Volume Fraction and High Aspect Ratio based on ABAQUS PYTHON

    Science.gov (United States)

    Jin, BoCheng

    2011-12-01

    Organic and inorganic fiber reinforced composites with innumerable fiber orientation distributions and fiber geometries are abundantly available in several natural and synthetic structures. Inorganic glass fiber composites have been introduced to numerous applications due to their economical fabrication and tailored structural properties. Numerical characterization of such composite material systems is necessitated due to their intrinsic statistical nature, which renders extensive experimentation prohibitively time consuming and costly. To predict various mechanical behavior and characterizations of Uni-Directional Fiber Composites (UDFC) and Random Fiber Composites (RaFC), we numerically developed Representative Volume Elements (RVE) with high accuracy and efficiency and with complex fiber geometric representations encountered in uni-directional and random fiber networks. In this thesis, the numerical simulations of unidirectional RaFC fiber strand RVE models (VF>70%) are first presented by programming in ABAQUS PYTHON. Secondly, when the cross sectional aspect ratios (AR) of the second phase fiber inclusions are not necessarily one, various types of RVE models with different cross sectional shape fibers are simulated and discussed. A modified random sequential absorption algorithm is applied to enhance the volume fraction number (VF) of the RVE, which the mechanical properties represents the composite material. Thirdly, based on a Spatial Segment Shortest Distance (SSSD) algorithm, a 3-Dimentional RaFC material RVE model is simulated in ABAQUS PYTHON with randomly oriented and distributed straight fibers of high fiber aspect ratio (AR=100:1) and volume fraction (VF=31.8%). Fourthly, the piecewise multi-segments fiber geometry is obtained in MATLAB environment by a modified SSSD algorithm. Finally, numerical methods including the polynomial curve fitting and piecewise quadratic and cubic B-spline interpolation are applied to optimize the RaFC fiber geometries

  8. Non-isothermal 3D SDPD Simulations

    Science.gov (United States)

    Yang, Jun; Potami, Raffaele; Gatsonis, Nikolaos

    2012-11-01

    The study of fluids at micro and nanoscale requires new modeling and computational approaches. Smooth Particle Dissipative Dynamics (SDPD) is a mesh-free method that provides a bridge between the continuum equations of hydrodynamics embedded in the Smooth Particle Hydrodynamics approach and the molecular nature embedded in the DPD approach. SDPD is thermodynamically consistent, does not rely on arbitrary coefficients for its thermostat, involves realistic transport coefficients, and includes fluctuation terms. SDPD is implemented in our work for arbitrary 3D geometries with a methodology to model solid wall boundary conditions. We present simulations for isothermal flows for verification of our approach. The entropy equation is implemented with a velocity-entropy Verlet integration algorithm Flows with heat transfer are simulated for verification of the SDPD. We present also the self-diffusion coefficient derived from SDPD simulations for gases and liquids. Results show the scale dependence of self-diffusion coefficient on SDPD particle size. Computational Mathematics Program of the Air Force Office of Scientific Research under grant/contract number FA9550-06-1-0236.

  9. Effects of in-pulse transverse relaxation in 3D ultrashort echo time sequences: analytical derivation, comparison to numerical simulation and experimental application at 3T.

    Science.gov (United States)

    Springer, Fabian; Steidle, Günter; Martirosian, Petros; Claussen, Claus D; Schick, Fritz

    2010-09-01

    The introduction of ultrashort-echo-time-(UTE)-sequences to clinical whole-body MR scanners has opened up the field of MR characterization of materials or tissues with extremely fast signal decay. If the transverse relaxation time is in the range of the RF-pulse duration, approximation of the RF-pulse by an instantaneous rotation applied at the middle of the RF-pulse and immediately followed by free relaxation will lead to a distinctly underestimated echo signal. Thus, the regular Ernst equation is not adequate to correctly describe steady state signal under those conditions. The paper presents an analytically derived modified Ernst equation, which correctly describes in-pulse relaxation of transverse magnetization under typical conditions: The equation is valid for rectangular excitation pulses, usually applied in 3D UTE sequences. Longitudinal relaxation time of the specimen must be clearly longer than RF-pulse duration, which is fulfilled for tendons and bony structures as well as many solid materials. Under these conditions, the proposed modified Ernst equation enables adequate and relatively simple calculation of the magnetization of materials or tissues. Analytically derived data are compared to numerical results obtained by using an established Runge-Kutta-algorithm based on the Bloch equations. Validity of the new approach was also tested by systematical measurements of a solid polymeric material on a 3T whole-body MR scanner. Thus, the presented modified Ernst equation provides a suitable basis for T1 measurements, even in tissues with T2 values as short as the RF-pulse duration: independent of RF-pulse duration, the 'variable flip angle method' led to consistent results of longitudinal relaxation time T1, if the T2 relaxation time of the material of interest is known as well.

  10. Simulation of human ischemic stroke in realistic 3D geometry

    Science.gov (United States)

    Dumont, Thierry; Duarte, Max; Descombes, Stéphane; Dronne, Marie-Aimée; Massot, Marc; Louvet, Violaine

    2013-06-01

    In silico research in medicine is thought to reduce the need for expensive clinical trials under the condition of reliable mathematical models and accurate and efficient numerical methods. In the present work, we tackle the numerical simulation of reaction-diffusion equations modeling human ischemic stroke. This problem induces peculiar difficulties like potentially large stiffness which stems from the broad spectrum of temporal scales in the nonlinear chemical source term as well as from the presence of steep spatial gradients in the reaction fronts, spatially very localized. Furthermore, simulations on realistic 3D geometries are mandatory in order to describe correctly this type of phenomenon. The main goal of this article is to obtain, for the first time, 3D simulations on realistic geometries and to show that the simulation results are consistent with those obtain in experimental studies or observed on MRI images in stroke patients. For this purpose, we introduce a new resolution strategy based mainly on time operator splitting that takes into account complex geometry coupled with a well-conceived parallelization strategy for shared memory architectures. We consider then a high order implicit time integration for the reaction and an explicit one for the diffusion term in order to build a time operator splitting scheme that exploits efficiently the special features of each problem. Thus, we aim at solving complete and realistic models including all time and space scales with conventional computing resources, that is on a reasonably powerful workstation. Consequently and as expected, 2D and also fully 3D numerical simulations of ischemic strokes for a realistic brain geometry, are conducted for the first time and shown to reproduce the dynamics observed on MRI images in stroke patients. Beyond this major step, in order to improve accuracy and computational efficiency of the simulations, we indicate how the present numerical strategy can be coupled with spatial

  11. An Axisymmetric Numerical Model for Simulating Kinetically-Limited Growth of a Cylindrical Rod in 3D Laser-induced Chemical Vapor Deposition

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Laser-induced chemical vapor deposition (LCVD) is an important process for freeform microfabrication of high aspect ratio prototypes. The system consists of a laser beam focused onto a movable substrate in a vacuum chamber.Heat from the laser at or near the focal spot of the beam causes gas in the chamber to react. As a result, solidphase reaction products are deposited on the substrate to form the microstructure. In this paper, we develop a numerical model for simulating growth of an axisymmetric cylindrical rod by pre-specifying the surface temperatures required for growing the rod and then by solving for the laser power that satisfies the pre-specified temperatures.The solution using least squares is obtained by minimizing the sum of square deviations between the pre-specified surface temperatures and the calculated temperatures from the heat equation with a given laser power as a heat source. Model predictions of the laser power over growth time helped in optimizing the growth process. Rods grown based on the predicted laser power from the numerical model were very close to being cylindrical in shape. Ways to further improve the model are being investigated.

  12. Lattice Boltzmann simulations of 3D crystal growth: Numerical schemes for a phase-field model with anti-trapping current

    CERN Document Server

    Cartalade, Alain; Plapp, Mathis

    2016-01-01

    A lattice-Boltzmann (LB) scheme, based on the Bhatnagar-Gross-Krook (BGK) collision rules is developed for a phase-field model of alloy solidification in order to simulate the growth of dendrites. The solidification of a binary alloy is considered, taking into account diffusive transport of heat and solute, as well as the anisotropy of the solid-liquid interfacial free energy. The anisotropic terms in the phase-field evolution equation, the phenomenological anti-trapping current (introduced in the solute evolution equation to avoid spurious solute trapping), and the variation of the solute diffusion coefficient between phases, make it necessary to modify the equilibrium distribution functions of the LB scheme with respect to the one used in the standard method for the solution of advection-diffusion equations. The effects of grid anisotropy are removed by using the lattices D3Q15 and D3Q19 instead of D3Q7. The method is validated by direct comparison of the simulation results with a numerical code that uses t...

  13. 三维纤维过滤介质压力损失数值模拟%Numerical Simulation of Pressure Drop in 3D Fiber Filter Media

    Institute of Scientific and Technical Information of China (English)

    徐芳芳; 付海明; 雷泽明; 甘灵

    2012-01-01

    The pressure drop of fiber filter media was mostly based on unrealistic 2D geometries with the fibers placed regularly and low-filtration state, which was different with the geometry of real fiber filter media and the running-state. Based on VBA programming, a series of 3D fiber filter media models with the fibers arranged randomly were created. Then the flow field was simulated by computational fluid dynamics(CFD) software. Also the relationship between pressure drop and velocity at low-speed and high-speed were analyzed. The research results showed that there were two kinds of flow field regions, the linear flow region and the no-linear flow region, and the critical value of Reynolds of the two regions was 0.33. While the mean velocity of the fluid was large than 0. 3 m/s, pressure drop and mean velocity of the fluid was no longer a linear relationship. Finally, a new extensional expression of pressure drop and face velocity of fiber filter media applying to linear flow region and non-linear flow region was obtained.%目前纤维过滤介质压力损失的研究大多基于纤维的二维规则排列及低速过滤状态,这与实际过滤介质构造及过滤运行状态存在一定的差异.基于VBA编程,创建三维随机排列纤维过滤介质模型,采用计算流体动力学(CFD)软件模拟计算其内部流场,研究低速及高速过滤状态下压力损失与速度的关系,研究结果表明:模型内部的流体流动呈现线性流区和非线性流区两种流动区域,且两种流动区域的雷诺数临界值为0.33;当流体平均速度大于0.3 m/s对,压力损失与流体平均速度不再是简单的线性关系.通过对模拟数据的分析,提出了适合于线性流区及非线性流区的压力损失-流体平均速度关系表达式.

  14. 复杂地形尾矿库三维渗流场的数值模拟%Numerical simulation of 3-D seepage field in the tailings of complex terrain

    Institute of Scientific and Technical Information of China (English)

    齐清兰; 张力霆; 李广晶

    2012-01-01

    采用有限元对复杂地形的尾矿库渗流场进行数值模拟分析时,提出了三维数值模型概化的新方法:将地形剖面上的主要控制点拟合成曲线,然后再将曲线拟合成曲面,最后由曲面生成概化的三维数值模型。在此基础上进行了某尾矿库的三维渗流场计算,计算结果与该尾矿库的实测资料吻合良好,表明了模型概化的合理性。%This paper puts forth a generalization method of 3-D numerical model for finite element analysis of 3-D seepage flow field in the tailing pond of a complex terrain.In this generalization,fitting curves are generated to the data of major control points of topographical profiles,and a curved surface is created from these curves.Then using the curved surfaces a 3-D generalization model can be built.By this method,the 3-D seepage flow was simulated and the results are in good agreement with the measurements.

  15. Using 3D Voronoi grids in radiative transfer simulations

    CERN Document Server

    Camps, Peter; Saftly, Waad

    2013-01-01

    Probing the structure of complex astrophysical objects requires effective three-dimensional (3D) numerical simulation of the relevant radiative transfer (RT) processes. As with any numerical simulation code, the choice of an appropriate discretization is crucial. Adaptive grids with cuboidal cells such as octrees have proven very popular, however several recently introduced hydrodynamical and RT codes are based on a Voronoi tessellation of the spatial domain. Such an unstructured grid poses new challenges in laying down the rays (straight paths) needed in RT codes. We show that it is straightforward to implement accurate and efficient RT on 3D Voronoi grids. We present a method for computing straight paths between two arbitrary points through a 3D Voronoi grid in the context of a RT code. We implement such a grid in our RT code SKIRT, using the open source library Voro++ to obtain the relevant properties of the Voronoi grid cells based solely on the generating points. We compare the results obtained through t...

  16. Numerical Simulation on 3D Multi-element Wings in Ground Effect%三维多段机翼地面效应数值模拟

    Institute of Scientific and Technical Information of China (English)

    秦绪国; 刘沛清; 屈秋林; 徐婕

    2011-01-01

    通过数值模拟方法研究多段机翼的地面效应,采用有限体积法求解质量加权平均Navier-Stokes方程,湍流模型选用Spalart-Allmaras模型,利用运动壁面边界模拟地面的相对运动.计算结果分析表明:随着飞行高度的降低,多段机翼的升力、阻力和低头力矩均减小;迎角、展弦比越大,地面效应越明显,升力损失越大;升力的减小主要是由于地面效应导致机翼下方静压增大的气流通过缝隙进入机翼上表面流场,使得机翼下翼面压力的增加量小于上翼面吸力的减小量;地面效应使机翼上翼面翼尖容易发生分离;翼尖涡沿着展向方向向外移动,机翼诱导阻力减小.该文研究结果可以为大型飞机的增升装置地面效应设计提供参考依据.%A multi-element wing operating in ground effect is investigated numerically. The compressible Navier-Stokes equations are solved by the finite-volume method. An Spalart-AIImaras turbulence model is used. The slipping wall is used to simulate the relative movement of the ground. The results indicate that, with a reduction in height, the lift, drag and node down moment of the multi-element wing decrease. The ground effect is more obvious with greater angles of attack and aspect ratios, and the lift losses also become greater. The effect of the sweep angle on the ground effect is small. The cause of the reduction of lift is that the losses of the suction side of the upper surface are greater than the increases of the pressure side of the lower surface. Adverse gradient increases on the upper surface of the wing in ground effect may cause the flow to separate near the wing tip. Tip vortex goes downstream outward along the span direction, and the induced drag of the wing decreases. The results of the simulation may provide a theoretical basis for the design of height lift devices of large aircraft in ground effect.

  17. Numerical Simulation of Cavitation for 3-D ALE15 Hydrofoil%三维ALE15翼型空化流动数值模拟

    Institute of Scientific and Technical Information of China (English)

    谭磊; 曹树良; 王玉明; 祝宝山

    2012-01-01

    The phase transformation in cavitation flow field was calculated by the full cavitation model considering the pressure and velocity turbulent fluctuation of the fluid, as well as the influence of noncondensable gas based on the homogeneous flow assumption. The turbulence viscosity coefficient was modified by the density function. A computation model and calculation method was proposed for the steady cavitation. The steady cavitation flow field of ALE 15 hydrofoil was numerical simulated for the cavitation numbers of 2, 3 by using the computation model and calculation method according to the conditions in the experiment- The calculated velocity distributions on different profiles agreed well with the experiment data, which validated the reliability of this computation model and calculation method. The velocity far away from the hydrofoil section was close to the velocity in the main flow region, and gradually decreased along the flow direction for the reason that the cavity acted as an obstacle. There is a large vortex zone in the cavity rear, and the velocity near the hydrofoil section is negative, both caused by the re-entrant jet.%在均相流假设下,考虑流体压力和速度湍流脉动、不可凝结性气体的影响,采用完全空化模型计算空化流场的相变,引入密度函数对RNGk-ε湍流模型的湍流粘性系数进行修正,提出了一种空化流动的数值模型和计算方法.根据试验条件给定的参数,采用提出的数值模型和计算方法,数值模拟了空化数为2.3时ALE15翼型定常空化流动.计算得到的不同剖面速度分布与试验数据吻合较好,验证了该数值模型和计算方法的一致性.不同剖面上,远离翼型表面的速度与主流区速度接近,沿着流动方向,远离翼型表面的速度逐渐减小,这与空泡形成的阻碍有关.空泡尾部出现较大的漩涡区,靠近翼型表面的速度为负值,这与反向射流的作用有关.

  18. 3D Convection-pulsation Simulations with the HERACLES Code

    Science.gov (United States)

    Felix, S.; Audit, E.; Dintrans, B.

    2015-10-01

    We present 3D simulations of the coupling between surface convection and pulsations due to the κ-mechanism in classical Cepheids of the red edge of Hertzsprung-Russell diagram's instability strip. We show that 3D convection is less powerful than 2D convection and does not quench the radiative pulsations, leading to an efficient 3D κ-mechanism. Thus, the 3D instability strip is closer to the observed one than the 1D or 2D were.

  19. Charge collection characterization of a 3D silicon radiation detector by using 3D simulations

    CERN Document Server

    Kalliopuska, J; Orava, R

    2007-01-01

    In 3D detectors, the electrodes are processed within the bulk of the sensor material. Therefore, the signal charge is collected independently of the wafer thickness and the collection process is faster due to shorter distances between the charge collection electrodes as compared to a planar detector structure. In this paper, 3D simulations are used to assess the performance of a 3D detector structure in terms of charge sharing, efficiency and speed of charge collection, surface charge, location of the primary interaction and the bias voltage. The measured current pulse is proposed to be delayed due to the resistance–capacitance (RC) product induced by the variation of the serial resistance of the pixel electrode depending on the depth of the primary interaction. Extensive simulations are carried out to characterize the 3D detector structures and to verify the proposed explanation for the delay of the current pulse. A method for testing the hypothesis experimentally is suggested.

  20. BUSICO 3D: building simulation and control in unity 3D

    DEFF Research Database (Denmark)

    Fürst, Jonathan; Fierro, Gabe; Bonnet, Philippe;

    2014-01-01

    with simulations and easier transferring of schedules and configurations from the simulated virtual environment to a real-world deployment. We provide an implementation using a widely used game engine (Unity 3D) and sMAP (Simple Measurement and Actuation Profile), a developed time series database and metadata...

  1. 3D visualization of port simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Horsthemke, W. H.; Macal, C. M.; Nevins, M. R.

    1999-06-14

    Affordable and realistic three dimensional visualization technology can be applied to large scale constructive simulations such as the port simulation model, PORTSIM. These visualization tools enhance the experienced planner's ability to form mental models of how seaport operations will unfold when the simulation model is implemented and executed. They also offer unique opportunities to train new planners not only in the use of the simulation model but on the layout and design of seaports. Simulation visualization capabilities are enhanced by borrowing from work on interface design, camera control, and data presentation. Using selective fidelity, the designers of these visualization systems can reduce their time and efforts by concentrating on those features which yield the most value for their simulation. Offering the user various observational tools allows the freedom to simply watch or engage in the simulation without getting lost. Identifying the underlying infrastructure or cargo items with labels can provide useful information at the risk of some visual clutter. The PortVis visualization expands the PORTSIM user base which can benefit from the results provided by this capability, especially in strategic planning, mission rehearsal, and training. Strategic planners will immediately reap the benefits of seeing the impact of increased throughput visually without keeping track of statistical data. Mission rehearsal and training users will have an effective training tool to supplement their operational training exercises which are limited in number because of their high costs. Having another effective training modality in this visualization system allows more training to take place and more personnel to gain an understanding of seaport operations. This simulation and visualization training can be accomplished at lower cost than would be possible for the operational training exercises alone. The application of PORTSIM and PortVis will lead to more efficient

  2. 3-D hydrodynamic simulations of convection in A stars

    CERN Document Server

    Kochukhov, O; Piskunov, N; Steffen, M

    2006-01-01

    Broadening and asymmetry of spectral lines in slowly rotating late A-type stars provide evidence for high-amplitude convective motions. The properties of turbulence observed in the A-star atmospheres are not understood theoretically and contradict results of previous numerical simulations of convection. Here we describe an ongoing effort to understand the puzzling convection signatures of A stars with the help of 3-D hydrodynamic simulations. Our approach combines realistic spectrum synthesis and non-grey hydrodynamic models computed with the CO5BOLD code. We discuss these theoretical predictions and confront them with high-resolution spectra of A stars. Our models have, for the first time, succeeded in reproducing the observed profiles of weak spectral lines without introducing fudge broadening parameters.

  3. 3D numerical analysis of crack propagation of heterogeneous notched rock under uniaxial tension

    Science.gov (United States)

    Wang, S. Y.; Sloan, S. W.; Sheng, D. C.; Tang, C. A.

    2016-05-01

    Macroscopic notches play an important role in evaluating the fracture process zone (FPZ) and the strengths of a heterogeneous rock mass. Crack initiation, propagation and coalescence for unnotched, single-notched and double-notched rock specimens are numerically simulated in a 3-D numerical model (RFPA3D). A feature of the code RFPA3D is that it can numerically simulate the evolution of cracks in three-dimensional space, as well as the heterogeneity of the rock mass. For the unnotched case, special attention is given to the complete stress-strain curve and the corresponding AE events for the failure process of rock specimen. By comparing with published experimental results, the simulation results from RFPA3D are found to be satisfactory. For the single-notched case, the effect of the length and the depth of the single notch and the thickness of the specimen on the failure mode and peak stress are evaluated. The 3D FPZ is very different from that in two dimensions. For the double-notched case, the effects of the separation distance and overlap distance of the double notches, as well as influence of the homogeneity index (m) are also investigated. As the overlap distance increases, the direction of the principal tensile stress at each notch-end changes from a perpendicular direction (tensile stress field) to a nearly parallel direction (compressive stress field), which affects the evolution of the cracks from the two notches.

  4. Interactive 3D display simulator for autostereoscopic smart pad

    Science.gov (United States)

    Choe, Yeong-Seon; Lee, Ho-Dong; Park, Min-Chul; Son, Jung-Young; Park, Gwi-Tae

    2012-06-01

    There is growing interest of displaying 3D images on a smart pad for entertainments and information services. Designing and realizing various types of 3D displays on the smart pad is not easy for costs and given time. Software simulation can be an alternative method to save and shorten the development. In this paper, we propose a 3D display simulator for autostereoscopic smart pad. It simulates light intensity of each view and crosstalk for smart pad display panels. Designers of 3D display for smart pad can interactively simulate many kinds of autostereoscopic displays interactively by changing parameters required for panel design. Crosstalk to reduce leakage of one eye's image into the image of the other eye, and light intensity for computing visual comfort zone are important factors in designing autostereoscopic display for smart pad. Interaction enables intuitive designs. This paper describes an interactive 3D display simulator for autostereoscopic smart pad.

  5. 3-D numerical modeling of plume-induced subduction initiation

    Science.gov (United States)

    Baes, Marzieh; Gerya, taras; Sobolev, Stephan

    2016-04-01

    Investigation of mechanisms involved in formation of a new subduction zone can help us to better understand plate tectonics. Despite numerous previous studies, it is still unclear how and where an old oceanic plate starts to subduct beneath the other plate. One of the proposed scenarios for nucleation of subduction is plume-induced subduction initiation, which was investigated in detail, using 2-D models, by Ueda et al. (2008). Recently. Gerya et al. (2015), using 3D numerical models, proposed that plume-lithosphere interaction in the Archean led to the subduction initiation and onset of plate tectonic. In this study, we aim to pursue work of Ueda et al. (2008) by incorporation of 3-D thermo-mechanical models to investigate conditions leading to oceanic subduction initiation as a result of thermal-chemical mantle plume-lithosphere interaction in the modern earth. Results of our experiments show four different deformation regimes in response to plume-lithosphere interaction, that are a) self-sustaining subduction initiation where subduction becomes self-sustained, b) freezing subduction initiation where subduction stops at shallow depths, c) slab break-off where subducting circular slab breaks off soon after formation and d) plume underplating where plume does not pass through the lithosphere but spreads beneath it (failed subduction initiation). These different regimes depend on several parameters such as plume's size, composition and temperature, lithospheric brittle/plastic strength, age of the oceanic lithosphere and presence/absence of lithospheric heterogeneities. Results show that subduction initiates and becomes self-sustained when lithosphere is older than 10 Myr and non-dimensional ratio of the plume buoyancy force and lithospheric strength above the plume is higher than 2.

  6. A STUDY ON USING 3D VISUALIZATION AND SIMULATION PROGRAM (OPTITEX 3D ON LEATHER APPAREL

    Directory of Open Access Journals (Sweden)

    Ork Nilay

    2016-05-01

    Full Text Available Leather is a luxury garment. Design, material, labor, fitting and time costs are very effective on the production cost of the consumer leather good. 3D visualization and simulation programs which are getting popular in textile industry can be used for material, labor and time saving in leather apparel. However these programs have a very limited use in leather industry because leather material databases are not sufficient as in textile industry. In this research, firstly material properties of leather and textile fabric were determined by using both textile and leather physical test methods, and interpreted and introduced in the program. Detailed measures of an experimental human body were measured from a 3D body scanner. An avatar was designed according to these measurements. Then a prototype dress was made by using Computer Aided Design-CAD program for designing the patterns. After the pattern making, OptiTex 3D visualization and simulation program was used to visualize and simulate the dresses. Additionally the leather and cotton fabric dresses were sewn in real life. Then the visual and real life dresses were compared and discussed. 3D virtual prototyping seems a promising potential in future manufacturing technologies by evaluating the fitting of garments in a simple and quick way, filling the gap between 3D pattern design and manufacturing, providing virtual demonstrations to customers.

  7. 船用换热器三维流场数值模拟%Numerical Simulation of the 3D Flow Field for Marine Heat Exchangers

    Institute of Scientific and Technical Information of China (English)

    王冶; 徐筱欣

    2013-01-01

    This paper develops a three-dimensional model of the closed engineroom heat exchanger by us-ing the Pro/E software. Based on the obtained numerical model,the shell-side turbulent flow and heat transfer characteristics of the examined heat exchanger is analyzed with the aid of the Computational Fluid Dynamics(CFD)software Fluent. Particularly,by taking the shell-side pressure drop,the total heat trans-fer rate,and the flow rate as three comprehensive indicators,the field of velocity,temperature,and pres-sure of the heat exchanger under different baffle nick heights and numbers are investigated. The results show that as the segmental baffle number increases,the pressure drop at the shell-side rises and the outlet temperature drops;meanwhile,when the baffle nick height increases,the pressure drop decreases and the outlet temperature increases.%采用Pro/E软件对闭式机舱淡水海水换热器的三维建模,利用FLUENT软件对该换热器壳程流体的流动与传热进行了数值模拟计算,分别以壳程总压降、总传热率、速度这三个方面作为综合衡量标准,分析具有不同折流板弦高、折流板数目的几种淡水海水换热器模型的速度场、温度场和压力场。结果表明:随着折流板数目的增加,壳程流体的压降逐渐升高,出口温度逐渐减小;随着缺口高度的增加,壳程流体的压降明显下降,出口温度也明显增加。

  8. 长隧道火灾烟气运动三维数值模拟%3D numerical simulation of smoke flow in long tunnel fires

    Institute of Scientific and Technical Information of China (English)

    黄亚东; 吴珂; 黄志义; 王孝红

    2011-01-01

    对某长隧道在50 MW释热率、不同风速条件下的火灾过程进行模拟,采用扩散燃烧模型对燃烧过程加以描述,分别利用k-ε模型和P-1模型计算湍流流动和辐射作用.计算结果表明,纵向风速较小时会形成烟气回流,对50 MW的隧道火灾,2 m/s的纵向通风能有效抑制烟气回流;纵向通风隧道内,烟气运动表现为径向扩散与纵向蔓延的结合;隧道通风风速越大,火源下游烟气起伏运动越剧烈.隧道发生火灾时,纵向风速应以刚好抑制烟气出现回流为宜.%A fire simulation of long tunnel under 50 MW heat release rate and different ventilation velocities was carried out. The combustion process was described by diffusion combustion model, and the k-ε model and P-1 model were used to calculate the turbulent flow and radiation. The calculations showed that, back flow of smoke will appear when the wind velocity is small, and velocity of 2 m/s can suppress the back flow when the fire is 50 MW. In tunnel with longitudinal ventilation, the smoke flow appears as the combination of radial diffusion and longitudinal diffusion. The smoke downstream the fire source fluctuates more severly as the ventilation velocity increase. During the tunnel fires, the suitable longitudinal ventilation velocity should just restrain the existence of back flow.

  9. Numerical simulation of 3D fatigue crack growth of CT specimens%CT试样三维疲劳裂纹扩展数值模拟

    Institute of Scientific and Technical Information of China (English)

    代鹏; 冯淼林

    2011-01-01

    The crack propagation shape under cyclic load is approximately semi-elliptical in fatigue stability extension.The Paris law leads to an error in prediction of fatigue crack growth rate if the range value of stress intensity factor(△K) of crack tip on the surface is used.In this paper, the shape of fatigue crack in compact tension(CT) specimens were analyzed.A cyclic plasticity model combined with the fatigue criterion that is presented by Jiang and Sehitoglu is implemented into the finite element elastic-plastic stress analysis for the simulations of crack growth rates.The crack profile in the direction of thickness were analyzed.It is concluded that fatigue crack rates in the middle of profile were almost identical.%在循环载荷下疲劳裂纹的裂纹形貌在稳定扩展区近似为半椭圆形状,因此通过Paris方法根据疲劳裂纹表面尖端点应力强度因子的变化幅值(△K)得到扩展速率与真实的裂纹速率会有误差.为了更好的研究疲劳裂纹的性质,本文通过分析紧凑拉伸(CT)试样的疲劳裂纹扩展后的三维形貌,采用Jiang-Sehitoglu循环塑性模型和疲劳准则以及Paris公式对裂纹扩展速率进行了有限元数值模拟,对扩展形貌的沿厚度方向裂纹的扩展速率进行了分析,发现在裂纹中间区域,疲劳裂纹扩展速率几乎相等.

  10. GENETIC ALGORITHM IN REDUCTION OF NUMERICAL DISPERSION OF 3-D ADI-FDTD METHOD

    Institute of Scientific and Technical Information of China (English)

    Zhang Yan; Lǖ Shanwei; Gao Wenjun

    2007-01-01

    A new method to reduce the numerical dispersion of the three-dimensional Alternating Direction Implicit Finite-Difference Time-Domain(3-D ADI-FDTD)method is proposed.Firstly,the numerical formulations of the 3-D ADI-FDTD method are modified with the artificial anisotropy,and the new numerical dispersion relation is derived.Secondly,the relative permittivity tensor of the artificial anisotropy can be obtained by the Adaptive Genetic Algorithm(AGA).In order to demonstrate the accuracy and efficiency of this new method,a monopole antenna is simulated as an example.And the numerical results and the computational requirements of the proposed method are cornpared with those of the conventional ADI-FDTD method and the measured data.In addition the reduction of the numerical dispersion is investigated as the objective function of the AGA.It is found that this new method is accurate and efficient by choosing proper objective function.

  11. Surviving sepsis--a 3D integrative educational simulator.

    Science.gov (United States)

    Ježek, Filip; Tribula, Martin; Kulhánek, Tomáš; Mateják, Marek; Privitzer, Pavol; Šilar, Jan; Kofránek, Jiří; Lhotská, Lenka

    2015-08-01

    Computer technology offers greater educational possibilities, notably simulation and virtual reality. This paper presents a technology which serves to integrate multiple modalities, namely 3D virtual reality, node-based simulator, Physiomodel explorer and explanatory physiological simulators employing Modelica language and Unity3D platform. This emerging tool chain should allow the authors to concentrate more on educational content instead of application development. The technology is demonstrated through Surviving sepsis educational scenario, targeted on Microsoft Windows Store platform.

  12. 3D MHD Simulations of Spheromak Compression

    Science.gov (United States)

    Stuber, James E.; Woodruff, Simon; O'Bryan, John; Romero-Talamas, Carlos A.; Darpa Spheromak Team

    2015-11-01

    The adiabatic compression of compact tori could lead to a compact and hence low cost fusion energy system. The critical scientific issues in spheromak compression relate both to confinement properties and to the stability of the configuration undergoing compression. We present results from the NIMROD code modified with the addition of magnetic field coils that allow us to examine the role of rotation on the stability and confinement of the spheromak (extending prior work for the FRC). We present results from a scan in initial rotation, from 0 to 100km/s. We show that strong rotational shear (10km/s over 1cm) occurs. We compare the simulation results with analytic scaling relations for adiabatic compression. Work performed under DARPA grant N66001-14-1-4044.

  13. 3-D NUMERICAL STUDY AND COMPARISON OF ECCENTRIC AND CONCENTRIC ANNULAR-FINNED TUBE HEAT EXCHANGERS

    OpenAIRE

    2015-01-01

    The use of 3-D computational fluid dynamics (CFD) is proposed to simulate the conjugate conduction-convection of heat transfer problems in eccentric annularfinned tube heat exchangers. The numerical simulation results allow us to evaluate the heat transfer coefficient over fin surfaces, the fin efficiency and the pressure drop. The aim of the present paper is to determine the optimum tube position in the circular fin that maximizes heat dissipation and minimizes pressure drop. In addition, th...

  14. 3D Hydrodynamic Simulations of Carbon Burning in Massive Stars

    CERN Document Server

    Cristini, Andrea; Hirschi, Raphael; Arnett, David; Georgy, Cyril; Viallet, Maxime

    2016-01-01

    We present the first detailed three-dimensional (3D) hydrodynamic implicit large eddy simulations of turbulent convection of carbon burning in massive stars. The simulations start with initial radial profiles mapped from a carbon burning shell within a 15$\\,\\textrm{M}_\\odot$ 1D stellar evolution model. We consider 4 resolutions from $128^3$ to $1024^3$ zones. The turbulent flow properties of these carbon burning simulations are very similar to the oxygen burning case. We performed a mean field analysis of the kinetic energy budgets within the Reynolds-averaged Navier-Stokes framework. For the upper convective boundary region, we find that the inferred numerical dissipation is insensitive to resolution for linear mesh resolutions between 512 and 1,024 grid points. For the stiffer and more stratified lower boundary, our highest resolution model still shows signs of decreasing dissipation suggesting that it is not yet fully resolved numerically. We estimate the widths of the upper and lower boundaries to be roug...

  15. 搅拌釜内流场三维数值模拟及功率预测%3-D Numerical Simulation and Power Prediction of Flow Field in Stirred Tank

    Institute of Scientific and Technical Information of China (English)

    丁健华; 马腾; 陈涛; 杨象岳; 刘延雷

    2015-01-01

    大型搅拌釜,尤其是涉及传热或两相介质搅拌的容器,其搅拌效果和功率往往难以预测。针对大型搅拌釜的搅拌器设计、流场结构模拟和功率预测等问题,采用CFD数值模拟技术,对搅拌釜内部的三维流场进行了数值计算。分析了搅拌釜内的流动结构,计算了不同曝气量时的搅拌功率,获得了详细的流场信息和各项特性参数。%The stirring effects and powers of large stirred tanks, especially that involving heat transfer or stirring of two-phase medium, are difficult to predict. Employs CFD numerical simulation method to perform the numerical calculation of 3-D flow field in a stirred tank, referring to the design of stirrer, structure simulation of flow field and power prediction of the large stirred tank. Analyzes the flow structure in the tank, calculates the stirring power at different aeration intensities and obtains detailed information about flow field and various characteristic parameters. The analysis method mentioned in the paper can provide a reference for the design of stirrers.

  16. 3D simulation for solitons used in optical fibers

    Science.gov (United States)

    Vasile, F.; Tebeica, C. M.; Schiopu, P.; Vladescu, M.

    2016-12-01

    In this paper is described 3D simulation for solitions used in optical fibers. In the scientific works is started from nonlinear propagation equation and the solitons represents its solutions. This paper presents the simulation of the fundamental soliton in 3D together with simulation of the second order soliton in 3D. These simulations help in the study of the optical fibers for long distances and in the interactions between the solitons. This study helps the understanding of the nonlinear propagation equation and for nonlinear waves. These 3D simulations are obtained using MATLAB programming language, and we can observe fundamental difference between the soliton and the second order/higher order soliton and in their evolution.

  17. Simulations on 3D shape tracking with fibre Bragg gratings

    NARCIS (Netherlands)

    Hooft 't, G.W.; Tirard-Gâtel, A.

    2010-01-01

    This report deals with the development of a reconstruction algorithm of 3D optical shape sensing. The theoretical frame work is established and simulations are performed for a multicore fiber system without torque.

  18. 3D numerical modeling of YSO accretion shocks

    Directory of Open Access Journals (Sweden)

    Matsakos T.

    2014-01-01

    Full Text Available The dynamics of YSO accretion shocks is determined by radiative processes as well as the strength and structure of the magnetic field. A quasi-periodic emission signature is theoretically expected to be observed, but observations do not confirm any such pattern. In this work, we assume a uniform background field, in the regime of optically thin energy losses, and we study the multi-dimensional shock evolution in the presence of perturbations, i.e. clumps in the stream and an acoustic energy flux flowing at the base of the chromosphere. We perform 3D MHD simulations using the PLUTO code, modelling locally the impact of the infalling gas onto the chromosphere. We find that the structure and dynamics of the post-shock region is strongly dependent on the plasma-beta (thermal over magnetic pressure, different values of which may give distinguishable emission signatures, relevant for observations. In particular, a strong magnetic field effectively confines the plasma inside its flux tubes and leads to the formation of quasi-independent fibrils. The fibrils may oscillate out of phase and hence the sum of their contributions in the emission results in a smooth overall profile. On the contrary, a weak magnetic field is not found to have any significant effect on the shocked plasma and the turbulent hot slab that forms is found to retain its periodic signature.

  19. Design of 3D simulation engine for oilfield safety training

    Science.gov (United States)

    Li, Hua-Ming; Kang, Bao-Sheng

    2015-03-01

    Aiming at the demand for rapid custom development of 3D simulation system for oilfield safety training, this paper designs and implements a 3D simulation engine based on script-driven method, multi-layer structure, pre-defined entity objects and high-level tools such as scene editor, script editor, program loader. A scripting language been defined to control the system's progress, events and operating results. Training teacher can use this engine to edit 3D virtual scenes, set the properties of entity objects, define the logic script of task, and produce a 3D simulation training system without any skills of programming. Through expanding entity class, this engine can be quickly applied to other virtual training areas.

  20. 老港填埋场的稳定性三维数值模拟分析%Study on Stability of Laogang Landfill by Using 3D Numerical Simulation

    Institute of Scientific and Technical Information of China (English)

    席永慧; 熊浩

    2011-01-01

    The stability of the landfill decides its service life and the quantity of waste which it could contain. The NO. 5 to 8 reservoir regions of Shanghai Laogang landfill, which are enclosed by gravity waste dam, are filled with sewage sludge which had already been solidified. The limit equilibrium method was not used during the process of the calculation, and the stability of the landfill was simulated and analyzed on the three dimension by using FD software, FLAC3D, with the indexes of physical and mechanical properties of soil extracted from the field tests and indoor tests. During the numerical simulation, gravity stress was only taken into account. According to the simulation, the stress and displacement diagrams were yielded. The results of the numerical simulation showed that latent sliding surface is under the waste dam,and the dam is just above the latent sliding surface. The displacement values of the dam top and dam base are large. The results also showed that the stability of the waste dam is good, and the FOS is 2. 72 according to the results of simulation. By comparison analysis,it could be concluded that the limitations could be overcome by the usage of FLAC3D when the similar landfills' stability is analyzed. The software,FLAC3D,has its own advantages.%填埋场的稳定性决定着填埋场的使用年限和填埋废弃物的数量.上海老港填埋场的5~8号库区填埋的为固化污泥,周围以垃圾土坝围护.在对老港填埋场稳定性进行分析时,没有采用常用的极限平衡法,而是采用FLAC3D软件对填埋场进行了三维数值模拟分析.根据现场和室内试验得到的各类土的物理力学性能指标数据,在模拟过程只考虑自重应力,得到了填埋场的应力和位移情况以及安全系数.模拟结果表明:①库区的潜在滑动面在垃圾土坝底面的一定范围内,垃圾坝正好处在滑移面以上;②垃圾土坝的坝底和坝顶的位移相对较大;③

  1. An Evaluative Review of Simulated Dynamic Smart 3d Objects

    Science.gov (United States)

    Romeijn, H.; Sheth, F.; Pettit, C. J.

    2012-07-01

    Three-dimensional (3D) modelling of plants can be an asset for creating agricultural based visualisation products. The continuum of 3D plants models ranges from static to dynamic objects, also known as smart 3D objects. There is an increasing requirement for smarter simulated 3D objects that are attributed mathematically and/or from biological inputs. A systematic approach to plant simulation offers significant advantages to applications in agricultural research, particularly in simulating plant behaviour and the influences of external environmental factors. This approach of 3D plant object visualisation is primarily evident from the visualisation of plants using photographed billboarded images, to more advanced procedural models that come closer to simulating realistic virtual plants. However, few programs model physical reactions of plants to external factors and even fewer are able to grow plants based on mathematical and/or biological parameters. In this paper, we undertake an evaluation of plant-based object simulation programs currently available, with a focus upon the components and techniques involved in producing these objects. Through an analytical review process we consider the strengths and weaknesses of several program packages, the features and use of these programs and the possible opportunities in deploying these for creating smart 3D plant-based objects to support agricultural research and natural resource management. In creating smart 3D objects the model needs to be informed by both plant physiology and phenology. Expert knowledge will frame the parameters and procedures that will attribute the object and allow the simulation of dynamic virtual plants. Ultimately, biologically smart 3D virtual plants that react to changes within an environment could be an effective medium to visually represent landscapes and communicate land management scenarios and practices to planners and decision-makers.

  2. Preliminary investigations on 3D PIC simulation of DPHC structure using NEPTUNE3D code

    Science.gov (United States)

    Zhao, Hailong; Dong, Ye; Zhou, Haijing; Zou, Wenkang; Wang, Qiang

    2016-10-01

    Cubic region (34cm × 34cm × 18cm) including the double post-hole convolute (DPHC) structure was chosen to perform a series of fully 3D PIC simulations using NEPTUNE3D codes, massive data ( 200GB) could be acquired and solved in less than 5 hours. Cold-chamber tests were performed during which only cathode electron emission was considered without temperature rise or ion emission, current loss efficiency was estimated by comparisons between output magnetic field profiles with or without electron emission. PIC simulation results showed three stages of current transforming process with election emission in DPHC structure, the maximum ( 20%) current loss was 437kA at 15ns, while only 0.46% 0.48% was lost when driving current reached its peak. DPHC structure proved valuable functions during energy transform process in PTS facility, and NEPTUNE3D provided tools to explore this sophisticated physics. Project supported by the National Natural Science Foundation of China, Grant No. 11571293, 11505172.

  3. 3D Printing device adaptable to Computer Numerical Control (CNC)

    OpenAIRE

    Gardan, Julien; DANESI, Frédéric; Roucoules, Lionel; Schneider, A

    2014-01-01

    This article presents the development of a 3D printing device for the additive manufacturing adapted to a CNC machining. The application involves the integration of a specific printing head. Additive manufacturing technology is most commonly used for modeling, prototyping, tooling through an exclusive machine or 3D printer. A global review and analysis of technologies show the additive manufacturing presents little independent solutions [6][9]. The problem studied especially the additive manu...

  4. 3D-FSM·DDM IBEM numerical system of multi-medium

    Institute of Scientific and Technical Information of China (English)

    QIN Zhong-cheng; LIU Cheng-lun; ZHAO Qian-qiao; ZHAO Zhi-ye

    2007-01-01

    Based on the idea of the developed 3D-FSM·DDM boundary element method,the field with muti-medium was formulized firstly, then connected at the interface of two fields according to the continuous conditions of stress and displacement, after that, a boundary value problem with unified model was formed and solved. Ultimately, an applied numerical simulation system was developed. It was compared with the model having analytical solution for verifying the applicability and the calculating precision.

  5. 3D Ultrasonic Wave Simulations for Structural Health Monitoring

    Science.gov (United States)

    Campbell, Leckey Cara A/; Miler, Corey A.; Hinders, Mark K.

    2011-01-01

    Structural health monitoring (SHM) for the detection of damage in aerospace materials is an important area of research at NASA. Ultrasonic guided Lamb waves are a promising SHM damage detection technique since the waves can propagate long distances. For complicated flaw geometries experimental signals can be difficult to interpret. High performance computing can now handle full 3-dimensional (3D) simulations of elastic wave propagation in materials. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate ultrasound scattering from flaws in materials. EFIT results have been compared to experimental data and the simulations provide unique insight into details of the wave behavior. This type of insight is useful for developing optimized experimental SHM techniques. 3D EFIT can also be expanded to model wave propagation and scattering in anisotropic composite materials.

  6. Simulation and test of 3D silicon radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Fleta, C. [Department of Physics and Astronomy, University of Glasgow, Glasgow, Scotland (United Kingdom)], E-mail: c.fleta@physics.gla.ac.uk; Pennicard, D.; Bates, R.; Parkes, C. [Department of Physics and Astronomy, University of Glasgow, Glasgow, Scotland (United Kingdom); Pellegrini, G.; Lozano, M. [Centro Nacional de Microelectronica, (CNM-IMB, CSIC), Barcelona (Spain); Wright, V. [Diamond Light Source, Oxfordshire (United Kingdom); Boscardin, M.; Dalla Betta, G.-F.; Piemonte, C.; Pozza, A.; Ronchin, S.; Zorzi, N. [ITC-IRST, Trento (Italy)

    2007-09-01

    The work presented here is the result of the collaborative effort between the University of Glasgow, ITC-IRST (Trento) and IMB-CNM (Barcelona) in the framework of the CERN-RD50 Collaboration to produce 3D silicon radiation detectors and study their performance. This paper reports on two sets of 3D devices. IRST and CNM have fabricated a set of single-type column 3D detectors, which have columnar electrodes of the same doping type and an ohmic contact located at the backplane. Simulations of the device behaviour and electrical test results are presented. In particular, current-voltage, capacitance-voltage and charge collection efficiency measurements are reported. Other types of structures called double-sided 3D detectors are currently being fabricated at CNM. In these detectors the sets of n and p columns are made on opposite sides of the device. Electrical and technological simulations and first processing results are presented.

  7. M3D project for simulation studies of plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Park, W.; Belova, E.V.; Fu, G.Y. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Strauss, H.R. [New York Univ., NY (United States); Sugiyama, L.E. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

    1998-12-31

    The M3D (Multi-level 3D) project carries out simulation studies of plasmas of various regimes using multi-levels of physics, geometry, and mesh schemes in one code package. This paper and papers by Strauss, Sugiyama, and Belova in this workshop describe the project, and present examples of current applications. The currently available physics models of the M3D project are MHD, two-fluids, gyrokinetic hot particle/MHD hybrid, and gyrokinetic particle ion/two-fluid hybrid models. The code can be run with both structured and unstructured meshes.

  8. Statistical 3D damage accumulation model for ion implant simulators

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Mangas, J.M. E-mail: jesman@ele.uva.es; Lazaro, J.; Enriquez, L.; Bailon, L.; Barbolla, J.; Jaraiz, M

    2003-04-01

    A statistical 3D damage accumulation model, based on the modified Kinchin-Pease formula, for ion implant simulation has been included in our physically based ion implantation code. It has only one fitting parameter for electronic stopping and uses 3D electron density distributions for different types of targets including compound semiconductors. Also, a statistical noise reduction mechanism based on the dose division is used. The model has been adapted to be run under parallel execution in order to speed up the calculation in 3D structures. Sequential ion implantation has been modelled including previous damage profiles. It can also simulate the implantation of molecular and cluster projectiles. Comparisons of simulated doping profiles with experimental SIMS profiles are presented. Also comparisons between simulated amorphization and experimental RBS profiles are shown. An analysis of sequential versus parallel processing is provided.

  9. Statistical 3D damage accumulation model for ion implant simulators

    CERN Document Server

    Hernandez-Mangas, J M; Enriquez, L E; Bailon, L; Barbolla, J; Jaraiz, M

    2003-01-01

    A statistical 3D damage accumulation model, based on the modified Kinchin-Pease formula, for ion implant simulation has been included in our physically based ion implantation code. It has only one fitting parameter for electronic stopping and uses 3D electron density distributions for different types of targets including compound semiconductors. Also, a statistical noise reduction mechanism based on the dose division is used. The model has been adapted to be run under parallel execution in order to speed up the calculation in 3D structures. Sequential ion implantation has been modelled including previous damage profiles. It can also simulate the implantation of molecular and cluster projectiles. Comparisons of simulated doping profiles with experimental SIMS profiles are presented. Also comparisons between simulated amorphization and experimental RBS profiles are shown. An analysis of sequential versus parallel processing is provided.

  10. NUMERICAL STUDY OF 3D EXPLOSION BUBBLES ADJACENT TO STRUCTURES

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The bejavior of a bubble near a rigid structure was considered by using the local surface fitting method and the "jet prediction" method. The convergence difficulty caused by the abnormality of the elements was overcome. The flow was numerically simulated by using the boundary-integral method on the assumption that the water was inviscid and incompressible, and the bubble gas obeyed the isoentropic rule. The evolution of the bubble was investigated by means of the mixed Euler-Lagrange method, and the Runge-Kutta method. The important behavior of the bubble, such as migration and jetting, was analyzed in several examples. And the solution of one period of the explosion bubble was obtained.

  11. Numerical Results of 3-D Modeling of Moon Accumulation

    Science.gov (United States)

    Khachay, Yurie; Anfilogov, Vsevolod; Antipin, Alexandr

    2014-05-01

    For the last time for the model of the Moon usually had been used the model of mega impact in which the forming of the Earth and its sputnik had been the consequence of the Earth's collision with the body of Mercurial mass. But all dynamical models of the Earth's accumulation and the estimations after the Pb-Pb system, lead to the conclusion that the duration of the planet accumulation was about 1 milliard years. But isotopic results after the W-Hf system testify about a very early (5-10) million years, dividing of the geochemical reservoirs of the core and mantle. In [1,2] it is shown, that the account of energy dissipating by the decay of short living radioactive elements and first of all Al26,it is sufficient for heating even small bodies with dimensions about (50-100) km up to the iron melting temperature and can be realized a principal new differentiation mechanism. The inner parts of the melted preplanets can join and they are mainly of iron content, but the cold silicate fragments return to the supply zone and additionally change the content of Moon forming to silicates. Only after the increasing of the gravitational radius of the Earth, the growing area of the future Earth's core can save also the silicate envelope fragments [3]. For understanding the further system Earth-Moon evolution it is significant to trace the origin and evolution of heterogeneities, which occur on its accumulation stage.In that paper we are modeling the changing of temperature,pressure,velocity of matter flowing in a block of 3d spherical body with a growing radius. The boundary problem is solved by the finite-difference method for the system of equations, which include equations which describe the process of accumulation, the Safronov equation, the equation of impulse balance, equation Navier-Stocks, equation for above litho static pressure and heat conductivity in velocity-pressure variables using the Businesque approach.The numerical algorithm of the problem solution in velocity

  12. Simulátor 3D tiskárny

    OpenAIRE

    Čillo, Vladimír

    2015-01-01

    Tato bakalářská práce se zabýva návrhem a implementací simulátoru 3D tiskárny v jazyce C++ s využitím knihovny Qt. Simulátor předpokládá tiskárnu založenou na nejrozšířenější metodě 3D tisku - Fused Deposition Modeling. Vstupem simulátoru je 3D model ve formátu STL. Pro daný 3D model simulátor poskytuje odhad celkové doby tisku. Součástí simulace je také vizualizace procesu 3D tisku. Výsledkem práce je přenositelný program testovaný pod operačními systémy Linux a Windows. Funkčnost simulátoru...

  13. 多峰负氢离子源全三维数值模拟研究%3D numerical simulation of multi-peak negative hydrogen ion sources

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    The mechanism of the negative hydrogen ion volume production is analysed theoretically. The negative hydrogen ion source restrained by multi⁃peak megnetic field was numerically simulated with self⁃developed 3D simulation software PIC⁃MCC,in which the influence of leading⁃out megnetic field,primary energy and position of discharge on the collision efficiency excited by vibration are simulated. The optimization means for the multi⁃peak negative hydrogen ion source are explored. The re⁃sults show that the more the fast electrons move into the extraction region and the more severe the negative y⁃direction drift is, the more frequent the vibrational excitation collision happens and the higher the relative collision rate becomes,in other word, the higher the volume production efficiency of negative hydrogen ions appears.%  理论分析了负氢离子体积产生机制,采用自主开发的三维PIC⁃MCC模拟软件,对多峰磁场约束的负氢离子源进行数值模拟研究。模拟了引出磁场、放电初始能量、及放电位置对振动激发碰撞效率的影响,探索了多峰负氢离子源的优化手段。研究表明:如果进入引出区的快电子越多且-y方向漂移越剧烈,那么振动碰撞越频繁且相对碰撞率越高,即负氢离子体积产生效率越高。

  14. 3d visualization of atomistic simulations on every desktop

    Science.gov (United States)

    Peled, Dan; Silverman, Amihai; Adler, Joan

    2013-08-01

    Once upon a time, after making simulations, one had to go to a visualization center with fancy SGI machines to run a GL visualization and make a movie. More recently, OpenGL and its mesa clone have let us create 3D on simple desktops (or laptops), whether or not a Z-buffer card is present. Today, 3D a la Avatar is a commodity technique, presented in cinemas and sold for home TV. However, only a few special research centers have systems large enough for entire classes to view 3D, or special immersive facilities like visualization CAVEs or walls, and not everyone finds 3D immersion easy to view. For maximum physics with minimum effort a 3D system must come to each researcher and student. So how do we create 3D visualization cheaply on every desktop for atomistic simulations? After several months of attempts to select commodity equipment for a whole room system, we selected an approach that goes back a long time, even predating GL. The old concept of anaglyphic stereo relies on two images, slightly displaced, and viewed through colored glasses, or two squares of cellophane from a regular screen/projector or poster. We have added this capability to our AViz atomistic visualization code in its new, 6.1 version, which is RedHat, CentOS and Ubuntu compatible. Examples using data from our own research and that of other groups will be given.

  15. Numerical Simulation of the Depressurization Process of a Natural Gas Hydrate Reservoir: An Attempt at Optimization of Field Operational Factors with Multiple Wells in a Real 3D Geological Model

    Directory of Open Access Journals (Sweden)

    Zhixue Sun

    2016-09-01

    Full Text Available Natural gas hydrates, crystalline solids whose gas molecules are so compressed that they are denser than a typical fluid hydrocarbon, have extensive applications in the areas of climate change and the energy crisis. The hydrate deposit located in the Shenhu Area on the continental slope of the South China Sea is regarded as the most promising target for gas hydrate exploration in China. Samples taken at drilling site SH2 have indicated a high abundance of methane hydrate reserves in clay sediments. In the last few decades, with its relatively low energy cost, the depressurization gas recovery method has been generally regarded as technically feasible and the most promising one. For the purpose of a better acquaintance with the feasible field operational factors and processes which control the production behavior of a real 3D geological CH4-hydrate deposit, it is urgent to figure out the effects of the parameters such as well type, well spacing, bottom hole pressure, and perforation intervals on methane recovery. One years’ numerical simulation results show that under the condition of 3000 kPa constant bottom hole pressure, 1000 m well spacing, perforation in higher intervals and with one horizontal well, the daily peak gas rate can reach 4325.02 m3 and the cumulative gas volume is 1.291 × 106 m3. What’s more, some new knowledge and its explanation of the curve tendency and evolution for the production process are provided. Technically, one factor at a time design (OFAT and an orthogonal design were used in the simulation to investigate which factors dominate the productivity ability and which is the most sensitive one. The results indicated that the order of effects of the factors on gas yield was perforation interval > bottom hole pressure > well spacing.

  16. Numerical investigations on cavitation intensity for 3D homogeneous unsteady viscous flows

    Science.gov (United States)

    Leclercq, C.; Archer, A.; Fortes-Patella, R.

    2016-11-01

    The cavitation erosion remains an industrial issue. In this paper, we deal with the cavitation intensity which can be described as the aggressiveness - or erosive capacity - of a cavitating flow. The estimation of this intensity is a challenging problem both in terms of modelling the cavitating flow and predicting the erosion due to cavitation. For this purpose, a model was proposed to estimate cavitation intensity from 3D unsteady cavitating flow simulations. An intensity model based on pressure and void fraction derivatives was developped and applied to a NACA 65012 hydrofoil tested at LMH-EPFL (École Polytechnique Fédérale de Lausanne) [1]. 2D and 3D unsteady cavitating simulations were performed using a homogeneous model with void fraction transport equation included in Code_Saturne with cavitating module [2]. The article presents a description of the numerical code and the physical approach considered. Comparisons between 2D and 3D simulations, as well as between numerical and experimental results obtained by pitting tests, are analyzed in the paper.

  17. 3D mapping and simulation of Geneva Lake environmental data

    Science.gov (United States)

    Villard, Roch; Maignan, Michel; Kanevski, Mikhail; Rapin, Francois; Klein, Audrey

    2010-05-01

    The Geneva Lake is the biggest alpine and subalpine lake in central Europe. The depth of this lake is 309 meters and its total volume of water is 89 billions m3. It takes, on average, around twelve years so that waters of the lake are completely brewed. Furthermore the Geneva lake waters are rich in dissolved substances as carbonate, sulfate. The quantity of particles in suspension in the lake, which mainly arrived from the Rhône, is nowadays around height million of tones. The International Commission for the Leman Lake (CIPEL) works about the improvement of the quality of this lake since 1962. In the present study three dimensional environmental data (temperature, oxygen and nitrate) which cover the period from 1954 to 2008, for a total of 27'500 cases are investigated. We are interested to study the evolution of the temperature of the lake because there is an impact on the reproduction of fishes and also because the winter brewing of the water makes the re-oxygenation of deep-water. In order that biological balance is maintained in a lake, there must be enough oxygen in the water. Moreover, we work on nitrate distribution and evolution because contributions in fertilizers cause eutrophication of lake. The data are very numerous when we consider the time series, some of them with more than 300 occurrences, but there are between 2 and 15 data available for spatial cartography. The basic methodology used for the analysis, mapping and simulations of 3D patterns of environmental data is based on geostatistical predictions (family of kriging models) and conditional stochastic simulations. Spatial and temporal variability, 3D monitoring networks changing over time, make this study challenging. An important problem is also to make interpolation/simulations over a long period of time, like ten years. One way used to overcome this problem, consists in using a weighted average of ten variograms during this period. 3D mapping was carried out using environment data for

  18. 3D Field Simulation of Magnetic Thin Film Inductor

    OpenAIRE

    FUJIWARA, Toshiyasu; CHOI, Kyung-Ku; SATO, SHIGEKI

    2006-01-01

    The 3D magnetic field simulations with FEM (finite element method) have been performed to predictand understand the performance of Magnetic Thin Film Inductor (MTFl). Inductor structures of planar electroplated Cu spiralcoil, which are sandwiched and underlaid with magnetic thin films, are considered as the simulation models. The inductance increment of 300% compared to air-core inductor was predicted when the sandwiched 5μm thickness magnetic thin film with relative permeability of 600 was a...

  19. 3-D Numerical Simulation and Optimization of High-density Sedimentation Tank in Water Treatment Plant%给水厂高密度沉淀池沉淀效果三维数值模拟与优化

    Institute of Scientific and Technical Information of China (English)

    雷晓玲; 陈昆萍; 陶礴

    2012-01-01

    应用FLUENT流体力学软件对重庆某大型在建给水厂高密度沉淀池沉淀区的流速场和浓度场进行了三维数值模拟,分析了不同运行参数与结构参数对沉淀区水流流场与沉淀效果的影响.模拟结果表明,增加进水口流速在一定程度上缓解了异重流现象,但不能提高沉淀效果;选取进水口流速为0.016 m/s,将沉淀池的导流墙左侧改为弧形,在斜板沉淀区前端加上1 m的挡板,可使异重流现象减弱,且沉淀效果得到明显的改善.%The 3-D numerical simulation of velocity field and concentration field of sedimentation zone in high-density sedimentation tank of a large-scale water treatment plant under construction in Chongqing City was performed using FLUENT software. The influence of different operation parameters and structure parameters on the flow state and sedimentation effect was analyzed. The results show that increasing the inlet velocity can relieve the density current to a certain extent, but can not improve the sedimentation effect. When the inlet velocity is 0.016 m/s, changing the left side of guide wall into arc shape and adding one meter baffle in the front of the inclined plate settling zone can ease the density current, and the sedimentation effect can be significantly improved.

  20. VISRAD, 3-D Target Design and Radiation Simulation Code

    Science.gov (United States)

    Golovkin, Igor; Macfarlane, Joseph; Golovkina, Viktoriya

    2016-10-01

    The 3-D view factor code VISRAD is widely used in designing HEDP experiments at major laser and pulsed-power facilities, including NIF, OMEGA, OMEGA-EP, ORION, LMJ, Z, and PLX. It simulates target designs by generating a 3-D grid of surface elements, utilizing a variety of 3-D primitives and surface removal algorithms, and can be used to compute the radiation flux throughout the surface element grid by computing element-to-element view factors and solving power balance equations. Target set-up and beam pointing are facilitated by allowing users to specify positions and angular orientations using a variety of coordinates systems (e.g., that of any laser beam, target component, or diagnostic port). Analytic modeling for laser beam spatial profiles for OMEGA DPPs and NIF CPPs is used to compute laser intensity profiles throughout the grid of surface elements. We will discuss recent improvements to the software package and plans for future developments.

  1. 基于HYDRUS-3D的涌泉根灌土壤入渗数值模拟%Numerical simulation of soil water infiltration under bubbled root irrigation based on HYDRUS-3D

    Institute of Scientific and Technical Information of China (English)

    李耀刚; 王文娥; 胡笑涛

    2013-01-01

    针对涌泉根灌流量大且出流边界为柱状,与传统滴灌、渗灌等存在很大差异的问题,依据非饱和土壤水动力学理论,并结合涌泉根灌条件下土壤水分运动特征,建立了具有柱状出流边界的入渗模型,利用HYDRUS-3D对模型进行求解,所建模型通过土壤剖面含水率随时间变化的实测值与模拟值的对比进行验证.结果表明:模拟值与实测值的相对误差在10%以内,两者具有较好的一致性,数值模拟结果可为涌泉根灌系统的合理设计及运行提供理论依据.通过数值模拟方法研究了流量、套管开孔长度对土壤含水率的影响,发现流量越大,水分运移速率越大,随着时间推移流量所引起的差异减小;灌水量相同时,灌水结束后土壤湿润体范围随流量增大略有减小;开孔区长度增加对湿润体形状、大小没有显著影响,但对土壤湿润体内水分分布状况影响较大.%With large flow and columnar flow boundary,bubbled root irrigation is greatly different from traditional drip irrigation and infiltrating irrigation.It is therefore necessary to study water movement under bubbled root irrigation from different boundaries.Based on the theory of unsaturated soil water dynamics,combining the characteristics of soil water movement under bubbled root irrigation,an infiltration model with columnar flow boundary was established.The HYDRUS-3 D software was applied to solve the model numerically.The model is validated through the contrast of measured values and simulated values of the soil moisture which change over time.The results show that the simulation results are in well agreement with measured values.The relative error between simulated and measured values is less than 10%,both of which are quite consistent.The simulation results can provide some theoretical basis for the rational design and operation of the bubbled root irrigation system.The influences on soil moisture content by dripper

  2. Coupled 3D discrete-continuum numerical modeling of pile penetration in sand

    Institute of Scientific and Technical Information of China (English)

    Jian ZHOU; Qi-wei JIAN; Jiao ZHANG; Jian-jun GUO

    2012-01-01

    A coupled discrete-continuum simulation incorporating a 3D aspect and non-circular particles was performed to analyze soil-pile interactions during pile penetration in sand.A self-developed non-circular particle numerical simulation program was used which considered sand near the pile as interacted particles using a discrete element method; the sand away from the pile was simulated as a continuous medium exhibiting linear elastic behaviors.The domain analyzed was divided into two zones.Contact forces at the interface between the two zones were obtained from a discrete zone and applied to the continuum boundaries as nodal forces,while the interface velocities were obtained from the continuum zone and applied to the discrete boundaries.We show that the coupled discrete-continuum simulation can give a microscopic description of the pile penetration process without losing the discrete nature of the zone concerned,and may significantly improve computational efticiency.

  3. A FLOSS Visual EM Simulator for 3D Antennas

    CERN Document Server

    Koutsos, Christos A; Zimourtopoulos, Petros E

    2010-01-01

    This paper introduces the FLOSS Free Libre Open Source Software [VEMSA3D], a contraction of "Visual Electromagnetic Simulator for 3D Antennas", which are geometrically modeled, either exactly or approximately, as thin wire polygonal structures; presents its GUI Graphical User Interface capabilities, in interactive mode and/or in handling suitable formed antenna data files; demonstrates the effectiveness of its use in a number of practical antenna applications, with direct comparison to experimental measurements and other freeware results; and provides the inexperienced user with a specific list of instructions to successfully build the given source code by using only freely available IDE Integrated Development Environment tools-including a cross-platform one. The unrestricted access to source code, beyond the ability for immediate software improvement, offers to independent users and volunteer groups an expandable, in any way, visual antenna simulator, for a genuine research and development work in the field ...

  4. Comparative visual analysis of 3D urban wind simulations

    Science.gov (United States)

    Röber, Niklas; Salim, Mohamed; Grawe, David; Leitl, Bernd; Böttinger, Michael; Schlünzen, Heinke

    2016-04-01

    Climate simulations are conducted in large quantity for a variety of different applications. Many of these simulations focus on global developments and study the Earth's climate system using a coupled atmosphere ocean model. Other simulations are performed on much smaller regional scales, to study very small fine grained climatic effects. These microscale climate simulations pose similar, yet also different, challenges for the visualization and the analysis of the simulation data. Modern interactive visualization and data analysis techniques are very powerful tools to assist the researcher in answering and communicating complex research questions. This presentation discusses comparative visualization for several different wind simulations, which were created using the microscale climate model MITRAS. The simulations differ in wind direction and speed, but are all centered on the same simulation domain: An area of Hamburg-Wilhelmsburg that hosted the IGA/IBA exhibition in 2013. The experiments contain a scenario case to analyze the effects of single buildings, as well as examine the impact of the Coriolis force within the simulation. The scenario case is additionally compared with real measurements from a wind tunnel experiment to ascertain the accuracy of the simulation and the model itself. We also compare different approaches for tree modeling and evaluate the stability of the model. In this presentation, we describe not only our workflow to efficiently and effectively visualize microscale climate simulation data using common 3D visualization and data analysis techniques, but also discuss how to compare variations of a simulation and how to highlight the subtle differences in between them. For the visualizations we use a range of different 3D tools that feature techniques for statistical data analysis, data selection, as well as linking and brushing.

  5. Detached eddy simulation of unsteady cavitation and pressure fluctuation around 3-D NACA66 hydrofoil

    Directory of Open Access Journals (Sweden)

    Zhang De-Sheng

    2015-01-01

    Full Text Available The unsteady cavitating flow and pressure fluctuation around the 3-D NACA66 hydrofoil were simulated and validated based on detached eddy simulation turbulence model and a homogeneous cavitation model. Numerical results show that detached eddy simulation can predict the evolution of cavity inception, sheet cavitation growth, cloud cavitation shedding, and breakup, as well as the pressure fluctuation on the surface of hydrofoil. The sheet cavitation growth, detachment, cloud cavitation shedding are responsible for the features of the pressure fluctuation.

  6. Gravitational Collapse of Gravitational Waves in 3D Numerical Relativity

    CERN Document Server

    Alcubierre, M; Brügmann, B; Lanfermann, G; Seidel, E; Suen, W M; Tobias, M; Alcubierre, Miguel; Allen, Gabrielle; Bruegmann, Bernd; Lanfermann, Gerd; Seidel, Edward; Suen, Wai-Mo; Tobias, Malcolm

    2000-01-01

    We demonstrate that evolutions of three-dimensional, strongly non-linear gravitational waves can be followed in numerical relativity, hence allowing many interesting studies of both fundamental and observational consequences. We study the evolution of time-symmetric, axisymmetric {\\it and} non-axisymmetric Brill waves, including waves so strong that they collapse to form black holes under their own self-gravity. The critical amplitude for black hole formation is determined. The gravitational waves emitted in the black hole formation process are compared to those emitted in the head-on collision of two Misner black holes.

  7. Numerical Study on Characteristics of 3D Cavitating Hydrofoil

    Directory of Open Access Journals (Sweden)

    Cao Wei

    2015-01-01

    Full Text Available The commercial software ANSYS CFX, APDL and Workbench are applied for modeling the hydrodynamic and structural interactions and characteristics of an elastic hydrofoil by means of a two-way FSI method. The SST (Shear Stress Transport turbulence model and the simplified Rayleigh-Plesset equations are employed for the cavitating flow simulation. Both CFX and APDL solvers are set to be transient. The fluid and solid computational domains are sequentially solved to simulate the interactions between the hydrofoil and the cavitating flow. The results show that the difference in stiffness of common metal materials has trifling effects on hydrofoil performance. But variations in cavitation number and angle of attack will dramatically affect the hydrodynamic and structural interactions and characteristics.

  8. 3D Flow Field Numerical Simulation on Aerodynamic Characteristics of New Double-rotor Wind Turbines%新型双风轮风力机气动特性的三维流场数值模拟

    Institute of Scientific and Technical Information of China (English)

    周云龙; 杨承志; 李律万

    2012-01-01

    Based on Simplic algorithm and SST κ-ωturbulence model, using numerical simulation software Fluent 6.3, the 3D aerodynamic flow field of a new type of small double-rotor wind turbines has been studied and compared with that of single-rotor wind turbines in same size. Results show that compared with single-rotor wind turbine, the turbulence intensity of new double-rotor wind turbine strengthens along with the increase of blade number of rear rotor, and its operation stability reduces to a certain extent; however, the rear rotor with a reasonable number of blades has little influence on the front rotor, which can capture the air leakage of the front rotor effectively, and therefore enables the wind turbine to simulta- neously have a larger windward area and maintain a higher rotating speed, and subsequently helps it to achieve two grade utility of wind energy, improve the power generation efficiency and raise the wind power utilization coefficient.%基于Simplic算法,采用SST κ-ω湍流模型,利用Fluent6.3数值模拟软件对新型的小型双风轮风力机的气动特性进行了三维流场研究,并与同规格单风轮风力机的三维流场进行了比较.结果表明:与单风轮风力机相比,随着后风轮叶片数目的增加,新型双风轮风力机的湍流强度变大,风力机运行的稳定性在一定程度上有所降低;当后风轮的叶片数目合理时,后风轮对前风轮的影响较小,且可以有效地捕捉到前风轮的漏风,使得新型双风轮风力机的风轮在获得较大迎风面积的同时可以保持较高的转速,进而能够高效地实现风能的两级利用,明显提高发电功率和增大风能利用系数.

  9. Numerical Simulation and Experimental Validation of 3 D Composite Heat Pipe Radiator for IGBT%IGBT用3D复合热管散热器的数值仿真与实验验证

    Institute of Scientific and Technical Information of China (English)

    杨雄鹏; 张磊; 曹伦

    2015-01-01

    IGBT元件广泛应用于变频器、逆变器、电力传动等各个方面,随着其工作热耗和自身体积功率密度的不断增大,其散热设计的好坏直接关系到其运行的稳定性、可靠性及使用寿命。文中以应用于IGBT模块冷却系统的3 D复合热管散热器为研究对象,详细介绍了其结构组成和工作原理,并通过数值仿真和实验验证,充分评估了其应用优势。该散热器可在有限的结构空间下,使得超高功率密度IGBT模块的温度得到很好的控制,使得器件长期安全稳定地工作,提高了整机产品的可靠性。%IGBT components are widely used in converters, inverters, power transmission, and so on.With the continuous increasing of their heat consumption and volumetric power density, the quality of their thermal design is directly related to the operation stability, reliability and service life.In this paper, the 3D composite heat pipe radiator applied to IGBT module cooling system is studied, its structure and working principle are presented in detail.A full assessment of its application advantages is performed through numerical simulation and experimental verification.The heat pipe radiator in a limited structure space is able to control the tempera-ture of the IGBT module with very high power density very well, so that the device can operate safely and stab-ly for a long time, and the products reliability is improved.

  10. 波节管纵向逆流换热性能的三维数值模拟研究%3D Numerical Simulation Investigation of Heat Transfer Performance for Vertical Countercurrent Flow in Corrugated Tube

    Institute of Scientific and Technical Information of China (English)

    金铁石; 付崇彬

    2012-01-01

    In this article, the 3D k - e Model numerical simulation is adopted to research heat transfer and frictional characteristic of the vertical countercurrent flow in corrugated tube. The working medium was helium and nitrogen in the tube side and shell side respectively. The tube bundle has used triangular arrangement. The paper has first analyzed the impact of different wave distance and Reynolds number on heat transfer rate. At the same time, the impact of different wave distance and Reynolds number on Q/Qo (heat transfer ratio between smooth and corrugated tube) and △p/△po(pressure loss ratio between smooth and corrugated) were also analyzed in order to emphasize the superiority of corrugated tube. It was found that the heat transfer and frictional characteristic of corrugated tube have decreased with the increasing of wave length, whereas the overall heat transfer performance has been improved. On the contrary, the Reynolds number has the opposite effect.%本文基于k-ε模型,针对波节管高效换热元件中纵向逆流换热的传热特性和阻力特性进行三维数值模拟研究.传热工质在管程和壳程分别为氦气和氮气,管束采用三角形布置.本文首先分析了不同波距及雷诺数下对换热量影响.为了体现高效换热元件比光管的优越性,随后分析了不同波距及雷诺数对Q/Qo(波节管与光管的换热量比)与△p/△Po(波节管与光管的压力降比).最后得出结论,波距L的增加使高效换热元件的传热性能和阻力性能有所降低,但提高了其综合传热性能.雷诺数的增加会大幅提高换热量,但同时综合传热效率也大幅降低.

  11. Optimization of a fully 3D single scatter simulation algorithm for 3D PET

    Energy Technology Data Exchange (ETDEWEB)

    Accorsi, Roberto [Division of Nuclear Medicine, Department of Radiology, Children' s Hospital of Philadelphia, 34th and Civic Center Blvd, Philadelphia, PA 19104 (United States); Adam, Lars-Eric [Department of Radiology, University of Pennsylvania School of Medicine, 423 Guardian Dr, Philadelphia, PA 19104 (United States); Werner, Matthew E [Philips Medical Systems, 3619 Market St, Philadelphia, PA 19104 (United States); Karp, Joel S [Department of Radiology, University of Pennsylvania School of Medicine, 423 Guardian Dr, Philadelphia, PA 19104 (United States)

    2004-06-21

    We describe a new implementation of a single scatter simulation (SSS) algorithm for the prediction and correction of scatter in 3D PET. In this implementation, out of field of view (FoV) scatter and activity, side shields and oblique tilts are explicitly modelled. Comparison of SSS predictions with Monte Carlo simulations and experimental data from uniform, line and cold-bar phantoms showed that the code is accurate for uniform as well as asymmetric objects and can model different energy resolution crystals and low level discriminator (LLD) settings. Absolute quantitation studies show that for most applications, the code provides a better scatter estimate than the tail-fitting scatter correction method currently in use at our institution. Several parameters such as the density of scatter points, the number of scatter distribution sampling points and the axial extent of the FoV were optimized to minimize execution time, with particular emphasis on patient studies. Development and optimization were carried out in the case of GSO-based scanners, which enjoy relatively good energy resolution. SSS estimates for scanners with lower energy resolution may result in different agreement, especially because of a higher fraction of multiple scatter events. The algorithm was applied to a brain phantom as well as to clinical whole-body studies. It proved robust in the case of large patients, where the scatter fraction increases. The execution time, inclusive of interpolation, is typically under 5 min for a whole-body study (axial FoV: 81 cm) of a 100 kg patient.

  12. Simulation of AIMS measurements using rigorous mask 3D modeling

    Science.gov (United States)

    Chou, Chih-Shiang; Huang, Hsu-Ting; Chu, Fu-Sheng; Chu, Yuan-Chih; Huang, Wen-Chun; Liu, Ru-Gun; Gau, Tsai-Sheng

    2015-03-01

    Aerial image measurement system (AIMSTM) has been widely used for wafer level inspection of mask defects. Reported inspection flows include die-to-die (D2D) and die-to-database (D2DB) methods. For patterns that do not repeat in another die, only the D2DB approach is applicable. The D2DB method requires accurate simulation of AIMS measurements for a mask pattern. An optical vectorial model is needed to depict the mask diffraction effect in this simulation. To accurately simulate the imaging results, a rigorous electro-magnetic field (EMF) model is essential to correctly take account of the EMF scattering induced by the mask topography, which is usually called the mask 3D effect. In this study, the mask 3D model we use is rigorous coupled-wave analysis (RCWA), which calculates the diffraction fields from a single plane wave incidence. A hybrid Hopkins-Abbe method with RCWA is used to calculate the EMF diffraction at a desired accuracy level while keeping the computation time practical. We will compare the speed of the hybrid Hopkins-Abbe method to the rigorous Abbe method. The matching between simulation and experiment is more challenging for AIMS than CD-SEM because its measurements provide full intensity information. Parameters in the mask 3D model such as film stack thickness or film optical properties, is optimized during the fitting process. We will report the fitting results of AIMS images for twodimensional structures with various pitches. By accurately simulating the AIMS measurements, it provides a necessary tool to perform the mask inspection using the D2DB approach and to accurately predict the mask defects.

  13. Generating Irregular Models for 3D Spherical-Particle-Based Numerical Methods

    Directory of Open Access Journals (Sweden)

    Gang-Hai Huang

    2013-01-01

    Full Text Available The realistic representation of an irregular geological body is essential to the construction of a particle simulation model. A three-dimensional (3D sphere generator for an irregular model (SGIM, which is based on the platform of Microsoft Foundation Classes (MFC in VC++, is developed to accurately simulate the inherent discontinuities in geological bodies. OpenGL is employed to visualize the modeling in the SGIM. Three key functions, namely, the basic-model-setup function, the excavating function, and the cutting function, are implemented. An open-pit slope is simulated using the proposed model. The results demonstrate that an extremely irregular 3D model of a geological body can be generated using the SGIM and that various types of discontinuities can be inserted to cut the model. The data structure of the model that is generated by the SGIM is versatile and can be easily modified to match various numerical calculation tools. This can be helpful in the application of particle simulation methods to large-scale geoengineering projects.

  14. 3D Simulation of Nano-Imprint Lithography

    DEFF Research Database (Denmark)

    Román Marín, José Manuel; Rasmussen, Henrik K.; Hassager, Ole

    2010-01-01

    A proof of concept study of the feasibility of fully three-dimensional (3D) time-dependent simulation of nano-imprint lithography of polymer melt, where the polymer is treated as a structured liquid, has been presented. Considering the flow physics of the polymer as a structured liquid, we have...... followed the line initiated by de Gennes, using a Molecular Stress Function model of the Doi and Edwards type. We have used a 3D Lagrangian Galerkin finite element methods implemented on a parallel computer architecture. In a Lagrangian techniques, the node point follows the particle movement, allowing...... for the movement of free surfaces or interfaces. We have extended the method to handle the dynamic movement of the contact line between the polymer melt and stamp during mold filling....

  15. Flexible simulation framework to couple processes in complex 3D models for subsurface utilization assessment

    Science.gov (United States)

    Kempka, Thomas; Nakaten, Benjamin; De Lucia, Marco; Nakaten, Natalie; Otto, Christopher; Pohl, Maik; Tillner, Elena; Kühn, Michael

    2016-04-01

    Utilization of the geological subsurface for production and storage of hydrocarbons, chemical energy and heat as well as for waste disposal requires the quantification and mitigation of environmental impacts as well as the improvement of georesources utilization in terms of efficiency and sustainability. The development of tools for coupled process simulations is essential to tackle these challenges, since reliable assessments are only feasible by integrative numerical computations. Coupled processes at reservoir to regional scale determine the behaviour of reservoirs, faults and caprocks, generally demanding for complex 3D geological models to be considered besides available monitoring and experimenting data in coupled numerical simulations. We have been developing a flexible numerical simulation framework that provides efficient workflows for integrating the required data and software packages to carry out coupled process simulations considering, e.g., multiphase fluid flow, geomechanics, geochemistry and heat. Simulation results are stored in structured data formats to allow for an integrated 3D visualization and result interpretation as well as data archiving and its provision to collaborators. The main benefits in using the flexible simulation framework are the integration of data geological and grid data from any third party software package as well as data export to generic 3D visualization tools and archiving formats. The coupling of the required process simulators in time and space is feasible, while different spatial dimensions in the coupled simulations can be integrated, e.g., 0D batch with 3D dynamic simulations. User interaction is established via high-level programming languages, while computational efficiency is achieved by using low-level programming languages. We present three case studies on the assessment of geological subsurface utilization based on different process coupling approaches and numerical simulations.

  16. Acoustic simulation in realistic 3D virtual scenes

    Science.gov (United States)

    Gozard, Patrick; Le Goff, Alain; Naz, Pierre; Cathala, Thierry; Latger, Jean

    2003-09-01

    The simulation workshop CHORALE developed in collaboration with OKTAL SE company for the French MoD is used by government services and industrial companies for weapon system validation and qualification trials in the infrared domain. The main operational reference for CHORALE is the assessment of the infrared guidance system of the Storm Shadow missile French version, called Scalp. The use of CHORALE workshop is now extended to the acoustic domain. The main objective is the simulation of the detection of moving vehicles in realistic 3D virtual scenes. This article briefly describes the acoustic model in CHORALE. The 3D scene is described by a set of polygons. Each polygon is characterized by its acoustic resistivity or its complex impedance. Sound sources are associated with moving vehicles and are characterized by their spectra and directivities. A microphone sensor is defined by its position, its frequency band and its sensitivity. The purpose of the acoustic simulation is to calculate the incoming acoustic pressure on microphone sensors. CHORALE is based on a generic ray tracing kernel. This kernel possesses original capabilities: computation time is nearly independent on the scene complexity, especially the number of polygons, databases are enhanced with precise physical data, special mechanisms of antialiasing have been developed that enable to manage very accurate details. The ray tracer takes into account the wave geometrical divergence and the atmospheric transmission. The sound wave refraction is simulated and rays cast in the 3D scene are curved according to air temperature gradient. Finally, sound diffraction by edges (hill, wall,...) is also taken into account.

  17. Parallel Simulation of 3-D Turbulent Flow Through Hydraulic Machinery

    Institute of Scientific and Technical Information of China (English)

    徐宇; 吴玉林

    2003-01-01

    Parallel calculational methods were used to analyze incompressible turbulent flow through hydraulic machinery. Two parallel methods were used to simulate the complex flow field. The space decomposition method divides the computational domain into several sub-ranges. Parallel discrete event simulation divides the whole task into several parts according to their functions. The simulation results were compared with the serial simulation results and particle image velocimetry (PIV) experimental results. The results give the distribution and configuration of the complex vortices and illustrate the effectiveness of the parallel algorithms for numerical simulation of turbulent flows.

  18. Development of Advanced Models for 3D Photocathode PIC Simulations

    CERN Document Server

    Dimitrov, Dimitre; Cary, John R; Feldman, Donald; Jensen, Kevin; Messmer, Peter; Stoltz, Peter

    2005-01-01

    Codes for simulating photocathode electron guns invariably assume the emission of an idealized electron distribution from the cathode, regardless of the particular particle emission model that is implemented. The output of such simulations, a relatively clean and smooth distribution with very little variation as a function of the azimuthal angle, is inconsistent with the highly irregular and asymmetric electron bunches seen in experimental diagnostics. To address this problem, we have implemented a recently proposed theoretical model* that takes into account detailed solid-state physics of photocathode materials in the VORPAL particle-in-cell code.** Initial results from 3D simulations with this model and future research directions will be presented and discussed.

  19. Simulation of current generation in a 3-D plasma model

    Energy Technology Data Exchange (ETDEWEB)

    Tsung, F.S.; Dawson, J.M. [Univ. of California, Los Angeles, CA (United States)

    1996-12-31

    Two wires carrying current in the same direction will attract each other, and two wires carrying current in the opposite direction will repel each other. Now, consider a test charge in a plasma. If the test charge carries current parallel to the plasma, then it will be pulled toward the plasma core, and if the test charge carries current anti-parallel to the plasma, then it will be pushed to the edge. The electromagnetic coupling between the plasma and a test charge (i.e., the A{sub {parallel}} {circ} v{sub {parallel}} term in the test charge`s Hamiltonian) breaks the symmetry in the parallel direction, and gives rise to a diffusion coefficient which is dependent on the particle`s parallel velocity. This is the basis for the {open_quotes}preferential loss{close_quotes} mechanism described in the work by Nunan et al. In our previous 2+{1/2}D work, in both cylindrical and toroidal geometries, showed that if the plasma column is centrally fueled, then an initial current increases steadily. The results in straight, cylindrical plasmas showed that self generated parallel current arises without trapped particle or neoclassical diffusion, as assumed by the bootstrap theory. It suggests that the fundamental mechanism seems to be the conservation of particles canonical momenta in the direction of the ignorable coordinate. We have extended the simulation to 3D to verify the model put forth. A scalable 3D EM-PIC code, with a localized field-solver, has been implemented to run on a large class of parallel computers. On the 512-node SP2 at Cornell Theory Center, we have benchmarked the 2+{1/2}D calculations using 32 grids in the previously ignored direction, and a 100-fold increase in the number of particles. Our preliminary results show good agreements between the 2+{1/2}D and the 3D calculations. We will present our 3D results at the meeting.

  20. Model and numerical analysis of 3D corrosion layer of reinforced concrete structure

    Institute of Scientific and Technical Information of China (English)

    李永和; 葛修润

    2003-01-01

    Under the assumption that the corrosion at the end of steel bolt or steel bar is shaped like the contour line of ellipsoid, a mathematic model and formulas of calculating the thickness of corrosion layer at arbitrary point are presented in this paper. Then regarding the arbitrary points of 3D corrosion layer as patch element model of fictitious displacement discontinuity, we propose the basic solution of 3D problem of the patch element acting on discontinuous displacement. With three basic assumptions of the corrosion layer, we set up the 3D numerical discreted model, and derive the stress boundary equation for fictitious corrosion layer of 3D numerical analysis. We also make the numerical stimulating calculation of the shotcrete structure at some lane using 3D finite element method. The results show that this method is effective and reasonable.

  1. 2D-3D hybrid stabilized finite element method for tsunami runup simulations

    Science.gov (United States)

    Takase, S.; Moriguchi, S.; Terada, K.; Kato, J.; Kyoya, T.; Kashiyama, K.; Kotani, T.

    2016-09-01

    This paper presents a two-dimensional (2D)-three-dimensional (3D) hybrid stabilized finite element method that enables us to predict a propagation process of tsunami generated in a hypocentral region, which ranges from offshore propagation to runup to urban areas, with high accuracy and relatively low computational costs. To be more specific, the 2D shallow water equation is employed to simulate the propagation of offshore waves, while the 3D Navier-Stokes equation is employed for the runup in urban areas. The stabilized finite element method is utilized for numerical simulations for both of the 2D and 3D domains that are independently discretized with unstructured meshes. The multi-point constraint and transmission methods are applied to satisfy the continuity of flow velocities and pressures at the interface between the resulting 2D and 3D meshes, since neither their spatial dimensions nor node arrangements are consistent. Numerical examples are presented to demonstrate the performance of the proposed hybrid method to simulate tsunami behavior, including offshore propagation and runup to urban areas, with substantially lower computation costs in comparison with full 3D computations.

  2. Advanced system for 3D dental anatomy reconstruction and 3D tooth movement simulation during orthodontic treatment

    Science.gov (United States)

    Monserrat, Carlos; Alcaniz-Raya, Mariano L.; Juan, M. Carmen; Grau Colomer, Vincente; Albalat, Salvador E.

    1997-05-01

    This paper describes a new method for 3D orthodontics treatment simulation developed for an orthodontics planning system (MAGALLANES). We develop an original system for 3D capturing and reconstruction of dental anatomy that avoid use of dental casts in orthodontic treatments. Two original techniques are presented, one direct in which data are acquired directly form patient's mouth by mean of low cost 3D digitizers, and one mixed in which data are obtained by 3D digitizing of hydrocollids molds. FOr this purpose we have designed and manufactured an optimized optical measuring system based on laser structured light. We apply these 3D dental models to simulate 3D movement of teeth, including rotations, during orthodontic treatment. The proposed algorithms enable to quantify the effect of orthodontic appliance on tooth movement. The developed techniques has been integrated in a system named MAGALLANES. This original system present several tools for 3D simulation and planning of orthodontic treatments. The prototype system has been tested in several orthodontic clinic with very good results.

  3. 3D numerical simulation of the flow field with push-pull hoods containing barriers between them%罩间存在障碍物的吹吸罩流场三维数值模拟

    Institute of Scientific and Technical Information of China (English)

    胡鸿; 易灿南; 廖可兵

    2013-01-01

    为了使吹吸罩达到对污染物的最佳控制,以某企业电镀生产线上行车行进过程中由于镀件表面黏附高浓度槽液而造成室内环境污染为实物模型,建立吹吸罩口间存在障碍物的三维数学模型,利用Fluent计算动力学软件对不同吹风口风速和吸风口风速下的排风罩流场进行数值模拟,经比较确定最佳联合速度,并将模拟结果与经典吹吸速度分布图及试验条件下所测得的污染气体质量分数进行对比分析.结果表明,所建立数学模型是合理的,所确定的最佳效果时的相关参数与经典理论基本一致,可用于工程实际.%This paper attempts to proposo a 3D numerical simulation model of the flow field with push-pull hoods containing barriers between them in hoping to solve the problem of the dispersion of contaminants.As is known,the dispersion of contaminants in different sections of an apparatus can be controlled effectively via a pull-push hood powered by a jet flow.Actually,such device has already been widely used in places where contaminants are serious but can not be eliminated.The said push-pullhoods are usually armed with the following features:minute air volume,perfect pollution control,powerful anti-jam behavior,free from the impact of the process operations.Although no barriers were considered in the former design between the push hood and pull hood in the regular production process according to the processing demands,we still feel it necessary to stress the demand for them,for it is necessary to choose the best velocity of push hood and pull hood to control the containments.Based on the above starting point,we have chosen the computational fluid dynamics (CFD) model to solve the problem.First of all,we have taken the contaminants accumulated in the painted work-pieces with very harmful content adhered in them as a physical model,while assuming that geometrical models are set by the GAMBIT code.Along with it,let the appropriate

  4. Composite manufacturing: Simulation of 3-D resin transfer molding

    Science.gov (United States)

    Tan, Cheng Ping

    1998-10-01

    A technique was developed for simulating the resin transfer molding (RTM) process. The major feature of the technique is a computational steering system that enables the user to make changes during the simulation. Specifically, at any instance, the user can inspect the progress of the resin front. On the basis of the observed resin front position, the user can, as needed, change the port and vent locations, open and close ports and vents, adjust the inlet and exit pressures or flow rates, and reorient the mold with respect to the gravitational field. Additionally, the user can "rewind" the simulator to any previous time in the mold filling process, make any of the above changes and then continue the simulation. The technique is augmented by a computer code which has three main components, the Simulator, the Graphics User Interface (GUI), and the Global Data Storage. The Simulator is a finite element code that calculates the resin flow inside the fiber preform. The GUI serves as the interface between the user and the Simulator; it provides the commands to the Simulator and displays the results. The Global Data Storage is the module that manages the exchange of data between the GUI and the Simulator. The computer code (designated as SUPERTMsb-3D) is suitable for simulating the resin flow inside two-dimensional as well as three-dimensional fiber preforms of arbitrary shapes. The use of this computer code is illustrated through sample problems. These problems demonstrate how (with this code) the designer can establish the port and vent locations, opening and closing sequences of ports and vents such that the fiber preform is filled completely in the shortest time with the fewest number of vents.

  5. Development of discrete gas kinetic scheme for simulation of 3D viscous incompressible and compressible flows

    Science.gov (United States)

    Yang, L. M.; Shu, C.; Wang, Y.; Sun, Y.

    2016-08-01

    The sphere function-based gas kinetic scheme (GKS), which was presented by Shu and his coworkers [23] for simulation of inviscid compressible flows, is extended to simulate 3D viscous incompressible and compressible flows in this work. Firstly, we use certain discrete points to represent the spherical surface in the phase velocity space. Then, integrals along the spherical surface for conservation forms of moments, which are needed to recover 3D Navier-Stokes equations, are approximated by integral quadrature. The basic requirement is that these conservation forms of moments can be exactly satisfied by weighted summation of distribution functions at discrete points. It was found that the integral quadrature by eight discrete points on the spherical surface, which forms the D3Q8 discrete velocity model, can exactly match the integral. In this way, the conservative variables and numerical fluxes can be computed by weighted summation of distribution functions at eight discrete points. That is, the application of complicated formulations resultant from integrals can be replaced by a simple solution process. Several numerical examples including laminar flat plate boundary layer, 3D lid-driven cavity flow, steady flow through a 90° bending square duct, transonic flow around DPW-W1 wing and supersonic flow around NACA0012 airfoil are chosen to validate the proposed scheme. Numerical results demonstrate that the present scheme can provide reasonable numerical results for 3D viscous flows.

  6. 3D TCAD Simulation for Semiconductor Processes, Devices and Optoelectronics

    CERN Document Server

    Li, Simon

    2012-01-01

    Technology computer-aided design, or TCAD, is critical to today’s semiconductor technology and anybody working in this industry needs to know something about TCAD.  This book is about how to use computer software to manufacture and test virtually semiconductor devices in 3D.  It brings to life the topic of semiconductor device physics, with a hands-on, tutorial approach that de-emphasizes abstract physics and equations and emphasizes real practice and extensive illustrations.  Coverage includes a comprehensive library of devices, representing the state of the art technology, such as SuperJunction LDMOS, GaN LED devices, etc. Provides a vivid, internal view of semiconductor devices, through 3D TCAD simulation; Includes comprehensive coverage of  TCAD simulations for both optic and electronic devices, from nano-scale to high-voltage high-power devices; Presents material in a hands-on, tutorial fashion so that industry practitioners will find maximum utility; Includes a comprehensive library of devices, re...

  7. Implementation of a 3d numerical model of a folded multilayer carbonate aquifer

    Science.gov (United States)

    Di Salvo, Cristina; Guyennon, Nicolas; Romano, Emanuele; Bruna Petrangeli, Anna; Preziosi, Elisabetta

    2016-04-01

    The main objective of this research is to present a case study of the numerical model implementation of a complex carbonate, structurally folded aquifer, with a finite difference, porous equivalent model. The case study aquifer (which extends over 235 km2 in the Apennine chain, Central Italy) provides a long term average of 3.5 m3/s of good quality groundwater to the surface river network, sustaining the minimum vital flow, and it is planned to be exploited in the next years for public water supply. In the downstream part of the river in the study area, a "Site of Community Importance" include the Nera River for its valuable aquatic fauna. However, the possible negative effects of the foreseen exploitation on groundwater dependent ecosystems are a great concern and model grounded scenarios are needed. This multilayer aquifer was conceptualized as five hydrostratigraphic units: three main aquifers (the uppermost unconfined, the central and the deepest partly confined), are separated by two locally discontinuous aquitards. The Nera river cuts through the two upper aquifers and acts as the main natural sink for groundwater. An equivalent porous medium approach was chosen. The complex tectonic structure of the aquifer requires several steps in defining the conceptual model; the presence of strongly dipping layers with very heterogeneous hydraulic conductivity, results in different thicknesses of saturated portions. Aquifers can have both unconfined or confined zones; drying and rewetting must be allowed when considering recharge/discharge cycles. All these characteristics can be included in the conceptual and numerical model; however, being the number of flow and head target scarce, the over-parametrization of the model must be avoided. Following the principle of parsimony, three steady state numerical models were developed, starting from a simple model, and then adding complexity: 2D (single layer), QUASI -3D (with leackage term simulating flow through aquitards) and

  8. Reconciling measured scattering response of 3D metamaterials with simulation

    Directory of Open Access Journals (Sweden)

    Adomanis Bryan M.

    2015-01-01

    Full Text Available Membrane projection lithography is used to create 3-dimensional unit cells in a silicon matrix decorated with metallic inclusions. The structures show pronounced resonances in the 4–16 µm wavelength range and demonstrate direct coupling to the magnetic field of a normally incident transverse electromagnetic (TEM wave, a behavior only possible for vertically oriented resonators. Qualitative agreement between rigorous coupled wave analysis (RCWA simulation and measured scattering response is shown. COMSOL simulations show that slight variations in both metallic inclusion and silicon unit cell physical dimensions can have large impact in the scattering response, so that design for manufacture of 3D metamaterial structures for applications should be done with care.

  9. Lattice Boltzmann Method Simulation of 3-D Melting Using Double MRT Model with Interfacial Tracking Method

    CERN Document Server

    Li, Zheng; Zhang, Yuwen

    2016-01-01

    Three-dimensional melting problems are investigated numerically with Lattice Boltzmann method (LBM). Regarding algorithm's accuracy and stability, Multiple-Relaxation-Time (MRT) models are employed to simplify the collision term in LBM. Temperature and velocity fields are solved with double distribution functions, respectively. 3-D melting problems are solved with double MRT models for the first time in this article. The key point for the numerical simulation of a melting problem is the methods to obtain the location of the melting front and this article uses interfacial tracking method. The interfacial tracking method combines advantages of both deforming and fixed grid approaches. The location of the melting front was obtained by calculating the energy balance at the solid-liquid interface. Various 3-D conduction controlled melting problems are solved firstly to verify the numerical method. Liquid fraction tendency and temperature distribution obtained from numerical methods agree with the analytical result...

  10. Mesh Resolution Effect on 3D RANS Turbomachinery Flow Simulations

    CERN Document Server

    Yershov, Sergiy

    2016-01-01

    The paper presents the study of the effect of a mesh refinement on numerical results of 3D RANS computations of turbomachinery flows. The CFD solver F, which based on the second-order accurate ENO scheme, is used in this study. The simplified multigrid algorithm and local time stepping permit decreasing computational time. The flow computations are performed for a number of turbine and compressor cascades and stages. In all flow cases, the successively refined meshes of H-type with an approximate orthogonalization near the solid walls were generated. The results obtained are compared in order to estimate their both mesh convergence and ability to resolve the transonic flow pattern. It is concluded that for thorough studying the fine phenomena of the 3D turbomachinery flows, it makes sense to use the computational meshes with the number of cells from several millions up to several hundred millions per a single turbomachinery blade channel, while for industrial computations, a mesh of about or less than one mil...

  11. 3-D numerical investigation of subsurface flow in anisotropic porous media using multipoint flux approximation method

    KAUST Repository

    Negara, Ardiansyah

    2013-01-01

    Anisotropy of hydraulic properties of subsurface geologic formations is an essential feature that has been established as a consequence of the different geologic processes that they undergo during the longer geologic time scale. With respect to petroleum reservoirs, in many cases, anisotropy plays significant role in dictating the direction of flow that becomes no longer dependent only on the pressure gradient direction but also on the principal directions of anisotropy. Furthermore, in complex systems involving the flow of multiphase fluids in which the gravity and the capillarity play an important role, anisotropy can also have important influences. Therefore, there has been great deal of motivation to consider anisotropy when solving the governing conservation laws numerically. Unfortunately, the two-point flux approximation of finite difference approach is not capable of handling full tensor permeability fields. Lately, however, it has been possible to adapt the multipoint flux approximation that can handle anisotropy to the framework of finite difference schemes. In multipoint flux approximation method, the stencil of approximation is more involved, i.e., it requires the involvement of 9-point stencil for the 2-D model and 27-point stencil for the 3-D model. This is apparently challenging and cumbersome when making the global system of equations. In this work, we apply the equation-type approach, which is the experimenting pressure field approach that enables the solution of the global problem breaks into the solution of multitude of local problems that significantly reduce the complexity without affecting the accuracy of numerical solution. This approach also leads in reducing the computational cost during the simulation. We have applied this technique to a variety of anisotropy scenarios of 3-D subsurface flow problems and the numerical results demonstrate that the experimenting pressure field technique fits very well with the multipoint flux approximation

  12. 3D Printing Meets Computational Astrophysics: Deciphering the Structure of Eta Carinae’s Colliding Winds Using 3D Prints of Smoothed Particle Hydrodynamics Simulations

    Science.gov (United States)

    Madura, Thomas; Gull, Theodore R.; Clementel, Nicola; Paardekooper, Jan-Pieter; Kruip, Chael; Corcoran, Michael F.; Hamaguchi, Kenji; Teodoro, Mairan

    2015-01-01

    We present the first 3D prints of output from a supercomputer simulation of a complex astrophysical system, the colliding stellar winds in the massive (>120 MSun), highly eccentric (e ~ 0.9) binary Eta Carinae. Using a consumer-grade 3D printer (Makerbot Replicator 2X), we successfully printed 3D smoothed particle hydrodynamics simulations of Eta Carinae's inner (r ~110 AU) wind-wind collision interface at multiple orbital phases. These 3D prints reveal important, previously unknown 'finger-like' structures at orbital phases shortly after periastron (φ ~1.045) that protrude radially outward from the spiral wind-wind collision region. We speculate that these fingers are related to instabilities (e.g. Rayleigh-Taylor) that arise at the interface between the radiatively-cooled layer of dense post-shock primary-star wind and the hot, adiabatic post-shock companion-star wind. The success of our work and easy identification of previously unknown physical features highlight the important role 3D printing can play in the visualization and understanding of complex 3D time-dependent numerical simulations of astrophysical phenomena.

  13. Numerical model simulating water flow and contaminant and sediment transport in watershed systems of 1-d stream-river network, 2-d overland regime, and 3-d subsurface media (WASH123d: version 1.0). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.; Cheng, H.; Cheng, J.; Lin, H.C.; Martin, W.D.

    1998-07-01

    This report presents the development of a numerical model simulating water flow and contaminant and sediment transport in watershed systems of one-dimensional river/stream network, two-dimensional overland regime, and three-dimensional subsurface media. The model is composed of two modules: flow and transport. Three options are provided in modeling the flow module in river/ stream network and overland regime: the kinematic wave approach, diffusion wave approach, and dynamic wave approach. The kinematic and diffusion wave approaches are known to be numerically robust in terms of numerical convergency and stability; i.e., they can generate convergent and stable simulations over a wide range of ground surface slopes in the entire watershed. The question is the accuracy of these simulations. The kinematic wave approach usually produces accurate solutions only over the region of steep slopes. The diffusion wave approach normally gives accurate solutions over the region of mild to steep slopes. However, neither approach has the ability to yield accurate solutions over the region of small slopes, in which the inertial forces are no longer negligible compared to the gravitational forces. The kinematic wave approach cannot address the problems of backwater effects. On the other hand, a dynamic wave approach, having included all forces, can theoretically have the potential to generate accurate simulations over all ranges of slopes in a watershed. The subsurface flow is described by Richard`s equation where water flow through saturated-unsaturated porous media is accounted for.

  14. Study, simulation and design of a 3D clinostat

    Science.gov (United States)

    Pavone, Valentina; Guarnieri, Vincenzo; Lobascio, Cesare; Soma, Aurelio; Bosso, Nicola; Lamantea, Matteo Maria

    High cost and limited number of physically executable experiments in space have introduced the need for ground simulation systems that enable preparing experiments to be carried out on board, identifying phenomena associated with the altered gravity conditions, and taking advantage of these conditions, as in Biotechnology. Among systems developed to simulate microgravity, especially for life sciences experiments, different types of clinostats were realized. This work deals with mechanical design of a three-dimensional clinostat and simulation of the dynamic behavior of the system by varying the operating parameters. The design and simulation phase was preceded by a careful analysis of the state of art and by the review of the most recent results, in particular from the major investigators of Life Sciences in Space. The mechanical design is quite innovative by adoption of a structure entirely in aluminum, which allows robustness while reducing the overall weight. The transmission system of motion has been optimized by means of brushless DC micro motors, light and compact, which helped to reduce weight, dimensions, power consumption and increase the reliability and durability of the system. The study of the dynamic behavior using SIMPACK, a multibody simulation software, led to results in line with those found in the most important and recent scientific publications. This model was also appropriately configured to represent any desired operating condition, and for eventual system scalability. It would be interesting to generate simulated hypogravity - e.g.: 0.38-g (Mars) or 0.17-g (Moon). This would allow to investigate how terrestrial life forms can grow in other planetary habitats, or to determine the gravity threshold response of different organisms. At the moment, such a system can only be achieved by centrifuges in real microgravity. We are confident that simulation and associated tests with our 3D clinostat can help adjusting the parameters allowing variable g

  15. 3D Simulation Modeling of the Tooth Wear Process.

    Science.gov (United States)

    Dai, Ning; Hu, Jian; Liu, Hao

    2015-01-01

    Severe tooth wear is the most common non-caries dental disease, and it can seriously affect oral health. Studying the tooth wear process is time-consuming and difficult, and technological tools are frequently lacking. This paper presents a novel method of digital simulation modeling that represents a new way to study tooth wear. First, a feature extraction algorithm is used to obtain anatomical feature points of the tooth without attrition. Second, after the alignment of non-attrition areas, the initial homogeneous surface is generated by means of the RBF (Radial Basic Function) implicit surface and then deformed to the final homogeneous by the contraction and bounding algorithm. Finally, the method of bilinear interpolation based on Laplacian coordinates between tooth with attrition and without attrition is used to inversely reconstruct the sequence of changes of the 3D tooth morphology during gradual tooth wear process. This method can also be used to generate a process simulation of nonlinear tooth wear by means of fitting an attrition curve to the statistical data of attrition index in a certain region. The effectiveness and efficiency of the attrition simulation algorithm are verified through experimental simulation.

  16. 3D Simulation Modeling of the Tooth Wear Process.

    Directory of Open Access Journals (Sweden)

    Ning Dai

    Full Text Available Severe tooth wear is the most common non-caries dental disease, and it can seriously affect oral health. Studying the tooth wear process is time-consuming and difficult, and technological tools are frequently lacking. This paper presents a novel method of digital simulation modeling that represents a new way to study tooth wear. First, a feature extraction algorithm is used to obtain anatomical feature points of the tooth without attrition. Second, after the alignment of non-attrition areas, the initial homogeneous surface is generated by means of the RBF (Radial Basic Function implicit surface and then deformed to the final homogeneous by the contraction and bounding algorithm. Finally, the method of bilinear interpolation based on Laplacian coordinates between tooth with attrition and without attrition is used to inversely reconstruct the sequence of changes of the 3D tooth morphology during gradual tooth wear process. This method can also be used to generate a process simulation of nonlinear tooth wear by means of fitting an attrition curve to the statistical data of attrition index in a certain region. The effectiveness and efficiency of the attrition simulation algorithm are verified through experimental simulation.

  17. Validation of 3D simulations of reverse osmosis membrane biofouling.

    Science.gov (United States)

    Pintelon, Thomas R R; Creber, Sarah A; von der Schulenburg, Daniel A Graf; Johns, Michael L

    2010-07-01

    The increasing demand for drinking water and its stricter quality requirements have resulted in an exponentially expanding industry of membrane filtration processes. Currently, reverse osmosis (RO) is the most common method of desalination, able to produce water that is virtually free of pollutants and pathogenic micro-organisms. Biofouling of these devices however is a significant limitation. Here we present a 3D simulation of RO membrane biofouling based on a lattice Boltzmann (LB) platform that we subsequently favorably compare with experimental data. This data consists of temporally (and spatially) resolved velocity measurements acquired for a RO membrane using magnetic resonance techniques. The effect of biofilm cohesive strength on system pressure drop is then explored; weaker biomass is observed to have a reduced impact on pressure drop (per unit biomass accumulated).

  18. Photon Scattering in 3D Radiative MHD Simulations

    Science.gov (United States)

    Hayek, Wolfgang

    2009-09-01

    Recent results from 3D time-dependent radiative hydrodynamic simulations of stellar atmospheres are presented, which include the effects of coherent scattering in the radiative transfer treatment. Rayleigh scattering and electron scattering are accounted for in the source function, requiring an iterative solution of the transfer equation. Opacities and scattering coefficients are treated in the multigroup opacity approximation. The impact of scattering on the horizontal mean temperature structure is investigated, which is an important diagnostic for model atmospheres, with implications for line formation and stellar abundance measurements. We find that continuum scattering is not important for the atmosphere of a metal-poor Sun with metailicity [Fe/H] = -3.0, similar to the previously investigated photosphere at solar metallicity.

  19. 3D Simulations of Galactic Winds in Dwarf Galaxies

    CERN Document Server

    Marcolini, A; D'Ercole, A; Marcolini, Andrea; Brighenti, Fabrizio; Ercole, Annibale D'

    2002-01-01

    We present 3D hydrodynamical simulations of galactic winds in dwarf, gas-rich galaxies. The galaxy is moving through the ICM of a small galaxy group at v=200 km/s. The ram pressure removes the galactic gas at large radii, but does not strongly influence the ISM near the center. A starburst generates a galactic wind. The newly produced metals are expelled in the ICM and carried to large distance from the galaxy by the ram pressure. 500 Myr after the starburst only a few percent of the heavy elements produced are present in the central region of the dwarf galaxy. A large collection of ram pressure + wind models will be presented in a forthcoming paper.

  20. 3D MHD disruptions simulations of tokamaks plasmas

    Science.gov (United States)

    Paccagnella, Roberto; Strauss, Hank; Breslau, Joshua

    2008-11-01

    Tokamaks Vertical Displacement Events (VDEs) and disruptions simulations in toroidal geometry by means of a single fluid visco-resistive magneto-hydro-dynamic (MHD) model are presented in this paper. The plasma model, implemented in the M3D code [1], is completed with the presence of a 2D homogeneous wall with finite resistivity. This allows the study of the relatively slowly growing magneto-hydro-dynamical perturbation, the resistive wall mode (RWM), which is, in this work, the main drive of the disruptions. Amplitudes and asymmetries of the halo currents pattern at the wall are also calculated and comparisons with tokamak experimental databases and predictions for ITER are given. [1] W. Park, E.V. Belova, G.Y. Fu, X.Z. Tang, H.R. Strauss, L.E. Sugiyama, Phys. Plasmas 6 (1999) 1796.

  1. 3D-Simulation Studies of SNS Ring Doublet Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.G.; Tsoupas N.; Venturini, M.

    2005-05-05

    The accumulator ring of the Spallation Neutron Source (SNS) at ORNL employs in its straight sections closely packed quadrupole doublemagnets with large aperture of R=15.1 cm an relatively short iron-to-iron distance of 51.4 cm. These quads have much extended fringe field, and magnetic interferences among them in the doublet assemblies is not avoidable. Though each magnet in the assemblies has been individually mapped to high accuracy of lower than 0.01 percent level, the experimental data including the magnetic interference effect will not be available. We have performed 3D computing simulations on a quadrupole doublet model in order to assess the degree of the interference and to obtain relevant data for the SNS commissioning and operation.

  2. Tidal dynamics of the Terminos Lagoon, Mexico: observations and 3D numerical modelling

    Science.gov (United States)

    Contreras Ruiz Esparza, Adolfo; Douillet, Pascal; Zavala-Hidalgo, Jorge

    2014-09-01

    The tidal circulation patterns in the Terminos Lagoon were studied based on the analysis of 1 year of measurements and numerical simulations using a baroclinic 3D hydrodynamic model, the MARS3D. A gauging network was installed consisting of six self-recording pressure-temperature sensors, a tide gauge station and two current profilers, with pressure and temperature sensors moored in the main lagoon inlets. Model simulations were validated against current and sea level observations and were used to analyse the circulation patterns caused by the tidal forcing. The numerical model was forced with eight harmonic components, four diurnal ( K 1, O 1, P 1, Q 1) and four semi-diurnal ( M 2, S 2, N 2, K 2), extracted from the TPX0.7 database. The tidal patterns in the study area vary from mixed, mainly diurnal in the two main inlets of the lagoon, to diurnal in its interior. The tidal residual circulation inside the lagoon is dominated by a cyclonic gyre. The results indicate a net flux from the southwest Ciudad del Carmen inlet (CdC) towards the northeast Puerto Real inlet (PtR) along the southern side of the lagoon and the opposite in the northern side. The results indicate two areas of strong currents in the vicinity of the inlets and weak currents inside the lagoon. The area of strong currents in the vicinity of the CdC inlet is larger than that observed in the PtR inlet. Nevertheless, the current analysis indicates that the highest current speeds, which can reach a magnitude of 1.9 m s-1, occurred in PtR. A further analysis of the tide distortion in the inlets revealed that both passages are ebb dominated.

  3. The computer simulation of 3d gas dynamics in a gas centrifuge

    Science.gov (United States)

    Borman, V. D.; Bogovalov, S. V.; Borisevich, V. D.; Tronin, I. V.; Tronin, V. N.

    2016-09-01

    We argue on the basis of the results of 2D analysis of the gas flow in gas centrifuges that a reliable calculation of the circulation of the gas and gas content in the gas centrifuge is possible only in frameworks of 3D numerical simulation of gas dynamics in the gas centrifuge (hereafter GC). The group from National research nuclear university, MEPhI, has created a computer code for 3D simulation of the gas flow in GC. The results of the computer simulations of the gas flows in GC are presented. A model Iguassu centrifuge is explored for the simulations. A nonaxisymmetric gas flow is produced due to interaction of the hypersonic rotating flow with the scoops for extraction of the product and waste flows from the GC. The scoops produce shock waves penetrating into a working camera of the GC and form spiral waves there.

  4. A hybrid experimental-numerical technique for determining 3D velocity fields from planar 2D PIV data

    Science.gov (United States)

    Eden, A.; Sigurdson, M.; Mezić, I.; Meinhart, C. D.

    2016-09-01

    Knowledge of 3D, three component velocity fields is central to the understanding and development of effective microfluidic devices for lab-on-chip mixing applications. In this paper we present a hybrid experimental-numerical method for the generation of 3D flow information from 2D particle image velocimetry (PIV) experimental data and finite element simulations of an alternating current electrothermal (ACET) micromixer. A numerical least-squares optimization algorithm is applied to a theory-based 3D multiphysics simulation in conjunction with 2D PIV data to generate an improved estimation of the steady state velocity field. This 3D velocity field can be used to assess mixing phenomena more accurately than would be possible through simulation alone. Our technique can also be used to estimate uncertain quantities in experimental situations by fitting the gathered field data to a simulated physical model. The optimization algorithm reduced the root-mean-squared difference between the experimental and simulated velocity fields in the target region by more than a factor of 4, resulting in an average error less than 12% of the average velocity magnitude.

  5. Spicules and Jets: 3D flux emergence simulations

    CERN Document Server

    Martínez-Sykora, Juan; Moreno-Insertis, Fernando

    2010-01-01

    Recent high temporal and spatial resolution observations of the chromosphere have forced the definition of a new type of spicule, ``type II's", that are characterized by rising rapidly, having short lives, and by fading away at the end of their lifetimes. Here, we report on features found in realistic 3D simulations of the outer solar atmosphere that resemble the observed type II spicules. These features evolve naturally from the simulations as a consequence of the magnetohydrodynamical evolution of the model atmosphere. The simulations span from the upper layer of the convection zone to the lower corona and include the emergence of horizontal magnetic flux. The state-of-art Oslo Staggered Code (OSC) is used to solve the full MHD equations with non-grey and non-LTE radiative transfer and thermal conduction along the magnetic field lines. We describe in detail the physics involved in a process which we consider a possible candidate as a driver mechanism to produce type II spicules. The model spicule is compose...

  6. Shear Behavior of 3D Woven Hollow Integrated Sandwich Composites: Experimental, Theoretical and Numerical Study

    Science.gov (United States)

    Zhou, Guangming; Liu, Chang; Cai, Deng'an; Li, Wenlong; Wang, Xiaopei

    2016-11-01

    An experimental, theoretical and numerical investigation on the shear behavior of 3D woven hollow integrated sandwich composites was presented in this paper. The microstructure of the composites was studied, then the shear modulus and load-deflection curves were obtained by double lap shear tests on the specimens in two principal directions of the sandwich panels, called warp and weft. The experimental results showed that the shear modulus of the warp was higher than that of the weft and the failure occurred in the roots of piles. A finite element model was established to predict the shear behavior of the composites. The simulated results agreed well with the experimental data. Simultaneously, a theoretical method was developed to predict the shear modulus. By comparing with the experimental data, the accuracy of the theoretical method was verified. The influence of structural parameters on shear modulus was also discussed. The higher yarn number, yarn density and dip angle of the piles could all improve the shear modulus of 3D woven hollow integrated sandwich composites at different levels, while the increasing height would decrease the shear modulus.

  7. 3-D NUMERICAL STUDY AND COMPARISON OF ECCENTRIC AND CONCENTRIC ANNULAR-FINNED TUBE HEAT EXCHANGERS

    Directory of Open Access Journals (Sweden)

    FAROUK TAHROUR

    2015-11-01

    Full Text Available The use of 3-D computational fluid dynamics (CFD is proposed to simulate the conjugate conduction-convection of heat transfer problems in eccentric annularfinned tube heat exchangers. The numerical simulation results allow us to evaluate the heat transfer coefficient over fin surfaces, the fin efficiency and the pressure drop. The aim of the present paper is to determine the optimum tube position in the circular fin that maximizes heat dissipation and minimizes pressure drop. In addition, this study analyzes the effects of fin spacing and fin tube diameter on heat transfer and flow characteristics for a range of Reynolds numbers, 4500≤Re≤22500. A satisfactory qualitative and quantitative agreement was obtained between the numerical predictions and the results published in the literature. For small fin spacings, the eccentric annular finned tube is more efficient than the concentric one. Among the cases examined, the average heat transfer coefficient of the eccentric annular-finned tube, for a tube shift St =12 mm and a Reynolds number Re = 9923, was 7.61% greater than that of the concentric one. This gain is associated with a 43.09% reduction in pressure drop.

  8. Modeling and 3-D Simulation of Biofilm Dynamics in Aqueous Environment

    Science.gov (United States)

    Wang, Qi

    2011-11-01

    We present a complex fluid model for biofilms growing in an aqueous environment. The modeling approach represents a new paradigm to develop models for biofilm-environment interaction that can be used to systematically incorporate refined chemical and physiological mechanisms. Special solutions of the model are presented and analyzed. 3-D numerical simulations in aqueous environment with emphasis on biofilm- ambient fluid interaction will be discussed in detail.

  9. hp-finite element method for simulating light scattering from complex 3D structures

    CERN Document Server

    Burger, S; Pomplun, J; Herrmann, S; Schmidt, F

    2015-01-01

    Methods for solving Maxwell's equations are integral part of optical metrology and computational lithography setups. Applications require accurate geometrical resolution, high numerical accuracy and/or low computation times. We present a finite-element based electromagnetic field solver relying on unstructured 3D meshes and adaptive hp-refinement. We apply the method for simulating light scattering off arrays of high aspect-ratio nano-posts and FinFETs.

  10. Plasma environment of Titan: a 3-D hybrid simulation study

    Directory of Open Access Journals (Sweden)

    S. Simon

    2006-05-01

    Full Text Available Titan possesses a dense atmosphere, consisting mainly of molecular nitrogen. Titan's orbit is located within the Saturnian magnetosphere most of the time, where the corotating plasma flow is super-Alfvénic, yet subsonic and submagnetosonic. Since Titan does not possess a significant intrinsic magnetic field, the incident plasma interacts directly with the atmosphere and ionosphere. Due to the characteristic length scales of the interaction region being comparable to the ion gyroradii in the vicinity of Titan, magnetohydrodynamic models can only offer a rough description of Titan's interaction with the corotating magnetospheric plasma flow. For this reason, Titan's plasma environment has been studied by using a 3-D hybrid simulation code, treating the electrons as a massless, charge-neutralizing fluid, whereas a completely kinetic approach is used to cover ion dynamics. The calculations are performed on a curvilinear simulation grid which is adapted to the spherical geometry of the obstacle. In the model, Titan's dayside ionosphere is mainly generated by solar UV radiation; hence, the local ion production rate depends on the solar zenith angle. Because the Titan interaction features the possibility of having the densest ionosphere located on a face not aligned with the ram flow of the magnetospheric plasma, a variety of different scenarios can be studied. The simulations show the formation of a strong magnetic draping pattern and an extended pick-up region, being highly asymmetric with respect to the direction of the convective electric field. In general, the mechanism giving rise to these structures exhibits similarities to the interaction of the ionospheres of Mars and Venus with the supersonic solar wind. The simulation results are in agreement with data from recent Cassini flybys.

  11. Radiative transfer with scattering for domain-decomposed 3D MHD simulations of cool stellar atmospheres. Numerical methods and application to the quiet, non-magnetic, surface of a solar-type star

    Science.gov (United States)

    Hayek, W.; Asplund, M.; Carlsson, M.; Trampedach, R.; Collet, R.; Gudiksen, B. V.; Hansteen, V. H.; Leenaarts, J.

    2010-07-01

    Aims: We present the implementation of a radiative transfer solver with coherent scattering in the new BIFROST code for radiative magneto-hydrodynamical (MHD) simulations of stellar surface convection. The code is fully parallelized using MPI domain decomposition, which allows for large grid sizes and improved resolution of hydrodynamical structures. We apply the code to simulate the surface granulation in a solar-type star, ignoring magnetic fields, and investigate the importance of coherent scattering for the atmospheric structure. Methods: A scattering term is added to the radiative transfer equation, requiring an iterative computation of the radiation field. We use a short-characteristics-based Gauss-Seidel acceleration scheme to compute radiative flux divergences for the energy equation. The effects of coherent scattering are tested by comparing the temperature stratification of three 3D time-dependent hydrodynamical atmosphere models of a solar-type star: without scattering, with continuum scattering only, and with both continuum and line scattering. Results: We show that continuum scattering does not have a significant impact on the photospheric temperature structure for a star like the Sun. Including scattering in line-blanketing, however, leads to a decrease of temperatures by about 350 K below log10 τ5000 ⪉ -4. The effect is opposite to that of 1D hydrostatic models in radiative equilibrium, where scattering reduces the cooling effect of strong LTE lines in the higher layers of the photosphere. Coherent line scattering also changes the temperature distribution in the high atmosphere, where we observe stronger fluctuations compared to a treatment of lines as true absorbers.

  12. Micro-mechanics based damage mechanics for 3D Orthogonal Woven Composites: Experiment and Numerical Modelling

    KAUST Repository

    Saleh, Mohamed Nasr

    2016-01-08

    Damage initiation and evolution of three-dimensional (3D) orthogonal woven carbon fibre composite (3DOWC) is investigated experimentally and numerically. Meso-scale homogenisation of the representative volume element (RVE) is utilised to predict the elastic properties, simulate damage initiation and evolution when loaded in tension. The effect of intra-yarns transverse cracking and shear diffused damage on the in-plane transverse modulus and shear modulus is investigated while one failure criterion is introduced to simulate the matrix damage. The proposed model is based on two major assumptions. First, the effect of the binder yarns, on the in-plane properties, is neglected, so the 3DOWC unit cell can be approximated as a (0o/90o) cross-ply laminate. Second, a micro-mechanics based damage approach is used at the meso-scale, so damage indicators can be correlated, explicitly, to the density of cracks within the material. Results from the simulated RVE are validated against experimental results along the warp (0o direction) and weft (90o direction). This approach paves the road for more predictive models as damage evolution laws are obtained from micro mechanical considerations and rely on few well-defined material parameters. This largely differs from classical damage mechanics approaches in which the evolution law is obtained by retrofitting experimental observations.

  13. 3D two-fluid simulations of turbulence in LAPD

    Science.gov (United States)

    Fisher, Dustin M.

    The Large Plasma Device (LAPD) is modeled using a modified version of the 3D Global Braginskii Solver code (GBS) for a nominal Helium plasma. The unbiased low-flow regime is explored in simulations where there is an intrinsic E x B rotation of the plasma. In the simulations this rotation is caused primarily by sheath effects with the Reynolds stress and J x B torque due to a cross-field Pederson conductivity having little effect. Explicit biasing simulations are also explored for the first time where the intrinsic rotation of the plasma is modified through boundary conditions that mimic the biasable limiter used in LAPD. Comparisons to experimental measurements in the unbiased case show strong qualitative agreement with the data, particularly the radial dependence of the density fluctuations, cross-correlation lengths, radial flux dependence outside of the cathode edge, and camera imagery. Kelvin Helmholtz (KH) turbulence at relatively large scales is the dominant driver of cross-field transport in these simulations with smaller-scale drift waves and sheath modes playing a secondary role. Plasma holes and blobs arising from KH vortices are consistent with the scale sizes and overall appearance of those in LAPD camera images. The addition of ion-neutral collisions in the unbiased simulations at previously theorized values reduces the radial particle flux due to a modest stabilizing contribution of the collisions on the KH-modes driving the turbulent transport. In the biased runs the ion-neutral collisions have a much smaller effect due to the modification of the potential from sheath terms. In biasing the plasma to increase the intrinsic rotation, simulations show the emergence of a nonlinearly saturated coherent mode of order m = 6. In addition, the plasma inside of the cathode edge becomes quiescent due to the strong influence of the wall bias in setting up the equilibrium plasma potential. Biasing in the direction opposite to the intrinsic flow reduces the

  14. 三维圆柱坐标系下FDTD法对电磁波传播测井的数值模拟%Numerical Simulation of Eletromagnetic Propagation Logging by FDTD in 3-D Cylindrical Coordinates

    Institute of Scientific and Technical Information of China (English)

    姚军; 范晓敏; 王斌

    2009-01-01

    Eletromagnetic Propagation Logging Tool (EPT) is a high-frequency electromagnetic logging tool. It can measure the permittivity of formation, in some cases, it is better than resis-tivity logging in regard to the distinction between oil and water layer. The FDTD is used to make forward modeling of electromagnetic propagation logging in simple 3-D cylindrical formation, the Mur first order and second order absorbing boundary conditions are used in the different bounda-ries of cylinder models, then a special method is used to calculate the eletromagnetic fields in the central axis of cylinder models. On this basis, simulated are the responses of electromagnetic propagation logging in oil-water layer, the result is good.%电磁波传播测井EPT(Eletromaganetic Propagation Logging Tool)是一种高频电磁波测井方法,它可以测量地层的介电常数,在区分油水层方而有时较电阻率测井效果明显.运用时域有限差分法FDTD(Finite DifferenceTime Domain Method)法在三维圆柱坐标系下对电磁波传播测井进行了数值模拟,在圆柱体模型的不同边界处综合运用了Mur一阶和Mur二阶吸收边界条件并且在中心轴上对电磁场的计算运用了特殊的处理方法.在此基础上模拟分析了电磁波传播测井在油水层中的测井响应特征,得到了良好的效果.

  15. 3-D simulation of posterior fossa reduction in Chiari I

    Directory of Open Access Journals (Sweden)

    Yvens Barbosa Fernandes

    2016-05-01

    Full Text Available ABSTRACT We proposed a 3D model to evaluate the role of platybasia and clivus length in the development of Chiari I (CI. Using a computer aided design software, two DICOM files of a normal CT scan and MR were used to simulate different clivus lengths (CL and also different basal angles (BA. The final posterior fossa volume (PFV was obtained for each variation and the percentage of the volumetric change was acquired with the same method. The initial normal values of CL and BA were 35.65 mm and 112.66º respectively, with a total PFV of 209 ml. Ranging the CL from 34.65 to 29.65 – 24.65 – 19.65, there was a PFV decrease of 0.47% – 1.12% – 1.69%, respectively. Ranging the BA from 122.66º to 127.66º – 142.66º, the PFV decreased 0.69% – 3.23%, respectively. Our model highlights the importance of the basal angle and clivus length to the development of CI.

  16. Global 3D MHD Simulations of Waves in Accretion Discs

    Directory of Open Access Journals (Sweden)

    Romanova M.M.

    2013-04-01

    Full Text Available We discuss results of the first global 3D MHD simulations of warp and density waves in accretion disks excited by a rotating star with a misaligned dipole magnetic field. A wide range of cases are considered. We find for example that if the star’s magnetosphere corotates approximately with the inner disk, then a strong one-arm bending wave or warp forms. The warp corotates with the star and has a maximum amplitude (|zw|/r ~ 0.3 between the corotation radius and the radius of the vertical resonance. If the magnetosphere rotates more slowly than the inner disk, then a bending wave is excited at the disk-magnetosphere boundary, but it does not form a large-scale warp. In this case the angular rotation of the disk [Ω(r] has a maximum as a function of r so that there is an inner region where dΩ/dr > 0. In this region we observe radially trapped density waves in approximate agreement with the theoretical prediction of a Rossby wave instability in this region.

  17. Simulated Photoevaporative Mass Loss from Hot Jupiters in 3D

    CERN Document Server

    Tripathi, Anjali; Murray-Clay, Ruth A; Krumholz, Mark R

    2015-01-01

    Ionizing stellar photons heat the upper regions of planetary atmospheres, driving atmospheric mass loss. Gas escaping from several hot, hydrogen-rich planets has been detected using UV and X-ray transmission spectroscopy. Because these planets are tidally locked, and thus asymmetrically irradiated, escaping gas is unlikely to be spherically symmetric. In this paper, we focus on the effects of asymmetric heating on local outflow structure. We use the Athena code for hydrodynamics to produce 3D simulations of hot Jupiter mass loss that jointly model wind launching and stellar heating via photoionization. Our fiducial planet is an inflated, hot Jupiter with radius $R_p=2.14 R_{\\rm Jup}$ and mass $M_p = 0.53 M_{\\rm Jup}$. We irradiate the initially neutral, atomic hydrogen atmosphere with 13.6 eV photons and compute the outflow's ionization structure. There are clear asymmetries in the atmospheric outflow, including a neutral shadow on the planet's nightside. Given an incident ionizing UV flux comparable to that ...

  18. 3D MHD simulation of polarized emission in SN 1006

    CERN Document Server

    Schneiter, E M; Reynoso, E M; Esquivel, A; De Colle, F

    2015-01-01

    We use three dimensional magnetohydrodynamic (MHD) simulations to model the supernova remnant SN 1006. From our numerical results, we have carried out a polarization study, obtaining synthetic maps of the polarized intensity, the Stokes parameter $Q$, and the polar-referenced angle, which can be compared with observational results. Synthetic maps were computed considering two possible particle acceleration mechanisms: quasi-parallel and quasi-perpendicular. The comparison of synthetic maps of the Stokes parameter $Q$ maps with observations proves to be a valuable tool to discern unambiguously which mechanism is taking place in the remnant of SN 1006, giving strong support to the quasi-parallel model.

  19. 3D thermal modeling of TRISO fuel coupled with neutronic simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jianwei [Los Alamos National Laboratory; Uddin, Rizwan [UNIV OF ILLINIOS

    2010-01-01

    The Very High Temperature Gas Reactor (VHTR) is widely considered as one of the top candidates identified in the Next Generation Nuclear Power-plant (NGNP) Technology Roadmap under the U.S . Depanment of Energy's Generation IV program. TRlSO particle is a common element among different VHTR designs and its performance is critical to the safety and reliability of the whole reactor. A TRISO particle experiences complex thermo-mechanical changes during reactor operation in high temperature and high burnup conditions. TRISO fuel performance analysis requires evaluation of these changes on micro scale. Since most of these changes are temperature dependent, 3D thermal modeling of TRISO fuel is a crucial step of the whole analysis package. In this paper, a 3D numerical thermal model was developed to calculate temperature distribution inside TRISO and pebble under different scenarios. 3D simulation is required because pebbles or TRISOs are always subjected to asymmetric thermal conditions since they are randomly packed together. The numerical model was developed using finite difference method and it was benchmarked against ID analytical results and also results reported from literature. Monte-Carlo models were set up to calculate radial power density profile. Complex convective boundary condition was applied on the pebble outer surface. Three reactors were simulated using this model to calculate temperature distribution under different power levels. Two asymmetric boundary conditions were applied to the pebble to test the 3D capabilities. A gas bubble was hypothesized inside the TRISO kernel and 3D simulation was also carried out under this scenario. Intuition-coherent results were obtained and reported in this paper.

  20. Numerical simulation of sediment scouring due to horizontal jet based on Flow-3 D%基于Flow-3D的水平射流冲刷泥沙数值模拟

    Institute of Scientific and Technical Information of China (English)

    刘成林; 陈宇豪

    2016-01-01

    To analyze the whole process of sluice downstream sediment scouring due to horizontal jet, the downstream scouring process of a fixed floor were simulated by using sediment scour model, RNG k-εmodel and FAVOR method in Flow-3D soft-ware and on the basis of the hydraulic model test. The test simulation calculation was carried out according to the conditions of o-riginal hydraulic model. Combining with the result of hydraulic model tests, the water surface profile, velocity distribution, scou-ring hole depth and dune height during the scouring process were compared and analyzed. The result shows that the water surface profile and velocity distribution of the model test and simulation is consistent well, also the simulated scouring hole depth and dune height are in good agreement with the test. The sediment motion is analyzed, and the scouring process in case of different sediment grain size is simulated and the results are compared. It is concluded that the maximum scour depth and dune height de-creases with increase of particle size when the scouring reaches the equilibrium, which is consistent with the theoretical analysis. It is proved that the sediment scouring model can be used in the analysis of variables in hydraulic tests.%为了模拟分析闸口水平射流对下游泥沙冲刷的全过程,基于水工模型试验,采用Flow-3D软件中的泥沙冲刷模型结合RNG 模型和FAVOR方法,进行了水平射流冲刷固定底板下游泥沙的模拟试验。根据原水工模型条件,结合模型试验结果,对冲刷过程中的水面线、流速分布、冲坑深度和堆丘高度进行了对比分析。结果显示,数值模拟与原试验结果中水面线和流速分布吻合度很高,冲刷过程中的冲坑深度与堆丘的高度也很接近。分析了冲刷过程中的泥沙运动,模拟了不同粒径泥沙的冲刷过程并将结果进行对比,发现达到冲刷平衡阶段时冲坑深度与堆丘高度随泥沙粒径的增大

  1. PEPT: An invaluable tool for 3-D particle tracking and CFD simulation verification in hydrocyclone studies

    Directory of Open Access Journals (Sweden)

    Hoffmann Alex C.

    2013-05-01

    Full Text Available Particle tracks in a hydrocyclone generated both experimentally by positron emission particle tracking (PEPT and numerically with Eulerian-Lagranian CFD have been studied and compared. A hydrocyclone with a cylinder-on-cone design was used in this study, the geometries used in the CFD simulations and in the experiments being identical. It is shown that it is possible to track a fast-moving particle in a hydrocyclone using PEPT with high temporal and spatial resolutions. The numerical 3-D particle trajectories were generated using the Large Eddy Simulation (LES turbulence model for the fluid and Lagrangian particle tracking for the particles. The behaviors of the particles were analyzed in detail and were found to be consistent between experiments and CFD simulations. The tracks of the particles are discussed and related to the fluid flow field visualized in the CFD simulations using the cross-sectional static pressure distribution.

  2. Simulation of a true-triaxial deformation test on anisotropic gneiss using FLAC3D

    Science.gov (United States)

    Ye, Shenghua; Sehizadeh, Mehdi; Nasseri, Mohammad; Young, Paul

    2016-04-01

    A series of true-triaxial experiments have been carried out at the University of Toronto's Rock Fracture Dynamics Laboratory. Isotropic pegmatite and gneiss have been used to systematically study the effect of anisotropy on the strength, behaviour and seismic response. Samples were loaded under true-triaxial stress conditions and subjected to complex loading and unloading histories associated with rock deformation around underground openings. The results show expected patterns of weakness from preferentially oriented samples and highlight the importance of unloading history under true-triaxial conditions on the deformation and seismic response of the samples. These tests have been used to validate a synthetic simulation using the Itasca FLAC3D numerical code. The paper describes the FLAC3D simulations of the complex true-triaxial loading and unloading history of the different anisotropic samples. Various parameters were created to describe the physico-mechanical properties of the synthetic rock samples. Foliation planes of preferential orientations with respect to the primary loading direction were added to the synthetic rock samples to reflect the anisotropy of the gneiss. These synthetic rock samples were subjected to the same loading and unloading paths as the real rock samples, and failed in the same mechanism as what was observed from the experiments, and thus it proved the validity of this numerical simulation with FLAC3D.

  3. Meso-Scale Damage Simulation of 3D Braided Composites under Quasi-Static Axial Tension

    Science.gov (United States)

    Zhang, Chao; Mao, Chunjian; Zhou, Yexin

    2017-01-01

    The microstructure of 3D braided composites is composed of three phases: braiding yarn, matrix and interface. In this paper, a representative unit-cell (RUC) model including these three phases is established. Coupling with the periodical boundary condition, the damage behavior of 3D braided composites under quasi-static axial tension is simulated by using finite element method based on this RUC model. An anisotropic damage model based on Murakami damage theory is proposed to predict the damage evolution of yarns and matrix; a damage-friction combination interface constitutive model is adopted to predict the interface debonding behavior. A user material subroutine (VUMAT) involving these damage models is developed and implemented in the finite element software ABAQUS/Explicit. The whole process of damage evolution of 3D braided composites under quasi-static axial tension with typical braiding angles is simulated, and the damage mechanisms are revealed in detail in the simulation process. The tensile strength properties of the braided composites are predicted from the calculated stress-strain curves. Numerical results agree with the available experiment data and thus validates the proposed damage analysis model. The effects of certain material parameters on the predicted stress-strain responses are also discussed by numerical parameter study.

  4. Analysis of the cavitating flow induced by an ultrasonic horn – Numerical 3D simulation for the analysis of vapour structures and the assessment of erosion-sensitive areas

    Directory of Open Access Journals (Sweden)

    Mottyll Stephan

    2014-03-01

    Full Text Available This paper reports the outcome of a numerical study of ultrasonic cavitation using a CFD flow algorithm based on a compressible density-based finite volume method with a low-Machnumber consistent flux function and an explicit time integration [15; 18] in combination with an erosion-detecting flow analysis procedure. The model is validated against erosion data of an ultrasonic horn for different gap widths between the horn tip and a counter sample which has been intensively investigated in previous material studies at the Ruhr University Bochum [23] as well as on first optical in-house flow measurement data which is presented in a companion paper [13]. Flow features such as subharmonic cavitation oscillation frequencies as well as constricted vapour cloud structures can also be observed by the vapour regions predicted in our simulation as well as by the detected collapse event field (collapse detector [12]. With a statistical analysis of transient wall loads we can determine the erosion sensitive areas qualitatively. Our simulation method can reproduce the influence of the gap width on vapour structure and on location of cavitation erosion.

  5. 3D Kinetic Simulation of Plasma Jet Penetration in Magnetic Field

    Science.gov (United States)

    Galkin, Sergei A.; Bogatu, I. N.; Kim, J. S.

    2009-11-01

    A high velocity plasmoid penetration through a magnetic barrier is a problem of a great experimental and theoretical interest. Our LSP PIC code 3D fully kinetic numerical simulations of high density (10^16 cm-3) high velocity (30-140 km/sec) plasma jet/bullet, penetrating through the transversal magnetic field, demonstrate three different regimes: reflection by field, penetration by magnetic field expulsion and penetration by magnetic self-polarization. The behavior depends on plasma jet parameters and its composition: hydrogen, carbon (A=12) and C60-fullerene (A=720) plasmas were investigated. The 3D simulation of two plasmoid head-on injections along uniform magnetic field lines is analyzed. Mini rail plasma gun (accelerator) modeling is also presented and discussed.

  6. A 3-D model of superfluid helium suitable for numerical analysis

    CERN Document Server

    Darve, C; Van Sciver, S W

    2009-01-01

    The two-fluid description is a very successful phenomenological representation of the properties of Helium II. A 3-D model suitable for numerical analysis based on the Landau-Khalatnikov description of Helium II is proposed. In this paper we introduce a system of partial differential equations that is both complete and consistent as well as practical, to be used for a 3-D solution of the flow of Helium II. The development of a 3-D numerical model for Helium II is motivated by the need to validate experimental results obtained by observing the normal component velocity distribution in a Helium II thermal counter-flow using the Particle Image Velocimetry (PIV) technique.

  7. Tsunamis generated by 3D deformable landslides in various scenarios: laboratory experiments and numerical modeling

    Science.gov (United States)

    McFall, B. C.; Fritz, H. M.; Horrillo, J. J.; Mohammed, F.

    2014-12-01

    Landslide generated tsunamis such as Lituya Bay, Alaska 1958 account for some of highest recorded tsunami runup heights. Source and runup scenarios based on real world events are physically modeled using generalized Froude similarity in the three dimensional NEES tsunami wave basin at Oregon State University. A novel pneumatic landslide tsunami generator (LTG) was deployed to simulate landslides with varying geometry and kinematics. The bathymetric and topographic scenarios tested with the LTG are the basin-wide propagation and runup, fjord, curved headland fjord and a conical island setting representing a landslide off an island or a volcano flank collapse. The LTG consists of a sliding box filled with 1,350 kg of landslide material which is accelerated by pneumatic pistons down slope. Two different landslide materials are used to study the granulometry effects: naturally rounded river gravel and cobble mixtures. Water surface elevations are recorded by an array of resistance wave gauges. The landslide deformation is measured from above and underwater camera recordings. The landslide deposit is measured on the basin floor with a multiple transducer acoustic array (MTA). Landslide surface reconstruction and kinematics are determined with a stereo particle image velocimetry (PIV) system. Wave runup is recorded with resistance wave gauges along the slope and verified with video image processing. The measured landslide and wave parameters are compared between the planar hill slope used in various scenarios and the convex hill slope of the conical island. The energy conversion rates from the landslide motion to the wave train is quantified for the planar and convex hill slopes. The wave runup data on the opposing headland is analyzed and evaluated with wave theories. The measured landslide and tsunami data serve to validate and advance three-dimensional numerical landslide tsunami prediction models. Two 3D Navier-Stokes models were tested, the commercial code FLOW-3D

  8. Simulação 3D de movimento ortodôntico 3D simulation of orthodontic tooth movement

    Directory of Open Access Journals (Sweden)

    Norman Duque Penedo

    2010-10-01

    Full Text Available OBJETIVO: desenvolver e validar, através do Método dos Elementos Finitos (MEF, um modelo numérico tridimensional (3D de um incisivo central superior para simular o movimento dentário. MÉTODOS: esse modelo contempla a unidade dentária, o osso alveolar e o ligamento periodontal. Permite a simulação dos diferentes movimentos dentários e a determinação dos centros de rotação e de resistência. Limita o movimento ao espaço periodontal, registrando a direção, quantificando o deslocamento dentário e as tensões iniciais no ligamento periodontal. RESULTADOS: a análise dos deslocamentos dentários e das áreas que recebem tensões iniciais possibilita determinar os tipos de movimentos dentários. Com base nas forças ortodônticas, é possível quantificar a intensidade das tensões em cada região do dente, do ligamento periodontal ou do osso alveolar. Com base nas tensões axiais ao longo do ligamento periodontal e da tensão capilar, é possível predizer, teoricamente, as regiões em que deve ocorrer a remodelação óssea. CONCLUSÃO: o modelo foi validado pela determinação do módulo de elasticidade do ligamento periodontal de forma compatível com dados experimentais existentes na literatura. Os métodos utilizados na construção do modelo permitiram a criação de um modelo completo para uma arcada dentária, o qual possibilita realizar variadas simulações que envolvem a mecânica ortodôntica.OBJECTIVE: To develop and validate a three-dimensional (3D numerical model of a maxillary central incisor to simulate tooth movement using the Finite Element Method (FEM. METHODS: This model encompasses the tooth, alveolar bone and periodontal ligament. It allows the simulation of different tooth movements and the establishment of centers of rotation and resistance. It limits the movement into the periodontal space, recording the direction, quantifying tooth displacement and initial stress in the periodontal ligament. RESULTS: By

  9. 巷道聚焦电流法超前探测的三维有限元数值模拟%3D finite element numerical simulation of advanced detection in roadway for DC focus method

    Institute of Scientific and Technical Information of China (English)

    邓小康; 柳建新; 刘海飞; 童孝忠; 柳卓

    2013-01-01

    Within the roadway advanced detection methods, DC resistivity method has an extensive application because of its simple principle and operation. Numerical simulation of the effect of focusing current on advanced detection was carried out using a three-dimensional finite element method (FEM), meanwhile the electric-field distribution of the point source and nine-point power source were calculated and analyzed with the same electric charges. The results show that the nine-point power source array has a very good ability to focus, and the DC focus method can be used to predict the aquifer abnormality body precisely. By comparing the FEM modelling results with physical simulation results from soil sink, it is shown that the accuracy of forward simulation meets the requirement and the artificial disturbance from roadway has no impact on the DC focus method.%  在巷道超前探测的方法中,电阻率法由于原理简单、操作方便,有着很好的应用前景。运用三维有限元法对聚焦电流法的超前预报效果进行数值模拟,计算和分析点电源和九点式电源在供相同电流的情况下电场的分布情况。结果表明:九点式布极方式有很好的聚焦能力,聚焦电流法能准确地发现掘进面前方含水异常体。将数值模拟和物理土槽试验进行对比,正演模拟精度符合要求,巷道中的人为干扰对聚焦电流法超前探测没有影响。

  10. Plasma boundaries at Mars: a 3-D simulation study

    Directory of Open Access Journals (Sweden)

    A. Bößwetter

    2004-12-01

    Full Text Available The interaction of the solar wind with the ionosphere of planet Mars is studied using a three-dimensional hybrid model. Mars has only a weak intrinsic magnetic field, and consequently its ionosphere is directly affected by the solar wind. The gyroradii of the solar wind protons are in the range of several hundred kilometers and therefore comparable with the characteristic scales of the interaction region. Different boundaries emerge from the interaction of the solar wind with the continuously produced ionospheric heavy-ion plasma, which could be identified as a bow shock (BS, ion composition boundary (ICB and magnetic pile up boundary (MPB, where the latter both turn out to coincide. The simulation results regarding the shape and position of these boundaries are in good agreement with the measurements made by Phobos-2 and MGS spacecraft. It is shown that the positions of these boundaries depend essentially on the ionospheric production rate, the solar wind ram pressure, and the often unconsidered electron temperature of the ionospheric heavy ion plasma. Other consequences are rays of planetary plasma in the tail and heavy ion plasma clouds, which are stripped off from the dayside ICB region by some instability.

    Key words. Magnetospheric physics (solar wind interactions with unmagnetized bodies – Space plasma physics (discontinuities; numerical simulation studies

  11. Double-Exponentially Decayed Photoionization in CREI Effect:Numerical Experiment on 3D H+2

    Institute of Scientific and Technical Information of China (English)

    LI Feng; WANG Ting-Ying; ZHANG Gui-Zhong; XIANG Wang-Hua; W.T.Hill III

    2008-01-01

    On the platform of the 3D H+2 system,we perform a numerical simulation of its photoionization rate under excitation of weak to intense laser intensities with varying pulse durations and wavelengths.A novel method is proposed for calculating the photoionization rate:a double exponential decay of ionization probability is best suited for fitting this rate.Confirmation of the well-documented charge-resonance-enhanced ionization (CREI)effect at medium laser intensity and finding of ionization saturation at high light intensity corroborate the robustness of the suggested double-exponential decay process.Surveying the spatial and temporal variations of electron wavefunctions uncovers a mechanism for the double-exponentially decayed photoionization probability as onset of electron ionization along extra degree of freedom.Henceforth,the new method makes clear the origins of peak features in photoionization rate versus internuclear separation.It is believed that this multi-exponentially decayed ionization mechanism is applicable to systems with more degrees of motion.

  12. A novel code for numerical 3-D MHD studies of CME expansion

    Directory of Open Access Journals (Sweden)

    J. Kleimann

    2009-03-01

    Full Text Available A recent third-order, essentially non-oscillatory central scheme to advance the equations of single-fluid magnetohydrodynamics (MHD in time has been implemented into a new numerical code. This code operates on a 3-D Cartesian, non-staggered grid, and is able to handle shock-like gradients without producing spurious oscillations.

    To demonstrate the suitability of our code for the simulation of coronal mass ejections (CMEs and similar heliospheric transients, we present selected results from test cases and perform studies of the solar wind expansion during phases of minimum solar activity. We can demonstrate convergence of the system into a stable Parker-like steady state for both hydrodynamic and MHD winds. The model is subsequently applied to expansion studies of CME-like plasma bubbles, and their evolution is monitored until a stationary state similar to the initial one is achieved. In spite of the model's (current simplicity, we can confirm the CME's nearly self-similar evolution close to the Sun, thus highlighting the importance of detailed modelling especially at small heliospheric radii.

    Additionally, alternative methods to implement boundary conditions at the coronal base, as well as strategies to ensure a solenoidal magnetic field, are discussed and evaluated.

  13. 3-D Numerical Investigation of the Tsaoling Landslide Induced by Chi-Chi Earthquake, Taiwan.

    Science.gov (United States)

    Tang, C.; Hu, J.

    2004-12-01

    Large landslides occurred in the mountainous area near the epicenter of the Sept. 21st, 1999, Chi-Chi earthquake in central Taiwan. These landslides were triggered by the Mw = 7.6 earthquake, which resulted in more than 2,400 human casualties and widespread damage. The 1999 Chi-Chi earthquake triggered a catastrophic Tsaloing landslide, which mobilized about 0.125 km3 of rock and soil that slid across the Chingshui River and created a 5 km long natural dam. One fifth of the landslide mass dropped into the Chingshui River, the rest jumped over the river. At least five large landslides occurred in Tsaoling area are induced by big earthquake and heavy rainfalls since 1862 to 1999. Geological investigation shows that the prevailing attitude of sedimentary formation is about N45W with a dipping angle of 12S. First we used Remark Method to calculate the stability of slope. The bottom of slope has been eroded by Chingshui stream, and the PGA (Peak Ground Acceleration) in Chi-Chi earthquake was exceeded the yield acceleration along the sliding surface. The landslide mechanism may be including flowing, rolling, bouncing and sliding. The rock on the fault plane during faulting can generate pseudotachylyte resulted from melted rock by frictional heat energy along the sliding surface. The frictional melted rocks were found out in the Chiu-Fen-Erh-Shan collapses. However, we didn¡¦t found out the frictional melted rock in Tsaoling area. If we calculated the kinetic energy which was converted to heat energy, the increase of temperature was enough to melt the rocks on sliding surface. When the rocks on the sliding surface had been melted, the friction on the sliding surface must be decrease. Therefore, the 0.125 km3 debris had sufficient kinetic energy to across Chingshui River to the other side of the river. Using 3D distinct-element modeling (PFC3d code), we try to simulate kinematic process of Tsaoling landslide. Our numerical model was compose of about 10,000 spherical

  14. 3D strain map of axially loaded mouse tibia: a numerical analysis validated by experimental measurements.

    Science.gov (United States)

    Stadelmann, Vincent A; Hocke, Jean; Verhelle, Jensen; Forster, Vincent; Merlini, Francesco; Terrier, Alexandre; Pioletti, Dominique P

    2009-02-01

    A combined experimental/numerical study was performed to calculate the 3D octahedral shear strain map in a mouse tibia loaded axially. This study is motivated by the fact that the bone remodelling analysis, in this in vivo mouse model should be performed at the zone of highest mechanical stimulus to maximise the measured effects. Accordingly, it is proposed that quantification of bone remodelling should be performed at the tibial crest and at the distal diaphysis. The numerical model could also be used to furnish a more subtle analysis as a precise correlation between local strain and local biological response can be obtained with the experimentally validated numerical model.

  15. 3D Rigorous simulation of mask induced polarization

    NARCIS (Netherlands)

    Wei, X.; Urbach, H.P.; Wachters, A.; Aksenov, Y.

    2005-01-01

    The polarization induced by the mask is studied by using a 3D rigorous model, wich solves Maxwell equations using the finite element method. Teh aerial image depends strongly on the change of polarization induced by the materials, thickness of the layer and pitch of the periodic masks.

  16. Understanding the mixing process in 3D microfluidic nozzle/diffuser systems: simulations and experiments

    Science.gov (United States)

    Sayah, Abdeljalil; Gijs, Martin A. M.

    2016-11-01

    We characterise computationally and experimentally a three-dimensional (3D) microfluidic passive mixer for various Reynolds numbers ranging from 1 to 100, corresponding to primary flow rates of 10-870 µl min-1. The 3D mixing channel is composed of multiple curved segments: circular arcs situated in the substrate plane and curved nozzle/diffuser elements normal to the substrate plane. Numerical simulation provides a detailed understanding of the mixing mechanism resulting from the geometrical topology of the mixer. These Comsol software-based simulations reveal the development of two secondary flows perpendicular to the primary flow: a swirling flow resulting from tangential injection of the flow into the nozzle holes and Dean vortices present in the circular arcs. These phenomena are particularly important at a Reynolds number larger than 30, where mixing occurs by chaotic advection. Experimentally, the 3D mixer is fabricated in a monolithic glass substrate by powder blasting machining, exploiting eroding powder beams at various angles of impact with respect to the substrate plane. Experimental mixing was characterised using two coloured dyes, showing nearly perfect mixing for a microfluidic footprint of the order of a few mm2, in good agreement with the simulations.

  17. Mechanical Modelling of Pultrusion Process: 2D and 3D Numerical Approaches

    DEFF Research Database (Denmark)

    Baran, Ismet; Hattel, Jesper Henri; Akkerman, Remko

    2015-01-01

    The process induced variations such as residual stresses and distortions are a critical issue in pultrusion, since they affect the structural behavior as well as the mechanical properties and geometrical precision of the final product. In order to capture and investigate these variations......, a mechanical analysis should be performed. In the present work, the two dimensional (2D) quasi-static plane strain mechanical model for the pultrusion of a thick square profile developed by the authors is further improved using generalized plane strain elements. In addition to that, a more advanced 3D thermo......-chemical-mechanical analysis is carried out using 3D quadratic elements which is a novel application for the numerical modelling of the pultrusion process. It is found that the 2D mechanical models give relatively reasonable and accurate stress and displacement evolutions in the transverse direction as compared to the 3D...

  18. 3D anisotropy simulation of dendrites growth with phase field method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The anisotropy problem of 3D phase-field model was studied,and various degrees of anisotropy were simulated by numerical calculation method.The results show that with the change of interface anisotropy coefficients,from smooth transition to the appearance of angle,equilibrium crystals shape morphology has a critical value,and 3D critical value is 0.3.The growth of dendrites is stable and the interface is smooth when it is less than critical value;the interface is unstable,rolling edge appears and the growth is discontinuous when it is more than critical value.With the increase of anisotropy coefficients,the dendrites grow faster under the same condition.

  19. 3D Finite Volume Simulation of Accretion Discs with Spiral Shocks

    CERN Document Server

    Makita, M; Makita, Makoto; Matsuda, Takuya

    1998-01-01

    We perform 2D and 3D numerical simulations of an accretion disc in a close binary system using the Simplified Flux vector Splitting (SFS) finite volume method. In our calculations, gas is assumed to be the ideal one, and we calculate the cases with gamma=1.01, 1.05, 1.1 and 1.2. The mass ratio of the mass losing star to the mass accreting star is unity. Our results show that spiral shocks are formed on the accretion disc in all cases. In 2D calculations we find that the smaller gamma is, the more tightly the spiral winds. We observe this trend in 3D calculations as well in somewhat weaker sense.

  20. Application of FUN3D Solver for Aeroacoustics Simulation of a Nose Landing Gear Configuration

    Science.gov (United States)

    Vatsa, Veer N.; Lockard, David P.; Khorrami, Mehdi R.

    2011-01-01

    Numerical simulations have been performed for a nose landing gear configuration corresponding to the experimental tests conducted in the Basic Aerodynamic Research Tunnel at NASA Langley Research Center. A widely used unstructured grid code, FUN3D, is examined for solving the unsteady flow field associated with this configuration. A series of successively finer unstructured grids has been generated to assess the effect of grid refinement. Solutions have been obtained on purely tetrahedral grids as well as mixed element grids using hybrid RANS/LES turbulence models. The agreement of FUN3D solutions with experimental data on the same size mesh is better on mixed element grids compared to pure tetrahedral grids, and in general improves with grid refinement.

  1. 3D-MHD simulations of the evolution of magnetic fields in FR II radio sources

    CERN Document Server

    Huarte-Espinosa, Martin; Alexander, Paul

    2010-01-01

    3D-MHD numerical simulations of bipolar, hypersonic, weakly magnetized jets and synthetic synchrotron observations are presented to study the structure and evolution of magnetic fields in FR II radio sources. The magnetic field setup in the jet is initially random. The power of the jets as well as the observational viewing angle are investigated. We find that synthetic polarization maps agree with observations and show that magnetic fields inside the sources are shaped by the jets' backflow. Polarimetry statistics correlates with time, the viewing angle and the jet-to-ambient density contrast. The magnetic structure inside thin elongated sources is more uniform than for ones with fatter cocoons. Jets increase the magnetic energy in cocoons, in proportion to the jet velocity. Both, filaments in synthetic emission maps and 3D magnetic power spectra suggest that turbulence develops in evolved sources.

  2. 3D Numerical Simulation of Excavation of Shield Tunnel in Softground%软土地区盾构法隧道施工三维数值模拟

    Institute of Scientific and Technical Information of China (English)

    张社荣; 田新星; 王刚; 崔溦

    2012-01-01

    本文采用三维有限元方法,考虑软土的固结作用和隧道开挖与周边建筑物变形的相互作用,对隧道施工的全过程进行数值模拟,分析盾构法隧道施工对周边建筑物的影响.数值计算结果表明:在考虑流固耦合的条件下,盾构法隧道开挖时3~4倍洞径范围内的土体变形可能会超过土体位移的规范规定值,施工中应加强该距离范围内的土体和周边建筑物的监测;盾构法仅对开挖掌子面处附近局部区域的孔隙水压力有影响,说明软土地区盾构法隧道施工对地下水的扰动很小;通过监测数据与计算值的对比分析可以得出,典型监测点的变形规律与监测规律相同,说明在工程条件相似的软土地区采用数值模拟对盾构法隧道施工进行预测和仿真分析是可行的,具有一定的工程参考价值.%Three-dimensional finite element method was used to simulate the whole process of the tunnel construction , to analyze the impact of shield tunnel construction on surrounding buildings. During the process of analysis, the consolidation effect and the interaction of tunnel excavation and the deformation of surrounding buildings were taken into consideration. Numerical results show that; in considering the conditions of fluid-structure interaction,the deformation of the soil within 3 to 4 times of tunnel diameter may exceed the value of the specific displacement. The monitoring of soil and surrounding buildings within this range should be intensified. Shield tunnel construction influences the pore water pressure near the working face which means the groundwater disturbance of shield tunnel construction in soft tunnel is very small. The computed deformation law of typical point was the same to that of the monitoring point, which means that it is possible to forecast and simulate the process of shield tunnel construction in the similar soft clay area. The study is a valuable reference for simulation of shield

  3. Quasi 3D refined simulation of flow and pollutant transport in a meandering River Reach

    Directory of Open Access Journals (Sweden)

    Li-ren Yu

    2013-03-01

    Full Text Available This paper reports a quasi 3D numerical simulation in a meandering river reach of the Yellow River, aiming to develop a tool for modeling turbulent flows and pollutant transport in complex natural waters. The recently built depth-averaged two-equation turbulence model, together with and models, were used to close non-simplified quasi 3D hydrodynamic fundamental governing equations. The discretized equations were solved by advanced multi-grid iterative method under non-orthogonal body-fitted coarse and fine two-levels’ grids with collocated variable arrangement. Except for steady flow and transport computation, the processes of contaminant inpouring and plume development, caused by the side-discharge from a tribytary, also have been investigated numerically. The used three closure approaches are suitable for modeling strong mixing turbulence. The established model with higher order of magnitude of transported variable provides a possibility to elevate the computational precision. Based on the developed mathematical model, a CFD (Computational Fluid Dynamics software, namely Q3drm1.0, was developed. This numerical tool focuses on the refined simulations of the steady and unsteady problems of flow and temperature/contaminant transports in complicated computational domains with the strong ability to deal with different discharge situations: side-discharge, point-source discharge/point-sink, and area-source discharge from the slope along bank. In this article, the study of side-discharge is presented only.

  4. Interdisciplinary Collaboration through Designing 3D Simulation Case Studies

    CERN Document Server

    Bai, Xin; 10.5121/ijma.2011.3109

    2011-01-01

    Interdisciplinary collaboration is essential for the advance of research. As domain subjects become more and more specialized, researchers need to cross disciplines for insights from peers in other areas to have a broader and deeper understand of a topic at micro- and macro-levels. We developed a 3D virtual learning environment that served as a platform for faculty to plan curriculum, share educational beliefs, and conduct cross-discipline research for effective learning. Based upon the scripts designed by faculty from five disciplines, virtual doctors, nurses, or patients interact in a 3D virtual hospital. The teaching vignettes were then converted to video clips, allowing users to view, pause, replay, or comment on the videos individually or in groups. Unlike many existing platforms, we anticipated a value-added by adding a social networking capacity to this virtual environment. The focus of this paper is on the cost-efficiency and system design of the virtual learning environment.

  5. Interdisciplinary Collaboration through Designing 3D Simulation Case Studies

    Directory of Open Access Journals (Sweden)

    Xin Bai

    2011-02-01

    Full Text Available Interdisciplinary collaboration is essential for the advance of research. As domain subjects become more and more specialized, researchers need to cross disciplines for insights from peers in other areas to have a broader and deeper understand of a topic at micro- and macro-levels. We developed a 3D virtual learning environment that served as a platform for faculty to plan curriculum, share educational beliefs,and conduct cross-discipline research for effective learning. Based upon the scripts designed by facultyfrom five disciplines, virtual doctors, nurses, or patients interact in a 3D virtual hospital. The teaching vignettes were then converted to video clips, allowing users to view, pause, replay, or comment on the videos individually or in groups. Unlike many existing platforms, we anticipated a value-added by adding a social networking capacity to this virtual environment. The focus of this paper is on the cost-efficiency and system design of the virtual learning environment.

  6. Interdisciplinary Collaboration through Designing 3D Simulation Case Studies

    Directory of Open Access Journals (Sweden)

    Xin Bai

    2011-02-01

    Full Text Available Interdisciplinary collaboration is essential for the advance of research. As domain subjects become more and more specialized, researchers need to cross disciplines for insights from peers in other areas to have a broader and deeper understand of a topic at micro- and macro-levels. We developed a 3D virtual learning environment that served as a platform for faculty to plan curriculum, share educational beliefs, and conduct cross-discipline research for effective learning. Based upon the scripts designed by faculty from five disciplines, virtual doctors, nurses, or patients interact in a 3D virtual hospital. The teaching vignettes were then converted to video clips, allowing users to view, pause, replay, or comment on the videos individually or in groups. Unlike many existing platforms, we anticipated a value-added by adding a social networking capacity to this virtual environment. The focus of this paper is on the cost-efficiency and system design of the virtual learning environment.

  7. 双转子对旋风轮设计及三维数值验证%Design of A Counter-rotating Wind Turbine and Validation with 3-D Numerical Simulation

    Institute of Scientific and Technical Information of China (English)

    王掩刚; 赵龙波; 国睿; 任思源

    2011-01-01

    On the basis of investigating the advantages and disadvantages of Betz and Schmitz theory, the procedure of a new wind machine which is a horizontal axial counter-rotating wind turbine has been shown. A mini-type counter-rotating wind turbine has been designed successfully by this method. The performance and detailed flow structure of the designed machine has been obtained by three dimensional numerical simulation. The results show that; (l)Compared with the Betz theory, Schmitz theory is reasonable which could be used in the design process of counter-rotating wind turbine. However there are some faults of Schmitz theory because the setting angle near the hub section of wind rotor is larger when Schmitz theory is used. ( 2 ) Counter-rotating wind turbine could be attainable in engineering. The designed wind turbine in this paper achieved the aim and the power of downstream rotor is greater than the upstream rotor' s. (3)There is no separation on the suction side when the counter-rotating wind turbine is working under the designed condition, the pressure gradient is reasonable.%详细分析了Betz理论和Schmitz理论的优势和不足,给出了对旋式水平轴风力机设计流程,设计了小型双转子对旋式风力机,结合三维数值分析手段对所设计的风力机进行了设计工况的流动分析,研究结果表明:(1) Schmitz理论相对合理,但仍然存在缺陷,依据该理论所计算的翼型根部安装角过大;(2)双转子对旋式风力机在工程上是可实现的,本文所设计的风力机基本达到设计目标,下游风轮输出功率大于上游风轮;(3)设计工况下所设计的双转子对旋风力机两排叶片吸力面没有出现分离,压力梯度控制合理,均工作于比较理想的气动状态下.

  8. DREAM3D simulations of inner-belt dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, Gregory Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-26

    A 1973 paper by Lyons and Thorne explains the two-belt structure for electrons in the inner magnetosphere as a balance between inward radial diffusion and loss to the atmosphere, where the loss to the atmosphere is enabled by pitch-angle scattering from Coulomb and wave-particle interactions. In the 1973 paper, equilibrium solutions to a decoupled set of 1D radial diffusion equations, one for each value of the first invariant of motion, μ, were computed to produce the equilibrium two-belt structure. Each 1D radial diffusion equation incorporated an L-and μ-dependent `lifetime' due to the Coulomb and wave-particle interactions. This decoupling of the problem is appropriate under the assumption that radial diffusion is slow in comparison to pitch-angle scattering. However, for some values of μ and L the lifetime associated with pitch-angle scattering is comparable to the timescale associated with radial diffusion, suggesting that the true equilibrium solutions might reflect `coupled modes' involving pitch-angle scattering and radial diffusion and thus requiring a 3D diffusion model. In the work we show here, we have computed the equilibrium solutions using our 3D diffusion model, DREAM3D, that allows for such coupling. We find that the 3D equilibrium solutions are quite similar to the solutions shown in the 1973 paper when we use the same physical models for radial diffusion and pitch-angle scattering from hiss. However, we show that the equilibrium solutions are quite sensitive to various aspects of the physics model employed in the 1973 paper that can be improved, suggesting that additional work needs to be done to understand the two-belt structure.

  9. 3D Simulation of Storm Surge Disaster Based on Scenario Analysis

    Institute of Scientific and Technical Information of China (English)

    王晓玲; 孙小沛; 张胜利; 孙蕊蕊; 李瑞金; 朱泽彪

    2016-01-01

    The occurrence of storm surge disaster is often accompanied with floodplain, overflow, dike breach and other complex phenomena, while current studies on storm surge flooding are more concentrated on the 1D/2D numerical simulation of single disaster scenario (floodplain, overflow or dike breach), ignoring the composite ef-fects of various phenomena. Therefore, considering the uncertainty in the disaster process of storm surge, scenario analysis was firstly proposed to identify the composite disaster scenario including multiple phenomena by analyzing key driving forces, building scenario matrix and deducing situation logic. Secondly, by combining the advantages of k-ωand k-εmodels in the wall treatment, a shear stress transmission k-ωmodel coupled with VOF was proposed to simulate the 3D flood routing for storm surge disaster. Thirdly, risk degree was introduced to make the risk analysis of storm surge disaster. Finally, based on the scenario analysis, four scenarios with different storm surge intensity (100-year and 200-year frequency) were identified in Tianjin Binhai New Area. Then, 3D numerical simulation and risk map were made for the case.

  10. Lorentz boosted frame simulation of Laser wakefield acceleration in quasi-3D geometry

    CERN Document Server

    Yu, Peicheng; Davidson, Asher; Tableman, Adam; Dalichaouch, Thamine; Meyers, Michael D; Tsung, Frank S; Decyk, Viktor K; Fiuza, Frederico; Vieira, Jorge; Fonseca, Ricardo A; Lu, Wei; Silva, Luis O; Mori, Warren B

    2015-01-01

    When modeling laser wakefield acceleration (LWFA) using the particle-in-cell (PIC) algorithm in a Lorentz boosted frame, the plasma is drifting relativistically at $\\beta_b c$ towards the laser, which can lead to a computational speedup of $\\sim \\gamma_b^2=(1-\\beta_b^2)^{-1}$. Meanwhile, when LWFA is modeled in the quasi-3D geometry in which the electromagnetic fields and current are decomposed into a limited number of azimuthal harmonics, speedups are achieved by modeling three dimensional problems with the computation load on the order of two dimensional $r-z$ simulations. Here, we describe how to combine the speed ups from the Lorentz boosted frame and quasi-3D algorithms. The key to the combination is the use of a hybrid Yee-FFT solver in the quasi-3D geometry that can be used to effectively eliminate the Numerical Cerenkov Instability (NCI) that inevitably arises in a Lorentz boosted frame due to the unphysical coupling of Langmuir modes and EM modes of the relativistically drifting plasma in these simul...

  11. Numerical method for calculation of 3D viscous turbomachine flow taking into account stator/rotor unsteady interaction

    Energy Technology Data Exchange (ETDEWEB)

    Rusanov, A.V.; Yershov, S.V. [Institute of Mechanical Engineering Problems of National Academy of Sciences of Ukraine Kharkov (Ukraine)

    1997-12-31

    The numerical method is suggested for the calculation of the 3D periodically unsteady viscous cascade flow evoked by the aerodynamics interaction of blade rows. Such flow is described by the thin-layer Reynolds-averaged unsteady Navier-Stokes equations. The turbulent effects are simulated with the modified Baldwin-Lomax turbulence model. The problem statement allows to consider an unsteady flow through either a single turbo-machine stage or a multi stage turbomachine. The sliding mesh techniques and the time-space non-oscillatory square interpolation are used in axial spacings to calculate the flow in a computational domain that contains the reciprocally moving elements. The gasdynamical equations are integrated numerically with the implicit quasi-monotonous Godunov`s type ENO scheme of the second or third order of accuracy. The suggested numerical method is incorporated in the FlowER code developed by authors for calculations of the 3D viscous compressible flows through multi stage turbomachines. The numerical results are presented for unsteady turbine stage throughflows. The method suggested is shown to simulate qualitatively properly the main unsteady cascade effects in particular the periodically blade loadings, the propagation of stator wakes through rotor blade passage and the unsteady temperature flowfields for stages with cooled stator blades. (author) 21 refs.

  12. 内置螺旋弹簧换热管内流动与传热三维数值模拟%3D numerical simulation of fluid flow and heat transfer in heat exchange tube with helical coil inserts

    Institute of Scientific and Technical Information of China (English)

    徐建民; 彭坤; 胡小霞; 黄伟; 余海燕

    2012-01-01

    In order to investigate single-tube heat transfer enhancement principles of heat exchange tube with helical coil inserts,the flow and heat transfer characteristics were simulated using Fluent software.The effects of spring application on flow field,pressure drop and heat transfer performance were investigated.The pitch of coil spring was set as 2 mm,4 mm,5 mm.The effects of spring pitch on the heat transfer enhancement performance were analyzed.The numerical results showed that the fluid in tube with helical coil inserts presents the helical flow,the cutting speed and the radial velocity of flow near the wall had been improved to some extent.Thus the fluid was mixed completely,boundary layer was disturbed fully and heat was exchanged thoroughly.And the temperature difference between inlet and outlet increased as well,with the maximum increase of 0.9 ℃.Under the conditions of the same Reynolds number,the Nusselt number in tube with helical coil inserts was higher than plain tube,but pressure drop and friction factor increased obviously.With the reduced spring pitch,heat transfer was enhanced and friction factor was increased.%为研究内置螺旋弹簧换热管单管强化传热原理,采用Fluent软件对内置螺旋弹簧换热管内流体流动与传热特性进行数值模拟,考察了弹簧的应用对管内流场、压降和换热性能的影响,并分别取螺旋弹簧节距p分别为2 mm、4 mm、5 mm初步研究了弹簧的节距对强化传热效果的影响。模拟结果显示:弹簧管内流体呈螺旋流动状态,管壁附近流体切向速度和径向速度有一定程度的提高,从而加剧了管内流体的混合及边界层的扰动,充分换热,弹簧管进出口温度差较光管有所增加,最高增加了0.9℃;相同雷诺数条件下,内置螺旋弹簧换热管Nu数均高于光管,而压降和阻力系数相比光管有明显增加,随着弹簧节距减小换热增强而摩擦阻力系数增加。

  13. 含水疏松砂岩隧洞冻结施工三维数值模拟%3-D numerical simulation of frozen construction for tunnel of water content loose sandstone

    Institute of Scientific and Technical Information of China (English)

    任伯锋; 许健; 赵琨

    2014-01-01

    By using artificially ground freezing process,No.7 tunnel export of Gansu YinTao Proj ect Phase-I successfully pass through water bearing loose sandstones formations.On the basis of three-dimen-sional numerical simulation for work progress through the application of the large finite element analysis software ANSYS,this paper analyzed the displacement and stress distributions of frozen soil curtain in the process of tunnel excavation,and put forward in the construction process of some security measures,in or-der to accurately grasp the changes and development of frozen soil thickness of soil temperature,as well as determine the optimal excavation.The analysis results and engineering practice showed that the maximum tension,compression,shear stress calculation values were 3.02,0.15 and 0.97 Mpa,the safety coefficient was 13,1.9 and 1.5 respectively,and its extremum position was determined.It also showed that using freezing method through the water tunnel was reasonable in loose sandstone reservoir.In this paper,some effective measures and reasonable advice were put forward for freezing construction by integrating on-site data monitoring,which provided theoretical support for the freezing construction of No.7 tunnel export of Gansu YinTao Proj ect Phase-I,and set up a reference for similar proj ects meanwhile.%甘肃省引洮供水一期工程总干渠7#引水隧洞出口,采用冻结施工法成功穿越了含水疏松砂岩地层.应用大型有限元软件 ANSYS,对冻结施工过程进行了三维数值模拟,分析了隧洞开挖过程中冻土帷幕的位移和应力分布情况,并提出了在施工过程中的一些安全保障措施,以便准确地掌握冻土温度的变化及冻土帷幕厚度发展状况,从而确定最优的开挖时间.分析结果及工程实践表明:最大拉、压、剪应力计算值分别为3.02、0.15和0.97 Mpa,计算值相对于设计值的安全系数分别为13、1.9 和 1.5,并确定了其极值发生位置.同时也表明

  14. 3d particle simulations on ultra short laser interaction

    Energy Technology Data Exchange (ETDEWEB)

    Nishihara, Katsunobu; Okamoto, Takashi; Yasui, Hidekazu [Osaka Univ., Suita (Japan). Inst. of Laser Engineering

    1998-03-01

    Two topics related to ultra short laser interaction with matter, linear and nonlinear high frequency conductivity of a solid density hydrogen plasma and anisotropic self-focusing of an intense laser in an overdense plasma, have been investigated with the use of 3-d particle codes. Frequency dependence of linear conductivity in a dense plasma is obtained, which shows anomalous conductivity near plasma frequency. Since nonlinear conductivity decreases with v{sub o}{sup -3}, where v{sub o} is a quivering velocity, an optimum amplitude exists leading to a maximum electron heating. Anisotropic self-focusing of a linear polarized intense laser is observed in an overdense plasma. (author)

  15. 3D Simulation of micromechanical behavior of cement paste

    NARCIS (Netherlands)

    Qian, Z.; Ye, G.; Schlangen, H.E.J.G.; Van Breugel, K.

    2010-01-01

    Numerical modeling of fracture processes of brittle materials, such as cement paste, mortar, concrete and rocks, started in the late 1960s when the discrete and smeared cracking models were introduced. In the 1990s, Schlangen and van Mier proposed another numerical model to compensate the drawbacks

  16. Early Earth tectonics: A high-resolution 3D numerical modelling approach

    Science.gov (United States)

    Fischer, R.; Gerya, T.

    2014-12-01

    Early Earth had a higher amount of remaining radiogenic elements as well as a higher amount of leftover primordial heat. Both contributed to the increased temperature in the Earth's interior and it is mainly this increased mantle potential temperature ΔTp that controls the dynamics of the crust and upper mantle and the style of Early Earth tectonics. For a minor increase in temperature ΔTp buckling, delamination and Rayleigh-Taylor style dripping of the plate is observed in addition. For higher temperatures ΔTp > 250 K no subduction can be observed anymore and tectonics is dominated by delamination and Rayleigh-Taylor instabilities. We conduct 3D petrological-thermomechanical numerical modelling experiments of the crust and upper mantle under Early Earth conditions and a plume tectonics model setup. For varying crustal structures and an increased mantle potential temperature ΔTp, a thermal anomaly in the bottom temperature boundary introduces a plume. The model is able to self-sufficiently form depleted mantle lithosphere after repeated melt removal. New crust can be produced in the form of volcanics or plutonics. To simulate differentiation the newly formed crust can have a range in composition from basaltic over dacitic to granitic depending on its source rock. Models show large amounts of subcrustal decompression melting and consequently large amounts of new formed crust which in turn influences the dynamics. Mantle and crust are convecting separately. Dome-shaped plutons of mafic or felsic composition can be observed in the crust. Between these domes elongated belts of upper crust, volcanics and sediments are formed. These structures look similar to, for example, the Kaapvaal craton in South Africa where the elongated shape of the Barberton Greenstone Belt is surrounded by multiple plutons.

  17. 3D Simulation of Dam-break effect on a Solid Wall using Smoothed Particle Hydrodynamics

    CERN Document Server

    Suprijadi,; Naa, Christian; Putra, Anggy Trisnawan

    2013-01-01

    Dam is built for water supply, water flow or flooding control and electricity energy storage, but in other hand, dam is one of the most dangerous natural disaster in many countries including in Indonesia. The impact of dam break in neighbour area and is huge and many flooding in remote area, as happen in Dam Situ Gintung in Tangerang (close to Jakarta) in 2009. Smoothed Particle Hydrodynamics (SPH), is one of numerical method based on Lagrangian grid which is ap- plied in astrophysical simulation may be used to solve the simulation on dam break effect. The development of SPH methods become alternative methods to solving Navier Stokes equation, which is main key in fluid dynamic simulation. In this paper, SPH is developed for supporting solid par- ticles in use for 3D dam break effect (3D-DBE) simulation. Solid particle have been treated same as fluid particles with additional calculation for converting gained position became translation and rotation of solid object in a whole body. With this capability, the r...

  18. A356合金3D Kagome点阵夹芯板低压熔模铸造工艺%Numerical Simulation of A356 Truss Core Panels by Low Pressure Investment Casting

    Institute of Scientific and Technical Information of China (English)

    董多; 朱冬冬; 贺庆; 周兆忠; 倪成员; 魏尊杰

    2016-01-01

    3D-Kagome点阵夹芯板为研究对象,采用Anycasting软件对A356合金点阵夹芯板的低压熔模铸造过程进行数值模拟,研究了浇注系统及主要的工艺参数对A356合金点阵夹芯板成形的影响,并在此基础上进行了工艺优化.结果表明,随着浇注温度提高,金属液的充型能力增加,缺陷减少,但当温度超过770℃时,缩松、缩孔缺陷有增加的趋势.通过模拟计算,确定了点阵夹芯板最佳浇注工艺:浇注温度为770℃,型壳预热温度为200℃,充型速度为40 mm/s,并将模拟试验结果进行试验验证,表明该工艺切实可行.

  19. Building a 3D Virtual Liver: Methods for Simulating Blood Flow and Hepatic Clearance on 3D Structures

    Science.gov (United States)

    Rezania, Vahid; Tuszynski, Jack

    2016-01-01

    In this paper, we develop a spatio-temporal modeling approach to describe blood and drug flow, as well as drug uptake and elimination, on an approximation of the liver. Extending on previously developed computational approaches, we generate an approximation of a liver, which consists of a portal and hepatic vein vasculature structure, embedded in the surrounding liver tissue. The vasculature is generated via constrained constructive optimization, and then converted to a spatial grid of a selected grid size. Estimates for surrounding upscaled lobule tissue properties are then presented appropriate to the same grid size. Simulation of fluid flow and drug metabolism (hepatic clearance) are completed using discretized forms of the relevant convective-diffusive-reactive partial differential equations for these processes. This results in a single stage, uniformly consistent method to simulate equations for blood and drug flow, as well as drug metabolism, on a 3D structure representative of a liver. PMID:27649537

  20. High-order high-density 3D multi-wave multi-component elastic wave field separating forward numerical simulation%高阶高密度三维多波多分量弹性波波场分离正演数值模拟

    Institute of Scientific and Technical Information of China (English)

    陈可洋; 吴清岭; 范兴才; 陈树民; 李来林; 王建民; 关昕; 刘振宽

    2013-01-01

    For the reason that the 2D full elastic wave simulation method cannot correctly depict the real 3D earth medium’s wave re-sponses, 3D full elastic wave field separating forward numerical simulation is carried out, which is the important mean of comprehen-sively recognize and study the seismic wave’s propagating law in 3D earth medium. This paper started from 3D first order velocity-stress elastic wave equation, used high-order (16th) staggered grid finite difference method and PML absorbing boundary condition of inside and outside bordering method and combined with 3D high-order spatial wave separating operator based on divergence and curl law. Taking 3D geologic model as an example, this paper designed and simulated acquisition of the field surface multi-compo-nent seismic data, zero offset VSP records and nonzero offset VSP records, and then carried out the high-accuracy high-density for-ward numerical simulation of 3D full elastic wave fields, and used 3D visualization on the computational results. The theoretical anal-ysis and the numerical experiments showed that the simulation results contained three multi-component hybrid wave field, one pure compress wave field and three pure shear wave field. Every formational interface’s complex wave field such as reflective waves and transformation waves could be obviously recognized and traced within 3D elastic wave snapshots and numerical records. The comput-ed results had perfect numerical accuracy and boundary absorbing effect. The adopted 3D elastic wave field separating method could also guide for the accurate and effective of the practical multi-wave multi-component seismic data wave field separating method and the reverse-time migration imagery. This method could be extended in multi-wave multi-component seismic prospecting.%针对二维全波场弹性波模拟无法准确表征真实的三维地球介质波场响应,为此首次开展了三维弹性波全波场波场分离正演数值模拟研究,该

  1. Assessment of the CATHARE 3-D module for LBLOCA simulation

    Energy Technology Data Exchange (ETDEWEB)

    Pascal Bazin; Isabelle Dor; Christophe Morel [Commissariat a l' Energie Atomique, CEA - GRENOBLE, 17 rue des Martyrs, 38054 GRENOBLE cedex 9 (France)

    2005-07-01

    Full text of publication follows: CATHARE is a best-estimate system code developed by CEA, EDF, FRAMATOME-ANP and IRSN for PWR safety analysis, accident management, definition of plant operating procedure and for research and development. It is also used to quantify conservative margins and for licensing. In the framework of Pressurized Water Reactor (PWR) safety studies, Large Break Loss-Of-Coolant Accident (LB LOCA) prediction is still one of the most important and one of the most difficult problem. The three main phases of a LB LOCA are respectively the blowdown, the refilling and the reflooding phases. During the blowdown, the lower plenum voiding results in water entrainment towards the break by steam flowing from the core. Because of the core radial profile, critical heat flux occur but a nonuniform quenching may take place, which results in a 3-D repartition of the energy stored in the core at the beginning of the reflooding. The refilling phase which starts at the accumulator discharge encounters very complex thermalhydraulic phenomena: very strong condensation which induces instabilities, presence of nitrogen degassing from accumulator water which may have an important effect on the transient, countercurrent flow limitation which occurs in the complex geometry of the annular downcomer. The reflooding phase initial conditions in the core are therefore very non-uniform. The presence of buoyancy driven transverse flows below the quench front assures a very efficient mixing between the fuel assemblies. The quench front progression in the hot assemblies is accelerated by pre-cooling due to water cross-flows just above the quench front. Therefore the clad temperature excursion is moderated in the hot assemblies by an increased water carry-over coming partially from colder assemblies. All these multi-dimensional aspects create a very challenging problem for the CATHARE 3-D module. A good prediction of the lower plenum voiding altogether with the amount of

  2. 3-D Numerical Modeling of Heat Transport Phenomena in Soil under Climatic Conditions of Southern Thailand

    Directory of Open Access Journals (Sweden)

    Jompob WAEWSAK

    2014-12-01

    Full Text Available This paper presents a 3-D numerical modeling of heat transport phenomena in soil due to a change of sensible and latent heat, under the ambient conditions of southern Thailand. The vertical soil temperature profile within 3 m was predicted based on energy balance and 3 modes of heat transfer mechanisms, i.e., conduction, convection, and radiation. Mathematical models for estimation of solar radiation intensity, ambient and sky temperatures, relative humidity, and surface wind velocity were used as model inputs. 3-D numerical implicit finite difference schemes, i.e., forward time, and forward, center, and backward spaces were used for discretizing the set of governing, initial, and boundary condition equations. The set of pseudo-linear equations were then solved using the single step Gauss-Seidel iteration method. Computer code was developed by using MATLAB computer software. The soil physical effects; density, thermal conductivity, emissivity, absorptivity, and latent heat on amplitude of soil temperature variation were investigated. Numerical results were validated in comparison to the experimental results. It was found that 3-D numerical modeling could predict the soil temperature to almost the same degree as results that were obtained by experimentation, especially at a depth of 1 m. The root mean square error at ground surface and at depths of 0.5, 1, 1.5, 2, 2.5 and 3 m were 0.169, 0.153, 0.097, 0.116, 0.120, 0.115, and 0.098, respectively. Furthermore, it was found that variation of soil temperature occurred within 0.75 m only.

  3. The MHD simulations of 3D magnetic reconnection near null point of magnetic configurations

    Energy Technology Data Exchange (ETDEWEB)

    Bulanov, S.V. [Institute of General Physics, Russian Academy of Sciences, Moscow (Russian Federation); Echkina, E.Yu; Inovenkov, I.N.; Pichushkin, V.V. [Moscow State University, Moscow (Russian Federation); Pegoraro, F. [Dipartimento di Fisica dell' Universit' a di Pisa and INFM (Italy)

    2000-07-01

    We investigate 3D plasma flow in the vicinities of critical points of magnetic configurations. The study is based on the analysis of exact self-similar solution of the MHD equations and 3D computer simulations. Both the analytical solution and 3D MHD simulations demonstrate appearance of singular distribution of the electric current density near the magnetic field separatrix surfaces of the form of the current and vortex sheets. (author)

  4. Numerical and Experimental Study of the 3D Effect on Connecting Arm of Vertical Axis Tidal Current Turbine

    Institute of Scientific and Technical Information of China (English)

    郭伟; 康海贵; 陈兵; 谢宇; 王胤

    2016-01-01

    Vertical axis tidal current turbine is a promising device to extract energy from ocean current. One of the important components of the turbine is the connecting arm, which can bring about a significant effect on the pressure distribution along the span of the turbine blade, herein we call it 3D effect. However, so far the effect is rarely reported in the research, moreover, in numerical simulation. In the present study, a 3D numerical model of the turbine with the connecting arm was developed by using FLUENT software compiling the UDF (User Defined Function) command. The simulation results show that the pressure distribution along the span of blade with the connecting arm model is significantly different from those without the connecting arm. To facilitate the validation of numerical model, the laboratory experiment has been carried out by using three different types of NACA aerofoil connecting arm and circle section connecting arm. And results show that the turbine with NACA0012 connecting arm has the best start-up performance which is 0.346 m/s and the peak point of power conversion coefficient is around 0.33. A further study has been performed and a conclusion is drawn that the aerofoil and thickness of connecting arm are the most important factors on the power conversion coefficient of the vertical axis tidal current turbine.

  5. 3D FEM Simulations of a shape rolling process

    NARCIS (Netherlands)

    Wisselink, H.H.; Huetink, J.; Dijk, van M.H.H.; Leeuwen, van A.J.

    2001-01-01

    A finite element model has been developed for the simulation of the shape rolling of stator vanes. These simulations should support the design of rolling tools for new vane types. For the time being only straight vanes (vanes with a constant cross-section over the length) are studied. In that case t

  6. Curvilinear Immersed Boundary Method for Simulating Fluid Structure Interaction with Complex 3D Rigid Bodies.

    Science.gov (United States)

    Borazjani, Iman; Ge, Liang; Sotiropoulos, Fotis

    2008-08-10

    The sharp-interface CURVIB approach of Ge and Sotiropoulos [L. Ge, F. Sotiropoulos, A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries, Journal of Computational Physics 225 (2007) 1782-1809] is extended to simulate fluid structure interaction (FSI) problems involving complex 3D rigid bodies undergoing large structural displacements. The FSI solver adopts the partitioned FSI solution approach and both loose and strong coupling strategies are implemented. The interfaces between immersed bodies and the fluid are discretized with a Lagrangian grid and tracked with an explicit front-tracking approach. An efficient ray-tracing algorithm is developed to quickly identify the relationship between the background grid and the moving bodies. Numerical experiments are carried out for two FSI problems: vortex induced vibration of elastically mounted cylinders and flow through a bileaflet mechanical heart valve at physiologic conditions. For both cases the computed results are in excellent agreement with benchmark simulations and experimental measurements. The numerical experiments suggest that both the properties of the structure (mass, geometry) and the local flow conditions can play an important role in determining the stability of the FSI algorithm. Under certain conditions unconditionally unstable iteration schemes result even when strong coupling FSI is employed. For such cases, however, combining the strong-coupling iteration with under-relaxation in conjunction with the Aitken's acceleration technique is shown to effectively resolve the stability problems. A theoretical analysis is presented to explain the findings of the numerical experiments. It is shown that the ratio of the added mass to the mass of the structure as well as the sign of the local time rate of change of the force or moment imparted on the structure by the fluid determine the stability and convergence of the FSI

  7. An Innovative Hybrid 3D Analytic-Numerical Approach for System Level Modelling of PEM Fuel Cells

    Directory of Open Access Journals (Sweden)

    Gregor Tavčar

    2013-10-01

    Full Text Available The PEM fuel cell model presented in this paper is based on modelling species transport and coupling electrochemical reactions to species transport in an innovative way. Species transport is modelled by obtaining a 2D analytic solution for species concentration distribution in the plane perpendicular to the gas-flow and coupling consecutive 2D solutions by means of a 1D numerical gas-flow model. The 2D solution is devised on a jigsaw puzzle of multiple coupled domains which enables the modelling of parallel straight channel fuel cells with realistic geometries. Electrochemical and other nonlinear phenomena are coupled to the species transport by a routine that uses derivative approximation with prediction-iteration. A hybrid 3D analytic-numerical fuel cell model of a laboratory test fuel cell is presented and evaluated against a professional 3D computational fluid dynamic (CFD simulation tool. This comparative evaluation shows very good agreement between results of the presented model and those of the CFD simulation. Furthermore, high accuracy results are achieved at computational times short enough to be suitable for system level simulations. This computational efficiency is owed to the semi-analytic nature of its species transport modelling and to the efficient computational coupling of electrochemical kinetics and species transport.

  8. Simple 3-D stimulus for motion parallax and its simulation.

    Science.gov (United States)

    Ono, Hiroshi; Chornenkyy, Yevgen; D'Amour, Sarah

    2013-01-01

    Simulation of a given stimulus situation should produce the same perception as the original. Rogers et al (2009 Perception 38 907-911) simulated Wheeler's (1982, PhD thesis, Rutgers University, NJ) motion parallax stimulus and obtained quite different perceptions. Wheeler's observers were unable to reliably report the correct direction of depth, whereas Rogers's were. With three experiments we explored the possible reasons for the discrepancy. Our results suggest that Rogers was able to see depth from the simulation partly due to his experience seeing depth with random dot surfaces.

  9. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    Science.gov (United States)

    Rimjaem, S.; Kusoljariyakul, K.; Thongbai, C.

    2014-02-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012©. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.

  10. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    Energy Technology Data Exchange (ETDEWEB)

    Rimjaem, S., E-mail: sakhorn.rimjaem@cmu.ac.th [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP), Commission on Higher Education, Bangkok 10400 (Thailand); Kusoljariyakul, K.; Thongbai, C. [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP), Commission on Higher Education, Bangkok 10400 (Thailand)

    2014-02-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012{sup ©}. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.

  11. 3D simulations of globules and pillars formation around HII regions: turbulence and shock curvature

    CERN Document Server

    Tremblin, P; Minier, V; Schmidt, W; Schneider, N

    2012-01-01

    We investigate the interplay between the ionization radiation from massive stars and the turbulence inside the surrounding molecular gas thanks to 3D numerical simulations. We used the 3D hydrodynamical code HERACLES to model an initial turbulent medium that is ionized and heated by an ionizing source. Three different simulations are performed with different mean Mach numbers (1, 2 and 4). A non-equilibrium model for the ionization and the associated thermal processes was used. This revealed to be crucial when turbulent ram pressure is of the same order as the ionized-gas pressure. The density structures initiated by the turbulence cause local curvatures of the dense shell formed by the ionization compression. When the curvature of the shell is sufficient, the shell collapse on itself to form a pillar while a smaller curvature leads to the formation of dense clumps that are accelerated with the shell and therefore remain in the shell during the simulation. When the turbulent ram pressure of the cold gas is su...

  12. 3D Modeling and Simulation of Dendritic Growth during Solidification

    Institute of Scientific and Technical Information of China (English)

    Zuojian LIANG; Qingyan XU; Baicheng LIU

    2003-01-01

    A mathematical model for the three-dimensional simulation of free dendritic growth and microstructure evolutionwas developed based on the growth mechanism of crystal grains and basic transfer equations such as heat, massand momentum transfer equations. Ma

  13. 3-d resistive MHD simulations of magnetic reconnection and the tearing mode instability in current sheets

    CERN Document Server

    Murphy, G C; Pelletier, Guy

    2008-01-01

    Magnetic reconnection plays a critical role in many astrophysical processes where high energy emission is observed, e.g. particle acceleration, relativistic accretion powered outflows, pulsar winds and probably in dissipation of Poynting flux in GRBs. The magnetic field acts as a reservoir of energy and can dissipate its energy to thermal and kinetic energy via the tearing mode instability. We have performed 3d nonlinear MHD simulations of the tearing mode instability in a current sheet. Results from a temporal stability analysis in both the linear regime and weakly nonlinear (Rutherford) regime are compared to the numerical simulations. We observe magnetic island formation, island merging and oscillation once the instability has saturated. The growth in the linear regime is exponential in agreement with linear theory. In the second, Rutherford regime the island width grows linearly with time. We find that thermal energy produced in the current sheet strongly dominates the kinetic energy. Finally preliminary ...

  14. Parallel 3-d simulations for porous media models in soil mechanics

    Science.gov (United States)

    Wieners, C.; Ammann, M.; Diebels, S.; Ehlers, W.

    Numerical simulations in 3-d for porous media models in soil mechanics are a difficult task for the engineering modelling as well as for the numerical realization. Here, we present a general numerical scheme for the simulation of two-phase models in combination with an material model via the stress response with a specialized parallel saddle point solver. Therefore, we give a brief introduction into the theoretical background of the Theory of Porous Media and constitute a two-phase model consisting of a porous solid skeleton saturated by a viscous pore-fluid. The material behaviour of the skeleton is assumed to be elasto-viscoplastic. The governing equations are transfered to a weak formulation suitable for the application of the finite element method. Introducing an formulation in terms of the stress response, we define a clear interface between the assembling process and the parallel solver modules. We demonstrate the efficiency of this approach by challenging numerical experiments realized on the Linux Cluster in Chemnitz.

  15. 3D numerical modeling of mantle flow, crustal dynamics and magma genesis associated with slab roll-back and tearing: The eastern Mediterranean case

    OpenAIRE

    Menant, Armel; Sternai, Pietro; Jolivet, Laurent; Guillou-Frottier, Laurent; Gerya, Taras

    2016-01-01

    International audience; Interactions between subduction dynamics and magma genesis have been intensely investigated, resulting in several conceptual models derived from geological, geochemical and geophysical data. To provide physico-chemical constraints on these conceptual models, self-consistent numerical simulations containing testable thermo-mechanical parameters are required, especially considering the three-dimensional (3D) natural complexity of subduction systems. Here, we use a 3D hig...

  16. Numerical modeling of 3-D Position Reconstruction from 3-Axial Planar Spiral Coil Sensor Sensitivity

    CERN Document Server

    Sanjaya, Edi; Viridi, Sparisoma

    2011-01-01

    A sensitivity profile of a planar spiral coil sensor (PSCS) is proposed and use to generate the relation of 3-D position of object observed using three (PSCS)-s, one in each x, y, and z axis to the sensors response. A numerical procedure using self consistent field-like method to reconstruct the real position of observed object from sensor sensitivity is presented and the results are discussed. Unfortunately, the procedure fails to approach the desired results due to the existence of quadratic terms.

  17. Minimal duality breaking in the Kallen Lehman approach to 3D Ising model: A numerical test

    Science.gov (United States)

    Astorino, Marco; Canfora, Fabrizio; Martínez, Cristián; Parisi, Luca

    2008-06-01

    A Kallen-Lehman approach to 3D Ising model is analyzed numerically both at low and high temperatures. It is shown that, even assuming a minimal duality breaking, one can fix three parameters of the model to get a very good agreement with the Monte Carlo results at high temperatures. With the same parameters the agreement is satisfactory both at low and near critical temperatures. How to improve the agreement with Monte Carlo results by introducing a more general duality breaking is shortly discussed.

  18. SIERRA - A 3-D device simulator for reliability modeling

    Science.gov (United States)

    Chern, Jue-Hsien; Arledge, Lawrence A., Jr.; Yang, Ping; Maeda, John T.

    1989-05-01

    SIERRA is a three-dimensional general-purpose semiconductor-device simulation program which serves as a foundation for investigating integrated-circuit (IC) device and reliability issues. This program solves the Poisson and continuity equations in silicon under dc, transient, and small-signal conditions. Executing on a vector/parallel minisupercomputer, SIERRA utilizes a matrix solver which uses an incomplete LU (ILU) preconditioned conjugate gradient square (CGS, BCG) method. The ILU-CGS method provides a good compromise between memory size and convergence rate. The authors have observed a 5x to 7x speedup over standard direct methods in simulations of transient problems containing highly coupled Poisson and continuity equations such as those found in reliability-oriented simulations. The application of SIERRA to parasitic CMOS latchup and dynamic random-access memory single-event-upset studies is described.

  19. 3D Simulations of methane convective storms on Titan's atmosphere

    Science.gov (United States)

    Hueso, R.; Sánchez-Lavega, A.

    2005-08-01

    The arrival of the Cassini/Huygens mission to Titan has opened an unprecedented opportunity to study the atmosphere of this satellite. Under the pressure-temperature conditions on Titan, methane, a large atmospheric component amounting perhaps to a 3-5% of the atmosphere, is close to its triple point, potentially playing a similar role as water on Earth. The Huygens probe has shown a terrain shaped by erosion of probably liquid origin, suggestive of past rain. On the other hand, Voyager IRIS spectroscopic observations of Titan imply a saturated atmosphere of methane (amounting perhaps to 150 covered by methane clouds, if we think on Earth meteorology. However, observations from Earth and Cassini have shown that clouds are localized, transient and fast evolving, in particular in the South Pole (currently in its summer season). This might imply a lack of widespread presence on Titan of nuclei where methane could initiate condensation and particle growth with subsequent precipitation. We investigate different scenarios of moist convective storms on Titan using a complete 3D atmospheric model that incorporates a full microphysics treatment required to study cloud formation processes under a saturated atmosphere with low concentration of condensation nuclei. We study local convective development under a variety of atmospheric conditions: sub-saturation, super-saturation, abundances of condensation nuclei fall, condensation nuclei lifted from the ground or gently falling from the stratosphere. We show that under the appropriate circumstances, precipitation rates comparable to typical tropical storms on Earth can be found. Acknowledgements: This work has been funded by Spanish MCYT PNAYA2003-03216, fondos FEDER and Grupos UPV 15946/2004. R. Hueso acknowledges a post-doc fellowship from Gobierno Vasco.

  20. Humanoid Robot 3 -D Motion Simulation for Hardware Realization

    Institute of Scientific and Technical Information of China (English)

    CAO Xi; ZHAO Qun-fei; MA Pei-sun

    2007-01-01

    In this paper, three dimensions kinematics andkinetics simulation arc discussed for hardware realization ofa physical biped walking-chair robot. The direct and inverseclose-form kinematics solution of the biped walking-chairis deduced. Several gaits are realized with thekinematics solution, including walking straight on levelfloor, going up stair, squatting down and standing up. ZeroMoment Point(ZMP) equation is analyzed considering themovement of the crew. The simulated biped walking-chairrobot is used for mechanical design, gaits development andvalidation before they are tested on real robot.

  1. Numerical investigation of band gaps in 3D printed cantilever-in-mass metamaterials

    Science.gov (United States)

    Qureshi, Awais; Li, Bing; Tan, K. T.

    2016-06-01

    In this research, the negative effective mass behavior of elastic/mechanical metamaterials is exhibited by a cantilever-in-mass structure as a proposed design for creating frequency stopping band gaps, based on local resonance of the internal structure. The mass-in-mass unit cell model is transformed into a cantilever-in-mass model using the Bernoulli-Euler beam theory. An analytical model of the cantilever-in-mass structure is derived and the effects of geometrical dimensions and material parameters to create frequency band gaps are examined. A two-dimensional finite element model is created to validate the analytical results, and excellent agreement is achieved. The analytical model establishes an easily tunable metamaterial design to realize wave attenuation based on locally resonant frequency. To demonstrate feasibility for 3D printing, the analytical model is employed to design and fabricate 3D printable mechanical metamaterial. A three-dimensional numerical experiment is performed using COMSOL Multiphysics to validate the wave attenuation performance. Results show that the cantilever-in-mass metamaterial is capable of mitigating stress waves at the desired resonance frequency. Our study successfully presents the use of one constituent material to create a 3D printed cantilever-in-mass metamaterial with negative effective mass density for stress wave mitigation purposes.

  2. Volatile transport on inhomogeneous surfaces: II. Numerical calculations (VT3D)

    Science.gov (United States)

    Young, Leslie A.

    2017-03-01

    Several distant icy worlds have atmospheres that are in vapor-pressure equilibrium with their surface volatiles, including Pluto, Triton, and, probably, several large KBOs near perihelion. Studies of the volatile and thermal evolution of these have been limited by computational speed, especially for models that treat surfaces that vary with both latitude and longitude. In order to expedite such work, I present a new numerical model for the seasonal behavior of Pluto and Triton which (i) uses initial conditions that improve convergence, (ii) uses an expedient method for handling the transition between global and non-global atmospheres, (iii) includes local conservation of energy and global conservation of mass to partition energy between heating, conduction, and sublimation or condensation, (iv) uses time-stepping algorithms that ensure stability while allowing larger timesteps, and (v) can include longitudinal variability. This model, called VT3D, has been used in Young (2012a, 2012b), Young (2013), Olkin et al. (2015), Young and McKinnon (2013), and French et al. (2015). Many elements of VT3D can be used independently. For example, VT3D can also be used to speed up thermophysical models (Spencer et al., 1989) for bodies without volatiles. Code implementation is included in the supplemental materials and is available from the author.

  3. Simulation of 3D-CRT treatment for lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Thalhofer, Jardel L.; Silva, Ademir X. da; Junior, Juraci R.P., E-mail: jardellt@yahoo.com.br [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil); Rebello, Wilson F., E-mail: rebello@ime.eb.br [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Secao de Engenharia Nuclear; Correa, Samanda C.A., E-mail: samandacristine@uezo.rj.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Souza, Edmilson M., E-mail: emonteiro@nuclear.ufrj.br [Centro Universitario da Zona Oeste (UEZO), Rio de Janeiro, RJ (Brazil). Colegiado de Comutacao e Matematica; Batista, Delano V.S., E-mail: delano@inca.gov.br [Instituto Nacional de Cancer (INCA), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    In radiotherapy treatment for lung cancer, occurs doses deposition in healthy organs. During the treatment planning are calculated some doses due to photons. This dose deposition in healthy organs could induce to the appearance of new cancers foci. The aim of this study was to analyze the equivalent doses in healthy organs of a patient treated by radiotherapy for lung cancer. In order to calculate the doses, was done a computer simulation of radiotherapy treatment for lung cancer, adopting database of the treatment performed by INCA. To perform the simulation was used several tools, among them, the radiation transport code MCNPX, in which was shaped the radiotherapy room and the head from the linear accelerator Varian 2300 C / D, the patient was simulated by Voxel male phantom in Rex,and the treatment protocol adopted considers a beam with energy of 6 MV focusing on three gantry tilt angles (0 deg, 180 deg and 45 deg). In addition, there was variation in the opening of the radiation field according to the angle of inclination. The results of this study point to the organs close to the irradiated area are predominantly affected by the dose due to photons, affecting organs from different body systems, such as esophagus, heart, thymus, spine and lymph nodes. The calculated values demonstrating that the angle of 0 deg was the most responsible for the deposit of unwanted dose. The results showed that the simulations in this paper is developed in accordance with the planning data described in different studies and literature. (author)

  4. 3-D Simulations of MHD Jets - The Stability Problem

    CERN Document Server

    Nakamura, M; Nakamura, Masanori; Meier, David L.

    2003-01-01

    Non-relativistic three-dimensional magnetohydrodynamic simulations of Poynting-flux-dominated (PFD) jets are presented. Our study focuses on the propagation of strongly magnetized hypersonic but sub-Alfv\\'enic flow ($C_{\\rm s}^2 1$), driven in large part by the radial component of the Lorentz force.

  5. 3D COMPOSITIONAL RESERVOIR SIMULATION IN CONJUNCTION WITH UNSTRUCTURED GRIDS

    Directory of Open Access Journals (Sweden)

    A. L. S. Araújo

    Full Text Available Abstract In the last decade, unstructured grids have been a very important step in the development of petroleum reservoir simulators. In fact, the so-called third generation simulators are based on Perpendicular Bisection (PEBI unstructured grids. Nevertheless, the use of PEBI grids is not very general when full anisotropic reservoirs are modeled. Another possibility is the use of the Element based Finite Volume Method (EbFVM. This approach has been tested for several reservoir types and in principle has no limitation in application. In this paper, we implement this approach in an in-house simulator called UTCOMP using four element types: hexahedron, tetrahedron, prism, and pyramid. UTCOMP is a compositional, multiphase/multi-component simulator based on an Implicit Pressure Explicit Composition (IMPEC approach designed to handle several hydrocarbon recovery processes. All properties, except permeability and porosity, are evaluated in each grid vertex. In this work, four case studies were selected to evaluate the implementation, two of them involving irregular geometries. Results are shown in terms of oil and gas rates and saturated gas field.

  6. Enabling Lorentz boosted frame particle-in-cell simulations of laser wakefield acceleration in quasi-3D geometry

    Science.gov (United States)

    Yu, Peicheng; Xu, Xinlu; Davidson, Asher; Tableman, Adam; Dalichaouch, Thamine; Li, Fei; Meyers, Michael D.; An, Weiming; Tsung, Frank S.; Decyk, Viktor K.; Fiuza, Frederico; Vieira, Jorge; Fonseca, Ricardo A.; Lu, Wei; Silva, Luis O.; Mori, Warren B.

    2016-07-01

    When modeling laser wakefield acceleration (LWFA) using the particle-in-cell (PIC) algorithm in a Lorentz boosted frame, the plasma is drifting relativistically at βb c towards the laser, which can lead to a computational speedup of ∼ γb2 = (1 - βb2)-1. Meanwhile, when LWFA is modeled in the quasi-3D geometry in which the electromagnetic fields and current are decomposed into a limited number of azimuthal harmonics, speedups are achieved by modeling three dimensional (3D) problems with the computational loads on the order of two dimensional r - z simulations. Here, we describe a method to combine the speedups from the Lorentz boosted frame and quasi-3D algorithms. The key to the combination is the use of a hybrid Yee-FFT solver in the quasi-3D geometry that significantly mitigates the Numerical Cerenkov Instability (NCI) which inevitably arises in a Lorentz boosted frame due to the unphysical coupling of Langmuir modes and EM modes of the relativistically drifting plasma in these simulations. In addition, based on the space-time distribution of the LWFA data in the lab and boosted frame, we propose to use a moving window to follow the drifting plasma, instead of following the laser driver as is done in the LWFA lab frame simulations, in order to further reduce the computational loads. We describe the details of how the NCI is mitigated for the quasi-3D geometry, the setups for simulations which combine the Lorentz boosted frame, quasi-3D geometry, and the use of a moving window, and compare the results from these simulations against their corresponding lab frame cases. Good agreement is obtained among these sample simulations, particularly when there is no self-trapping, which demonstrates it is possible to combine the Lorentz boosted frame and the quasi-3D algorithms when modeling LWFA. We also discuss the preliminary speedups achieved in these sample simulations.

  7. Geological characterization of Italian reservoirs and numerical 3D modelling of CO2 storage scenarios into saline aquifers

    Science.gov (United States)

    Beretta, S.; Moia, F.; Guandalini, R.; Cappelletti, F.

    2012-04-01

    The research activities carried out by the Environment and Sustainable Development Department of RSE S.p.A. aim to evaluate the feasibility of CO2 geological sequestration in Italy, with particular reference to the storage into saline aquifers. The identification and geological characterization of the Italian potential storage sites, together with the study of the temporal and spatial evolution of the CO2 plume within the caprock-reservoir system, are performed using different modelling tools available in the Integrated Analysis Modelling System (SIAM) entirely powered in RSE. The numerical modelling approach is the only one that allows to investigate the behaviour of the injected CO2 regarding the fluid dynamic, geochemical and geomechanical aspects and effects due to its spread, in order to verify the safety of the process. The SIAM tools allow: - Selection of potential Italian storage sites through geological and geophysical data collected in the GIS-CO2 web database; - Characterization of caprock and aquifer parameters, seismic risk and environmental link for the selected site; - Creation of the 3D simulation model for the selected domain, using the modeller METHODRdS powered by RSE and the mesh generator GMSH; - Simulation of the injection and the displacement of CO2: multiphase fluid 3D dynamics is based on the modified version of TOUGH2 model; - Evaluation of geochemical reaction effects; - Evaluation of geomechanic effects, using the coupled 3D CANT-SD finite elements code; - Detailed local analysis through the use of open source auxiliary tools, such as SHEMAT and FEHM. - 3D graphic analysis of the results. These numerical tools have been successfully used for simulating the injection and the spread of CO2 into several real Italian reservoirs and have allowed to achieve accurate results in terms of effective storage capacity and safety analysis. The 3D geological models represent the high geological complexity of the Italian subsoil, where reservoirs are

  8. 3-D-geomechanical-numerical model of the contemporary crustal stress state in the Alberta Basin

    Directory of Open Access Journals (Sweden)

    K. Reiter

    2014-08-01

    Full Text Available In the context of examining the potential usage of safe and sustainable geothermal energy in the Alberta Basin whether in deep sediments or crystalline rock, the understanding of the in-situ stress state is crucial. It is a key challenge to estimate the 3-D stress state at an arbitrary chosen point in the crust, based on sparsely distributed in-situ stress data. To address this challenge, we present a large-scale 3-D geomechanical-numerical model (700 km × 1200 km × 80 km from a large portion of the Alberta Basin, to provide a 3-D continuous quantification of the contemporary stress orientations and stress magnitudes. To calibrate the model, we use a large database of in-situ stress orientation (321 SHmax as well as stress magnitude data (981 SV, 1720 SHmin and 2 (+11 SHmax from the Alberta Basin. To find the best-fit model we vary the material properties and primarily the kinematic boundary conditions of the model. This study focusses in detail on the statistical calibration procedure, because of the large amount of available data, the diversity of data types, and the importance of the order of data tests. The best-fit model provides the total 3-D stress tensor for nearly the whole Alberta Basin and allows estimation of stress orientation and stress magnitudes in advance of any well. First order implications for the well design and configuration of enhanced geothermal systems are revealed. Systematic deviations of the modelled stress from in-situ data are found for stress orientations in the Peace River- and the Bow Island Arch as well as for leak-off-test magnitudes.

  9. Microbial Enhanced Oil Recovery: 3D Simulation with Gravity Effects

    DEFF Research Database (Denmark)

    Nielsen, Sidsel Marie; Jessen, K.; Shapiro, Alexander

    2010-01-01

    implemented our MEOR model into a compositional streamline simulator based on the standard IMPEC framework (implicit pressure, explicit composition) to decouple flow and reactive transport. The reaction and transport processes are solved simultaneously along each streamline. Gravity effects are implemented......, with all the relevant physical processes included. We have developed a mathematical model describing the process of MEOR, where reactive transport is combined with a simple compositional approach. The model describes the displacement of oil by water containing bacteria, substrate, and the produced...

  10. Numerical nonlinear complex geometrical optics algorithm for the 3D Calderón problem

    DEFF Research Database (Denmark)

    Delbary, Fabrice; Knudsen, Kim

    2014-01-01

    The Calderon problem is the mathematical formulation of the inverse problem in Electrical Impedance Tomography and asks for the uniqueness and reconstruction of an electrical conductivity distribution in a bounded domain from the knowledge of the Dirichlet-to-Neumann map associated to the general...... to the simpler approximations. In addition, convergence of the numerical solution towards the exact solution of the boundary integral equation is proved....... to the generalized Laplace equation. The 3D problem was solved in theory in late 1980s using complex geometrical optics solutions and a scattering transform. Several approximations to the reconstruction method have been suggested and implemented numerically in the literature, but here, for the first time, a complete...... computer implementation of the full nonlinear algorithm is given. First a boundary integral equation is solved by a Nystrom method for the traces of the complex geometrical optics solutions, second the scattering transform is computed and inverted using fast Fourier transform, and finally a boundary value...

  11. NUMERICAL SOLUTIONS OF PARABOLIC PROBLEMS ON UNBOUNDED 3-D SPATIAL DOMAIN

    Institute of Scientific and Technical Information of China (English)

    Hou-de Han; Dong-sheng Yin

    2005-01-01

    In this paper, the numerical solutions of heat equation on 3-D unbounded spatial domain are considered. An artificial boundary Γ is introduced to finite the computational domain. On the artificial boundary Γ, the exact boundary condition and a series of approximating boundary conditions are derived, which are called artificial boundary conditions.By the exact or approximating boundary condition on the artificial boundary, the original problem is reduced to an initial-boundary value problem on the bounded computational domain, which is equivalent or approximating to the original problem. The finite difference method and finite element method are used to solve the reduced problems on the finite computational domain. The numerical results demonstrate that the method given in this paper is effective and feasible.

  12. Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model

    Energy Technology Data Exchange (ETDEWEB)

    Baudron, Anne-Marie, E-mail: anne-marie.baudron@cea.fr [Laboratoire de Recherche Conventionné MANON, CEA/DEN/DANS/DM2S and UPMC-CNRS/LJLL (France); CEA-DRN/DMT/SERMA, CEN-Saclay, 91191 Gif sur Yvette Cedex (France); Lautard, Jean-Jacques, E-mail: jean-jacques.lautard@cea.fr [Laboratoire de Recherche Conventionné MANON, CEA/DEN/DANS/DM2S and UPMC-CNRS/LJLL (France); CEA-DRN/DMT/SERMA, CEN-Saclay, 91191 Gif sur Yvette Cedex (France); Maday, Yvon, E-mail: maday@ann.jussieu.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions and Institut Universitaire de France, F-75005, Paris (France); Laboratoire de Recherche Conventionné MANON, CEA/DEN/DANS/DM2S and UPMC-CNRS/LJLL (France); Brown Univ, Division of Applied Maths, Providence, RI (United States); Riahi, Mohamed Kamel, E-mail: riahi@cmap.polytechnique.fr [Laboratoire de Recherche Conventionné MANON, CEA/DEN/DANS/DM2S and UPMC-CNRS/LJLL (France); CMAP, Inria-Saclay and X-Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex (France); Salomon, Julien, E-mail: salomon@ceremade.dauphine.fr [CEREMADE, Univ Paris-Dauphine, Pl. du Mal. de Lattre de Tassigny, F-75016, Paris (France)

    2014-12-15

    In this paper we present a time-parallel algorithm for the 3D neutrons calculation of a transient model in a nuclear reactor core. The neutrons calculation consists in numerically solving the time dependent diffusion approximation equation, which is a simplified transport equation. The numerical resolution is done with finite elements method based on a tetrahedral meshing of the computational domain, representing the reactor core, and time discretization is achieved using a θ-scheme. The transient model presents moving control rods during the time of the reaction. Therefore, cross-sections (piecewise constants) are taken into account by interpolations with respect to the velocity of the control rods. The parallelism across the time is achieved by an adequate use of the parareal in time algorithm to the handled problem. This parallel method is a predictor corrector scheme that iteratively combines the use of two kinds of numerical propagators, one coarse and one fine. Our method is made efficient by means of a coarse solver defined with large time step and fixed position control rods model, while the fine propagator is assumed to be a high order numerical approximation of the full model. The parallel implementation of our method provides a good scalability of the algorithm. Numerical results show the efficiency of the parareal method on large light water reactor transient model corresponding to the Langenbuch–Maurer–Werner benchmark.

  13. The Idea and Concept of Metos3D: A Marine Ecosystem Toolkit for Optimization and Simulation in 3D

    CERN Document Server

    Piwonski, Jaroslaw

    2014-01-01

    The simulation and parameter optimization of coupled ocean circulation and ecosystem models in three space dimensions is one of the most challenging tasks in numerical climate research. Here we present a scientific toolkit that aims at supporting researchers by defining clear coupling interfaces, providing state-of-the-art numerical methods for simulation, parallelization and optimization while using only freely available and (to a great extend) platform-independent software. Besides defining a user-friendly coupling interface (API) for marine ecosystem or biogeochemical models, we heavily rely on the Portable, Extensible Toolkit for Scientific computation (PETSc) developed at Argonne Nat. Lab. for a wide variety of parallel linear and non-linear solvers and optimizers. We specifically focus on the usage of matrix-free Newton-Krylov methods for the fast computation of steady periodic solutions, and make use of the Transport Matrix Method (TMM) introduced by Khatiwala et al.

  14. 干熄焦炉内三维流动及传热的数值模拟%3D numerical simulation of flow and heat transfer in coke dry quenching process

    Institute of Scientific and Technical Information of China (English)

    常庆明; 靳振伟; 程平平; 李亚伟; 董良君

    2014-01-01

    A mathematical model for quenching gas flow and heat transfer between gas and coke in the coke dry quenching (CDQ) unit was established .In the model ,secondary development was done on the platform of Fluent by employing the user defined functions (UDF) and the user defined scalars (UDS) .The calculation results show a bias flow of quenching gas in the chutes ,i .e .more gas flows to the annular gas passage through the chutes near the outlet with relatively larger velocity .The pres-sure loss of the flowing gas mainly takes place in the cooling chamber ,and the heat transfer rate be-tween gas and coke near the side in the chamber is larger than that at the center .Simulation results find that the heated gas temperature can reach about 1101 K at the gas outlet w hile the cooled coke temperature decreases to about 439 K at the coke outlet w hen the circulating air volume is 200 000 m3/h .This can not only meet the cooling requirement of the coke but also supply the recycle gas with high grade heat for further heating or power generation .%以Fluent软件为平台,通过流体在多孔介质中的流动模型来处理冷却气体在干熄焦炉内的三维流动,借助于UDS和UDF进行二次开发,建立干熄焦炉内冷却气体及焦炭的流动传热模型,并分析了循环风量对气固换热的影响。结果表明,冷却室气体在通过斜道进入环形气道时有偏流现象,即靠近总出口附近的斜道有更多的气体流出,且气流速度最快;气体的压力损失主要发生在冷却室;冷却室内周边的换热效果比中心换热效果要好。模拟计算发现,循环风量为200000 m3/h时,换热后的冷却气体温度为1101 K ,焦炭温度为439 K ,这不仅满足了焦炭的冷却要求,而且还能提供用于供暖或发电的高品位热量的循环气体。

  15. 3 D numerical simulation on leakage of buried natural gas pipeline in valley area%山谷地区埋地天然气管道泄漏三维数值模拟∗

    Institute of Scientific and Technical Information of China (English)

    王新; 马贵阳; 杨玉林; 刘伟; 张月

    2015-01-01

    针对山谷地区埋地天然气泄漏问题,建立三维泄漏模型,将管道模型建立于土壤下,给出山谷地区风随海拔高度变化边界条件,在此基础上对山谷地区高含硫天然气泄漏问题进行六组模拟。结果表明:六组工况下硫化氢的危险区域全部大于甲烷的危险区域,突显出天然气泄漏问题中硫化氢的危害性之大。风速对危险范围的影响很大,在山谷地形条件下危险范围大小与风速大小成反比,且风速越大,危险范围越小。三个泄漏口方向中漏口斜向上45°时空气中泄漏气体的总质量分数最大,扩散的范围最大,但部分范围内并未达到泄漏气体的危险浓度,危险范围比实际扩散范围要小,漏口斜向下45°时危险区域是最大的,漏口水平介于中间。%Aiming at the problems in leakage and dispersion of buried gas pipeline in valley area, a three-dimen-sional leakage mode was established with building the pipeline model under the soil. The boundary conditions of wind changes with altitude in the valley area were given, on this basis, 6 sets of simulation were made on leakage of natural gas with high hydrogen sulfide in the valley area. The results showed that:the danger zones of hydrogen sulfide are all greater than those of methane in the 6 sets of conditions, which highlighted the dangers of hydrogen sulfide in natural gas leakage problem. Wind speed has much effect on the danger range, under the condition of valley terrain, the size of danger range is inversely proportional to wind speed, the larger the wind speed, the smal-ler the risk. In the three directions of leakage hole, when the direction of leakage hole is 45° oblique to upward, the total mass fraction of leaking gas in the air is the maximum, and the diffusion range is the largest, but in some range, it does not reach the dangerous concentration of leaking gas, and the danger range is smaller than the practi

  16. Photorealistic 3D omni-directional stereo simulator

    Science.gov (United States)

    Reiners, Dirk; Cruz-Neira, Carolina; Neumann, Carsten

    2015-03-01

    While a lot of areas in VR have made significant advances, visual rendering in VR is often not quite keeping up with the state of the art. There are many reasons for this, but one way to alleviate some of the issues is by using ray tracing instead of rasterization for image generation. Contrary to popular belief, ray tracing is a realistic, competitive technology nowadays. This paper looks at the pros and cons of using ray tracing and demonstrates the feasibility of employing it using the example of a helicopter flight simulator image generator.

  17. 3D General Relativistic Simulations of Coalescing Binary Neutron Stars

    CERN Document Server

    Oohara, K I; Nakamura, Takashi; Oohara, Ken-ichi

    1999-01-01

    We develop a 3 dimensional computer code to study a coalescing neutron star binary. The code can currently follow the evolution up to two stars begin to merge from two spherical stars of mass 1 solar mass and radius 8.9km with separation 35.4km. As for coordinate conditions, we use conformal slicing and pseudo-minimal distortion conditions. The evolution equations for the metric is integrated using the CIP method while the van Leer's scheme is used to integrate the equations for the matter. We present a few results of our simulations including gravitational radiation.

  18. 3D Simulation of a Medium scale Pool Fire

    Directory of Open Access Journals (Sweden)

    Naveen S

    2014-04-01

    Full Text Available Pool fires represent the most frequently encountered accidents of the different types of fires that are known to occur in the Chemical Process Industry (CPI. Exhaustive analysis of the history of past accidents in CPI's that have occurred across the world since early 1900's reveal that pool fires are major threats to industrial safety, and result in huge losses of life and property. Studies have been going on to study the interaction mechanisms of the fire and models have been developed which were mostly empirical, zone models and field models developed according to and based on the conditions available for the experiment. The experiment considered consisted of a 2-m-diameter methanol pool in an unconfined area with a cross-wind velocity of 13 m/s. Steady state simulations with uniform time step were done using computational fluid dynamics and the simulations showed sensitivity to the grid refinement, size of the pool and wind profiles.Comparison between calculated and experimental results are also made.Turbulence models were also investigated, and was observed that RNG model gave more predictable results for the test cases to the accuracy of almost 80%.

  19. A 3-d simulation of the atmospheric neutrinos

    CERN Document Server

    Favier, Jean; Vialle, J P

    2003-01-01

    The first AMS flight in June 1998 on board of the space shuttle Discovery at an altitude of approximately 380 km unveiled unexpected features of the cosmic rays spectra below the Earth geomagnetic cut-off. In addition to a secondary flux of particles at all latitude, a ring of high energy particles (up to 6 GeV) and an anomalous ratio e+/e- as high as 4 was observed near the geomagnetic equator. This paper describes a simulation of the interaction of primary cosmic rays with atmosphere in which the effect of the Earth magnetic field is included . Using the GEANT3 package for the tracking of particles with the GFLUKA associated package for the physics of interactions, this simulation reproduces quite well the AMS experimental results and the CAPRICE muon data at ground level. The predictions of this model for the flux of atmospheric neutrino are compared with the Super-Kamiokande results and with the results of other atmospheric neutrino models.

  20. A 3-D nonisothermal flow simulation and pulling force model for injection pultrusion processes

    Science.gov (United States)

    Mustafa, Ibrahim

    1998-12-01

    Injected Pultrusion (IP) is an efficient way of producing high quality, low cost, high volume and constant cross-section polymeric composites. This process has been developed recently, and the efforts to optimize it are still underway. This work is related to the development of a 3-D non-isothermal flow model for the IP processes. The governing equations for transport of mass, momentum and, energy are formulated by using a local volume averaging approach, and the Finite Element/Control Volume method is used to solve the system of equations numerically. The chemical species balance equation is solved in the Lagrangian frame of reference whereas the energy equation is solved using Galerkin, SU (Streamline Upwind), and SUPG (Streamline Upwind Petrov Galerkin) approaches. By varying degrees of freedom and the flow rates of the resin, it is shown that at high Peclet numbers the SUPG formulation performs better than the SU and the Galerkin methods in all cases. The 3-D model predictions for degree of cure and temperature are compared with a one dimensional analytical solution and the results are found satisfactory. Moreover, by varying the Brinkman Number, it is shown that the effect of viscous dissipation is insignificant. The 3-D flow simulations have been carried out for both thin and thick parts and the results are compared with the 2-D model. It is shown that for thick parts 2-D simulations render erroneous results. The effect of changing permeability on the flow fronts is also addressed. The effect of increasing taper angle on the model prediction is also investigated. A parametric study is conducted to isolate optimum conditions for both isothermal and non-isothermal cases using a straight rectangular die and a die with a tapered inlet. Finally, a simple pulling force model is developed and the pulling force required to pull the carbon-epoxy fiber resin system is estimated for dies of varying tapered inlet.

  1. Numerical Propulsion System Simulation

    Science.gov (United States)

    Naiman, Cynthia

    2006-01-01

    The NASA Glenn Research Center, in partnership with the aerospace industry, other government agencies, and academia, is leading the effort to develop an advanced multidisciplinary analysis environment for aerospace propulsion systems called the Numerical Propulsion System Simulation (NPSS). NPSS is a framework for performing analysis of complex systems. The initial development of NPSS focused on the analysis and design of airbreathing aircraft engines, but the resulting NPSS framework may be applied to any system, for example: aerospace, rockets, hypersonics, power and propulsion, fuel cells, ground based power, and even human system modeling. NPSS provides increased flexibility for the user, which reduces the total development time and cost. It is currently being extended to support the NASA Aeronautics Research Mission Directorate Fundamental Aeronautics Program and the Advanced Virtual Engine Test Cell (AVETeC). NPSS focuses on the integration of multiple disciplines such as aerodynamics, structure, and heat transfer with numerical zooming on component codes. Zooming is the coupling of analyses at various levels of detail. NPSS development includes capabilities to facilitate collaborative engineering. The NPSS will provide improved tools to develop custom components and to use capability for zooming to higher fidelity codes, coupling to multidiscipline codes, transmitting secure data, and distributing simulations across different platforms. These powerful capabilities extend NPSS from a zero-dimensional simulation tool to a multi-fidelity, multidiscipline system-level simulation tool for the full development life cycle.

  2. 3D Computational Simulation of Calcium Leaching in Cement Matrices

    Directory of Open Access Journals (Sweden)

    Gaitero, J. J.

    2014-12-01

    Full Text Available Calcium leaching is a degradation process consisting in progressive dissolution of the cement paste by migration of calcium atoms to the aggressive solution. It is therefore, a complex phenomenon involving several phases and dissolution and diffusion processes simultaneously. Along this work, a new computational scheme for the simulation of the degradation process in three dimensions was developed and tested. The toolkit was used to simulate accelerated calcium leaching by a 6M ammonium nitrate solution in cement matrices. The obtained outputs were the three dimensional representation of the matrix and the physicochemical properties of individual phases as a consequence of the degradation process. This not only makes it possible to study the evolution of such properties as a function of time but also as a function of the position within the matrix. The obtained results are in good agreement with experimental values of the elastic modulus in degraded and undegraded samples.El lixiviado de calcio es un proceso de degradación consistente en la disolución progresiva de la pasta de cemento por la migración de los átomos de calcio a la disolución agresiva. Se trata por tanto de un fenómeno complejo que involucra simultáneamente diferentes fases y procesos de disolución y difusión. En este trabajo se desarrolló y probó una nueva herramienta computacional para la simulación del proceso de degradación en tres dimensiones. Para ello se simuló el lixiviado de calcio acelerado provocado por una disolución de nitrato amónico 6M en matrices de cemento. Como resultado se obtuvieron la representación tridimensional de la matriz y las propiedades físico-químicas sus fases a lo largo del tiempo. Esto permitió estudiar la evolución de dichas propiedades a lo largo del proceso de degradación así como en función de su posición dentro de la matriz. Los resultados obtenidos coinciden con los valores experimentales del módulo elástico tanto

  3. Development of 3D beam-beam simulation for the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Stern, E.; Amundson, J.; Spentzouris, P.; Valishev, A.; /Fermilab; Qiang, J.; Ryne, R.; /LBL, Berkeley

    2007-06-01

    We present status of development of a 3D Beam-Beam simulation code for simulating the Fermilab Tevatron collider. The essential features of the code are 3D particle-in-cell Poisson solver for calculating the Beam-Beam electromagnetic interactions with additional modules for linear optics, machine impedance and chromaticity, and multiple bunch tracking. The simulations match synchrobetatron oscillations measured at the VEPP-2M collider. The impedance calculations show beam instability development consistent with analytic expressions.

  4. A Numerical Study on the Thermal Conductivity of 3D Woven C/C Composites at High Temperature

    Science.gov (United States)

    Shigang, Ai; Rujie, He; Yongmao, Pei

    2015-12-01

    Experimental data for Carbon/Carbon (C/C) constituent materials are combined with a three dimensional steady state heat transfer finite element analysis to demonstrate the average in-plane and out-of-plane thermal conductivities (TCs) of C/C composites. The finite element analysis is carried out at two distinct length scales: (a) a micro scale comparable with the diameter of carbon fibres and (b) a meso scale comparable with the carbon fibre yarns. Micro-scale model calculate the TCs at the fibre yarn scale in the three orthogonal directions ( x, y and z). The output results from the micro-scale model are then incorporated in the meso-scale model to obtain the global TCs of the 3D C/C composite. The simulation results are quite consistent with the theoretical and experimental counterparts reported in references. Based on the numerical approach, TCs of the 3D C/C composite are calculated from 300 to 2500 K. Particular attention is given in elucidating the variations of the TCs with temperature. The multi-scale models provide an efficient approach to predict the TCs of 3D textile materials, which is helpful for the thermodynamic property analysis and structure design of the C/C composites.

  5. 3D Design & Simulation of Printed Dipole Antenna

    Directory of Open Access Journals (Sweden)

    Protap Mollick

    2015-09-01

    Full Text Available This paper represents design of a printed dipole antenna with both lambda by 2 & half dipole. In this research paper the impedance increases with combined design on the FR-4 substrate and ground plane. The main feature of printed dipole antenna is there is a feeder between the radiant elements. Average impedance about 73 ohm, which is very large form other antenna. For vertical earth position impedance decreases about 36 ohm. Applied AC voltage forwarding bias dipole antenna gains are high but when reverse bias condition gains are low. Between ropes to station there is need extra insulator that abate high impedance current flow to dipole antenna. Feed lines are approximately 75 ohm and the main length between two poles are 143 meter. The radius of two pole line is very thin it’s about 2.06 meter. Transmission lines are added in the last portion of feed lines, which situated apposite of two poles. Designs are simulated by hfss and solving equations are done my matlab.

  6. Current systems of coronal loops in 3D MHD simulations

    CERN Document Server

    Warnecke, Jörn; Bingert, Sven; Peter, Hardi

    2016-01-01

    We study the magnetic field and current structure associated with a coronal loop. Through this we investigate to what extent the assumptions of a force-free magnetic field break down. We analyse a three-dimensional MHD model of the solar corona in an emerging active region with the focus on the structure of the forming coronal loops. The lower boundary of this simulation is taken from a model of an emerging active region. As a consequence of the emerging magnetic flux a coronal loop formes self-consistently. We investigate the current density along magnetic field lines inside (and outside) this loop and study the magnetic and plasma properties in and around this loop. The loop is defined as the bundle of field lines that coincides with enhanced emission in extreme UV. We find that the total current along the emerging loop changes its sign from being antiparallel to parallel to the magnetic field. Around the loop the currents form a complex non-force-free helical structure. This is directly related to a bipola...

  7. Seismic Wave Amplification in 3D Alluvial Basins: 3D/1D Amplification Ratios from Fast Multipole BEM Simulations

    CERN Document Server

    Fajardo, Kristel C Meza; Chaillat, Stéphanie; Lenti, Luca

    2016-01-01

    In this work, we study seismic wave amplification in alluvial basins having 3D standard geometries through the Fast Multipole Boundary Element Method in the frequency domain. We investigate how much 3D amplification differs from the 1D (horizontal layering) case. Considering incident fields of plane harmonic waves, we examine the relationships between the amplification level and the most relevant physical parameters of the problem (impedance contrast, 3D aspect ratio, vertical and oblique incidence of plane waves). The FMBEM results show that the most important parameters for wave amplification are the impedance contrast and the so-called equivalent shape ratio. Using these two parameters, we derive simple rules to compute the fundamental frequency for various 3D basin shapes and the corresponding 3D/1D amplification factor for 5% damping. Effects on amplification due to 3D basin asymmetry are also studied and incorporated in the derived rules.

  8. Implementation of 3D Lattice Monte Carlo Simulation on a Cluster of Symmetric Multiprocessors

    Institute of Scientific and Technical Information of China (English)

    雷咏梅; 蒋英; 等

    2002-01-01

    This paper presents a new approach to parallelize 3D lattice Monte Carlo algorithms used in the numerical simulation of polymer on ZiQiang 2000-a cluster of symmetric multiprocessors(SMPs).The combined load for cell and energy calculations over the time step is balanced together to form a single spatial decomposition.Basic aspects and strategies of running Monte Carlo calculations on parallel computers are studied.Different steps involved in porting the software on a parallel architecture based on ZiQiang 2000 running under Linux and MPI are described briefly.It is found that parallelization becomes more advantageous when either the lattice is very large or the model contains many cells and chains.

  9. Simulation of 3D material flow in friction stir welding of AA6061-T6

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhao; Zhang Hongwu

    2008-01-01

    This paper reports the numerical simulation of the 3D material flow in friction stir welding process by using finite element methods based on solid mechanics. It is found that the material flow behind the pin is much faster than that in front of the pin. The material in front of the pin moves upwards and then rotates with the pin due to the effect of the rotating tool. Behind of the pin, the material moves downwards. This process of material movement is the real cause to make the friction stir welding process continuing successfully. With the increase of the translational velocity or the rotational velocity of the pin, the material flow becomes faster.

  10. GPU-advanced 3D electromagnetic simulations of superconductors in the Ginzburg-Landau formalism

    Science.gov (United States)

    Stošić, Darko; Stošić, Dušan; Ludermir, Teresa; Stošić, Borko; Milošević, Milorad V.

    2016-10-01

    Ginzburg-Landau theory is one of the most powerful phenomenological theories in physics, with particular predictive value in superconductivity. The formalism solves coupled nonlinear differential equations for both the electronic and magnetic responsiveness of a given superconductor to external electromagnetic excitations. With order parameter varying on the short scale of the coherence length, and the magnetic field being long-range, the numerical handling of 3D simulations becomes extremely challenging and time-consuming for realistic samples. Here we show precisely how one can employ graphics-processing units (GPUs) for this type of calculations, and obtain physics answers of interest in a reasonable time-frame - with speedup of over 100× compared to best available CPU implementations of the theory on a 2563 grid.

  11. GPU-advanced 3D electromagnetic simulations of superconductors in the Ginzburg–Landau formalism

    Energy Technology Data Exchange (ETDEWEB)

    Stošić, Darko; Stošić, Dušan; Ludermir, Teresa [Centro de Informática, Universidade Federal de Pernambuco, Av. Luiz Freire s/n, 50670-901, Recife, PE (Brazil); Stošić, Borko [Departamento de Estatística e Informática, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900 Recife, PE (Brazil); Milošević, Milorad V., E-mail: milorad.milosevic@uantwerpen.be [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)

    2016-10-01

    Ginzburg–Landau theory is one of the most powerful phenomenological theories in physics, with particular predictive value in superconductivity. The formalism solves coupled nonlinear differential equations for both the electronic and magnetic responsiveness of a given superconductor to external electromagnetic excitations. With order parameter varying on the short scale of the coherence length, and the magnetic field being long-range, the numerical handling of 3D simulations becomes extremely challenging and time-consuming for realistic samples. Here we show precisely how one can employ graphics-processing units (GPUs) for this type of calculations, and obtain physics answers of interest in a reasonable time-frame – with speedup of over 100× compared to best available CPU implementations of the theory on a 256{sup 3} grid.

  12. Dynamic earthquake rupture simulations on nonplanar faults embedded in 3D geometrically complex, heterogeneous elastic solids

    Energy Technology Data Exchange (ETDEWEB)

    Duru, Kenneth, E-mail: kduru@stanford.edu [Department of Geophysics, Stanford University, Stanford, CA (United States); Dunham, Eric M. [Department of Geophysics, Stanford University, Stanford, CA (United States); Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA (United States)

    2016-01-15

    Dynamic propagation of shear ruptures on a frictional interface in an elastic solid is a useful idealization of natural earthquakes. The conditions relating discontinuities in particle velocities across fault zones and tractions acting on the fault are often expressed as nonlinear friction laws. The corresponding initial boundary value problems are both numerically and computationally challenging. In addition, seismic waves generated by earthquake ruptures must be propagated for many wavelengths away from the fault. Therefore, reliable and efficient numerical simulations require both provably stable and high order accurate numerical methods. We present a high order accurate finite difference method for: a) enforcing nonlinear friction laws, in a consistent and provably stable manner, suitable for efficient explicit time integration; b) dynamic propagation of earthquake ruptures along nonplanar faults; and c) accurate propagation of seismic waves in heterogeneous media with free surface topography. We solve the first order form of the 3D elastic wave equation on a boundary-conforming curvilinear mesh, in terms of particle velocities and stresses that are collocated in space and time, using summation-by-parts (SBP) finite difference operators in space. Boundary and interface conditions are imposed weakly using penalties. By deriving semi-discrete energy estimates analogous to the continuous energy estimates we prove numerical stability. The finite difference stencils used in this paper are sixth order accurate in the interior and third order accurate close to the boundaries. However, the method is applicable to any spatial operator with a diagonal norm satisfying the SBP property. Time stepping is performed with a 4th order accurate explicit low storage Runge–Kutta scheme, thus yielding a globally fourth order accurate method in both space and time. We show numerical simulations on band limited self-similar fractal faults revealing the complexity of rupture

  13. Computer-assisted three-dimensional surgical planning and simulation: 3D virtual osteotomy.

    Science.gov (United States)

    Xia, J; Ip, H H; Samman, N; Wang, D; Kot, C S; Yeung, R W; Tideman, H

    2000-02-01

    A computer-assisted three-dimensional virtual osteotomy system for orthognathic surgery (CAVOS) is presented. The virtual reality workbench is used for surgical planning. The surgeon immerses in a virtual reality environment with stereo eyewear, holds a virtual "scalpel" (3D Mouse) and operates on a "real" patient (3D visualization) to obtain pre-surgical prediction (3D bony segment movements). Virtual surgery on a computer-generated 3D head model is simulated and can be visualized from any arbitrary viewing point in a personal computer system.

  14. Ash3d: A finite-volume, conservative numerical model for ash transport and tephra deposition

    Science.gov (United States)

    Schwaiger, Hans F.; Denlinger, Roger P.; Mastin, Larry G.

    2012-01-01

    We develop a transient, 3-D Eulerian model (Ash3d) to predict airborne volcanic ash concentration and tephra deposition during volcanic eruptions. This model simulates downwind advection, turbulent diffusion, and settling of ash injected into the atmosphere by a volcanic eruption column. Ash advection is calculated using time-varying pre-existing wind data and a robust, high-order, finite-volume method. Our routine is mass-conservative and uses the coordinate system of the wind data, either a Cartesian system local to the volcano or a global spherical system for the Earth. Volcanic ash is specified with an arbitrary number of grain sizes, which affects the fall velocity, distribution and duration of transport. Above the source volcano, the vertical mass distribution with elevation is calculated using a Suzuki distribution for a given plume height, eruptive volume, and eruption duration. Multiple eruptions separated in time may be included in a single simulation. We test the model using analytical solutions for transport. Comparisons of the predicted and observed ash distributions for the 18 August 1992 eruption of Mt. Spurr in Alaska demonstrate to the efficacy and efficiency of the routine.

  15. An experimental analysis for the impact of 3D variation assi- milation of satellite data on typhoon track simulation

    Institute of Scientific and Technical Information of China (English)

    XIE Hongqin; WU Zengmao; GAO Shanhong

    2004-01-01

    A series of test simulations are performed to evaluate the impact of satellite-derived meteorological data on numerical typhoon track prediction. Geostationary meteorological satellite (GMS-5) and NOAA's TIROS operational vertical sounder (TOVS) observations are used in the experiments. A three-dimensional variational (3D-Var) assimilation scheme is developed to assimilate the satellite data directly into the Penn State-NCAR nonhydrostatic meteorological model (MM5). Three-dimensional objective analysis fields based on the T213 results and conventional observations are employed as the background fields of the initialization. The comparisons of the simulated typhoon tracks are carried out, which correspond respectively to assimilate different kinds of satellite data. It is found that, compared with the experiment without satellite data assimilation, the 3D-Var assimilation schemes lead to significant improvements on typhoon track prediction. Track errors reduce from approximately 25% at 24 h to approximately 30% at 48 h for 3D-Var assimilation experiments.

  16. Efficient triple-grid multiscale finite element method for 3D groundwater flow simulation in heterogeneous porous media

    Science.gov (United States)

    Xie, Yifan; Wu, Jichun; Nan, Tongchao; Xue, Yuqun; Xie, Chunhong; Ji, Haifeng

    2017-03-01

    In this paper, an efficient triple-grid multiscale finite element method (ETMSFEM) is proposed for 3D groundwater simulation in heterogeneous porous media. The main idea of this method is to employ new 3D linear base functions and the domain decomposition technique to solve the local reduced elliptical problem, thereby simplifying the base function construction process and improving the efficiency. Furthermore, by using the ETMSFEM base functions, this method can solve Darcy's equation with high efficiency to obtain a continuous velocity field. Therefore, this method can considerably reduce the computational cost of solving for heads and velocities, which is crucial for large-scale 3D groundwater simulations. In the application section, we present numerical examples to compare the ETMSFEM with several classical methods to demonstrate its efficiency and effectiveness.

  17. Early Earth plume-lid tectonics: A high-resolution 3D numerical modelling approach

    Science.gov (United States)

    Fischer, R.; Gerya, T.

    2016-10-01

    Geological-geochemical evidence point towards higher mantle potential temperature and a different type of tectonics (global plume-lid tectonics) in the early Earth (>3.2 Ga) compared to the present day (global plate tectonics). In order to investigate tectono-magmatic processes associated with plume-lid tectonics and crustal growth under hotter mantle temperature conditions, we conduct a series of 3D high-resolution magmatic-thermomechanical models with the finite-difference code I3ELVIS. No external plate tectonic forces are applied to isolate 3D effects of various plume-lithosphere and crust-mantle interactions. Results of the numerical experiments show two distinct phases in coupled crust-mantle evolution: (1) a longer (80-100 Myr) and relatively quiet 'growth phase' which is marked by growth of crust and lithosphere, followed by (2) a short (∼20 Myr) and catastrophic 'removal phase', where unstable parts of the crust and mantle lithosphere are removed by eclogitic dripping and later delamination. This modelling suggests that the early Earth plume-lid tectonic regime followed a pattern of episodic growth and removal also called episodic overturn with a periodicity of ∼100 Myr.

  18. 3D printing device for numerical control machine and wood deposition

    Directory of Open Access Journals (Sweden)

    Julien Gardan

    2014-12-01

    Full Text Available The paper presents the development of a new sustainable approach in additive manufacturing adapted on a Numerical Control (NC machining. Wood has several advantages that are transferable to various derivatives allowing the introduction of sustainable material into the product lifecycle. The application involves the integration of wood pulp into rapid prototyping solutions. Wood is the main material studied for its ecological aspect. The primary goal was to create reconstituted wood objects through a rapid manufacturing. Additive manufacturing technology is most commonly used for modeling, prototyping, tooling through an exclusive machine or 3D printer. An overall review and an analysis of technologies show that the additive manufacturing presents some little independent solutions [9] [12]. The problem studied especially the additive manufacturing limits to produce an ecological product with materials from biomass. The study developed a 3d printing head as solution for shaping wood pulp or powder materials. Some technological problematic require enslavement to the NC controller, the programming building of model, and the realization of wood pulp. This work also presents a wood pulping process characterized by adding wood flour and starch. A machine implementation and some application examples used for its development are presented.

  19. Nanoelectronic Modeling (NEMO): Moving from commercial grade 1-D simulation to prototype 3-D simulation

    Science.gov (United States)

    Klimeck, Gerhard

    2001-03-01

    The quantum mechanical functionality of commercially pursued heterostructure devices such as resonant tunneling diodes (RTDs), quantum well infrared photodetectors, and quantum well lasers are enabled by material variations on an atomic scale. The creation of these heterostructure devices is realized in a vast design space of material compositions, layer thicknesses and doping profiles. The full experimental exploration of this design space is unfeasible and a reliable design tool is needed. The Nanoelectronic Modeling tool (NEMO) is one of the first commercial grade attempts for such a modeling tool. NEMO was developed as a general-purpose quantum mechanics-based 1-D device design and analysis tool from 1993-97 by the Central Research Laboratory of Texas Instruments (later Raytheon Systems). NEMO enables(R. Lake, G. Klimeck, R. C. Bowen, and D. Jovanovic, J. Appl. Phys. 81), 7845 (1997). the fundamentally sound inclusion of the required(G. Klimeck et al.), in the 1997 55th Annual Device Research Conference Digest, (IEEE, NJ, 1997), p. 92^,(R. C. Bowen et al.), J. Appl. Phys 81, 3207 (1997). physics: bandstructure, scattering, and charge self-consistency based on the non-equilibrium Green function approach. A new class of devices which require full 3-D quantum mechanics based models is starting to emerge: quantum dots, or in general semiconductor based deca-nano devices. We are currently building a 3-D modeling tool based on NEMO to include the important physics to understand electronic stated in such superscaled structures. This presentation will overview various facets of the NEMO 1-D tool such electron transport physics in RTDs, numerical technology, software engineering and graphical user interface. The lessons learned from that work are now entering the NEMO 3-D development and first results using the NEMO 3-D prototype will be shown. More information about the publically available NEMO 1-D executables can be found at http://hpc.jpl.nasa.gov/ PEP/gekco/nemo

  20. 3D cut-cell modelling for high-resolution atmospheric simulations

    CERN Document Server

    Yamazaki, H; Nikiforakis, N

    2015-01-01

    With the recent, rapid development of computer technology, the resolution of atmospheric numerical models has increased substantially. As a result, steep gradients in mountainous terrain are now being resolved in high-resolution models. This results in large truncation errors in those models using terrain-following coordinates. In this study, a new 3D Cartesian coordinate non-hydrostatic atmospheric model is developed. A cut-cell representation of topography based on finite-volume discretization is combined with a cell-merging approach, in which small cut-cells are merged with neighboring cells either vertically or horizontally. In addition, a block-structured mesh-refinement technique achieves a variable resolution on the model grid with the finest resolution occurring close to the terrain surface. The model successfully reproduces a flow over a 3D bell-shaped hill that shows a good agreement with the flow predicted by the linear theory. The ability of the model to simulate flows over steep terrain is demons...

  1. Numerical Investigation of Nozzle Geometry Effect on Turbulent 3-D Water Offset Jet Flows

    Directory of Open Access Journals (Sweden)

    Negar Mohammad Aliha

    2016-01-01

    Full Text Available Using the Yang-Shih low Reynolds k-ε turbulence model, the mean flow field of a turbulent offset jet issuing from a long circular pipe was numerically investigated. The experimental results were used to verify the numerical results such as decay rate of streamwise velocity, locus of maximum streamwise velocity, jet half width in the wall normal and lateral directions, and jet velocity profiles. The present study focused attention on the influence of nozzle geometry on the evolution of a 3D incompressible turbulent offset jet. Circular, square-shaped, and rectangular nozzles were considered here. A comparison between the mean flow characteristics of offset jets issuing from circular and square-shaped nozzles, which had equal area and mean exit velocity, were made numerically. Moreover, the effect of aspect ratio of rectangular nozzles on the main features of the flow was investigated. It was shown that the spread rate, flow entrainment, and mixing rate of an offset jet issuing from circular nozzle are lower than square-shaped one. In addition, it was demonstrated that the aspect ratio of the rectangular nozzles only affects the mean flow field of the offset jet in the near field (up to 15 times greater than equivalent diameter of the nozzles. Furthermore, other parameters including the wall shear stress, flow entrainment and the length of potential core were also investigated.

  2. Full 3-D numerical modeling of borehole electric image logging and the evaluation model of fracture

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A full 3-D finite element method numerical modeling program is written based on the principle and technical specification of borehole electric image well logging tool. The response of well logging is computed in the formation media model with a single fracture. The effect of changing fracture aperture and resistivity ratio to the logging response is discussed. The identification ability for two parallel fractures is also present. A quantitative evaluation formula of fracture aperture from borehole electric image logging data is set up. A case study of the model well is done to verify the accuracy of the for-mula. The result indicates that the formula is more accurate than the foreign one.

  3. Volatile transport on inhomogeneous surfaces: II. Numerical calculations (VT3D)

    CERN Document Server

    Young, Leslie A

    2015-01-01

    Several distant icy worlds have atmospheres that are in vapor-pressure equilibrium with their surface volatiles, including Pluto, Triton, and, probably, several large KBOs near perihelion. Studies of the volatile and thermal evolution of these have been limited by computational speed, especially for models that treat surfaces that vary with both latitude and longitude. In order to expedite such work, I present a new numerical model for the seasonal behavior of Pluto and Triton which (i) uses initial conditions that improve convergence, (ii) uses an expedient method for handling the transition between global and non-global atmospheres, (iii) includes local conservation of energy and global conservation of mass to partition energy between heating, conduction, and sublimation or condensation, (iv) uses time-stepping algorithms that ensure stability while allowing larger timesteps, and (v) can include longitudinal variability. This model, called VT3D, has been used in Young (2012), Young (2013), Olkin et al. (201...

  4. The Shock Dynamics of Heterogeneous YSO Jets: 3-D Simulations Meet Multi-Epoch Observations

    CERN Document Server

    Hansen, E C; Hartigan, P; Lebedev, S V

    2016-01-01

    High resolution observations of Young Stellar Object (YSO) jets show them to be composed of many small-scale knots or clumps. In this paper we report results of 3-D numerical simulations designed to study how such clumps interact and create morphologies and kinematic patterns seen in emission line observations. Our simulations focus on clump scale dynamics by imposing velocity differences between spherical, over-dense regions which then lead to the formation of bow shocks as faster clumps overtake slower material. We show that much of the spatial structure apparent in emission line images of jets arises from the dynamics and interactions of these bow shocks. Our simulations show a variety of time-dependent features, including bright knots associated with Mach stems where the shocks intersect, a "frothy" emission structure that arises from the presence of the Non-linear Thin Shell Instability (NTSI) along the surfaces of the bow shocks, and the merging and fragmentation of clumps. Our simulations use a new non...

  5. 3D Simulation of Flow with Free Surface Based on Adaptive Octree Mesh System

    Institute of Scientific and Technical Information of China (English)

    Li Shaowu; Zhuang Qian; Huang Xiaoyun; Wang Dong

    2015-01-01

    The technique of adaptive tree mesh is an effective way to reduce computational cost through automatic adjustment of cell size according to necessity. In the present study, the 2D numerical N-S solver based on the adaptive quadtree mesh system was extended to a 3D one, in which a spatially adaptive octree mesh system and multiple parti-cle level set method were adopted for the convenience to deal with the air-water-structure multiple-medium coexisting domain. The stretching process of a dumbbell was simulated and the results indicate that the meshes are well adaptable to the free surface. The collapsing process of water column impinging a circle cylinder was simulated and from the results, it can be seen that the processes of fluid splitting and merging are properly simulated. The interaction of sec-ond-order Stokes waves with a square cylinder was simulated and the obtained drag force is consistent with the result by the Morison’s wave force formula with the coefficient values of the stable drag component and the inertial force component being set as 2.54.

  6. Numerical Simulation of 3D Flow Field of Friction Stir Welding Based on Tapered Tool With Threaded Profile%基于螺纹锥形搅拌头的搅拌摩擦焊三维流场仿真研究

    Institute of Scientific and Technical Information of China (English)

    董学伟; 黎向锋; 左敦稳; 王吉胜; 董春林; 李光

    2012-01-01

    本文利用CFD软件包FLUENT建立了带螺纹表面的锥形搅拌头搅拌摩擦焊三维流动模型.通过数值模拟得到了焊缝沿厚度方向的水平切面速度矢量图,截面的速度矢量图以及用于观察材料流动行为的流动线图.同时分析了搅拌头表面螺纹对塑化金属流动行为的影响及焊缝塑化金属的流动规律.模拟结果对于搅拌摩擦焊过程中焊缝处塑化金属流动以及焊缝形成机理研究具有重要的指导意义.%A 3D flow model is built by adopting the CFD code, FLUENT, to simulate the process of friction stir welding by using tapered tool with threaded profile. The horizontal velocity vector diagrams in the different positions of weld and cross-section velocity vector diagrams are obtained by numerical simulation as well as streamlines of plastic metal. And the influence of threaded profile on metal flow behavior and its flow rule are analyzed. Simulation results are important to study the metal flow during weld and the mechanism of the weld formation.

  7. 3D simulations of disc-winds extending radially self-similar MHD models

    CERN Document Server

    Stute, Matthias; Vlahakis, Nektarios; Tsinganos, Kanaris; Mignone, Andrea; Massaglia, Silvano

    2014-01-01

    Disc-winds originating from the inner parts of accretion discs are considered as the basic component of magnetically collimated outflows. The only available analytical MHD solutions to describe disc-driven jets are those characterized by the symmetry of radial self-similarity. However, radially self-similar MHD jet models, in general, have three geometrical shortcomings, (i) a singularity at the jet axis, (ii) the necessary assumption of axisymmetry, and (iii) the non-existence of an intrinsic radial scale, i.e. the jets formally extend to radial infinity. Hence, numerical simulations are necessary to extend the analytical solutions towards the axis, by solving the full three-dimensional equations of MHD and impose a termination radius at finite radial distance. We focus here on studying the effects of relaxing the (ii) assumption of axisymmetry, i.e. of performing full 3D numerical simulations of a disc-wind crossing all magnetohydrodynamic critical surfaces. We compare the results of these runs with previou...

  8. Confidence in Numerical Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Hemez, Francois M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-23

    This PowerPoint presentation offers a high-level discussion of uncertainty, confidence and credibility in scientific Modeling and Simulation (M&S). It begins by briefly evoking M&S trends in computational physics and engineering. The first thrust of the discussion is to emphasize that the role of M&S in decision-making is either to support reasoning by similarity or to “forecast,” that is, make predictions about the future or extrapolate to settings or environments that cannot be tested experimentally. The second thrust is to explain that M&S-aided decision-making is an exercise in uncertainty management. The three broad classes of uncertainty in computational physics and engineering are variability and randomness, numerical uncertainty and model-form uncertainty. The last part of the discussion addresses how scientists “think.” This thought process parallels the scientific method where by a hypothesis is formulated, often accompanied by simplifying assumptions, then, physical experiments and numerical simulations are performed to confirm or reject the hypothesis. “Confidence” derives, not just from the levels of training and experience of analysts, but also from the rigor with which these assessments are performed, documented and peer-reviewed.

  9. 3D geomechanical-numerical modelling of the absolute stress state for geothermal reservoir exploration

    Science.gov (United States)

    Reiter, Karsten; Heidbach, Oliver; Moeck, Inga

    2013-04-01

    For the assessment and exploration of a potential geothermal reservoir, the contemporary in-situ stress is of key importance in terms of well stability and orientation of possible fluid pathways. However, available data, e.g. Heidbach et al. (2009) or Zang et al. (2012), deliver only point wise information of parts of the six independent components of the stress tensor. Moreover most measurements of the stress orientation and magnitude are done for hydrocarbon industry obvious in shallow depth. Interpolation across long distances or extrapolation into depth is unfavourable, because this would ignore structural features, inhomogeneity's in the crust or other local effects like topography. For this reasons geomechanical numerical modelling is the favourable method to quantify orientations and magnitudes of the 3D stress field for a geothermal reservoir. A geomechanical-numerical modelling, estimating the 3D absolute stress state, requires the initial stress state as model constraints. But in-situ stress measurements within or close by a potential reservoir are rare. For that reason a larger regional geomechanical-numerical model is necessary, which derive boundary conditions for the wanted local reservoir model. Such a large scale model has to be tested against in-situ stress measurements, orientations and magnitudes. Other suitable and available data, like GPS measurements or fault slip rates are useful to constrain kinematic boundary conditions. This stepwise approach from regional to local scale takes all stress field factors into account, from first over second up to third order. As an example we present a large scale crustal and upper mantle 3D-geomechanical-numerical model of the Alberta Basin and the surroundings, which is constructed to describe continuously the full stress tensor. In-situ stress measurements are the most likely data, because they deliver the most direct information's of the stress field and they provide insights into different depths, a

  10. A numerical study of the transition to oscillatory flow in 3D lid-driven cubic cavity flows

    CERN Document Server

    Chiu, Shang-Huan; He, Jiwen; Guo, Aixia; Glowinski, Roland

    2016-01-01

    In this article, three dimensional (3D) lid-driven cubic cavity flows have been studied numerically for various values of Reynolds number ($Re$). The numerical solution of the Navier-Stokes equations modeling incompressible viscous fluid flow in a cubic cavity is obtained via a methodology combining a first order accurate operator-splitting, $L^2$-projection Stokes solver, a wave-like equation treatment of the advection and finite element methods. The numerical results obtained for Re$=$400, 1000, and 3200 show a good agreement with available numerical and experimental results in literature. Simulation results predict that the critical Re$_{cr}$ for the transition from steady flow to oscillatory (a Hopf bifurcation) is somewhere in [1870, 1875] for the mesh size $h=1/96$. Via studying the flow field distortion of fluid flow at Re before and after Re$_{cr}$, the occurrence of the first pair of Taylor-G\\"ortler-like vortices is connected to the flow field distortion at the transition from steady flow to oscilla...

  11. The numerical study of the cavitation-structure interaction around 3D flexible hydrofoil

    Science.gov (United States)

    Shi-liang, Hu; Ying, Chen; Chuan-jing, Lu

    2015-12-01

    The closely coupled approach combined the Finite Volume Method (FVM) solver and the Finite Element Method (FEM) solver is applied to simulation the cavitation-structure interaction of a 3D cantilevered flexible hydrofoil in water tunnel. In the cavitating flow, the elastic hydrofoil would deform or vibrate in bending and twisting mode. And the motion of the foil would affect the characteristics of the cavity and the hydrodynamic load on the foil in turn. With smaller cavitation numbers (σv=2.15), the frequency spectrum of the lift on the foil would contain two frequencies which are associated to the cavity shedding and the first bend frequency of the hydrofoil. With larger cavitation number (σv=2.55), the frequency of the lift is completely dominated by the natural frequency of the foil.

  12. NUMERICAL MODELING FOR POSITIVE AND INVERSE PROBLEMS OF 3-D SEEPAGE IN DOUBLE FRACTURED MEDIA

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhi-fang; GUO Geng-xin

    2005-01-01

    Three-dimensional seepage in double fractured media was modeled in this paper.The determination of hydraulic conductivity tensor of rock mass is a vital problem for the sea water intrusion or sea water encroachment and seepage of fissured medium.According to the geological and hydrogeological conditions for the 2nd-stage construction of the Three Gorges Project (TGP), the physical and mathematical models for the groundwater movement through the 3D double fractured media of rock mass during construction were established in this paper.Based on discontinuity-control inverse theory, some related parameters of double fractured media were inversed with flux being the known quantity and calibration of water table the objective function.Synchronously, the seepage field of the construction region was systematically analyzed and simulated, the results of which exhibit that the double fractured media model of fracture water can comprehensively and correctly describe the geological and hydrogeological conditions in the construction region.

  13. 3D simulations of young core-collapse supernova remnants undergoing efficient particle acceleration

    CERN Document Server

    Ferrand, Gilles

    2016-01-01

    Within our Galaxy, supernova remnants are believed to be the major sources of cosmic rays up to the "knee". However important questions remain regarding the share of the hadronic and leptonic components, and the fraction of the supernova energy channelled into these components. We address such question by the means of numerical simulations that combine a hydrodynamic treatment of the shock wave with a kinetic treatment of particle acceleration. Performing 3D simulations allows us to produce synthetic projected maps and spectra of the thermal and non-thermal emission, that can be compared with multi-wavelength observations (in radio, X-rays, and gamma-rays). Supernovae come in different types, and although their energy budget is of the same order, their remnants have different properties, and so may contribute in different ways to the pool of Galactic cosmic-rays. Our first simulations were focused on thermonuclear supernovae, like Tycho's SNR, that usually occur in a mostly undisturbed medium. Here we present...

  14. 3-D simulation of gases transport under condition of inert gas injection into goaf

    Science.gov (United States)

    Liu, Mao-Xi; Shi, Guo-Qing; Guo, Zhixiong; Wang, Yan-Ming; Ma, Li-Yang

    2016-12-01

    To prevent coal spontaneous combustion in mines, it is paramount to understand O2 gas distribution under condition of inert gas injection into goaf. In this study, the goaf was modeled as a 3-D porous medium based on stress distribution. The variation of O2 distribution influenced by CO2 or N2 injection was simulated based on the multi-component gases transport and the Navier-Stokes equations using Fluent. The numerical results without inert gas injection were compared with field measurements to validate the simulation model. Simulations with inert gas injection show that CO2 gas mainly accumulates at the goaf floor level; however, a notable portion of N2 gas moves upward. The evolution of the spontaneous combustion risky zone with continuous inert gas injection can be classified into three phases: slow inerting phase, rapid accelerating inerting phase, and stable inerting phase. The asphyxia zone with CO2 injection is about 1.25-2.4 times larger than that with N2 injection. The efficacy of preventing and putting out mine fires is strongly related with the inert gas injecting position. Ideal injections are located in the oxidation zone or the transitional zone between oxidation zone and heat dissipation zone.

  15. Flux Emergence In The Solar Photosphere - Diagnostics Based On 3-D Rradiation-MHD Simulations

    Science.gov (United States)

    Yelles Chaouche, L.; Cheung, M.; Lagg, A.; Solanki, S.

    2006-08-01

    We investigate flux tube emergence in the solar photosphere using a diagnostic procedure based on analyzing Stokes signals from different spectral lines calculated in 3-D radiation-MHD simulations. The simulations include the effects of radiative transport and partial ionization and cover layers both above and below the solar surface. The simulations consider the emergence of a twisted magnetic flux tube through the solar surface. We consider different stages in the emergence process, starting from the early appearance of the flux tube at the solar surface, and following the emergence process until the emerged flux looks similar to a normal bipolar region. At every stage we compute line profiles by numerically solving the Unno-Rachkovsky equations at every horizontal grid point. Then, following observational practice, we apply Milne-Eddington-type inversions to the synthetic spectra in order to retrieve different atmospheric parameters. We include the influence of spatial smearing on the deduced atmospheric parameters to identify signatures of different stages of flux emergence in the solar photosphere.

  16. A numerical method for solving the 3D unsteady incompressible Navier Stokes equations in curvilinear domains with complex immersed boundaries

    Science.gov (United States)

    Ge, Liang; Sotiropoulos, Fotis

    2007-08-01

    A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g. the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [A. Gilmanov, F. Sotiropoulos, A hybrid cartesian/immersed boundary method for simulating flows with 3d, geometrically complex, moving bodies, Journal of Computational Physics 207 (2005) 457-492.]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow

  17. Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model

    CERN Document Server

    Baudron, Anne-Marie A -M; Maday, Yvon; Riahi, Mohamed Kamel; Salomon, Julien

    2014-01-01

    We present a parareal in time algorithm for the simulation of neutron diffusion transient model. The method is made efficient by means of a coarse solver defined with large time steps and steady control rods model. Using finite element for the space discretization, our implementation provides a good scalability of the algorithm. Numerical results show the efficiency of the parareal method on large light water reactor transient model corresponding to the Langenbuch-Maurer-Werner (LMW) benchmark [1].

  18. Three-dimensional (3D) printed endovascular simulation models: a feasibility study

    Science.gov (United States)

    Nesbitt, Craig; McCaslin, James; Bagnall, Alan; Davey, Philip; Bose, Pentop; Williams, Rob

    2017-01-01

    Background Three-dimensional (3D) printing is a manufacturing process in which an object is created by specialist printers designed to print in additive layers to create a 3D object. Whilst there are initial promising medical applications of 3D printing, a lack of evidence to support its use remains a barrier for larger scale adoption into clinical practice. Endovascular virtual reality (VR) simulation plays an important role in the safe training of future endovascular practitioners, but existing VR models have disadvantages including cost and accessibility which could be addressed with 3D printing. Methods This study sought to evaluate the feasibility of 3D printing an anatomically accurate human aorta for the purposes of endovascular training. Results A 3D printed model was successfully designed and printed and used for endovascular simulation. The stages of development and practical applications are described. Feedback from 96 physicians who answered a series of questions using a 5 point Likert scale is presented. Conclusions Initial data supports the value of 3D printed endovascular models although further educational validation is required. PMID:28251121

  19. Center-to-Limb Variation of Solar 3-D Hydrodynamical Simulations

    CERN Document Server

    Koesterke, L; Lambert, D L

    2008-01-01

    We examine closely the solar Center-to-Limb variation of continua and lines and compare observations with predictions from both a 3-D hydrodynamic simulation of the solar surface (provided by M. Asplund and collaborators) and 1-D model atmospheres. Intensities from the 3-D time series are derived by means of the new synthesis code ASSET, which overcomes limitations of previously available codes by including a consistent treatment of scattering and allowing for arbitrarily complex line and continuum opacities. In the continuum, we find very similar discrepancies between synthesis and observation for both types of model atmospheres. This is in contrast to previous studies that used a ``horizontally'' and time averaged representation of the 3-D model and found a significantly larger disagreement with observations. The presence of temperature and velocity fields in the 3-D simulation provides a significant advantage when it comes to reproduce solar spectral line shapes. Nonetheless, a comparison of observed and s...

  20. 3-D heterogeneous field data versus 2-D simulations. How can it be accomplished in a sedimentary porous formation?

    Science.gov (United States)

    Darvini, G.; Salandin, P.

    2009-12-01

    To analyze the impact of the hydraulic conductivity K spatial variability in a real field case (as an example to delimitate a well catchment), numerical simulations can be reasonably developed in a two-dimensional vertical average context. Nevertheless the plume evolution is a consequence of a more complex three-dimensional heterogeneous structure whose vertical variability dominates the dispersion phenomena at local scale. In larger domains, the effect of the vertical heterogeneity combines itself with that one due to the horizontal variability of K, and only when the plume has travelled a large number of (horizontal) integral scales, its evolution can be analyzed in a regional context, under the hypothesis that the transmissivity spatial distribution prevails. Until this limit is reached, the vertical and horizontal variability of K are combined to give a fully 3-D dispersion process. In all these situations, to successfully accomplish the 3-D heterogeneous structure of the aquifer in 2-D simulations, more than the planimetric depth-averaged variability of K must be accounted for. To define the uncertainty related to the use of different planimetric schematizations of the real hydraulic conductivity spatial distribution, we present here the results of some numerical experiments that compare the 3-D plume evolution with 2-D simulations developed by tacking into account different hydraulic conductivity distribution schematization, by considering a hierarchical architecture of media also. This description of a sedimentary formation combined with the finite size of the plume requires theoretical and numerical tools able to take into account the flow field inhomogeneity and the ergodicity lack that characterize the transport phenomena. Following this way it will be possible to quantify / reduce the uncertainty related to a 2-D schematization in a large number of real cases where the domain spans between the local and the regional scale and whose dimension may lead to

  1. 3D Simulation of External Flooding Events for the RISMC Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Prescott, Steven [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sampath, Ramprasad [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lin, Linyu [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    Incorporating 3D simulations as part of the Risk-Informed Safety Margins Characterization (RISMIC) Toolkit allows analysts to obtain a more complete picture of complex system behavior for events including external plant hazards. External events such as flooding have become more important recently – however these can be analyzed with existing and validated simulated physics toolkits. In this report, we describe these approaches specific to flooding-based analysis using an approach called Smoothed Particle Hydrodynamics. The theory, validation, and example applications of the 3D flooding simulation are described. Integrating these 3D simulation methods into computational risk analysis provides a spatial/visual aspect to the design, improves the realism of results, and can prove visual understanding to validate the analysis of flooding.

  2. Prototype Development Capabilities of 3D Spatial Interactions and Failures During Scenario Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Steven Prescott; Ramprasad Sampath; Curtis Smith; Tony Koonce

    2014-09-01

    Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This report addressed the methods, techniques, and resources used to develop a prototype for using 3D modeling and simulation engine to improve risk analysis and evaluate reactor structures and components for a given scenario. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

  3. 3D numerical modeling of an anthropogenic sinkhole in the Marsala area of western Sicily

    Science.gov (United States)

    Bonamini, Marco; Di Maggio, Cipriano; Lollino, Piernicola; Madonia, Giuliana; Parise, Mario; Vattano, Marco

    2013-04-01

    processes, based on rock laboratory testing data and a detailed reconstruction of the underground cave geometry. At this goal, we took advantage of detailed topographic surveys of the underground quarry, carried out before (year 2000) and after occurrence of one the sinkholes, that opened in July 2011 at the eastern sector of the town of Marsala, causing significant damage to a school. In the implementation of the 3D-model, the geomechanical survey of the calcarenite rock mass was also taken into account, as a required input layer depicting the main discontinuity systems, and their main features (pervasiveness, joint opening and spacing, etc.). Relevant differences between the results from 2-D and 3-D analyses are pointed out in the paper, highlighting the need to perform 3D-modeling in order to define the real instability conditions of the rock mass, and to evaluate the possibility of sinkhole occurrence at the surface.

  4. 3D MHD Simulations of Laser Plasma Guiding in Curved Magnetic Field

    Science.gov (United States)

    Roupassov, S.; Rankin, R.; Tsui, Y.; Capjack, C.; Fedosejevs, R.

    1999-11-01

    The guiding and confinement of laser produced plasma in a curved magnetic field has been investigated numerically. These studies were motivated by experiments on pulsed laser deposition of diamond-like films [1] in which a 1kG magnetic field in a curved solenoid geometry was utilized to steer a carbon plasma around a curved trajectory and thus to separate it from unwanted macroparticles produced by the laser ablation. The purpose of the modeling was to characterize the plasma dynamics during the propagation through the magnetic guide field and to investigate the effect of different magnetic field configurations. A 3D curvilinear ADI code developed on the basis of an existing Cartesian code [2] was employed to simulate the underlying resistive one-fluid MHD model. Issues such as large regions of low background density and nonreflective boundary conditions were addressed. Results of the simulations in a curved guide field will be presented and compared to experimental results. [1] Y.Y. Tsui, D. Vick and R. Fedosejevs, Appl. Phys. Lett. 70 (15), pp. 1953-57, 1997. [2] R. Rankin, and I. Voronkov, in "High Performance Computing Systems and Applications", pp. 59-69, Kluwer AP, 1998.

  5. Study on 3D simulation of wave fields in acoustic reflection image logging

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The borehole acoustic reflection imaging logging is a newly developed acoustic logging method that has attracted many interests. These converted and reflected waves for imaging are usually mixed up with borehole guided waves and therefore difficult to be clearly identified. To improve the downhole tool design and develop more sophisticate data processing and interpretation algorithms,studies on precisely numerical modeling of the wave fields in the acoustic reflection imaging logging are neces-sary and critical. This paper developed a parallelized scheme of 3D finite difference (3DFD) with non-uniform staggered grid and PML absorbing boundary to simulate the acoustic wave fields in isotropic and anisotropic formations. Applications of this scheme to the typical cases of isotropic and anisot-ropic formations and comparison with the results from published analytical solutions have demon-strated the validation and efficiency of the scheme. Higher accuracy and lower computation cost (3.5 times faster than the conventional schemes) have been achieved with this scheme for modeling such a complex wave fields of 60 dB dynamic range with higher frequency (10 kHz). This simulating program provides a quantitative analytical means for studying acoustic reflection imaging tool and development of the data processing and interpretation methods.

  6. Spicule-like structures observed in 3D realistic MHD simulations

    CERN Document Server

    Martinez-Sykora, J; De Pontieu, B; Carlsson, M

    2009-01-01

    We analyze features that resemble type i spicules in two different 3D numerical simulations in which we include horizontal magnetic flux emergence in a computational domain spanning the upper layers of the convection zone to the lower corona. The two simulations differ mainly in the preexisting ambient magnetic field strength and in the properties of the inserted flux tube. We use the Oslo Staggered Code (OSC) to solve the full MHD equations with non-grey and non-LTE radiative transfer and thermal conduction along the magnetic field lines. We find a multitude of features that show a spatiotemporal evolution that is similar to that observed in type i spicules, which are characterized by parabolic height vs. time profiles, and are dominated by rapid upward motion at speeds of 10-30 km/s, followed by downward motion at similar velocities. We measured the parameters of the parabolic profile of the spicules and find similar correlations between the parameters as those found in observations. The values for height (...

  7. 3D Simulation of Spindle Gravitational Collapse of a Collisionless Particle System

    CERN Document Server

    Yoo, Chul-Moon; Okawa, Hirotada

    2016-01-01

    We simulate the spindle gravitational collapse of a collisionless particle system in a 3D numerical relativity code and compare the qualitative results with the old work done by Shapiro and Teukolsky(ST). The simulation starts from the prolate-shaped distribution of particles and a spindle collapse is observed. The peak value and its spatial position of curvature invariants are monitored during the time evolution. We find that the peak value of the Kretschmann invariant takes a maximum at some moment, when there is no apparent horizon, and its value is greater for finer resolution, which is consistent with what is reported in ST. We also find a similar tendency for the Weyl curvature invariant. Therefore, our results lend support to the formation of a naked singularity as a result of the spindle collapse of a collisionless particle system in the limit of infinite resolution. However, unlike in ST, our code does not break down then but go well beyond. We find that the peak values of the curvature invariants st...

  8. Code and Solution Verification of 3D Numerical Modeling of Flow in the Gust Erosion Chamber

    Science.gov (United States)

    Yuen, A.; Bombardelli, F. A.

    2014-12-01

    Erosion microcosms are devices commonly used to investigate the erosion and transport characteristics of sediments at the bed of rivers, lakes, or estuaries. In order to understand the results these devices provide, the bed shear stress and flow field need to be accurately described. In this research, the UMCES Gust Erosion Microcosm System (U-GEMS) is numerically modeled using Finite Volume Method. The primary aims are to simulate the bed shear stress distribution at the surface of the sediment core/bottom of the microcosm, and to validate the U-GEMS produces uniform bed shear stress at the bottom of the microcosm. The mathematical model equations are solved by on a Cartesian non-uniform grid. Multiple numerical runs were developed with different input conditions and configurations. Prior to developing the U-GEMS model, the General Moving Objects (GMO) model and different momentum algorithms in the code were verified. Code verification of these solvers was done via simulating the flow inside the top wall driven square cavity on different mesh sizes to obtain order of convergence. The GMO model was used to simulate the top wall in the top wall driven square cavity as well as the rotating disk in the U-GEMS. Components simulated with the GMO model were rigid bodies that could have any type of motion. In addition cross-verification was conducted as results were compared with numerical results by Ghia et al. (1982), and good agreement was found. Next, CFD results were validated by simulating the flow within the conventional microcosm system without suction and injection. Good agreement was found when the experimental results by Khalili et al. (2008) were compared. After the ability of the CFD solver was proved through the above code verification steps. The model was utilized to simulate the U-GEMS. The solution was verified via classic mesh convergence study on four consecutive mesh sizes, in addition to that Grid Convergence Index (GCI) was calculated and based on

  9. 3D Numeric modeling of slab-plume interaction in Kamchatka

    Science.gov (United States)

    Constantin Manea, Vlad; Portnyagin, Maxim; Manea, Marina

    2010-05-01

    Volcanic rocks located in the central segment of the Eastern Volcanic Belt of Kamchatka show a high variability, both in age as well as in the geochemical composition. Three principal groups have been identified, an older group (7-12 my) represented by rich alkaline and transitional basalts, a 7-8 my group exemplified by alkaline basalts of extreme plume type, and a younger group (3-8 my) characterized by calc-alkaline andesites and dacites rocks. Moreover, the younger group shows an adakitic signature. The magmas are assumed to originate from two principle sources: from a subduction modified Pacific MORB-type and from plume-type mantle. In this paper we study the interaction of a cold subducting slab and a hot plume by means of 3D numeric modeling integrated 30 my back in time. Our preliminary modeling results show a short episode of plume material inflowing into the mantle wedge at ~10 my consistent with the second rocks group (plume like). Also our models predict slab edge melting consistent with the youngest group.

  10. A framework for geometry acquisition, 3-D printing, simulation, and measurement of head-related transfer functions with a focus on hearing-assistive devices

    DEFF Research Database (Denmark)

    Harder, Stine; Paulsen, Rasmus Reinhold; Larsen, Martin

    2016-01-01

    of a three-dimensional (3D) head model for acquisition of individual HRTFs. Two aspects were investigated; whether a 3D-printed model can replace measurements on a human listener and whether numerical simulations can replace acoustic measurements. For this purpose, HRTFs were acoustically measured for four...... human listeners and for a 3D printed head model of one of these listeners. Further, HRTFs were simulated by applying the finite element method to the 3D head model. The monaural spectral features and spectral distortions were very similar between re-measurements and between human and printed...... measurements, however larger deviations were observed between measurement and simulation. The binaural cues were in agreement among all HRTFs of the same listener, indicating that the 3D model is able to provide localization cues potentially accessible to HAD users. Hence, the pipeline of geometry acquisition...

  11. Experimental and numerical investigation of the 3D SPECT photon detection kernel for non-uniform attenuating media

    Science.gov (United States)

    Riauka, Terence A.; Hooper, H. Richard; Gortel, Zbigniew W.

    1996-07-01

    Experimental tests for non-uniform attenuating media are performed to validate theoretical expressions for the photon detection kernel, obtained from a recently proposed analytical theory of photon propagation and detection for SPECT. The theoretical multi-dimensional integral expressions for the photon detection kernel, which are computed numerically, describe the probability that a photon emitted from a given source voxel will trigger detection of a photon at a particular projection pixel. The experiments were performed using a cylindrical water-filled phantom with large cylindrical air-filled inserts to simulate inhomogeneity of the medium. A point-like, a short thin cylindrical and a large cylindrical radiation source of were placed at various positions within the phantom. The values numerically calculated from the theoretical kernel expressions are in very good agreement with the experimentally measured data. The significance of Compton-scattered photons in planar image formation is discussed and highlighted by these results. Using both experimental measurements and the calculated values obtained from the theory, the kernel's size is investigated. This is done by determining the square pixel neighbourhood of the gamma camera that must be connected to a particular radiation source voxel to account for a specific fraction of all counts recorded at all camera pixels. It is shown that the kernel's size is primarily dependent upon the source position and the properties of the attenuating medium through Compton scattering events, with 3D depth-dependent collimator resolution playing an important but secondary role, at least for imaging situations involving parallel hole collimation. By considering small point-like sources within a non-uniform elliptical phantom, approximating the human thorax, it is demonstrated that on average a area of the camera plane is required to collect 85% of the total count recorded. This is a significantly larger connectivity than the area

  12. Spent Fuel Ratio Estimates from Numerical Models in ALE3D

    Energy Technology Data Exchange (ETDEWEB)

    Margraf, J. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dunn, T. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-08-02

    Potential threat of intentional sabotage of spent nuclear fuel storage facilities is of significant importance to national security. Paramount is the study of focused energy attacks on these materials and the potential release of aerosolized hazardous particulates into the environment. Depleted uranium oxide (DUO2) is often chosen as a surrogate material for testing due to the unreasonable cost and safety demands for conducting full-scale tests with real spent nuclear fuel. To account for differences in mechanical response resulting in changes to particle distribution it is necessary to scale the DUO2 results to get a proper measure for spent fuel. This is accomplished with the spent fuel ratio (SFR), the ratio of respirable aerosol mass released due to identical damage conditions between a spent fuel and a surrogate material like depleted uranium oxide (DUO2). A very limited number of full-scale experiments have been carried out to capture this data, and the oft-questioned validity of the results typically leads to overly-conservative risk estimates. In the present work, the ALE3D hydrocode is used to simulate DUO2 and spent nuclear fuel pellets impacted by metal jets. The results demonstrate an alternative approach to estimate the respirable release fraction of fragmented nuclear fuel.

  13. Simulating receptive fields of human visual cortex for 3D image quality prediction.

    Science.gov (United States)

    Shao, Feng; Chen, Wanting; Lin, Wenchong; Jiang, Qiuping; Jiang, Gangyi

    2016-07-20

    Quality assessment of 3D images presents many challenges when attempting to gain better understanding of the human visual system. In this paper, we propose a new 3D image quality prediction approach by simulating receptive fields (RFs) of human visual cortex. To be more specific, we extract the RFs from a complete visual pathway, and calculate their similarity indices between the reference and distorted 3D images. The final quality score is obtained by determining their connections via support vector regression. Experimental results on three 3D image quality assessment databases demonstrate that in comparison with the most relevant existing methods, the devised algorithm achieves high consistency alignment with subjective assessment, especially for asymmetrically distorted stereoscopic images.

  14. Mixed reality orthognathic surgical simulation by entity model manipulation and 3D-image display

    Science.gov (United States)

    Shimonagayoshi, Tatsunari; Aoki, Yoshimitsu; Fushima, Kenji; Kobayashi, Masaru

    2005-12-01

    In orthognathic surgery, the framing of 3D-surgical planning that considers the balance between the front and back positions and the symmetry of the jawbone, as well as the dental occlusion of teeth, is essential. In this study, a support system for orthodontic surgery to visualize the changes in the mandible and the occlusal condition and to determine the optimum position in mandibular osteotomy has been developed. By integrating the operating portion of a tooth model that is to determine the optimum occlusal position by manipulating the entity tooth model and the 3D-CT skeletal images (3D image display portion) that are simultaneously displayed in real-time, the determination of the mandibular position and posture in which the improvement of skeletal morphology and occlusal condition is considered, is possible. The realistic operation of the entity model and the virtual 3D image display enabled the construction of a surgical simulation system that involves augmented reality.

  15. Secondary reconnection, energisation and turbulence in dipolarisation fronts: results of a 3D kinetic simulation campaign

    Science.gov (United States)

    Lapenta, Giovanni; Goldman, Martin; Newman, David; olshevskyi, Vyacheslav; Markidis, Stefano

    2016-04-01

    Dipolarization fronts (DF) are formed by reconnection outflows interacting with the pre-existing environment. These regions are host of important energy exchanges [1], particle acceleration [2] and a complex structure and evolution [3]. Our recent work has investigated these regions via fully kinetic 3D simulations [4]. As reported recently on Nature Physics [3], based on 3D fully kinetic simulations started with a well defined x-line, we observe that in the DF reconnection transitions towards a more chaotic regime. In the fronts an instability devel- ops caused by the local gradients of the density and by the unfavourable acceleration and field line curvature. The consequence is the break up of the fronts in a fashion similar to the classical fluid Rayleigh-Taylor instability with the formation of "fingers" of plasma and embedded magnetic fields. These fingers interact and produce secondary reconnection sites. We present several different diagnostics that prove the existence of these secondary reconnection sites. Each site is surrounded by its own electron diffusion region. At the fronts the ions are generally not magnetized and considerable ion slippage is present. The discovery we present is that electrons are also slipping, forming localized diffusion regions near secondary reconnection sites [1]. The consequence of this discovery is twofold. First, the instability in the fronts has strong energetic implications. We observe that the energy transfer locally is very strong, an order of magnitude stronger than in the "X" line. However, this energy transfer is of both signs as it is natural for a wavy rippling with regions of magnetic to kinetic and regions of kinetic to magnetic energy conversion. Second, and most important for this session, is that MMS should not limit the search for electron diffusion regions to the location marked with X in all reconnection cartoons. Our simulations predict more numerous and perhaps more easily measurable electron diffusion

  16. From micro-scale 3D simulations to macro-scale model of periodic porous media

    Science.gov (United States)

    Crevacore, Eleonora; Tosco, Tiziana; Marchisio, Daniele; Sethi, Rajandrea; Messina, Francesca

    2015-04-01

    In environmental engineering, the transport of colloidal suspensions in porous media is studied to understand the fate of potentially harmful nano-particles and to design new remediation technologies. In this perspective, averaging techniques applied to micro-scale numerical simulations are a powerful tool to extrapolate accurate macro-scale models. Choosing two simplified packing configurations of soil grains and starting from a single elementary cell (module), it is possible to take advantage of the periodicity of the structures to reduce the computation costs of full 3D simulations. Steady-state flow simulations for incompressible fluid in laminar regime are implemented. Transport simulations are based on the pore-scale advection-diffusion equation, that can be enriched introducing also the Stokes velocity (to consider the gravity effect) and the interception mechanism. Simulations are carried on a domain composed of several elementary modules, that serve as control volumes in a finite volume method for the macro-scale method. The periodicity of the medium involves the periodicity of the flow field and this will be of great importance during the up-scaling procedure, allowing relevant simplifications. Micro-scale numerical data are treated in order to compute the mean concentration (volume and area averages) and fluxes on each module. The simulation results are used to compare the micro-scale averaged equation to the integral form of the macroscopic one, making a distinction between those terms that could be computed exactly and those for which a closure in needed. Of particular interest it is the investigation of the origin of macro-scale terms such as the dispersion and tortuosity, trying to describe them with micro-scale known quantities. Traditionally, to study the colloidal transport many simplifications are introduced, such those concerning ultra-simplified geometry that usually account for a single collector. Gradual removal of such hypothesis leads to a

  17. Accurate load prediction by BEM with airfoil data from 3D RANS simulations

    Science.gov (United States)

    Schneider, Marc S.; Nitzsche, Jens; Hennings, Holger

    2016-09-01

    In this paper, two methods for the extraction of airfoil coefficients from 3D CFD simulations of a wind turbine rotor are investigated, and these coefficients are used to improve the load prediction of a BEM code. The coefficients are extracted from a number of steady RANS simulations, using either averaging of velocities in annular sections, or an inverse BEM approach for determination of the induction factors in the rotor plane. It is shown that these 3D rotor polars are able to capture the rotational augmentation at the inner part of the blade as well as the load reduction by 3D effects close to the blade tip. They are used as input to a simple BEM code and the results of this BEM with 3D rotor polars are compared to the predictions of BEM with 2D airfoil coefficients plus common empirical corrections for stall delay and tip loss. While BEM with 2D airfoil coefficients produces a very different radial distribution of loads than the RANS simulation, the BEM with 3D rotor polars manages to reproduce the loads from RANS very accurately for a variety of load cases, as long as the blade pitch angle is not too different from the cases from which the polars were extracted.

  18. Validation of a numerical 3-D fluid-structure interaction model for a prosthetic valve based on experimental PIV measurements.

    Science.gov (United States)

    Guivier-Curien, Carine; Deplano, Valérie; Bertrand, Eric

    2009-10-01

    A numerical 3-D fluid-structure interaction (FSI) model of a prosthetic aortic valve was developed, based on a commercial computational fluid dynamics (CFD) software program using an Arbitrary Eulerian Lagrangian (ALE) formulation. To make sure of the validity of this numerical model, an equivalent experimental model accounting for both the geometrical features and the hydrodynamic conditions was also developed. The leaflet and the flow behaviours around the bileaflet valve were investigated numerically and experimentally by performing particle image velocimetry (PIV) measurements. Through quantitative and qualitative comparisons, it was shown that the leaflet behaviour and the velocity fields were similar in both models. The present study allows the validation of a fully coupled 3-D FSI numerical model. The promising numerical tool could be therefore used to investigate clinical issues involving the aortic valve.

  19. Modeling and simulation of 3D thermal stresses of large-sized castings in solidification processes

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    When heavy machines and large scaled receiver system of communication equipment are manufactured, it always needs to produce large- sized steel castings, aluminum castings and etc. Some defects of hot cracking by thermal stress often appear during solidification process as these castings are produced, which results in failure of castings.Therefore predicting the effects of technological parameters for production of castings on the thermal stress during solidification process becomes an important means. In this paper, the mathematical models have been established and numerical calculation of temperature fields by using finite difference method (FDM) and then thermal stress fields by using finite element method (FEM) during solidification process of castings have been carried out. The technological parameters of production have been optimized by the results of calculation and the defects of hot cracking have been eliminated. Modeling and simulation of 3D thermal stress during solidification processes of large-sized castings provided a scientific basis, which promoted further development of advanced manufacturing technique.

  20. Flattening simulations of 3D thick sheets made of fiber composite materials

    Directory of Open Access Journals (Sweden)

    Kotaro Morioka

    2015-04-01

    Full Text Available Recently, fiber composite materials have been attracting attention from industry because of their remarkable material characteristics, including light weight and high stiffness. However, the costs of products composed of fiber materials remain high because of the lack of effective manufacturing and designing technologies. To improve the relevant design technology, this paper proposes a novel simulation method for deforming fiber materials. Specifically, given a 3D model with constant thickness and known fiber orientation, the proposed method simulates the deformation of a model made of thick fiber-material. The method separates a 3D sheet model into two surfaces and then flattens these surfaces into two dimensional planes by a parameterization method with involves cross vector fields. The cross vector fields are generated by propagating the given fiber orientations specified at several important points on the 3D model. Integration of the cross vector fields gives parameterization with low-stretch and low-distortion.

  1. 3D simulations of fluctuation spectra in the hall-MHD plasma.

    Science.gov (United States)

    Shaikh, Dastgeer; Shukla, P K

    2009-01-30

    Turbulent spectral cascades are investigated by means of fully three-dimensional (3D) simulations of a compressible Hall-magnetohydrodynamic (H-MHD) plasma in order to understand the observed spectral break in the solar wind turbulence spectra in the regime where the characteristic length scales associated with electromagnetic fluctuations are smaller than the ion gyroradius. In this regime, the results of our 3D simulations exhibit that turbulent spectral cascades in the presence of a mean magnetic field follow an omnidirectional anisotropic inertial-range spectrum close to k(-7/3). The latter is associated with the Hall current arising from nonequal electron and ion fluid velocities in our 3D H-MHD plasma model.

  2. A Jones matrix formalism for simulating 3D Polarised Light Imaging of brain tissue

    CERN Document Server

    Menzel, Miriam; De Raedt, Hans; Reckfort, Julia; Amunts, Katrin; Axer, Markus

    2015-01-01

    The neuroimaging technique 3D Polarised Light Imaging (3D-PLI) provides a high-resolution reconstruction of nerve fibres in human post-mortem brains. The orientations of the fibres are derived from birefringence measurements of histological brain sections assuming that the nerve fibres - consisting of an axon and a surrounding myelin sheath - are uniaxial birefringent and that the measured optic axis is oriented in direction of the nerve fibres (macroscopic model). Although experimental studies support this assumption, the molecular structure of the myelin sheath suggests that the birefringence of a nerve fibre can be described more precisely by multiple optic axes oriented radially around the fibre axis (microscopic model). In this paper, we compare the use of the macroscopic and the microscopic model for simulating 3D-PLI by means of the Jones matrix formalism. The simulations show that the macroscopic model ensures a reliable estimation of the fibre orientations as long as the polarimeter does not resolve ...

  3. Stochastic microstructure modeling and electrochemical simulation of lithium-ion cell anodes in 3D

    Science.gov (United States)

    Hein, Simon; Feinauer, Julian; Westhoff, Daniel; Manke, Ingo; Schmidt, Volker; Latz, Arnulf

    2016-12-01

    Thermodynamically consistent transport theory is used to compare 3D images of real anode microstructures from lithium-ion batteries to virtual ones created by a parametric stochastic 3D microstructure model. Half-cell simulations in 3D with spatially resolved microstructures at different applied currents show that for low currents the deviations between various electrochemical quantities like current density or overpotential are negligibly small. For larger currents small differences become more pronounced. Qualitative and quantitative differences of these features are discussed with respect to the microstructure and it is shown that the real and virtual structures behave similar during electrochemical simulations. Extensions of the stochastic microstructure model, which overcome small differences in electrochemical behavior, are proposed.

  4. Numerical modelling 2 D and 3 D of circulating fluidized bed: application to the realization of regime diagrams; Modelisation numerique 2D et 3D de lit fluidise circulant: application a la realisation du diagramme des regimes

    Energy Technology Data Exchange (ETDEWEB)

    Begis, J.; Balzer, G.

    1997-02-01

    The numerical modelling of internal CFB boilers flows faced with complex phenomenons due to the flows un-stationariness, the heterogeneousness of the particle size distribution, and interactions between the two phases and the walls. Our study consisted in applying numerical models to the experimental configuration of cold circulating fluidized bed studied at the Cerchar. Special attention was given to the analysis of particles - wall interactions models, stemming from Jenkins (1992) and Louge`s (1994) theories, as well as the influence of the particles on fluid turbulence. In order to realize numerical simulations, we have used Eulerian two-phases flow codes developed at NHL medolif(2D), ESTET-ASTRID(3D). From different tests we have deducted that the most appropriate model for the realization of CFB`s prediction is the model taking in account the influence of particles on fluid turbulence. Then, to evaluate the validity limits of this model, we have built the regime diagram, and we have compared it with the experimental diagram. We have concluded that the simulation allows to describe the different CFB`s working regimes, and especially transitions. We have also noticed the importance of the choice of the mean diameter of the simulated particles. In this way, making a correction of the simulated particles` diameter in comparison with Sauter mean particle diameter, we obtained numerical results in good agreement with experimental data. (authors) 13 refs.

  5. Simulation System Design of 3-D Panorama of Ship Motions in Wave

    Institute of Scientific and Technical Information of China (English)

    LIU; Ya-dong; LI; Ji-de; LI; Zhen

    2002-01-01

    In this paper a 3-D panoramic simulation system of a ship is described which is developed with the MAXSCRIPT language and VC++ as programming tools on the platform of 3Dsmax. The strip theory method is applied to the motion prediction of the mono-hull. The time history solutions of heave and pitch are obtained in the condition of head sea to provide the primary data on panoramic simulation. The simulation system has following functions: 1)digital simulation;2) panoramic simulation; 3) environmental set-up; 4) render preview and output.

  6. Numerical investigation of 3D effects on a 2D-dominated shocked mixing layer

    Science.gov (United States)

    Reese, Daniel; Weber, Christopher

    2016-11-01

    A nominally two-dimensional interface, unstable to the Rayleigh-Taylor or Richtmyer-Meshkov instability, will become three-dimensional at high Reynolds numbers due to the growth of background noise and 3D effects like vortex stretching. This three-dimensionality changes macroscopic features, such as the perturbation growth rate and mixing, as it enhances turbulent dissipation. In this study, a 2D perturbation with small-scale, 3D fluctuations is modeled using the hydrodynamics code Miranda. A Mach 1.95 shockwave accelerates a helium-over-SF6 interface, similar to the experiments of Motl et al. ["Experimental validation of a Richtmyer-Meshkov scaling law over large density ratio and shock strength ranges," Phys. Fluids 21(12), 126102 (2009)], to explore the regime where a 2D dominated flow will experience 3D effects. We report on the structure, growth, and mixing of the post-shocked interface in 2D and 3D.

  7. 3D Numerical study on the hollow profile polymer extrusion forming based on the gas-assisted technique

    Science.gov (United States)

    Ren, Z.; Huang, X. Y.; Liu, H. S.

    2016-07-01

    In this study, gas-assisted extrusion method was introduced into the extrusion of the hollow profiles. To validate the feasibility of the new extrusion method, 3D numerical simulation of the hollow profiles based on gas-assisted technique was carried out by using the finite element method. The Phan-Thien-Tanner (PTT) mode was selected as the construction equation. In the simulations, the physical field distributions of four different extrusion modes were obtained and analyzed. Results showed that the extrudate effect of traditional no gas- assisted mode was poor because the extrudate swell phenomenon is obvious and the physical field values are larger. For the gas-assisted of the inner wall, the extrudate swell of the melt was more obvious than that of the traditional no gas-assisted mode on account of the no-slip boundary condition on the outer wall. For the gas-assisted of the outer wall, the dimple effect of the inner wall is more obvious owing to the no-slip boundary condition on the inner wall. However, the extrusion effect of the double walls gas-assisted mode is very good because of the full-slip effect on the both walls.

  8. Renal Tumor Cryoablation Planning. The Efficiency of Simulation on Reconstructed 3D CT Scan

    Directory of Open Access Journals (Sweden)

    Ciprian Valerian LUCAN

    2010-12-01

    Full Text Available Introduction & Objective: Nephron-sparing surgical techniques risks are related to tumor relationships with adjacent anatomic structures. Complexity of the renal anatomy drives the interest to develop tools for 3D reconstruction and surgery simulation. The aim of the article was to assess the simulation on reconstructed 3D CT scan used for planning the cryoablation. Material & Method: A prospective randomized study was performed between Jan. 2007 and July 2009 on 27 patients who underwent retroperitoneoscopic T1a renal tumors cryoablation (RC. All patients were assessed preoperatively by CT scan, also used for 3D volume rendering. In the Gr.A, the patients underwent surgery planning by simulation on 3D CT scan. In the Gr.B., patients underwent standard RC. The two groups were compared in terms of surgical time, bleeding, postoperative drainage, analgesics requirement, hospital stay, time to socio-professional reintegration. Results: Fourteen patients underwent preoperative cryoablation planning (Gr.A and 13 patients underwent standard CR (Gr.B. All parameters analyzed were shorter in the Gr.A. On multivariate logistic regression, only shortens of the surgical time (138.79±5.51 min. in Gr.A. vs. 140.92±5.54 min in Gr.B. and bleeding (164.29±60.22 mL in Gr.A. vs. 215.38±100.80 mL in Gr.B. achieved statistical significance (p<0.05. The number of cryoneedles assessed by simulation had a 92.52% accuracy when compared with those effectively used. Conclusions: Simulation of the cryoablation using reconstructed 3D CT scan improves the surgical results. The application used for simulation was able to accurately assess the number of cryoneedles required for tumor ablation, their direction and approach.

  9. Database application platform for earthquake numerical simulation

    Institute of Scientific and Technical Information of China (English)

    LUO Yan; ZHENG Yue-jun; CHEN Lian-wang; LU Yuan-zhong; HUANG Zhong-xian

    2006-01-01

    @@ Introduction In recent years, all kinds of observation networks of seismology have been established, which have been continuously producing numerous digital information. In addition, there are many study results about 3D velocity structure model and tectonic model of crust (Huang and Zhao, 2006; Huang et al, 2003; Li and Mooney, 1998),which are valuable for studying the inner structure of the earth and earthquake preparation process. It is badly needed to combine the observed data, experimental study and theoretical analyses results by the way of numerical simulation and develop a database and a corresponding application platform to be used by numerical simulation,and is also a significant way to promote earthquake prediction.

  10. Simulation of engine cooling with coupled 1D and 3D flow computation; Simulation der Motorkuehlung mit Hilfe gekoppelter 1D- und 3D-Stroemungsberechnung

    Energy Technology Data Exchange (ETDEWEB)

    Grafenberger, P.; Klinner, P.; Nefischer, P. [BMW Motoren GmbH, Steyr (Austria); Klingebiel, F. [AMSTRAL Engineering fuer Stroemungsmechanik GmbH, Idstein (Germany)

    2000-04-01

    Shorting the development time for new engines and vehicles is leading to the increasing use of computational design and simulation methods in the automotive industry. For several years now, both one-dimensional and three-dimensional flow computation have been used successfully in the development of cooling systems. However, the fact that less hardware is used in the early development stages makes new demands on the quality and quantity of these simulation results. BMW's diesel development division has been able to improve the quality of the results and to reduce the processing time by improving the model quality and by coupling existing 1D and 3D computational fluid dynamic programmes. (orig.) [German] Die Verkuerzung der Entwicklungszeit neuer Motoren und Automobile fuehrt zu einem verstaerkten Einsatz von rechnergestuetzten Konstruktions- und Simulationsmethoden in der Fahrzeugindustrie. Sowohl eindimensionale als auch dreidimensionale Stroemungsberechnungen werden seit Jahren erfolgreich bei der Entwicklung von Kuehlsystemen eingesetzt. Der Entfall von Hardware-Baugruppen in der fruehen Entwicklungsphase stellt jedoch neue Anforderungen an die Qualitaet und Quantitaet dieser Simulationsergebnisse. Durch Verbesserung der Modellqualitaet und durch Kopplung vorhandener 1D- und 3D-Stroemungsberechnungsprogramme konnten in der Dieselmotorenentwicklung von BMW die Qualitaet der Ergebnisse und die Bearbeitungsgeschwindigkeit deutlich gesteigert werden. (orig.)

  11. [Pre-surgical simulation of microvascular decompression for hemifacial spasm using 3D-models].

    Science.gov (United States)

    Mashiko, Toshihiro; Yang, Qiang; Kaneko, Naoki; Konno, Takehiko; Yamaguchi, Takashi; Watanabe, Eiju

    2015-01-01

    We have been performing pre-surgical simulations using custom-built patient-specific 3D-models. Here we report the advantageous use of 3D-models for simulating microvascular decompression(MVD)for hemifacial spasms. Seven cases of MVD surgery were performed. Two types of 3D-printers were used to fabricate the 3D-models:one using plaster as the modeling material(Z Printer®450, 3D systems, Rock Hill, SC, USA)and the other using acrylonitrile butadiene styrene(ABS)(UP! Plus 3D printer®, Beijing Tiertime Technology, Beijing). We tested three types of models. Type 1 was a plaster model of the brainstem, cerebellum, facial nerve, and the artery compressing the root exit zone of the facial nerve. Part of the cerebellum was digitally trimmed off to observe "the compressing point" from the same angle as that used during actual surgery. Type 2 was a modified Type 1 in which part of the skull was opened digitally to mimic a craniectomy. Type 3 was a combined model in which the cerebellum and the artery of the Type 2 model were replaced by a soft retractable cerebellum and an elastic artery. The cerebellum was made from polyurethane and cast from a plaster prototype. To fabricate elastic arteries, liquid silicone was painted onto the surface of an ABS artery and the inner ABS model was dissolved away using solvent. In all cases, the 3D-models were very useful. Although each type has advantages, the Type-3 model was judged extremely useful for training junior surgeons in microsurgical approaches.

  12. An Object-Oriented Simulator for 3D Digital Breast Tomosynthesis Imaging System

    Directory of Open Access Journals (Sweden)

    Saeed Seyyedi

    2013-01-01

    Full Text Available Digital breast tomosynthesis (DBT is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART and total variation regularized reconstruction techniques (ART+TV are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM values.

  13. Simulation of free surfaces in 3-D with the arbitrary Lagrange-Euler method

    DEFF Research Database (Denmark)

    Szabo, Peter; Hassager, Ole

    1995-01-01

    The arbitrary Lagrange-Euler (ALE) kinematic description has been implemented in a 3-D transient finite element program so as to simulate multiple fluid flows with Surfaces and interfaces of general shapes. The description of fluid interfaces includes continuity of velocity and a discontinuous...

  14. Coniferous Canopy BRF Simulation Based on 3-D Realistic Scene%Coniferous Canopy BRF Simulation Based on3-D Realistic Scene

    Institute of Scientific and Technical Information of China (English)

    WANG Xin-yun; GUO Zhi-feng; QINWen-hans; SUN Guo-qing

    2011-01-01

    It is difficulties for the computer simulation method to study radiation regime at large-scale.Simplified coniferous model was investigated in the present study.It makes the computer simulation methods such as L-systems and radiosity-graphics combined method (RGM) more powerful in remote sensing of heterogeneous coniferous forests over a large-scale region.L-systems is applied to render 3-D coniferous forest scenarios,and RGM model was used to calculate BRF (bidirectional reflectance factor) in visible and near-infrared regions.Results in this study show that in most cases both agreed well Meanwhile at a tree and forest level,the results are also good.

  15. 3D Radiative Transfer in Eta Carinae: Application of the SimpleX Algorithm to 3D SPH Simulations of Binary Colliding Winds

    Science.gov (United States)

    Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Icke, V.; Gull, T. R.

    2014-01-01

    Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions and evolution, and stellar wind-wind collisions. Recent three-dimensional (3D) simulations set the stage for understanding the highly complex 3D flows in Eta Car. Observations of different broad high- and low-ionization forbidden emission lines provide an excellent tool to constrain the orientation of the system, the primary's mass-loss rate, and the ionizing flux of the hot secondary. In this work we present the first steps towards generating synthetic observations to compare with available and future HST/STIS data. We present initial results from full 3D radiative transfer simulations of the interacting winds in Eta Car. We use the SimpleX algorithm to post-process the output from 3D SPH simulations and obtain the ionization fractions of hydrogen and helium assuming three different mass-loss rates for the primary star. The resultant ionization maps of both species constrain the regions where the observed forbidden emission lines can form. Including collisional ionization is necessary to achieve a better description of the ionization states, especially in the areas shielded from the secondary's radiation. We find that reducing the primary's mass-loss rate increases the volume of ionized gas, creating larger areas where the forbidden emission lines can form. We conclude that post processing 3D SPH data with SimpleX is a viable tool to create ionization maps for Eta Car.

  16. Effects of a radially varying electrical conductivity on 3D numerical dynamos

    CERN Document Server

    Gomez-Perez, Natalia; Wicht, Johannes; 10.1016/j.pepi.2010.03.006

    2010-01-01

    The transition from liquid metal to silicate rock in the cores of the terrestrial planets is likely to be accompanied by a gradient in the composition of the outer core liquid. The electrical conductivity of a volatile enriched liquid alloy can be substantially lower than a light-element-depleted fluid found close to the inner core boundary. In this paper, we investigate the effect of radially variable electrical conductivity on planetary dynamo action using an electrical conductivity that decreases exponentially as a function of radius. We find that numerical solutions with continuous, radially outward decreasing electrical conductivity profiles result in strongly modified flow and magnetic field dynamics, compared to solutions with homogeneous electrical conductivity. The force balances at the top of the simulated fluid determine the overall character of the flow. The relationship between Coriolis and Lorentz forces near the outer boundary controls the flow and magnetic field intensity and morphology of the...

  17. Numerical estimation of 3D mechanical forces exerted by cells on non-linear materials.

    Science.gov (United States)

    Palacio, J; Jorge-Peñas, A; Muñoz-Barrutia, A; Ortiz-de-Solorzano, C; de Juan-Pardo, E; García-Aznar, J M

    2013-01-04

    The exchange of physical forces in both cell-cell and cell-matrix interactions play a significant role in a variety of physiological and pathological processes, such as cell migration, cancer metastasis, inflammation and wound healing. Therefore, great interest exists in accurately quantifying the forces that cells exert on their substrate during migration. Traction Force Microscopy (TFM) is the most widely used method for measuring cell traction forces. Several mathematical techniques have been developed to estimate forces from TFM experiments. However, certain simplifications are commonly assumed, such as linear elasticity of the materials and/or free geometries, which in some cases may lead to inaccurate results. Here, cellular forces are numerically estimated by solving a minimization problem that combines multiple non-linear FEM solutions. Our simulations, free from constraints on the geometrical and the mechanical conditions, show that forces are predicted with higher accuracy than when using the standard approaches.

  18. Numerical Study on the 3-D Complex Characteristics of Flow Around the Hull Structure of TLP

    Institute of Scientific and Technical Information of China (English)

    谷家扬; 朱新耀; 杨建民; 卢燕祥; 肖龙飞

    2015-01-01

    Vortex-induced motion is based on the complex characteristics of the flow around the tension leg platform (TLP) hull. By considering the flow field of the South China Sea and the configuration of the platform, three typical flow velocities and three flow directions are chosen to study the numerical simulation of the flow field characteristics around the TLP hull. Reynolds-averaged Navier–Stokes equations combined with the detached eddy simulation turbulence model are employed in the numerical study. The hydrodynamic coefficients of columns and pontoons, the total drag and lift coefficients of the TLP, the formation and development of the wake, and the vorticity iso-surfaces for different inlet velocities and current directions are discussed in this paper. The average value of the drag coefficient of the upstream columns is considerably larger than that of the downstream columns in the inlet direction of 0°. Although the time history of the lift coefficient demonstrates a “beating” behavior, the plot shows regularity in general. The Strouhal number decreases as the inlet velocity increases from the power spectral density plot at different flow velocities. The mean root values of the lift and drag coefficients of the front column decrease as the current direction increases. Under the symmetrical configuration of 45°, the streamwise force on C4 is the smallest, whereas the transverse force is the largest. The broken vortex conditions in current directions of 22.5° and 45° are more serious than that in the current direction of 0°. In addition, turbulence at the bottom of the TLP becomes stronger when the current direction changes from 0° to 45°. However, a high inlet velocity indicates a large region influenced by the broken vortex and shows the emergence of the wake behind the TLP under the same current angle.

  19. VITASCOPE: Extensible and Scalable 3D Visualization of Simulated Construction Operations

    OpenAIRE

    Kamat, Vineet Rajendra

    2003-01-01

    In the domain of operations design and analysis, the ability to see a 3D animation of processes that have been simulated allows for three very important things: 1) The developer of a simulation model can ascertain that there are no errors in the coding (Verification); 2) The experts, field personnel, and decision makers can discover differences between the way they understand the operation and the way the model developer understands it (Validation); and 3) A model can be communicated effectiv...

  20. 3D radiative transfer simulations of Eta Carinae's inner colliding winds - II: Ionization structure of helium at periastron

    CERN Document Server

    Clementel, Nicola; Kruip, Chael J H; Paardekooper, Jan-Pieter

    2015-01-01

    Spectral observations of the massive colliding wind binary Eta Carinae show phase-dependent variations, in intensity and velocity, of numerous helium emission and absorption lines throughout the entire 5.54-year orbit. Approaching periastron, the 3D structure of the wind-wind interaction region (WWIR) gets highly distorted due to the eccentric ($e \\sim 0.9$) binary orbit. The secondary star ($\\eta_{\\mathrm{B}}$) at these phases is located deep within the primary's dense wind photosphere. The combination of these effects is thought to be the cause of the particularly interesting features observed in the helium lines at periastron. We perform 3D radiative transfer simulations of $\\eta$ Car's interacting winds at periastron. Using the SimpleX radiative transfer algorithm, we post-process output from 3D smoothed particle hydrodynamic simulations of the inner 150 au of the $\\eta$ Car system for two different primary star mass-loss rates ($\\dot{M}_{\\eta_{\\mathrm{A}}}$). Using previous results from simulations at ap...

  1. Numerical analysis of 3-D unsteady flow in a vaneless counter-rotating turbine

    Institute of Scientific and Technical Information of China (English)

    ZHAO Qingjun; WANG Huishe; ZHAO Xiaolu; XU Jianzhong

    2007-01-01

    To reveal the unsteady flow characteristics of a vaneless counter-rotating turbine (VCRT),a threedimensional,viscous,unsteady computational fluid dynamics (CFD) analysis was performed.The results show that unsteady simulation is superior to steady simulation because more flow characteristics can be obtained.The unsteady effects in upstream airfoil rows are weaker than those in downstream airfoil rows in the VCRT.The static pressure distribution along the span in the pressure surface of a high pressure turbine stator is more uniform than that in the suction surface.The static pressure distributions along the span in the pressure surfaces and the suction surfaces of a high pressure turbine rotor and a low pressure turbine rotor are all uneven.The numerical results also indicate that the load of a high pressure turbine rotor will increase with the increase of the span.The deviation is very big between the direction of air flow at the outlet of a high pressure turbine rotor and the axial direction.A similar result can also be obtained in the outlet of a low pressure turbine rotor.This means that the specific work of a high pressure turbine rotor and a low pressure turbine rotor is big enough to reach the design objectives.

  2. Computational fluid dynamics simulations of blood flow regularized by 3D phase contrast MRI

    DEFF Research Database (Denmark)

    Rispoli, Vinicius C; Nielsen, Jon; Nayak, Krishna S

    2015-01-01

    approach in regularizing 3D flow fields is evaluated. METHODS: The proposed algorithm incorporates both a Newtonian fluid physics model and a linear PC-MRI signal model. The model equations are solved numerically using a modified CFD algorithm. The numerical solution corresponds to the optimal solution......BACKGROUND: Phase contrast magnetic resonance imaging (PC-MRI) is used clinically for quantitative assessment of cardiovascular flow and function, as it is capable of providing directly-measured 3D velocity maps. Alternatively, vascular flow can be estimated from model-based computation fluid...... dynamics (CFD) calculations. CFD provides arbitrarily high resolution, but its accuracy hinges on model assumptions, while velocity fields measured with PC-MRI generally do not satisfy the equations of fluid dynamics, provide limited resolution, and suffer from partial volume effects. The purpose...

  3. HEXAHEDRAL ELEMENT REFINEMENT FOR THE PREDICTION-CORRECTION ALE FEM SIMULATION OF 3D BULKING FORMING PROCESS

    Institute of Scientific and Technical Information of China (English)

    J. Chen; Y.X. Wang; W.P. Dong; X.Y. Ruan

    2004-01-01

    Based on the characteristics of 3D bulk forming process, the arbitrary Lagrangian-Eulerian (ALE)formulation-based FEM is studied, and a prediction-correction ALE-based FEM is proposed which integrates the advantages of precisely predicting the boundary configuration of the deformed material, and of efficiently avoiding hexahedron remeshing processes. The key idea of the prediction-correction ALE FEM is elaborated in detail. Accordingly, the strategy of mesh quality control, one of the key enabling techniques for the 3D bulk forming process numerical simulation by the prediction-correction ALE FEM is carefully investigated, and the algorithm for hexahedral element refinement is formulated based on the mesh distortion energy.

  4. Simulations of 3D-Si sensors for the innermost layer of the ATLAS pixel upgrade

    Science.gov (United States)

    Baselga, M.; Pellegrini, G.; Quirion, D.

    2017-03-01

    The LHC is expected to reach luminosities up to 3000 fb-1 and the innermost layer of the ATLAS upgrade plans to cope with higher occupancy and to decrease the pixel size. 3D-Si sensors are a good candidate for the innermost layer of the ATLAS pixel upgrade since they exhibit good performance under high fluences and the new designs will have smaller pixel size to fulfill the electronics expectations. This paper reports TCAD simulations of the 3D-Si sensors designed at IMB-CNM with non-passing-through columns that are being fabricated for the next innermost layer of the ATLAS pixel upgrade. It shows the charge collection response before and after irradiation, and the response of 3D-Si sensors located at large η angles.

  5. DOMINO: A fast 3D cartesian discrete ordinates solver for reference PWR simulations and SPN validation

    Energy Technology Data Exchange (ETDEWEB)

    Courau, T.; Moustafa, S.; Plagne, L.; Poncot, A. [EDF R and D, 1, Av du General de Gaulle, F92141 Clamart cedex (France)

    2013-07-01

    As part of its activity, EDF R and D is developing a new nuclear core simulation code named COCAGNE. This code relies on DIABOLO, a Simplified PN (SPN) method to compute the neutron flux inside the core for eigenvalue calculations. In order to assess the accuracy of SPN calculations, we have developed DOMINO, a new 3D Cartesian SN solver. The parallel implementation of DOMINO is very efficient and allows to complete an eigenvalue calculation involving around 300 x 10{sup 9} degrees of freedom within a few hours on a single shared-memory supercomputing node. This computation corresponds to a 26-group S{sub 8} 3D PWR core model used to assess the SPN accuracy. At the pin level, the maximal error for the SP{sub 5} DIABOLO fission production rate is lower than 0.2% compared to the S{sub 8} DOMINO reference for this 3D PWR core model. (authors)

  6. Simulations of 3D-Si sensors for the innermost layer of the ATLAS pixel upgrade

    CERN Document Server

    Baselga, Marta

    2017-01-01

    The LHC is expected to reach luminosities up to 3000fb-1 and the innermost layer of the ATLAS upgrade plans to cope with higher occupancy and to decrease the pixel size. 3D-Si sensors are a good candidate for the innermost layer of the ATLAS pixel upgrade since they exhibit good performance under high fluences and the new designs will have smaller pixel size to fulfill the electronics expectations. This paper reports TCAD simulations of the 3D-Si sensors designed at IMB-CNM with non passing-through columns that are being fabricated for the next innermost layer of the ATLAS pixel upgrade, shows the charge collection response before and after irradiation, and the response of 3D-Si sensors located at large $\\eta$ angles.

  7. Parallel implementation of 3D FFT with volumetric decomposition schemes for efficient molecular dynamics simulations

    Science.gov (United States)

    Jung, Jaewoon; Kobayashi, Chigusa; Imamura, Toshiyuki; Sugita, Yuji

    2016-03-01

    Three-dimensional Fast Fourier Transform (3D FFT) plays an important role in a wide variety of computer simulations and data analyses, including molecular dynamics (MD) simulations. In this study, we develop hybrid (MPI+OpenMP) parallelization schemes of 3D FFT based on two new volumetric decompositions, mainly for the particle mesh Ewald (PME) calculation in MD simulations. In one scheme, (1d_Alltoall), five all-to-all communications in one dimension are carried out, and in the other, (2d_Alltoall), one two-dimensional all-to-all communication is combined with two all-to-all communications in one dimension. 2d_Alltoall is similar to the conventional volumetric decomposition scheme. We performed benchmark tests of 3D FFT for the systems with different grid sizes using a large number of processors on the K computer in RIKEN AICS. The two schemes show comparable performances, and are better than existing 3D FFTs. The performances of 1d_Alltoall and 2d_Alltoall depend on the supercomputer network system and number of processors in each dimension. There is enough leeway for users to optimize performance for their conditions. In the PME method, short-range real-space interactions as well as long-range reciprocal-space interactions are calculated. Our volumetric decomposition schemes are particularly useful when used in conjunction with the recently developed midpoint cell method for short-range interactions, due to the same decompositions of real and reciprocal spaces. The 1d_Alltoall scheme of 3D FFT takes 4.7 ms to simulate one MD cycle for a virus system containing more than 1 million atoms using 32,768 cores on the K computer.

  8. Experimental and numerical investigation of 3D aerofoil characteristics on a MW wind turbine

    DEFF Research Database (Denmark)

    Troldborg, Niels; Bak, Christian; Sørensen, Niels N.;

    2013-01-01

    3D aerofoil characteristics on a MW wind turbine is investigated through a combination of field measurements, wind tunnel tests and computational fluid dynamics (CFD). Surface pressuremeasurements as well as the integrated force coefficients for selected aerofoil sections on a blade of the turbine...... is compared to wind tunnel measurements on the same aerofoil sections in order to reveal the difference in performance of aerofoils on full scale rotors in atmospheric conditions and aerofoils in wind tunnels. The findings of the measurements are backed up by analogous CFD analysis involving fully resolved 3D...

  9. Digital simulation of 3D turbulence wind field of Sutong Bridge based on measured wind spectra

    Institute of Scientific and Technical Information of China (English)

    Hao WANG; Zhou-hong ZONG; Ai-qun LI; Teng TONG; Jie NIU; Wen-ping DENG

    2012-01-01

    Time domain analysis is an essential implement to study the buffeting behavior of long-span bridges for it can consider the non-linear effect which is significant in long-span bridges.The prerequisite of time domain analysis is the accurate description of 3D turbulence winds.In this paper,some hypotheses for simplifying the 3D turbulence simulation of long-span cable-stayed bridges are conducted,considering the structural characteristics.The turbulence wind which is a 3D multivariate stochastic vector process is converted into four independent ID univariate stochastic processes.Based on recorded wind data from structural health monitoring system (SHMS) of the Sutong Bridge,China,the measured spectra expressions are then presented using the nonlinear least-squares fitting method.Turbulence winds at the Sutong Bridge site are simulated based on the spectral representation method and the Fast Fourier transform (FFT) technique,and the relevant results derived from target spectra including measured spectra and recommended spectra are compared.The reliability and accuracy of the presented turbulence simulation method are validated through comparisons between simulated and target spectra (measured and recommended spectra).The obtained turbulence simulations can not only serve further analysis of the buffeting behavior of the Sutong Bridge,but references for structural anti-wind design in adjacent regions.

  10. Simulation of bootstrap current in 2D and 3D ideal magnetic fields in tokamaks

    Science.gov (United States)

    Raghunathan, M.; Graves, J. P.; Cooper, W. A.; Pedro, M.; Sauter, O.

    2016-09-01

    We aim to simulate the bootstrap current for a MAST-like spherical tokamak using two approaches for magnetic equilibria including externally caused 3D effects such as resonant magnetic perturbations (RMPs), the effect of toroidal ripple, and intrinsic 3D effects such as non-resonant internal kink modes. The first approach relies on known neoclassical coefficients in ideal MHD equilibria, using the Sauter (Sauter et al 1999 Phys. Plasmas 6 2834) expression valid for all collisionalities in axisymmetry, and the second approach being the quasi-analytic Shaing-Callen (Shaing and Callen 1983 Phys. Fluids 26 3315) model in the collisionless regime for 3D. Using the ideal free-boundary magnetohydrodynamic code VMEC, we compute the flux-surface averaged bootstrap current density, with the Sauter and Shaing-Callen expressions for 2D and 3D ideal MHD equilibria including an edge pressure barrier with the application of resonant magnetic perturbations, and equilibria possessing a saturated non-resonant 1/1 internal kink mode with a weak internal pressure barrier. We compare the applicability of the self-consistent iterative model on the 3D applications and discuss the limitations and advantages of each bootstrap current model for each type of equilibrium.

  11. NUMERICAL SIMULATION OF TRANSIENT THERMAL FIELD IN LASER MELTING PROCESS

    Institute of Scientific and Technical Information of China (English)

    姚国凤; 陈光南

    2004-01-01

    Numerical simulation of thermal field was studied in laser processing. The 3 -D finite element model of transient thermal calculation is given by thermal conductive equation.The effects of phase transformation latent are considered. Numerical example is given to verify the model. Finally the real example of transient thermal field is given.

  12. CFD SIMULATION OF 3D FLOW IN LARGE-BORE AXIAL-FLOW PUMP WITH HALF-ELBOW SUCTION SUMP

    Institute of Scientific and Technical Information of China (English)

    WANG Fu-jun; LI Yao-jun; CONG Guo-hui; WANG Wen-e; WANG Hai-song

    2006-01-01

    Numerical simulations of 3D turbulent flow in a large-bore axial-flow pump coupled with half-elbow suction sump were performed by using CFD approach. The numerical model and velocity and pressure distributions in entire flow passage were presented. The obvious backflow in half-elbow suction sump and strong flow nonuniformity at suction sump outlet were observed, whereas these phenomena were not observed in existing studies performed for a separate suction sump by either experimental or numerical approach. This result indicates that the interaction between half-elbow suction sump and impeller has significant effect on the flow distribution in the pump passage. The change of pump efficiency caused by the interaction was discussed.

  13. Computer numerical control (CNC) lithography: light-motion synchronized UV-LED lithography for 3D microfabrication

    Science.gov (United States)

    Kim, Jungkwun; Yoon, Yong-Kyu; Allen, Mark G.

    2016-03-01

    This paper presents a computer-numerical-controlled ultraviolet light-emitting diode (CNC UV-LED) lithography scheme for three-dimensional (3D) microfabrication. The CNC lithography scheme utilizes sequential multi-angled UV light exposures along with a synchronized switchable UV light source to create arbitrary 3D light traces, which are transferred into the photosensitive resist. The system comprises a switchable, movable UV-LED array as a light source, a motorized tilt-rotational sample holder, and a computer-control unit. System operation is such that the tilt-rotational sample holder moves in a pre-programmed routine, and the UV-LED is illuminated only at desired positions of the sample holder during the desired time period, enabling the formation of complex 3D microstructures. This facilitates easy fabrication of complex 3D structures, which otherwise would have required multiple manual exposure steps as in the previous multidirectional 3D UV lithography approach. Since it is batch processed, processing time is far less than that of the 3D printing approach at the expense of some reduction in the degree of achievable 3D structure complexity. In order to produce uniform light intensity from the arrayed LED light source, the UV-LED array stage has been kept rotating during exposure. UV-LED 3D fabrication capability was demonstrated through a plurality of complex structures such as V-shaped micropillars, micropanels, a micro-‘hi’ structure, a micro-‘cat’s claw,’ a micro-‘horn,’ a micro-‘calla lily,’ a micro-‘cowboy’s hat,’ and a micro-‘table napkin’ array.

  14. Some Methods of Applied Numerical Analysis to 3d Facial Reconstruction Software

    Science.gov (United States)

    Roşu, Şerban; Ianeş, Emilia; Roşu, Doina

    2010-09-01

    This paper deals with the collective work performed by medical doctors from the University Of Medicine and Pharmacy Timisoara and engineers from the Politechnical Institute Timisoara in the effort to create the first Romanian 3d reconstruction software based on CT or MRI scans and to test the created software in clinical practice.

  15. 3D wake dynamics of the VAWT: experimental and numerical investigation

    NARCIS (Netherlands)

    Ferreira, C.; Hofemann, C.; Dixon, K.; Van Kuik, G.A.M.; Van Bussel, G.J.W.

    2010-01-01

    The Vertical Axis Wind Turbine, in its 2D form, is characterized by a complex unsteady aerodynamic flow, including dynamic stall and blade vortex interaction. Adding to this complexity, the 3D flow causes spanwise effects and the presence of trailing vorticity and tip vortices. The objective of the

  16. Boundary Conditions in 2D Numerical and 3D Exact Models for Cylindrical Bending Analysis of Functionally Graded Structures

    Directory of Open Access Journals (Sweden)

    F. Tornabene

    2016-01-01

    Full Text Available The cylindrical bending condition for structural models is very common in the literature because it allows an incisive and simple verification of the proposed plate and shell models. In the present paper, 2D numerical approaches (the Generalized Differential Quadrature (GDQ and the finite element (FE methods are compared with an exact 3D shell solution in the case of free vibrations of functionally graded material (FGM plates and shells. The first 18 vibration modes carried out through the 3D exact model are compared with the frequencies obtained via the 2D numerical models. All the 18 frequencies obtained via the 3D exact model are computed when the structures have simply supported boundary conditions for all the edges. If the same boundary conditions are used in the 2D numerical models, some modes are missed. Some of these missed modes can be obtained modifying the boundary conditions imposing free edges through the direction perpendicular to the direction of cylindrical bending. However, some modes cannot be calculated via the 2D numerical models even when the boundary conditions are modified because the cylindrical bending requirements cannot be imposed for numerical solutions in the curvilinear edges by definition. These features are investigated in the present paper for different geometries (plates, cylinders, and cylindrical shells, types of FGM law, lamination sequences, and thickness ratios.

  17. Experimental and numerical investigation into micro-flow cytometer with 3-D hydrodynamic focusing effect and micro-weir structure.

    Science.gov (United States)

    Hou, Hui-Hsiung; Tsai, Chien-Hsiung; Fu, Lung-Ming; Yang, Ruey-Jen

    2009-07-01

    This study presents a novel 3-D hydrodynamic focusing technique for micro-flow cytometers. In the proposed approach, the sample stream is compressed initially in the horizontal direction by a set of sheath flows such that it is constrained to the central region of the microchannel and is then focused in the vertical direction by a second pair of sheath flows. Thereafter, the focused sample stream passes over a micro-weir structure positioned directly beneath an optical detection system to capture polystyrene beads fluorescent signal. The microchannel configuration and operational parameters are optimized by performing a series of numerical simulations. An experimental investigation is then performed using a micro-flow cytometer fabricated using conventional micro-electro-mechanical systems techniques and an isotropic wet etching method. The results indicate that the two sets of sheath flows successfully constrain the sample stream within a narrow, well-defined region of the microchannel. Furthermore, the micro-weir structure prompts the separation of a mixed sample of 5 and 10 microm polystyrene beads in the vertical direction and ensures that the beads flow through the detection region of the microchannel in a sequential fashion and can therefore be reliably detected and counted.

  18. Real-time 3D radiation risk assessment supporting simulation of work in nuclear environments.

    Science.gov (United States)

    Szőke, I; Louka, M N; Bryntesen, T R; Bratteli, J; Edvardsen, S T; RøEitrheim, K K; Bodor, K

    2014-06-01

    This paper describes the latest developments at the Institute for Energy Technology (IFE) in Norway, in the field of real-time 3D (three-dimensional) radiation risk assessment for the support of work simulation in nuclear environments. 3D computer simulation can greatly facilitate efficient work planning, briefing, and training of workers. It can also support communication within and between work teams, and with advisors, regulators, the media and public, at all the stages of a nuclear installation's lifecycle. Furthermore, it is also a beneficial tool for reviewing current work practices in order to identify possible gaps in procedures, as well as to support the updating of international recommendations, dissemination of experience, and education of the current and future generation of workers.IFE has been involved in research and development into the application of 3D computer simulation and virtual reality (VR) technology to support work in radiological environments in the nuclear sector since the mid 1990s. During this process, two significant software tools have been developed, the VRdose system and the Halden Planner, and a number of publications have been produced to contribute to improving the safety culture in the nuclear industry.This paper describes the radiation risk assessment techniques applied in earlier versions of the VRdose system and the Halden Planner, for visualising radiation fields and calculating dose, and presents new developments towards implementing a flexible and up-to-date dosimetric package in these 3D software tools, based on new developments in the field of radiation protection. The latest versions of these 3D tools are capable of more accurate risk estimation, permit more flexibility via a range of user choices, and are applicable to a wider range of irradiation situations than their predecessors.

  19. The Surface of Stellar Models - Now with more 3D simulations!

    Directory of Open Access Journals (Sweden)

    Trampedach Regner

    2015-01-01

    Full Text Available We have constructed a grid of 3D hydrodynamic simulations of deep convective and line-blanketed atmospheres. We have developed a new consistent method for computing and employing T(τ relations from these simulations, as surface boundary conditions for 1D stellar structure models. These 1D models have, in turn, had their mixing-length, α, calibrated against the averaged structure of each of the simulations. Both α and T(τ vary significantly with Teff and log g.

  20. Reactive Flow Modeling of Liquid Explosives via ALE3D/Cheetah Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, I W; Bastea, S; Fried, L E

    2010-03-10

    We carried out reactive flow simulations of liquid explosives such as nitromethane using the hydrodynamic code ALE3D coupled with equations of state and reaction kinetics modeled by the thermochemical code Cheetah. The simulation set-up was chosen to mimic cylinder experiments. For pure unconfined nitromethane we find that the failure diameter and detonation velocity dependence on charge diameter are in agreement with available experimental results. Such simulations are likely to be useful for determining detonability and failure behavior for a wide range of experimental conditions and explosive compounds.

  1. Numerical simulation of centrifugal casting of pipes

    Science.gov (United States)

    Kaschnitz, E.

    2012-07-01

    A numerical simulation model for the horizontal centrifugal pipe casting process was developed with the commercial simulation package Flow3D. It considers - additionally to mass, energy and momentum conservation equations and free surface tracking - the fast radial and slower horizontal movement of the mold. The iron inflow is not steady state but time dependent. Of special importance is the friction between the liquid and the mold in connection with the viscosity and turbulence of the iron. Experiments with the mold at controlled revolution speeds were carried out using a high-speed camera. From these experiments friction coefficients for the description of the interaction between mold and melt were obtained. With the simulation model, the influence of typical process parameters (e.g. melts inflow, mold movement, melt temperature, cooling media) on the wall thickness of the pipes can be studied. The comparison to results of pipes from production shows a good agreement between simulation and reality.

  2. 3D Radiative Transfer in $\\eta$ Carinae: Application of the SimpleX Algorithm to 3D SPH Simulations of Binary Colliding Winds

    CERN Document Server

    Clementel, N; Kruip, C J H; Icke, V; Gull, T R

    2014-01-01

    Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions and evolution, and stellar wind-wind collisions. Recent three-dimensional (3D) simulations set the stage for understanding the highly complex 3D flows in $\\eta$ Car. Observations of different broad high- and low-ionization forbidden emission lines provide an excellent tool to constrain the orientation of the system, the primary's mass-loss rate, and the ionizing flux of the hot secondary. In this work we present the first steps towards generating synthetic observations to compare with available and future HST/STIS data. We present initial results from full 3D radiative transfer simulations of the interacting winds in $\\eta$ Car. We use the SimpleX algorithm to post-process the output from 3D SPH simulations and obtain the ionization fractions of hydrogen and helium assuming three different mass-loss rates for the primary star. The resultant ionization maps of both species constrain the regions where the observed forbidde...

  3. Optimized 3-D simulation method for modeling out-of-plane radiation in silicon photonic integrated circuits

    NARCIS (Netherlands)

    Westerveld, W.J.; Urbach, H.P.; Yousefi, M.

    2011-01-01

    We present an accurate and fast 3-D simulation scheme for out-of-plane grating couplers, based on 2-D rigorous [finite difference time domain (FDTD)] grating simulations, the effective index method, and the RayleighSommerfeld diffraction formula. In comparison with full 3-D FDTD simulations, the rms

  4. Simulation of the 3-D Evolution of Electron Scale Magnetic Reconnection - Motivated by Laboratory Experiments Predictions for MMS

    Science.gov (United States)

    Buechner, J.; Jain, N.; Sharma, A.

    2013-12-01

    The four s/c of the Magnetospheric Multiscale (MMS) mission, to be launched in 2014, will use the Earth's magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes. One of them is magnetic reconnection, an essentially multi-scale process. While laboratory experiments and past theoretical investigations have shown that important processes necessary to understand magnetic reconnection take place at electron scales the MMS mission for the first time will be able to resolve these scales by in space observations. For the measurement strategy of MMS it is important to make specific predictions of the behavior of current sheets with a thickness of the order of the electron skin depth which play an important role in the evolution of collisionless magnetic reconnection. Since these processes are highly nonlinear and non-local numerical simulation is needed to specify the current sheet evolution. Here we present new results about the nonlinear evolution of electron-scale current sheets starting from the linear stage and using 3-D electron-magnetohydrodynamic (EMHD) simulations. The growth rates of the simulated instabilities compared well with the growth rates obtained from linear theory. Mechanisms and conditions of the formation of flux ropes and of current filamentation will be discussed in comparison with the results of fully kinetic simulations. In 3D the X- and O-point configurations of the magnetic field formed in reconnection planes alternate along the out-of-reconnection-plane direction with the wavelength of the unstable mode. In the presence of multiple reconnection sites, the out-of-plane magnetic field can develop nested structure of quadrupoles in reconnection planes, similar to the 2-D case, but now with variations in the out-of-plane direction. The structures of the electron flow and magnetic field in 3-D simulations will be compared with those in 2-D simulations to discriminate the essentially 3D features. We also discuss

  5. Numerical modelling of seawater intrusion in Shenzhen (China) using a 3D densitydependent model including tidal effects

    Indian Academy of Sciences (India)

    Wei Lu; Qingchun Yang; Jordi D Martín; Ricardo Juncosa

    2013-04-01

    During the 1990s, groundwater overexploitation has resulted in seawater intrusion in the coastal aquifer of the Shenzhen city, China. Although water supply facilities have been improved and alleviated seawater intrusion in recent years, groundwater overexploitation is still of great concern in some local areas. In this work we present a three-dimensional density-dependent numerical model developed with the FEFLOW code, which is aimed at simulating the extent of seawater intrusion while including tidal effects and different groundwater pumping scenarios. Model calibration, using waterheads and reported chloride concentration, has been performed based on the data from 14 boreholes, which were monitored from May 2008 to December 2009. A fairly good fitness between the observed and computed values was obtained by a manual trial-and-error method. Model prediction has been carried out forward 3 years with the calibrated model taking into account high, medium and low tide levels and different groundwater exploitation schemes. The model results show that tide-induced seawater intrusion significantly affects the groundwater levels and concentrations near the estuarine of the Dasha river, which implies that an important hydraulic connection exists between this river and groundwater, even considering that some anti-seepage measures were taken in the river bed. Two pumping scenarios were considered in the calibrated model in order to predict the future changes in the water levels and chloride concentration. The numerical results reveal a decreased tendency of seawater intrusion if groundwater exploitation does not reach an upper bound of about 1.32 × 104 m3/d. The model results provide also insights for controlling seawater intrusion in such coastal aquifer systems.

  6. Confocal 3D DNA Cytometry: Assessment of Required Coefficient of Variation by Computer Simulation

    Directory of Open Access Journals (Sweden)

    Lennert S. Ploeger

    2004-01-01

    Full Text Available Background: Confocal Laser Scanning Microscopy (CLSM provides the opportunity to perform 3D DNA content measurements on intact cells in thick histological sections. So far, sample size has been limited by the time consuming nature of the technology. Since the power of DNA histograms to resolve different stemlines depends on both the sample size and the coefficient of variation (CV of histogram peaks, interpretation of 3D CLSM DNA histograms might be hampered by both a small sample size and a large CV. The aim of this study was to analyze the required CV for 3D CLSM DNA histograms given a realistic sample size. Methods: By computer simulation, virtual histograms were composed for sample sizes of 20000, 10000, 5000, 1000, and 273 cells and CVs of 30, 25, 20, 15, 10 and 5%. By visual inspection, the histogram quality with respect to resolution of G0/1 and G2/M peaks of a diploid stemline was assessed. Results: As expected, the interpretability of DNA histograms deteriorated with decreasing sample sizes and higher CVs. For CVs of 15% and lower, a clearly bimodal peak pattern with well distinguishable G0/1 and G2/M peaks were still seen at a sample size of 273 cells, which is our current average sample size with 3D CLSM DNA cytometry. Conclusions: For unambiguous interpretation of DNA histograms obtained using 3D CLSM, a CV of at most 15% is tolerable at currently achievable sample sizes. To resolve smaller near diploid stemlines, a CV of 10% or better should be aimed at. With currently available 3D imaging technology, this CV is achievable.

  7. 3D random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing

    Directory of Open Access Journals (Sweden)

    E. Ghazvinian

    2014-12-01

    Full Text Available A grain-based distinct element model featuring three-dimensional (3D Voronoi tessellations (random poly-crystals is proposed for simulation of crack damage development in brittle rocks. The grain boundaries in poly-crystal structure produced by Voronoi tessellations can represent flaws in intact rock and allow for numerical replication of crack damage progression through initiation and propagation of micro-fractures along grain boundaries. The Voronoi modelling scheme has been used widely in the past for brittle fracture simulation of rock materials. However the difficulty of generating 3D Voronoi models has limited its application to two-dimensional (2D codes. The proposed approach is implemented in Neper, an open-source engine for generation of 3D Voronoi grains, to generate block geometry files that can be read directly into 3DEC. A series of Unconfined Compressive Strength (UCS tests are simulated in 3DEC to verify the proposed methodology for 3D simulation of brittle fractures and to investigate the relationship between each micro-parameter and the model's macro-response. The possibility of numerical replication of the classical U-shape strength curve for anisotropic rocks is also investigated in numerical UCS tests by using complex-shaped (elongated grains that are cemented to one another along their adjoining sides. A micro-parameter calibration procedure is established for 3D Voronoi models for accurate replication of the mechanical behaviour of isotropic and anisotropic (containing a fabric rocks.

  8. 3D random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing

    Institute of Scientific and Technical Information of China (English)

    E. Ghazvinian; M.S. Diederichs; R. Quey

    2014-01-01

    A grain-based distinct element model featuring three-dimensional (3D) Voronoi tessellations (random poly-crystals) is proposed for simulation of crack damage development in brittle rocks. The grain boundaries in poly-crystal structure produced by Voronoi tessellations can represent flaws in intact rock and allow for numerical replication of crack damage progression through initiation and propagation of micro-fractures along grain boundaries. The Voronoi modelling scheme has been used widely in the past for brittle fracture simulation of rock materials. However the difficulty of generating 3D Voronoi models has limited its application to two-dimensional (2D) codes. The proposed approach is implemented in Neper, an open-source engine for generation of 3D Voronoi grains, to generate block geometry files that can be read directly into 3DEC. A series of Unconfined Compressive Strength (UCS) tests are simulated in 3DEC to verify the proposed methodology for 3D simulation of brittle fractures and to investigate the relationship between each micro-parameter and the model’s macro-response. The possibility of nu-merical replication of the classical U-shape strength curve for anisotropic rocks is also investigated in numerical UCS tests by using complex-shaped (elongated) grains that are cemented to one another along their adjoining sides. A micro-parameter calibration procedure is established for 3D Voronoi models for accurate replication of the mechanical behaviour of isotropic and anisotropic (containing a fabric) rocks.

  9. Cross-Wire Calibration for Freehand 3D Ultrasonography: Measurement and Numerical Issues

    Directory of Open Access Journals (Sweden)

    J. Jan

    2005-06-01

    Full Text Available 3D freehand ultrasound is an imaging technique, which is graduallyfinding clinical applications. A position sensor is attached to aconventional ultrasound probe, so that B-scans are acquired along withtheir relative locations. This allows the B-scans to be inserted into a3D regular voxel array, which can then be visualized usingarbitrary-plane slicing, and volume or surface rendering. A keyrequirement for correct reconstruction is the calibration: determiningthe position and orientation of the B-scans with respect to theposition sensor's receiver. Following calibration, interpolation in theset of irregularly spaced B-scans is required to reconstruct aregular-voxel array. This text describes a freehand measurement of 2Dultrasonic data, an approach to the calibration problem and severalnumerical issues concerned with the calibration and reconstruction.

  10. On 3D simulation of moving objects in a digital earth system

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    "How do the rescue helicopters find out an optimized path to arrive at the site of a disaster as soon as possible?" or "How are the flight procedures over mountains and plateaus simulated?" and so on.In this paper a script language on spatial moving objects is presented by abstracting 3D spatial moving objects’ behavior when implementing moving objects simulation in 3D digital Earth scene,which is based on a platform of digital China named "ChinaStar".The definition of this script language,its morphology and syntax,its compiling and mediate language generating,and the behavior and state control of spatial moving objects are discussed emphatically.In addition,the language’s applications and implementation are also discussed.

  11. 3D COMPUTER SIMULATION FOR LIGNIFICATION OF ANCIENT CHINESE TIMBER BUILDINGS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A pioneer research work was carried out by investigators engaged in surveying and mapping for describing ancient Chinese timber buildings by 3D frame graphs w ith a computer.Users can know the structural layers and the assembly process of the se buildings if the frame graphs are processed further with a computer model.Th is can be implemented by computer simulation technique.This technique display t he raw data on the screen of a computer and interactively manage them by combini ng technologies from computer graphics and image processing,multi-media technol ogy,artificial intelligence,highly parallel real-time computation technique an d human behavior science.This paper presents the implementing procedure of ligni fi cation simulation for large-sized wooden buildings as well as 3D dynamic assembl y of these buildings under the 3DS MAX environment.The results from computer sim ulation are also shown in the paper.

  12. 3D Finite Element Simulation of Tunnel Boring Machine Construction Processes in Deep Water Conveyance Tunnel

    Institute of Scientific and Technical Information of China (English)

    ZHONG Denghua; TONG Dawei

    2009-01-01

    Applying stiffness migration method, a 3D finite element mechanical model is established to simulate the excavation and advance processes. By using 3D nonlinear finite element method, the tunnel boring machine (TBM) excavation process is dynamically simulated to analyze the stress and strain field status of surrounding rock and segment. The maximum tensile stress of segment ring caused by tunnel construction mainly lies in arch bottom and presents zonal distribution. The stress increases slightly and limitedly in the course of excavation. The maxi-mum and minimum displacements of segment, manifesting as zonal distribution, distribute in arch bottom and vault respectively. The displacements slightly increase with the advance of TBM and gradually tend to stability.

  13. Fundamental Experimental and Numerical Investigation of Active Control of 3-D Flows

    Science.gov (United States)

    2011-10-06

    on hot - wire anemometry and therefore, it was noted that understanding 3-D flow structures in detail was difficult. Nevertheless, prominent features...S.G., Reizes, J.A., Hong, G. and Westbury, P.S., 2004, “Analysis of Hot - wire Anemometry Data Obtained in a Synthetic Jet Flow”, Experimental Thermal...Measurements were made using three different techniques, namely, Particle Image Velocimetry (PIV), Laser Doppler Velocimetry (LDV), and hot - wire

  14. Optimisation of trench isolated bipolar transistors on SOI substrates by 3D electro-thermal simulations

    Science.gov (United States)

    Nigrin, S.; Armstrong, G. A.; Kranti, A.

    2007-09-01

    This paper provides a comprehensive analysis of thermal resistance of trench isolated bipolar transistors on SOI substrates based on 3D electro-thermal simulations calibrated to experimental data. The impact of emitter length, width, spacing and number of emitter fingers on thermal resistance is analysed in detail. The results are used to design and optimise transistors with minimum thermal resistance and minimum transistor area.

  15. Depth of field simulation for still digital images using a 3D camera

    Directory of Open Access Journals (Sweden)

    Omar Alejandro Rodríguez Rosas

    2016-11-01

    Full Text Available In a world where digital photography is almost ubiquitous, the size of image capturing devices and their lenses limit their capabilities to achieve shallower depths of field for aesthetic purposes. This work proposes a novel approach to simulate this effect using the color and depth images from a 3D camera. Comparative tests yielded results similar to those of a regular lens.

  16. Prototyping Novel Instruments for Fetal Surgery through Virtual Reality Simulation and 3D Printing

    OpenAIRE

    2015-01-01

    Designing novel medical devices is a complex matter. Involving clinicians as early as possible into the development process is of crucial importance; it helps to shorten the development cycle and increases the likelihood of later acceptance by clinicians. In this paper we show how through a combination of 3D printing and Virtual Reality simulation it is possible to involve clinicians in a very early stage, yet receive concrete quantitative and qualitative information that can shift the design...

  17. SSV3D: Simulador de Sombras Vectoriales por Radiación Solar sobre Objetos Tridimensionales SSV3D: Simulator of Vectorial Shadows by Solar Radiation on 3D Computerized Objects

    Directory of Open Access Journals (Sweden)

    S. Gómez

    2005-01-01

    Full Text Available Se presenta un simulador de sombras vectoriales por radiación solar sobre objetos tridimensionales, SSV3D, una herramienta de computación gráfica desarrollada sobre la plataforma tridimensional del AUTOCAD 2004. El software simula vectorialmente la radiación solar directa, calculando y trazando los contornos de sombra sobre los planos iluminados del modelo 3D evaluado. En el desarrollo de la herramienta se comprobaron los resultados analíticos mediante su comparación con los obtenidos en las fórmulas de una hoja de cálculo, y de los resultados gráficos mediante comparación con las sombras arrojadas por simulación con un heliodón de tecnología francesa y por el Render de AUTOCAD. El simulador SSV3D respondió satisfactoriamente a las necesidades de estudio de sistemas de protección solar en investigaciones desarrolladas anteriormente.SSV3D is presented as a graphic computer tool developed on the three-dimensional platform of AUTOCAD 2004, which simulates direct solar radiation by measuring and vectorial tracing of shadow outlines on illuminated plans of the 3D model evaluated. The analytical results of this tool were tested during its' development by comparing its' results with those obtained in the formula of a calculus sheet, and graphic results were checked comparing these to the shadows obtained by simulation using physical models in a heliodon (French technology and by the Render of AUTOCAD. The SSV3D simulator responded satisfactorily to the requirements for the study of solar protection systems which had been determined in previous research.

  18. Probing the fuzzy sphere regularisation in simulations of the $3d \\lambda \\phi^4$ model

    CERN Document Server

    Medina, Julieta; O'Connor, Denjoe

    2008-01-01

    We regularise the 3d \\lambda \\phi^4 model by discretising the Euclidean time and representing the spatial part on a fuzzy sphere. The latter involves a truncated expansion of the field in spherical harmonics. This yields a numerically tractable formulation, which constitutes an unconventional alternative to the lattice. In contrast to the 2d version, the radius R plays an independent r\\^{o}le. We explore the phase diagram in terms of R and the cutoff, as well as the parameters m^2 and \\lambda. Thus we identify the phases of disorder, uniform order and non-uniform order. We compare the result to the phase diagrams of the 3d model on a non-commutative torus, and of the 2d model on a fuzzy sphere. Our data at strong coupling reproduce accurately the behaviour of a matrix chain, which corresponds to the c=1-model in string theory. This observation enables a conjecture about the thermodynamic limit.

  19. Metos3D: the Marine Ecosystem Toolkit for Optimization and Simulation in 3-D - Part 1: Simulation Package v0.3.2

    Science.gov (United States)

    Piwonski, Jaroslaw; Slawig, Thomas

    2016-10-01

    We designed and implemented a modular software framework for the offline simulation of steady cycles of 3-D marine ecosystem models based on the transport matrix approach. It is intended for parameter optimization and model assessment experiments. We defined a software interface for the coupling of a general class of water column-based biogeochemical models, with six models being part of the package. The framework offers both spin-up/fixed-point iteration and a Jacobian-free Newton method for the computation of steady states. The simulation package has been tested with all six models. The Newton method converged for four models when using standard settings, and for two more complex models after alteration of a solver parameter or the initial guess. Both methods delivered the same steady states (within a reasonable precision) on convergence for all models employed, with the Newton iteration generally operating 6 times faster. The effects on performance of both the biogeochemical and the Newton solver parameters were investigated for one model. A profiling analysis was performed for all models used in this work, demonstrating that the number of tracers had a dominant impact on overall performance. We also implemented a geometry-adapted load balancing procedure which showed close to optimal scalability up to a high number of parallel processors.

  20. A SEMI-IMPLICIT 3-D NUMERICAL MODEL USING SIGAM-COOR- DINATE FOR NON-HYDROSTATIC PRESSURE FREE-SURFACE FLOWS

    Institute of Scientific and Technical Information of China (English)

    HU De-chao; FAN Bei-lin; WANG Guang-qian; ZHANG Hong-wu

    2011-01-01

    A 3-D numerical formulation is proposed on the horizontal Cartesian, vertical sigma-coordinate grid for modeling non-hydrostatic pressure free-surface flows.The pressure decomposition technique and θ semi-implicit method are used, with the solution procedure being split into two steps.First, with the implicit parts of non-hydrostatic pressures excluded, the provisional velocity field and free surface are obtained by solving a 2-D Poisson equation.Second, the theory of the differential operator is employed to derive the 3-D Poisson equation for non-hydrostatic pressures, which is solved to obtain the non-hydrostatic pressures and to update the provisional velocity field.When the non-orthogonal sigma-coordinate transformation is introduced, additional terms come into being, resulting in a 15-diagonal, diagonally dominant but unsymmetric linear system in the 3-D Poisson equation for non-hydrostatic pressures.The Biconjugate Gradient Stabilized (BiCGstab) method is used to solve the resulting 3-D unsymmetric linear system instead of the conjugate gradient method, which can only be used for symmetric, positive-definite linear systems.Three test cases are used for validations.The successful simulations of the small-amplitude wave, a supercritical flow over a ramp and a turbulent flow in the open channel indicate that the new model can simulate well non-hydrostatic flows, supercritical flows and turbulent flows.

  1. Numerical simulation of welding

    DEFF Research Database (Denmark)

    Hansen, Jan Langkjær; Thorborg, Jesper

    Aim of project:To analyse and model the transient thermal field from arc welding (SMAW, V-shaped buttweld in 15mm plate) and to some extend the mechanical response due to the thermal field. - To implement this model in a general purpose finite element program such as ABAQUS.The simulation...... stress is also taken into account.Work carried out:With few means it is possible to define a thermal model which describes the thermal field from the welding process in reasonable agreement with reality. Identical results are found with ABAQUS and Rosenthal’s analytical solution of the governing heat...... transfer equation under same conditions. It is relative easy tointroduce boundary conditions such as convection and radiation where not surprisingly the radiation has the greatest influence especially from the high temperature regions in the weld pool and the heat affected zone.Due to the large temperature...

  2. The Impact of 3D Data Quality on Improving GNSS Performance Using City Models Initial Simulations

    Science.gov (United States)

    Ellul, C.; Adjrad, M.; Groves, P.

    2016-10-01

    There is an increasing demand for highly accurate positioning information in urban areas, to support applications such as people and vehicle tracking, real-time air quality detection and navigation. However systems such as GPS typically perform poorly in dense urban areas. A number of authors have made use of 3D city models to enhance accuracy, obtaining good results, but to date the influence of the quality of the 3D city model on these results has not been tested. This paper addresses the following question: how does the quality, and in particular the variation in height, level of generalization and completeness and currency of a 3D dataset, impact the results obtained for the preliminary calculations in a process known as Shadow Matching, which takes into account not only where satellite signals are visible on the street but also where they are predicted to be absent. We describe initial simulations to address this issue, examining the variation in elevation angle - i.e. the angle above which the satellite is visible, for three 3D city models in a test area in London, and note that even within one dataset using different available height values could cause a difference in elevation angle of up to 29°. Missing or extra buildings result in an elevation variation of around 85°. Variations such as these can significantly influence the predicted satellite visibility which will then not correspond to that experienced on the ground, reducing the accuracy of the resulting Shadow Matching process.

  3. Numerical model of water flow and solute accumulation in vertisols using HYDRUS 2D/3D code

    Science.gov (United States)

    Weiss, Tomáš; Dahan, Ofer; Turkeltub, Tuvia

    2015-04-01

    Keywords: dessication-crack-induced-salinization, preferential flow, conceptual model, numerical model, vadose zone, vertisols, soil water retention function, HYDRUS 2D/3D Vertisols cover a hydrologically very significant area of semi-arid regions often through which water infiltrates to groundwater aquifers. Understanding of water flow and solute accumulation is thus very relevant to agricultural activity and water resources management. Previous works suggest a conceptual model of dessication-crack-induced-salinization where salinization of sediment in the deep section of the vadose zone (up to 4 m) is induced by subsurface evaporation due to convective air flow in the dessication cracks. It suggests that the salinization is induced by the hydraulic gradient between the dry sediment in the vicinity of cracks (low potential) and the relatively wet sediment further from the main cracks (high potential). This paper presents a modified previously suggested conceptual model and a numerical model. The model uses a simple uniform flow approach but unconventionally prescribes the boundary conditions and the hydraulic parameters of soil. The numerical model is bound to one location close to a dairy farm waste lagoon, but the application of the suggested conceptual model could be possibly extended to all semi-arid regions with vertisols. Simulations were conducted using several modeling approaches with an ultimate goal of fitting the simulation results to the controlling variables measured in the field: temporal variation in water content across thick layer of unsaturated clay sediment (>10 m), sediment salinity and salinity the water draining down the vadose zone to the water table. The development of the model was engineered in several steps; all computed as forward solutions by try-and-error approach. The model suggests very deep instant infiltration of fresh water up to 12 m, which is also supported by the field data. The paper suggests prescribing a special atmospheric

  4. An inexpensive underwater mine countermeasures simulator with real-time 3D after action review

    Directory of Open Access Journals (Sweden)

    Robert Stone

    2016-10-01

    Full Text Available This paper presents the results of a concept capability demonstration pilot study, the aim of which was to investigate how inexpensive gaming software and hardware technologies could be exploited in the development and evaluation of a simulator prototype for training Royal Navy mine clearance divers, specifically focusing on the detection and accurate reporting of the location and condition of underwater ordnance. The simulator was constructed using the Blender open source 3D modelling toolkit and game engine, and featured not only an interactive 3D editor for underwater scenario generation by instructors, but also a real-time, 3D After Action Review (AAR system for formative assessment and feedback. The simulated scenarios and AAR architecture were based on early human factors observations and briefings conducted at the UK's Defence Diving School (DDS, an organisation that provides basic military diving training for all Royal Navy and Army (Royal Engineers divers. An experimental pilot study was undertaken to determine whether or not basic navigational and mine detection components of diver performance could be improved as a result of exposing participants to the AAR system, delivered between simulated diving scenarios. The results suggest that the provision of AAR was accompanied by significant performance improvements in the positive identification of simulated underwater ordnance (in contrast to non-ordnance objects and on participants' description of their location, their immediate in-water or seabed context and their structural condition. Only marginal improvements were found with participants' navigational performance in terms of their deviation accuracies from a pre-programmed expert search path. Overall, this project contributes to the growing corpus of evidence supporting the development of simulators that demonstrate the value of exploiting open source gaming software and the significance of adopting established games design

  5. Sedimentary basin effects in Seattle, Washington: Ground-motion observations and 3D simulations

    Science.gov (United States)

    Frankel, Arthur; Stephenson, William; Carver, David

    2009-01-01

    Seismograms of local earthquakes recorded in Seattle exhibit surface waves in the Seattle basin and basin-edge focusing of S waves. Spectral ratios of Swaves and later arrivals at 1 Hz for stiff-soil sites in the Seattle basin show a dependence on the direction to the earthquake, with earthquakes to the south and southwest producing higher average amplification. Earthquakes to the southwest typically produce larger basin surface waves relative to S waves than earthquakes to the north and northwest, probably because of the velocity contrast across the Seattle fault along the southern margin of the Seattle basin. S to P conversions are observed for some events and are likely converted at the bottom of the Seattle basin. We model five earthquakes, including the M 6.8 Nisqually earthquake, using 3D finite-difference simulations accurate up to 1 Hz. The simulations reproduce the observed dependence of amplification on the direction to the earthquake. The simulations generally match the timing and character of basin surface waves observed for many events. The 3D simulation for the Nisqually earth-quake produces focusing of S waves along the southern margin of the Seattle basin near the area in west Seattle that experienced increased chimney damage from the earthquake, similar to the results of the higher-frequency 2D simulation reported by Stephenson et al. (2006). Waveforms from the 3D simulations show reasonable agreement with the data at low frequencies (0.2-0.4 Hz) for the Nisqually earthquake and an M 4.8 deep earthquake west of Seattle.

  6. Characterization of counter-rotating vortices past trapezoidal tabs: simulations and visualization via 3D digitized reconstruction

    Science.gov (United States)

    Park, Jeongmoon; Pagan-Vazquez, Axy; Alvarado, Jorge; Chamorro, Leonardo P.; Lux, Scott; Marsh, Charles; CERL Collaboration; UIUC Collaboration; TAMU Collaboration

    2014-11-01

    Characterization of the turbulence generated by passive vortex generators has been a matter of intense research due to their relevance in applications ranging from aerodynamic efficiency to turbulence mixing. The advection diffusion patterns of the induced vortical structures are heavily controlled by the topology of the vortex generators. In this study, self-sustaining counter-rotating vortex pairs (CVP) generated from a series of trapezoidal tabs have been characterized numerically and experimentally to understand the role of the tab geometries on the flow turbulence. The trapezoidal tabs were fabricated using a 3D printer and defined in terms of inclination and taper angles. Reynolds-Averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES) were performed to quantify turbulence statistics and vorticity in the wake of the tabs. Flow fields were experimentally visualized via smoke technique and qualitatively compared with the numerical simulations. 3D vortices were digitally reconstructed by interpolating several 2D images taken at various spanwise planes. The role of the tabs geometry on the stability and features of the vortical structures is discussed for a Reynolds number of 2100 based on the channel depth.

  7. 3D Numerical Optimization Modelling of Ivancich landslides (Assisi, Italy) via integration of remote sensing and in situ observations.

    Science.gov (United States)

    Castaldo, Raffaele; De Novellis, Vincenzo; Lollino, Piernicola; Manunta, Michele; Tizzani, Pietro

    2015-04-01

    The new challenge that the research in slopes instabilities phenomena is going to tackle is the effective integration and joint exploitation of remote sensing measurements with in situ data and observations to study and understand the sub-surface interactions, the triggering causes, and, in general, the long term behaviour of the investigated landslide phenomenon. In this context, a very promising approach is represented by Finite Element (FE) techniques, which allow us to consider the intrinsic complexity of the mass movement phenomena and to effectively benefit from multi source observations and data. In this context, we perform a three dimensional (3D) numerical model of the Ivancich (Assisi, Central Italy) instability phenomenon. In particular, we apply an inverse FE method based on a Genetic Algorithm optimization procedure, benefitting from advanced DInSAR measurements, retrieved through the full resolution Small Baseline Subset (SBAS) technique, and an inclinometric array distribution. To this purpose we consider the SAR images acquired from descending orbit by the COSMO-SkyMed (CSK) X-band radar constellation, from December 2009 to February 2012. Moreover the optimization input dataset is completed by an array of eleven inclinometer measurements, from 1999 to 2006, distributed along the unstable mass. The landslide body is formed of debris material sliding on a arenaceous marl substratum, with a thin shear band detected using borehole and inclinometric data, at depth ranging from 20 to 60 m. Specifically, we consider the active role of this shear band in the control of the landslide evolution process. A large field monitoring dataset of the landslide process, including at-depth piezometric and geological borehole observations, were available. The integration of these datasets allows us to develop a 3D structural geological model of the considered slope. To investigate the dynamic evolution of a landslide, various physical approaches can be considered

  8. Implementation of Headtracking and 3D Stereo with Unity and VRPN for Computer Simulations

    Science.gov (United States)

    Noyes, Matthew A.

    2013-01-01

    This paper explores low-cost hardware and software methods to provide depth cues traditionally absent in monocular displays. The use of a VRPN server in conjunction with a Microsoft Kinect and/or Nintendo Wiimote to provide head tracking information to a Unity application, and NVIDIA 3D Vision for retinal disparity support, is discussed. Methods are suggested to implement this technology with NASA's EDGE simulation graphics package, along with potential caveats. Finally, future applications of this technology to astronaut crew training, particularly when combined with an omnidirectional treadmill for virtual locomotion and NASA's ARGOS system for reduced gravity simulation, are discussed.

  9. Parameterization experiments performed via synthetic mass movements prototypes generated by 3D slope stability simulator

    Science.gov (United States)

    Colangelo, Antonio C.

    2010-05-01

    each cell in synthetic slope systems performed by relief unity emulator. The central methodological strategy is to locate the potential rupture surfaces (prs), main material discontinuities, like soil-regolith or regolith-rock transitions. Inner these "prs", we would to outline the effective potential rupture surfaces (eprs). This surface is a sub-set of the "prs" that presents safety factor less than unity (fequilibrium be attained at residual shear strength. These devices generate graphic 3D cinematic sequences of experiments in synthetic slope systems and numerical results about physical and morphological data about scars and deposits. Thus, we have a detailed geotechnical, morphological, topographic and morphometric description of these mass movements prototypes, for deal with effective mass movements found in the real environments.

  10. Estimation of thawing cryolithic area with numerical modeling in 3D geometry while exploiting underground small nuclear power plant

    Directory of Open Access Journals (Sweden)

    Melnikov N. N.

    2016-03-01

    Full Text Available The paper presents results on 3D numerical calculation of a thermal task related to assessing a thawing area when placing modules with reactor and steam-turbine facility of a small nuclear power plant in thickness of permafrost rocks. The paper discusses influence of the coefficient of thermal conductivity for large-scaled underground excavations lining and cryolithic area porosity on thawing depth and front movement velocity under different spatial directions

  11. Rise time of proton cut-off energy in 2D and 3D PIC simulations

    CERN Document Server

    Babaei, Javad; Londrillo, Pasquale; Mirzanejad, Saeed; Rovelli, Tiziano; Sinigardi, Stefano; Turchetti, Giorgio

    2016-01-01

    The Target Normal Sheath Acceleration (TNSA) regime for proton acceleration by laser pulses is experimentally consolidated and fairly well understood. However, uncertainties remain in the analysis of particle-in-cell (PIC) simulation results. The energy spectrum is exponential with a cut-off, but the maximum energy depends on the simulation time, following different laws in two and three dimensional (2D, 3D) PIC simulations, so that the determination of an asymptotic value has some arbitrariness. We propose two empirical laws for rise time of the cut-off energy in 2D and 3D PIC simulations, suggested by a model in which the proton acceleration is due to a surface charge distribution on the target rear side. The kinetic energy of the protons that we obtain follows two distinct laws, which appear to be nicely satisfied by PIC simulations. The laws depend on two parameters: the scaling time, at which the energy starts to rise, and the asymptotic cut-off energy. The values of the cut-off energy, obtained by fitti...

  12. Simulation of the impact of 3-D porosity distribution in metallic U-10Zr fuels

    Science.gov (United States)

    Yun, Di; Yacout, Abdellatif M.; Stan, Marius; Bauer, Theodore H.; Wright, Arthur E.

    2014-05-01

    Evolution of porosity generated in metallic U-Zr fuel irradiated in fast spectrum reactors leads to changes in fuel properties and impacts important phenomena such as heat transport and constituent redistribution. The porosity is generated as a result of the accumulation of fission gases and is affected by the possible bond sodium infiltration into the fuel. Typically, the impact of porosity development on properties, such as thermal conductivity, is accounted for through empirical correlations that are dependent on porosity and infiltrated sodium fractions. Currently available simulation tools make it possible to take into account fuel 3-D porosity distributions, potentially eliminating the need for such correlations. This development allows for a more realistic representation of the porosity evolution in metallic fuel and creates a framework for truly mechanistic fuel development models. In this work, COMSOL multi-physics simulation platform is used to model 3-D porosity distributions and simulate heat transport in metallic U-10Zr fuel. Available experimental data regarding microstructural evolution of fuel that was irradiated in EBR-II and associated phase stability information are used to guide the simulation. The impact of changes in porosity characteristics on material properties is estimated and the results are compared with calculated temperature distributions. The simulations demonstrate the developed capability and importance of accounting for detailed porosity distribution features for accurate fuel performance evaluation.

  13. 3-D parallel program for numerical calculation of gas dynamics problems with heat conductivity on distributed memory computational systems (CS)

    Energy Technology Data Exchange (ETDEWEB)

    Sofronov, I.D.; Voronin, B.L.; Butnev, O.I. [VNIIEF (Russian Federation)] [and others

    1997-12-31

    The aim of the work performed is to develop a 3D parallel program for numerical calculation of gas dynamics problem with heat conductivity on distributed memory computational systems (CS), satisfying the condition of numerical result independence from the number of processors involved. Two basically different approaches to the structure of massive parallel computations have been developed. The first approach uses the 3D data matrix decomposition reconstructed at temporal cycle and is a development of parallelization algorithms for multiprocessor CS with shareable memory. The second approach is based on using a 3D data matrix decomposition not reconstructed during a temporal cycle. The program was developed on 8-processor CS MP-3 made in VNIIEF and was adapted to a massive parallel CS Meiko-2 in LLNL by joint efforts of VNIIEF and LLNL staffs. A large number of numerical experiments has been carried out with different number of processors up to 256 and the efficiency of parallelization has been evaluated in dependence on processor number and their parameters.

  14. Efficient Numerical Modeling of 3D, Half-Space, Slow-Slip and Quasi-Dynamic Earthquake Ruptures

    Science.gov (United States)

    Bradley, A. M.; Segall, P.

    2011-12-01

    Motivated by the hypothesis that dilatancy plays a critical role in faulting in subduction zones, we are developing FDRA2 (Fault Dynamics with the Radiation-damping Approximation), a software package to simulate three-dimensional quasi-dynamic faulting that includes rate-state friction, thermal pressurization, and dilatancy (following Segall and Rice [1995]) in a finite-width shear zone. This work builds on the two-dimensional simulations performed by FDRA1 (Bradley and Segall [AGU 2010], Segall and Bradley [submitted]). These simulations show that at lower background effective normal stress (\\bar σ), slow slip events occur spontaneously, whereas at higher \\bar σ , slip is inertially limited. At intermediate \\bar σ , dynamic events are followed by quiescent periods and then long durations of repeating slow slip events. Models with depth-dependent properties produce sequences similar to those observed in Cascadia. Like FDRA1, FDRA2 solves partial differential equations in pressure and temperature on profiles normal to the fault. The diffusion equations are discretized in space using finite differences on a nonuniform mesh having greater density near the fault. The full system of equations is a semiexplicit index-1 differential algebraic equation (DAE) in slip, slip rate, state, fault zone porosity, pressure, and temperature. We integrate state, porosity, and slip explicitly; solve the momentum balance equation on the fault for slip rate; and integrate pressure and temperature implicitly. Adaptive time steps are limited by accuracy and the stability criterion governing explicit integration of hyperbolic, but not the more stringent one governing parabolic, PDE. To compute elasticity in a 3D half-space, FDRA2 compresses the large, dense matrix arising from the boundary element method using an H-matrix. The work to perform a matrix-vector product scales almost linearly, rather than quadratically, in the number of fault cells. A new technique to relate the error

  15. Simulation of 3D Flow in Turbine Blade Rows including the Effects of Coolant Ejection

    Institute of Scientific and Technical Information of China (English)

    Jian-Jun LIU; Bai-Tao AN; Yun-Tao ZENG

    2008-01-01

    This paper describes the numerical simulation of three-dimensional viscous flows in air-cooled turbine blade rows with the effects of coolant ejection. A TVD Navier-Stokes flow solver incorporated with Baldwin-Lomax turbulence model and multi-grid convergence acceleration algorithm are used for the simulation. The influences of coolant ejection on the main flow are accounted by volumetric coolant source terms. Numerical results for a four-stage turbine are presented and discussed.

  16. Full Core 3-D Simulation of a Partial MOX LWR Core

    Energy Technology Data Exchange (ETDEWEB)

    S. Bays; W. Skerjanc; M. Pope

    2009-05-01

    A comparative analysis and comparison of results obtained between 2-D lattice calculations and 3-D full core nodal calculations, in the frame of MOX fuel design, was conducted. This study revealed a set of advantages and disadvantages, with respect to each method, which can be used to guide the level of accuracy desired for future fuel and fuel cycle calculations. For the purpose of isotopic generation for fuel cycle analyses, the approach of using a 2-D lattice code (i.e., fuel assembly in infinite lattice) gave reasonable predictions of uranium and plutonium isotope concentrations at the predicted 3-D core simulation batch average discharge burnup. However, it was found that the 2-D lattice calculation can under-predict the power of pins located along a shared edge between MOX and UO2 by as much as 20%. In this analysis, this error did not occur in the peak pin. However, this was a coincidence and does not rule out the possibility that the peak pin could occur in a lattice position with high calculation uncertainty in future un-optimized studies. Another important consideration in realistic fuel design is the prediction of the peak axial burnup and neutron fluence. The use of 3-D core simulation gave peak burnup conditions, at the pellet level, to be approximately 1.4 times greater than what can be predicted using back-of-the-envelope assumptions of average specific power and irradiation time.

  17. Hierarchical Statistical 3D ' Atomistic' Simulation of Decanano MOSFETs: Drift-Diffusion, Hydrodynamic and Quantum Mechanical Approaches

    Science.gov (United States)

    Asenov, Asen; Brown, A. R.; Slavcheva, G.; Davies, J. H.

    2000-01-01

    When MOSFETs are scaled to deep submicron dimensions the discreteness and randomness of the dopant charges in the channel region introduces significant fluctuations in the device characteristics. This effect, predicted 20 year ago, has been confirmed experimentally and in simulation studies. The impact of the fluctuations on the functionality, yield, and reliability of the corresponding systems shifts the paradigm of the numerical device simulation. It becomes insufficient to simulate only one device representing one macroscopical design in a continuous charge approximation. An ensemble of macroscopically identical but microscopically different devices has to be characterized by simulation of statistically significant samples. The aims of the numerical simulations shift from predicting the characteristics of a single device with continuous doping towards estimating the mean values and the standard deviations of basic design parameters such as threshold voltage, subthreshold slope, transconductance, drive current, etc. for the whole ensemble of 'atomistically' different devices in the system. It has to be pointed out that even the mean values obtained from 'atomistic' simulations are not identical to the values obtained from continuous doping simulations. In this paper we present a hierarchical approach to the 'atomistic' simulation of aggressively scaled decanano MOSFETs. A full scale 3D drift-diffusion'atomostic' simulation approach is first described and used for verification of the more economical, but also more restricted, options. To reduce the processor time and memory requirements at high drain voltage we have developed a self-consistent option based on a thin slab solution of the current continuity equation only in the channel region. This is coupled to the Poisson's equation solution in the whole simulation domain in the Gummel iteration cycles. The accuracy of this approach is investigated in comparison with the full self-consistent solution. At low drain

  18. 3D multidisciplinary numerical model of polychlorinated biphenyl dynamics on the Black Sea north-western shelf

    Science.gov (United States)

    Bagaiev, Andrii; Ivanov, Vitaliy

    2014-05-01

    The Black Sea north-western shelf plays a key role in economics of the developing countries such as Ukraine due to food supply, invaluable recreational potential and variety of the relevant maritime shipping routes. On the other hand, a shallow flat shelf is mostly affected by anthropogenic pollution, eutrophication, hypoxia and harmful algae blooms. The research is focused on modeling the transport and transformation of PCBs (PolyChlorinated Biphenyls) because they are exceedingly toxic and highly resistant to degradation, hence cumulatively affect marine ecosystems. Being lipophilic compounds, PCBs demonstrate the distinguishing sorption/desorption activity taking part in the biogeochemical fluxes via the organic matter particles and sediments. In the framework of the research, the coastal in-situ data on PCB concentration in the water column and sediments are processed, visualized and analyzed. It is concluded that the main sources of PCBs are related to the Danube discharge and resuspension from the shallow-water sediments. Developed 3D numerical model is aimed at simulation of PCB contamination of the water column and sediment. The model integrates the full physics hydrodynamic block as well as modules, which describe detritus transport and transformation and PCB dynamics. Three state variables are simulated in PCB transport module: concentration in solute, on the settling particles of detritus and in the top layer of sediments. PCB adsorption/desorption on detritus; the reversible PCB fluxes at the water-sediment boundary; destruction of detritus are taken into consideration. Formalization of PCB deposition/resuspension in the sediments is adapted from Van Rijn's model of the suspended sediment transport. The model was spun up to reconstruct the short term scenario of the instantaneous PCB release from the St. George Arm of Danube. It has been shown that PCB transport on sinking detritus represents the natural buffer mechanism damping the spreading PCB

  19. Flow above and within granular media composed of spherical and non-spherical particles - using a 3D numerical model

    Science.gov (United States)

    Bartzke, Gerhard; Kuhlmann, Jannis; Huhn, Katrin

    2016-04-01

    The entrainment of single grains and, hence, their erosion characteristics are dependent on fluid forcing, grain size and density, but also shape variations. To quantitatively describe and capture the hydrodynamic conditions around individual grains, researchers commonly use empirical approaches such as laboratory flume tanks. Nonetheless, it is difficult with such physical experiments to measure the flow velocities in the direct vicinity or within the pore spaces of sediments, at a sufficient resolution and in a non-invasive way. As a result, the hydrodynamic conditions in the water column, at the fluid-porous interface and within pore spaces of a granular medium of various grain shapes is not yet fully understood. For that reason, there is a strong need for numerical models, since these are capable of quantifying fluid speeds within a granular medium. A 3D-SPH (Smooth Particle Hydrodynamics) numerical wave tank model was set up to provide quantitative evidence on the flow velocities in the direct vicinity and in the interior of granular beds composed of two shapes as a complementary method to the difficult task of in situ measurement. On the basis of previous successful numerical wave tank models with SPH, the model geometry was chosen in dimensions of X=2.68 [m], Y=0.48 [m], and Z=0.8 [m]. Three suites of experiments were designed with a range of particle shape models: (1) ellipsoids with the long axis oriented in the across-stream direction, (2) ellipsoids with the long axis oriented in the along-stream direction, and (3) spheres. Particle diameters ranged from 0.04 [m] to 0.08 [m]. A wave was introduced by a vertical paddle that accelerated to 0.8 [m/s] perpendicular to the granular bed. Flow measurements showed that the flow velocity values into the beds were highest when the grains were oriented across the stream direction and lowest in case when the grains were oriented parallel to the stream, indicating that the model was capable to simulate simultaneously

  20. Simulation of 3D chip shaping of aluminum alloy 7075 in milling processes

    Institute of Scientific and Technical Information of China (English)

    DONG Hui-yue; KE Ying-lin

    2005-01-01

    By adopting an equivalent geometry model of machining process and considering thermo-plastic properties of the work material, a finite element method(FEM) to study oblique milling process of aluminum alloy with a double-edge tool was presented. In the FEM, shear flow stress was determined by material test. Re-meshing technology was used to represent chip separation process. Comparing the predicted cutting forces with the measured forces shows the 3D FEM is reasonable. Using this FEM, chip forming process and temperature distribution were predicted. Chips obtained by the 3D FEM are in spiral shape and are similar to the experimental ones. Distribution and change trend of temperature in the tool and chip indicate that contact length between tool rake face and chip is extending as tool moving forward. These results confirm the capability of FEM simulation in predicting chip flow and selecting optimal tool.

  1. Anomalous Surface Deformation of Sapphire Clarified by 3D-FEM Simulation of the Nanoindentation

    Science.gov (United States)

    Nowak, Roman; Manninen, Timo; Li, Chunliang; Heiskanen, Kari; Hannula, Simo-Pekka; Lindroos, Veikko; Soga, Tetsuo; Yoshida, Fusahito

    This work clarifies the origin of anomalous surface deformation reflected by peculiar surface patterns around indentation impressions on various crystallographic planes of sapphire. The three-dimensional finite element simulation (3D-FEM) of nanoindentation in Al2O3 crystal allowed the authors to localize the regions in which various kinds of twinning and slip are most prone to be activated. The work provides a novel approach to the “hardness anisotropy”, which was modeled so far using a modified uniaxial-stress approximation of this essentially 3D, non-isotropic contact problem. The calculated results enabled the authors to unravel the asymmetric surface deformation detected on prismatic planes by the high-resolution microscopy, which cannot be explained using simple crystallographic considerations.

  2. The current status of the development of the technology on 3D computer simulation in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Reyoung; Park, Seung Kook; Chung, Un Soo; Jung, Ki Jung

    2002-05-01

    The development background and property of the COSIDA, which is the 3D computer simulation system for the analysis on the dismantling procedure of the nuclear facilities in Japan was reviewed. The function of the visualization on the work area, Kinematics analysis and dismantling scenario analysis, which are the sub systems of the COSIDA, has been investigated. The physical, geometrical and radiological properties were modelled in 2D or 3D in the sub system of the visualization of the work area. In the sub system of the kinematics analysis, the command set on the basic work procedure for the control of the motion of the models at a cyber space was driven. The suitability of the command set was estimated by the application of COSIDA to the programming on the motion of the remote dismantling tools for dismantling the components of the nuclear facilities at cyber space.

  3. Development of a Top-View Numeric Coding Teaching-Learning Trajectory within an Elementary Grades 3-D Visualization Design Research Project

    Science.gov (United States)

    Sack, Jacqueline J.

    2013-01-01

    This article explicates the development of top-view numeric coding of 3-D cube structures within a design research project focused on 3-D visualization skills for elementary grades children. It describes children's conceptual development of 3-D cube structures using concrete models, conventional 2-D pictures and abstract top-view numeric…

  4. ReefSAM - Reef Sedimentary Accretion Model: A new 3D coral reef evolution model/simulator

    Science.gov (United States)

    Barrett, Samuel; Webster, Jody

    2013-04-01

    Coral reefs show characteristic morphological patterns (e.g. coral dominated margins with detrital carbonate dominated lagoons/back-reef) and temporal development (e.g. Hopley et al. 2007). While the processes which lead to predictable patterns on a range of scales have been discussed qualitatively, a full quantitative understanding of the range of processes and parameters involved requires modelling. Previous attempts to model complex Holocene reef systems (i.e. One Tree Reef, GBR - Barrett and Webster 2012) using a carbonate stratigraphic forward model (Carbonate3D - Warrlich et al. 2002) identified a number of important but unsimulated processes and potential model improvements. ReefSAM has been written from scratch in Matlab using these findings and experiences from using Carbonate3D. It simulates coralgal accretion and carbonate sand production and transport. Specific improvements include: 1. a more complex hydrodynamic model based on wave refraction and incorporating vertical (depth) and lateral (substrate dependent) variations in transport energy and erosion. 2. a complex reef growth model incorporating depth, wave energy/turbidity and substrate composition. 3. Paleo-water depth, paleo-wave energy and bio-zone (combination of paleo-water depth and wave energy) model outputs allowing coralgal habitat changes through time and space to be simulated and compared to observational data. The model is compared to the well studied One Tree Reef - tests similar to those undertaken in Barrett and Webster 2012 with Carbonate3D are presented. Model development coincides with plans for further intensive drilling at One Tree Reef (mid 2013) providing an opportunity to test the model predictively. The model is still in active development. References: Barrett, S.J., Webster, J.M.,2012. Holocene evolution of the Great Barrier Reef: Insights from 3D numerical modelling. Sedimentary Geology 265-266, 56-71. Warrlich, G.M.D., Waltham, D.A., Bosence D.W.J., 2002. Quantifying the

  5. Novel 3D/VR interactive environment for MD simulations, visualization and analysis.

    Science.gov (United States)

    Doblack, Benjamin N; Allis, Tim; Dávila, Lilian P

    2014-12-18

    The increasing development of computing (hardware and software) in the last decades has impacted scientific research in many fields including materials science, biology, chemistry and physics among many others. A new computational system for the accurate and fast simulation and 3D/VR visualization of nanostructures is presented here, using the open-source molecular dynamics (MD) computer program LAMMPS. This alternative computational method uses modern graphics processors, NVIDIA CUDA technology and specialized scientific codes to overcome processing speed barriers common to traditional computing methods. In conjunction with a virtual reality system used to model materials, this enhancement allows the addition of accelerated MD simulation capability. The motivation is to provide a novel research environment which simultaneously allows visualization, simulation, modeling and analysis. The research goal is to investigate the structure and properties of inorganic nanostructures (e.g., silica glass nanosprings) under different conditions using this innovative computational system. The work presented outlines a description of the 3D/VR Visualization System and basic components, an overview of important considerations such as the physical environment, details on the setup and use of the novel system, a general procedure for the accelerated MD enhancement, technical information, and relevant remarks. The impact of this work is the creation of a unique computational system combining nanoscale materials simulation, visualization and interactivity in a virtual environment, which is both a research and teaching instrument at UC Merced.

  6. Multiple-mode Lamb wave scattering simulations using 3D elastodynamic finite integration technique.

    Science.gov (United States)

    Leckey, Cara A C; Rogge, Matthew D; Miller, Corey A; Hinders, Mark K

    2012-02-01

    We have implemented three-dimensional (3D) elastodynamic finite integration technique (EFIT) simulations to model Lamb wave scattering for two flaw-types in an aircraft-grade aluminum plate, a rounded rectangle flat-bottom hole and a disbond of the same shape. The plate thickness and flaws explored in this work include frequency-thickness regions where several Lamb wave modes exist and sometimes overlap in phase and/or group velocity. For the case of the flat-bottom hole the depth was incrementally increased to explore progressive changes in multiple-mode Lamb wave scattering due to the damage. The flat-bottom hole simulation results have been compared to experimental data and are shown to provide key insight for this well-defined experimental case by explaining unexpected results in experimental waveforms. For the rounded rectangle disbond flaw, which would be difficult to implement experimentally, we found that Lamb wave behavior differed significantly from the flat-bottom hole flaw. Most of the literature in this field is restricted to low frequency-thickness regions due to difficulties in interpreting data when multiple modes exist. We found that benchmarked 3D EFIT simulations can yield an understanding of scattering behavior for these higher frequency-thickness regions and in cases that would be difficult to set up experimentally. Additionally, our results show that 2D simulations would not have been sufficient for modeling the complicated scattering that occurred.

  7. Magnetospheric Magnetic Reconnection with Southward IMF by a 3D EMPM Simulation

    Science.gov (United States)

    Nishikawa, K.-I.; Yan, X. Y.; Cai, D. S.; Lembege, B.

    2004-01-01

    We report our new simulation results on magnetospheric magnetic reconnection with southward IMF using a 3D EMPM model, with greater resolution and more particles using the parallelized 3D HPF TRISTAN code on VPP5000 supercomputer. Main parameters used in the new simulation are: domain size is 215 x 145 x 145, grid size = 0.5 Earth radius, initial particle number is 16 per cell, the IMF is southward. Arrival of southward IMF will cause reconnection in the magnetopause, thus allowing particles to enter into the inner magnetosphere. Sunward and tailward high particle flow are observed by satellites, and these phenomena are also observed in the simulation near the neutral line (X line) of the near-Earth magnetotail. This high particle flow goes along with the reconnected island. The magnetic reconnection process contributes to direct plasma entry between the magnetosheath to the inner magnetosphere and plasma sheet, in which the entry process eats the magnetosheath plasma to plasma sheet temperatures. We investigate magnetic, electric fields, density, and current during this magnetic reconnection with southward IMF. Further investigation with this simulation will provide insight into unsolved problems, such as the triggering of storms and substorms, and the storm-substorm relationship. New results will be presented at the meeting.

  8. Water flow prediction for Membranes using 3D simulations with detailed morphology

    KAUST Repository

    Shi, Meixia

    2015-04-01

    The membrane morphology significantly influences membrane performance. For osmotically driven membrane processes, the morphology strongly affects the internal concentration polarization. Different membrane morphologies were generated by simulation and their influence on membrane performance was studied, using a 3D model. The simulation results were experimentally validated for two classical phase-inversion membrane morphologies: sponge- and finger-like structures. Membrane porosity and scanning electron microscopy image information were used as model input. The permeance results from the simulation fit well the experimentally measured permeances. Water permeances were predicted for different kinds of finger-like cavity membranes with different finger-like cavity lengths and various finger-like cavity sets, as well as for membranes with cylindrical cavities. The results provide realistic information on how to increase water permeance, and also illustrate that membrane’s complete morphology is important for the accurate water permeance evaluation. Evaluations only based on porosity might be misleading, and the new 3D simulation approach gives a more realistic representation.

  9. 3D Numerical Study on Compound Heat Transfer Enhancement of Converging-diverging Tubes Equipped with Twin Twisted Tapes

    Institute of Scientific and Technical Information of China (English)

    洪宇翔; 邓先和; 张连山

    2012-01-01

    The paper presents a 3D numerical simulation of turbulent heat transfer and flow characteristics in converging-diverging tubes (CDs) and converging-diverg)ng tubes.equi.pped with twin counter-swirling twisted tapes (CDTs). The effects of Reynolds number (Re= 10000-20000), pitch length (P= 11.25, 22.5 mm), rib height (e = 0.5, 0.8, 1.1 ram), pitch ratio (8= 1 " 8, 5 " 4, 8 " 1), gap distance between twin t)visted tapes (b = 0.5, 4.5, 8.5 mm) and tape number (n = 2, 3, 4, 5, 6) on Nusselt number (Nu), Iriction tactor 0') and thermal enhancement factor (r/) are investigated under uniform heat flux conditions,using water as working fluid. In order to illustrate the heat transter and tlu~d tlow mechamsms, flow structures m ~StJs and ~SDIs are presented. The obtained results reveal that all geometric parameters have important effects on the thermal performance of CD and CDT, and both CD and CDT show better thermal performance than plain tube at the constant pumping power. It is also found that the increases in the Nusselt number and friction factor for CDT are, respectively, up to 6.3%-35.7% and 1.75-5.3 times of thecorresponding bare CD. All CDTs have good thermal perbrmance with greater than 1 which indicates that the compound heat transfer technique of CDT is commendable for the maximum enhanced heat transfer rate.

  10. Numerical prediction of 3-D periodic flow unsteadiness in a centrifugal pump under part-load condition

    Institute of Scientific and Technical Information of China (English)

    裴吉; 袁寿其; 李晓俊; 袁建平

    2014-01-01

    Numerical simulation and 3-D periodic flow unsteadiness analysis for a centrifugal pump with volute are carried out in whole flow passage, including the impeller with twisted blades, the volute and the side chamber channels under a part-load condition. The pressure fluctuation intensity coefficient (PFIC) based on the standard deviation method, the time-averaged velocity unsteadi-ness intensity coefficient (VUIC) and the time-averaged turbulence intensity coefficient (TIC) are defined by averaging the results at each grid node for an entire impeller revolution period. Therefore, the strength distributions of the periodic flow unsteadiness based on the unsteady Reynolds-averaged Navier-Stokes (URANS) equations can be analyzed directly and in detail. It is shown that under the des.0.6Q condition, the pressure fluctuation intensity is larger near the blade pressure side than near the suction side, and a high fluctuation intensity can be observed at the beginning section of the spiral of the volute. The flow velocity unsteadiness intensity is larger near the blade suction side than near the pressure side. A strong turbulence intensity can be found near the blade suction side, the impeller shroud side as well as in the side chamber. The leakage flow has a significant effect on the inflow of the impeller, and can increase both the flow velocity unsteadiness intensity and the turbulence intensity near the wall. The accumulative flow unstea-diness results of an impeller revolution can be an important aspect to be considered in the centrifugal pump optimum design for ob-taining a more stable inner flow of the pump and reducing the flow-induced vibration and noise in certain components.

  11. A 3-D Numerical Model for the Calculation of Water Wave Transformation in Large Area

    Institute of Scientific and Technical Information of China (English)

    孙大鹏; 李玉成; 葛岚

    2001-01-01

    Based on the integral equation transformed from three dimensional Laplace equation and by the adoption of the division manner of sub-region boundary element method, the numerical computations of the velocity potential of each sub-region are given considering the continuity conditions of potential and normal derivatives at the interface of sub-regions. Therefore, computation of wave deformation in offshore flow field is realized. The present numerical model provides a good solution for the application of boundary element method to the calculation of wave deformation in large areas.

  12. Direct Numerical Simulation of Cell Printing

    Science.gov (United States)

    Qiao, Rui; He, Ping

    2010-11-01

    Structural cell printing, i.e., printing three dimensional (3D) structures of cells held in a tissue matrix, is gaining significant attention in the biomedical community. The key idea is to use desktop printer or similar devices to print cells into 3D patterns with a resolution comparable to the size of mammalian cells, similar to that in living organs. Achieving such a resolution in vitro can lead to breakthroughs in areas such as organ transplantation and understanding of cell-cell interactions in truly 3D spaces. Although the feasibility of cell printing has been demonstrated in the recent years, the printing resolution and cell viability remain to be improved. In this work, we investigate one of the unit operations in cell printing, namely, the impact of a cell-laden droplet into a pool of highly viscous liquids using direct numerical simulations. The dynamics of droplet impact (e.g., crater formation and droplet spreading and penetration) and the evolution of cell shape and internal stress are quantified in details.

  13. DKE: a fast numerical solver for the 3-D relativistic bounce-averaged electron drift kinetic equation

    Energy Technology Data Exchange (ETDEWEB)

    Decker, J.; Peysson, Y

    2004-12-01

    A new original code for solving the 3-D relativistic and bounce-averaged electron drift kinetic equation is presented. It designed for the current drive problem in tokamak with an arbitrary magnetic equilibrium. This tool allows self-consistent calculations of the bootstrap current in presence of other external current sources. RF current drive for arbitrary type of waves may be used. Several moments of the electron distribution function are determined, like the exact and effective fractions of trapped electrons, the plasma current, absorbed RF power, runaway and magnetic ripple loss rates and non-thermal Bremsstrahlung. Advanced numerical techniques have been used to make it the first fully implicit (reverse time) 3-D solver, particularly well designed for implementation in a chain of code for realistic current drive calculations in high {beta}{sub p} plasmas. All the details of the physics background and the numerical scheme are presented, as well a some examples to illustrate main code capabilities. Several important numerical points are addressed concerning code stability and potential numerical and physical limitations. (authors)

  14. Recent Developments in the VISRAD 3-D Target Design and Radiation Simulation Code

    Science.gov (United States)

    Macfarlane, Joseph; Woodruff, P.; Golovkin, I.

    2011-10-01

    The 3-D view factor code VISRAD is widely used in designing HEDP experiments at major laser and pulsed-power facilities, including NIF, OMEGA, OMEGA-EP, ORION, Z, and PLX. It simulates target designs by generating a 3-D grid of surface elements, utilizing a variety of 3-D primitives and surface removal algorithms, and can be used to compute the radiation flux throughout the surface element grid by computing element-to-element view factors and solving power balance equations. Target set-up and beam pointing are facilitated by allowing users to specify positions and angular orientations using a variety of coordinates systems (e . g . , that of any laser beam, target component, or diagnostic port). Analytic modeling for laser beam spatial profiles for OMEGA DPPs and NIF CPPs is used to compute laser intensity profiles throughout the grid of surface elements. VISRAD includes a variety of user-friendly graphics for setting up targets and displaying results, can readily display views from any point in space, and can be used to generate image sequences for animations. We will discuss recent improvements to the software package and plans for future developments.

  15. Characterizing the propagation of gravity waves in 3D nonlinear simulations of solar-like stars

    CERN Document Server

    Alvan, L; Brun, A S; Mathis, S; Garcia, R A

    2015-01-01

    The revolution of helio- and asteroseismology provides access to the detailed properties of stellar interiors by studying the star's oscillation modes. Among them, gravity (g) modes are formed by constructive interferences between progressive internal gravity waves (IGWs), propagating in stellar radiative zones. Our new 3D nonlinear simulations of the interior of a solar-like star allows us to study the excitation, propagation, and dissipation of these waves. The aim of this article is to clarify our understanding of the behavior of IGWs in a 3D radiative zone and to provide a clear overview of their properties. We use a method of frequency filtering that reveals the path of {individual} gravity waves of different frequencies in the radiative zone. We are able to identify the region of propagation of different waves in 2D and 3D, to compare them to the linear raytracing theory and to distinguish between propagative and standing waves (g modes). We also show that the energy carried by waves is distributed in d...

  16. PFLOW: A 3-D Numerical Modeling Tool for Calculating Fluid-Pressure Diffusion from Coulomb Strain

    Science.gov (United States)

    Wolf, L. W.; Lee, M.; Meir, A.; Dyer, G.; Ma, K.; Chan, C.

    2009-12-01

    A new 3D time-dependent pore-pressure diffusion model PFLOW is developed to investigate the response of pore fluids to the crustal deformation generated by strong earthquakes in heterogeneous geologic media. Given crustal strain generated by changes in Coulomb stress, this MATLAB-based code uses Skempton's coefficient to calculate resulting changes fluid pressure. Pore-pressure diffusion can be tracked over time in a user-defined model space with user-prescribed Neumann or Dirchilet boundary conditions and with spatially variable values of permeability. PFLOW employs linear or quadratic finite elements for spatial discretization and first order or second order, explicit or implicit finite difference discretization in time. PFLOW is easily interfaced with output from deformation modeling programs such as Coulomb (Toda et al., 2007) or 3D-DEF (Gomberg and Ellis, 1994). The code is useful for investigating to first-order the evolution of pore pressure changes induced by changes in Coulomb stress and their possible relation to water-level changes in wells or changes in stream discharge. It can also be used for student research and classroom instruction. As an example application, we calculate the coseismic pore pressure changes and diffusion induced by volumetric strain associated with the 1999 Chi-Chi earthquake (Mw = 7.6) in Taiwan. The Chi-Chi earthquake provides an unique opportunity to investigate the spatial and time-dependent poroelastic response of near-field rocks and sediments because there exist extensive observational data of water-level changes and crustal deformation. The integrated model allows us to explore whether changes in Coulomb stress can adequately explain hydrologic anomalies observed in areas such as Taiwan’s western foothills and the Choshui River alluvial plain. To calculate coseismic strain, we use the carefully calibrated finite fault-rupture model of Ma et al. (2005) and the deformation modeling code Coulomb 3.1 (Toda et al., 2007

  17. Does fluid infiltration affect the motion of sediment grains? - A 3-D numerical modelling approach using SPH

    Science.gov (United States)

    Bartzke, Gerhard; Rogers, Benedict D.; Fourtakas, Georgios; Mokos, Athanasios; Huhn, Katrin

    2016-04-01

    The processes that cause the creation of a variety of sediment morphological features, e.g. laminated beds, ripples, or dunes, are based on the initial motion of individual sediment grains. However, with experimental techniques it is difficult to measure the flow characteristics, i.e., the velocity of the pore water flow in sediments, at a sufficient resolution and in a non-intrusive way. As a result, the role of fluid infiltration at the surface and in the interior affecting the initiation of motion of a sediment bed is not yet fully understood. Consequently, there is a strong need for numerical models, since these are capable of quantifying fluid driven sediment transport processes of complex sediment beds composed of irregular shapes. The numerical method Smoothed Particle Hydrodynamics (SPH) satisfies this need. As a meshless and Lagrangian technique, SPH is ideally suited to simulating flows in sediment beds composed of various grain shapes, but also flow around single grains at a high temporal and spatial resolution. The solver chosen is DualSPHysics (www.dual.sphysics.org) since this is validated for a range of flow conditions. For the present investigation a 3-D numerical flume model was generated using SPH with a length of 4.0 cm, a width of 0.05 cm and a height of 0.2 cm where mobile sediment particles were deposited in a recess. An experimental setup was designed to test sediment configurations composed of irregular grain shapes (grain diameter, D50=1000 μm). Each bed consisted of 3500 mobile objects. After the bed generation process, the entire domain was flooded with 18 million fluid particles. To drive the flow, an oscillating motion perpendicular to the bed was applied to the fluid, reaching a peak value of 0.3 cm/s, simulating 4 seconds of real time. The model results showed that flow speeds decreased logarithmically from the top of the domain towards the surface of the beds, indicating a fully developed boundary layer. Analysis of the fluid

  18. Simulating Growth Kinetics in a Data-Parallel 3D Lattice Photobioreactor

    Directory of Open Access Journals (Sweden)

    A. V. Husselmann

    2013-01-01

    Full Text Available Though there have been many attempts to address growth kinetics in algal photobioreactors, surprisingly little have attempted an agent-based modelling (ABM approach. ABM has been heralded as a method of practical scientific inquiry into systems of a complex nature and has been applied liberally in a range of disciplines including ecology, physics, social science, and microbiology with special emphasis on pathogenic bacterial growth. We bring together agent-based simulation with the Photosynthetic Factory (PSF model, as well as certain key bioreactor characteristics in a visual 3D, parallel computing fashion. Despite being at small scale, the simulation gives excellent visual cues on the dynamics of such a reactor, and we further investigate the model in a variety of ways. Our parallel implementation on graphical processing units of the simulation provides key advantages, which we also briefly discuss. We also provide some performance data, along with particular effort in visualisation, using volumetric and isosurface rendering.

  19. 3D simulations of gyrosynchrotron emission from mildly anisotropic nonuniform electron distributions in symmetric magnetic loops

    CERN Document Server

    Kuznetsov, Alexey A; Fleishman, Gregory D

    2011-01-01

    Microwave emission of solar flares is formed primarily by incoherent gyrosynchrotron radiation generated by accelerated electrons in coronal magnetic loops. The resulting emission depends on many factors, including pitch-angle distribution of the emitting electrons and the source geometry. In this work, we perform systematic simulations of solar microwave emission using recently developed tools (GS Simulator and fast gyrosynchrotron codes) capable of simulating maps of radio brightness and polarization as well as spatially resolved emission spectra. A 3D model of a symmetric dipole magnetic loop is used. We compare the emission from isotropic and anisotropic (of loss-cone type) electron distributions. We also investigate effects caused by inhomogeneous distribution of the emitting particles along the loop. It is found that effect of the adopted moderate electron anisotropy is the most pronounced near the footpoints and it also depends strongly on the loop orientation. Concentration of the emitting particles a...

  20. Detecting drug use in adolescents using a 3D simulation program

    Directory of Open Access Journals (Sweden)

    Luis Iribarne

    2010-11-01

    Full Text Available This work presents a new 3D simulation program, called MiiSchool, and its application to the detection of problem behaviours appearing in school settings. We begin by describing some of the main features of the Mii School program. Then, we present the results of a study in which adolescents responded to Mii School simulations involving the consumption of alcoholic drinks, cigarettes, cannabis, cocaine, and MDMA (ecstasy. We established a“risk profile” based on the observed response patterns. We also present results concerning user satisfaction with the program and the extent to which users felt that the simulated scenes were realistic. Lastly, we discuss the usefulness of Mii School as a tool for assessing drug use in school settings.

  1. hp-HGS strategy for inverse 3D DC resistivity logging measurement simulations

    KAUST Repository

    Gajda-Zaǵorska, Ewa

    2012-06-02

    In this paper we present a twin adaptive strategy hp-HGS for solving inverse problems related to 3D DC borehole resistivity measurement simulations. The term “simulation of measurements” is widely used by the geophysical community. A quantity of interest, voltage, is measured at a receiver electrode located in the logging instrument. We use the self-adaptive goal-oriented hp-Finite Element Method (hp-FEM) computer simulations of the process of measurements in deviated wells (when the angle between the borehole and formation layers are < 90 deg). We also employ the hierarchical genetic search (HGS) algorithm to solve the inverse problem. Each individual in the population represents a single configuration of the formation layers. The evaluation of the individual is performed by solving the direct problem by means of the hp-FEM algorithm and by comparison with measured logging curve. We conclude the paper with some discussion on the parallelization of the algorithm.

  2. Virtual experimentation through 3D full-loop simulation of a circulating fluidized bed

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Eulerian granular multiphase model with a drag coefficient correction based on the energy-minimization multi-male (EMMS) model was used to simulate a semi-industry scale circulating fiuidized bed (CFB).Three-dimensional(3D), time-dependent simulation of a full-loop CFB revealed that the axial profiles of cross-sectionally averaged solid volume fraction,and the radial profiles of solid axial velocity and solid volume fraction were in reasonable agreement with experimental data.Based on this agreement,database derived from experiments not yet accomplished was replenished with such simulations, and fluid regime diagrams and pressure balance around the CFB loop were derived accordingly. This work presents an integrated viewpoint on CFB and unfolds a fresh paradigm fur CFB modeling, which can be expected to help resolve certain issues long in dispute but hard for experiments.

  3. pF3D Simulations of SBS and SRS in NIF Hohlraum Experiments

    Science.gov (United States)

    Langer, Steven; Strozzi, David; Amendt, Peter; Chapman, Thomas; Hopkins, Laura; Kritcher, Andrea; Sepke, Scott

    2016-10-01

    We present simulations of stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) for NIF experiments using high foot pulses in cylindrical hohlraums and for low foot pulses in rugby-shaped hohlraums. We use pF3D, a massively-parallel, paraxial-envelope laser plasma interaction code, with plasma profiles obtained from the radiation-hydrodynamics codes Lasnex and HYDRA. We compare the simulations to experimental data for SBS and SRS power and spectrum. We also show simulated SRS and SBS intensities at the target chamber wall and report the fraction of the backscattered light that passes through and misses the lenses. Work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344. Release number LLNL-ABS-697482.

  4. A Direct Numerical Reconstruction Algorithm for the 3D Calderón Problem

    DEFF Research Database (Denmark)

    Delbary, Fabrice; Hansen, Per Christian; Knudsen, Kim

    2011-01-01

    In three dimensions Calderón's problem was addressed and solved in theory in the 1980s in a series of papers, but only recently the numerical implementation of the algorithm was initiated. The main ingredients in the solution of the problem are complex geometrical optics solutions to the conducti...

  5. Integrated ray tracing simulation of spectral bio-signatures from full 3D earth model

    Science.gov (United States)

    Ryu, Dongok; Seong, Sehyun; Lee, Jae-Min; Hong, Jinsuk; Jeong, Soomin; Jeong, Yukyeong; Kim, Sug-Whan

    2009-08-01

    Accurate identification and understanding of spectral bio-signatures from possible extra terrestrial planets have received an ever increasing attention from both astronomy and space science communities in recent years. In pursuance of this subject, one of the most important scientific breakthroughs would be to obtain the detailed understanding on spectral biosignatures of the Earth, as it serves as a reference datum for accurate interpretation of collapsed (in temporal and spatial domains) information from the spectral measurement using TPF instruments. We report a new Integrated Ray Tracing (IRT) model capable of computing various spectral bio-signatures as they are observed from the Earth surface. The model includes the Sun, the full 3-D Earth, and an optical instrument, all combined into single ray tracing environment in real scale. In particular, the full