An efficient flexible-order model for 3D nonlinear water waves
DEFF Research Database (Denmark)
Engsig-Karup, Allan Peter; Bingham, Harry B.; Lindberg, Ole
2009-01-01
The flexible-order, finite difference based fully nonlinear potential flow model described in [H.B. Bingham, H. Zhang, On the accuracy of finite difference solutions for nonlinear water waves, J. Eng. Math. 58 (2007) 211-228] is extended to three dimensions (3D). In order to obtain an optimal...
Toward a scalable flexible-order model for 3D nonlinear water waves
DEFF Research Database (Denmark)
Engsig-Karup, Allan Peter; Ducrozet, Guillaume; Bingham, Harry B.;
For marine and coastal applications, current work are directed toward the development of a scalable numerical 3D model for fully nonlinear potential water waves over arbitrary depths. The model is high-order accurate, robust and efficient for large-scale problems, and support will be included for...... flexibility in the description of structures by the use of curvilinear boundary-fitted meshes. The mathematical equations for potential waves in the physical domain is transformed through $\\sigma$-mapping(s) to a time-invariant boundary-fitted domain which then becomes a basis for an efficient solution...
High resolution 3D nonlinear integrated inversion
Institute of Scientific and Technical Information of China (English)
Li Yong; Wang Xuben; Li Zhirong; Li Qiong; Li Zhengwen
2009-01-01
The high resolution 3D nonlinear integrated inversion method is based on nonlinear theory. Under layer control, the log data from several wells (or all wells) in the study area and seismic trace data adjacent to the wells are input to a network with multiple inputs and outputs and are integratedly trained to obtain an adaptive weight function of the entire study area. Integrated nonlinear mapping relationships are built and updated by the lateral and vertical geologic variations of the reservoirs. Therefore, the inversion process and its inversion results can be constrained and controlled and a stable seismic inversion section with high resolution with velocity inversion, impedance inversion, and density inversion sections, can be gained. Good geologic effects have been obtained in model computation tests and real data processing, which verified that this method has high precision, good practicality, and can be used for quantitative reservoir analysis.
Nonlinear Vibrations of 3D Laminated Composite Beams
Stoykov, S; Margenov, S.
2014-01-01
A model for 3D laminated composite beams, that is, beams that can vibrate in space and experience longitudinal and torsional deformations, is derived. The model is based on Timoshenko’s theory for bending and assumes that, under torsion, the cross section rotates as a rigid body but can deform longitudinally due to warping. The warping function, which is essential for correct torsional deformations, is computed preliminarily by the finite element method. Geometrical nonlinearity is taken into...
The 3D solitons and vortices in 3D discrete monatomic lattices with cubic and quartic nonlinearity
Institute of Scientific and Technical Information of China (English)
Xu Quan; Tian Qiang
2006-01-01
By virtue of the method of multiple-scale and the quasi-discreteness approach, we have discussed the nonlinear vibration equation of a 3D discrete monatomic lattice with its nearest-neighbours interaction. The 3D simple cubic lattices have the same localized modes as a ID discrete monatomic chain with cubic and quartic nonlinearity. The nonlinear vibration in the 3D simple cubic lattice has 3D distorted solitons and 3D envelop solitons in the direction of kx = ky = kz = k and k =±π/6a0 in the Brillouin zone, as well as has 3D vortices in the direction of kx = ky = kz = k and k =±π/a0 in the Brillouin zone.
Utilization of multiple frequencies in 3D nonlinear microwave imaging
DEFF Research Database (Denmark)
Jensen, Peter Damsgaard; Rubæk, Tonny; Mohr, Johan Jacob
2012-01-01
The use of multiple frequencies in a nonlinear microwave algorithm is considered. Using multiple frequencies allows for obtaining the improved resolution available at the higher frequencies while retaining the regularizing effects of the lower frequencies. However, a number of different challenge...... at lower frequencies are used as starting guesses for reconstructions at higher frequencies. The performance is illustrated using simulated 2-D data and data obtained with the 3-D DTU microwave imaging system....... arise when using data from multiple frequencies for imaging of biological targets. In this paper, the performance of a multi-frequency algorithm, in which measurement data from several different frequencies are used at once, is compared with a stepped-frequency algorithm, in which images reconstructed...
Nonlinear Vibrations of 3D Laminated Composite Beams
Directory of Open Access Journals (Sweden)
S. Stoykov
2014-01-01
Full Text Available A model for 3D laminated composite beams, that is, beams that can vibrate in space and experience longitudinal and torsional deformations, is derived. The model is based on Timoshenko’s theory for bending and assumes that, under torsion, the cross section rotates as a rigid body but can deform longitudinally due to warping. The warping function, which is essential for correct torsional deformations, is computed preliminarily by the finite element method. Geometrical nonlinearity is taken into account by considering Green’s strain tensor. The equation of motion is derived by the principle of virtual work and discretized by the p-version finite element method. The laminates are assumed to be of orthotropic materials. The influence of the angle of orientation of the laminates on the natural frequencies and on the nonlinear modes of vibration is presented. It is shown that, due to asymmetric laminates, there exist bending-longitudinal and bending-torsional coupling in linear analysis. Dynamic responses in time domain are presented and couplings between transverse displacements and torsion are investigated.
3D flexible water channel: stretchability of nanoscale water bridge
Chen, Jige; Wang, Chunlei; Wei, Ning; Wan, Rongzheng; Gao, Yi
2016-03-01
Artificial water channels can contribute to a better understanding of natural water channels and offer a highly selective, advanced conductance system. Most studies use nanotubes, however it is difficult to fabricate a flexible structure, and the nanosized diameter brings nanoconfinement effects, and nanotube toxicity arouses biosafety concerns. In this paper, we use an electric field to restrain the water molecules to form a nanoscale water bridge as an artificial water channel to connect a separated solid plate by molecular dynamics simulations. We observe strong 3D flexible stretchability in the water bridge, maintaining a variable length and an arbitrary angle for a considerably long time. The stretching of the water bridge enables it to be polarized at an arbitrary angle and the stretchability is linearly dependent upon the polarization strength. More interestingly, we show the possibility of establishing complex water networks, e.g., triangle, rectangle, hexagon, and tetrahedron-tetrahedron water networks. Our results may help realize structurally flexible and environmentally friendly water channels for lab-on-a-chip applications in nanofluidics.Artificial water channels can contribute to a better understanding of natural water channels and offer a highly selective, advanced conductance system. Most studies use nanotubes, however it is difficult to fabricate a flexible structure, and the nanosized diameter brings nanoconfinement effects, and nanotube toxicity arouses biosafety concerns. In this paper, we use an electric field to restrain the water molecules to form a nanoscale water bridge as an artificial water channel to connect a separated solid plate by molecular dynamics simulations. We observe strong 3D flexible stretchability in the water bridge, maintaining a variable length and an arbitrary angle for a considerably long time. The stretching of the water bridge enables it to be polarized at an arbitrary angle and the stretchability is linearly
Simulation of Fully Nonlinear 3-D Numerical Wave Tank
Institute of Scientific and Technical Information of China (English)
张晓兔; 滕斌; 宁德志
2004-01-01
A fully nonlinear numerical wave tank (NWT) has been simulated by use of a three-dimensional higher order boundary element method (HOBEM) in the time domain. Within the frame of potential flow and the adoption of simply Rankine source, the resulting boundary integral equation is repeatedly solved at each time step and the fully nonlinear free surface boundary conditions are integrated with time to update its position and boundary values. A smooth technique is also adopted in order to eliminate the possible saw-tooth numerical instabilities. The incident wave at the uptank is given as theoretical wave in this paper. The outgoing waves are absorbed inside a damping zone by spatially varying artificial damping on the free surface at the wave tank end. The numerical results show that the NWT developed by these approaches has a high accuracy and good numerical stability.
A nonlinear 3D containment analysis for airplane impact
International Nuclear Information System (INIS)
In the Federal Republic of Germany, it is pertinent safety philosophy to design nuclear facilities against airplane impact, despite its very unlikely probability of occurrence. For safety reasons, the following conditions have to be met: 1) In the close impact area of the projectile, the structure can be stressed up to its ultimate load capacity, so that impact energy is dissipated partly. Hereby, it must be strictly clarified that local structural failure within the impact zone is avoided. 2) Residual impact energy is transferred to the 'non-disturbed' containment structure and to the interior structure. The subject of reinforced concrete structures under impact loads shows still clear gaps between the findings of experimental and analytical analyses. To clarify this highly nonlinear phenomena comprehensive tests have recently been performed in Germany. It is the aim of this paper to carry out a three-dimensional analysis of a nuclear facility. To perform the calculations, the finite element ADINA code is applied. In order to obtain optimum results, a very fine mesh leading to several thousand DOF is used. To model the impact area of the concrete structure realistically, its linear and mostly nonlinear material behaviour as well as its failure criteria must be taken into account. Herewith the structural response is reduced due to increased energy dissipation. This reduction rate is valued by variation of the assumed size of impact zone, the load impact location and the assumed load-time function. (orig./RW)
Real-time 3D rendering of water using CUDA
Amador, Gonçalo Nuno Paiva
2009-01-01
This thesis addresses the real-time simulation of 3D water, both on the CPU and on the GPU. The stable fluids method is extended to 3D, and implemented both on the CPU and on the GPU. The GPU-based implementation is done using the NVIDIA Compute Unified Device Architecture API (Application Programming Interface), shortly CUDA. The stable fluids method requires the use of an iterative sparse linear system solver. Therefore, three solvers were implemented on both CPU and GPU, ...
Non-linear correction for accuracy improvement of the neutron calculations with HEXAB-3D Code
International Nuclear Information System (INIS)
A differential approach of application of the Improved Coarse Mesh Method in the 3D hexagonal geometry diffusion problem is presented. A non-linear nodal model of improvement based on the solution of the local balance equation in a triangular sub-region of the node with triple decreased mesh step and a presentation of the spatial distribution of the neutron flux by linear combination of trigonometric al hyperbolic functions are presented. A principal program realisation of the differential nonlinear correction in the hexagonal geometry diffusion code HEXA-B-3D is described. Benchmark results for a 3D WWER-1000 benchmark problem are presented
High-order finite difference solution for 3D nonlinear wave-structure interaction
DEFF Research Database (Denmark)
Ducrozet, Guillaume; Bingham, Harry B.; Engsig-Karup, Allan Peter;
2010-01-01
This contribution presents our recent progress on developing an efficient fully-nonlinear potential flow model for simulating 3D wave-wave and wave-structure interaction over arbitrary depths (i.e. in coastal and offshore environment). The model is based on a high-order finite difference scheme...
Magneto-acoustic waves in sunspots: first results from a new 3D nonlinear magnetohydrodynamic code
Felipe, T; Collados, M
2010-01-01
Waves observed in the photosphere and chromosphere of sunspots show complex dynamics and spatial patterns. The interpretation of high-resolution sunspot wave observations requires modeling of three-dimensional non-linear wave propagation and mode transformation in the sunspot upper layers in realistic spot model atmospheres. Here we present the first results of such modeling. We have developed a 3D non-linear numerical code specially designed to calculate the response of magnetic structures in equilibrium to an arbitrary perturbation. The code solves the 3D nonlinear MHD equations for perturbations; it is stabilized by hyper-diffusivity terms and is fully parallelized. The robustness of the code is demonstrated by a number of standard tests. We analyze several simulations of a sunspot perturbed by pulses of different periods at subphotospheric level, from short periods, introduced for academic purposes, to longer and realistic periods of three and five minutes. We present a detailed description of the three-d...
Nonlinear 3-D simulation of high-intensity focused ultrasound therapy in the kidney
Suomi, Visa; Treeby, Bradley; Cleveland, Robin
2016-01-01
Kidney cancer is a severe disease which can be treated non-invasively using high-intensity focused ultrasound (HIFU) therapy. However, tissue in front of the transducer and the deep location of kidney can cause significant losses to the efficiency of the treatment. The effect of attenuation, refraction and reflection due to different tissue types on HIFU therapy of the kidney was studied using a nonlinear ultrasound simulation model. The geometry of the tissue was derived from a computed tomography (CT) dataset of a patient which had been segmented for water, bone, soft tissue, fat and kidney. The combined effect of inhomogeneous attenuation and sound-speed was found to result in an 11.0 dB drop in spatial peak-temporal average (SPTA) intensity in the kidney compared to pure water. The simulation without refraction effects showed a 6.3 dB decrease indicating that both attenuation and refraction contribute to the loss in focal intensity. The losses due to reflections at soft tissue interfaces were less than 0....
Benchmark for a 3D Monte Carlo boiling water reactor fluence computational package - MF3D
International Nuclear Information System (INIS)
A detailed three dimensional model of a quadrant of an operating BWR has been developed using MCNP to calculate flux spectrum and fluence levels at various locations in the reactor system. The calculational package, MF3D, was benchmarked against test data obtained over a complete fuel cycle of the host BWR. The test package included activation wires sensitive in both the fast and thermal ranges. Comparisons between the calculational results and test data are good to within ten percent, making the MF3D package an accurate tool for neutron and gamma fluence computation in BWR pressure vessel internals. (orig.)
Nonlinear dynamics of Airy-Vortex 3D wave packets: Emission of vortex light waves
Driben, Rodislav
2014-01-01
The dynamics of 3D Airy-vortex wave packets is studied under the action of strong self-focusing Kerr nonlinearity. Emissions of nonlinear 3D waves out of the main wave packets with the topological charges were demonstrated. Due to the conservation of the total angular momentum, charges of the emitted waves are equal to those carried by the parental light structure. The rapid collapse imposes a severe limitation on the propagation of multidimensional waves in Kerr media. However, the structure of the Airy beam carrier allows the coupling of light from the leading, most intense peak into neighboring peaks and consequently strongly postpones the collapse. The dependence of the critical input amplitude for the appearance of a fast collapse on the beam width is studied for wave packets with zero and non-zero topological charges. Wave packets carrying angular momentum are found to be much more resistant to the rapid collapse, especially those having small width.
Neutron radiographic image restoration using BM3D frames and nonlinear variance stabilization
Shuang, Qiao; Wei-jing, Zhao; Jia-ning, Sun
2015-07-01
Neutron radiography is a powerful tool for non-destructive investigations in industrial applications. However, the resulting images are degraded inevitably due to some physical limitations. In this paper, we propose a new scheme for neutron image restoration, which utilizes BM3D frames and nonlinear variance stabilization including generalized anscombe transformation and its exact unbiased inverse. Experimental results show that superior to the existing restoration methods, the proposed scheme improves the restoration quality efficiently and exhibits better visual results.
A 3D DISCRETE DUALITY FINITE VOLUME METHOD FOR NONLINEAR ELLIPTIC EQUATIONS
Coudière, Yves; Hubert, Florence
2009-01-01
Discrete Duality Finite Volume (DDFV) schemes have recently been developed in 2D to approximate nonlinear diﬀusion problems on general meshes. In this paper, a 3D extension of these schemes is proposed. The construction of this extension is detailed and its main properties are proved: a priori bounds, well-posedness and error estimates. The practical implementation of this scheme is easy. Numerical experiments are presented to illustrate its good behavior.
Toward high-speed 3D nonlinear soft tissue deformation simulations using Abaqus software.
Idkaidek, Ashraf; Jasiuk, Iwona
2015-12-01
We aim to achieve a fast and accurate three-dimensional (3D) simulation of a porcine liver deformation under a surgical tool pressure using the commercial finite element software Abaqus. The liver geometry is obtained using magnetic resonance imaging, and a nonlinear constitutive law is employed to capture large deformations of the tissue. Effects of implicit versus explicit analysis schemes, element type, and mesh density on computation time are studied. We find that Abaqus explicit and implicit solvers are capable of simulating nonlinear soft tissue deformations accurately using first-order tetrahedral elements in a relatively short time by optimizing the element size. This study provides new insights and guidance on accurate and relatively fast nonlinear soft tissue simulations. Such simulations can provide force feedback during robotic surgery and allow visualization of tissue deformations for surgery planning and training of surgical residents. PMID:26530842
A stabilized complementarity formulation for nonlinear analysis of 3D bimodular materials
Zhang, L.; Zhang, H. W.; Wu, J.; Yan, B.
2015-10-01
Bi-modulus materials with different mechanical responses in tension and compression are often found in civil, composite, and biological engineering. Numerical analysis of bimodular materials is strongly nonlinear and convergence is usually a problem for traditional iterative schemes. This paper aims to develop a stabilized computational method for nonlinear analysis of 3D bimodular materials. Based on the parametric variational principle, a unified constitutive equation of 3D bimodular materials is proposed, which allows the eight principal stress states to be indicated by three parametric variables introduced in the principal stress directions. The original problem is transformed into a standard linear complementarity problem (LCP) by the parametric virtual work principle and a quadratic programming algorithm is developed by solving the LCP with the classic Lemke's algorithm. Update of elasticity and stiffness matrices is avoided and, thus, the proposed algorithm shows an excellent convergence behavior compared with traditional iterative schemes. Numerical examples show that the proposed method is valid and can accurately analyze mechanical responses of 3D bimodular materials. Also, stability of the algorithm is greatly improved.
Verification of 3D heterogeneous core transport calculation utilizing non-linear iteration technique
International Nuclear Information System (INIS)
A three dimensional heterogeneous core transport analysis code CHAPLET-3D, which is based on deterministic methods, has been developed. In CHAPLET-3D code, the non-linear iteration technique, which is commonly used in advanced nodal diffusion codes, is employed to perform three dimensional heterogeneous core calculation in form of conventional finite difference method with the accuracy of the method of characteristics in radial two dimensional geometry. For an axial direction solver, in addition to finite difference method and nodal expansion method in diffusion theory, the method of characteristics has been incorporated in order to take account of transport effect. According to the verification tests compared with the results of multi-group Monte Carlo reference calculations, it is found that the accuracy of CHAPLET-3D code for three dimensional heterogeneous core analysis is almost the same level as that of the reference calculation and also demonstrated that the three dimensional core analysis method utilizing the non-linear iteration technique introduced here is valid and useful. (author)
A stabilized complementarity formulation for nonlinear analysis of 3D bimodular materials
Zhang, L.; Zhang, H. W.; Wu, J.; Yan, B.
2016-06-01
Bi-modulus materials with different mechanical responses in tension and compression are often found in civil, composite, and biological engineering. Numerical analysis of bimodular materials is strongly nonlinear and convergence is usually a problem for traditional iterative schemes. This paper aims to develop a stabilized computational method for nonlinear analysis of 3D bimodular materials. Based on the parametric variational principle, a unified constitutive equation of 3D bimodular materials is proposed, which allows the eight principal stress states to be indicated by three parametric variables introduced in the principal stress directions. The original problem is transformed into a standard linear complementarity problem (LCP) by the parametric virtual work principle and a quadratic programming algorithm is developed by solving the LCP with the classic Lemke's algorithm. Update of elasticity and stiffness matrices is avoided and, thus, the proposed algorithm shows an excellent convergence behavior compared with traditional iterative schemes. Numerical examples show that the proposed method is valid and can accurately analyze mechanical responses of 3D bimodular materials. Also, stability of the algorithm is greatly improved.
PRONTO3D users` instructions: A transient dynamic code for nonlinear structural analysis
Energy Technology Data Exchange (ETDEWEB)
Attaway, S.W.; Mello, F.J.; Heinstein, M.W.; Swegle, J.W.; Ratner, J.A. [Sandia National Labs., Albuquerque, NM (United States); Zadoks, R.I. [Univ. of Texas, El Paso, TX (United States)
1998-06-01
This report provides an updated set of users` instructions for PRONTO3D. PRONTO3D is a three-dimensional, transient, solid dynamics code for analyzing large deformations of highly nonlinear materials subjected to extremely high strain rates. This Lagrangian finite element program uses an explicit time integration operator to integrate the equations of motion. Eight-node, uniform strain, hexahedral elements and four-node, quadrilateral, uniform strain shells are used in the finite element formulation. An adaptive time step control algorithm is used to improve stability and performance in plasticity problems. Hourglass distortions can be eliminated without disturbing the finite element solution using either the Flanagan-Belytschko hourglass control scheme or an assumed strain hourglass control scheme. All constitutive models in PRONTO3D are cast in an unrotated configuration defined using the rotation determined from the polar decomposition of the deformation gradient. A robust contact algorithm allows for the impact and interaction of deforming contact surfaces of quite general geometry. The Smooth Particle Hydrodynamics method has been embedded into PRONTO3D using the contact algorithm to couple it with the finite element method.
Characterizing the propagation of gravity waves in 3D nonlinear simulations of solar-like stars
Alvan, L.; Strugarek, A.; Brun, A. S.; Mathis, S.; Garcia, R. A.
2015-09-01
Context. The revolution of helio- and asteroseismology provides access to the detailed properties of stellar interiors by studying the star's oscillation modes. Among them, gravity (g) modes are formed by constructive interferences between progressive internal gravity waves (IGWs), propagating in stellar radiative zones. Our new 3D nonlinear simulations of the interior of a solar-like star allows us to study the excitation, propagation, and dissipation of these waves. Aims: The aim of this article is to clarify our understanding of the behavior of IGWs in a 3D radiative zone and to provide a clear overview of their properties. Methods: We use a method of frequency filtering that reveals the path of individual gravity waves of different frequencies in the radiative zone. Results: We are able to identify the region of propagation of different waves in 2D and 3D, to compare them to the linear raytracing theory and to distinguish between propagative and standing waves (g-modes). We also show that the energy carried by waves is distributed in different planes in the sphere, depending on their azimuthal wave number. Conclusions: We are able to isolate individual IGWs from a complex spectrum and to study their propagation in space and time. In particular, we highlight in this paper the necessity of studying the propagation of waves in 3D spherical geometry, since the distribution of their energy is not equipartitioned in the sphere.
Nonlinear analysis of chaotic flow in a 3D closed-loop pulsating heat pipe
Pouryoussefi, S M
2016-01-01
Numerical simulation has been conducted for the chaotic flow in a 3D closed-loop pulsating heat pipe (PHP). Heat flux and constant temperature boundary conditions were applied for evaporator and condenser sections, respectively. Water and ethanol were used as working fluids. Volume of Fluid (VOF) method has been employed for two-phase flow simulation. Spectral analysis of temperature time series was carried out using Power Spectrum Density (PSD) method. Existence of dominant peak in PSD diagram indicated periodic or quasi-periodic behavior in temperature oscillations at particular frequencies. Correlation dimension values for ethanol as working fluid was found to be higher than that for water under the same operating conditions. Similar range of Lyapunov exponent values for the PHP with water and ethanol as working fluids indicated strong dependency of Lyapunov exponent to the structure and dimensions of the PHP. An O-ring structure pattern was obtained for reconstructed 3D attractor at periodic or quasi-peri...
Characterizing the propagation of gravity waves in 3D nonlinear simulations of solar-like stars
Alvan, L; Brun, A S; Mathis, S; Garcia, R A
2015-01-01
The revolution of helio- and asteroseismology provides access to the detailed properties of stellar interiors by studying the star's oscillation modes. Among them, gravity (g) modes are formed by constructive interferences between progressive internal gravity waves (IGWs), propagating in stellar radiative zones. Our new 3D nonlinear simulations of the interior of a solar-like star allows us to study the excitation, propagation, and dissipation of these waves. The aim of this article is to clarify our understanding of the behavior of IGWs in a 3D radiative zone and to provide a clear overview of their properties. We use a method of frequency filtering that reveals the path of {individual} gravity waves of different frequencies in the radiative zone. We are able to identify the region of propagation of different waves in 2D and 3D, to compare them to the linear raytracing theory and to distinguish between propagative and standing waves (g modes). We also show that the energy carried by waves is distributed in d...
3D Nonlinear Numerical Simulation of Intact and Debonded Reinforced Concrete Beams
Institute of Scientific and Technical Information of China (English)
Chen Quan(陈权); Marcus L.
2004-01-01
To study the behaviour of reinforced concrete (RC) structures with sections of concrete removed and the reinforcement exposed, 3D nonlinear numerical analysis was performed upon both intact and debonded RC beams by using finite element techniques. The deformational characteristics and the ultimate loads were obtained through numerical models, as well as crack and stress distributions. The failure modes can also be deduced from computational results. Compared with intact beams, the normal assumptions of plane section behaviour is not hold true and the patterns of stress and strain are different in debonded RC beams. The numerical results show good consistency with experimental data. This kind of numerical simulation is a supplement to existing codes.
Neutron radiographic image restoration using BM3D frames and nonlinear variance stabilization
Energy Technology Data Exchange (ETDEWEB)
Shuang, Qiao; Wei-jing, Zhao [School of Physics, Northeast Normal University, Changchun (China); Jia-ning, Sun, E-mail: sunjn118@nenu.edu.cn [School of Mathematics and Statistics, Northeast Normal University, Changchun (China)
2015-07-21
Neutron radiography is a powerful tool for non-destructive investigations in industrial applications. However, the resulting images are degraded inevitably due to some physical limitations. In this paper, we propose a new scheme for neutron image restoration, which utilizes BM3D frames and nonlinear variance stabilization including generalized anscombe transformation and its exact unbiased inverse. Experimental results show that superior to the existing restoration methods, the proposed scheme improves the restoration quality efficiently and exhibits better visual results. - Highlights: • Aiming at the degradation features of neutron radiographic images, we propose a novel theoretic restoration model. • According to the restoration model, an explicit algorithm is also presented. • The practical feasibility of the new scheme is verified through some experiments on real neutron radiographic images and standard testing image.
Neutron radiographic image restoration using BM3D frames and nonlinear variance stabilization
International Nuclear Information System (INIS)
Neutron radiography is a powerful tool for non-destructive investigations in industrial applications. However, the resulting images are degraded inevitably due to some physical limitations. In this paper, we propose a new scheme for neutron image restoration, which utilizes BM3D frames and nonlinear variance stabilization including generalized anscombe transformation and its exact unbiased inverse. Experimental results show that superior to the existing restoration methods, the proposed scheme improves the restoration quality efficiently and exhibits better visual results. - Highlights: • Aiming at the degradation features of neutron radiographic images, we propose a novel theoretic restoration model. • According to the restoration model, an explicit algorithm is also presented. • The practical feasibility of the new scheme is verified through some experiments on real neutron radiographic images and standard testing image
Integrated gravity and gravity gradient 3D inversion using the non-linear conjugate gradient
Qin, Pengbo; Huang, Danian; Yuan, Yuan; Geng, Meixia; Liu, Jie
2016-03-01
Gravity data, which are critical in mineral, oil, and gas exploration, are obtained from the vertical component of the gravity field, while gravity gradient data are measured from changes in the gravity field in three directions. However, few studies have sought to improve exploration techniques by integrating gravity and gravity gradient data using inversion methods. In this study, we developed a new method to integrate gravity and gravity gradient data in a 3D density inversion using the non-linear conjugate gradient (NLCG) method and the minimum gradient support (MGS) functional to regularize the 3D inverse problem and to obtain a clear and accurate image of the anomalous body. The NLCG algorithm, which is suitable for solving large-scale nonlinear optimization problems and requires no memory storage, was compared to the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton algorithm and the results indicated that the convergence rate of NLCG is slower, but that the storage requirement and computation time is lower. To counteract the decay in kernel function, we introduced a depth weighting function for anomalous bodies at the same depth, with information about anomalous body depth obtained from well log and seismic exploration data. For anomalous bodies at different depths, we introduced a spatial gradient weighting function to incorporate additional information obtained in the inversion. We concluded that the spatial gradient weighting function enhanced the spatial resolution of the recovered model. Furthermore, our results showed that including multiple components for inversion increased the resolution of the recovered model. We validated our model by applying our inversion method to survey data from Vinton salt dome, Louisiana, USA. The results showed good agreement with known geologic information; thus confirming the accuracy of this approach.
Implementation of a 3-D nonlinear MHD [magnetohydrodynamics] calculation on the Intel hypercube
International Nuclear Information System (INIS)
The optimization of numerical schemes and increasing computer capabilities in the last ten years have improved the efficiency of 3-D nonlinear resistive MHD calculations by about two to three orders of magnitude. However, we are still very limited in performing these types of calculations. Hypercubes have a large number of processors with only local memory and bidirectional links among neighbors. The Intel Hypercube at Oak Ridge has 64 processors with 0.5 megabytes of memory per processor. The multiplicity of processors opens new possibilities for the treatment of such computations. The constraint on time and resources favored the approach of using the existing RSF code which solves as an initial value problem the reduced set of MHD equations for a periodic cylindrical geometry. This code includes minimal physics and geometry, but contains the basic three dimensionality and nonlinear structure of the equations. The code solves the reduced set of MHD equations by Fourier expansion in two angular coordinates and finite differences in the radial one. Due to the continuing interest in these calculations and the likelihood that future supercomputers will take greater advantage of parallelism, the present study was initiated by the ORNL Exploratory Studies Committee and funded entirely by Laboratory Discretionary Funds. The objectives of the study were: to ascertain the suitability of MHD calculation for parallel computation, to design and implement a parallel algorithm to perform the computations, and to evaluate the hypercube, and in particular, ORNL's Intel iPSC, for use in MHD computations
Adaptive control of nonlinear visual servoing systems for 3D cartesian tracking
Directory of Open Access Journals (Sweden)
Alessandro R. L. Zachi
2006-12-01
Full Text Available This paper presents a control strategy for robot manipulators to perform 3D cartesian tracking using visual servoing. Considering a fixed camera, the 3D cartesian motion is decomposed in a 2D motion on a plane orthogonal to the optical axis and a 1D motion parallel to this axis. An image-based visual servoing approach is used to deal with the nonlinear control problem generated by the depth variation without requiring direct depth estimation. Due to the lack of camera calibration, an adaptive control method is used to ensure both depth and planar tracking in the image frame. The depth feedback loop is closed by measuring the image area of a target object attached to the robot end-effector. Simulation and experimental results obtained with a real robot manipulator illustrate the viability of the proposed scheme.Este trabalho apresenta uma estratégia de controle para robôs manipuladores realizarem rastreamento cartesiano 3D utilizando servovisão. Considerando uma câmera fixa, o movimento cartesiano 3D é decomposto em um movimento 2D sobre um plano ortogonal ao eixo óptico e em outro movimento 1D paralelo ao mesmo eixo. Uma abordagem de servovisão baseada em imagem é utilizada para tratar o problema de controle não-linear, gerado pela variação de profundidade, sem a necessidade de estimar esta medida. Devido à ausência de calibração da câmera, um método de controle adaptativo é utilizado para assegurar rastreamento planar e de profundidade nas coordenadas da imagem. A malha de controle de profundidade é fechada através da medição da área da imagem de um objeto fixado no efetuador do robô. Simulação e resultados experimentais, obtidos com um robô manipulador real, ilustram a viabilidade do esquema proposto.
Non-linear 3D Born Shear Wave Tomography in Southeastern Asia
Cao, A.; Panning, M.; Kim, A.; Romanowicz, B.
2007-12-01
We have developed a 3D radially anisotropic shear velocity model of the upper mantle in southeastern Asia from the inversion of long period seismic multimode waveforms. Our approach is based on normal mode perturbation theory, specifically, on a recent modification of the Born approximation, which we call "N-Born", and which includes a non-linear term that allows the accurate inclusion of accumulated phase shifts which arise when the wavepath traverses a spatially extended region with a smooth velocity anomaly of constant sign. We apply the N-Born approximation in the forward modeling part and calculate linear 3D Born kernels in the inverse part. Our starting model is a 3D radially anisotropic model which we derived from a large dataset of teleseismic multimode long period waveforms in the period range 60 to 400 s, using a finite-frequency 2D approximation (NACT, Li and Romanowicz, 1995). This model covered a larger region of East Asia (longitude 30 to 150 degrees and latitude -10 to 60 degrees), while our N-Born model is restricted to a smaller subregion (longitude 75 to 150 degrees and latitude 0 to 45 degrees) for computational efficiency. In this subregion, our N-Born isotropic and anisotropic models are both parameterized at relatively short wavelengths corresponding to a spherical spline level 6 (~200km). Our N-Born model can fit waveforms as well as the NACT model, with up to ~ 83% variance reduction. While the models agree in general, the N-Born isotropic model shows a stronger fast velocity anomaly beneath the Tibetan plateau in the depth range of 150 km to 250 km, which disappears at greater depth, consistent with other studies. More importantly, the N-Born anisotropic model can recover well the downwelling structure associated with subducted slabs. Beneath the Tibet plateau, radial anisotropy shows VSH>VSV, which is indicative of horizontal rather than vertical flow and may help distinguish between end member models of the tectonics of Tibet.
Target Tracking in 3-D Using Estimation Based Nonlinear Control Laws for UAVs
Directory of Open Access Journals (Sweden)
Mousumi Ahmed
2016-02-01
Full Text Available This paper presents an estimation based backstepping like control law design for an Unmanned Aerial Vehicle (UAV to track a moving target in 3-D space. A ground-based sensor or an onboard seeker antenna provides range, azimuth angle, and elevation angle measurements to a chaser UAV that implements an extended Kalman filter (EKF to estimate the full state of the target. A nonlinear controller then utilizes this estimated target state and the chaser’s state to provide speed, flight path, and course/heading angle commands to the chaser UAV. Tracking performance with respect to measurement uncertainty is evaluated for three cases: (1 stationary white noise; (2 stationary colored noise and (3 non-stationary (range correlated white noise. Furthermore, in an effort to improve tracking performance, the measurement model is made more realistic by taking into consideration range-dependent uncertainties in the measurements, i.e., as the chaser closes in on the target, measurement uncertainties are reduced in the EKF, thus providing the UAV with more accurate control commands. Simulation results for these cases are shown to illustrate target state estimation and trajectory tracking performance.
Regimes of nonlinear depletion and regularity in the 3D Navier–Stokes equations
International Nuclear Information System (INIS)
The periodic 3D Navier–Stokes equations are analyzed in terms of dimensionless, scaled, L2m-norms of vorticity Dm (1 ⩽ m < ∞). The first in this hierarchy, D1, is the global enstrophy. Three regimes naturally occur in the D1 − Dm plane. Solutions in the first regime, which lie between two concave curves, are shown to be regular, owing to strong nonlinear depletion. Moreover, numerical experiments have suggested, so far, that all dynamics lie in this heavily depleted regime [1]; new numerical evidence for this is presented. Estimates for the dimension of a global attractor and a corresponding inertial range are given for this regime. However, two more regimes can theoretically exist. In the second, which lies between the upper concave curve and a line, the depletion is insufficient to regularize solutions, so no more than Leray's weak solutions exist. In the third, which lies above this line, solutions are regular, but correspond to extreme initial conditions. The paper ends with a discussion on the possibility of transition between these regimes. (paper)
2016-01-01
This volume brings together four lecture courses on modern aspects of water waves. The intention, through the lectures, is to present quite a range of mathematical ideas, primarily to show what is possible and what, currently, is of particular interest. Water waves of large amplitude can only be fully understood in terms of nonlinear effects, linear theory being not adequate for their description. Taking advantage of insights from physical observation, experimental evidence and numerical simulations, classical and modern mathematical approaches can be used to gain insight into their dynamics. The book presents several avenues and offers a wide range of material of current interest. Due to the interdisciplinary nature of the subject, the book should be of interest to mathematicians (pure and applied), physicists and engineers. The lectures provide a useful source for those who want to begin to investigate how mathematics can be used to improve our understanding of water wave phenomena. In addition, some of the...
Non-linear 3-D Born shear waveform tomography in Southeast Asia
Panning, Mark P.; Cao, Aimin; Kim, Ahyi; Romanowicz, Barbara A.
2012-07-01
Southeast (SE) Asia is a tectonically complex region surrounded by many active source regions, thus an ideal test bed for developments in seismic tomography. Much recent development in tomography has been based on 3-D sensitivity kernels based on the first-order Born approximation, but there are potential problems with this approach when applied to waveform data. In this study, we develop a radially anisotropic model of SE Asia using long-period multimode waveforms. We use a theoretical 'cascade' approach, starting with a large-scale Eurasian model developed using 2-D Non-linear Asymptotic Coupling Theory (NACT) sensitivity kernels, and then using a modified Born approximation (nBorn), shown to be more accurate at modelling waveforms, to invert a subset of the data for structure in a subregion (longitude 75°-150° and latitude 0°-45°). In this subregion, the model is parametrized at a spherical spline level 6 (˜200 km). The data set is also inverted using NACT and purely linear 3-D Born kernels. All three final models fit the data well, with just under 80 per cent variance reduction as calculated using the corresponding theory, but the nBorn model shows more detailed structure than the NACT model throughout and has much better resolution at depths greater than 250 km. Based on variance analysis, the purely linear Born kernels do not provide as good a fit to the data due to deviations from linearity for the waveform data set used in this modelling. The nBorn isotropic model shows a stronger fast velocity anomaly beneath the Tibetan Plateau in the depth range of 150-250 km, which disappears at greater depth, consistent with other studies. It also indicates moderate thinning of the high-velocity plate in the middle of Tibet, consistent with a model where Tibet is underplated by Indian lithosphere from the south and Eurasian lithosphere from the north, in contrast to a model with continuous underplating by Indian lithosphere across the entire plateau. The n
The Martian Water Cycle Based on 3-D Modeling
Houben, H.; Haberle, R. M.; Joshi, M. M.
1999-01-01
Understanding the distribution of Martian water is a major goal of the Mars Surveyor program. However, until the bulk of the data from the nominal missions of TES, PMIRR, GRS, MVACS, and the DS2 probes are available, we are bound to be in a state where much of our knowledge of the seasonal behavior of water is based on theoretical modeling. We therefore summarize the results of this modeling at the present time. The most complete calculations come from a somewhat simplified treatment of the Martian climate system which is capable of simulating many decades of weather. More elaborate meteorological models are now being applied to study of the problem. The results show a high degree of consistency with observations of aspects of the Martian water cycle made by Viking MAWD, a large number of ground-based measurements of atmospheric column water vapor, studies of Martian frosts, and the widespread occurrence of water ice clouds. Additional information is contained in the original extended abstract.
Experimental study on water seepage constitutive law of fracture in rock under 3D stress
Institute of Scientific and Technical Information of China (English)
赵阳升; 杨栋; 郑少河; 胡耀青
1999-01-01
The test method and test result of water seepage constitutive law of fracture in rock under 3D stress are introduced. A permeability coefficient formula including the coefficient of fracture connection, normal stiffness, 3D stress, initial width of fracture and Poisson ratio is presented based on the analysis of the test theory and its result.
Greco, M.; Bouscasse, B.; Lugni, C.
2012-08-01
A synergic 3-D experimental and numerical investigation is conducted for wave-ship interactions involving the water-on-deck and slamming phenomena. The adopted solver has been developed in Greco and Lugni (in press) and combines (A) a weakly nonlinear external solution for the wave-vessel interactions with (B) a 2-D in-deck shallow-water approximation, which describes water shipping events, and (C) a local analytical analysis of the bottom-slamming phenomenon. This solver can handle regular and irregular sea states and vessels at rest or with limited speed. The experiments examine a patrol ship at rest or with forward speed that is free to oscillate in heave and pitch in regular and irregular waves. In this study, the head-sea regular-wave conditions are examined in terms of (1) response amplitude operators (RAOs) and relative motions, (2) occurrence, features and loads of water-on-deck, bottom-slamming and flare-slamming events and (3) added resistance in waves. A systematic and comprehensive analysis of the phenomena is made available in terms of the Froude number, incoming wavelength-to-ship length ratio and wave steepness for the examined ship geometry. The main parameters that affect the global and local quantities are identified and possible danger in terms of water-on-deck severity and structural consequences are determined. Different slamming behaviors were identified, depending on the spatial location of the impact on the vessel: single-peak, church-roof and double-peak behaviors. A bottom-slamming criterion, using the Ochi's (1964) velocity condition and the Greco and Lugni's (2012) pressure condition, is assessed. A statistical analysis of more than 100 events is needed for the bottom-slamming pressure peaks. The numerical solver is promising. The major discrepancies with the experiments are discussed, and the importance of viscous hull damping and flare impact for the most violent conditions is emphasized. Inclusion of these effects improved the
Späth, Florian; Behrendt, Andreas; Muppa, Shravan Kumar; Metzendorf, Simon; Riede, Andrea; Wulfmeyer, Volker
2016-01-01
High-resolution three-dimensional (3-D) water vapor data of the atmospheric boundary layer (ABL) are required to improve our understanding of land–atmosphere exchange processes. For this purpose, the scanning differential absorption lidar (DIAL) of the University of Hohenheim (UHOH) was developed as well as new analysis tools and visualization methods. The instrument determines 3-D fields of the atmospheric water vapor number density with a temporal resolution of a few secon...
Uhrig, Matthias P.; Kim, Jin-Yeon; Jacobs, Laurence J.
2016-02-01
This research presents a 3D numerical finite element (FE) model which, previously developed, precisely simulates non-contact, air-coupled measurements of nonlinear Rayleigh wave propagation. The commercial FE-solver ABAQUS is used to perform the simulations. First, frequency dependent pressure wave attenuation is investigated numerically to reconstruct the sound pressure distribution along the active surface of the non-contact receiver. Second, constitutive law and excitation source properties are optimized to match nonlinear ultrasonic experimental data. Finally, the FE-model data are fit with analytical solutions showing a good agreement and thus, indicating the significance of the study performed.
Weijie Nie; Yuechen Jia; Vázquez de Aldana, Javier R.; Feng Chen
2016-01-01
Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 ×...
Koppenhoefer, Kyle C.; Gullerud, Arne S.; Ruggieri, Claudio; Dodds, Robert H., Jr.; Healy, Brian E.
1998-01-01
This report describes theoretical background material and commands necessary to use the WARP3D finite element code. WARP3D is under continuing development as a research code for the solution of very large-scale, 3-D solid models subjected to static and dynamic loads. Specific features in the code oriented toward the investigation of ductile fracture in metals include a robust finite strain formulation, a general J-integral computation facility (with inertia, face loading), an element extinction facility to model crack growth, nonlinear material models including viscoplastic effects, and the Gurson-Tver-gaard dilatant plasticity model for void growth. The nonlinear, dynamic equilibrium equations are solved using an incremental-iterative, implicit formulation with full Newton iterations to eliminate residual nodal forces. The history integration of the nonlinear equations of motion is accomplished with Newmarks Beta method. A central feature of WARP3D involves the use of a linear-preconditioned conjugate gradient (LPCG) solver implemented in an element-by-element format to replace a conventional direct linear equation solver. This software architecture dramatically reduces both the memory requirements and CPU time for very large, nonlinear solid models since formation of the assembled (dynamic) stiffness matrix is avoided. Analyses thus exhibit the numerical stability for large time (load) steps provided by the implicit formulation coupled with the low memory requirements characteristic of an explicit code. In addition to the much lower memory requirements of the LPCG solver, the CPU time required for solution of the linear equations during each Newton iteration is generally one-half or less of the CPU time required for a traditional direct solver. All other computational aspects of the code (element stiffnesses, element strains, stress updating, element internal forces) are implemented in the element-by- element, blocked architecture. This greatly improves
Sayed, Ahmed; Layne, Ginger; Abraham, Jame; Mukdadi, Osama
2013-01-01
The main objective of this article is to introduce a new nonlinear elastography based classification method for human breast masses. Multi-compression elastography imaging is elucidated in this study to differentiate malignant from benign lesions, based on their nonlinear mechanical behavior under compression. Three classification parameters were used and compared in this work: a new nonlinear parameter based on a power-law behavior of the strain difference between breast masses and healthy t...
Progress in the Peeling-Ballooning Model of ELMs: Numerical Studies of 3D Nonlinear ELM Dynamics
Energy Technology Data Exchange (ETDEWEB)
Snyder, P B; Wilson, H R; Xu, X Q
2004-12-13
Nonlinear simulations with the 3D electromagnetic two-fluid BOUT code are employed to study the dynamics of edge localized modes (ELMs) driven by intermediate wavelength peeling-ballooning modes. It is found that the early behavior of the modes is similar to expectations from linear, ideal peeling-ballooning mode theory, with the modes growing linearly at a fraction of the Alfven frequency. In the non-linear phase, the modes grow explosively, forming a number of extended filaments which propagate rapidly from the outer closed flux region into the open flux region toward the outer wall. Similarities to non-linear linear ballooning theory, as well as additional complexities are observed. Comparison to observations reveals a number of similarities. Implications of the simulations and proposals for the dynamics of the full ELM crash are discussed.
PROGRESS IN THE PEELING-BALLOONING MODEL OF ELMS: NUMERICAL STUDIES OF 3D NONLINEAR ELM DYNAMICS
Energy Technology Data Exchange (ETDEWEB)
SNYDER,P.B; WILSON,H.R; XU,X.Q
2004-11-01
Nonlinear simulations with the 3D electromagnetic two-fluid BOUT code are employed to study the dynamics of edge localized modes (ELMs) driven by intermediate wavelength peeling-ballooning modes. It is found that the early behavior of the modes is similar to expectations from linear, ideal peeling-ballooning mode theory, with the modes growing linearly at a fraction of the Alfven frequency. In the nonlinear phase, the modes grow explosively, forming a number of extended filaments which propagate rapidly from the outer closed flux region into the open flux region toward the outboard wall. Similarities to non-linear ballooning theory, as well as additional complexities are observed. Comparison to observations reveals a number of similarities. Implications of the simulations and proposals for the dynamics of the full ELM crash are discussed.
PROGRESS IN THE PEELING-BALLOONING MODEL OF ELMS: NUMERICAL STUDIES OF 3D NONLINEAR ELM DYNAMICS
International Nuclear Information System (INIS)
Nonlinear simulations with the 3D electromagnetic two-fluid BOUT code are employed to study the dynamics of edge localized modes (ELMs) driven by intermediate wavelength peeling-ballooning modes. It is found that the early behavior of the modes is similar to expectations from linear, ideal peeling-ballooning mode theory, with the modes growing linearly at a fraction of the Alfven frequency. In the nonlinear phase, the modes grow explosively, forming a number of extended filaments which propagate rapidly from the outer closed flux region into the open flux region toward the outboard wall. Similarities to non-linear ballooning theory, as well as additional complexities are observed. Comparison to observations reveals a number of similarities. Implications of the simulations and proposals for the dynamics of the full ELM crash are discussed
High-performance 3D printing of hydrogels by water-dispersible photoinitiator nanoparticles.
Pawar, Amol A; Saada, Gabriel; Cooperstein, Ido; Larush, Liraz; Jackman, Joshua A; Tabaei, Seyed R; Cho, Nam-Joon; Magdassi, Shlomo
2016-04-01
In the absence of water-soluble photoinitiators with high absorbance in the ultraviolet (UV)-visible range, rapid three-dimensional (3D) printing of hydrogels for tissue engineering is challenging. A new approach enabling rapid 3D printing of hydrogels in aqueous solutions is presented on the basis of UV-curable inks containing nanoparticles of highly efficient but water-insoluble photoinitiators. The extinction coefficient of the new water-dispersible nanoparticles of 2,4,6-trimethylbenzoyl-diphenylphosphine oxide (TPO) is more than 300 times larger than the best and most used commercially available water-soluble photoinitiator. The TPO nanoparticles absorb significantly in the range from 385 to 420 nm, making them suitable for use in commercially available, low-cost, light-emitting diode-based 3D printers using digital light processing. The polymerization rate at this range is very fast and enables 3D printing that otherwise is impossible to perform without adding solvents. The TPO nanoparticles were prepared by rapid conversion of volatile microemulsions into water-dispersible powder, a process that can be used for a variety of photoinitiators. Such water-dispersible photoinitiator nanoparticles open many opportunities to enable rapid 3D printing of structures prepared in aqueous solutions while bringing environmental advantages by using low-energy curing systems and avoiding the need for solvents. PMID:27051877
High-performance 3D printing of hydrogels by water-dispersible photoinitiator nanoparticles
Pawar, Amol A.; Saada, Gabriel; Cooperstein, Ido; Larush, Liraz; Jackman, Joshua A.; Tabaei, Seyed R.; Cho, Nam-Joon; Magdassi, Shlomo
2016-01-01
In the absence of water-soluble photoinitiators with high absorbance in the ultraviolet (UV)–visible range, rapid three-dimensional (3D) printing of hydrogels for tissue engineering is challenging. A new approach enabling rapid 3D printing of hydrogels in aqueous solutions is presented on the basis of UV-curable inks containing nanoparticles of highly efficient but water-insoluble photoinitiators. The extinction coefficient of the new water-dispersible nanoparticles of 2,4,6-trimethylbenzoyl-diphenylphosphine oxide (TPO) is more than 300 times larger than the best and most used commercially available water-soluble photoinitiator. The TPO nanoparticles absorb significantly in the range from 385 to 420 nm, making them suitable for use in commercially available, low-cost, light-emitting diode–based 3D printers using digital light processing. The polymerization rate at this range is very fast and enables 3D printing that otherwise is impossible to perform without adding solvents. The TPO nanoparticles were prepared by rapid conversion of volatile microemulsions into water-dispersible powder, a process that can be used for a variety of photoinitiators. Such water-dispersible photoinitiator nanoparticles open many opportunities to enable rapid 3D printing of structures prepared in aqueous solutions while bringing environmental advantages by using low-energy curing systems and avoiding the need for solvents. PMID:27051877
On Nonlinear Stability Theorems of 3D Quasi-geostrophic Flow
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Nonlinear stability criteria for quasi-geostrophic zonally symmetric flow are improved by establishing an invariant of zonal momentum. When applied to the Eady model in a periodic channel with finite zonal length, the improved nonlinear stability criterion is identical to the linear normal-mode stability criterion provided the channel meridional width is no greater than 0.8605... times its channel length (which is the geophysically relevant case).
Nonlinear 3-D beam/connector finite element with warping for a glulam dome
Kavi, Sandeep A.
1993-01-01
The main objectives of the present study are to incorporate Saint-Venant's torsion solution in the analysis of a glulam dome with ABAQUS to include warping of rectangular beams, and to model the nonlinear beam/decking connectors (nails) of the dome in order to develop an effective finite element model of the glulam dome for investigating its ultimate load capacity. The shear modulus is modified to include warping of the beams. The nonlinear connector is defined through a user-c...
Huimin Yu
2012-01-01
The asymptotic behavior (as well as the global existence) of classical solutions to the 3D compressible Euler equations are considered. For polytropic perfect gas $(P(\\rho )={P}_{0}{\\rho }^{\\gamma })$ , time asymptotically, it has been proved by Pan and Zhao (2009) that linear damping and slip boundary effect make the density satisfying the porous medium equation and the momentum obeying the classical Darcy's law. In this paper, we use a more general method and extend this resu...
Measuring nonlinear stresses generated by defects in 3D colloidal crystals
Lin, Neil Y C; Schall, Peter; Sethna, James P; Cohen, Itai
2016-01-01
The mechanical, structural and functional properties of crystals are determined by their defects and the distribution of stresses surrounding these defects has broad implications for the understanding of transport phenomena. When the defect density rises to levels routinely found in real-world materials, transport is governed by local stresses that are predominantly nonlinear. Such stress fields however, cannot be measured using conventional bulk and local measurement techniques. Here, we report direct and spatially resolved experimental measurements of the nonlinear stresses surrounding colloidal crystalline defect cores, and show that the stresses at vacancy cores generate attractive interactions between them. We also directly visualize the softening of crystalline regions surrounding dislocation cores, and find that stress fluctuations in quiescent polycrystals are uniformly distributed rather than localized at grain boundaries, as is the case in strained atomic polycrystals. Nonlinear stress measurements ...
A continuation method for computing non-linear 3-D free surface flows
Energy Technology Data Exchange (ETDEWEB)
Petersson, N.A.
1993-01-01
The subject of this paper is a pseudo-arclength continuation method for computing non-linear three-dimensional steady potential flow around a submerged body moving in a infinitely deep liquid at constant speed and distance below the free surface.
Nonlinear 3D calculations of turbine blade impact on turbine cover
International Nuclear Information System (INIS)
This paper present the approach used at the VUJE institute for the evaluation of a ruptured blade impact on the current protection cover of a SKODA 220 MW turbine. Firstly, it briefly describes experiments (Hopkinson-Davies split bar facility, Taylor tests) and numerical simulations used to obtain realistic material parameters needed for the Cowper- Symonds material model that is implemented in the code LS-DYNA3D. Then, numerical simulations, by using the code, of the ruptured blade impact on various protection barriers are presented. These simulations make it possible to find an optimal solution for a new turbine protection cover. (author)
Institute of Scientific and Technical Information of China (English)
Jin Wencheng; Zhou Xiaoyong; Li Na
2008-01-01
A numerical model is developed in this paper to calculate the bending moments of flexural members through integration in 3D solid finite element analyses according to the nonlinear constitutive model of concrete and the elastoplastic constitutive model of steel, utilizing the stress condition of the cross-section, considering the destruction characteristic of reinforced concrete members, and based on the plane cross-section assumption. The results of this model give good agreement with those of the classical method. Consequently, we can also deduce the corresponding numerical expression for eccentrically loaded members according to the analysis method.
Inclusion of high resolution MODIS maps on a 3D tropospheric water vapor GPS tomography model
Benevides, Pedro; Catalao, Joao; Nico, Giovanni; Miranda, Pedro M. A.
2015-10-01
Observing the water vapor distribution on the troposphere remains a challenge for the weather forecast. Radiosondes provide precise water vapor profiles of the troposphere, but lack geographical and temporal coverage, while satellite meteorological maps have good spatial resolution but even poorer temporal resolution. GPS has proved its capacity to measure the integrated water vapor in all weather conditions with high temporal sampling frequency. However these measurements lack a vertical water vapor discretization. Reconstruction of the slant path GPS observation to the satellite allows oblique water vapor measurements. Implementation of a 3D grid of voxels along the troposphere over an area where GPS stations are available enables the observation ray tracing. A relation between the water vapor density and the distanced traveled inside the voxels is established, defining GPS tomography. An inverse problem formulation is needed to obtain a water vapor solution. The combination of precipitable water vapor (PWV) maps obtained from MODIS satellite data with the GPS tomography is performed in this work. The MODIS PWV maps can have 1 or 5 km pixel resolution, being obtained 2 times per day in the same location at most. The inclusion of MODIS PWV maps provides an enhanced horizontal resolution for the tomographic solution and benefits the stability of the inversion problem. A 3D tomographic grid was adjusted over a regional area covering Lisbon, Portugal, where a GNSS network of 9 receivers is available. Radiosonde measurements in the area are used to evaluate the 3D water vapor tomography maps.
Non-linear dynamic analysis of ancient masonry structures by 3D rigid block models
Orduña, Agustin; Ayala, A. Gustavo
2015-12-01
This work presents a formulation for non-linear dynamic analysis of unreinforced masonry structures using rigid block models. This procedure is akin to the distinct element family of methods, nevertheless, we assume that small displacements occur and, therefore, the formulation does not involve the search for new contacts between blocks. This proposal is also related to the rigid element method, although, in this case we use full three-dimensional models and a more robust interface formulation.
Nonlinear Synchronization for Automatic Learning of 3D Pose Variability in Human Motion Sequences
Directory of Open Access Journals (Sweden)
Mozerov M
2010-01-01
Full Text Available A dense matching algorithm that solves the problem of synchronizing prerecorded human motion sequences, which show different speeds and accelerations, is proposed. The approach is based on minimization of MRF energy and solves the problem by using Dynamic Programming. Additionally, an optimal sequence is automatically selected from the input dataset to be a time-scale pattern for all other sequences. The paper utilizes an action specific model which automatically learns the variability of 3D human postures observed in a set of training sequences. The model is trained using the public CMU motion capture dataset for the walking action, and a mean walking performance is automatically learnt. Additionally, statistics about the observed variability of the postures and motion direction are also computed at each time step. The synchronized motion sequences are used to learn a model of human motion for action recognition and full-body tracking purposes.
Enhanced hematite water electrolysis using a 3D antimony-doped tin oxide electrode.
Moir, Jonathon; Soheilnia, Navid; O'Brien, Paul; Jelle, Abdinoor; Grozea, Claudia M; Faulkner, Daniel; Helander, Michael G; Ozin, Geoffrey A
2013-05-28
We present herein an example of nanocrystalline antimony-doped tin oxide (nc-ATO) disordered macroporous "inverse opal" 3D electrodes as efficient charge-collecting support structures for the electrolysis of water using a hematite surface catalyst. The 3D macroporous structures were created via templating of polystyrene spheres, followed by infiltration of the desired precursor solution and annealing at high temperature. Using cyclic voltammetry and electrochemical impedance spectroscopy, it was determined that the use of this 3D transparent conducting oxide with a hematite surface catalyst allowed for a 7-fold increase in active surface area for water splitting with respect to its 2D planar counterpart. This ratio of surface areas was evaluated based on the presence of oxidized trap states on the hematite surface, as determined from the equivalent circuit analysis of the Nyquist plots. Furthermore, the presence of nc-ATO 2D and 3D "underlayer" structures with hematite deposited on top resulted in decreased charge transfer resistances and an increase in the number of available active surface sites at the semiconductor-liquid junction when compared to hematite films lacking any nc-ATO substructures. Finally, absorption, transmission, and reflectance spectra of all of the tested films were measured, suggesting the feasibility of using 3D disordered structures in photoelectrochemical reactions, due to the high absorption of photons by the surface catalyst material and trapping of light within the structure. PMID:23581965
Application of 3D electrical capacitance tomography in probing anomalous blocks in water
Liao, Aimin; Zhou, Qiyou; Zhang, Yun
2015-06-01
Water usually acts as a high-permittivity dielectric in many fields such as geophysics, hydrology, hydrogeology, aquaculture, etc. Thus, it may be of significance to adapt ECT to the fields with a high permittivity in which the conventional ECT is scarcely involved. To achieve this objective, a simplified 3D-ECT system was constructed with a high-precision inductance capacitance resistance meter and programmable logic controllers. In the aspect of sensing unit of the system, two geometries (i.e. cylinder and cube) of 3D sensors were constructed to probe anomalous blocks in water. Numerical simulations and physical experiments for both the sensors were performed to test the effectiveness of the constructed system to probe anomalous blocks in water. Furthermore, to justify the availability of this system in some possible fields, two experiments associated with applications of the 3D-ECT system were performed to measure the distribution of a plant root system in water, and to monitor the infiltration of water in soil in field. The experimental results demonstrate that the ECT system is capable of probing the location and rough size of anomalous blocks in water with both the sensors, determining the distribution of a plant root system in water, and monitoring the infiltration process of water in soil.
Analysis of the Boiling Water Reactor Turbine Trip Benchmark with the Codes DYN3D and ATHLET/DYN3D
International Nuclear Information System (INIS)
The OECD/NRC Boiling Water Reactor (BWR) Turbine Trip Benchmark was analyzed by the code DYN3D and the coupled code system ATHLET/DYN3D. For the exercise 2 benchmark calculations with given thermal-hydraulic boundary conditions of the core, the analyses were performed with the core model DYN3D. Concerning the modeling of the BWR core in the DYN3D code, several simplifications and their influence on the results were investigated. The standard calculations with DYN3D were performed with 764 coolant channels (one channel per fuel assembly), the assembly discontinuity factors (ADF), and the phase slip model of Molochnikov. Comparisons were performed with the results obtained by calculations with 33 thermal-hydraulic channels, without the ADF and with the slip model of Zuber and Findlay. It is shown that the influence on core-averaged values of the steady state and the transient is small. Considering local parameters, the influence of the ADF or the reduced number of coolant channels is not negligible. For the calculations of exercise 3, the DYN3D model validated during the exercise 2 calculations in combination with the ATHLET system model, developed at Gesellschaft fuer Anlagen- und Reaktorsicherheit for exercise 1, has been used. Calculations were performed for the basic scenario as well as for all specified extreme versions. They were carried out using a modified version of the external coupling of the codes, the 'parallel' coupling. This coupling shows a stable performance at the low time step sizes necessary for an appropriate description of the feedback during the transient. The influence of assumed failures of different relevant safety systems on the plant and the core behavior was investigated in the calculations of the extreme scenarios. The calculations of exercises 2 and 3 contribute to the validation of DYN3D and ATHLET/DYN3D for BWR systems
A moving mesh algorithm for 3-D regional groundwater flow with water table and seepage face
Knupp, P.
A numerical algorithm is described for solving the free-surface groundwater flow equations in 3-D large-scale unconfined aquifers with strongly heterogeneous conductivity and surface recharge. The algorithm uses a moving mesh to track the water-table as it evolves according to kinematic and seepage face boundary conditions. Both steady-state and transient algorithms are implemented in the SECO-Flow 3-D code and demonstrated on stratigraphy based on the Delaware Basin of south-eastern New Mexico.
3D Imaging of Water-Drop Condensation on Hydrophobic and Hydrophilic Lubricant-Impregnated Surfaces
Tadashi Kajiya; Frank Schellenberger; Periklis Papadopoulos; Doris Vollmer; Hans-Jürgen Butt
2016-01-01
Condensation of water from the atmosphere on a solid surface is an ubiquitous phenomenon in nature and has diverse technological applications, e.g. in heat and mass transfer. We investigated the condensation kinetics of water drops on a lubricant-impregnated surface, i.e., a micropillar array impregnated with a non-volatile ionic liquid. Growing and coalescing drops were imaged in 3D using a laser scanning confocal microscope equipped with a temperature and humidity control. Different stages ...
Global solution for the 3D gravity water waves system above a flat bottom
Wang, Xuecheng
2015-01-01
In this paper, we consider the $3D$ water waves system above a fixed flat bottom (finite depth) with gravity, meanwhile without surface tension (the gravity water waves system). For this system, we prove global existence for suitably small initial data and non-existence of traveling waves below certain level of smallness, which strongly contrasts the behavior of solution of the same system in the $2D$ case.
3D simulations of supernova remnants evolution including non-linear particle acceleration
Ferrand, Gilles; Ballet, Jean; Teyssier, Romain; Fraschetti, Federico
2009-01-01
If a sizeable fraction of the energy of supernova remnant shocks is channeled into energetic particles (commonly identified with Galactic cosmic rays), then the morphological evolution of the remnants must be distinctly modified. Evidence of such modifications has been recently obtained with the Chandra and XMM-Newton X-ray satellites. To investigate these effects, we coupled a semi-analytical kinetic model of shock acceleration with a 3D hydrodynamic code (by means of an effective adiabatic index). This enables us to study the time-dependent compression of the region between the forward and reverse shocks due to the back reaction of accelerated particles, concomitantly with the development of the Rayleigh-Taylor hydrodynamic instability at the contact discontinuity. Density profiles depend critically on the injection level eta of particles: for eta up to about 10^-4 modifications are weak and progressive, for eta of the order of 10^-3 modifications are strong and immediate. Nevertheless, the extension of the...
Solution-grown 3D Cu2O networks for efficient solar water splitting
International Nuclear Information System (INIS)
We report a facile and large-scale solution fabrication of cuprous oxide (Cu2O) nanowires/nanorods and 3D porous Cu2O networks and their application as photocathodes for efficient solar water splitting. The growth mechanism and structural characterization of 3D porous Cu2O networks are studied in detail. The photocathodic performance of Cu2O electrodes prepared under different growth conditions is investigated in a pH-neutral medium. The porous Cu2O network photocathodes exhibit large photocurrent, high spectral photoresponse, and incident photon-to-current efficiency compared with Cu2O nanowire/nanorod photoelectrodes. The photoelectrochemical stability of the 3D Cu2O network is significantly improved by applying multi-layer metal oxide protection. (papers)
A NOVEL 3-D MODEL FOR THE WATER CRESTING IN HORIZONTAL WELLS
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
In the presence of bottom water, a drop in the reservoir pressure due to fluid production causes the aquifer water to expand and to flow into the reservoir. Therefore, hydrocarbon production from a well is limited by the critical flow rate. The main purpose of this study is to investigate the breakthrough time and the critical rate by using a novel 3-D horizontal well model. Based on the hypothesis that the horizontal well is located in any position of a circular reservoir with no-flow boundary on the top of the reservoir and constant pressure boundary at the bottom, the horizontal well has been regarded as an infinite conductivity line sink and then a 3-D steady-state flow model of the horizontal well is set up. A point sink pressure solution can be obtained with the Fourier transform. The result of the pressure distribution of the uniform flux horizontal well can be presented by means of the principle of superposition. According to the stable water cresting theory, this study confirms the stable height of water cresting and the critical rate. Meanwhile, it can re-confirm the breakthrough time at a specific rate. The output of a comparison between this 3-D model and the reservoir numerical simulator (Eclipse) shows the method presented here can be applied to investigate the behavior of a water cresting and to predict the breakthrough time at the bottom water driver reservoir.
Simulation of 3D tumor cell growth using nonlinear finite element method.
Dong, Shoubing; Yan, Yannan; Tang, Liqun; Meng, Junping; Jiang, Yi
2016-06-01
We propose a novel parallel computing framework for a nonlinear finite element method (FEM)-based cell model and apply it to simulate avascular tumor growth. We derive computation formulas to simplify the simulation and design the basic algorithms. With the increment of the proliferation generations of tumor cells, the FEM elements may become larger and more distorted. Then, we describe a remesh and refinement processing of the distorted or over large finite elements and the parallel implementation based on Message Passing Interface to improve the accuracy and efficiency of the simulation. We demonstrate the feasibility and effectiveness of the FEM model and the parallelization methods in simulations of early tumor growth. PMID:26213205
Nonlinear stability analysis of 3D Couette flow considering energy transfer conservation
International Nuclear Information System (INIS)
The transition from laminar plane Couette flow to intermittency is studied within a 108-dimensional Galerkin representation of Orr-Sommerfeld and Squire modes. A distinct transient behaviour is found in the Reynolds number region 325≤R≤350. The results also confirm the sensitive dependence on initial conditions in the intermittency regime as recently found in a higher-dimensional function space. As a crucial point, the conservation of the overall energy-transfer rate is rigorously implemented by renormalizing the nonlinear coefficients of the Galerkin system. As a consequence, there are no runaway trajectories in the cut-off system considered. Surprisingly, further consistency conditions were found in the quadratic terms of the time derivative of the kinetic energy. After they have been taken into account by the renormalization, a quantitatively good fulfillment of the energy balances is achieved
Laser nanostructuring 3-D bioconstruction based on carbon nanotubes in a water matrix of albumin
Gerasimenko, Alexander Y.; Ichkitidze, Levan P.; Podgaetsky, Vitaly M.; Savelyev, Mikhail S.; Selishchev, Sergey V.
2016-04-01
3-D bioconstructions were created using the evaporation method of the water-albumin solution with carbon nanotubes (CNTs) by the continuous and pulsed femtosecond laser radiation. It is determined that the volume structure of the samples created by the femtosecond radiation has more cavities than the one created by the continuous radiation. The average diameter for multi-walled carbon nanotubes (MWCNTs) samples was almost two times higher (35-40 nm) than for single-walled carbon nanotubes (SWCNTs) samples (20-30 nm). The most homogenous 3-D bioconstruction was formed from MWCNTs by the continuous laser radiation. The hardness of such samples totaled up to 370 MPa at the nanoscale. High strength properties and the resistance of the 3-D bioconstructions produced by the laser irradiation depend on the volume nanotubes scaffold forming inside them. The scaffold was formed by the electric field of the directed laser irradiation. The covalent bond energy between the nanotube carbon molecule and the oxygen of the bovine serum albumin aminoacid residue amounts 580 kJ/mol. The 3-D bioconstructions based on MWCNTs and SWCNTs becomes overgrown with the cells (fibroblasts) over the course of 72 hours. The samples based on the both types of CNTs are not toxic for the cells and don't change its normal composition and structure. Thus the 3-D bioconstructions that are nanostructured by the pulsed and continuous laser radiation can be applied as implant materials for the recovery of the connecting tissues of the living body.
Modeling of Nonlinear Mechanical Behavior for 3D Needled C/C-SiC Composites Under Tensile Load
Xie, Junbo; Fang, Guodong; Chen, Zhen; Liang, Jun
2016-04-01
This paper established a macroscopic constitutive model to describe the nonlinear stress-strain behavior of 3D needled C/C-SiC composites under tensile load. Extensive on- and off-axis tensile tests were performed to investigate the macroscopic mechanical behavior and damage characteristics of the composites. The nonlinear mechanical behavior of the material was mainly induced by matrix tensile cracking and fiber/matrix debonding. Permanent deformations and secant modulus degradation were observed in cyclic loading-unloading tests. The nonlinear stress-strain relationship of the material could be described macroscopically by plasticity deformation and stiffness degradation. In the proposed model, we employed a plasticity theory with associated plastic flow rule to describe the evolution of plastic strains. A novel damage variable was also introduced to characterize the stiffness degradation of the material. The damage evolution law was derived from the statistical distribution of material strength. Parameters of the proposed model can be determined from off-axis tensile tests. Stress-strain curves predicted by this model showed reasonable agreement with experimental results.
Modeling of Nonlinear Mechanical Behavior for 3D Needled C/C-SiC Composites Under Tensile Load
Xie, Junbo; Fang, Guodong; Chen, Zhen; Liang, Jun
2016-08-01
This paper established a macroscopic constitutive model to describe the nonlinear stress-strain behavior of 3D needled C/C-SiC composites under tensile load. Extensive on- and off-axis tensile tests were performed to investigate the macroscopic mechanical behavior and damage characteristics of the composites. The nonlinear mechanical behavior of the material was mainly induced by matrix tensile cracking and fiber/matrix debonding. Permanent deformations and secant modulus degradation were observed in cyclic loading-unloading tests. The nonlinear stress-strain relationship of the material could be described macroscopically by plasticity deformation and stiffness degradation. In the proposed model, we employed a plasticity theory with associated plastic flow rule to describe the evolution of plastic strains. A novel damage variable was also introduced to characterize the stiffness degradation of the material. The damage evolution law was derived from the statistical distribution of material strength. Parameters of the proposed model can be determined from off-axis tensile tests. Stress-strain curves predicted by this model showed reasonable agreement with experimental results.
The NCOREL computer program for 3D nonlinear supersonic potential flow computations
Siclari, M. J.
1983-01-01
An innovative computational technique (NCOREL) was established for the treatment of three dimensional supersonic flows. The method is nonlinear in that it solves the nonconservative finite difference analog of the full potential equation and can predict the formation of supercritical cross flow regions, embedded and bow shocks. The method implicitly computes a conical flow at the apex (R = 0) of a spherical coordinate system and uses a fully implicit marching technique to obtain three dimensional cross flow solutions. This implies that the radial Mach number must remain supersonic. The cross flow solutions are obtained by using type dependent transonic relaxation techniques with the type dependency linked to the character of the cross flow velocity (i.e., subsonic/supersonic). The spherical coordinate system and marching on spherical surfaces is ideally suited to the computation of wing flows at low supersonic Mach numbers due to the elimination of the subsonic axial Mach number problems that exist in other marching codes that utilize Cartesian transverse marching planes.
Linear Stability and Nonlinear Evolution of 3D Vortices in Rotating Stratified Flows
Mahdinia, Mani; Hassanzadeh, Pedram; Marcus, Philip
2014-11-01
Axisymmetric Gaussian vortices are widely-used to model oceanic vortices. We study their stability in rotating, stratified flows by using the full Boussinesq equations. We created a stability map as a function of the Burger and Rossby numbers of the vortices. We computed the linear growth rates of the most-unstable eigenmodes and their corresponding eigenmodes. Our map shows a significant cyclone/anti-cyclone asymmetry. The vortices are linearly unstable in most of the parameter space that we studied. However, the anticyclonic vortices, over most of the parameter space, have eigenmodes with only very weak growth rates - longer than 50 vortex turn-around times. For oceanic vortices, that time corresponds to several months, so we argue that this slow growth rate means that the oceanic anticyclones lifetimes are not determined by linear stability, but by other processes. We also use our full, nonlinear simulations to show an example of an unstable cyclone with a very fast growing linear eigenmodes. However, we show that cyclone quickly redistributes its vorticity and becomes a stable tripole with a large core that is nearly axisymmetric.
Non-linear dynamics of viscous bilayers subjected to an electric field: 3D phase field simulations
Dritselis, Christos; Karapetsas, George; Bontozoglou, Vasilis
2014-11-01
The scope of this work is to investigate the non-linear dynamics of the electro-hydrodynamic instability of a bilayer of immiscible liquids. We consider the case of two viscous films which is separated from the top electrode by air. We assume that the liquids are perfect dielectrics and consider the case of both flat and patterned electrodes. We develop a computational model using the diffuse interface method and carry out 3D numerical simulations fully accounting for the flow and electric field in all phases. We perform a parametric study and investigate the influence of the electric properties of fluids, applied voltage and various geometrical characteristics of the mask. The authors acknowledge the support by the General Secretariat of Research and Technology of Greece under the action ``Supporting Postdoctoral Researchers'' (Grant Number PE8/906), co-funded by the European Social Fund and National Resources.
Super non-linear RRAM with ultra-low power for 3D vertical nano-crossbar arrays.
Luo, Qing; Xu, Xiaoxin; Liu, Hongtao; Lv, Hangbing; Gong, Tiancheng; Long, Shibing; Liu, Qi; Sun, Haitao; Banerjee, Writam; Li, Ling; Gao, Jianfeng; Lu, Nianduan; Liu, Ming
2016-08-25
Vertical crossbar arrays provide a cost-effective approach for high density three-dimensional (3D) integration of resistive random access memory. However, an individual selector device is not allowed to be integrated with the memory cell separately. The development of V-RRAM has impeded the lack of satisfactory self-selective cells. In this study, we have developed a high performance bilayer self-selective device using HfO2 as the memory switching layer and a mixed ionic and electron conductor as the selective layer. The device exhibits high non-linearity (>10(3)) and ultra-low half-select leakage (<0.1 pA). A four layer vertical crossbar array was successfully demonstrated based on the developed self-selective device. High uniformity, ultra-low leakage, sub-nA operation, self-compliance, and excellent read/write disturbance immunity were achieved. The robust array level performance shows attractive potential for low power and high density 3D data storage applications. PMID:27510434
Quasi 3D modeling of water flow and solute transport in vadose zone and groundwater
Yakirevich, A.; Kuznetsov, M.; Weisbrod, N.; Pachepsky, Y. A.
2013-12-01
The complexity of subsurface flow systems calls for a variety of concepts leading to the multiplicity of simplified flow models. One commonly used simplification is based on the assumption that lateral flow and transport in unsaturated zone is insignificant unless the capillary fringe is involved. In such cases the flow and transport in the unsaturated zone above groundwater level can be simulated as a 1D phenomenon, whereas through groundwater they are viewed as 2D or 3D phenomena. A new approach for a numerical scheme for 3D variably saturated flow and transport is presented. A Quasi-3D approach allows representing flow in the 'vadose zone - aquifer' system by a series of 1D Richards' equations solved in variably-saturated zone and by 3D-saturated flow equation in groundwater (modified MODFLOW code). The 1D and 3D equations are coupled at the phreatic surface in a way that aquifer replenishment is calculated using the Richards' equation, and solving for the moving water table does not require definition of the specific yield parameter. The 3D advection-dispersion equation is solved in the entire domain by the MT3D code. Using implicit finite differences approximation to couple processes in the vadose zone and groundwater provides mass conservation and increase of computational efficiency. The above model was applied to simulate the impact of irrigation on groundwater salinity in the Alto Piura aquifer (Northern Peru). Studies on changing groundwater quality in arid and semi-arid lands show that irrigation return flow is one of the major factors contributing to aquifer salinization. Existing mathematical models do not account explicitly for the solute recycling during irrigation on a daily scale. Recycling occurs throughout the unsaturated and saturated zones, as function of the solute mass extracted from pumping wells. Salt concentration in irrigation water is calculated at each time step as a function of concentration of both surface water and groundwater
RELAP5-3D Code for Supercritical-Pressure Light-Water-Cooled Reactors
International Nuclear Information System (INIS)
The RELAP5-3D computer program has been improved for analysis of supercritical-pressure, light-water-cooled reactors. Several code modifications were implemented to correct code execution failures. Changes were made to the steam table generation, steam table interpolation, metastable states, interfacial heat transfer coefficients, and transport properties (viscosity and thermal conductivity). The code modifications now allow the code to run slow transients above the critical pressure as well as blowdown transients (modified Edwards pipe and modified existing pressurized water reactor model) that pass near the critical point
RELAP5-3D code for supercritical-pressure, light-water-cooled reactors
International Nuclear Information System (INIS)
The RELAP5-3D computer program has been improved for analysis of supercritical-pressure, light-water-cooled reactors. Several code modifications were implemented to correct code execution failures. Changes were made to the steam table generation, steam table interpolation, metastable states, interfacial heat transfer coefficients, and transport properties (viscosity and thermal conductivity). The code modifications now allow the code to run slow transients above the critical pressure as well as blowdown transients (modified Edwards pipe and modified existing pressurized water reactor model) that pass near the critical point. (author)
Nonlinear effects in water waves
International Nuclear Information System (INIS)
This set of lecture notes on nonlinear effects in water waves was written on the occasion of the first ICTP course on Ocean Waves and Tides held from 26 September until 28 October 1988 in Trieste, Italy. It presents a summary and unification of my knowledge on nonlinear effects of gravity waves on an incompressible fluid without vorticity. The starting point of the theory is the Hamiltonian for water waves. The evolution equations of both weakly nonlinear, shallow water and deep water gravity waves are derived by suitable approximation of the energy of the waves, resulting in the Korteweg-de Vries equation and the Zakharov equation, respectively. Next, interesting properties of the KdV equation (solitons) and the Zakharov equation (instability of a finite amplitude wave train) are discussed in some detail. Finally, the evolution of a homogeneous, random wave field due to resonant four wave processes is considered and the importance of this process for ocean wave prediction is pointed out. 38 refs, 21 figs
Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R.; Chen, Feng
2016-02-01
Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions.
Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R; Chen, Feng
2016-01-01
Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions. PMID:26924255
Taha, Uday; Shabeeb, Ahmed; dragonetti, giovanna; Lamaddalena, Nicola; Coppola, Antonio
2016-04-01
This work analyzed the variability of sprinkler irrigation application over a bare soil, both in terms of water application efficiency and uniformity, by integrating and comparing the information on the irrigation depth data (ID), as measured by catch cans, soil water storage in the upper root zone, as measured by TDR probes, and a 3D simulations of water flow in soils. Three irrigation tests were performed at three different pressures (2, 3 and 4 bar). A lateral water redistribution was observed and simulated after each irrigation event by comparing spatial distributions of site-specific water application efficiency (AEs), as well as ratios of site-specific actual water storage increase (SWEs) and irrigation depth (IDs) to the water content before irrigation. Because of soil water redistribution processes, distribution uniformity based on soil storages was systematically higher than the catch can uniformity. The obvious consequence of lateral water redistribution processes was that the soil smoothing action on non-uniformity observed at the surface increased both with depth and over time. At a given depth the uniformity of soil water storages always attained the same value, whatever the pressure considered and the catch can-based uniformity coefficient. It was concluded that, for the case of random distribution of ID, the uniformity of water storages is driven by the soil behavior rather than by the irrigation system.
Crosta, G.; Imposimato, S.; Roddeman, D.; Frattini, P.
2012-04-01
Fast moving landslides can be originated along slopes in mountainous terrains with natural and artificial lakes, or fjords at the slope foot. This landslides can reach extremely high speed and the impact with the immobile reservoir water can be influenced by the local topography and the landslide mass profile. The impact can generate large impulse waves and landslide tsunami. Initiation, propagation and runup are the three phases that need to be considered. The landslide evolution and the consequent wave can be controlled by the initial mass position (subaerial, partially or completely submerged), the landslide speed, the type of material, the subaerial and subaqueous slope geometry, the landslide depth and length at the impact, and the water depth. Extreme events have been caused by subaerial landslides: the 1963 Vajont rockslide (Italy), the 1958 Lituya Bay event (Alaska), the Tafjord and the Loen multiple events event (Norway), also from volcanic collapses (Hawaii and Canary islands). Various researchers completed a systematic experimental work on 2D and 3D wave generation and propagation (Kamphuis and Bowering, 1970; Huber, 1980; Müller, 1995; Huber and Hager, 1997; Fritz, 2002; Zweifel, 2004; Panizzo et al., 2005; Heller, 2007; Heller and Kinnear, 2010; Sælevik et al., 2009), using both rigid blocks and deformable granular" masses. Model data and results have been used to calibrate and validate numerical modelling tools (Harbitz, 1992; Jiang and LeBlond, 1993; Grilli et al., 2002; Grilli and Watts, 2005; Lynett and Liu, 2005; Tinti et al., 2006; Abadie et al., 2010) generally considering simplified rheologies (e.g. viscous rheologies) for subaerial subaqueous spreading. We use a FEM code (Roddeman, 2011; Crosta et al., 2006, 2009, 2010, 2011) adopting an Eulerian-Lagrangian approach to give accurate results for large deformations. We model both 2D and fully 3D events considering different settings. The material is considered as a fully deformable elasto
A combined 1D/3D fuel burnup analysis of generation IV light water reactor IRIS
International Nuclear Information System (INIS)
A combined 1D/3D methodology for the fuel burnup analysis of generation IV light water reactors with thin boron coating that covers the fuel rods is described in this paper. This methodology is founded on three approximations. The first approximation assumes that the problem of fuel depletion in the entire 3D core can be resolved into two independent problems. One is a 3D Monte Carlo evolution of power distribution in large volumes (nodes) with the KENO-V.a code, and the other is a transport method evolution of burnup dependent fuel composition in 1D Wigner-Seitz cell for each node independently. With the second approximation, the time-dependent fuel composition in the node (e.g., in the fuel assembly) is calculated by using a 1D fuel depletion analysis with the SAS2H control module from the SCALE-4.4a code system. The third approximation involves smearing the boron coating with the clad (by volume homogenization). The proposed SAS2H/KENO-V.a methodology is verified for the case of 2D x-y model of IRIS 15x15 fuel assembly (with a reflective boundary condition) by using two well benchmarked code systems. The first one is MOCUP, a coupled MCNP-4C and ORIGEN2.1 utility code, and the second is KENO-V.a/ORIGEN2.1 code system recently developed by authors of this paper. It has been found that the proposed SAS2H/KENO-V.a methodology gives a satisfactory accuracy for keff and nuclide composition. Finally, this methodology was applied for 3D burnup analysis of IRIS-1000 benchmark≠44 core. Detailed keff and power density evolution with burnup are reported. (author)
Water flow prediction for Membranes using 3D simulations with detailed morphology
Shi, Meixia
2015-04-01
The membrane morphology significantly influences membrane performance. For osmotically driven membrane processes, the morphology strongly affects the internal concentration polarization. Different membrane morphologies were generated by simulation and their influence on membrane performance was studied, using a 3D model. The simulation results were experimentally validated for two classical phase-inversion membrane morphologies: sponge- and finger-like structures. Membrane porosity and scanning electron microscopy image information were used as model input. The permeance results from the simulation fit well the experimentally measured permeances. Water permeances were predicted for different kinds of finger-like cavity membranes with different finger-like cavity lengths and various finger-like cavity sets, as well as for membranes with cylindrical cavities. The results provide realistic information on how to increase water permeance, and also illustrate that membrane’s complete morphology is important for the accurate water permeance evaluation. Evaluations only based on porosity might be misleading, and the new 3D simulation approach gives a more realistic representation.
Energy Technology Data Exchange (ETDEWEB)
Delbos, F.
2004-11-01
Reflexion tomography allows the determination of a subsurface velocity model from the travel times of seismic waves. The introduction of a priori information in this inverse problem can lead to the resolution of a constrained non-linear least-squares problem. The goal of the thesis is to improve the resolution techniques of this optimization problem, whose main difficulties are its ill-conditioning, its large scale and an expensive cost function in terms of CPU time. Thanks to a detailed study of the problem and to numerous numerical experiments, we justify the use of a sequential quadratic programming method, in which the tangential quadratic programs are solved by an original augmented Lagrangian method. We show the global linear convergence of the latter. The efficiency and robustness of the approach are demonstrated on several synthetic examples and on two real data cases. (author)
A 3-D implicit finite-volume model of shallow water flows
Wu, Weiming; Lin, Qianru
2015-09-01
A three-dimensional (3-D) model has been developed to simulate shallow water flows in large water bodies, such as coastal and estuarine waters. The eddy viscosity is determined using a newly modified mixing length model that uses different mixing length functions for the horizontal and vertical shear strain rates. The 3-D shallow water flow equations with the hydrostatic pressure assumption are solved using an implicit finite-volume method based on a quadtree (telescoping) rectangular mesh on the horizontal plane and the sigma coordinate in the vertical direction. The quadtree technique can locally refine the mesh around structures or in high-gradient regions by splitting a coarse cell into four child cells. The grid nodes are numbered with a one-dimensional index system that has unstructured grid feature for better grid flexibility. All the primary variables are arranged in a non-staggered grid system. Fluxes at cell faces are determined using a Rhie and Chow-type momentum interpolation, to avoid the possible spurious checkerboard oscillations caused by linear interpolation. Each of the discretized governing equations is solved iteratively using the flexible GMRES method with ILUT preconditioning, and coupling of water level and velocity among these equations is achieved by using the SIMPLEC algorithm with under-relaxation. The model has been tested in four cases, including steady flow near a spur-dyke, tidal flows in San Francisco Bay and Gironde Estuary, and wind-induced current in a flume. The calculated water levels and velocities are in good agreement with the measured values.
Cooper, W. A.; Graves, J. P.; Duval, B. P.; Porte, L.; Reimerdes, H.; Sauter, O.; Tran, T.-M.
2015-12-01
> Novel free boundary magnetohydrodynamic equilibrium states with spontaneous three-dimensional (3-D) deformations of the plasma-vacuum interface are computed. The structures obtained look like saturated ideal external kink/peeling modes. Large edge pressure gradients yield toroidal mode number distortions when the edge bootstrap current is large and higher corrugations when this current is small. Linear ideal MHD stability analyses confirm the nonlinear saturated ideal kink equilibrium states produced and we can identify the Pfirsch-Schlüter current as the main linear instability driving mechanism when the edge pressure gradient is large. The dominant non-axisymmetric component of this Pfirsch-Schlüter current drives a near resonant helical parallel current density ribbon that aligns with the near vanishing magnetic shear region caused by the edge bootstrap current. This current ribbon is a manifestation of the outer mode previously found on JET (Solano 2010). We claim that the equilibrium corrugations describe structures that are commonly observed in quiescent H-mode tokamak discharges.
Lu, W; Joshi, C; Mori, W B; Silva, L O; Tsung, F S; Tzoufras, M; Vieira, J
2006-01-01
The extraordinary ability of space-charge waves in plasmas to accelerate charged particles at gradients that are orders of magnitude greater than in current accelerators has been well documented. We develop a phenomenological framework for Laser WakeField Acceleration (LWFA) in the 3D nonlinear regime, in which the plasma electrons are expelled by the radiation pressure of a short pulse laser, leading to nearly complete blowout. Our theory provides a recipe for designing a LWFA for given laser and plasma parameters and estimates the number and the energy of the accelerated electrons whether self-injected or externally injected. These formulas apply for self-guided as well as externally guided pulses (e.g. by plasma channels). We demonstrate our results by presenting a sample Particle-In-Cell (PIC) simulation of a 30f sec, 200T W laser interacting with a 0.75cm long plasma with density 1.5*10^18 cm^-3 to produce an ultra-short (10f s) mono-energetic bunch of self-injected electrons at 1.5 GeV with 0.3nC of cha...
3D Imaging of Water-Drop Condensation on Hydrophobic and Hydrophilic Lubricant-Impregnated Surfaces
Kajiya, Tadashi; Schellenberger, Frank; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen
2016-04-01
Condensation of water from the atmosphere on a solid surface is an ubiquitous phenomenon in nature and has diverse technological applications, e.g. in heat and mass transfer. We investigated the condensation kinetics of water drops on a lubricant-impregnated surface, i.e., a micropillar array impregnated with a non-volatile ionic liquid. Growing and coalescing drops were imaged in 3D using a laser scanning confocal microscope equipped with a temperature and humidity control. Different stages of condensation can be discriminated. On a lubricant-impregnated hydrophobic micropillar array these are: (1) Nucleation on the lubricant surface. (2) Regular alignment of water drops between micropillars and formation of a three-phase contact line on a bottom of the substrate. (3) Deformation and bridging by coalescence which eventually leads to a detachment of the drops from the bottom substrate. The drop-substrate contact does not result in breakdown of the slippery behaviour. Contrary, on a lubricant-impregnated hydrophilic micropillar array, the condensed water drops replace the lubricant. Consequently, the surface loses its slippery property. Our results demonstrate that a Wenzel-like to Cassie transition, required to maintain the facile removal of condensed water drops, can be induced by well-chosen surface hydrophobicity.
3D Imaging of Water-Drop Condensation on Hydrophobic and Hydrophilic Lubricant-Impregnated Surfaces.
Kajiya, Tadashi; Schellenberger, Frank; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen
2016-01-01
Condensation of water from the atmosphere on a solid surface is an ubiquitous phenomenon in nature and has diverse technological applications, e.g. in heat and mass transfer. We investigated the condensation kinetics of water drops on a lubricant-impregnated surface, i.e., a micropillar array impregnated with a non-volatile ionic liquid. Growing and coalescing drops were imaged in 3D using a laser scanning confocal microscope equipped with a temperature and humidity control. Different stages of condensation can be discriminated. On a lubricant-impregnated hydrophobic micropillar array these are: (1) Nucleation on the lubricant surface. (2) Regular alignment of water drops between micropillars and formation of a three-phase contact line on a bottom of the substrate. (3) Deformation and bridging by coalescence which eventually leads to a detachment of the drops from the bottom substrate. The drop-substrate contact does not result in breakdown of the slippery behaviour. Contrary, on a lubricant-impregnated hydrophilic micropillar array, the condensed water drops replace the lubricant. Consequently, the surface loses its slippery property. Our results demonstrate that a Wenzel-like to Cassie transition, required to maintain the facile removal of condensed water drops, can be induced by well-chosen surface hydrophobicity. PMID:27040483
3D modelling of non-linear visco-elasto-plastic crustal and lithospheric processes using LaMEM
Popov, Anton; Kaus, Boris
2016-04-01
LaMEM (Lithosphere and Mantle Evolution Model) is a three-dimensional thermo-mechanical numerical code to simulate crustal and lithospheric deformation. The code is based on a staggered finite difference (FDSTAG) discretization in space, which is a stable and very efficient technique to solve the (nearly) incompressible Stokes equations that does not suffer from spurious pressure modes or artificial compressibility (a typical feature of low-order finite element techniques). Higher order finite element methods are more accurate than FDSTAG methods under idealized test cases where the jump in viscosity is exactly aligned with the boundaries of the elements. Yet, geodynamically more realistic cases involve evolving subduction zones, nonlinear rheologies or localized plastic shear bands. In these cases, the viscosity pattern evolves spontaneously during a simulation or even during nonlinear iterations, and the advantages of higher order methods disappear and they all converge with approximately first order accuracy, similar to that of FDSTAG [1]. Yet, since FDSTAG methods have considerably less degrees of freedom than quadratic finite element methods, they require about an order of magnitude less memory for the same number of nodes in 3D which also implies that every matrix-vector multiplication is significantly faster. LaMEM is build on top of the PETSc library and uses the particle-in-cell technique to track material properties, history variables which makes it straightforward to incorporate effects like phase changes or chemistry. An internal free surface is present, together with (simple) erosion and sedimentation processes, and a number of methods are available to import complex geometries into the code (e.g, http://geomio.bitbucket.org). Customized Galerkin coupled geometric multigrid preconditioners are implemented which resulted in a good parallel scalability of the code (we have tested LaMEM on 458'752 cores [2]). Yet, the drawback of using FDSTAG
Thomas, Justin W.
2006-12-01
The Numerical Nuclear Reactor (NNR) is a code suite that is being developed to provide high-fidelity multi-physics capability for the analysis of light water nuclear reactors. The focus of the work here is to extend the capability of the NNR by incorporation of the neutronics module, DeCART, for Boiling Water Reactor (BWR) applications. The DeCART code has been coupled to the NNR fluid mechanics and heat transfer module STAR-CD for light water reactor applications. The coupling has been accomplished via an interface program, which is responsible for mapping the STAR-CD and DeCART meshes, managing communication, and monitoring convergence. DeCART obtains the solution of the 3-D Boltzmann transport equation by performing a series of 2-D modular ray tracing-based method of characteristics problems that are coupled within the framework of 3-D coarse-mesh finite difference. The relatively complex geometry and increased axial heterogeneity found in BWRs are beyond the modeling capability of the original version of DeCART. In this work, DeCART is extended in three primary areas. First, the geometric capability is generalized by extending the modular ray tracing scheme and permitting an unstructured mesh in the global finite difference kernel. Second, numerical instabilities, which arose as a result of the severe axial heterogeneity found in BWR cores, have been resolved. Third, an advanced nodal method has been implemented to improve the accuracy of the axial flux distribution. In this semi-analytic nodal method, the analytic solution to the transverse-integrated neutron diffusion equation is obtained, where the nonhomogeneous neutron source was first approximated by a quartic polynomial. The successful completion of these three tasks has allowed the application of the coupled DeCART/STAR-CD code to practical BWR problems.
Directory of Open Access Journals (Sweden)
Nelson Moraga B
2008-09-01
Full Text Available Se estudia el transporte de calor y de oxígeno por difusión en pilas de compostajes provenientes de tratamiento de aguas municipales. El modelo 3-D transiente incluye la generación de calor originada por microorganismos y por la descomposición de la celulosa. El sistema de ecuaciones acopladas de difusión de calor y materia se resuelve con el método de volúmenes finitos. Los resultados predicen la variación en el tiempo de la distribución de temperatura y oxígeno. El análisis de los resultados permite proponer un nuevo sistema para el almacenamiento de lodos con el fin de evitar su autoignición.Heat and oxygen transport by diffusion in sewage sludge piles obtained from water treatment is studied. The 3D unsteady mathematical model incorporates the heat generated by microorganisms and by cellulose decomposition. The coupled heat and mass diffusion equations system of partial differential equations is solved by the finite volume method. The results obtained allow predicting the time history of temperature and oxygen concentration distributions. Results analysis suggests a new way to build the solid waste compost piles.
Energy Technology Data Exchange (ETDEWEB)
Whirley, R.G.; Engelmann, B.E.
1993-11-01
This report is the User Manual for the 1993 version of DYNA3D, and also serves as a User Guide. DYNA3D is a nonlinear, explicit, finite element code for analyzing the transient dynamic response of three-dimensional solids and structures. The code is fully vectorized and is available on several computer platforms. DYNA3D includes solid, shell, beam, and truss elements to allow maximum flexibility in modeling physical problems. Many material models are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects, and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding and single surface contact. Rigid materials provide added modeling flexibility. A material model driver with interactive graphics display is incorporated into DYNA3D to permit accurate modeling of complex material response based on experimental data. Along with the DYNA3D Example Problem Manual, this document provides the information necessary to apply DYNA3D to solve a wide range of engineering analysis problems.
Accuracy Based Generation of Thermodynamic Properties for Light Water in RELAP5-3D
Energy Technology Data Exchange (ETDEWEB)
Cliff B. Davis
2010-09-01
RELAP5-3D interpolates to obtain thermodynamic properties for use in its internal calculations. The accuracy of the interpolation was determined for the original steam tables currently used by the code. This accuracy evaluation showed that the original steam tables are generally detailed enough to allow reasonably accurate interpolations in most areas needed for typical analyses of nuclear reactors cooled by light water. However, there were some regions in which the original steam tables were judged to not provide acceptable accurate results. Revised steam tables were created that used a finer thermodynamic mesh between 4 and 21 MPa and 530 and 640 K. The revised steam tables solved most of the problems observed with the original steam tables. The accuracies of the original and revised steam tables were compared throughout the thermodynamic grid.
International Nuclear Information System (INIS)
This paper describes the NIRK3D software developed by Nortuen in collaboration with Innovative Software Systems (ISS) and the Polytechnic University of Catalonia (UPC). NIRK3D is an interface to perform calculations coupled between RELAP/SCDAPSIM and any type of neutronic code with kinetic 3D using DLLs.
3d Modeling Of The Early Martian Climate And Water Cycle
Forget, Francois; Wordsworth, R.; Millour, E.; Madeleine, J.; Eymet, V.; Haberle, R. M.
2010-10-01
Missions to Mars regularly reveal new evidence suggesting that the early environmental conditions were very different from today, with liquid water flowing on the surface. Which climatic or geophysical processes enabled such conditions? Were the conditions episodically suitable for liquid water, or stable on long time-scales? Can we explain the distribution of the valley networks and other ancient landforms? To help understand these key issues, we have developed a new 3D global climate model (GCM). We wish to understand the possible climate that would occur on Mars if 1) the solar luminosity is decreased by 25%, as was the case 3.8 billion years ago, and 2) the surface pressure is increased up to several bars (no other greenhouse gases than CO2 and H2O are assumed to be present). We paid particular attention to the radiative transfer in dense CO2 atmospheres, where collision-induced absorption can be significant. We found that previous parameterisation of this phenomenon overestimated the greenhouse effect, and derived a new approach based on recent studies. We analyse the effects of clouds and water vapour on the surface temperature and discuss the likely nature of the early hydrological cycle. CO2 ice clouds form in the middle atmosphere above 10 km. They cause significant surface warming through their scattering greenhouse effect. However, their effect is partly counterbalanced by the the albedo effect of the water ice clouds, which form much lower. Overall, it is difficult to achieve annual mean surface temperature significantly above 0°C anywhere on the planet for pressures below 2 bar. Nevertheless, temperatures above freezing can occur, especially in the lower plains, due to atmospheric adiabatic warming. On such a planet, the water cycle and precipitation strongly depend on the amount of water available at the surface, the location of the main surface reservoirs and the obliquity.
Hung, Kun-Che; Tseng, Ching-Shiow; Hsu, Shan-Hui
2014-10-01
Biodegradable materials that can undergo degradation in vivo are commonly employed to manufacture tissue engineering scaffolds, by techniques including the customized 3D printing. Traditional 3D printing methods involve the use of heat, toxic organic solvents, or toxic photoinitiators for fabrication of synthetic scaffolds. So far, there is no investigation on water-based 3D printing for synthetic materials. In this study, the water dispersion of elastic and biodegradable polyurethane (PU) nanoparticles is synthesized, which is further employed to fabricate scaffolds by 3D printing using polyethylene oxide (PEO) as a viscosity enhancer. The surface morphology, degradation rate, and mechanical properties of the water-based 3D-printed PU scaffolds are evaluated and compared with those of polylactic-co-glycolic acid (PLGA) scaffolds made from the solution in organic solvent. These scaffolds are seeded with chondrocytes for evaluation of their potential as cartilage scaffolds. Chondrocytes in 3D-printed PU scaffolds have excellent seeding efficiency, proliferation, and matrix production. Since PU is a category of versatile materials, the aqueous 3D printing process developed in this study is a platform technology that can be used to fabricate devices for biomedical applications. PMID:24729580
Späth, Florian; Behrendt, Andreas; Muppa, Shravan Kumar; Metzendorf, Simon; Riede, Andrea; Wulfmeyer, Volker
2016-04-01
High-resolution three-dimensional (3-D) water vapor data of the atmospheric boundary layer (ABL) are required to improve our understanding of land-atmosphere exchange processes. For this purpose, the scanning differential absorption lidar (DIAL) of the University of Hohenheim (UHOH) was developed as well as new analysis tools and visualization methods. The instrument determines 3-D fields of the atmospheric water vapor number density with a temporal resolution of a few seconds and a spatial resolution of up to a few tens of meters. We present three case studies from two field campaigns. In spring 2013, the UHOH DIAL was operated within the scope of the HD(CP)2 Observational Prototype Experiment (HOPE) in western Germany. HD(CP)2 stands for High Definition of Clouds and Precipitation for advancing Climate Prediction and is a German research initiative. Range-height indicator (RHI) scans of the UHOH DIAL show the water vapor heterogeneity within a range of a few kilometers up to an altitude of 2 km and its impact on the formation of clouds at the top of the ABL. The uncertainty of the measured data was assessed for the first time by extending a technique to scanning data, which was formerly applied to vertical time series. Typically, the accuracy of the DIAL measurements is between 0.5 and 0.8 g m-3 (or < 6 %) within the ABL even during daytime. This allows for performing a RHI scan from the surface to an elevation angle of 90° within 10 min. In summer 2014, the UHOH DIAL participated in the Surface Atmosphere Boundary Layer Exchange (SABLE) campaign in southwestern Germany. Conical volume scans were made which reveal multiple water vapor layers in three dimensions. Differences in their heights in different directions can be attributed to different surface elevation. With low-elevation scans in the surface layer, the humidity profiles and gradients can be related to different land cover such as maize, grassland, and forest as well as different surface layer
Quasi 3-D measurements of turbulence structure in horizontal air-water bubbly flow
International Nuclear Information System (INIS)
Quasi 3-D measurements of the turbulence structure of air-water bubbly flow in a horizontal tube with 35 mm i.d. are undertaken with two TSI 'X''-type hot-film probes. The turbulent fluctuations, uf,vf,wf, in axial, radial and circumferential directions, respectively, and Reynolds tresses -UV-bar and -u w-bar are obtained. It is found that in the lower portion of the tube, the profiles of turbulent fluctuation and Reynolds tress resemble those of single phase flow; whereas in the upper portion of he tube, where the bubble population is high, the turbulence, especially the circumferential fluctuation wf, is substantially enhanced, and the radial turbulence assumes highest value in the radial position -0.7< r/R<0.5. The magnitudes of Reynolds stresses -u w-bar and -UV-bar in our measurements are in the same level except in the lower portion of the tube where -u w-bar assumes a value close to zero as is the case in single phase flow and vertical air-water bubbly flow
Water exchange of Oeregrundsgrepen. A baroclinic 3D-model study
International Nuclear Information System (INIS)
Hypothetically transport of radionuclides from the SFR repository for low and medium active wastes could be mediated by natural water circulation within receiving coastal basins. In this context a basic equation, free surface 3D-model has been used to compute the water exchange of the Oeregrundsgrepen bay-like area for a representative full year cycle. This has been achieved in two steps in order to provide coherent densimetric and sea level elevation boundary data relative to the adjacent Baltic coastal water. Weather data from 1992 were chosen. The focus is placed entirely on water exchange aspects with no consideration of what the water parcels may contain. Earlier model and measurement programs have also been reviewed. The first phase consisted of running a 3D-model encompassing the entire Baltic Sea. This model resolves the Baltic horizontally in five by five nautical miles (5x5). This model was driven by gridded (approx. 20x20) synoptic weather data with geostrophic wind and the varying density and sea level elevation on the Kattegat border. Freshwater discharge from the major rivers along the Baltic coastline was also taken into account. Initial data prior to December 1991 have been assessed from the available, but relatively scarce, salinity and temperature profile measurements in the Baltic. The time step was 2 hours. The relevant boundary data in the vicinity of the Oeregrundsgrepen area were saved after one full-year cycle of simulation. The second phase consisted of running a local model over the Oeregrundsgrepen with a higher horizontal grid resolution consisting of a 0.1x0.1 grid. This model was driven by the same weather data, combined with the saved densimetric and sea level elevation boundary data that were produced by the Baltic model with the coarser grid. This procedure applies both for the wide northern and the narrow southern interface. The transference of boundary data necessitated development of an appropriate interpolation scheme. This
Quasi 3D modelling of water flow in the sandy soil
Rezaei, Meisam; Seuntjens, Piet; Joris, Ingeborg; Boënne, Wesley; De Pue, Jan; Cornelis, Wim
2016-04-01
Monitoring and modeling tools may improve irrigation strategies in precision agriculture. Spatial interpolation is required for analyzing the effects of soil hydraulic parameters, soil layer thickness and groundwater level on irrigation management using hydrological models at field scale. We used non-invasive soil sensor, a crop growth (LINGRA-N) and a soil hydrological model (Hydrus-1D) to predict soil-water content fluctuations and crop yield in a heterogeneous sandy grassland soil under supplementary irrigation. In the first step, the sensitivity of the soil hydrological model to hydraulic parameters, water stress, crop yield and lower boundary conditions was assessed after integrating models at one soil column. Free drainage and incremental constant head conditions were implemented in a lower boundary sensitivity analysis. In the second step, to predict Ks over the whole field, the spatial distributions of Ks and its relationship between co-located soil ECa measured by a DUALEM-21S sensor were investigated. Measured groundwater levels and soil layer thickness were interpolated using ordinary point kriging (OK) to a 0.5 by 0.5 m in aim of digital elevation maps. In the third step, a quasi 3D modelling approach was conducted using interpolated data as input hydraulic parameter, geometric information and boundary conditions in the integrated model. In addition, three different irrigation scenarios namely current, no irrigation and optimized irrigations were carried out to find out the most efficient irrigation regime. In this approach, detailed field scale maps of soil water stress, water storage and crop yield were produced at each specific time interval to evaluate the best and most efficient distribution of water using standard gun sprinkler irrigation. The results show that the effect of the position of the groundwater level was dominant in soil-water content prediction and associated water stress. A time-dependent sensitivity analysis of the hydraulic
FLOW3D model for below-core thermal mixing in the Oconee pressurised water reactor
International Nuclear Information System (INIS)
The computational fluid dynamics code FLOW3D is being used to develop a model for calculating the mixing of cold leg flows inside the vessel of a pressurised water reactor. To assess the capabilities of the model, a simulation was made of a thermal mixing test at the Oconee-1 Nuclear Station. The test measured temperature deviations at the core inlet produced by an imposed temperature difference between cold legs. Both the tests results and the simulation showed that most of the cold leg flows arrive unmixed at the core inlet. However, the simulation was unable to reproduce the asymmetric irregularities observed in the core inlet temperature distribution, and consequently the degree of mixing was under-predicted. Various sensitivity studies were carried out on the model, but these did not reveal the source of the asymmetry. It was therefore concluded that the asymmetry source was outside the scope of the model, but the model was nevertheless able to make plausible but pessimistic estimates of mixing. (author)
Pedersen, E B L; Angmo, D; Dam, H F; Thydén, K T S; Andersen, T R; Skjønsfjell, E T B; Krebs, F C; Holler, M; Diaz, A; Guizar-Sicairos, M; Breiby, D W; Andreasen, J W
2015-08-28
Organic solar cells have great potential for upscaling due to roll-to-roll processing and a low energy payback time, making them an attractive sustainable energy source for the future. Active layers coated with water-dispersible Landfester particles enable greater control of the layer formation and easier access to the printing industry, which has reduced the use of organic solvents since the 1980s. Through ptychographic X-ray computed tomography (PXCT), we image quantitatively a roll-to-roll coated photovoltaic tandem stack consisting of one bulk heterojunction active layer and one Landfester particle active layer. We extract the layered morphology with structural and density information including the porosity present in the various layers and the silver electrode with high resolution in 3D. The Landfester particle layer is found to have an undesired morphology with negatively correlated top- and bottom interfaces, wide thickness distribution and only partial surface coverage causing electric short circuits through the layer. By top coating a polymer material onto the Landfester nanoparticles we eliminate the structural defects of the layer such as porosity and roughness, and achieve the increased performance larger than 1 V expected for a tandem cell. This study highlights that quantitative imaging of weakly scattering stacked layers of organic materials has become feasible by PXCT, and that this information cannot be obtained by other methods. In the present study, this technique specifically reveals the need to improve the coatability and layer formation of Landfester nanoparticles, thus allowing improved solar cells to be produced. PMID:26220159
A Porous 3D Supramolecular Architecture of Cd(Ⅱ) Complex with Water Clusters as Pillars
Institute of Scientific and Technical Information of China (English)
YIN Pei-Xiu; LI Zhao-Ji; QIN Ye-Yan; CHENG Jian-Kai; ZHANG Lei; YAO Yuan-Gen
2008-01-01
A supramolecular complex of Cd(Ⅱ) with 1D water tapes as pillars[Cd2(dpa)2(phen)2- (H2O)2]·6H2O 1 (H2dpa = diphenic acid, phen = phenanthroline), has been synthesized and characterized by elemental analysis, IR spectroscopy, and single-crystal X-ray diffraction analysis. The crystal is of triclinic, space group Pī with a = 9.7029(4), b = 11.9601(5), c = 12.1788(4) A, a = 71.6990(10), β = 71.8740(10), γ = 74.4680(10)°, V = 1252.39(8) A3 C52H48Cd2N4O16, Mr = 1209.76, Z = 1, Dc = 1.604 g/cm3,μ = 0.925 mm-1, F(000) = 612, R = 0.0679 and wR = 0.2514 for 3870 observed reflections (Ⅰ > 2σ(Ⅰ)). Two intramolecular Cd(Ⅱ) centers of this complex are encircled by two dpa2- ligands forming an 18-membered ring, which is further assembled into a pillared three-dimensional (3D) supramolecular architecture through the synergetic effect of intermolecular face-to-face π…π stacking and weak O-H…O hydrogen-bonding interactions. Moreover, this complex exhibits photoluminescence with the main emission bands located at about 456 nm upon excitation at 355 nm in the solid state at room temperature.
International Nuclear Information System (INIS)
JAC3D is a three-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equation. The method is implemented in a three-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. An eight-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic-plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere
Directory of Open Access Journals (Sweden)
Xichuan Lin
2013-01-01
Full Text Available This paper presents an improved modelling method for a water jet‐based multi‐propeller propulsion system. In our previous work, the modelling experiments were only carried out in 2D planes, whose experimental results had poor agreement when we wanted to control the propulsive forces in 3D space directly. This research extends the 2D modelling described in the authors’ previous work into 3D space. By doing this, the model could include 3D space information, which is more useful than that of 2D space. The effective propulsive forces and moments in 3D space can be obtained directly by synthesizing the propulsive vectors of propellers. For this purpose, a novel experimental mechanism was developed to achieve the proposed 3D modelling. This mechanism was designed with the mass distribution centred for the robot. By installing a six‐axis load‐cell sensor at the equivalent mass centre, we obtained the direct propulsive effect of the system for the robot. Also, in this paper, the orientation surface and propulsive surfaces are developed to provide the 3D information of the propulsive system. Experiments for each propeller were first carried out to establish the models. Then, further experiments were carried out with all of the propellers working together to validate the models. Finally, we compared the various experimental results with the simulation data. The utility of this modelling method is discussed at length.
Navon, M. I.; Stefanescu, R.; Fuelberg, H. E.; Marchand, M.
2012-12-01
NASA's launch of the GOES-R Lightning Mapper (GLM) in 2015 will provide continuous, full disc, high resolution total lightning (IC + CG) data. The data will be available at a horizontal resolution of approximately 9 km. Compared to other types of data, the assimilation of lightning data into operational numerical models has received relatively little attention. Previous efforts of lightning assimilation mostly have employed nudging. This paper will describe the implementation of 1D+3D/4D Var assimilation schemes of existing ground-based WTLN (Worldwide Total Lightning Network) lightning observations using non-linear observation operators in the incremental WRFDA system. To mimic the expected output of GLM, the WTLN data were used to generate lightning super-observations characterized by flash rates/81 km2/20 min. A major difficulty associated with variational approaches is the complexity of the observation operator that defines the model equivalent of lightning. We use Convective Available Potential Energy (CAPE) as a proxy between lightning data and model variables. This operator is highly nonlinear. Marecal and Mahfouf (2003) have shown that nonlinearities can prevent direct assimilation of rainfall rates in the ECMWF 4D-VAR (using the incremental formulation proposed by Courtier et al. (1994)) from being successful. Using data from the 2011 Tuscaloosa, AL tornado outbreak, we have proved that the direct assimilation of lightning data into the WRF 3D/4D - Var systems is limited due to this incremental approach. Severe threshold limits must be imposed on the innovation vectors to obtain an improved analysis. We have implemented 1D+3D/4D Var schemes to assimilate lightning observations into the WRF model. Their use avoids innovation vector constrains from preventing the inclusion of a greater number of lightning observations Their use also minimizes the problem that nonlinearities in the moist convective scheme can introduce discontinuities in the cost function
Feasibility of RACT for 3D dose measurement and range verification in a water phantom
Energy Technology Data Exchange (ETDEWEB)
Alsanea, Fahed [School of Health Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, Indiana 47907-2051 (United States); Moskvin, Vadim [Radiation Oncology, Indiana University School of Medicine, 535 Barnhill Drive, RT 041, Indianapolis, Indiana 46202-5289 (United States); Stantz, Keith M., E-mail: kstantz@purdue.edu [School of Health Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, Indiana 47907-2051 and Radiology and Imaging Sciences, Indiana University School of Medicine, 950 West Walnut Street, Indianapolis, Indiana 46202-5289 (United States)
2015-02-15
Purpose: The objective of this study is to establish the feasibility of using radiation-induced acoustics to measure the range and Bragg peak dose from a pulsed proton beam. Simulation studies implementing a prototype scanner design based on computed tomographic methods were performed to investigate the sensitivity to proton range and integral dose. Methods: Derived from thermodynamic wave equation, the pressure signals generated from the dose deposited from a pulsed proton beam with a 1 cm lateral beam width and a range of 16, 20, and 27 cm in water using Monte Carlo methods were simulated. The resulting dosimetric images were reconstructed implementing a 3D filtered backprojection algorithm and the pressure signals acquired from a 71-transducer array with a cylindrical geometry (30 × 40 cm) rotated over 2π about its central axis. Dependencies on the detector bandwidth and proton beam pulse width were performed, after which, different noise levels were added to the detector signals (using 1 μs pulse width and a 0.5 MHz cutoff frequency/hydrophone) to investigate the statistical and systematic errors in the proton range (at 20 cm) and Bragg peak dose (of 1 cGy). Results: The reconstructed radioacoustic computed tomographic image intensity was shown to be linearly correlated to the dose within the Bragg peak. And, based on noise dependent studies, a detector sensitivity of 38 mPa was necessary to determine the proton range to within 1.0 mm (full-width at half-maximum) (systematic error < 150 μm) for a 1 cGy Bragg peak dose, where the integral dose within the Bragg peak was measured to within 2%. For existing hydrophone detector sensitivities, a Bragg peak dose of 1.6 cGy is possible. Conclusions: This study demonstrates that computed tomographic scanner based on ionizing radiation-induced acoustics can be used to verify dose distribution and proton range with centi-Gray sensitivity. Realizing this technology into the clinic has the potential to significantly
Feasibility of RACT for 3D dose measurement and range verification in a water phantom
International Nuclear Information System (INIS)
Purpose: The objective of this study is to establish the feasibility of using radiation-induced acoustics to measure the range and Bragg peak dose from a pulsed proton beam. Simulation studies implementing a prototype scanner design based on computed tomographic methods were performed to investigate the sensitivity to proton range and integral dose. Methods: Derived from thermodynamic wave equation, the pressure signals generated from the dose deposited from a pulsed proton beam with a 1 cm lateral beam width and a range of 16, 20, and 27 cm in water using Monte Carlo methods were simulated. The resulting dosimetric images were reconstructed implementing a 3D filtered backprojection algorithm and the pressure signals acquired from a 71-transducer array with a cylindrical geometry (30 × 40 cm) rotated over 2π about its central axis. Dependencies on the detector bandwidth and proton beam pulse width were performed, after which, different noise levels were added to the detector signals (using 1 μs pulse width and a 0.5 MHz cutoff frequency/hydrophone) to investigate the statistical and systematic errors in the proton range (at 20 cm) and Bragg peak dose (of 1 cGy). Results: The reconstructed radioacoustic computed tomographic image intensity was shown to be linearly correlated to the dose within the Bragg peak. And, based on noise dependent studies, a detector sensitivity of 38 mPa was necessary to determine the proton range to within 1.0 mm (full-width at half-maximum) (systematic error < 150 μm) for a 1 cGy Bragg peak dose, where the integral dose within the Bragg peak was measured to within 2%. For existing hydrophone detector sensitivities, a Bragg peak dose of 1.6 cGy is possible. Conclusions: This study demonstrates that computed tomographic scanner based on ionizing radiation-induced acoustics can be used to verify dose distribution and proton range with centi-Gray sensitivity. Realizing this technology into the clinic has the potential to significantly
DEFF Research Database (Denmark)
Mohanty, Soumyaranjan; Larsen, Layla Bashir; Trifol Guzman, Jon;
2015-01-01
One of the major challenges in producing large scale engineered tissue is the lack of ability to create large highly perfused scaffolds in which cells can grow at a high cell density and viability. Here, we explore 3D printed polyvinyl alcohol (PVA) as a sacrificial mould in a polymer casting...
DEFF Research Database (Denmark)
Lu, Kaiyuan; Rasmussen, Peter Omand; Ritchie, Ewen
2011-01-01
introduced in this paper is much easier to use and is computational faster. This method is derived based on the “apparent energy.” Calculation of the nonlinear flux linkage from this energy avoids numerical differentiation, which is sensitive to numerical errors but is required in the traditional energy...
Nonlinear 3-D Microwave Imaging for Breast-Cancer Screening: Log, Phase, and Log-Phase Formulation
DEFF Research Database (Denmark)
Jensen, Peter Damsgaard; Rubæk, Tonny; Mohr, Johan Jacob;
2011-01-01
The imaging algorithm used in the 3-D microwave imaging system for breast cancer screening, currently being developed at the Technical University of Denmark, is based on an iterative Newton-type algorithm. In this algorithm, the distribution of the electromagnetic constitutive parameters is updated...... their amplitudes and their unwrapped phases. In this paper, simplifications of the log-phase formulation are proposed, namely the log formulation, in which only the logarithm of the amplitudes are used, and the phase formulation, in which only the unwrapped phases are used. These formulations allow for...
Ngirmang, Gregory K; Feister, Scott; Morrison, John T; Chowdhury, Enam A; Frische, Kyle; Roquemore, W M
2015-01-01
We present 3D Particle-in-Cell (PIC) modeling of an ultra-intense laser experiment by the Extreme Light group at the Air Force Research Laboratory (AFRL) using the PIC code LSP. This is the first time PIC simulations have been performed in 3D for this experiment which involves an ultra-intense, short-pulse (30 fs) laser interacting with a water jet target at normal incidence. These 3D PIC simulation results are compared to results from 2D(3$v$) PIC simulations for both $5.4\\cdot10^{17}$ W cm$^{-2}$ and $3\\cdot10^{18}$ W cm$^{-2}$ intensities. Comparing the 2D(3$v$) and 3D simulation results, the laser-energy-to-ejected-electron-energy conversion efficiencies were comparable, but the angular distribution of ejected electrons show interesting differences with qualitative differences at higher intensity. An analytic plane-wave model is provided that provides some explanation for the angular distribution and energies of ejected electrons in the 2D(3$v$) simulations. We also performed a 3D simulation with circular...
International Nuclear Information System (INIS)
This paper represents a three dimensional nonlinear nodal method to solve the coupled three transverse integrated neutron diffusion equations simultaneously in the one-node kernel. The three transverse integrated neutron diffusion equations are coupled through the transverse leakage terms. Given the incoming partial boundary conditions specified at six node surfaces, the node average fluxes and the surface outgoing currents are solved for at the same time. This method will be useful for the local internal boundary problem or the global-local iteration method. The proposed method is derived representing the intra node neutron distribution with a nodal expansion solution. To verify the accuracy and computing time, it is implied in the MASTER code and tested for the initial steady state of NEACRP A1 problem. The result shows that the same solution with those of the nodal expansion method and nonlinear nodal expansion method
Efficient computation of steady, 3D water-wave patterns, application to hovercraft-type flows
Lewis, M. R.; Koren, Barry
2002-01-01
Numerical methods for the computation of stationary free surfaces is the subject of much current research in computational engineering. The present report is directed towards free surfaces in maritime engineering. Of interest here are the long steady waves generated by hovercraft and ships, the gravity waves. In the present report an existing 2D iterative method for the computation of stationary gravity-wave solutions is extended to 3D, numerically investigated, and improved. The method emplo...
Directory of Open Access Journals (Sweden)
Fan Yuxin
2014-12-01
Full Text Available A fluid–structure interaction method combining a nonlinear finite element algorithm with a preconditioning finite volume method is proposed in this paper to simulate parachute transient dynamics. This method uses a three-dimensional membrane–cable fabric model to represent a parachute system at a highly folded configuration. The large shape change during parachute inflation is computed by the nonlinear Newton–Raphson iteration and the linear system equation is solved by the generalized minimal residual (GMRES method. A membrane wrinkling algorithm is also utilized to evaluate the special uniaxial tension state of membrane elements on the parachute canopy. In order to avoid large time expenses during structural nonlinear iteration, the implicit Hilber–Hughes–Taylor (HHT time integration method is employed. For the fluid dynamic simulations, the Roe and HLLC (Harten–Lax–van Leer contact scheme has been modified and extended to compute flow problems at all speeds. The lower–upper symmetric Gauss–Seidel (LU-SGS approximate factorization is applied to accelerate the numerical convergence speed. Finally, the test model of a highly folded C-9 parachute is simulated at a prescribed speed and the results show similar characteristics compared with experimental results and previous literature.
Institute of Scientific and Technical Information of China (English)
Fan Yuxin; Xia Jian
2014-01-01
A fluid–structure interaction method combining a nonlinear finite element algorithm with a preconditioning finite volume method is proposed in this paper to simulate parachute tran-sient dynamics. This method uses a three-dimensional membrane–cable fabric model to represent a parachute system at a highly folded configuration. The large shape change during parachute infla-tion is computed by the nonlinear Newton–Raphson iteration and the linear system equation is solved by the generalized minimal residual (GMRES) method. A membrane wrinkling algorithm is also utilized to evaluate the special uniaxial tension state of membrane elements on the parachute canopy. In order to avoid large time expenses during structural nonlinear iteration, the implicit Hil-ber–Hughes–Taylor (HHT) time integration method is employed. For the fluid dynamic simula-tions, the Roe and HLLC (Harten–Lax–van Leer contact) scheme has been modified and extended to compute flow problems at all speeds. The lower–upper symmetric Gauss–Seidel (LU-SGS) approximate factorization is applied to accelerate the numerical convergence speed. Finally, the test model of a highly folded C-9 parachute is simulated at a prescribed speed and the results show similar characteristics compared with experimental results and previous literature.
Zhang, Xing; Liu, Yang; Kang, Zhenhui
2014-03-26
Plasmonic photoelectrochemical (PEC) water splitting is very promising in the conversion of abundant solar energy into chemical energy. However, the solar-to-hydrogen efficiencies reported so far are still too low for practical use, which can be improved by optimizing the design and synthesis of individual blocks (i. e., the compositions, sizes, shapes of the metal and the coupling semiconductors) and the assembly of these blocks into targeted three-dimensional (3D) structures. Here, we constructed a composite plasmonic metal/semiconductor photoanode by decorating gold nanoparticles (Au NPs) on 3D branched ZnO nanowire arrays (B-ZnO NWs) through a series of simple solution chemical routes. The 3D ordered Au/B-ZnO NWs photoanodes exhibited excellent PEC activities in both ultraviolet and visible region. The improved photoactivities in visible region were demonstrated to be caused by the surface-plasmon-resonance effect of Au NPs. The photoconversion efficiency of Au/B-ZnO NWs photoanode reached 0.52% under simulated sunlight illumination. This is a high value of solar-to-hydrogen efficiencies reported till nowadays for plasmonic PEC water splitting, which was mainly benefit from the extensive metal/semiconductor interfaces for efficient extraction of hot electron from Au NPs and excellent charge-carries collection efficiency of the 3D ordered Au/B-ZnO NWs photoelectrode. PMID:24598779
Hung, Kun-Che; Tseng, Ching-Shiow; Dai, Lien-Guo; Hsu, Shan-hui
2016-03-01
Conventional 3D printing may not readily incorporate bioactive ingredients for controlled release because the process often involves the use of heat, organic solvent, or crosslinkers that reduce the bioactivity of the ingredients. Water-based 3D printing materials with controlled bioactivity for customized cartilage tissue engineering is developed in this study. The printing ink contains the water dispersion of synthetic biodegradable polyurethane (PU) elastic nanoparticles, hyaluronan, and bioactive ingredients TGFβ3 or a small molecule drug Y27632 to replace TGFβ3. Compliant scaffolds are printed from the ink at low temperature. These scaffolds promote the self-aggregation of mesenchymal stem cells (MSCs) and, with timely release of the bioactive ingredients, induce the chondrogenic differentiation of MSCs and produce matrix for cartilage repair. Moreover, the growth factor-free controlled release design may prevent cartilage hypertrophy. Rabbit knee implantation supports the potential of the novel 3D printing scaffolds in cartilage regeneration. We consider that the 3D printing composite scaffolds with controlled release bioactivity may have potential in customized tissue engineering. PMID:26774563
Modeling seismic wave propagation and amplification in 1D/2D/3D linear and nonlinear unbounded media
Semblat, Jean-François
2011-01-01
To analyze seismic wave propagation in geological structures, it is possible to consider various numerical approaches: the finite difference method, the spectral element method, the boundary element method, the finite element method, the finite volume method, etc. All these methods have various advantages and drawbacks. The amplification of seismic waves in surface soil layers is mainly due to the velocity contrast between these layers and, possibly, to topographic effects around crests and hills. The influence of the geometry of alluvial basins on the amplification process is also know to be large. Nevertheless, strong heterogeneities and complex geometries are not easy to take into account with all numerical methods. 2D/3D models are needed in many situations and the efficiency/accuracy of the numerical methods in such cases is in question. Furthermore, the radiation conditions at infinity are not easy to handle with finite differences or finite/spectral elements whereas it is explicitely accounted in the B...
Mural, Prasanna Kumar S.; Jain, Shubham; Kumar, Sachin; Madras, Giridhar; Bose, Suryasarathi
2016-04-01
3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and hot-pressed samples revealed a clear picture as to how the morphology develops and coarsens over a function of time during post-processing operations like compression molding. The coarsening of PE/PEO blends was traced using X-ray micro-computed tomography and scanning electron microscopy (SEM) of annealed blends at different times. It is now understood from X-ray micro-computed tomography that by the addition of a compatibilizer (here lightly maleated PE), a stable morphology can be visualized in 3D. In order to anchor biocidal graphene oxide sheets onto these 3D porous membranes, the PE membranes were chemically modified with acid/ethylene diamine treatment to anchor the GO sheets which were further confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and surface Raman mapping. The transport properties through the membrane clearly reveal unimpeded permeation of water which suggests that anchoring GO on to the membranes does not clog the pores. Antibacterial studies through the direct contact of bacteria with GO anchored PE membranes resulted in 99% of bacterial inactivation. The possible bacterial inactivation through physical disruption of the bacterial cell wall and/or reactive oxygen species (ROS) is discussed herein. Thus this study opens new avenues in designing polyolefin based antibacterial 3D porous membranes for water purification.3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and
DEFF Research Database (Denmark)
Pedersen, Emil Bøje Lind; Angmo, Dechan; Dam, Henrik Friis;
2015-01-01
particle active layer. We extract the layered morphology with structural and density information including the porosity present in the various layers and the silver electrode with high resolution in 3D. The Landfester particle layer is found to have an undesired morphology with negatively correlated top...... easier access to the printing industry, which has reduced the use of organic solvents since the 1980s. Through ptychographic X-ray computed tomography (PXCT), we image quantitatively a roll-to-roll coated photovoltaic tandem stack consisting of one bulk heterojunction active layer and one Landfester...
Jiang, Bo; Cao, Long-Ji; Tu, Shu-Jiang; Zheng, Wen-Rui; Yu, Hai-Zhu
2009-01-01
A highly diastereoselective domino reaction of 2,6-diaminopyrimidine-4-one with structurally diverse aryl aldehydes and various barbituric acids in water under microwave irradiation is described. The products are 6-spiro-substituted pyrido[2,3-d]pyrimidines with high diastereoselectivities (up to 99: 1) in which the major diastereomer bears a cis relationship between substituents at the 5- and 7-positions. Furthermore, the mechanism for diastereoselectivity was confirmed by DFT (B3LYP) calculations. PMID:19537742
Wang, Rui; Tan, Baolin
2013-01-01
A 3-D coronal magnetic field is reconstructed for NOAA 11158 on Feb 14, 2011. A GPU-accelerated direct boundary integral equation (DBIE) method is implemented. This is about 1000 times faster than the original DBIE used on solar NLFFF modeling. Using the SDO/HMI vector magnetogram as the bottom boundary condition, the reconstructed magnetic field lines are compared with the projected EUV loop structures from different views three-dimensionally by SDO/AIA and STEREO A/B spacecraft simultaneously for the first time. They show very good agreement so that the topological configurations of the magnetic fields can be analyzed, thus its role in the flare process of the active region can be better understood. A quantitative comparison with some stereoscopically reconstructed coronal loops shows that the present averaged misalignment angles are at the same order as the state-of-the-art results obtained with reconstructed coronal loops as prescribed conditions and better than other NLFFF methods. It is found that the o...
International Nuclear Information System (INIS)
The Supercritical-Water-Cooled Reactor (SCWR) is a high-temperature, high-pressure water cooled reactor that operates above the critical pressure of water. In order to perform efficiently the thermal design of the SCWR, it is important to assess the thermal-hydraulics in rod bundles of the core. The experimental conditions of mockup tests, however, have to be limited because of technical and financial reasons. Therefore, it is required to establish an analytical design technique which can extrapolate experimental data to various design conditions of the reactor. JAEA (Japan Atomic Energy Agency) have been improved the three-dimensional two-fluid model analysis code ACE-3D, which has been developed originally for the two-phase flow thermal hydraulics of light water reactors, to handle the thermal hydraulic properties of water at supercritical region. In the present paper, heat transfer experiments of supercritical water flowing in a vertical annular channel around a heater pin, which simulates the core flow around a fuel rod, were analyzed with the improved ACE-3D to assess the prediction performance of the code. As a result, it was confirmed that the calculated wall surface temperature agreed with the measured results and the code is applicable to prediction of heat transfer of supercritical water in the system that simulates the SCWR core. (author)
International Nuclear Information System (INIS)
Validation of the TRACR3D code in a one-dimensional form was obtained for flow of soil water in three experiments. In the first experiment, a pulse of water entered a crushed-tuff soil and initially moved under conditions of saturated flow, quickly followed by unsaturated flow. In the second experiment, steady-state unsaturated flow took place. In the final experiment, two slugs of water entered crushed tuff under field conditions. In all three experiments, experimentally measured data for volumetric water content agreed, within experimental errors, with the volumetric water content predicted by the code simulations. The experiments and simulations indicated the need for accurate knowledge of boundary and initial conditions, amount and duration of moisture input, and relevant material properties as input into the computer code. During the validation experiments, limitations on monitoring of water movement in waste burial sites were also noted. 5 references, 34 figures, 9 tables
Hervas, Jaime Rubio; Reyhanoglu, Mahmut; Tang, Hui
2014-12-01
This paper presents a motion tracking and control system for automatically landing Unmanned Aerial Vehicles (UAVs) on an oscillating platform using Laser Radar (LADAR) observations. The system itself is assumed to be mounted on a ship deck. A full nonlinear mathematical model is first introduced for the UAV. The ship motion is characterized by a Fourier transform based method which includes a realistic characterization of the sea waves. LADAR observation models are introduced and an algorithm to process those observations for yielding the relative state between the vessel and the UAV is presented, from which the UAV's state relative to an inertial frame can be obtained and used for feedback purposes. A sliding mode control algorithm is derived for tracking a landing trajectory defined by a set of desired waypoints. An extended Kalman filter (EKF) is proposed to account for process and observation noises in the design of a state estimator. The effectiveness of the control algorithm is illustrated through a simulation example.
DEFF Research Database (Denmark)
Germaschewski, K.; Grauer, R.; Bergé, L.;
2001-01-01
compression and are shown to split into two symmetric peaks. These peaks can sequentially decay into smaller-scale structures developing near the front edge of a shock, as long as their individual power remains above threshold, until the final dispersion of the wave. Their phase and amplitude dynamics......The self-focusing and splitting mechanisms of waves governed by the cubic nonlinear Schrodinger equation with anisotropic dispersion are investigated numerically by means of an adaptive mesh refinement code. Wave-packets having a power far above the self-focusing threshold undergo a transversal...... are detailed and compared with those characterizing collapsing objects with no anisotropic dispersion. Their ability to mutually coalesce is also analyzed and modeled from the interaction of Gaussian components. Next, bunch-type and snake-type instabilities, which result from periodic modulations driven...
Suzuki, Y.; Geiger, J.
2016-06-01
The impact of the 3D equilibrium response on the plasma edge topology is studied. In Wendelstein 7-X, the island divertor concept is used to assess scenarios for quasi-steady-state operation. However, the boundary islands necessary for the island divertor are strongly susceptible to plasma beta and toroidal current density effects because of the low magnetic shear. The edge magnetic topology for quasi-steady-state operation scenarios is calculated with the HINT-code to study the accompanying changes of the magnetic field structures. Two magnetic configurations have been selected, which had been investigated in self consistent neoclassical transport simulations for low bootstrap current but which use the alternative natural island chains to the standard iota value of 1 (ι b = 5/5, periodicity), namely, at high-iota (ι b = 5/4) and at low-iota (ι b = 5/6). For the high-iota configuration, the boundary islands are robust but the stochasticity around them is enhanced with beta. The addition of toroidal current densities enhances the stochasticity further. The increased stochasticity changes the footprints on in-vessel components with a direct impact on the corresponding heat loads. In the low-iota configuration the boundary islands used for the island divertor are dislocated radially due to the low shear and even show healing effects, i.e. the island width vanishes. In the latter case the plasma changes from divertor to limiter operation. To realize the predicted high-performance quasi-steady-state operation of the transport simulations, further adjustments of the magnetic configuration may be necessary to achieve a proper divertor compatibility of the scenarios.
Vessel-wall imaging and quantification of flow-mediated dilation using water-selective 3D SSFP-echo
Langham, Michael C; Li, Cheng; Englund, Erin K; Chirico, Erica N; Mohler, Emile R.; Floyd, Thomas F.; Wehrli, Felix W.
2013-01-01
Background To introduce a new, efficient method for vessel-wall imaging of carotid and peripheral arteries by means of a flow-sensitive 3D water-selective SSFP-echo pulse sequence. Methods Periodic applications of RF pulses will generate two transverse steady states, immediately after and before an RF pulse; the latter being referred to as the SSFP-echo. The SSFP-echo signal for water protons in blood is spoiled as a result of moving spins losing phase coherence in the presence of a gradient ...
Energy Technology Data Exchange (ETDEWEB)
Hervas, Jaime Rubio; Tang, Hui [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798 (Singapore); Reyhanoglu, Mahmut [Physical Sciences Department, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114 (United States)
2014-12-10
This paper presents a motion tracking and control system for automatically landing Unmanned Aerial Vehicles (UAVs) on an oscillating platform using Laser Radar (LADAR) observations. The system itself is assumed to be mounted on a ship deck. A full nonlinear mathematical model is first introduced for the UAV. The ship motion is characterized by a Fourier transform based method which includes a realistic characterization of the sea waves. LADAR observation models are introduced and an algorithm to process those observations for yielding the relative state between the vessel and the UAV is presented, from which the UAV's state relative to an inertial frame can be obtained and used for feedback purposes. A sliding mode control algorithm is derived for tracking a landing trajectory defined by a set of desired waypoints. An extended Kalman filter (EKF) is proposed to account for process and observation noises in the design of a state estimator. The effectiveness of the control algorithm is illustrated through a simulation example.
International Nuclear Information System (INIS)
This paper presents a motion tracking and control system for automatically landing Unmanned Aerial Vehicles (UAVs) on an oscillating platform using Laser Radar (LADAR) observations. The system itself is assumed to be mounted on a ship deck. A full nonlinear mathematical model is first introduced for the UAV. The ship motion is characterized by a Fourier transform based method which includes a realistic characterization of the sea waves. LADAR observation models are introduced and an algorithm to process those observations for yielding the relative state between the vessel and the UAV is presented, from which the UAV's state relative to an inertial frame can be obtained and used for feedback purposes. A sliding mode control algorithm is derived for tracking a landing trajectory defined by a set of desired waypoints. An extended Kalman filter (EKF) is proposed to account for process and observation noises in the design of a state estimator. The effectiveness of the control algorithm is illustrated through a simulation example
International Nuclear Information System (INIS)
This report constitutes the user's manual for DCM3D. DCM3D is a computer code for solving three-dimensional, ground-water flow problems in variably saturated, fractured porous media. The code is based on a dual-continuum model with porous media comprising one continuum and fractures comprising the other. The continua are connected by a transfer term that depends on the unsaturated permeability of the porous medium. An integrated finite-difference scheme is used to discretize the governing equations in space. The time-dependent term is allowed to remain continuous. The resulting set of ordinary differential equations (ODE's) is solved with a general ODE solver, LSODES. The code is capable of handling transient, spatially dependent source terms and boundary conditions. The boundary conditions can either prescribed head or prescribed flux. 24 refs., 22 figs., 5 tabs
Research on the Inner Water Flow Field in a Hydrocyclone by the Method of 3D Numerical Simulation
Directory of Open Access Journals (Sweden)
Hui Li
2013-01-01
Full Text Available The inner water flow field in a hydrocyclone was simulated by the software of computational fluid dynamics-FLUENT, using RSM turbulent model. The air core, 3D velocity field distribution and pressure field distribution were simulated and contrasted with experimental results. The results indicated that the air core was through from the inlet to the outlet. The simulated 3D velocity field distribution was consistent with the results obtained by the experiments. The axial symmetry of pressure field distribution was quite good and the pressure gradient was very large. All these results tested the reliability of the method of numerical simulation and provided a reference for the further research of solid-liquid separation and the optimizing design of the hydrocyclone.
Numerical Investigation of Nozzle Geometry Effect on Turbulent 3-D Water Offset Jet Flows
Directory of Open Access Journals (Sweden)
Negar Mohammad Aliha
2016-01-01
Full Text Available Using the Yang-Shih low Reynolds k-ε turbulence model, the mean flow field of a turbulent offset jet issuing from a long circular pipe was numerically investigated. The experimental results were used to verify the numerical results such as decay rate of streamwise velocity, locus of maximum streamwise velocity, jet half width in the wall normal and lateral directions, and jet velocity profiles. The present study focused attention on the influence of nozzle geometry on the evolution of a 3D incompressible turbulent offset jet. Circular, square-shaped, and rectangular nozzles were considered here. A comparison between the mean flow characteristics of offset jets issuing from circular and square-shaped nozzles, which had equal area and mean exit velocity, were made numerically. Moreover, the effect of aspect ratio of rectangular nozzles on the main features of the flow was investigated. It was shown that the spread rate, flow entrainment, and mixing rate of an offset jet issuing from circular nozzle are lower than square-shaped one. In addition, it was demonstrated that the aspect ratio of the rectangular nozzles only affects the mean flow field of the offset jet in the near field (up to 15 times greater than equivalent diameter of the nozzles. Furthermore, other parameters including the wall shear stress, flow entrainment and the length of potential core were also investigated.
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Through the study of mutual process between groundwater systems and eco-environmental water demand, the eco-environmental water demand is brought into groundwater systems model as the important water consumption item and unification of groundwater's economic, environmental and ecological functions were taken into account. Based on eco-environmental water demand at Da'an in Jilin province, a three-dimensional simulation and optimized management model of groundwater systems was established. All water balance components of groundwater systems in 1998 and 1999 were simulated with this model and the best optimal exploitation scheme of groundwater systems in 2000 was determined, so that groundwater resource was efficiently utilized and good economic, ecologic and social benefits were obtained.
Späth, F.; A. Behrendt; Muppa, S. K.; S. Metzendorf; A. Riede; V. Wulfmeyer
2016-01-01
The scanning differential absorption lidar (DIAL) of the University of Hohenheim (UHOH) determines fields of the atmospheric water vapor number density with a temporal resolution of a few seconds and spatial resolution of up to a few tens of meters. We present three case studies which show that this high resolution combined with 2- and 3-dimensional scans allows for new insights in the 3-dimensional structure of the water vapor field in the atmospheric boundary layer (ABL). In spring 2013, th...
International Nuclear Information System (INIS)
In order to design and define appropriate dimensions for a supercritical oxidation reactor, a comparative 2D and 3D simulation of the fluid dynamics and heat transfer during an oxidation process has been performed. The solver used is a commercial code, Fluent 6.2 (R). The turbulent flow field in the reactor, created by the stirrer, is taken into account with a k-omega model and a swirl imposed to the fluid. In the 3D case the rotation of the stirrer can be modelled using the sliding mesh model and the moving reference frame model. This work allows comparing 2D and 3D velocity and heat transfer calculations. The predicted values (mainly species concentrations and temperature profiles) are of the same order in both cases. The reactivity of the system is taken into account with a classical Eddy Dissipation Concept combustion model. Comparisons with experimental temperature measurements validate the ability of the CFD modelling to simulate the supercritical water oxidation reactive medium. Results indicate that the flow can be considered as plug flow-like and that heat transfer is strongly enhanced by the stirring. (authors)
A molecular dynamics implementation of the 3D Mercedes-Benz water model
Hynninen, T.; Dias, C. L.; Mkrtchyan, A.; Heinonen, V.; Karttunen, M.; Foster, A. S.; Ala-Nissila, T.
2012-02-01
The three-dimensional Mercedes-Benz model was recently introduced to account for the structural and thermodynamic properties of water. It treats water molecules as point-like particles with four dangling bonds in tetrahedral coordination, representing H-bonds of water. Its conceptual simplicity renders the model attractive in studies where complex behaviors emerge from H-bond interactions in water, e.g., the hydrophobic effect. A molecular dynamics (MD) implementation of the model is non-trivial and we outline here the mathematical framework of its force-field. Useful routines written in modern Fortran are also provided. This open source code is free and can easily be modified to account for different physical context. The provided code allows both serial and MPI-parallelized execution. Program summaryProgram title: CASHEW (Coarse Approach Simulator for Hydrogen-bonding Effects in Water) Catalogue identifier: AEKM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKM_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 20 501 No. of bytes in distributed program, including test data, etc.: 551 044 Distribution format: tar.gz Programming language: Fortran 90 Computer: Program has been tested on desktop workstations and a Cray XT4/XT5 supercomputer. Operating system: Linux, Unix, OS X Has the code been vectorized or parallelized?: The code has been parallelized using MPI. RAM: Depends on size of system, about 5 MB for 1500 molecules. Classification: 7.7 External routines: A random number generator, Mersenne Twister ( http://www.math.sci.hiroshima-u.ac.jp/m-mat/MT/VERSIONS/FORTRAN/mt95.f90), is used. A copy of the code is included in the distribution. Nature of problem: Molecular dynamics simulation of a new geometric water model. Solution method: New force-field for
Yu, Yu; Li, Pei; Wang, Xiaofang; Gao, Wenyu; Shen, Zongxu; Zhu, Yanan; Yang, Shuliang; Song, Weiguo; Ding, Kejian
2016-05-01
Pursuit of highly active, stable and low-cost electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is the key point for large-scale water splitting. A vanadium nanobelts coating on a nickel foam (V/NF) is proposed as an excellent 3D bifunctional electrode for water electrolysis here, which exhibits high activities with overpotentials of 292 and 176 mV at 10 mA cm-2 for OER and HER, respectively. When employed as a bifunctional electrocatalyst in an alkaline water electrolyzer, a cell voltage of 1.80 V was required to achieve 20 mA cm-2 with a slight increase during a 24 h durability test. The existence of the appropriate amount of nitrogen and oxygen elements in the surface region of vanadium nanobelts is regarded to be responsible for the electrocatalytic activity.Pursuit of highly active, stable and low-cost electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is the key point for large-scale water splitting. A vanadium nanobelts coating on a nickel foam (V/NF) is proposed as an excellent 3D bifunctional electrode for water electrolysis here, which exhibits high activities with overpotentials of 292 and 176 mV at 10 mA cm-2 for OER and HER, respectively. When employed as a bifunctional electrocatalyst in an alkaline water electrolyzer, a cell voltage of 1.80 V was required to achieve 20 mA cm-2 with a slight increase during a 24 h durability test. The existence of the appropriate amount of nitrogen and oxygen elements in the surface region of vanadium nanobelts is regarded to be responsible for the electrocatalytic activity. Electronic supplementary information (ESI) available: More SEM, TEM images, XRD patterns, LSV curves, XPS spectra. See DOI: 10.1039/c6nr02395a
Simulation and modelling of water spray in the 3D explosion simulation program FLACS
Dale, Elin Kristin
2004-01-01
In a gas processing plant and in offshore platforms a gas explosion could have serious consequences, and it is therefore essential to have mitigation systems that can prevent and/or reduce unwanted scenarios. One such mitigating technique that has proved to be effective is water spray and deluge systems. Since such systems often already are installed in most industries to use in a fire-situation, this has become an attractive method in fighting gas explosions. Experimental work has been done ...
Diagonally implicit Runge-Kutta methods for 3D shallow water applications
Houwen, van der, P.J.; Sommeijer, Ben
1999-01-01
We construct A-stable and L-stable diagonally implicit Runge-Kutta methods of which the diagonal vector in the Butcher matrix has a minimal maximum norm. If the implicit Runge-Kutta relations are iteratively solved by means of the approximately factorized Newton process, then such iterated Runge-Kutta methods are suitable methods for integrating shallow water problems in the sense that the stability boundary is relatively large and that the usually quite fine vertical resolution of the discre...
Integrating Sensors into a Marine Drone for Bathymetric 3D Surveys in Shallow Waters
Francesco Giordano; Gaia Mattei; Claudio Parente; Francesco Peluso; Raffaele Santamaria
2015-01-01
This paper demonstrates that accurate data concerning bathymetry as well as environmental conditions in shallow waters can be acquired using sensors that are integrated into the same marine vehicle. An open prototype of an unmanned surface vessel (USV) named MicroVeGA is described. The focus is on the main instruments installed on-board: a differential Global Position System (GPS) system and single beam echo sounder; inertial platform for attitude control; ultrasound obstacle-detection system...
Rona, Michael; Gasser, Guy; Negev, Ido; Pankratov, Irena; Elhanany, Sara; Lev, Ovadia; Gvirtzman, Haim
2014-05-01
Wastewater recharge facilities are often used as a final water treatment before the discharge to the sea or before water reclamation. These facilities are often located in active aquifers that supply drinking water. Thus, leakage from the water recharge facility and gradual expansion of the underground wastewater plume are of considerable health concern. Hydrological modeling of water recharge systems are widely used as operational and predictive tools. These models rely on distributed water head monitoring and at least one chemical or physical tracer to model solutes' transport. Refractory micropollutants have proven useful in qualitative identification of pollution leakages and for quantification of pollution to a specific site near water recharge facilities. However, their usefulness as tracers for hydrological modeling is still questionable. In this article, we describe a long term, 3-D hydraulic model of a large-scale wastewater effluents recharge system in which a combination of chloride and a refractory micropollutant, carbamazepine is used to trace the solute transport. The combination of the two tracers provides the model with the benefits of the high specificity of the carbamazepine and the extensive historic data base that is available for chloride. The model predicts westward expansion of the pollution plume, whereas a standing front is formed at the east. These trends can be confirmed by the time trace of the carbamazepine concentrations at specific locations. We show that the combination of two tracers accounts better (at least at some locations) for the evolution of the pollution plume than a model based on chloride or carbamazepine alone.
NETFLO, 3-D Steady-State Ground-Water Flow in Heterogeneous Medium
International Nuclear Information System (INIS)
Description of program or function: NETFLO simulates three-dimensional, ground-water flow in a heterogeneous medium idealized as a flow through an equivalent network of series and parallel flow members under steady-state flow conditions. The algorithm is based on the application of Darcy's law along each member and conservation of mass at each node. NETFLO determines the pressure at all nodes, and velocities and fluxes in all members, for all possible flow paths from a repository node to the discharge node, and the pertinent mean flow and transport characteristics along each path, for use as input to a one-dimensional nuclide transport program like GETOUT
Tools to Perform Local Dense 3D Reconstruction of Shallow Water Seabed ‡
Avanthey, Loïca; Beaudoin, Laurent; Gademer, Antoine; Roux, Michel
2016-01-01
Tasks such as distinguishing or identifying individual objects of interest require the production of dense local clouds at the scale of these individual objects of interest. Due to the physical and dynamic properties of an underwater environment, the usual dense matching algorithms must be rethought in order to be adaptive. These properties also imply that the scene must be observed at close range. Classic robotized acquisition systems are oversized for local studies in shallow water while the systematic acquisition of data is not guaranteed with divers. We address these two major issues through a multidisciplinary approach. To efficiently acquire on-demand stereoscopic pairs using simple logistics in small areas of shallow water, we devised an agile light-weight dedicated system which is easy to reproduce. To densely match two views in a reliable way, we devised a reconstruction algorithm that automatically accounts for the dynamics, variability and light absorption of the underwater environment. Field experiments in the Mediterranean Sea were used to assess the results. PMID:27196913
Tools to Perform Local Dense 3D Reconstruction of Shallow Water Seabed
Directory of Open Access Journals (Sweden)
Loïca Avanthey
2016-05-01
Full Text Available Tasks such as distinguishing or identifying individual objects of interest require the production of dense local clouds at the scale of these individual objects of interest. Due to the physical and dynamic properties of an underwater environment, the usual dense matching algorithms must be rethought in order to be adaptive. These properties also imply that the scene must be observed at close range. Classic robotized acquisition systems are oversized for local studies in shallow water while the systematic acquisition of data is not guaranteed with divers. We address these two major issues through a multidisciplinary approach. To efficiently acquire on-demand stereoscopic pairs using simple logistics in small areas of shallow water, we devised an agile light-weight dedicated system which is easy to reproduce. To densely match two views in a reliable way, we devised a reconstruction algorithm that automatically accounts for the dynamics, variability and light absorption of the underwater environment. Field experiments in the Mediterranean Sea were used to assess the results.
Tools to Perform Local Dense 3D Reconstruction of Shallow Water Seabed.
Avanthey, Loïca; Beaudoin, Laurent; Gademer, Antoine; Roux, Michel
2016-01-01
Tasks such as distinguishing or identifying individual objects of interest require the production of dense local clouds at the scale of these individual objects of interest. Due to the physical and dynamic properties of an underwater environment, the usual dense matching algorithms must be rethought in order to be adaptive. These properties also imply that the scene must be observed at close range. Classic robotized acquisition systems are oversized for local studies in shallow water while the systematic acquisition of data is not guaranteed with divers. We address these two major issues through a multidisciplinary approach. To efficiently acquire on-demand stereoscopic pairs using simple logistics in small areas of shallow water, we devised an agile light-weight dedicated system which is easy to reproduce. To densely match two views in a reliable way, we devised a reconstruction algorithm that automatically accounts for the dynamics, variability and light absorption of the underwater environment. Field experiments in the Mediterranean Sea were used to assess the results. PMID:27196913
Sirjacobs, Damien; Grégoire, Marilaure; Delhez, Eric; Nihoul, Jacques
2003-01-01
Within the context of the EU INCO-COPERNICUS program "Desertification in the Aral Sea Region: A study of the Natural and Anthropogenic Impacts" (Contract IAC2-CT-2000-10023), a large-scale 3D hydrodynamic model was adapted to address specifically the macroscale processes affecting the Aral Sea water circulation and ventilation. The particular goal of this research is to simulate the effect of lasting negative water balance on the 3D seasonal circulation, temperature, salinity and water-mixing...
Boiling water flows. A local wall heat transfer model for use in an Eulerian 3-D computer code
International Nuclear Information System (INIS)
Electricite de France is currently developing a 3-D computer code for the Eulerian simulation of two-phase flows. This code, named ASTRID, is based on the six-equation two-fluid model. Boiling water flows are among the main applications of ASTRID, especially for nuclear power plant design. In order to provide ASTRID with appropriate closure laws and boundary conditions, Electricite de France and the Institut de Mecanique des Fluides de Toulouse (IMFT) have collaborated since 1991. The analysis of the current knowledge made possible to build a first set of closure laws and boundary conditions for boiling water flows, suitable for ASTRID. This paper is focused on the model used for heat transfer and bubble production at the wall, in a convective boiling situation. This model has been tested for a first comparison with existing experimental data. The results of this comparison are also presented here. (authors). 5 figs., 9 refs
Integrating Sensors into a Marine Drone for Bathymetric 3D Surveys in Shallow Waters
Directory of Open Access Journals (Sweden)
Francesco Giordano
2015-12-01
Full Text Available This paper demonstrates that accurate data concerning bathymetry as well as environmental conditions in shallow waters can be acquired using sensors that are integrated into the same marine vehicle. An open prototype of an unmanned surface vessel (USV named MicroVeGA is described. The focus is on the main instruments installed on-board: a differential Global Position System (GPS system and single beam echo sounder; inertial platform for attitude control; ultrasound obstacle-detection system with temperature control system; emerged and submerged video acquisition system. The results of two cases study are presented, both concerning areas (Sorrento Marina Grande and Marechiaro Harbour, both in the Gulf of Naples characterized by a coastal physiography that impedes the execution of a bathymetric survey with traditional boats. In addition, those areas are critical because of the presence of submerged archaeological remains that produce rapid changes in depth values. The experiments confirm that the integration of the sensors improves the instruments’ performance and survey accuracy.
Zhu, Xi; Wang, Tiejun; Darvishzadeh, Roshanak; Skidmore, Andrew K.; Niemann, K. Olaf
2015-12-01
Leaf water content (LWC) plays an important role in agriculture and forestry management. It can be used to assess drought conditions and wildfire susceptibility. Terrestrial laser scanner (TLS) data have been widely used in forested environments for retrieving geometrically-based biophysical parameters. Recent studies have also shown the potential of using radiometric information (backscatter intensity) for estimating LWC. However, the usefulness of backscatter intensity data has been limited by leaf surface characteristics, and incidence angle effects. To explore the idea of using LiDAR intensity data to assess LWC we normalized (for both angular effects and leaf surface properties) shortwave infrared TLS data (1550 nm). A reflectance model describing both diffuse and specular reflectance was applied to remove strong specular backscatter intensity at a perpendicular angle. Leaves with different surface properties were collected from eight broadleaf plant species for modeling the relationship between LWC and backscatter intensity. Reference reflectors (Spectralon from Labsphere, Inc.) were used to build a look-up table to compensate for incidence angle effects. Results showed that before removing the specular influences, there was no significant correlation (R2 = 0.01, P > 0.05) between the backscatter intensity at a perpendicular angle and LWC. After the removal of the specular influences, a significant correlation emerged (R2 = 0.74, P ecology in vegetation.
Integrating Sensors into a Marine Drone for Bathymetric 3D Surveys in Shallow Waters.
Giordano, Francesco; Mattei, Gaia; Parente, Claudio; Peluso, Francesco; Santamaria, Raffaele
2015-01-01
This paper demonstrates that accurate data concerning bathymetry as well as environmental conditions in shallow waters can be acquired using sensors that are integrated into the same marine vehicle. An open prototype of an unmanned surface vessel (USV) named MicroVeGA is described. The focus is on the main instruments installed on-board: a differential Global Position System (GPS) system and single beam echo sounder; inertial platform for attitude control; ultrasound obstacle-detection system with temperature control system; emerged and submerged video acquisition system. The results of two cases study are presented, both concerning areas (Sorrento Marina Grande and Marechiaro Harbour, both in the Gulf of Naples) characterized by a coastal physiography that impedes the execution of a bathymetric survey with traditional boats. In addition, those areas are critical because of the presence of submerged archaeological remains that produce rapid changes in depth values. The experiments confirm that the integration of the sensors improves the instruments' performance and survey accuracy. PMID:26729117
Choi, Jungsu; Chan, Sophia; Joo, Hyunjong; Yang, Heejae; Ko, Frank K
2016-09-15
Zinc Oxide Nano Wires (ZNWs) has been considered as a promising material for purification and disinfection of water and remediation of hazardous waste owing to its high activity and lower cost. In this study, three-dimensional (3D) structured palladium (Pd)/ZNWs were synthesized on the fabricated electrospun nanofibers and explored for enhancement of organic matter (OM) removal efficiency in water by suppressing electron-hole recombination during photocatalytic activity and increased surface area. The densely populated ZNWs were fabricated on the electrospun nanofiber by electroless plating (EP) and hydrothermal synthesis. In order to improve photocatalytic efficiency, a thin layer of Pd was coated prior to ZNWs growth to induce suppression of electron hole recombination produced during catalyst activity. The creation of a highly porous network of nanofibers decorated with ZNWs resulted in an increase of specific removal rate (SRR) of OM from 0.0249 to 0.0377 mg CODCr removed/mg ZNWs-hr when ZNW were grown on a Pd layer. It is believed that the demonstration of OM removal in the water through Pd/ZNWs membrane and enhanced photocatalytic activity under UV irradiation from layered structure can broaden potential applicability of Pd/ZNWs membranes for various photo catalytic water treatment. PMID:27286471
International Nuclear Information System (INIS)
The application of computational fluid dynamics methods to the analysis of mixing in the high level waste tanks at the Savannah River Site requires a demonstration that the computer codes can properly represent the behavior of fluids in the tanks. The motive force for mixing the tanks is a set of jet pumps taking suction from the tank fluid and discharging turbulent jets near the bottom of the tank. The work described here focuses on the free turbulent jet in water as the simplest case of jet behavior for which data could be found in the open literature. Calculations performed with both CFDS-FLOW3D and FLUENT were compared with data as well as classical jet theory. Results showed both codes agreed reasonably well with each other and with the data, but that results were sensitive to the computational mesh and, to a lesser degree, the selection of turbulence models
Shi, Ruo-Bing; Pi, Min; Jiang, Shuang-Shuang; Wang, Yuan-Yuan; Jin, Chuan-Ming
2014-08-01
Four new metal-organic frameworks, [Zn(2-mBIM)2(SO3CF3)2·(H2O)4] (1), [Zn(BMIE)(1,4-BDC)]·(H2O)3 (2), [Cd(BIM)2(OH)(H2O)2(PF6)]·(H2O)4 (3), and [Cd(PA-BIM)2 (ClO4)2]·11.33H2O (4) (2-mBIM = bis(2-methylimidazol-1-yl)methane, BMIE = 1,2-bis[1-(2-methylimidazole)-diethoxy]ethane, BIM = bis(imidazol-1-yl)methane, and PA-BIM = 1,1-bis [(2-phenylazo)imidazol-1-yl]methane) have been prepared and structurally characterized. Complex 1 exhibits an infinite 1D cationic beaded-chain structure, which encapsulated discrete octameric water clusters that are comprised of a chair-like hexameric water cluster with two extra water molecules dangling on two diagonal vertices of the chair. Complex 2 forms a 1D infinite zigzag metal-organic chain structure with a 1D T4(0)A(4) water tape. Complexes 3 show a 2D grid-like sheet structure with the 1D water tape T4(0)A(0)2(0) motif. Complex 4 is a porous 3D MOF with tetrahedron-coordinated Cd(II) centers and trans-conformation PA-BIM ligands. These holes are occupied by a fascinating three-dimensional water clathrate network, which consists of cage-shaped structural tetradecameric water cluster (H2O)14 units and six independent bridged water molecules. The results suggest that the bisimidazolium ligands and anions play crucial roles in the formation of the different host structures and different guest water aggregations. Additionally, the thermal stabilities and photoluminescence spectra of the complexes have been discussed.
A NUMERICAL METHOD FOR NONLINEAR WATER WAVES
Institute of Scientific and Technical Information of China (English)
ZHAO Xi-zeng; SUN Zhao-chen; LIANG Shu-xiu; HU Chang-hong
2009-01-01
This article presents a numerical method for modeling nonlinear water waves based on the High Order Spectral (HOS) method proposed by Dommermuth and Yue and West et al., involving Taylor expansion of the Dirichlet problem and the Fast Fourier Transform (FFT) algorithm. The validation and efficiency of the numerical scheme is illustrated by a number of case studies on wave and wave train configuration including the evolution of fifth-order Stokes waves, wave dispersive focusing and the instability of Stokes wave with finite slope. The results agree well with those obtained by other studies.
Variational modelling of nonlinear water waves
Kalogirou, Anna; Bokhove, Onno
2015-11-01
Mathematical modelling of water waves is demonstrated by investigating variational methods. A potential flow water wave model is derived using variational techniques and extented to include explicit time-dependence, leading to non-autonomous dynamics. As a first example, we consider the problem of a soliton splash in a long wave channel with a contraction at its end, resulting after a sluice gate is removed at a finite time. The removal of the sluice gate is included in the variational principle through a time-dependent gravitational potential. A second example involving non-autonomous dynamics concerns the motion of a free surface in a vertical Hele-Shaw cell. Explicit time-dependence now enters the model through a linear damping term due to the effect of wall friction and a term representing the motion of an artificially driven wave pump. In both cases, the model is solved numerically using a Galerkin FEM and the numerical results are compared to wave structures observed in experiments. The water wave model is also adapted to accommodate nonlinear ship dynamics. The novelty is this case is the coupling between the water wave dynamics, the ship dynamics and water line dynamics on the ship. For simplicity, we consider a simple ship structure consisting of V-shaped cross-sections.
Evaluation of the ECAT EXACT HR+ 3D PET scanner in 15O-water brain activation studies
International Nuclear Information System (INIS)
We evaluated the performance of the ECAT EXACT HR+ 3D whole body PET scanner when employed to measure brain function using 15O-water-bolus activation protocols in single data acquisition sessions. Using vibrotactile and auditory stimuli as independent activation tasks, we studied the scanner's performance under different imaging conditions in four healthy volunteers. Cerebral blood flow images were acquired from each volunteer using 15O-water-bolus injections of activity varying from 5 to 20mCi. Performance characteristics. The scanner's dead time grew linearly with injected dose from 10% to 25%. Random events varied from 30% to 50% of the detected events. Scattered events were efficiently corrected at all doses. Noise-effective-count curves plateau at about 15mCi. One-session 12-injection bolus PET activation protocol. Using an acquisition protocol that accounts for the scanner's performance and the practical aspects of imaging volunteers and patients in one session, we assessed the correlation between the statistical significance of activation foci and the dose per injection used The one-session protocol employs 12 bolus injections per subject. We present evidence suggesting that 15-20mCi is the optimal dose per injection to be used routinely in one-time scanning sessions
Guo, Si-yao; Zhao, Tie-jun; Jin, Zu-quan; Wan, Xiao-mei; Wang, Peng-gang; Shang, Jun; Han, Song
2015-10-01
A simple and straightforward solution growth routine is developed to prepare microporous 3D nano/micro ZnO microsphere with a large BET surface area of 288 m2 g-1 at room temperature. The formation mechanism of the hierarchical 3D nano/micro ZnO microsphere and its corresponding hydrogen evolution performance has been deeply discussed. In particular, this novel hierarchical 3D ZnO microspheres performs undiminished hydrogen evolution for at least 24 h under simulated solar light illumination, even under the condition of no precious metal as cocatalyst. Since the complex production process of photocatalysts and high cost of precious metal cocatalyst remains a major constraint that hinders the application of solar water splitting, this 3D nano/micro ZnO microspheres could be expected to be applicable in the precious-metal-free solar water splitting system due to its merits of low cost, simple procedure and high catalytic activity.
Zanini, A.; Tanda, M.
2007-12-01
The groundwater in Italy plays an important role as drinking water; in fact it covers about the 30% of the national demand (70% in Northern Italy). The mineral water distribution in Italy is an important business with an increasing demand from abroad countries. The mineral water Companies have a great interest in order to increase the water extraction, but for the delicate and complex geology of the subsoil, where such very high quality waters are contained, a particular attention must be paid in order to avoid an excessive lowering of the groundwater reservoirs or great changes in the groundwater flow directions. A big water Company asked our University to set up a numerical model of the groundwater basin, in order to obtain a useful tool which allows to evaluate the strength of the aquifer and to design new extraction wells. The study area is located along Appennini Mountains and it covers a surface of about 18 km2; the topography ranges from 200 to 600 m a.s.l.. In ancient times only a spring with naturally sparkling water was known in the area, but at present the mineral water is extracted from deep pumping wells. The area is characterized by a very complex geology: the subsoil structure is described by a sequence of layers of silt-clay, marl-clay, travertine and alluvial deposit. Different groundwater layers are present and the one with best quality flows in the travertine layer; the natural flow rate seems to be not subjected to seasonal variations. The water age analysis revealed a very old water which means that the mineral aquifers are not directly connected with the meteoric recharge. The Geologists of the Company suggest that the water supply of the mineral aquifers comes from a carbonated unit located in the deep layers of the mountains bordering the spring area. The valley is crossed by a river that does not present connections to the mineral aquifers. Inside the area there are about 30 pumping wells that extract water at different depths. We built a 3
3D FINITE ELEMENT ANALYSIS OF THE DAMAGE EFFECTS ON THE DENTAL COMPOSITE SUBJECT TO WATER SORPTION
Institute of Scientific and Technical Information of China (English)
Fan Jianping; Tsui,C.P.; Tang,C.Y.; Chow,C.L.
2006-01-01
The damage effects of water sorption on the mechanical properties of the hydroxyapatite particle reinforced Bis-GMA/TEGDMA copolymer (HA/Bis-GMA/TEGDMA) have been predicted using 3D finite cell models. The plasticizer effect on the polymer matrix was considered as a variation of its Young's modulus. Three different cell models were used to determine the influence of varying particle contents, interphase strength and moisture concentration on the debonding damage. The stress distribution pattern has been examined and the stress transfer mode clarified. The Young's modulus and fracture strength of the Bis-GMA/TEGDMA composite were also predicted using the model with and without consideration of the damage. The former results with consideration of the debonding damage are in good agreement with existing literature experimental data. The shielding effect of our proposed model and an alternative approach were discussed. The FCC cell model has also been extended to predict the critical load for the damaged and the undamaged composite subject to the 3-point flexural test.
Sharifi, Tiva; Gracia-Espino, Eduardo; Jia, Xueen; Sandström, Robin; Wågberg, Thomas
2015-12-30
We report efficient electrolysis of both water-splitting half reactions in the same medium by a bifunctional 3D electrode comprising Co3O4 nanospheres nucleated on the surface of nitrogen-doped carbon nanotubes (NCNTs) that in turn are grown on conductive carbon paper (CP). The resulting electrode exhibits high stability and large electrochemical activity for both oxygen and hydrogen evolution reactions (OER and HER). We obtain a current density of 10 mA/cm(2) in 0.1 M KOH solution at overpotentials of only 0.47 and 0.38 V for OER and HER, respectively. Additionally, the experimental observations are understood and supported by analyzing the Co3O4:NCNT and NCNT:CP interfaces by ab initio calculations. Both the experimental and the theoretical studies indicate that firm and well-established interfaces along the electrode play a crucial role on the stability and electrochemical activity for both OER and HER. PMID:26629887
Glockner, James F; Saranathan, Manojkumar; Bayram, Ersin; Lee, Christine U
2013-10-01
A novel 3D breath-held Dixon fat-water separated balanced steady state free precession (b-SSFP) sequence for MR cholangiopancreatography (MRCP) is described and its potential clinical utility assessed in a series of patients. The main motivation is to develop a robust breath-held alternative to the respiratory gated 3D Fast Spin Echo (FSE) sequence, the current clinical sequence of choice for MRCP. Respiratory gated acquisitions are susceptible to motion artifacts and blurring in patients with significant diaphragmatic drift, erratic respiratory rhythms or sleep apnea. A two point Dixon fat-water separation scheme was developed which eliminates signal loss arising from B0 inhomogeneity effects and minimizes artifacts from perturbation of the b-SSFP steady state. Preliminary results from qualitative analysis of 49 patients demonstrate robust performance of the 3D Dixon b-SSFP sequence with diagnostic image quality acquired in a 20-24s breath-hold. PMID:23876262
Directory of Open Access Journals (Sweden)
Majid M. Heravi
2016-04-01
Full Text Available A novel one pot synthesis of pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidine-diones, via a five-component reaction, involving, hydrazine hydrate, ethyl acetoacetate, and 1,3-dimethyl barbituric acid, an appropriate aryl aldehydes and ammonium acetate catalyzed via both of heterogeneous and homogeneous catalysis in water, is reported.
Heravi, Majid M; Daraie, Mansoureh
2016-01-01
A novel one pot synthesis of pyrazolo[4',3':5,6]pyrido[2,3-d]pyrimidine-diones, via a five-component reaction, involving, hydrazine hydrate, ethyl acetoacetate, and 1,3-dimethyl barbituric acid, an appropriate aryl aldehydes and ammonium acetate catalyzed via both of heterogeneous and homogeneous catalysis in water, is reported. PMID:27043522
Grundmann, Ulrich; Rohde, Ulrich; Mittag, Siegfried; Kliem, Sören
2010-01-01
DYN3D is an best estimate advanced code for the three-dimensional simulation of steady-states and transients in light water reactor cores with quadratic and hexagonal fuel assemblies. Burnup and poison-dynamic calculations can be performed. For the investigation of wide range transients, DYN3D is coupled with system codes as ATHLET and RELAP5. The neutron kinetic model is based on the solution of the three-dimensional two-group neutron diffusion equation by nodal expansion methods. The therm...
Lucas, Laurent; Loscos, Céline
2013-01-01
While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century.The chapters in this book cover a large spectrum of areas connected to 3D video, which are presented both theoretically and technologically, while taking into account both physiological and perceptual aspects. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide th
Beane, Andy
2012-01-01
The essential fundamentals of 3D animation for aspiring 3D artists 3D is everywhere--video games, movie and television special effects, mobile devices, etc. Many aspiring artists and animators have grown up with 3D and computers, and naturally gravitate to this field as their area of interest. Bringing a blend of studio and classroom experience to offer you thorough coverage of the 3D animation industry, this must-have book shows you what it takes to create compelling and realistic 3D imagery. Serves as the first step to understanding the language of 3D and computer graphics (CG)Covers 3D anim
3D Printing of Graphene Aerogels.
Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong
2016-04-01
3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (printed graphene aerogel presents superelastic and high electrical conduction. PMID:26861680
International Nuclear Information System (INIS)
A supercritical-water-cooled reactor (SCWR) is a high-temperature, high-pressure water cooled reactor that operates above the critical pressure of water. In order to perform efficiently the thermal design of the SCWR, it is important to assess the thermal hydraulics in rod bundles of the core. Experimental conditions of mockup tests, however, may be limited because of technical and financial reasons. Therefore, it is required to establish an analytical design technique that can extrapolate experimental data to various design conditions of the reactor. Japan Atomic Energy Agency (JAEA) has improved the three-dimensional two-fluid model analysis code ACE-3D, which was originally developed for the two-phase flow thermal hydraulics of light water reactors, to handle the thermal hydraulic properties of water in the supercritical region. In the present study, heat transfer experiments of supercritical water flowing in a vertical annular channel around a heater pin, which were performed at JAEA, were analyzed with the improved ACE-3D to assess the prediction performance of the code. As a result, it was implied that the ACE-3D code is applicable to the prediction of wall temperatures of a single rod that simulates the fuel bundle geometry of the SCWR core. (author)
International Nuclear Information System (INIS)
To evaluate the diagnostic accuracy of water-excitation (WE) 3D FLASH and fat-saturated (FS) proton density-weighted (PDw) TSE MR imaging for detecting, grading, and sizing articular cartilage lesions of the knee. A total of 26 patients underwent MR imaging prior to arthroscopy with the following sequences: (1) WE 3D FLASH: 28/11 ms, scan time: 4 min 58 s, flip angle: 40 ; (2) FS PDw TSE: 3433/15 ms, scan time: 6 min 15 s, flip angle: 180 . Grade and size of the detected lesions were quantified and compared with the results of arthroscopy for each compartment. The sensitivity, specificity, positive and negative predictive values, and accuracy for detecting cartilage lesions were 46%, 92%, 81%, 71% and 74% for WE 3D FLASH and 91%, 98%, 96%, 94% and 95% for FS PDw TSE MR imaging. WE 3D FLASH correlated significantly with arthroscopy for grading on the patella (P<0.0001) and the femoral trochlea (P=0.02) and for sizing on the femoral trochlea (P=0.03). FS PDw correlated significantly (P<0.0001) with arthroscopy for grading and sizing on all compartments. FS PDw TSE is an accurate method for detecting, grading and sizing articular cartilage lesions of the knee and yielded superior results relative to WE 3D FLASH MR imaging. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Biffle, J.H.
1993-02-01
JAC3D is a three-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equation. The method is implemented in a three-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. An eight-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic-plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere.
Lavrynenko, O. M.; Pavlenko, O. Yu; Shchukin, Yu S.
2016-02-01
The contact of a steel electrode with water dispersion medium in an open-air system leads to the development of various polymorphic iron oxides and oxyhydroxides on the steel surface. Whereas the usage of distilled water causes the obtaining of Fe(II)-Fe(III) layered double hydroxides (green rust) as a primary mineral phase, but in the presence of inorganic 3d-metal water salt solutions, mixed layered double hydroxides (LDHs) together with non-stoichiometric spinel ferrite nanoparticles are formed on the steel surface. Mixed LDHs keep stability against further oxidation and complicate the obtaining of spinel ferrite nanoparticles. Thermal treatment of mixed LDHs among other mineral phases formed via the rotation-corrosion dispergation process at certain temperatures permits to obtain homogenous nanoparticles of spinel ferrites as well as maghemite or hematite doped by 3d-metal cations.
Lavrynenko, O M; Pavlenko, O Yu; Shchukin, Yu S
2016-12-01
The contact of a steel electrode with water dispersion medium in an open-air system leads to the development of various polymorphic iron oxides and oxyhydroxides on the steel surface. Whereas the usage of distilled water causes the obtaining of Fe(II)-Fe(III) layered double hydroxides (green rust) as a primary mineral phase, but in the presence of inorganic 3d-metal water salt solutions, mixed layered double hydroxides (LDHs) together with non-stoichiometric spinel ferrite nanoparticles are formed on the steel surface. Mixed LDHs keep stability against further oxidation and complicate the obtaining of spinel ferrite nanoparticles. Thermal treatment of mixed LDHs among other mineral phases formed via the rotation-corrosion dispergation process at certain temperatures permits to obtain homogenous nanoparticles of spinel ferrites as well as maghemite or hematite doped by 3d-metal cations. PMID:26847693
Abdelsamie, Maher A A; Mustafa, Shuhaimi; Hashim, Dzulkifly
2014-01-01
In this study, two software packages using different numerical techniques FEKO 6.3 with Finite-Element Method (FEM) and XFDTD 7 with Finite Difference Time Domain Method (FDTD) were used to assess exposure of 3D models of square, rectangular, and pyramidal shaped water containers to electromagnetic waves at 300, 900, and 2400 MHz frequencies. Using the FEM simulation technique, the peak electric field of 25, 4.5, and 2 V/m at 300 MHz and 15.75, 1.5, and 1.75 V/m at 900 MHz were observed in pyramidal, rectangular, and square shaped 3D container models, respectively. The FDTD simulation method confirmed a peak electric field of 12.782, 10.907, and 10.625 V/m at 2400 MHz in the pyramidal, square, and rectangular shaped 3D models, respectively. The study demonstrated an exceptionally high level of electric field in the water in the two identical pyramid shaped 3D models analyzed using the two different simulation techniques. Both FEM and FDTD simulation techniques indicated variations in the distribution of elect...
Massoud, Usama; Soliman, Mamdouh; Taha, Ayman; Khozym, Ashraf; Salah, Hany
2015-12-01
Seawater intrusion is a widespread environmental problem in the Egyptian coastal aquifers. It affects the groundwater used in domestic and agricultural activities along these coasts. In this study, resistivity survey in the form of Vertical Electrical Sounding (VES) was conducted at ZAWYET EL HAWALA cultivated site, northwest coast of Egypt to outline a freshwater zone overlies the main saltwater body, and to determine the most suitable location for drilling water well for irrigation purposes. The VES data were measured at 11 stations in the studied site. After processing, the data were inverted in 1-D and 3-D schemes and the final model was presented as resistivity slices with depth. The results indicate that the effect of saltwater intrusion was observed, as low resistivity values, at 7.5 m below ground surface (bgs) at the northern part of the study area (toward the Mediterranean Sea), and extends southward with increasing depth covering the whole area at about 30 m bgs. The fresh water zone shows a minimum thickness of less than 7.5 m at the northern side and a maximum thickness of about 20 m at the southern side of the area. The proper site for drilling water well tap and the freshwater zone is the location of VES6 or VES9 with a maximum well depth of about 20 m bgs. The water withdrawal from the proposed well should be controlled not to raise the main saline water table in the well site. The main sources of the freshwater zone are the rainfall and surface runoff descending from the southern tableland. Excess rainfall and surface runoff can be avoided from direct discharge to the sea by collecting them in man-made outlined trenches and re-using the stored water in irrigation during the dry seasons.
Global stability analysis of pressurized water reactor core nonlinear system
International Nuclear Information System (INIS)
Determining the global stability of a pressurized water reactor (PWR) core nonlinear system is the problem to be solved. In the paper, the core nonlinear system was modeled and the linearized model of the system was obtained via the small perturbation method. According to the distributing situation of the core nonlinearity measure in the power level range based on the equilibrium manifold, seven linear models corresponding to seven power levels respectively were chosen as local models of the core and the set of seven local models was used to approximately substitute the core system. The global stability of the PWR core nonlinear system was analyzed by utilizing Lyapunov stability theory. The calculated result shows that the core nonlinear system is globally and asymptotically stable. The modeling method of the core is effective in analyzing the global stability of a PWR core nonlinear system. (authors)
Lavrynenko, O. M.; Pavlenko, O. Yu; Shchukin, Yu S.
2016-01-01
The contact of a steel electrode with water dispersion medium in an open-air system leads to the development of various polymorphic iron oxides and oxyhydroxides on the steel surface. Whereas the usage of distilled water causes the obtaining of Fe(II)-Fe(III) layered double hydroxides (green rust) as a primary mineral phase, but in the presence of inorganic 3d-metal water salt solutions, mixed layered double hydroxides (LDHs) together with non-stoichiometric spinel ferrite nanoparticles are f...
Vu, Cung Khac; Nihei, Kurt Toshimi; Johnson, Paul A.; Guyer, Robert A.; Ten Cate, James A.; Le Bas, Pierre-Yves; Larmat, Carene S.
2016-06-07
A system and method of characterizing properties of a medium from a non-linear interaction are include generating, by first and second acoustic sources disposed on a surface of the medium on a first line, first and second acoustic waves. The first and second acoustic sources are controllable such that trajectories of the first and second acoustic waves intersect in a mixing zone within the medium. The method further includes receiving, by a receiver positioned in a plane containing the first and second acoustic sources, a third acoustic wave generated by a non-linear mixing process from the first and second acoustic waves in the mixing zone; and creating a first two-dimensional image of non-linear properties or a first ratio of compressional velocity and shear velocity, or both, of the medium in a first plane generally perpendicular to the surface and containing the first line, based on the received third acoustic wave.
Directory of Open Access Journals (Sweden)
D. Pletinckx
2012-09-01
Full Text Available The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.
Energy Technology Data Exchange (ETDEWEB)
Glaser, Adam K., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu; Andreozzi, Jacqueline M. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Zhang, Rongxiao [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Pogue, Brian W., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu [Thayer School of Engineering and Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Gladstone, David J. [Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 (United States)
2015-07-15
Purpose: To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). Methods: An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp–Davis–Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. Results: 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm{sup 3} volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%–99% pass fraction depending on the chosen threshold dose. Conclusions: The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water.
International Nuclear Information System (INIS)
Purpose: To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). Methods: An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp–Davis–Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. Results: 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm3 volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%–99% pass fraction depending on the chosen threshold dose. Conclusions: The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water
Catalyst free synthesis of fused pyrido[2,3-d]pyrimidines and pyrazolo[3,4-b]pyridines in water
Institute of Scientific and Technical Information of China (English)
Abbas Rahmati; Zahra Khalesi
2012-01-01
A one-pot,three-component condensation reaction of an aldehyde,benzoyl acetonitrile (3-oxo-3-phenylpropane nitrile) and 6-amino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione or 3-methyl-1-phenyl-1H-pyrazol-5-amine in water to give fused pyrido[2,3-d]pyrimidines and pyrazolo[3,4-b]pyridines in high yields without any catalyst,is described.
International Nuclear Information System (INIS)
Two novel inorganic-organic 3D network, namely{[Ln(L)1.5(H2O)2].5H2O}n [Ln=Y (1), Ce (2)] [Ln(L)1.5(H2O)2].5H2O [Ln=Y (1), Ce (2)], have been prepared through the assembly of the ligand 1,2-bis[3-(1,2,4-triazolyl)-4-amino-5-carboxylmethylthio]ethane (H2L) and lanthanide (III) salts under hydrothermal condition and structurally characterized by single-crystal X-ray diffractions. In complexes 1 and 2, the L2- anions adopt three different coordination fashions (bidentate chelate, bidentate bridging and bidentate chelate bridging) connecting Ln(III) ions via the oxygen atoms from carboxylate moieties. Both 1 and 2 exhibit 3D network structures with 2-fold interpenetration. Interestingly, the reversible desorption-adsorption behavior of lattice water is significantly observed in the two compounds. The result shows their potential application as late-model water absorbent in the field of adsorption material. - Graphical abstract: Two inorganic-organic 3D network, namely {[Ln(L)1.5(H2O)2].5H2O}n [Ln=Y (1), Ce (2)], have been prepared under hydrothermal condition and structurally characterized by single-crystal X-ray diffractions. Both 1 and 2 exhibit 3D network structures with 2-fold interpenetration. Interestingly, the reversible desorption-adsorption behavior of lattice water is significantly observed in the two compounds. The result shows their potential application as late-model water absorbent in the field of adsorption material.
On-Line Biosensor to Detect Genotoxic Compounds in Surface Water Using a 3D-Printed Microbioreactor
Velthuis, Martin; Euverink, Gert-Jan; Mink, Jan
2015-01-01
The quality of safe and clean drinking water is becoming more important. Therefore, harmful pollutants in the surface and ground water need to be detected before drinking water is prepared from this. With the current methods, it is not possible to continuously monitor the intake water for the presen
International Nuclear Information System (INIS)
This book explains modeling of solid works 3D and application of 3D CAD/CAM. The contents of this book are outline of modeling such as CAD and 2D and 3D, solid works composition, method of sketch, writing measurement fixing, selecting projection, choosing condition of restriction, practice of sketch, making parts, reforming parts, modeling 3D, revising 3D modeling, using pattern function, modeling necessaries, assembling, floor plan, 3D modeling method, practice floor plans for industrial engineer data aided manufacturing, processing of CAD/CAM interface.
Sirjacobs, D.; Grégoire, M.; Delhez, E.; Nihoul, J.
2003-04-01
Within the context of the EU INCO-COPERNICUS program "Desertification in the Aral Sea Region: A study of the Natural and Anthropogenic Impacts" (Contract IAC2-CT-2000-10023), a large-scale 3D hydrodynamic model was adapted to address specifically the macroscale processes affecting the Aral Sea water circulation and ventilation. The particular goal of this research is to simulate the effect of lasting negative water balance on the 3D seasonal circulation, temperature, salinity and water-mixing fields of the Aral Sea. The original Aral Sea seasonal hydrodynamism is simulated with the average seasonal forcings corresponding to the period from 1956 to 1960. This first investigation concerns a period of relative stability of the water balance, before the beginning of the drying process. The consequences of the drying process on the hydrodynamic of the Sea will be studied by comparing this first results with the simulation representing the average situation for the years 1981 to 1985, a very low river flow period. For both simulation periods, the forcing considered are the seasonal fluctuations of wind fields, precipitation, evaporation, river discharge and salinity, cloud cover, air temperature and humidity. The meteorological forcings were adapted to the common optimum one-month temporal resolution of the available data sets. Monthly mean kinetic energy flux and surface tensions were calculated from daily ECMWF wind data. Monthly in situ precipitation, surface air temperature and humidity fields were interpolated from data obtained from the Russian Hydrological and Meteorological Institute. Monthly water discharge and average salinity of the river water were considered for both Amu Darya and Syr Darya river over each simulation periods. The water mass conservation routines allowed the simulation of a changing coastline by taking into account local drying and flooding events of particular grid points. Preliminary barotropic runs were realised (for the 1951
Castellanza, Riccardo; Fernandez Merodo, Josè Antonio; di Prisco, Claudio; Frigerio, Gabriele; Crosta, Giovanni B.; Orlandi, Gianmarco
2013-04-01
Aim of the study is the assessment of stability conditions for an abandoned gypsum mine (Bologna , Italy). Mining was carried out til the end of the 70s by the room and pillar method. During mining a karst cave was crossed karstic waters flowed into the mine. As a consequence, the lower level of the mining is completely flooded and portions of the mining levels show critical conditions and are structurally prone to instability. Buildings and infrastructures are located above the first and second level and a large portion of the area below the mine area, and just above of the Savena river, is urbanised. Gypsum geomechanical properties change over time; water, or even air humidity, dissolves or weaken gypsum pillars, leading progressively to collapse. The mine is located in macro-crystalline gypsum beds belonging to the Messinian Gessoso Solfifera Formation. Selenitic gypsum beds are interlayered with by centimetre to meter thick shales layers. In order to evaluate the risk related to the collapse of the flooded level (level 3) a deterministic approach based on 3D numerical analyses has been considered. The entire abandoned mine system up to the ground surface has been generated in 3D. The considered critical scenario implies the collapse of the pillars and roof of the flooded level 3. In a first step, a sequential collapse starting from the most critical pillar has been simulated by means of a 3D Finite Element code. This allowed the definition of the subsidence basin at the ground surface and the interaction with the buildings in terms of ground displacements. 3D numerical analyses have been performed with an elasto-perfectly plastic constitutive model. In a second step, the effect of a simultaneous collapse of the entire level 3 has been considered in order to evaluate the risk of a flooding due to the water outflow from the mine system. Using a 3D CFD (Continuum Fluid Dynamics) finite element code the collapse of the level 3 has been simulated and the volume of
Directory of Open Access Journals (Sweden)
Felician ALECU
2010-01-01
Full Text Available Many professionals and 3D artists consider Blender as being the best open source solution for 3D computer graphics. The main features are related to modeling, rendering, shading, imaging, compositing, animation, physics and particles and realtime 3D/game creation.
Nonlinear Dynamic Characteristics of Oil-in-Water Emulsions
Yin, Zhaoqi; Han, Yunfeng; Ren, Yingyu; Yang, Qiuyi; Jin, Ningde
2016-08-01
In this article, the nonlinear dynamic characteristics of oil-in-water emulsions under the addition of surfactant were experimentally investigated. Firstly, based on the vertical upward oil-water two-phase flow experiment in 20 mm inner diameter (ID) testing pipe, dynamic response signals of oil-in-water emulsions were recorded using vertical multiple electrode array (VMEA) sensor. Afterwards, the recurrence plot (RP) algorithm and multi-scale weighted complexity entropy causality plane (MS-WCECP) were employed to analyse the nonlinear characteristics of the signals. The results show that the certainty is decreasing and the randomness is increasing with the increment of surfactant concentration. This article provides a novel method for revealing the nonlinear dynamic characteristics, complexity, and randomness of oil-in-water emulsions with experimental measurement signals.
Nonlinear Dynamic Characteristic Analysis of the Shaft System in Water Turbine Generator Set
Institute of Scientific and Technical Information of China (English)
MA Zhenyue; SONG Zhiqiang
2009-01-01
A 3D finite element vibration model of water turbine generator set is constructed considering the coupling with hydropower house foundation. The method of determining guide bearing dynamic characteristic coefficients according to the swing of the shaft is proposed, which can be used for studying the self-vibration characteristic and stability of the water turbine generator set. The method fully considers the complex supporting boundary and loading conditions; especially the nonlinear variation of guide bearing dynamic characteristic coefficients and the coupling effect of the whole power-house foundation. The swing and critical rotating speed of an actual generator set shaft system are calculated. The simulated results of the generator set indicate that the coupling vibration model and calculation method presented in this paper are suitable for stability analysis of the water turbine generator set.
3d-3d correspondence revisited
Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr
2016-04-01
In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.
Nocchi, M.; Salleolini, M.
2013-06-01
The Ansedonia promontory (southern Tuscany, Italy) is characterized by the presence of fish farms that pump thermal saline groundwater. The water is extracted from a carbonate aquifer with high permeability due to fracturing and karstification that is also exploited for irrigation purposes and domestic use. Such exploitation has led to the degradation of groundwater quality, producing conflict among the different users. The conceptualization of the aquifer allowed the development of a 3D finite element density-dependent numerical model using the FEFLOW code. The slightly negative freshwater budget in the very humid hydrologic year of 2004-2005 revealed that the aquifer was overexploited, especially due to the extraction of freshwater (along with seawater) from fish farm wells and pumping from public supply wells. The model was also used to forecast the quantitative and qualitative evolution of resources over time, thus testing the effects of different management hypotheses. Results demonstrate that the sustainable management of the aquifer mostly depends on withdrawals from public supply wells; the quantity extracted by fish farms only significantly affects the freshwater/saltwater interface and, locally, the salinity of groundwater. Actions to counteract seawater intrusion are proposed.
Brdnik, Lovro
2015-01-01
Diplomsko delo analizira trenutno stanje 3D tiskalnikov na trgu. Prikazan je razvoj in principi delovanja 3D tiskalnikov. Predstavljeni so tipi 3D tiskalnikov, njihove prednosti in slabosti. Podrobneje je predstavljena zgradba in delovanje koračnih motorjev. Opravljene so meritve koračnih motorjev. Opisana je programska oprema za rokovanje s 3D tiskalniki in komponente, ki jih potrebujemo za izdelavo. Diploma se oklepa vprašanja, ali je izdelava 3D tiskalnika bolj ekonomična kot pa naložba v ...
Lassabatère, L.; Yilmaz, D.; Angulo-Jaramillo, R.; Soria Ugalde, J.; Braud, I.; Simunek, J.
2010-01-01
International audience Modelling and understanding water fluxes in the vadose zone are important in regards to water management and require appropriate characterization methods of soil hydraulic properties. The presented work studies three common methods for characterization of soil hydraulic properties based on the inverse modelling of Beerkan water infiltration experiments: the CI method for Cumulative Information method and two BEST methods for Beerkan Estimation Soil pedotransfer metho...
Rinsland, C. P.; Gunson, M. R.; Foster, J. C.; Toth, R. A.; Farmer, C. B.
1991-01-01
The isotopic composition of stratospheric water vapor and methane was investigated. Stratospheric profiles of HDO, (H-18)2O, (H-17)2O, and CH3D were derived from solar occultation spectra recorded on April 30 - May 1, 1985 by the Atmospheric Trace Molecule Spectroscopy Fourier transform spectrometer aboard Spacelab 3. The profiles of the three water-vapor isotopes showed an increase in the volume mixing ratio with altitude. The measured profiles of D/H in water vapor showed a large depletion in the lower stratosphere (about 63 percent relative to standard mean ocean water, SMOW, at 20 km) and a small increase in D/H with altitude at higher altitudes, up to 34 km. The D/H ratio in stratospheric methane was close to the corresponding isotopic ratio in SMOW.
Institute of Scientific and Technical Information of China (English)
杨衡; 孙龙泉; 刘莹; 姚熊亮
2015-01-01
结构在实际海况中入水受到多种载荷的共同作用,同时还伴随波浪作用的影响,因此该过程是一个强非线性的过程.针对结构在波、流中入水过程的特点,将入射波(波、流)引入非线性双渐进法,研究三维刚体圆柱体在波、流及波流联合作用下入水过程运动响应及姿态的变化,计算结果与试验结果符合得较好,非线性双渐进法适用于分析三维刚体波、流中入水问题. 结果表明在近波面附近,结构受波浪作用明显,入水相位、浪级、流速及波流速度矢量差异对结构入水运动速度及轨迹影响明显.%During water entry of the structure in actual sea states, it will receive the interaction of a vari-ety of loads, as well as the influence of wave and stream action, so this is a strong non-linear process. Ac-cording to the characteristics of water entry of the structure, the incident wave and stream will be introduced to the nonlinear doubly asymptotic approximation method, so as to study the motion response and attitude change of 3D rigid cylindrical under wave and stream action during water entry. The calculation results fit with the test results well, this method is available for the analysis of water entry of 3D rigid body. The re-sults show that in the vicinity of wave surface, the wave affects the structure distinctly; phases of water en-try, wave scale, stream velocity and the differences of wave and stream velocities vector influence the speed, motion trajectory of the structure in water notably.
Meulien Ohlmann, Odile
2013-02-01
Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?
Nonlinear acoustics of water-saturated marine sediments
DEFF Research Database (Denmark)
Jensen, Leif Bjørnø
1976-01-01
Interest in the acoustic qualities of water-saturated marine sediments has increased considerably during recent years. The use of sources of high-intensity sound in oil propsecting, in geophysical and geological studies of bottom and subbottom materials and profiles and recently in marine...... archaeology has emphasized the need of information about the nonlinear acoustic qualities of water-saturated marine sediments. While the acoustic experiments and theoretical investigations hitherto performed have concentrated on a determination of the linear acoustic qualities of water-saturated marine...... sediments, their parameters of nonlinear acoustics are still unexplored. The strong absorption, increasing about linearly with frequency, found in most marine sediments and the occurrence of velocity dispersion by some marine sediments restrict the number of nonlinear acoustic test methods traditionally...
Blehm, Benjamin H; Devine, Alexus; Staunton, Jack R; Tanner, Kandice
2016-03-01
Variation in matrix elasticity has been shown to determine cell fate in both differentiation and development of malignant phenotype. The tissue microenvironment provides complex biochemical and biophysical signals in part due to the architectural heterogeneities found in extracellular matrices (ECMs). Three dimensional cell cultures can partially mimic in vivo tissue architecture, but to truly understand the role of viscoelasticity on cell fate, we must first determine in vivo tissue mechanical properties to improve in vitro models. We employed Active Microrheology by Optical Trapping InVivo (AMOTIV), using in situ calibration to measure in vivo zebrafish tissue mechanics. Previously used trap calibration methods overestimate complex moduli by ∼2-20 fold compared to AMOTIV. Applying differential microscale stresses and strains showed that hyaluronic acid (HA) gels display semi-flexible polymer behavior, while laminin-rich ECM hydrogels display flexible polymer behavior. In contrast, zebrafish tissues displayed different moduli at different stresses, with higher power law exponents at lower stresses, indicating that living tissue has greater stress dependence than the 3D hydrogels examined. To our knowledge, this work is the first vertebrate tissue rheological characterization performed in vivo. Our fundamental observations are important for the development and refinement of in vitro platforms. PMID:26773661
Xu, Zhen; Yin, Min; Sun, Jing; Ding, Guqiao; Lu, Linfeng; Chang, Paichun; Chen, Xiaoyuan; Li, Dongdong
2016-03-01
Micropatterned TiO2 nanorods (TiO2NRs) via three-dimensional (3D) geometry engineering in both microscale and nanoscale decorated with graphene quantum dots (GQDs) have been demonstrated successfully. First, micropillar (MP) and microcave (MC) arrays of anatase TiO2 films are obtained through the sol-gel based thermal nanoimprinting method. Then they are employed as seed layers in hydrothermal growth to fabricate the 3D micropillar/microcave arrays of rutile TiO2NRs (NR), which show much-improved photoelectrochemical water-splitting performance than the TiO2NRs grown on flat seed layer. The zero-dimensional GQDs are sequentially deposited onto the surfaces of the microscale patterned nanorods. Owing to the fast charge separation that resulted from the favorable band alignment of the GQDs and rutile TiO2, the MP-NR-GQDs electrode achieves a photocurrent density up to 2.92 mA cm-2 under simulated one-sun illumination. The incident-photon-to-current-conversion efficiency (IPCE) value up to 72% at 370 nm was achieved on the MP-NR-GQDs electrode, which outperforms the flat-NR counterpart by 69%. The IPCE results also imply that the improved photocurrent mainly benefits from the distinctly enhanced ultraviolet response. The work provides a cost-effective and flexible pathway to develop periodic 3D micropatterned photoelectrodes and is promising for the future deployment of high performance optoelectronic devices.
Directory of Open Access Journals (Sweden)
Alla Dikhtiarenko
2016-02-01
Full Text Available A series of 3D oxalate-bridged ruthenium-based coordination polymers with the formula of {[ZII(bpy3][MIRu(C2O43]}n (ZII = Zn2+ (1, Cu2+ (3, 4, Ru2+ (5, 6, Os2+ (7, 8; MI = Li+, Na+; bpy = 2,2’-bipyridine and {[ZnII(bpy3](H2O[LiRu(C2O43]}n (2 has been synthesized at room temperature through a self-assembly reaction in aqueous media and characterized by single-crystal and powder X-ray diffraction, elemental analysis, infrared and diffuse reflectance UV–Vis spectroscopy and thermogravimetric analysis. The crystal structures of all compounds comprise chiral 3D honeycomb-like polymeric nets of the srs-type, which possess triangular anionic cages where [ZII(bpy3]2+ cationic templates are selectively embedded. Structural analysis reveals that the electronic configuration of the cationic guests is affected by electrostatic interaction with the anionic framework. Moreover, the MLCT bands gaps values for 1–8 can be tuned in a rational way by judicious choice of [ZII(bpy3]2+ guests. The 3D host-guest polymeric architectures can be used as self-supported heterogeneous photocatalysts for the reductive splitting of water, exhibiting photocatalytic activity for the evolution of H2 under UV light irradiation.
3-D observations of a red tide event in the offshore water along the western Guangdong coast
Institute of Scientific and Technical Information of China (English)
XIE Lingling; QI Yiquan; CHEN Qingxiang; HU Jianyu; ZHANG Shuwen; YI Xiaofei; CHEN Fajin; DENG Rui; DENG Xiaodong; WANG Jing
2015-01-01
From November 24 to 26, 2014, a red tide event occurred in the offshore water off the Hailing Island located at the western Guangdong coast. The red tide appeared as pink strips distributed within 3 km in the offshore water and extended for about 10 km along the shoreline. During the flood tide, the pink seawater rushed to the beach with breaking waves, forming foam strips on the beach. Guangdong Province Key Laboratory for Coastal Ocean Variation and Disaster Prediction Technologies, Guangdong Ocean University, emergently responded to the event and organized three-dimensional observations from the air, onboard and on beach. The preliminary analyses of the cruise data and water samples indicate that the event was induced by non-toxicNoctiluca scintillans, of which the concentration reaches as high as 4 200 cells/L near the surface and 2 600 cells/L at the bottom.
Li, Y.; Acharya, K.; Chen, D.; Stone, M.; Yu, Z.; Young, M.; Zhu, J.; Shafer, D. S.; Warwick, J. J.
2009-12-01
Sustained drought in the western United States since 2000 has led to a significant drop (about 35 meters) in the water level of Lake Mead, the largest reservoir by volume in United States. The drought combined with rapid urban development in southern Nevada and emergence of invasive species has threatened the water quality and ecological processes in Lake Mead. A three-dimensional hydrodynamic model, Environmental Fluid Dynamics Code (EFDC), was applied to investigate lake circulation and temperature stratification in parts of Lake Mead (Las Vegas Bay and Boulder Basin) under changing water levels. Besides the inflow from Las Vegas Wash and the Colorado River, the model considered atmospheric changes as well as the boundary conditions restricted by the operation of Hoover Dam. The model was calibrated and verified by using observed data including water level, velocity, and temperature from 2003 and 2005. The model was applied to study the hydrodynamic processes at water level 366.8 m (year 2000) and at water level 338.2 m (year 2008). The high-stage simulation described the pre-drought lake hydrodynamic processes while the low-stage simulation highlighted the drawdown impact on such processes. The results showed that both inflow and wind-driven mixing process played major roles in the thermal stratification and lake circulation in both cases. However, the atmospheric boundary played a more important role than inflow temperature on thermal stratification of Lake Mead during water level decline. Further, the thermal stratification regime and flow circulation pattern in shallow lake regions (e.g.., the Boulder Basin area) were most impacted. The temperature of the lake at the high-stage was more sensitive to inflow temperatures than at low-stage. Furthermore, flow velocities decreased with the decreasing water level due to reduction in wind impacts, particularly in shallow areas of the lake. Such changes in temperature and lake current due to present drought have a
Castellanza, R.; Orlandi, G. M.; di Prisco, C.; Frigerio, G.; Flessati, L.; Fernandez Merodo, J. A.; Agliardi, F.; Grisi, S.; Crosta, G. B.
2015-09-01
After the abandonment occurred in the '70s, the mining system (rooms and pillars) located in S. Lazzaro di Savena (BO, Italy), grown on three levels with the method rooms and pillars, has been progressively more and more affected by degradation processes due to water infiltration. The mine is located underneath a residential area causing significant concern to the local municipality. On the basis of in situ surveys, laboratory and in situ geomechanical tests, some critical scenarios were adopted in the analyses to simulate the progressive collapse of pillars and of roofs in the most critical sectors of the mine. A first set of numerical analyses using 3D geotechnical FEM codes were performed to predict the extension of the subsidence area and its interaction with buildings. Secondly 3D CFD analyses were used to evaluated the amount of water that could be eventually ejected outside the mine and eventually flooding the downstream village. The predicted extension of the subsidence area together with the predicted amount of the ejected water have been used to design possible remedial measurements.
Effects of model sensitivity and nonlinearity on nonlinear regression of ground water flow
Yager, R.M.
2004-01-01
Nonlinear regression is increasingly applied to the calibration of hydrologic models through the use of perturbation methods to compute the Jacobian or sensitivity matrix required by the Gauss-Newton optimization method. Sensitivities obtained by perturbation methods can be less accurate than those obtained by direct differentiation, however, and concern has arisen that the optimal parameter values and the associated parameter covariance matrix computed by perturbation could also be less accurate. Sensitivities computed by both perturbation and direct differentiation were applied in nonlinear regression calibration of seven ground water flow models. The two methods gave virtually identical optimum parameter values and covariances for the three models that were relatively linear and two of the models that were relatively nonlinear, but gave widely differing results for two other nonlinear models. The perturbation method performed better than direct differentiation in some regressions with the nonlinear models, apparently because approximate sensitivities computed for an interval yielded better search directions than did more accurately computed sensitivities for a point. The method selected to avoid overshooting minima on the error surface when updating parameter values with the Gauss-Newton procedure appears for nonlinear models to be more important than the method of sensitivity calculation in controlling regression convergence.
Subbaraman, Ram; Tripkovic, Dusan; Chang, Kee-Chul; Strmcnik, Dusan; Paulikas, Arvydas P.; Hirunsit, Pussana; Chan, Maria; Greeley, Jeff; Stamenkovic, Vojislav; Markovic, Nenad M.
2012-06-01
Design and synthesis of materials for efficient electrochemical transformation of water to molecular hydrogen and of hydroxyl ions to oxygen in alkaline environments is of paramount importance in reducing energy losses in water-alkali electrolysers. Here, using 3d-M hydr(oxy)oxides, with distinct stoichiometries and morphologies in the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) regions, we establish the overall catalytic activities for these reaction as a function of a more fundamental property, a descriptor, OH-M2+δ bond strength (0 ≤ δ ≤ 1.5). This relationship exhibits trends in reactivity (Mn OER) or the water dissociation product (for the HER). The successful identification of these electrocatalytic trends provides the foundation for rational design of ‘active sites’ for practical alkaline HER and OER electrocatalysts.
DEFF Research Database (Denmark)
Tournay, Bruno; Rüdiger, Bjarne
2006-01-01
3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s.......3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s....
International Nuclear Information System (INIS)
Determining the distribution of fluids in porous sedimentary rocks is of great importance in many geological fields. However, this is not straightforward, especially in the case of complex sedimentary rocks like limestone, where a multidisciplinary approach is often needed to capture its broad, multimodal pore size distribution and complex pore geometries. This paper focuses on the porosity and fluid distribution in two varieties of Massangis limestone, a widely used natural building stone from the southeast part of the Paris basin (France). The Massangis limestone shows locally varying post-depositional alterations, resulting in different types of pore networks and very different water distributions within the limestone. Traditional techniques for characterizing the porosity and pore size distribution are compared with state-of-the-art neutron radiography and X-ray computed microtomography to visualize the distribution of water inside the limestone at different imbibition conditions. X-ray computed microtomography images have the great advantage to non-destructively visualize and analyze the pore space inside of a rock, but are often limited to the larger macropores in the rock due to resolution limitations. In this paper, differential imaging is successfully applied to the X-ray computed microtomography images to obtain sub-resolution information about fluid occupancy and to map the fluid distribution in three dimensions inside the scanned limestone samples. The detailed study of the pore space with differential imaging allows understanding the difference in the water uptake behavior of the limestone, a primary factor that affects the weathering of the rock. - Highlights: • The water distribution in a limestone was visualized in 3D with micro-CT. • Differential imaging allowed to map both macro and microporous zones in the rock. • The 3D study of the pore space clarified the difference in water uptake behavior. • Trapped air is visualized in the moldic
Energy Technology Data Exchange (ETDEWEB)
Boone, M.A., E-mail: marijn.boone@ugent.be [Department of Geology and Soil Science—UGCT, Ghent University, Krijgslaan 281 S8, 9000 Ghent (Belgium); Unit Sustainable Materials Management, VITO, Boerentang 200, 2400 Mol (Belgium); De Kock, T.; Bultreys, T. [Department of Geology and Soil Science—UGCT, Ghent University, Krijgslaan 281 S8, 9000 Ghent (Belgium); De Schutter, G. [Magnel Laboratory for Concrete Research, Department of Structural Engineering, Ghent University, Technologiepark-Zwijnaarde 904, 9052 Ghent (Belgium); Vontobel, P. [Spallation Neutron Source Division, Paul Scherrer Institute (PSI), 5232 Villigen (Switzerland); Van Hoorebeke, L. [Department of Physics and Astronomy—UGCT, Ghent University, Proeftuinstraat 86, 9000 Ghent (Belgium); Cnudde, V. [Department of Geology and Soil Science—UGCT, Ghent University, Krijgslaan 281 S8, 9000 Ghent (Belgium)
2014-11-15
Determining the distribution of fluids in porous sedimentary rocks is of great importance in many geological fields. However, this is not straightforward, especially in the case of complex sedimentary rocks like limestone, where a multidisciplinary approach is often needed to capture its broad, multimodal pore size distribution and complex pore geometries. This paper focuses on the porosity and fluid distribution in two varieties of Massangis limestone, a widely used natural building stone from the southeast part of the Paris basin (France). The Massangis limestone shows locally varying post-depositional alterations, resulting in different types of pore networks and very different water distributions within the limestone. Traditional techniques for characterizing the porosity and pore size distribution are compared with state-of-the-art neutron radiography and X-ray computed microtomography to visualize the distribution of water inside the limestone at different imbibition conditions. X-ray computed microtomography images have the great advantage to non-destructively visualize and analyze the pore space inside of a rock, but are often limited to the larger macropores in the rock due to resolution limitations. In this paper, differential imaging is successfully applied to the X-ray computed microtomography images to obtain sub-resolution information about fluid occupancy and to map the fluid distribution in three dimensions inside the scanned limestone samples. The detailed study of the pore space with differential imaging allows understanding the difference in the water uptake behavior of the limestone, a primary factor that affects the weathering of the rock. - Highlights: • The water distribution in a limestone was visualized in 3D with micro-CT. • Differential imaging allowed to map both macro and microporous zones in the rock. • The 3D study of the pore space clarified the difference in water uptake behavior. • Trapped air is visualized in the moldic
Directory of Open Access Journals (Sweden)
Roberto Rinaldi
2014-12-01
Full Text Available After an experimental phase of many years, 3D filming is now effective and successful. Improvements are still possible, but the film industry achieved memorable success on 3D movie’s box offices due to the overall quality of its products. Special environments such as space (“Gravity” and the underwater realm look perfect to be reproduced in 3D. “Filming in space” was possible in “Gravity” using special effects and computer graphic. The underwater realm is still difficult to be handled. Underwater filming in 3D was not that easy and effective as filming in 2D, since not long ago. After almost 3 years of research, a French, Austrian and Italian team realized a perfect tool to film underwater, in 3D, without any constrains. This allows filmmakers to bring the audience deep inside an environment where they most probably will never have the chance to be.
Several Dynamical Properties for a Nonlinear Shallow Water Equation
Directory of Open Access Journals (Sweden)
Ls Yong
2014-01-01
Full Text Available A nonlinear third order dispersive shallow water equation including the Degasperis-Procesi model is investigated. The existence of weak solutions for the equation is proved in the space L1(R∩BV (R under certain assumptions. The Oleinik type estimate and L2N(R (N is a natural number estimate for the solution are obtained.
Nonlinear Dielectric Response of Water Treed XLPE Cable Insulation
Energy Technology Data Exchange (ETDEWEB)
Hvidsten, Sverre
1999-07-01
Condition assessment of XLPE power cables is becoming increasingly important for the utilities, due to a large number of old cables in service with high probability of failure caused by water tree degradation. The commercial available techniques are generally based upon measurements of the dielectric response, either by time (polarisation/depolarisation current or return voltage) or frequency domain measurements. Recently it has been found that a high number of water trees in XLPE insulated cables causes the dielectric response to increase more than linearly with increasing test voltage. This nonlinear feature of water tree degraded XLPE insulation has been suggested to be of a great importance, both for diagnostic purposes, and for fundamental understanding of the water tree phenomenon itself. The main purpose of this thesis have been to study the nonlinear feature of the dielectric response measured on watertreed XLPE insulation. This has been performed by dielectric response measurements in both time and frequency domain, numerical calculations of losses of simplified water tree models, and fmally water content and water permeation measurements on single water trees. The dielectric response measurements were performed on service aged cable samples and laboratory aged Rogowski type objects. The main reason for performing laboratory ageing was to facilitate diagnostic testing as a function of ageing time of samples containing mainly vented water trees. A new method, based upon inserting NaC1 particles at the interface between the upper semiconductive screen and the insulation, was found to successfully enhance initiation and growth of vented water trees. AC breakdown strength testing show that it is the vented water trees that reduce the breakdown level of both the laboratory aged test objects and service aged cable samples. Vented water treeing was found to cause the dielectric response to become nonlinear at a relatively low voltage level. However, the measured
Bai, Hongwei; Liu, Lei; Liu, Zhaoyang; Sun, Darren Delai
2013-08-01
Hierarchical 3D dendritic TiO2 nanospheres building with ultralong 1D TiO2 nanoribbon/wires were hydrothermally synthesized via controlling the hydrolysis rate of precursor by EG. It is found that the EG and Cl(-) in the precursor solution are the dominant factors in controlling the hydrolysis rate of Ti(4+) from TTIP, and the growing direction of 1D TiO2, respectively. Through optimizing the molar ratio of TTIP:EG, hierarchical 3D dendritic TiO2 nanospheres building with long 1D nanoribbons (TiO2 nanoribbon spheres) were synthesized at a molar ratio of TTIP:EG = 1:2. And hierarchical 3D dendritic TiO2 nanospheres building with even longer and thinner 1D TiO2 nanowires (TiO2 nanowire spheres) were synthesized via further reducing the hydrolysis rate of Ti(4+) by increasing the content of EG at a molar ratio of TTIP:EG = 1:3. The hierarchical 3D dendritic TiO2 nanoribbon/wire spheres were well characterized by a variety of techniques such as FESEM, TEM, XRD, N2 adsorption/desorption, UV-vis spectra, etc. A "win-win" strategy was developed to integrate the hierarchical TiO2 nanoribbon/wire spheres and membrane for high performance photocatalytic membrane water purification through maximizing the advantages of TiO2 photocatalysis and membrane, while minimizing their disadvantages. Hierarchical TiO2 nanoribbon/wire spheres exhibited high performance for water purification in terms of high flux, low fouling, high removal rate of pollutants, and long lifespan of membrane, both in concurrent dead end and cross flow membrane system. The rationale behind this phenomenon lies in that the hierarchical TiO2 nanoribbon/wire spheres in the concurrent system possess the advantages of mitigating the membrane fouling via photocatalytic degrading the organic pollutants relying on their high photocatalytic activities; and keeping high water flux owing to the porous functional layer favorable for water pass through. The experimental results demonstrated that the hierarchical TiO2
Indian Academy of Sciences (India)
Sujit K Ghosh; Parimal K Bharadwaj
2005-01-01
Reaction of pyridine-2,4,6-tricarboxylic acid (ptcH3) with Co(NO3)2.6H2O in presence of 4,4'-bipyridine (4,4'-bpy) in water at room temperature results in the formation of {[Co2(ptcH)2(4,4'-bpy)(H2O)4].2H2O}, (1). The solid-state structure reveals that the compound is a dimeric Co(II) complex assembled to a 3D architecture via an intricate intra- and inter-molecular hydrogen-bonding interactions involving water molecules and carboxylate oxygens of the ligand ptcH2-. Crystal data: monoclinic, space group 21/, = 11.441(5) Å, = 20.212(2) Å, = 7.020(5) Å, = 103.77(5)°, = 1576.7(1) Å3, = 2, 1 = 0.0363, 2 = 0.0856, = 1.000.
International Nuclear Information System (INIS)
TRAB-3D is a reactor dynamics code with three-dimensional neutronics coupled to core and circuit thermal-hydraulics. The code, entirely developed at VTT, can be used in transient and accident analyses of boiling (BWR) and pressurized water (PWR) reactors with rectangular fuel bundle geometry. The validation history of TRAB-3D includes calculation of international benchmark exercises, as well as comparisons with measured data from real plant transients. The most recent validation case is a load rejection test performed at the Olkiluoto 1 nuclear power plant in 1998 in connection with the power uprating project. The fact that there is local power measurement data available from this test makes it a suitable case for three-dimensional core model validation. The agreement between the results of the TRAB-3D calculation and the measurements is very good. (orig.)
Time Resolved 3-D Mapping of Atmospheric Aerosols and Clouds During the Recent ARM Water Vapor IOP
Schwemmer, Geary; Miller, David; Wilkerson, Thomas; Andrus, Ionio; Starr, David OC. (Technical Monitor)
2001-01-01
The HARLIE lidar was deployed at the ARM SGP site in north central Oklahoma and recorded over 100 hours of data on 16 days between 17 September and 6 October 2000 during the recent Water Vapor Intensive Operating Period (IOP). Placed in a ground-based trailer for upward looking scanning measurements of clouds and aerosols, HARLIE provided a unique record of time-resolved atmospheric backscatter at 1 micron wavelength. The conical scanning lidar images atmospheric backscatter along the surface of an inverted 90 degree (full angle) cone up to an altitude of 20 km. 360 degree scans having spatial resolutions of 20 meters in the vertical and 1 degree in azimuth were obtained every 36 seconds. Various boundary layer and cloud parameters are derived from the lidar data, as well as atmospheric wind vectors where there is Sufficiently resolved structure that can be traced moving through the surface described by the scanning laser beam. Comparison of HARLIE measured winds with radiosonde measured winds validates the accuracy of this new technique for remotely measuring atmospheric winds without Doppler information.
Valenza, Enrico
2015-01-01
This book is aimed at the professionals that already have good 3D CGI experience with commercial packages and have now decided to try the open source Blender and want to experiment with something more complex than the average tutorials on the web. However, it's also aimed at the intermediate Blender users who simply want to go some steps further.It's taken for granted that you already know how to move inside the Blender interface, that you already have 3D modeling knowledge, and also that of basic 3D modeling and rendering concepts, for example, edge-loops, n-gons, or samples. In any case, it'
DYNA3D2000*, Explicit 3-D Hydrodynamic FEM Program
International Nuclear Information System (INIS)
1 - Description of program or function: DYNA3D2000 is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding, single surface contact and automatic contact generation. 2 - Method of solution: Discretization of a continuous model transforms partial differential equations into algebraic equations. A numerical solution is then obtained by solving these algebraic equations through a direct time marching scheme. 3 - Restrictions on the complexity of the problem: Recent software improvements have eliminated most of the user identified limitations with dynamic memory allocation and a very large format description that has pushed potential problem sizes beyond the reach of most users. The dominant restrictions remain in code execution speed and robustness, which the developers constantly strive to improve
DEFF Research Database (Denmark)
Hundebøl, Jesper
wave of new building information modelling tools demands further investigation, not least because of industry representatives' somewhat coarse parlance: Now the word is spreading -3D digital modelling is nothing less than a revolution, a shift of paradigm, a new alphabet... Research qeustions. Based...... on empirical probes (interviews, observations, written inscriptions) within the Danish construction industry this paper explores the organizational and managerial dynamics of 3D Digital Modelling. The paper intends to - Illustrate how the network of (non-)human actors engaged in the promotion (and arrest) of 3......D Modelling (in Denmark) stabilizes - Examine how 3D Modelling manifests itself in the early design phases of a construction project with a view to discuss the effects hereof for i.a. the management of the building process. Structure. The paper introduces a few, basic methodological concepts...
Westerlund, Antti; Tuomi, Laura
2016-06-01
3D hydrodynamic models often produce errors in the depth of the mixed layer and the vertical density structure. We used the 3D hydrodynamic model NEMO to investigate the effect of vertical turbulence parameterisations on seasonal temperature dynamics in the Bothnian Sea, Baltic Sea for the years 2012 and 2013. We used vertical profiles from new shallow-water Argo floats, operational in the area since 2012, to validate our model. We found that NEMO was able to reproduce the general features of the seasonal temperature variations in the study area, when meteorological forcing was accurate. The k-ε and k-ω schemes were selected for a more detailed analysis. Both schemes showed clear differences, but neither proved superior. While sea surface temperature was better simulated with the k-ω scheme, thermocline depth was clearly better with the k-ε scheme. We investigated the effect of wave-breaking on the mixing of the surface layer. The Craig and Banner parameterisation clearly improved the representation of thermocline depth. However, further tuning of the mixing parameterisations for the Baltic Sea is needed to better simulate the vertical temperature structure. We found the autonomous Baltic Sea Argo floats valuable for model validation and performance evaluation.
Energy Technology Data Exchange (ETDEWEB)
Zhu, Wenquan; Wan, Long; Zhang, Chen; Gao, Yikun; Zheng, Xin; Jiang, Tongying; Wang, Siling, E-mail: silingwang@syphu.edu.cn
2014-01-01
The purposes of the present work were to explore the potential application of 3D face-centered cubic mesoporous silica (FMS) with pore size of 16.0 nm as a delivery system for poorly soluble drugs and investigate the effect of pore size on the dissolution rate. FMS with different pore sizes (16.0, 6.9 and 3.7 nm) was successfully synthesized by using Pluronic block co-polymer F127 as a template and adjusting the reaction temperatures. Celecoxib (CEL), which is a BCS class II drug, was used as a model drug and loaded into FMS with different pore sizes by the solvent deposition method at a drug–silica ratio of 1:4. Characterization using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transformation infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), nitrogen adsorption, X-ray diffraction (XRD), and differential scanning calorimetry (DSC) was used to systematically investigate the drug loading process. The results obtained showed that CEL was in a non-crystalline state after incorporation of CEL into the pores of FMS-15 with pore size of 16.0 nm. In vitro dissolution was carried out to demonstrate the effects of FMS with different pore sizes on the release of CEL. The results obtained indicated that the dissolution rate of CEL from FMS-15 was significantly enhanced compared with pure CEL. This could be explained by supposing that CEL encountered less diffusion resistance and its crystallinity decreased due to the large pore size of 16.0 nm and the nanopore channels of FMS-15. Moreover, drug loading and pore size both play an important role in enhancing the dissolution properties for the poorly water-soluble drugs. As the pore size between 3.7 and 16.0 nm increased, the dissolution rate of CEL from FMS gradually increased. - Highlights: • Exploitation of 3D cubic mesoporous silica (16 nm) as a carrier was completed. • The release rate of CEL increased on increasing the pore size of carriers. • The crystallinity
Lively, Michael
2010-01-01
Professional Papervision3D describes how Papervision3D works and how real world applications are built, with a clear look at essential topics such as building websites and games, creating virtual tours, and Adobe's Flash 10. Readers learn important techniques through hands-on applications, and build on those skills as the book progresses. The companion website contains all code examples, video step-by-step explanations, and a collada repository.
Advances in numerical simulation of nonlinear water waves
Ma, Qingwei
2014-01-01
Most of the Earth's surface is covered by water. Our everyday lives and activities are affected by water waves in oceans, such as the tsunami that occurred in the Indian Ocean on 26 December 2004. This indicates how important it is for us to fully understand water waves, in particular the very large ones. One way to do so is to perform numerical simulation based on the nonlinear theory. Considerable research advances have been made in this area over the past decade by developing various numerical methods and applying them to emerging problems; however, until now there has been no comprehensive
Voss, Clifford I.; Provost, A.M.
2002-01-01
SUTRA (Saturated-Unsaturated Transport) is a computer program that simulates fluid movement and the transport of either energy or dissolved substances in a subsurface environment. This upgraded version of SUTRA adds the capability for three-dimensional simulation to the former code (Voss, 1984), which allowed only two-dimensional simulation. The code employs a two- or three-dimensional finite-element and finite-difference method to approximate the governing equations that describe the two interdependent processes that are simulated: 1) fluid density-dependent saturated or unsaturated ground-water flow; and 2) either (a) transport of a solute in the ground water, in which the solute may be subject to: equilibrium adsorption on the porous matrix, and both first-order and zero-order production or decay; or (b) transport of thermal energy in the ground water and solid matrix of the aquifer. SUTRA may also be used to simulate simpler subsets of the above processes. A flow-direction-dependent dispersion process for anisotropic media is also provided by the code and is introduced in this report. As the primary calculated result, SUTRA provides fluid pressures and either solute concentrations or temperatures, as they vary with time, everywhere in the simulated subsurface system. SUTRA flow simulation may be employed for two-dimensional (2D) areal, cross sectional and three-dimensional (3D) modeling of saturated ground-water flow systems, and for cross sectional and 3D modeling of unsaturated zone flow. Solute-transport simulation using SUTRA may be employed to model natural or man-induced chemical-species transport including processes of solute sorption, production, and decay. For example, it may be applied to analyze ground-water contaminant transport problems and aquifer restoration designs. In addition, solute-transport simulation with SUTRA may be used for modeling of variable-density leachate movement, and for cross sectional modeling of saltwater intrusion in
International Nuclear Information System (INIS)
A 3D lattice Boltzmann model is developed and used to calculate the water and gas permeabilities of model cement pastes at different degrees of water saturation. In addition to permeable micron-sized capillary pores and impermeable solid inclusions, the lattice Boltzmann model comprises weakly-permeable nano-porous calcium silicate hydrate (C-S-H). The multi-scale problem is addressed by using an effective media approach based on the idea of partial bounce-back. The model cement paste microstructures are generated with the platform µic. The critical parameters, C-S-H density and capillary porosity, are taken from 1H nuclear magnetic resonance relaxation analysis. The distribution of water and air is defined according to the Kelvin–Laplace law. It is found that when the capillary porosity is completely saturated with a fluid (either water or gas), the calculated intrinsic permeability is in good agreement with measurements of gas permeability on dried samples (10−17–10−16 m2). However, as the water saturation is reduced, the calculated apparent water permeability decreases and spans the full range of experimentally measured values (10−16–10−22 m2). It is concluded that the degree of capillary water saturation is the major cause for variation in experimental permeability measurements. It is further concluded that the role of the weakly-permeable C-S-H, omitted in earlier modelling studies, is critical for determining the permeability at low capillary saturation. (paper)
INGRID, 3-D Mesh Generator for Program DYNA3D and NIKE3D and FACET and TOPAZ3D
International Nuclear Information System (INIS)
1 - Description of program or function: INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D (NESC 9909), NIKE3D (NESC 9725), FACET, and TOPAZ3D. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surface equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The most important new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition. 2 - Method of solution: Geometries are described primarily using the index space notation of the INGEN program (NESC 975) with an additional type of notation, index progression. Index progressions provide a concise and simple method for describing complex structures; the concept was developed to facilitate defining multiple regions in index space. Rather than specifying the minimum and maximum indices for a region, one specifies the progression of indices along the I, J and K directions, respectively. The index progression method allows the analyst to describe most geometries including nodes and elements with roughly the same amount of input as a solids modeler
A Stochastic Nonlinear Water Wave Model for Efficient Uncertainty Quantification
Bigoni, Daniele; Eskilsson, Claes
2014-01-01
A major challenge in next-generation industrial applications is to improve numerical analysis by quantifying uncertainties in predictions. In this work we present a stochastic formulation of a fully nonlinear and dispersive potential flow water wave model for the probabilistic description of the evolution waves. This model is discretized using the Stochastic Collocation Method (SCM), which provides an approximate surrogate of the model. This can be used to accurately and efficiently estimate the probability distribution of the unknown time dependent stochastic solution after the forward propagation of uncertainties. We revisit experimental benchmarks often used for validation of deterministic water wave models. We do this using a fully nonlinear and dispersive model and show how uncertainty in the model input can influence the model output. Based on numerical experiments and assumed uncertainties in boundary data, our analysis reveals that some of the known discrepancies from deterministic simulation in compa...
Energy Technology Data Exchange (ETDEWEB)
Subbaraman, R.; Tripkovic, D.; Chang, K-C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. (Center for Nanoscale Materials); ( MSD); ( NE)
2012-01-01
Design and synthesis of materials for efficient electrochemical transformation of water to molecular hydrogen and of hydroxyl ions to oxygen in alkaline environments is of paramount importance in reducing energy losses in water-alkali electrolysers. Here, using 3d-M hydr(oxy)oxides, with distinct stoichiometries and morphologies in the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) regions, we establish the overall catalytic activities for these reaction as a function of a more fundamental property, a descriptor, OH-M{sup 2+{delta}} bond strength (0 {le} {delta} {le} 1.5). This relationship exhibits trends in reactivity (Mn < Fe < Co < Ni), which is governed by the strength of the OH-M{sup 2+{delta}} energetic (Ni < Co < Fe < Mn). These trends are found to be independent of the source of the OH, either the supporting electrolyte (for the OER) or the water dissociation product (for the HER). The successful identification of these electrocatalytic trends provides the foundation for rational design of 'active sites' for practical alkaline HER and OER electrocatalysts.
3D Spectroscopic Instrumentation
Bershady, Matthew A
2009-01-01
In this Chapter we review the challenges of, and opportunities for, 3D spectroscopy, and how these have lead to new and different approaches to sampling astronomical information. We describe and categorize existing instruments on 4m and 10m telescopes. Our primary focus is on grating-dispersed spectrographs. We discuss how to optimize dispersive elements, such as VPH gratings, to achieve adequate spectral resolution, high throughput, and efficient data packing to maximize spatial sampling for 3D spectroscopy. We review and compare the various coupling methods that make these spectrographs ``3D,'' including fibers, lenslets, slicers, and filtered multi-slits. We also describe Fabry-Perot and spatial-heterodyne interferometers, pointing out their advantages as field-widened systems relative to conventional, grating-dispersed spectrographs. We explore the parameter space all these instruments sample, highlighting regimes open for exploitation. Present instruments provide a foil for future development. We give an...
DEFF Research Database (Denmark)
Halskov, Kim; Johansen, Stine Liv; Bach Mikkelsen, Michelle
2014-01-01
Three-dimensional projection installations are particular kinds of augmented spaces in which a digital 3-D model is projected onto a physical three-dimensional object, thereby fusing the digital content and the physical object. Based on interaction design research and media studies, this article...... contributes to the understanding of the distinctive characteristics of such a new medium, and identifies three strategies for designing 3-D projection installations: establishing space; interplay between the digital and the physical; and transformation of materiality. The principal empirical case, From...... Fingerplan to Loop City, is a 3-D projection installation presenting the history and future of city planning for the Copenhagen area in Denmark. The installation was presented as part of the 12th Architecture Biennale in Venice in 2010....
Directory of Open Access Journals (Sweden)
Francisco R. Feito Higueruela
2010-04-01
Full Text Available Applications of Geographical Information Systems on several Archeology fields have been increasing during the last years. Recent avances in these technologies make possible to work with more realistic 3D models. In this paper we introduce a new paradigm for this system, the GIS Thetrahedron, in which we define the fundamental elements of GIS, in order to provide a better understanding of their capabilities. At the same time the basic 3D characteristics of some comercial and open source software are described, as well as the application to some samples on archeological researchs
Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran
2016-03-01
We study the conformal bootstrap for a 4-point function of fermions in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge C T . We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N . We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.
DEFF Research Database (Denmark)
Villaume, René Domine; Ørstrup, Finn Rude
2002-01-01
Projektet undersøger potentialet for interaktiv 3D design via Internettet. Arkitekt Jørn Utzons projekt til Espansiva blev udviklet som et byggesystem med det mål, at kunne skabe mangfoldige planmuligheder og mangfoldige facade- og rumudformninger. Systemets bygningskomponenter er digitaliseret som...... 3D elementer og gjort tilgængelige. Via Internettet er det nu muligt at sammenstille og afprøve en uendelig række bygningstyper som systemet blev tænkt og udviklet til....
Kotek, L.
2015-01-01
This paper is about 3D scan of plaster dental casts. The main aim of the work is a hardware and software proposition of 3D scan system for scanning of dental casts. There were used camera, projector and rotate table for this scanning system. Surface triangulation was used, taking benefits of projections of structured light on object, which is being scanned. The rotate table is controlled by PC. The camera, projector and rotate table are synchronized by PC. Controlling of stepper motor is prov...
Ms. Swapnali R. Ghadge
2013-01-01
In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot o...
Popov, Anton; Kaus, Boris
2015-04-01
This software project aims at bringing the 3D lithospheric deformation modeling to a qualitatively different level. Our code LaMEM (Lithosphere and Mantle Evolution Model) is based on the following building blocks: * Massively-parallel data-distributed implementation model based on PETSc library * Light, stable and accurate staggered-grid finite difference spatial discretization * Marker-in-Cell pedictor-corector time discretization with Runge-Kutta 4-th order * Elastic stress rotation algorithm based on the time integration of the vorticity pseudo-vector * Staircase-type internal free surface boundary condition without artificial viscosity contrast * Geodynamically relevant visco-elasto-plastic rheology * Global velocity-pressure-temperature Newton-Raphson nonlinear solver * Local nonlinear solver based on FZERO algorithm * Coupled velocity-pressure geometric multigrid preconditioner with Galerkin coarsening Staggered grid finite difference, being inherently Eulerian and rather complicated discretization method, provides no natural treatment of free surface boundary condition. The solution based on the quasi-viscous sticky-air phase introduces significant viscosity contrasts and spoils the convergence of the iterative solvers. In LaMEM we are currently implementing an approximate stair-case type of the free surface boundary condition which excludes the empty cells and restores the solver convergence. Because of the mutual dependence of the stress and strain-rate tensor components, and their different spatial locations in the grid, there is no straightforward way of implementing the nonlinear rheology. In LaMEM we have developed and implemented an efficient interpolation scheme for the second invariant of the strain-rate tensor, that solves this problem. Scalable efficient linear solvers are the key components of the successful nonlinear problem solution. In LaMEM we have a range of PETSc-based preconditioning techniques that either employ a block factorization of
International Nuclear Information System (INIS)
All of the three exercises of the Organization for Economic Cooperation and Development/Nuclear Regulatory Commission pressurized water reactor main steam line break (PWR MSLB) benchmark were calculated at VTT, the Technical Research Centre of Finland. For the first exercise, the plant simulation with point-kinetic neutronics, the thermal-hydraulics code SMABRE was used. The second exercise was calculated with the three-dimensional reactor dynamics code TRAB-3D, and the third exercise with the combination TRAB-3D/SMABRE. VTT has over ten years' experience of coupling neutronic and thermal-hydraulic codes, but this benchmark was the first time these two codes, both developed at VTT, were coupled together. The coupled code system is fast and efficient; the total computation time of the 100-s transient in the third exercise was 16 min on a modern UNIX workstation. The results of all the exercises are similar to those of the other participants. In order to demonstrate the effect of secondary circuit modeling on the results, three different cases were calculated. In case 1 there is no phase separation in the steam lines and no flow reversal in the aspirator. In case 2 the flow reversal in the aspirator is allowed, but there is no phase separation in the steam lines. Finally, in case 3 the drift-flux model is used for the phase separation in the steam lines, but the aspirator flow reversal is not allowed. With these two modeling variations, it is possible to cover a remarkably broad range of results. The maximum power level reached after the reactor trip varies from 534 to 904 MW, the range of the time of the power maximum being close to 30 s. Compared to the total calculated transient time of 100 s, the effect of the secondary side modeling is extremely important
DEFF Research Database (Denmark)
Hejlesen, Aske K.; Ovesen, Nis
2012-01-01
This paper presents an experimental approach to teaching 3D modelling techniques in an Industrial Design programme. The approach includes the use of tangible free form models as tools for improving the overall learning. The paper is based on lecturer and student experiences obtained through...
DEFF Research Database (Denmark)
Stenholt, Rasmus; Madsen, Claus B.
2011-01-01
Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data...
M.M. Voormolen
2007-01-01
textabstractThree dimensional (3D) echocardiography has recently developed from an experimental technique in the â€™90 towards an imaging modality for the daily clinical practice. This dissertation describes the considerations, implementation, validation and clinical application of a unique
Non-linear analysis in Light Water Reactor design
International Nuclear Information System (INIS)
The results obtained from a scoping study sponsored by the US Department of Energy (DOE) under the Light Water Reactor (LWR) Safety Technology Program at Sandia National Laboratories are presented. Basically, this project calls for the examination of the hypothesis that the use of nonlinear analysis methods in the design of LWR systems and components of interest include such items as: the reactor vessel, vessel internals, nozzles and penetrations, component support structures, and containment structures. Piping systems are excluded because they are being addressed by a separate study. Essentially, the findings were that nonlinear analysis methods are beneficial to LWR design from a technical point of view. However, the costs needed to implement these methods are the roadblock to readily adopting them. In this sense, a cost-benefit type of analysis must be made on the various topics identified by these studies and priorities must be established. This document is the complete report by ANATECH International Corporation
Statistical distribution of nonlinear random wave height in shallow water
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Here we present a statistical model of random wave,using Stokes wave theory of water wave dynamics,as well as a new nonlinear probability distribution function of wave height in shallow water.It is more physically logical to use the wave steepness of shallow water and the factor of shallow water as the parameters in the wave height distribution.The results indicate that the two parameters not only could be parameters of the distribution function of wave height but also could reflect the degree of wave height distribution deviation from the Rayleigh distribution.The new wave height distribution overcomes the problem of Rayleigh distribution that the prediction of big wave is overestimated and the general wave is underestimated.The prediction of small probability wave height value of new distribution is also smaller than that of Rayleigh distribution.The effect of wave steepness in shallow water is similar to that in deep water;but the factor of shallow water lowers the wave height distribution of the general wave with the reduced factor of wave steepness.It also makes the wave height distribution of shallow water more centralized.The results indicate that the new distribution fits the in situ measurements much better than other distributions.
On maximal massive 3D supergravity
Energy Technology Data Exchange (ETDEWEB)
Bergshoeff, Eric A; Rosseel, Jan [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Hohm, Olaf [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Townsend, Paul K, E-mail: E.A.Bergshoeff@rug.n, E-mail: ohohm@mit.ed, E-mail: j.rosseel@rug.n, E-mail: P.K.Townsend@damtp.cam.ac.u [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)
2010-12-07
We construct, at the linearized level, the three-dimensional (3D) N=4 supersymmetric 'general massive supergravity' and the maximally supersymmetric N=8 'new massive supergravity'. We also construct the maximally supersymmetric linearized N=7 topologically massive supergravity, although we expect N=6 to be maximal at the nonlinear level.
On Maximal Massive 3D Supergravity
Bergshoeff, Eric A; Rosseel, Jan; Townsend, Paul K
2010-01-01
We construct, at the linearized level, the three-dimensional (3D) N = 4 supersymmetric "general massive supergravity" and the maximally supersymmetric N = 8 "new massive supergravity". We also construct the maximally supersymmetric linearized N = 7 topologically massive supergravity, although we expect N = 6 to be maximal at the non-linear level.
On maximal massive 3D supergravity
International Nuclear Information System (INIS)
We construct, at the linearized level, the three-dimensional (3D) N=4 supersymmetric 'general massive supergravity' and the maximally supersymmetric N=8 'new massive supergravity'. We also construct the maximally supersymmetric linearized N=7 topologically massive supergravity, although we expect N=6 to be maximal at the nonlinear level.
Westerlund, Antti; Tuomi, Laura
2016-04-01
Vertical mixing is a challenge for ocean models. 3D hydrodynamic models often produce considerable errors in mixed layer depths and vertical temperature structure that can be related to the vertical turbulence parameterisation. These errors can be pronounced in areas with complex hydrography. In the Baltic Sea, for example, there are high horizontal and vertical salinity gradients. Furthermore, thermocline and halocline are located at different depths. This produces stratification conditions challenging for all ocean models. We studied vertical mixing with modelling experiments and new observational data. NEMO 3D ocean model has been set up at Finnish Meteorological Institute (FMI) for the Baltic Sea, based on the NEMO Nordic configuration. The model has been discretized on a Baltic Sea - North Sea grid with 2 nautical mile resolution and 56 vertical layers, using FMI-HIRLAM atmospheric forcing. The observational data for Baltic Sea off-shore areas is sparse and new methods are needed to collect data for model validation and development. FMI has been testing Argo floats in the Baltic Sea since 2011 in order to increase the amount of observed vertical profiles of salinity and temperature. This is the first time Argo floats have been successfully used in the brackish, shallow waters of the Baltic Sea. This new data set is well suited for evaluating the capability of hydrodynamic models to produce the vertical structure of temperature. It provides a time series of profiles from the area of interest with good temporal resolution, showing the structure of temperature in the water column throughout the summer. We found that NEMO was able to reproduce the general features of the seasonal temperature variations in the study area, when meteorological forcing was accurate. We ran the model with different vertical turbulence parameterisations. The k-ɛ and k-ω schemes showed clear differences, but neither proved superior. While sea surface temperature was better simulated
DEFF Research Database (Denmark)
Mohanty, Soumyaranjan; Mantis, Ioannis; Chetan, Aradhya Mallikarjunaiah;
2015-01-01
We present a new scalable and general approach for manufacturing structured pores/channels in 3D polymer based scaffolds. The method involves 3D printing of a sacrificial polyvinyl alcohol (PVA) mould whose geometrical features are designed according to the required vascular channel network...
Klusoň, Jindřich
2010-01-01
Computer animation has a growing importance and application in the world. With expansion of technologies increases quality of the final animation as well as number of 3D animation software. This thesis is currently mapped animation software for creating animation in film, television industry and video games which are advisable users requirements. Of them were selected according to criteria the best - Autodesk Maya 2011. This animation software is unique with tools for creating special effects...
Energy Technology Data Exchange (ETDEWEB)
Berthoud, G.; Crecy, F. de; Duplat, F.; Meignen, R.; Valette, M. [CEA/Grenoble, DRN/DTP, 17 Avenue des Martyrs, 38054 Grenoble Cedex 9 (France)
1998-01-01
This paper presents the <
Nonlinear dynamics of rotating shallow water methods and advances
Zeitlin, Vladimir
2007-01-01
The rotating shallow water (RSW) model is of wide use as a conceptual tool in geophysical fluid dynamics (GFD), because, in spite of its simplicity, it contains all essential ingredients of atmosphere and ocean dynamics at the synoptic scale, especially in its two- (or multi-) layer version. The book describes recent advances in understanding (in the framework of RSW and related models) of some fundamental GFD problems, such as existence of the slow manifold, dynamical splitting of fast (inertia-gravity waves) and slow (vortices, Rossby waves) motions, nonlinear geostrophic adjustment and wa
International Nuclear Information System (INIS)
Highlights: → FIB 3D sectioning has been used for the analysis of cracking in zirconium oxides. → We observe a gradual production of cracks, not a sudden burst of crack nucleation at transition. → The location of cracks near the metal/oxide interface is closely linked to the interface geometry. → Cracks are not generated as a result of the kinetic transition, but may instead play a role in encouraging the transition. → The process by which cracks become connected to the oxidising environment may be critical controlling the corrosion rate. - Abstract: Using FIB sectioning and reconstruction techniques we have performed a quantitative analysis on the microstructure of cracks and the topography of the metal-oxide interface in oxides formed on ZIRLOTM alloys in high-temperature water. The most significant observation is the continuous production of cracks both before and after the transition in kinetics, not a sudden burst of crack nucleation at transition as assumed in the literature. By concluding that cracks are not generated as a result of the transition and are not the primary cause, we suggest that a process by which cracks within the scale become connected to the oxidising environment through interconnected nanoporosity may be critical in controlling the overall rate of oxidation.
Vadez, Vincent; Kholová, Jana; Hummel, Grégoire; Zhokhavets, Uladzimir; Gupta, S K; Hash, C Tom
2015-09-01
In this paper, we describe the thought process and initial data behind the development of an imaging platform (LeasyScan) combined with lysimetric capacity, to assess canopy traits affecting water use (leaf area, leaf area index, transpiration). LeasyScan is based on a novel 3D scanning technique to capture leaf area development continuously, a scanner-to-plant concept to increase imaging throughput and analytical scales to combine gravimetric transpiration measurements. The paper presents how the technology functions, how data are visualised via a web-based interface and how data extraction and analysis is interfaced through 'R' libraries. Close agreement between scanned and observed leaf area data of individual plants in different crops was found (R(2) between 0.86 and 0.94). Similar agreement was found when comparing scanned and observed area of plants cultivated at densities reflecting field conditions (R(2) between 0.80 and 0.96). An example in monitoring plant transpiration by the analytical scales is presented. The last section illustrates some of the early ongoing applications of the platform to target key phenotypes: (i) the comparison of the leaf area development pattern of fine mapping recombinants of pearl millet; (ii) the leaf area development pattern of pearl millet breeding material targeted to different agro-ecological zones; (iii) the assessment of the transpiration response to high VPD in sorghum and pearl millet. This new platform has the potential to phenotype for traits controlling plant water use at a high rate and precision, of critical importance for drought adaptation, and creates an opportunity to harness their genetics for the breeding of improved varieties. PMID:26034130
Hirano, Yoshiyuki; Koshino, Kazuhiro; Watabe, Hiroshi; Fukushima, Kazuhito; Iida, Hidehiro
2012-11-01
In clinical cardiac positron emission tomography using 15O-water, significant tracer accumulation is observed not only in the heart but also in the liver and lung, which are partially outside the field-of-view. In this work, we investigated the effects of scatter on quantitative myocardium blood flow (MBF) and perfusable tissue fraction (PTF) by a precise Monte Carlo simulation (Geant4) and a numerical human model. We assigned activities to the heart, liver, and lung of the human model with varying ratios of organ activities according to an experimental time activity curve and created dynamic sinograms. The sinogram data were reconstructed by filtered backprojection. By comparing a scatter-corrected image (SC) with a true image (TRUE), we evaluated the accuracy of the scatter correction. TRUE was reconstructed using a scatter-eliminated sinogram, which can be obtained only in simulations. A scatter-uncorrected image (W/O SC) and an attenuation-uncorrected image (W/O AC) were also constructed. Finally, we calculated MBF and PTF with a single tissue-compartment model for four types of images. As a result, scatter was corrected accurately, and MBFs derived from all types of images were consistent with the MBF obtained from TRUE. Meanwhile, the PTF of only the SC was in agreement with the PTF of TRUE. From the simulation results, we concluded that quantitative MBF is less affected by scatter and absorption in 3D-PET using 15O-water. However, scatter correction is essential for accurate PTF.
Andringa, Roel; de Roo, Mees; Hohm, Olaf; Sezgin, Ergin; Townsend, Paul K
2009-01-01
We construct the N=1 three-dimensional supergravity theory with cosmological, Einstein-Hilbert, Lorentz Chern-Simons, and general curvature squared terms. We determine the general supersymmetric configuration, and find a family of supersymmetric adS vacua with the supersymmetric Minkowski vacuum as a limiting case. Linearizing about the Minkowski vacuum, we find three classes of unitary theories; one is the supersymmetric extension of the recently discovered `massive 3D gravity'. Another is a `new topologically massive supergravity' (with no Einstein-Hilbert term) that propagates a single (2,3/2) helicity supermultiplet.
Energy Technology Data Exchange (ETDEWEB)
Andringa, Roel; Bergshoeff, Eric A; De Roo, Mees; Hohm, Olaf [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Sezgin, Ergin [George and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Townsend, Paul K, E-mail: E.A.Bergshoeff@rug.n, E-mail: O.Hohm@rug.n, E-mail: sezgin@tamu.ed, E-mail: P.K.Townsend@damtp.cam.ac.u [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)
2010-01-21
We construct the N=1 three-dimensional supergravity theory with cosmological, Einstein-Hilbert, Lorentz Chern-Simons, and general curvature squared terms. We determine the general supersymmetric configuration, and find a family of supersymmetric adS vacua with the supersymmetric Minkowski vacuum as a limiting case. Linearizing about the Minkowski vacuum, we find three classes of unitary theories; one is the supersymmetric extension of the recently discovered 'massive 3D gravity'. Another is a 'new topologically massive supergravity' (with no Einstein-Hilbert term) that propagates a single (2,3/2) helicity supermultiplet.
Directory of Open Access Journals (Sweden)
Ms. Swapnali R. Ghadge
2013-08-01
Full Text Available In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot of discussions. Basically, one can look into this matter from a few different perspectives: visualization and representation of information, and creation and transportation of information, among others. All of them still constitute research challenges, as no products or services are yet available or foreseen for the near future. Nevertheless, one can try to envisage the directions that can be taken towards achieving this goal. People who take part in virtual worlds stay online longer with a heightened level of interest. To take advantage of that interest, diverse businesses and organizations have claimed an early stake in this fast-growing market. They include technology leaders such as IBM, Microsoft, and Cisco, companies such as BMW, Toyota, Circuit City, Coca Cola, and Calvin Klein, and scores of universities, including Harvard, Stanford and Penn State.
Li, Shengli; Gong, Chenglin
2016-07-01
The current study uses 3D seismic data to document architectural styles and flow dynamics of lateral accretion packages (LAPs) associated with sinuous deep-water channels, contributing to a better understanding of flow processes and sedimentation associated with LAPs. The documented LAPs underwent three main stages of architectural evolution, including the early incision stages characterized by intense downcutting, active migration stages characterized by active migration and avulsion of the individual channels, and late abandonment stages characterized by the termination of sediment gravity-flows and LAP growth. These three stages of LAP growth repeated through time, yielding a fining-upward pattern from sandy channel-fill turbidites, into sand-mud couplets, all capped by muddy turbidites. A river-reversed helical flow circulation was created by an imbalance, through the flow depth, of inwardly directed pressure gradient forces near the bed and outwardly directed centrifugal forces near the surface. It consists of low-velocity cores near the outer banks and low-velocity cores along the inner banks. Such river-reversed helical flow pattern is evidenced by volumetrically extensive LAPs and toplap and downlap terminations along the gentle banks and by aerially restricted, seismically unresolvable levees and truncation terminations near the steep banks. This river-reversed helical flow circulation favors asymmetric intra-channel deposition characterized by inner bank deposition versus outer bank erosion, and which, in turn, forced individual channels to consistently migrate towards outer banks, resulting in significant asymmetric cross-channel profiles with aerially extensive LAPs along inner banks.
Assessing 3d Photogrammetry Techniques in Craniometrics
Moshobane, M. C.; de Bruyn, P. J. N.; Bester, M. N.
2016-06-01
Morphometrics (the measurement of morphological features) has been revolutionized by the creation of new techniques to study how organismal shape co-varies with several factors such as ecophenotypy. Ecophenotypy refers to the divergence of phenotypes due to developmental changes induced by local environmental conditions, producing distinct ecophenotypes. None of the techniques hitherto utilized could explicitly address organismal shape in a complete biological form, i.e. three-dimensionally. This study investigates the use of the commercial software, Photomodeler Scanner® (PMSc®) three-dimensional (3D) modelling software to produce accurate and high-resolution 3D models. Henceforth, the modelling of Subantarctic fur seal (Arctocephalus tropicalis) and Antarctic fur seal (Arctocephalus gazella) skulls which could allow for 3D measurements. Using this method, sixteen accurate 3D skull models were produced and five metrics were determined. The 3D linear measurements were compared to measurements taken manually with a digital caliper. In addition, repetitive measurements were recorded by varying researchers to determine repeatability. To allow for comparison straight line measurements were taken with the software, assuming that close accord with all manually measured features would illustrate the model's accurate replication of reality. Measurements were not significantly different demonstrating that realistic 3D skull models can be successfully produced to provide a consistent basis for craniometrics, with the additional benefit of allowing non-linear measurements if required.
Ring localized structures in nonlinear shallow water wave dynamics
International Nuclear Information System (INIS)
The nonlinear dynamics of the concentric shallow water waves is described by means of the cylindrical Korteweg-de Vries equation, often referred to as the concentric Korteweg-de Vries equation (cKdVE). By using the mapping that transforms a cKdVE into the standard one – hereafter also referred to as the planar Korteweg-de Vries equation (KdVE) – the spatiotemporal evolution of a cylindrical surface water wave, corresponding to a tilted cylindrical bright soliton, is described. The usual representation of a tilted soliton is 'non-physical'; here the cylindrical coordinate and the retarded time play the role of time-like and space-like variables, respectively. However, we show that, when we express such analytical solution of the cKdVE in the appropriate representation in terms of the two horizontal space coordinates, say X and Y, and the 'true' time, say T, this non-physical character disappears. The analysis is then carried out numerically to consider the surface water wave evolution corresponding to initially localized structures with standard boundary conditions, such as bright soliton, Gaussian and Lorentzian profiles. A comparison among those profiles is finally presented
Hausman, Kalani Kirk
2014-01-01
Get started printing out 3D objects quickly and inexpensively! 3D printing is no longer just a figment of your imagination. This remarkable technology is coming to the masses with the growing availability of 3D printers. 3D printers create 3-dimensional layered models and they allow users to create prototypes that use multiple materials and colors. This friendly-but-straightforward guide examines each type of 3D printing technology available today and gives artists, entrepreneurs, engineers, and hobbyists insight into the amazing things 3D printing has to offer. You'll discover methods for
Further improvements on TRACE 3-D
International Nuclear Information System (INIS)
TRACE 3-D, an interactive beam-dynamics program that calculates the envelopes of a bunched beam (including linear space-charge forces) through a user-defined transport system, has undergone several upgrades in physics, coding, and capabilities. Recent modifications include centroid tracking (and misalignment capabilities) and an improved beam description that allows study of some nonlinear effects such as wakefields. The Fortran code has been made portable and runs on numerous platforms. It can be used with a variety of graphics packages. The additional beamline elements, new commands, expanded fitting capabilities, improved beam description, and coding modifications have extended TRACE 3-D's usefulness and applicability to the accelerator community. These changes are documented in the third edition of TRACE 3-D Documentation
Szkandera, Jan
2009-01-01
Tato bakalářská práce se zabývá návrhem a realizací systému, který umožní obraz scény zobrazovaný na ploše vnímat prostorově. Prostorové vnímání 2D obrazové informace je umožněno jednak stereopromítáním a jednak tím, že se obraz mění v závislosti na poloze pozorovatele. Tato práce se zabývá hlavně druhým z těchto problémů. This Bachelor's thesis goal is to design and realize system, which allows user to perceive 2D visual information as three-dimensional. 3D visual preception of 2D image i...
International Nuclear Information System (INIS)
Mobile tomographs often have the problem that high spatial resolution is impossible owing to the position or setup of the tomograph. While the tree tomograph developed by Messrs. Isotopenforschung Dr. Sauerwein GmbH worked well in practice, it is no longer used as the spatial resolution and measuring time are insufficient for many modern applications. The paper shows that the mechanical base of the method is sufficient for 3D CT measurements with modern detectors and X-ray tubes. CT measurements with very good statistics take less than 10 min. This means that mobile systems can be used, e.g. in examinations of non-transportable cultural objects or monuments. Enhancement of the spatial resolution of mobile tomographs capable of measuring in any position is made difficult by the fact that the tomograph has moving parts and will therefore have weight shifts. With the aid of tomographies whose spatial resolution is far higher than the mechanical accuracy, a correction method is presented for direct integration of the Feldkamp algorithm
X3D: Extensible 3D Graphics Standard
Daly, Leonard; Brutzman, Don
2007-01-01
The article of record as published may be located at http://dx.doi.org/10.1109/MSP.2007.905889 Extensible 3D (X3D) is the open standard for Web-delivered three-dimensional (3D) graphics. It specifies a declarative geometry definition language, a run-time engine, and an application program interface (API) that provide an interactive, animated, real-time environment for 3D graphics. The X3D specification documents are freely available, the standard can be used without paying any royalties,...
3D game environments create professional 3D game worlds
Ahearn, Luke
2008-01-01
The ultimate resource to help you create triple-A quality art for a variety of game worlds; 3D Game Environments offers detailed tutorials on creating 3D models, applying 2D art to 3D models, and clear concise advice on issues of efficiency and optimization for a 3D game engine. Using Photoshop and 3ds Max as his primary tools, Luke Ahearn explains how to create realistic textures from photo source and uses a variety of techniques to portray dynamic and believable game worlds.From a modern city to a steamy jungle, learn about the planning and technological considerations for 3D modelin
Water environmental planning considering the influence of non-linear characteristics
Institute of Scientific and Technical Information of China (English)
ZENG Guang-ming; QIN Xiao-sheng; WANG Wei; HUANG Guo-he; LI Jian-bing; B. Statzner
2003-01-01
In practical water environmental planning, the influence of the non-linear characteristics on the benefit of environmental investment was seldom taken into consideration. This paper demonstrates that there exist a lot of non-linear behaviors in water environment by emphatically analyzing the influence of the non-linear characteristics of the economic scale, the meandering river and the model on water environmental planning, which will make a certain impact on the water environmental planning that sometimes cannot be neglected. This paper also preliminarily explores how to integrate the non-linear characteristics into water environmental planning. The results showed that compared with traditional methods, water environmental planning considering non-linear characteristics has its prevalence and it is necessary to develop the relevant planning theories and methods.
Aboufadel, Edward F.
2014-01-01
The purpose of this short paper is to describe a project to manufacture a regular octohedron on a 3D printer. We assume that the reader is familiar with the basics of 3D printing. In the project, we use fundamental ideas to calculate the vertices and faces of an octohedron. Then, we utilize the OPENSCAD program to create a virtual 3D model and an STereoLithography (.stl) file that can be used by a 3D printer.
Rodrigues, Marcos; Robinson, Alan; Alboul, Lyuba; Brink, Willie
2006-01-01
3D face recognition is an open field. In this paper we present a method for 3D facial recognition based on Principal Components Analysis. The method uses a relatively large number of facial measurements and ratios and yields reliable recognition. We also highlight our approach to sensor development for fast 3D model acquisition and automatic facial feature extraction.
3-D contextual Bayesian classifiers
DEFF Research Database (Denmark)
Larsen, Rasmus
distribution for the pixel values as well as a prior distribution for the configuration of class variables within the cross that is made of a pixel and its four nearest neighbours. We will extend these algorithms to 3-D, i.e. we will specify a simultaneous Gaussian distribution for a pixel and its 6 nearest 3......-D neighbours, and generalise the class variable configuration distributions within the 3-D cross given in 2-D algorithms. The new 3-D algorithms are tested on a synthetic 3-D multivariate dataset....
Taming Supersymmetric Defects in 3d-3d Correspondence
Gang, Dongmin; Romo, Mauricio; Yamazaki, Masahito
2015-01-01
We study knots in 3d Chern-Simons theory with complex gauge group $SL(N,\\mathbb{C})$, in the context of its relation with 3d $\\mathcal{N}=2$ theory (the so-called 3d-3d correspondence). The defect has either co-dimension 2 or co-dimension 4 inside the 6d $(2,0)$ theory, which is compactified on a 3-manifold $\\hat{M}$. We identify such defects in various corners of the 3d-3d correspondence, namely in 3d $SL(N,\\mathbb{C})$ Chern-Simons theory, in 3d $\\mathcal{N}=2$ theory, in 5d $\\mathcal{N}=2$ super Yang-Mills theory, and in the M-theory holographic dual. We can make quantitative checks of the 3d-3d correspondence by computing partition functions at each of these theories. This Letter is a companion to a longer paper, which contains more details and more results.
Barthelemy, X; Peirson, W L; Fedele, F; Allis, M; Dias, F
2015-01-01
We revisit the classical, but as yet unresolved problem of predicting the breaking onset of 2D and 3D irrotational gravity water waves. This study focuses on domains with flat bottom topography and conditions ranging from deep to intermediate depth (depth to wavelength ratio between 1 and 0.2). Using a fully-nonlinear boundary element model, our initial calculations investigated geometric, kinematic and energetic differences between maximally recurrent and marginally breaking waves in focusing wave groups. Maximallyrecurrent waves are clearly separated from marginally-breaking waves by their energy fluxes localized near the crest region. Specifically, tracking the local ratio of energy flux velocity to crest speed at the crest of the tallest wave in the evolving group provides a robust breaking onset threshold parameter. Warning of imminent breaking onset was found to depend on the strength of breaking, but was detectable only up to half a carrier wave period prior to a breaking event.
3D Printing Functional Nanocomposites
Leong, Yew Juan
2016-01-01
3D printing presents the ability of rapid prototyping and rapid manufacturing. Techniques such as stereolithography (SLA) and fused deposition molding (FDM) have been developed and utilized since the inception of 3D printing. In such techniques, polymers represent the most commonly used material for 3D printing due to material properties such as thermo plasticity as well as its ability to be polymerized from monomers. Polymer nanocomposites are polymers with nanomaterials composited into the ...
3D Elevation Program—Virtual USA in 3D
Lukas, Vicki; Stoker, J.M.
2016-01-01
The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.
3D IBFV : Hardware-Accelerated 3D Flow Visualization
Telea, Alexandru; Wijk, Jarke J. van
2003-01-01
We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique for 2D flow visualization in two main directions. First, we decompose the 3D flow visualization problem in a
Connell, Ellery
2011-01-01
Helping graphic designers expand their 2D skills into the 3D space The trend in graphic design is towards 3D, with the demand for motion graphics, animation, photorealism, and interactivity rapidly increasing. And with the meteoric rise of iPads, smartphones, and other interactive devices, the design landscape is changing faster than ever.2D digital artists who need a quick and efficient way to join this brave new world will want 3D for Graphic Designers. Readers get hands-on basic training in working in the 3D space, including product design, industrial design and visualization, modeling, ani
DEFF Research Database (Denmark)
Larsen, Rasmus
1997-01-01
. This includes the specification of a Gaussian distribution for the pixel values as well as a prior distribution for the configuration of class variables within the cross that is m ade of a pixel and its four nearest neighbours. We will extend this algorithm to 3-D, i.e. we will specify a simultaneous Gaussian...... distr ibution for a pixel and its 6 nearest 3-D neighbours, and generalise the class variable configuration distribution within the 3-D cross. The algorithm is tested on a synthetic 3-D multivariate dataset....
3D Bayesian contextual classifiers
DEFF Research Database (Denmark)
Larsen, Rasmus
2000-01-01
We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours.......We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours....
Interactive 3D multimedia content
Cellary, Wojciech
2012-01-01
The book describes recent research results in the areas of modelling, creation, management and presentation of interactive 3D multimedia content. The book describes the current state of the art in the field and identifies the most important research and design issues. Consecutive chapters address these issues. These are: database modelling of 3D content, security in 3D environments, describing interactivity of content, searching content, visualization of search results, modelling mixed reality content, and efficient creation of interactive 3D content. Each chapter is illustrated with example a
Griffey, Jason
2014-01-01
As the maker movement continues to grow and 3-D printers become more affordable, an expanding group of hobbyists is keen to explore this new technology. In the time-honored tradition of introducing new technologies, many libraries are considering purchasing a 3-D printer. Jason Griffey, an early enthusiast of 3-D printing, has researched the marketplace and seen several systems first hand at the Consumer Electronics Show. In this report he introduces readers to the 3-D printing marketplace, covering such topics asHow fused deposition modeling (FDM) printing workBasic terminology such as build
Application of AutoCAD Civil 3D in Design of Water Resources Project%AutoCAD Civil 3D在新疆某水利工程设计中的应用
Institute of Scientific and Technical Information of China (English)
郝永志
2014-01-01
With example of the model building of one earthrock dam in Xinjiang, application of Civil 3D in aspect of model building of dam body in water recourses project is introduced in terms of terrain curve surface generation, dam slope formation, slope excavation, and earthwork calculation, etc.3D model effect of dam body is visually displayed with contribution of the functions of 3D model building.Ad-vantages and prospects of AutoCAD Civil 3D in model building of dam body are summarized.%以新疆某土石坝建模为例，从地形曲面生成、大坝主体放坡、边坡开挖、土方量计算等方面介绍了Civil 3D在水利工程中坝体建模方面的应用，借助Civil 3D三维建模方面的功能，直观展示坝体三维模型效果。总结了AutoCAD Civil 3D在坝体建模中的主要优点和在水利工程中的应用前景。
Mei, Hong-Xin; Zhang, Ting; Huang, Hua-Qi; Huang, Rong-Bin; Zheng, Lan-Sun
2016-03-01
Three mix-ligand Ag(I) coordination compounds, namely, {[Ag10(tpyz) 5(L1) 5(H2 O)2].(H2 O)4}n (1, tpyz = 2,3,4,5-tetramethylpyrazine, H2 L1 = phthalic acid), [Ag4(tpyz) 2(L2) 2(H2 O)].(H2 O)5}n (2, H2 L2 = isophthalic acid) {[Ag2(tpyz) 2(L3) (H2 O)4].(H2 O)8}n (3, H2 L3 = terephthalic acid), have been synthesized and characterized by elemental analysis, IR, PXRD and X-ray single-crystal diffraction. 1 exhibits a 2D layer which can be simplified as a (4,4) net. 2 is a 3D network which can be simplified as a (3,3)-connected 2-nodal net with a point symbol of {102.12}{102}. 3 consists of linear [Ag(tpyz) (H2 O)2]n chain. Of particular interest, discrete hexamer water clusters were observed in 1 and 2, while a 2D L10(6) water layer exists in 3. The results suggest that the benzene dicarboxylates play pivotal roles in the formation of the different host architectures as well as different water aggregations. Moreover, thermogravimetric analysis (TGA) and emissive behaviors of these compounds were investigated.
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
The disadvantage remaining in 3D scanning system and its reasons are discussed. A new host-and-slave structure with high speed image acquisition and processing system is proposed to quicken the image processing and improve the performance of 3D scanning system.
ECT Team, Purdue
2015-01-01
Building Bytes, by Brian Peters, is a project that uses desktop 3D printers to print bricks for architecture. Instead of using an expensive custom-made printer, it uses a normal standard 3D printer which is available for everyone and makes it more accessible and also easier for fabrication.
MT3D was first developed by Chunmiao Zheng in 1990 at S.S. Papadopulos & Associates, Inc. with partial support from the U.S. Environmental Protection Agency (USEPA). Starting in 1990, MT3D was released as a pubic domain code from the USEPA. Commercial versions with enhanced capab...
A Spectral Element Method for Nonlinear and Dispersive Water Waves
DEFF Research Database (Denmark)
Engsig-Karup, Allan Peter; Bigoni, Daniele; Eskilsson, Claes
The use of flexible mesh discretisation methods are important for simulation of nonlinear wave-structure interactions in offshore and marine settings such as harbour and coastal areas. For real applications, development of efficient models for wave propagation based on unstructured discretisation...... methods is of key interest. We present a high-order general-purpose three-dimensional numerical model solving fully nonlinear and dispersive potential flow equations with a free surface....
DEFF Research Database (Denmark)
Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen;
2005-01-01
The notion of three-dimensionality is applied to five stages of the visualization pipeline. While 3D visulization is most often associated with the visual mapping and representation of data, this chapter also identifies its role in the management and assembly of data, and in the media used...... to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...... with abstracted representations embedded in a 3D space. The interactions between development of geovisualization, the technology used to implement it and the theory surrounding cartographic representation are explored. The dominance of computing technologies, driven particularly by the gaming industry...
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
ADT-3D Tumor Detection Assistant in 3D
Directory of Open Access Journals (Sweden)
Jaime Lazcano Bello
2008-12-01
Full Text Available The present document describes ADT-3D (Three-Dimensional Tumor Detector Assistant, a prototype application developed to assist doctors diagnose, detect and locate tumors in the brain by using CT scan. The reader may find on this document an introduction to tumor detection; ADT-3D main goals; development details; description of the product; motivation for its development; result’s study; and areas of applicability.
3-D magnetic field calculations for wiggglers using MAGNUS-3D
International Nuclear Information System (INIS)
The recent but steady trend toward increased magnetic and geometric complexity in the design of wigglers and undulators, of which tapered wigglers, hybrid structures, laced electromagnetic wigglers, magnetic cladding, twisters and magic structures are examples, has caused a need for reliable 3-D computer models and a better understanding of the behavior of magnetic systems in three dimensions. The capabilities of the MAGNUS-3D Group of Programs are ideally suited to solve this class of problems and provide insight into 3-D effects. MAGNUS-3D can solve any problem of Magnetostatics involving permanent magnets, linear or nonlinear ferromagnetic materials and electric conductors of any shape in space. The magnetic properties of permanent magnets are described by the complete nonlinear demagnetization curve as provided by the manufacturer, or, at the user's choice, by a simpler approximation involving the coercive force, the residual induction and the direction of magnetization. The ferromagnetic materials are described by a magnetization table and an accurate interpolation relation. An internal library with properties of common industrial steels is available. The conductors are independent of the mesh and are described in terms of conductor elements from an internal library
Unassisted 3D camera calibration
Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.
2012-03-01
With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.
A WEAKLY NONLINEAR WATER WAVE MODEL TAKING INTO ACCOUNT DISPERSION OF WAVE PHASE VELOCITY
Institute of Scientific and Technical Information of China (English)
李瑞杰; 李东永
2002-01-01
This paper presents a weakly nonlinear water wave model using a mild slope equation and a new explicit formulation which takes into account dispersion of wave phase velocity, approximates Hedges' (1987) nonlinear dispersion relationship, and accords well with the original empirical formula. Comparison of the calculating results with those obtained from the experimental data and those obtained from linear wave theory showed that the present water wave model considering the dispersion of phase velocity is rational and in good agreement with experiment data.
Grutle, Øyvind Kallevik
2015-01-01
3D printers have in recent years become extremely popular. Even though 3D printing technology have existed since the late 1980's, it is now considered one of the most significant technological breakthroughs of the twenty-first century. Several different 3D printing processes have been invented during the years. But it is the fused deposition modeling (FDM) which was one of the first invented that is considered the most popular today. Even though the FDM process is the most popular, it still s...
Garrou , Philip; Ramm , Peter
2014-01-01
Edited by key figures in 3D integration and written by top authors from high-tech companies and renowned research institutions, this book covers the intricate details of 3D process technology.As such, the main focus is on silicon via formation, bonding and debonding, thinning, via reveal and backside processing, both from a technological and a materials science perspective. The last part of the book is concerned with assessing and enhancing the reliability of the 3D integrated devices, which is a prerequisite for the large-scale implementation of this emerging technology. Invaluable reading fo
Lin, Zeyu
2014-01-01
3D printing technology is introduced and defined in this Thesis. Some methods of 3D printing are illustrated and their principles are explained with pictures. Most of the essential parts are presented with pictures and their effects are explained within the whole system. Problems on Up! Plus 3D printer are solved and a DIY product is made with this machine. The processes of making product are recorded and the items which need to be noticed during the process are the highlight in this th...
Tuotekehitysprojekti: 3D-tulostin
Pihlajamäki, Janne
2011-01-01
Opinnäytetyössä tutustuttiin 3D-tulostamisen teknologiaan. Työssä käytiin läpi 3D-tulostimesta tehty tuotekehitysprojekti. Sen lisäksi esiteltiin yleisellä tasolla tuotekehitysprosessi ja syntyneiden tulosten mahdollisia suojausmenetelmiä. Tavoitteena tässä työssä oli kehittää markkinoilta jo löytyvää kotitulostin-tasoista 3D-laiteteknologiaa lähemmäksi ammattilaistason ratkaisua. Tavoitteeseen pyrittiin keskittymällä parantamaan laitteella saavutettavaa tulostustarkkuutta ja -nopeutt...
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
This paper presents a principle and a method of col or 3D laser scanning measurement. Based on the fundamental monochrome 3D measureme nt study, color information capture, color texture mapping, coordinate computati on and other techniques are performed to achieve color 3D measurement. The syste m is designed and composed of a line laser light emitter, one color CCD camera, a motor-driven rotary filter, a circuit card and a computer. Two steps in captu ring object's images in the measurement process: Firs...
3-D neutron transport benchmarks
International Nuclear Information System (INIS)
A set of 3-D neutron transport benchmark problems proposed by the Osaka University to NEACRP in 1988 has been calculated by many participants and the corresponding results are summarized in this report. The results of Keff, control rod worth and region-averaged fluxes for the four proposed core models, calculated by using various 3-D transport codes are compared and discussed. The calculational methods used were: Monte Carlo, Discrete Ordinates (Sn), Spherical Harmonics (Pn), Nodal Transport and others. The solutions of the four core models are quite useful as benchmarks for checking the validity of 3-D neutron transport codes
Puntar, Matej
2012-01-01
The purpose of this thesis is the presentation of already established and new technologies of displaying 3D content in a web browser. The thesis begins with a short presentation of the history of 3D content available on the internet and its development together with advantages and disadvantages of individual technologies. The latter two are described in detail as well is their use and the differences among them. Special emphasis has been given to WebGL, the newest technology of 3D conte...
The importance of 3D dosimetry
International Nuclear Information System (INIS)
Radiation therapy has been getting progressively more complex for the past 20 years. Early radiation therapy techniques needed only basic dosimetry equipment; motorized water phantoms, ionization chambers, and basic radiographic film techniques. As intensity modulated radiation therapy and image guided therapy came into widespread practice, medical physicists were challenged with developing effective and efficient dose measurement techniques. The complex 3-dimensional (3D) nature of the dose distributions that were being delivered demanded the development of more quantitative and more thorough methods for dose measurement. The quality assurance vendors developed a wide array of multidetector arrays that have been enormously useful for measuring and characterizing dose distributions, and these have been made especially useful with the advent of 3D dose calculation systems based on the array measurements, as well as measurements made using film and portal imagers. Other vendors have been providing 3D calculations based on data from the linear accelerator or the record and verify system, providing thorough evaluation of the dose but lacking quality assurance (QA) of the dose delivery process, including machine calibration. The current state of 3D dosimetry is one of a state of flux. The vendors and professional associations are trying to determine the optimal balance between thorough QA, labor efficiency, and quantitation. This balance will take some time to reach, but a necessary component will be the 3D measurement and independent calculation of delivered radiation therapy dose distributions
Yang, Xu; Zhang, Yong; Yang, Chenghua; Xu, Lu; Wang, Qiang; Zhao, Yuan
2016-06-01
Conventional three dimensional (3D) ghost imaging measures range of target based on pulse fight time measurement method. Due to the limit of data acquisition system sampling rate, range resolution of the conventional 3D ghost imaging is usually low. In order to take off the effect of sampling rate to range resolution of 3D ghost imaging, a heterodyne 3D ghost imaging (HGI) system is presented in this study. The source of HGI is a continuous wave laser instead of pulse laser. Temporal correlation and spatial correlation of light are both utilized to obtain the range image of target. Through theory analysis and numerical simulations, it is demonstrated that HGI can obtain high range resolution image with low sampling rate.
Conducting polymer 3D microelectrodes
DEFF Research Database (Denmark)
Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi;
2010-01-01
Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...
Main: TATCCAYMOTIFOSRAMY3D [PLACE
Lifescience Database Archive (English)
Full Text Available TATCCAYMOTIFOSRAMY3D S000256 01-August-2006 (last modified) kehi TATCCAY motif found in rice (O. ... otif and G motif (see S000130) are responsible for sugar ... repression (Toyofuku et al. 1998); GATA; amylase; ...
Combinatorial 3D Mechanical Metamaterials
Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin
2015-03-01
We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.
DEFF Research Database (Denmark)
Lading, Brian; Larsen, Rasmus; Åström, Kalle
2006-01-01
We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}......We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}...
DEFF Research Database (Denmark)
Lading, Brian; Larsen, Rasmus; Astrom, K
2006-01-01
We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations......We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations...
Ahmed, Zeeshan
2010-01-01
In this short paper I briefly discuss 3D war Game based on artificial intelligence concepts called AI WAR. Going in to the details, I present the importance of CAICL language and how this language is used in AI WAR. Moreover I also present a designed and implemented 3D War Cybug for AI WAR using CAICL and discus the implemented strategy to defeat its enemies during the game life.
Directory of Open Access Journals (Sweden)
Nicoletta Sala
2012-01-01
Full Text Available This study, conducted using the TRIM_LM model, is a continuation of work on the movement of the water mass at different depths in Lago Maggiore, and thus on the estimation of the real residence time of the water in the lake. Three-dimensional CFD numerical simulations were extended to a 4-year period, focusing on the movements of 202 (two hundred and two massless markers inserted at different points in Lago Maggiore and at the mouths of 11 of its tributaries, enabling us to establish more realistic water renewal times for Lago Maggiore. By crossing the data of the horizontal trajectories of the environmental markers with those of their vertical variations, we reconstructed their movements over the four years of the simulation programme. An analysis of the results shows that the water mass in the layers of the upper 100 m has residence times between a minimum of 1 y and a maximum of 4-5 y. The water from the tributaries has residence times between 250 and 1000 days, depending on the distance of the tributaries from the closing section of the lake. The water in the layers below 100 m has residence times that still cannot be quantified with precision, but that can certainly be estimated at a number of years in two figures. These times are strongly conditioned by the depth of the late winter mixing, which in the last 40 y has not exceeded 200 m.
Moser, Christophe; Delrot, Paul; Loterie, Damien; Morales Delgado, Edgar; Modestino, Miguel; Psaltis, Demetri
2016-03-01
3D printing as a tool to generate complicated shapes from CAD files, on demand, with different materials from plastics to metals, is shortening product development cycles, enabling new design possibilities and can provide a mean to manufacture small volumes cost effectively. There are many technologies for 3D printing and the majority uses light in the process. In one process (Multi-jet modeling, polyjet, printoptical©), a printhead prints layers of ultra-violet curable liquid plastic. Here, each nozzle deposits the material, which is then flooded by a UV curing lamp to harden it. In another process (Stereolithography), a focused UV laser beam provides both the spatial localization and the photo-hardening of the resin. Similarly, laser sintering works with metal powders by locally melting the material point by point and layer by layer. When the laser delivers ultra-fast focused pulses, nonlinear effects polymerize the material with high spatial resolution. In these processes, light is either focused in one spot and the part is made by scanning it or the light is expanded and covers a wide area for photopolymerization. Hence a fairly "simple" light field is used in both cases. Here, we give examples of how "complex light" brings additional level of complexity in 3D printing.
Use of Picard and Newton iteration for solving nonlinear ground water flow equations
Mehl, S.
2006-01-01
This study examines the use of Picard and Newton iteration to solve the nonlinear, saturated ground water flow equation. Here, a simple three-node problem is used to demonstrate the convergence difficulties that can arise when solving the nonlinear, saturated ground water flow equation in both homogeneous and heterogeneous systems with and without nonlinear boundary conditions. For these cases, the characteristic types of convergence patterns are examined. Viewing these convergence patterns as orbits of an attractor in a dynamical system provides further insight. It is shown that the nonlinearity that arises from nonlinear head-dependent boundary conditions can cause more convergence difficulties than the nonlinearity that arises from flow in an unconfined aquifer. Furthermore, the effects of damping on both convergence and convergence rate are investigated. It is shown that no single strategy is effective for all problems and how understanding pitfalls and merits of several methods can be helpful in overcoming convergence difficulties. Results show that Picard iterations can be a simple and effective method for the solution of nonlinear, saturated ground water flow problems.
Li, Yong; Zhang, Ruofang; Tian, Xike; Yang, Chao; Zhou, Zhaoxin
2016-04-01
In order to develop efficient and environment benign sorbents for water purification, the macroscopic multifunctional magnetite-reduced graphene oxides aerogels (M-RGOs) with strong interconnected networks were prepared via a one pot solvothermal method of graphene oxide sheets adsorbing iron ions and in situ simultaneous deposition of Fe3O4 nanoparticles in ethylene glycol or triethylene glycol solvents. Such M-RGOs exhibited excellent sorption capacity to different contaminants, including oils, organic solvents, arsenite ions, as well as dyes. In addition, it was demonstrated that the M-RGOs could be used as column packing materials to manufacture column for water purification by filtration. The method proposed was proved to be versatile to induce synergistic assembly of RGO sheets with other functional metal oxides nanoparticles and as a kind of broad-spectrum sorbents for removing different types of contaminants in water purification, simultaneously.
Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.
2014-08-01
In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers
Numerical Relativity Towards Simulations of 3D Black Hole Coalescence
Seidel, E
1998-01-01
I review recent developments in numerical relativity, focussing on progress made in 3D black hole evolution. Progress in development of black hole initial data, apparent horizon boundary conditions, adaptive mesh refinement, and characteristic evolution is highlighted, as well as full 3D simulations of colliding and distorted black holes. For true 3D distorted holes, with Cauchy evolution techniques, it is now possible to extract highly accurate, nonaxisymmetric waveforms from fully nonlinear simulations, which are verified by comparison to pertubration theory, and with characteristic techniques extremely long term evolutions of 3D black holes are now possible. I also discuss a new code designed for 3D numerical relativity, called Cactus, that will be made public.
International Nuclear Information System (INIS)
the top and bottom sides of the porous material, i.e. ''two-sidedness'' due to processing and raw material characteristics may lead to differences in end-use performance. The measurements of surface structure characteristics include thickness distribution, surface volume distribution, contact fraction distribution and surface pit distribution. This complements our earlier method to analyze the bulk structure and Z-D structure of porous materials. As one would expect, the surface structure characteristics will be critically dependent on the quality and resolution of the images. This presents a useful tool to characterize and engineer the surface structure of porous materials such as paper and board tailored to specific end-use applications. This will also help troubleshoot problems related to manufacturing and end-use applications. This study attempted to identify the optimal resolution through a comparison between 3D images obtained by monochromatic synchrotron radiation X-?CT in phase contrast mode (resolution ? 1 ?m) and polychromatic radiation X-?CT in absorption mode (res. ? 5 ?m). It was found that both resolutions have the ability to show the expected trends when comparing different paper samples. The low resolution technique shows fewer details resulting in lower specific surface area, larger pore channels, characterized as hydraulic radii, and lower tortuosities, where differences between samples and principal directions are more difficult to detect. The disadvantages of the high resolution images are high cost and limited availability of hard x-ray beam time as well as the small size of the sample volumes imaged. The results show that the low resolution images can be used for comparative studies, whereas the high resolution images may be better suited for fundamental research on the paper structure and its influence on paper properties, as one gets more accurate physical measurements. In addition, pore space diffusion model has been developed to simulate
Energy Technology Data Exchange (ETDEWEB)
Shri Ramaswamy, University of Minnesota; B.V. Ramarao, State University of New York
2004-08-29
the top and bottom sides of the porous material, i.e. "two-sidedness" due to processing and raw material characteristics may lead to differences in end-use performance. The measurements of surface structure characteristics include thickness distribution, surface volume distribution, contact fraction distribution and surface pit distribution. This complements our earlier method to analyze the bulk structure and Z-D structure of porous materials. As one would expect, the surface structure characteristics will be critically dependent on the quality and resolution of the images. This presents a useful tool to characterize and engineer the surface structure of porous materials such as paper and board tailored to specific end-use applications. This will also help troubleshoot problems related to manufacturing and end-use applications. This study attempted to identify the optimal resolution through a comparison between 3D images obtained by monochromatic synchrotron radiation X-CT in phase contrast mode (resolution 1 m) and polychromatic radiation X-CT in absorption mode (res.5 m). It was found that both resolutions have the ability to show the expected trends when comparing different paper samples. The low resolution technique shows fewer details resulting in lower specific surface area, larger pore channels, characterized as hydraulic radii, and lower tortuosities, where differences between samples and principal directions are more difficult to detect. The disadvantages of the high resolution images are high cost and limited availability of hard x-ray beam time as well as the small size of the sample volumes imaged. The results show that the low resolution images can be used for comparative studies, whereas the high resolution images may be better suited for fundamental research on the paper structure and its influence on paper properties, as one gets more accurate physical measurements. In addition, pore space diffusion model has been developed to simulate simultaneous
YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters
Schild, Jonas; Seele, Sven; Masuch, Maic
2012-03-01
Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.
Remote 3D Medical Consultation
Welch, Greg; Sonnenwald, Diane H.; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Krishnan, Srinivas; Söderholm, Hanna M.
Two-dimensional (2D) video-based telemedical consultation has been explored widely in the past 15-20 years. Two issues that seem to arise in most relevant case studies are the difficulty associated with obtaining the desired 2D camera views, and poor depth perception. To address these problems we are exploring the use of a small array of cameras to synthesize a spatially continuous range of dynamic three-dimensional (3D) views of a remote environment and events. The 3D views can be sent across wired or wireless networks to remote viewers with fixed displays or mobile devices such as a personal digital assistant (PDA). The viewpoints could be specified manually or automatically via user head or PDA tracking, giving the remote viewer virtual head- or hand-slaved (PDA-based) remote cameras for mono or stereo viewing. We call this idea remote 3D medical consultation (3DMC). In this article we motivate and explain the vision for 3D medical consultation; we describe the relevant computer vision/graphics, display, and networking research; we present a proof-of-concept prototype system; and we present some early experimental results supporting the general hypothesis that 3D remote medical consultation could offer benefits over conventional 2D televideo.
Materialedreven 3d digital formgivning
DEFF Research Database (Denmark)
Hansen, Flemming Tvede
2010-01-01
Formålet med forskningsprojektet er for det første at understøtte keramikeren i at arbejde eksperimenterende med digital formgivning, og for det andet at bidrage til en tværfaglig diskurs om brugen af digital formgivning. Forskningsprojektet fokuserer på 3d formgivning og derved på 3d digital...... formgivning og Rapid Prototyping (RP). RP er en fællesbetegnelse for en række af de teknikker, der muliggør at overføre den digitale form til 3d fysisk form. Forskningsprojektet koncentrerer sig om to overordnede forskningsspørgsmål. Det første handler om, hvordan viden og erfaring indenfor det keramiske...... fagområde kan blive udnyttet i forhold til 3d digital formgivning. Det andet handler om, hvad en sådan tilgang kan bidrage med, og hvordan den kan blive udnyttet i et dynamisk samspil med det keramiske materiale i formgivningen af 3d keramiske artefakter. Materialedreven formgivning er karakteriseret af en...
Dagiuklas, Tasos
2015-01-01
This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The contributions are based on the results of the FP7 European Project ROMEO, which focuses on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the future Internet. The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of consistent video quality to fixed and mobile users. ROMEO will present hybrid networking solutions that combine the DVB-T2 and DVB-NGH broadcas...
Dagiuklas, Tasos
2014-01-01
This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The main contributions are based on the results of the FP7 European Projects ROMEO, which focus on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the Future Internet (www.ict-romeo.eu). The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of constant video quality to both fixed and mobile users. ROMEO will design and develop hybrid-networking solutions that co...
International Nuclear Information System (INIS)
The code DYN3D coupled with ATHLET was used for the analysis of the OECD Main-Steam-Line-Break (MSLB) Benchmark, which is based on real plant design and operational data of the TMI-1 pressurized water reactor (PWR). Like the codes RELAP or TRAC,ATHLET is a thermal-hydraulic system code with point or one-dimensional neutron kinetic models. ATHLET, developed by the Gesellschaft for Anlagen- und Reaktorsicherheit, is widely used in Germany for safety analyses of nuclear power plants. DYN3D consists of three-dimensional nodal kinetic models and a thermal-hydraulic part with parallel coolant channels of the reactor core. DYN3D was coupled with ATHLET for analyzing more complex transients with interactions between coolant flow conditions and core behavior. It can be applied to the whole spectrum of operational transients and accidents, from small and intermediate leaks to large breaks of coolant loops or steam lines at PWRs and boiling water reactors. The so-called external coupling is used for the benchmark, where the thermal hydraulics is split into two parts: DYN3D describes the thermal hydraulics of the core, while ATHLET models the coolant system. Three exercises of the benchmark were simulated: Exercise 1: point kinetics plant simulation (ATHLET) Exercise 2: coupled three-dimensional neutronics/core thermal-hydraulics evaluation of the core response for given core thermal-hydraulic boundary conditions (DYN3D) Exercise 3: best-estimate coupled core-plant transient analysis (DYN3D/ATHLET). Considering the best-estimate cases (scenarios 1 of exercises 2 and 3), the reactor does not reach criticality after the reactor trip. Defining more serious tests for the codes, the efficiency of the control rods was decreased (scenarios 2 of exercises 2 and 3) to obtain recriticality during the transient. Besides the standard simulation given by the specification, modifications are introduced for sensitivity studies. The results presented here show (a) the influence of a reduced
Modification of 3D milling machine to 3D printer
Halamíček, Lukáš
2015-01-01
Tato práce se zabývá přestavbou gravírovací frézky na 3D tiskárnu. V první části se práce zabývá možnými technologiemi 3D tisku a možností jejich využití u přestavby. Dále jsou popsány a vybrány vhodné součásti pro přestavbu. V další části je realizováno řízení ohřevu podložky, trysky a řízení posuvu drátu pomocí softwaru TwinCat od společnosti Beckhoff na průmyslovém počítači. Výsledkem práce by měla být oživená 3D tiskárna. This thesis deals with rebuilding of engraving machine to 3D pri...
3D Imager and Method for 3D imaging
Kumar, P.; Staszewski, R.; Charbon, E.
2013-01-01
3D imager comprising at least one pixel, each pixel comprising a photodetectorfor detecting photon incidence and a time-to-digital converter system configured for referencing said photon incidence to a reference clock, and further comprising a reference clock generator provided for generating the re
Becker, T; Roth, M M; Becker, Thomas; Fabrika, Sergei; Roth, Martin M.
2003-01-01
The quantitative spectroscopy of stellar objects in complex environments is mainly limited by the ability of separating the object from the background. Standard slit spectroscopy, restricting the field of view to one dimension, is obviously not the proper technique in general. The emerging Integral Field (3D) technique with spatially resolved spectra of a two-dimensional field of view provides a great potential for applying advanced subtraction methods. In this paper an image reconstruction algorithm to separate point sources and a smooth background is applied to 3D data. Several performance tests demonstrate the photometric quality of the method. The algorithm is applied to real 3D observations of a sample Planetary Nebula in M31, whose spectrum is contaminated by the bright and complex galaxy background. The ability of separating sources is also studied in a crowded stellar field in M33.
DEFF Research Database (Denmark)
Walder, Christian; Breidt, Martin; Bulthoff, Heinrich;
2009-01-01
We present a novel algorithm for the markerless tracking of deforming surfaces such as faces. We acquire a sequence of 3D scans along with color images at 40Hz. The data is then represented by implicit surface and color functions, using a novel partition-of-unity type method of efficiently...... combining local regressors using nearest neighbor searches. Both these functions act on the 4D space of 3D plus time, and use temporal information to handle the noise in individual scans. After interactive registration of a template mesh to the first frame, it is then automatically deformed to track...... the scanned surface, using the variation of both shape and color as features in a dynamic energy minimization problem. Our prototype system yields high-quality animated 3D models in correspondence, at a rate of approximately twenty seconds per timestep. Tracking results for faces and other objects...
DEFF Research Database (Denmark)
Pihl, Michael Johannes
The main purpose of this PhD project is to develop an ultrasonic method for 3D vector flow imaging. The motivation is to advance the field of velocity estimation in ultrasound, which plays an important role in the clinic. The velocity of blood has components in all three spatial dimensions, yet...... conventional methods can estimate only the axial component. Several approaches for 3D vector velocity estimation have been suggested, but none of these methods have so far produced convincing in vivo results nor have they been adopted by commercial manufacturers. The basis for this project is the Transverse...... on the TO fields are suggested. They can be used to optimize the TO method. In the third part, a TO method for 3D vector velocity estimation is proposed. It employs a 2D phased array transducer and decouples the velocity estimation into three velocity components, which are estimated simultaneously based on 5...
3D-grafiikkamoottori mobiililaitteille
Vahlman, Lauri
2014-01-01
Tässä insinöörityössä käydään läpi mobiililaitteille suunnatun yksinkertaisen 3D-grafiikkamoottorin suunnittelu ja toteutus käyttäen OpenGL ES -rajapintaa. Työssä esitellään grafiikkamoottorin toteutuksessa käytettyjä tekniikoita sekä tutustutaan moottorin rakenteeseen ja toteutuksellisiin yksityiskohtiin. Työn alkupuolella tutustutaan myös modernin 3D-grafiikan yleisiin periaatteisiin ja toimintaan sekä käydään läpi 3D-grafiikkaan liittyviä suorituskykyongelmia. Työn loppupuolella esitel...
3D Computations and Experiments
Energy Technology Data Exchange (ETDEWEB)
Couch, R; Faux, D; Goto, D; Nikkel, D
2004-04-05
This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.
International Nuclear Information System (INIS)
Focused high energy ion beam micromachining is the newest of the micromachining techniques. There are about 50 scanning proton microprobe facilities worldwide, but so far only few of them showed activity in this promising field. High energy ion beam micromachining using a direct-write scanning MeV ion beam is capable of producing 3D microstructures and components with well defined lateral and depth geometry. The technique has high potential in the manufacture of 3D molds, stamps, and masks for X-ray lithography (LIGA), and also in the rapid prototyping of microcomponents either for research purposes or for components testing prior to batch production. (R.P.)
PIXIE3D: An efficient, fully implicit, parallel, 3D extended MHD code for fusion plasma modeling
International Nuclear Information System (INIS)
PIXIE3D is a modern, parallel, state-of-the-art extended MHD code that employs fully implicit methods for efficiency and accuracy. It features a general geometry formulation, and is therefore suitable for the study of many magnetic fusion configurations of interest. PIXIE3D advances the state of the art in extended MHD modeling in two fundamental ways. Firstly, it employs a novel conservative finite volume scheme which is remarkably robust and stable, and demands very small physical and/or numerical dissipation. This is a fundamental requirement when one wants to study fusion plasmas with realistic conductivities. Secondly, PIXIE3D features fully-implicit time stepping, employing Newton-Krylov methods for inverting the associated nonlinear systems. These methods have been shown to be scalable and efficient when preconditioned properly. Novel preconditioned ideas (so-called physics based), which were prototypes in the context of reduced MHD, have been adapted for 3D primitive-variable resistive MHD in PIXIE3D, and are currently being extended to Hall MHD. PIXIE3D is fully parallel, employing PETSc for parallelism. PIXIE3D has been thoroughly benchmarked against linear theory and against other available extended MHD codes on nonlinear test problems (such as the GEM reconnection challenge). We are currently in the process of extending such comparisons to fusion-relevant problems in realistic geometries. In this talk, we will describe both the spatial discretization approach and the preconditioning strategy employed for extended MHD in PIXIE3D. We will report on recent benchmarking studies between PIXIE3D and other 3D extended MHD codes, and will demonstrate its usefulness in a variety of fusion-relevant configurations such as Tokamaks and Reversed Field Pinches. (Author)
International Nuclear Information System (INIS)
Using a Fortran step-by-step Monte-Carlo simulation code of liquid water radiolysis and the Java programming language, we have developed a Java interface software, called SimulRad. This interface enables a user, in a three-dimensional environment, to either visualize the spatial distribution of all reactive species present in the track of an ionizing particle at a chosen simulation time, or present an animation of the chemical development of the particle track over a chosen time interval (between ∼10-12 and 10-6 s). It also allows one to select a particular radiation-induced cluster of species to view, in fine detail, the chemical reactions that occur between these species
International Nuclear Information System (INIS)
This five-volume report contains 141 papers out of the 175 that were presented at the Sixteenth Water Reactor Safety Information Meeting held at the National Institute of Standards and Technology, Gaithersburg, Maryland, during the week of October 24-27, 1988. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included twenty different papers presented by researchers from Germany, Italy, Japan, Sweden, Switzerland, Taiwan and the United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting
Manos, Harry
2016-01-01
Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…
Lading, Brian; Larsen, Rasmus; Åström, Kalle
2006-01-01
We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}
Lading, Brian; Larsen, Rasmus; Astrom, K
2006-01-01
We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations
3D Printing: Exploring Capabilities
Samuels, Kyle; Flowers, Jim
2015-01-01
As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…
DEFF Research Database (Denmark)
Pedersen, Pernille Klarskov; Strikwerda, Andrew; Wang, Tianwu;
2013-01-01
We present a characterization of THz beams generated in both a two-color air plasma and in a LiNbO3 crystal. Using a commercial THz camera, we record intensity images as a function of distance through the beam waist, from which we extract 2D beam profiles and visualize our measurements into 3D beam...
Krajnović, Davor
2016-01-01
Thanks to a technique that reveals galaxies in 3D, astronomers can now show that many galaxies have been wrongly classified. Davor Krajnovi\\'c argues that the classification scheme proposed 85 years ago by Edwin Hubble now needs to be revised.
Priprava 3D modelov za 3D tisk
Pikovnik, Tomaž
2015-01-01
Po mnenju nekaterih strokovnjakov bo aditivna proizvodnja (ali 3D tiskanje) spremenila proizvodnjo industrijo, saj si bo vsak posameznik lahko natisnil svoj objekt po želji. V diplomski nalogi so predstavljene nekatere tehnologije aditivne proizvodnje. V nadaljevanju diplomske naloge je predstavljena izdelava makete hiše v merilu 1:100, vse od modeliranja do tiskanja. Poseben poudarek je posvečen predelavi modela, da je primeren za tiskanje, kjer je razvit pristop za hitrejše i...
Post processing of 3D models for 3D printing
Pikovnik, Tomaž
2015-01-01
According to the opinion of some experts the additive manufacturing or 3D printing will change manufacturing industry, because any individual could print their own model according to his or her wishes. In this graduation thesis some of the additive manufacturing technologies are presented. Furthermore in the production of house scale model in 1:100 is presented, starting from modeling to printing. Special attention is given to postprocessing of the building model elements us...
3D Cameras: 3D Computer Vision of Wide Scope
May, Stefan; Pervoelz, Kai; Surmann, Hartmut
2007-01-01
First of all, a short comparison of range sensors and their underlying principles was given. The chapter further focused on 3D cameras. The latest innovations have given a significant improvement for the measurement accuracy, wherefore this technology has attracted attention in the robotics community. This was also the motivation for the examination in this chapter. On this account, several applications were presented, which represents common problems in the domain of autonomous robotics. For...
Geochemical Insight from Nonlinear Optical Studies of Mineral-Water Interfaces
Covert, Paul A.; Hore, Dennis K.
2016-05-01
The physics and chemistry of mineral-water interfaces are complex, even in idealized systems. Our need to understand this complexity is driven by both pure and applied sciences, that is, by the need for basic understanding of earth systems and for the knowledge to mitigate our influences upon them. The second-order nonlinear optical techniques of second-harmonic generation and sum-frequency generation spectroscopy have proven adept at probing these types of interfaces. This review focuses on the contributions to geochemistry made by nonlinear optical methods. The types of questions probed have included a basic description of the structure adopted by water molecules at the mineral interface, how flow and porosity affect this structure, adsorption of trace metal and organic species, and dissolution mechanisms. We also discuss directions and challenges that lie ahead and the outlook for the continued use of nonlinear optical methods for studies of mineral-water boundaries.
High-order Boussinesq-type modelling of nonlinear wave phenomena in deep and shallow water
DEFF Research Database (Denmark)
Madsen, Per A.; Fuhrman, David R.
2010-01-01
fully nonlinear and highly dispersive waves traveling over a rapidly varying bathymetry. Finally, we cover applications of this Boussinesq model, and we study a number of nonlinear wave phenomena in deep and shallow water. These include (1) Kinematics in highly nonlinear progressive deep-water waves; (2......In this work, we start with a review of the development of Boussinesq theory for water waves covering the period from 1872 to date. Previous reviews have been given by Dingemans,1 Kirby,2,3 and Madsen & Schäffer.4 Next, we present our most recent high-order Boussinesq-type formulation valid for......) Kinematics in progressive solitary waves; (3) Reflection of solitary waves from a vertical wall; (4) Reflection and diffraction around a vertical plate; (5) Quartet and quintet interactions and class I and II instabilities; (6) Extreme events from focused directionally spread waveelds; (7) Bragg scattering...
Analysis of nonlinear shallow water waves in a tank by concentrated mass model
Ishikawa, Satoshi; Kondou, Takahiro; Matsuzaki, Kenichiro; Yamamura, Satoshi
2016-06-01
The sloshing of liquid in a tank is an important engineering problem. For example, liquid storage tanks in industrial facilities can be damaged by earthquakes, and conversely liquid tanks, called tuned liquid damper, are often used as passive mechanical dampers. The water depth is less often than the horizontal length of the tank. In this case, shallow water wave theory can be applied, and the results indicate that the surface waveform in a shallow excited tank exhibits complex behavior caused by nonlinearity and dispersion of the liquid. This study aims to establish a practical analytical model for this phenomenon. A model is proposed that consists of masses, connecting nonlinear springs, connecting dampers, base support dampers, and base support springs. The characteristics of the connecting nonlinear springs are derived from the static and dynamic pressures. The advantages of the proposed model are that nonlinear dispersion is considered and that the problem of non-uniform water depth can be addressed. To confirm the validity of the model, numerical results obtained from the model are compared with theoretical values of the natural frequencies of rectangular and triangular tanks. Numerical results are also compared with experimental results for a rectangular tank. All computational results agree well with the theoretical and experimental results. Therefore, it is concluded that the proposed model is valid for the numerical analysis of nonlinear shallow water wave problems.
Nonlinear analysis of gas-water/oil-water two-phase flow in complex networks
Gao, Zhong-Ke; Wang, Wen-Xu
2014-01-01
Understanding the dynamics of multi-phase flows has been a challenge in the fields of nonlinear dynamics and fluid mechanics. This chapter reviews our work on two-phase flow dynamics in combination with complex network theory. We systematically carried out gas-water/oil-water two-phase flow experiments for measuring the time series of flow signals which is studied in terms of the mapping from time series to complex networks. Three network mapping methods were proposed for the analysis and identification of flow patterns, i.e. Flow Pattern Complex Network (FPCN), Fluid Dynamic Complex Network (FDCN) and Fluid Structure Complex Network (FSCN). Through detecting the community structure of FPCN based on K-means clustering, distinct flow patterns can be successfully distinguished and identified. A number of FDCN’s under different flow conditions were constructed in order to reveal the dynamical characteristics of two-phase flows. The FDCNs exhibit universal power-law degree distributions. The power-law exponent ...
Image sequence analysis of complex physical objects: nonlinear small scale water surface waves
Jähne, Bernd
1987-01-01
Image sequence analysis is a promising tool to study the physics of waves propagating on water surfaces. Physical knowledge about water waves is used to develop two different approaches to sequence analysis: motion is determined (a) in the Fourier space and (b) by a new method based on a direetio-pyramidal decomposition in the space domain. Both methods proof to be interesting tools for investigating the nonlinear nature of water surface waves. Image sequence analysis of such objects opens an...
Directory of Open Access Journals (Sweden)
R. E. Vankevich
2015-10-01
Full Text Available This paper tries to fill the gaps in knowledge of processes affecting the seasonal water stratification in the Gulf of Finland (GOF. We used state-of-the-art modeling framework NEMO aimed for oceanographic research, operational oceanography, seasonal forecasting and climate studies to build an eddy resolving model of the GOF. To evaluate the model skill and performance two different solutions where obtained on 0.5 km eddy resolving and commonly used 2 km grids for one year simulation. We also explore the efficacy of nonhydrostatic effect (convection parameterizations available in NEMO for coastal application. It is found that the solutions resolving sub-mesoscales have a more complex mixed layer structure in the regions of GOF directly affected by the upwelling/downwelling and intrusions from the open Baltic Sea. Presented model estimations of the upper mixed layer depth are in a good agreement with in situ CTD data. A number of model sensitivity tests to the vertical mixing parameterization confirm the model robustness.
3D Numerical Simulation on the Sloshing Waves Excited by the Seismic Shacking
Zhang, Lin; Wu, Tso-Ren
2016-04-01
importantly, the amount of water loosed in the event. The simulated water movement excited by the seismic acceleration was visually similar to the video clip mentioned before. From the simulation results, we observed that the water was mainly leaked at the corner of the water tank with a nonlinear curve of the free-surface. This phenomenon can't be found in the conventional studies with acceleration in a sole direction. We also studied the effect from a porous body placed on the lower part of the tank. Detailed results and discussion will be presented in the full paper. Keywords Sloshing, Splash3D, LES, Breaking waves, VOF, spent fuel pool, Nuclear power plant
Institute of Scientific and Technical Information of China (English)
张洪生; 洪广文; 丁平兴; 曹振轶
2001-01-01
In this paper, the characteristics of different forms of mild slope equations for non-linear wave are analyzed, and new non-linear theoretic models for wave propagation are presented, with non-linear terms added to the mild slope equations for non-stationary linear waves and dissipative effects considered. Numerical simulation models are developed of non-linear wave propagation for waters of mildly varying topography with complicated boundary, and the effects are studied of different non-linear corrections on calculation results of extended mild slope equations. Systematical numerical simulation tests show that the present models can effectively reflect non-linear effects.
International Nuclear Information System (INIS)
Traditional two-dimensional (2D)/one-dimensional (1D) SYNTHESIS methodology has been widely used to calculate fast neutron (>1.0 MeV) fluence exposure to reactor pressure vessel in the belt-line region. However, it is expected that this methodology cannot provide accurate fast neutron fluence calculation at elevations far above or below the active core region. A three-dimensional (3D) parallel discrete ordinates calculation for ex-vessel neutron dosimetry on a Westinghouse 4-Loop XL Pressurized Water Reactor has been done. It shows good agreement between the calculated results and measured results. Furthermore, the results show very different fast neutron flux values at some of the former plate locations and elevations above and below an active core than those calculated by a 2D/1D SYNTHESIS method. This indicates that for certain irregular reactor internal structures, where the fast neutron flux has a very strong local effect, it is required to use a 3D transport method to calculate accurate fast neutron exposure. (authors)
3-D Relativistic MHD Simulations
Nishikawa, K.-I.; Frank, J.; Koide, S.; Sakai, J.-I.; Christodoulou, D. M.; Sol, H.; Mutel, R. L.
1998-12-01
We present 3-D numerical simulations of moderately hot, supersonic jets propagating initially along or obliquely to the field lines of a denser magnetized background medium with Lorentz factors of W = 4.56 and evolving in a four-dimensional spacetime. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently in the simulations. This effect is analogous to pushing Japanese ``noren'' or vertical Venetian blinds out of the way while the slats are allowed to bend in 3-D space rather than as a 2-D slab structure.
Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.
2013-01-01
Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.
Forensic 3D Scene Reconstruction
International Nuclear Information System (INIS)
Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene
Forensic 3D Scene Reconstruction
Energy Technology Data Exchange (ETDEWEB)
LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.
1999-10-12
Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.
3D reconstruction of tensors and vectors
Energy Technology Data Exchange (ETDEWEB)
Defrise, Michel; Gullberg, Grant T.
2005-02-17
Here we have developed formulations for the reconstruction of 3D tensor fields from planar (Radon) and line-integral (X-ray) projections of 3D vector and tensor fields. Much of the motivation for this work is the potential application of MRI to perform diffusion tensor tomography. The goal is to develop a theory for the reconstruction of both Radon planar and X-ray or line-integral projections because of the flexibility of MRI to obtain both of these type of projections in 3D. The development presented here for the linear tensor tomography problem provides insight into the structure of the nonlinear MRI diffusion tensor inverse problem. A particular application of tensor imaging in MRI is the potential application of cardiac diffusion tensor tomography for determining in vivo cardiac fiber structure. One difficulty in the cardiac application is the motion of the heart. This presents a need for developing future theory for tensor tomography in a motion field. This means developing a better understanding of the MRI signal for diffusion processes in a deforming media. The techniques developed may allow the application of MRI tensor tomography for the study of structure of fiber tracts in the brain, atherosclerotic plaque, and spine in addition to fiber structure in the heart. However, the relations presented are also applicable to other fields in medical imaging such as diffraction tomography using ultrasound. The mathematics presented can also be extended to exponential Radon transform of tensor fields and to other geometric acquisitions such as cone beam tomography of tensor fields.
Elastoplastic shell analysis in DYNA3D
International Nuclear Information System (INIS)
Computer simulation of the elastoplastic behavior of thin shell structures under transient dynamic loads play an important role in many programs at Lawrence Livermore National Laboratory (LLNL) in Livermore, Calif. Often the loads are severe and the structure undergoes plastic (or permanent) deformation. These simulations are effectively performed using DYNA3D, an explicit nonlinear finite element code developed at LLNL for simulating and analyzing the large-deformation dynamic response of solids and structures. It is generally applicable to problems where the loading and response are of short duration and contain significant high-frequency components. Typical problems of this type include the contact of two impacting bodies and the resulting elastoplastic structural behavior. The objective of this investigation was to examine and improve upon the elastoplastic shell modeling capability in DYNA3D. This article summarizes the development of a new four-node quadrilateral finite element shell formulation, the YASE shell, and compares two basic methods (the stress-resultant and the thickness-resultant methods) employed in elastoplastic constitutive algorithms for shell structure modeling
TOPAZ-3D, 3-D Steady-State or Transient Heat Transfer by Finite Element Method
International Nuclear Information System (INIS)
1 - Description of program or function: TOPAZ3D is a three-dimensional implicit finite element computer code for heat transfer analysis. TOPAZ3D can be used to solve for the steady-state or transient temperature field on three-dimensional geometries. Material properties may be temperature-dependent and either, isotropic or orthotropic. A variety of time- and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. TOPAZ3D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances. 2 - Method of solution: TOPAZ3D solves the differential equation of heat conduction in a three-dimensional solid by the finite element method. TOPAZ3D uses an eight-node trilinear hexahedral element for spatial discretization of the geometry. The hexahedral element can degenerate to a six-node triangular prism and a four-node tetrahedron. These elements are integrated with a 2x2x2 Gauss quadrature rule, with temperature dependence of the properties accounted for at the Gauss point. Time integration is performed using a generalized trapezoidal method. Fixed point iteration with relaxation is used to satisfy equilibrium in nonlinear problems. 3 - Restrictions on the complexity of the problem: The phase change, slide surface, internal element, and bulk node features are not implemented
[Real time 3D echocardiography
Bauer, F.; Shiota, T.; Thomas, J. D.
2001-01-01
Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.
Nonlinear Wave-Currents interactions in shallow water
Lannes, David
2015-01-01
We study here the propagation of long waves in the presence of vorticity. In the irrotational framework, the Green-Naghdi equations (also called Serre or fully nonlinear Boussinesq equations) are the standard model for the propagation of such waves. These equations couple the surface elevation to the vertically averaged horizontal velocity and are therefore independent of the vertical variable. In the presence of vorticity, the dependence on the vertical variable cannot be removed from the vorticity equation but it was however shown in [?] that the motion of the waves could be described using an extended Green-Naghdi system. In this paper we propose an analysis of these equations, and show that they can be used to get some new insight into wave-current interactions. We show in particular that solitary waves may have a drastically different behavior in the presence of vorticity and show the existence of solitary waves of maximal amplitude with a peak at their crest, whose angle depends on the vorticity. We als...
Stimulated Raman Scattering and Nonlinear Focusing of High-Power Laser Beams Propagating in Water
Hafizi, B; Penano, J R; Gordon, D F; Jones, T G; Helle, M H; Kaganovich, D
2015-01-01
The physical processes associated with propagation of a high-power (power > critical power for self-focusing) laser beam in water include nonlinear focusing, stimulated Raman scattering (SRS), optical breakdown and plasma formation. The interplay between nonlinear focusing and SRS is analyzed for cases where a significant portion of the pump power is channeled into the Stokes wave. Propagation simulations and an analytical model demonstrate that the Stokes wave can re-focus the pump wave after the power in the latter falls below the critical power. It is shown that this novel focusing mechanism is distinct from cross-phase focusing. While discussed here in the context of propagation in water, the gain-focusing phenomenon is general to any medium supporting nonlinear focusing and stimulated forward Raman scattering.
Initial Value Problem Solution of Nonlinear Shallow Water-Wave Equations
International Nuclear Information System (INIS)
The initial value problem solution of the nonlinear shallow water-wave equations is developed under initial waveforms with and without velocity. We present a solution method based on a hodograph-type transformation to reduce the nonlinear shallow water-wave equations into a second-order linear partial differential equation and we solve its initial value problem. The proposed solution method overcomes earlier limitation of small waveheights when the initial velocity is nonzero, and the definition of the initial conditions in the physical and transform spaces is consistent. Our solution not only allows for evaluation of differences in predictions when specifying an exact initial velocity based on nonlinear theory and its linear approximation, which has been controversial in geophysical practice, but also helps clarify the differences in runup observed during the 2004 and 2005 Sumatran tsunamigenic earthquakes
Stimulated Raman scattering and nonlinear focusing of high-power laser beams propagating in water.
Hafizi, B; Palastro, J P; Peñano, J R; Gordon, D F; Jones, T G; Helle, M H; Kaganovich, D
2015-04-01
The physical processes associated with propagation of a high-power (power > critical power for self-focusing) laser beam in water include nonlinear focusing, stimulated Raman scattering (SRS), optical breakdown, and plasma formation. The interplay between nonlinear focusing and SRS is analyzed for cases where a significant portion of the pump power is channeled into the Stokes wave. Propagation simulations and an analytical model demonstrate that the Stokes wave can re-focus the pump wave after the power in the latter falls below the critical power. It is shown that this novel focusing mechanism is distinct from cross-phase focusing. The phenomenon of gain-focusing discussed here for propagation in water is expected to be of general occurrence applicable to any medium supporting nonlinear focusing and stimulated Raman scattering. PMID:25831383
On shallow water waves in a medium with time-dependent dispersion and nonlinearity coefficients.
Abdel-Gawad, Hamdy I; Osman, Mohamed
2015-07-01
In this paper, we studied the progression of shallow water waves relevant to the variable coefficient Korteweg-de Vries (vcKdV) equation. We investigated two kinds of cases: when the dispersion and nonlinearity coefficients are proportional, and when they are not linearly dependent. In the first case, it was shown that the progressive waves have some geometric structures as in the case of KdV equation with constant coefficients but the waves travel with time dependent speed. In the second case, the wave structure is maintained when the nonlinearity balances the dispersion. Otherwise, water waves collapse. The objectives of the study are to find a wide class of exact solutions by using the extended unified method and to present a new algorithm for treating the coupled nonlinear PDE's. PMID:26199750
Quantitative Analysis of Nonlinear Water-Waves: A Perspective of an Experimentalist
Shemer, Lev
In the present review the emphasis is put on laboratory studies of propagating water waves where experiments were designed with the purpose to enable juxtaposing the measurement results with the theoretical predictions, thus providing a basis for evaluation of the domain of validity of various nonlinear theoretical model of different complexity. In particular, evolution of deterministic wave groups of different shapes and several values of characteristic nonlinearity is studied in deep and intermediate-depth water. Experiments attempting to generate extremely steep (rogue) waves are reviewed in greater detail. Relation between the kinematics of steep nonlinear waves and incipient breaking is considered. Discussion of deterministic wave systems is followed by review of laboratory experiments on propagation of numerous realizations of random wave groups with different initial spectra. The experimental results are compared with the corresponding Monte-Carlo numerical simulations based on different models.
Automatic Reconstruction of Spacecraft 3D Shape from Imagery
Poelman, C.; Radtke, R.; Voorhees, H.
We describe a system that computes the three-dimensional (3D) shape of a spacecraft from a sequence of uncalibrated, two-dimensional images. While the mathematics of multi-view geometry is well understood, building a system that accurately recovers 3D shape from real imagery remains an art. A novel aspect of our approach is the combination of algorithms from computer vision, photogrammetry, and computer graphics. We demonstrate our system by computing spacecraft models from imagery taken by the Air Force Research Laboratory's XSS-10 satellite and DARPA's Orbital Express satellite. Using feature tie points (each identified in two or more images), we compute the relative motion of each frame and the 3D location of each feature using iterative linear factorization followed by non-linear bundle adjustment. The "point cloud" that results from this traditional shape-from-motion approach is typically too sparse to generate a detailed 3D model. Therefore, we use the computed motion solution as input to a volumetric silhouette-carving algorithm, which constructs a solid 3D model based on viewpoint consistency with the image frames. The resulting voxel model is then converted to a facet-based surface representation and is texture-mapped, yielding realistic images from arbitrary viewpoints. We also illustrate other applications of the algorithm, including 3D mensuration and stereoscopic 3D movie generation.
Rendering of 3D Dynamic Virtual Environments
Catanese, Salvatore; Fiumara, Giacomo; Pagano, Francesco
2011-01-01
In this paper we present a framework for the rendering of dynamic 3D virtual environments which can be integrated in the development of videogames. It includes methods to manage sounds and particle effects, paged static geometries, the support of a physics engine and various input systems. It has been designed with a modular structure to allow future expansions. We exploited some open-source state-of-the-art components such as OGRE, PhysX, ParticleUniverse, etc.; all of them have been properly integrated to obtain peculiar physical and environmental effects. The stand-alone version of the application is fully compatible with Direct3D and OpenGL APIs and adopts OpenAL APIs to manage audio cards. Concluding, we devised a showcase demo which reproduces a dynamic 3D environment, including some particular effects: the alternation of day and night infuencing the lighting of the scene, the rendering of terrain, water and vegetation, the reproduction of sounds and atmospheric agents.
Integrated Biogeomorphological Modeling Using Delft3D
Ye, Q.; Jagers, B.
2011-12-01
The skill of numerical morphological models has improved significantly from the early 2D uniform, total load sediment models (with steady state or infrequent wave updates) to recent 3D hydrodynamic models with multiple suspended and bed load sediment fractions and bed stratigraphy (online coupled with waves). Although there remain many open questions within this combined field of hydro- and morphodynamics, we observe an increasing need to include biological processes in the overall dynamics. In riverine and inter-tidal environments, there is often an important influence by riparian vegetation and macrobenthos. Over the past decade more and more researchers have started to extend the simulation environment with wrapper scripts and other quick code hacks to estimate their influence on morphological development in coastal, estuarine and riverine environments. Although one can in this way quickly analyze different approaches, these research tools have generally not been designed with reuse, performance and portability in mind. We have now implemented a reusable, flexible, and efficient two-way link between the Delft3D open source framework for hydrodynamics, waves and morphology, and the water quality and ecology modules. The same link will be used for 1D, 2D and 3D modeling on networks and both structured and unstructured grids. We will describe the concepts of the overall system, and illustrate it with some first results.
Weakly nonlinear non-symmetric gravity waves on water of finite depth
Zufiria, J.A.
1987-01-01
A weakly nonlinear Hamiltonian model for two-dimensional irrotational waves on water of finite depth is developed. The truncated model is used to study families of periodic travelling waves of permanent form. It is shown that non-symmetric periodic waves exist, which appear via spontaneous symmetry-breaking bifurcations from symmetric waves.
DEFF Research Database (Denmark)
Bigoni, Daniele; Engsig-Karup, Allan Peter; Eskilsson, Claes
2016-01-01
A major challenge in next-generation industrial applications is to improve numerical analysis by quantifying uncertainties in predictions. In this work we present a formulation of a fully nonlinear and dispersive potential flow water wave model with random inputs for the probabilistic description...
Computation of nonlinear water waves with a high-order Boussinesq model
DEFF Research Database (Denmark)
Fuhrman, David R.; Madsen, Per A.; Bingham, Harry
2005-01-01
-crested waves in shallow/deep water, resulting in hexagonal/rectangular surface patterns; crescent waves, resulting from unstable perturbations of plane progressive waves; and highly-nonlinear wave-structure interactions. The emphasis is on physically demanding problems, and in eachcase qualitative and (when...
Computation of nonlinear water waves with a high-order Boussinesq model
DEFF Research Database (Denmark)
Fuhrman, David R.; Madsen, Per A.; Bingham, Harry
-crested waves in shallow/deep water, resulting in hexagonal/rectangular surface patterns; crescent waves, resulting from unstable perturbations of plane progressive waves; and highly-nonlinear wave-structure interactions. The emphasis is on physically demanding problems, and in eachcase qualitative and (when...
Prediction of Ship Unsteady Maneuvering in Calm Water by a Fully Nonlinear Ship Motion Model
Ray-Qing Lin; Tim Smith; Michael Hughes
2012-01-01
This is the continuation of our research on development of a fully nonlinear, dynamically consistent, numerical ship motion model (DiSSEL). In this study we will report our results in predicting ship motions in unsteady maneuvering in calm water. During the unsteady maneuvering, both the rudder angle, and ship forward speed vary with time. Therefore, not only surge, sway, and yaw motions occur, but roll, pitch and heave motions will also occur even in calm water as heel, trim, and sinkage, re...
Directory of Open Access Journals (Sweden)
FROILAN G. DESTREZA
2014-02-01
Full Text Available This study is for the BSHRM Students of Batangas State University (BatStateU ARASOF for the researchers believe that the Wireless 3D Chocolate Printer would be helpful in their degree program especially on making creative, artistic, personalized and decorative chocolate designs. The researchers used the Prototyping model as procedural method for the successful development and implementation of the hardware and software. This method has five phases which are the following: quick plan, quick design, prototype construction, delivery and feedback and communication. This study was evaluated by the BSHRM Students and the assessment of the respondents regarding the software and hardware application are all excellent in terms of Accuracy, Effecitveness, Efficiency, Maintainability, Reliability and User-friendliness. Also, the overall level of acceptability of the design project as evaluated by the respondents is excellent. With regard to the observation about the best raw material to use in 3D printing, the chocolate is good to use as the printed material is slightly distorted,durable and very easy to prepare; the icing is also good to use as the printed material is not distorted and is very durable but consumes time to prepare; the flour is not good as the printed material is distorted, not durable but it is easy to prepare. The computation of the economic viability level of 3d printer with reference to ROI is 37.14%. The recommendation of the researchers in the design project are as follows: adding a cooling system so that the raw material will be more durable, development of a more simplified version and improving the extrusion process wherein the user do not need to stop the printing process just to replace the empty syringe with a new one.
On triad nonlinear resonant interactions of deep water waves trapped by jet currents
Shrira, Victor; Slunyaev, Alexey
2014-05-01
We derive an asymptotic description of weakly nonlinear wave interactions between waves trapped by opposing jet currents by extending the asymptotic modal approach developed in Shrira & Slunyaev (2014). It is widely believed that to the leading order the nonlinear interactions between water waves in deep water are always quartic and potential. We show that for waves trapped on the jet currents it is not true: triad resonant interactions between trapped modes are always allowed. Moreover, the nonlinear evolution of the wave field is to the leading order determined by these triad interactions if the current is sufficiently strong or wave field nonlinearity is appropriately weak. To the leading order the corresponding interaction coefficients are controlled by the background vorticity due to the jet. More specifically, we consider waves upon a longitudinally uniform jet current; the current is assumed to be stationary and without vertical shear. The approximate separation of variables allows us to find the two-dimensional mode structure by means of one-dimensional boundary value problem (BVP) for wave Fourier harmonics along the current. The asymptotic weakly nonlinear theory taking into account quadratic nonlinearity for broad but not necessary weak currents is developed. The evolution equations for three interacting modes are written explicitly, the nonlinear interaction coefficients are computed. The three-wave interactions weaken when the current is weak. When the ratio of the current magnitude to wave celerity is of order of wave steepness the effects of 3-wave and 4-wave resonances appear at the same asymptotic order. These regimes, as well as the identified regimes where triad resonant interactions between trapped waves are dominant, lead to a qualitatively new wave dynamics which remains to be explored yet. V.I. Shrira, A.V. Slunyaev, Trapped waves on jet currents: asymptotic modal approach. J. Fluid Mech. 738, 65-104 (2014).
Järvinen, Manu
2009-01-01
Opinnäytetyössä tutkittiin tehokasta tapaa toteuttaa minuutin mittainen animaatio Scene.org Awards -tapahtuman avajaisseremoniaan. Kyseinen video toteutettiin osana opinnäytetyötä. Työhön osallistui tekijän lisäksi 3D-mallintaja sekä muusikko. Työkaluina käytettiin pääasiassa Autodesk 3ds Max-, sekä Adobe After Effects- ja Adobe Photoshop -ohjelmia. Opinnäytetyö koostuu animaatioprojektin tuotantoputken ja tiedostonhallintamallin perinpohjaisesta läpikäymisestä sekä sen asian tutkimisesta...
Manos, Harry
2016-03-01
Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the TPT theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity well tailored to specific class lessons. Most of the supplies are readily available in the home or at school: rubbing alcohol, a rag, two colors of spray paint, art brushes, and masking tape. The cost of these supplies, if you don't have them, is less than 20.
Institute of Scientific and Technical Information of China (English)
吕铁雄
2011-01-01
难度:★★★★☆词数:450 建议阅读时间:8分钟 Most people see out of two eyes. This is a basic fact of humanity,but it’s what makes possible the illusion of depth(纵深幻觉) that 3-D movies create. Human eyes are spaced about two inches apart, meaning that each eye gives the brain a slightly different perspective(透视感)on the same object. The brain then uses this variance to quickly determine an object’s distance.
Virtual 3-D Facial Reconstruction
Directory of Open Access Journals (Sweden)
Martin Paul Evison
2000-06-01
Full Text Available Facial reconstructions in archaeology allow empathy with people who lived in the past and enjoy considerable popularity with the public. It is a common misconception that facial reconstruction will produce an exact likeness; a resemblance is the best that can be hoped for. Research at Sheffield University is aimed at the development of a computer system for facial reconstruction that will be accurate, rapid, repeatable, accessible and flexible. This research is described and prototypical 3-D facial reconstructions are presented. Interpolation models simulating obesity, ageing and ethnic affiliation are also described. Some strengths and weaknesses in the models, and their potential for application in archaeology are discussed.
Positional Awareness Map 3D (PAM3D)
Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise
2012-01-01
The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.
3D Printable Graphene Composite
Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong
2015-07-01
In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.
Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C
2013-06-12
The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097
3D Ion Temperature Reconstruction
Tanabe, Hiroshi; You, Setthivoine; Balandin, Alexander; Inomoto, Michiaki; Ono, Yasushi
2009-11-01
The TS-4 experiment at the University of Tokyo collides two spheromaks to form a single high-beta compact toroid. Magnetic reconnection during the merging process heats and accelerates the plasma in toroidal and poloidal directions. The reconnection region has a complex 3D topology determined by the pitch of the spheromak magnetic fields at the merging plane. A pair of multichord passive spectroscopic diagnostics have been established to measure the ion temperature and velocity in the reconnection volume. One setup measures spectral lines across a poloidal plane, retrieving velocity and temperature from Abel inversion. The other, novel setup records spectral lines across another section of the plasma and reconstructs velocity and temperature from 3D vector and 2D scalar tomography techniques. The magnetic field linking both measurement planes is determined from in situ magnetic probe arrays. The ion temperature is then estimated within the volume between the two measurement planes and at the reconnection region. The measurement is followed over several repeatable discharges to follow the heating and acceleration process during the merging reconnection.
Is 3D true non linear traveltime tomography reasonable ?
Herrero, A.; Virieux, J.
2003-04-01
The data sets requiring 3D analysis tools in the context of seismic exploration (both onshore and offshore experiments) or natural seismicity (micro seismicity surveys or post event measurements) are more and more numerous. Classical linearized tomographies and also earthquake localisation codes need an accurate 3D background velocity model. However, if the medium is complex and a priori information not available, a 1D analysis is not able to provide an adequate background velocity image. Moreover, the design of the acquisition layouts is often intrinsically 3D and renders difficult even 2D approaches, especially in natural seismicity cases. Thus, the solution relies on the use of a 3D true non linear approach, which allows to explore the model space and to identify an optimal velocity image. The problem becomes then practical and its feasibility depends on the available computing resources (memory and time). In this presentation, we show that facing a 3D traveltime tomography problem with an extensive non-linear approach combining fast travel time estimators based on level set methods and optimisation techniques such as multiscale strategy is feasible. Moreover, because management of inhomogeneous inversion parameters is more friendly in a non linear approach, we describe how to perform a jointly non-linear inversion for the seismic velocities and the sources locations.
International Nuclear Information System (INIS)
The Lott Ranch 3D seismic prospect located in Garza County, Texas is a project initiated in September of 1991 by the J.M. Huber Corp., a petroleum exploration and production company. By today's standards the 126 square mile project does not seem monumental, however at the time it was conceived it was the most intensive land 3D project ever attempted. Acquisition began in September of 1991 utilizing GEO-SEISMIC, INC., a seismic data contractor. The field parameters were selected by J.M. Huber, and were of a radical design. The recording instruments used were GeoCor IV amplifiers designed by Geosystems Inc., which record the data in signed bit format. It would not have been practical, if not impossible, to have processed the entire raw volume with the tools available at that time. The end result was a dataset that was thought to have little utility due to difficulties in processing the field data. In 1997, Yates Energy Corp. located in Roswell, New Mexico, formed a partnership to further develop the project. Through discussions and meetings with Pinnacle Seismic, it was determined that the original Lott Ranch 3D volume could be vastly improved upon reprocessing. Pinnacle Seismic had shown the viability of improving field-summed signed bit data on smaller 2D and 3D projects. Yates contracted Pinnacle Seismic Ltd. to perform the reprocessing. This project was initiated with high resolution being a priority. Much of the potential resolution was lost through the initial summing of the field data. Modern computers that are now being utilized have tremendous speed and storage capacities that were cost prohibitive when this data was initially processed. Software updates and capabilities offer a variety of quality control and statics resolution, which are pertinent to the Lott Ranch project. The reprocessing effort was very successful. The resulting processed data-set was then interpreted using modern PC-based interpretation and mapping software. Production data, log data
Mapping nonlinear shallow-water tides: a look at the past and future
DEFF Research Database (Denmark)
Andersen, Ole Baltazar; Egbert, G.D.; Erofeeva, S.Y.;
2006-01-01
Overtides and compound tides are generated by nonlinear mechanisms operative primarily in shallow waters. Their presence complicates tidal analysis owing to the multitude of new constituents and their possible frequency overlap with astronomical tides. The science of nonlinear tides was greatly...... to regions with fewer in situ measurements will require improved understanding of error covariance models because these control the tradeoffs between fitting hydrodynamics and data, a delicate issue in coastal regions. While M-4 can now be robustly determined along the Topex/Poseidon satellite ground...
3D biometrics systems and applications
Zhang, David
2013-01-01
Includes discussions on popular 3D imaging technologies, combines them with biometric applications, and then presents real 3D biometric systems Introduces many efficient 3D feature extraction, matching, and fusion algorithms Techniques presented have been supported by experimental results using various 3D biometric classifications
Probing nonlinear rheology layer-by-layer in interfacial hydration water.
Kim, Bongsu; Kwon, Soyoung; Lee, Manhee; Kim, Q Hwan; An, Sangmin; Jhe, Wonho
2015-12-22
Viscoelastic fluids exhibit rheological nonlinearity at a high shear rate. Although typical nonlinear effects, shear thinning and shear thickening, have been usually understood by variation of intrinsic quantities such as viscosity, one still requires a better understanding of the microscopic origins, currently under debate, especially on the shear-thickening mechanism. We present accurate measurements of shear stress in the bound hydration water layer using noncontact dynamic force microscopy. We find shear thickening occurs above ∼ 10(6) s(-1) shear rate beyond 0.3-nm layer thickness, which is attributed to the nonviscous, elasticity-associated fluidic instability via fluctuation correlation. Such a nonlinear fluidic transition is observed due to the long relaxation time (∼ 10(-6) s) of water available in the nanoconfined hydration layer, which indicates the onset of elastic turbulence at nanoscale, elucidating the interplay between relaxation and shear motion, which also indicates the onset of elastic turbulence at nanoscale above a universal shear velocity of ∼ 1 mm/s. This extensive layer-by-layer control paves the way for fundamental studies of nonlinear nanorheology and nanoscale hydrodynamics, as well as provides novel insights on viscoelastic dynamics of interfacial water. PMID:26644571
Analysis of efficient preconditioned defect correction methods for nonlinear water waves
DEFF Research Database (Denmark)
Engsig-Karup, Allan Peter
2014-01-01
models. Our study is particularly relevant for fast and efficient simulation of non-breaking fully nonlinear water waves over varying bottom topography that may be limited by computational resources or requirements. To gain insight into algorithmic properties and proper choices of discretization......Robust computational procedures for the solution of non-hydrostatic, free surface, irrotational and inviscid free-surface water waves in three space dimensions can be based on iterative preconditioned defect correction (PDC) methods. Such methods can be made efficient and scalable to enable...... prediction of free-surface wave transformation and accurate wave kinematics in both deep and shallow waters in large marine areas or for predicting the outcome of experiments in large numerical wave tanks. We revisit the classical governing equations are fully nonlinear and dispersive potential flow...
Photopolymers in 3D printing applications
Pandey, Ramji
2014-01-01
3D printing is an emerging technology with applications in several areas. The flexibility of the 3D printing system to use variety of materials and create any object makes it an attractive technology. Photopolymers are one of the materials used in 3D printing with potential to make products with better properties. Due to numerous applications of photopolymers and 3D printing technologies, this thesis is written to provide information about the various 3D printing technologies with particul...
Natural fibre composites for 3D Printing
Pandey, Kapil
2015-01-01
3D printing has been common option for prototyping. Not all the materials are suitable for 3D printing. Various studies have been done and still many are ongoing regarding the suitability of the materials for 3D printing. This thesis work discloses the possibility of 3D printing of certain polymer composite materials. The main objective of this thesis work was to study the possibility for 3D printing the polymer composite material composed of natural fibre composite and various different ...
Nonlinear focusing of ultrasonic waves by an axisymmetric diffraction grating embedded in water
Energy Technology Data Exchange (ETDEWEB)
Jiménez, N.; Picó, R. [Instituto de Investigación para la Gestión Integrada de zonas Costeras, Universitat Politècnica de València, Paranimf 1, 46730 Grao de Gandia, València (Spain); Romero-García, V. [LUNAM Université, Université du Maine, LAUM UMR CNRS 6613, Av. O. Messiaen, 72085 Le Mans (France); Garcia-Raffi, L. M. [Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022 València (Spain); Staliunas, K. [ICREA, Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Colom, 11, E-08222 Terrassa, Barcelona (Spain)
2015-11-16
We report the nonlinear focusing of ultrasonic waves by an axisymmetric diffraction grating immersed in water. In the linear regime, the system presents high focal gain (32 dB), with a narrow beam-width and intense side lobes as it is common in focusing by Fresnel-like lenses. Activating the nonlinearity of the host medium by using high amplitude incident waves, the focusing properties of the lens dramatically change. Theoretical predictions show that the focal gain of the system extraordinary increases in the strongly nonlinear regime (Mach number of 6.1 × 10{sup −4}). Particularly, the harmonic generation is locally activated at the focal spot, and the second harmonic beam is characterized by strongly reduced side-lobes and an excellent beam profile as experiments show in agreement with theory. The results can motivate applications in medical therapy or second harmonic imaging.
Nonlinear focusing of ultrasonic waves by an axisymmetric diffraction grating embedded in water
International Nuclear Information System (INIS)
We report the nonlinear focusing of ultrasonic waves by an axisymmetric diffraction grating immersed in water. In the linear regime, the system presents high focal gain (32 dB), with a narrow beam-width and intense side lobes as it is common in focusing by Fresnel-like lenses. Activating the nonlinearity of the host medium by using high amplitude incident waves, the focusing properties of the lens dramatically change. Theoretical predictions show that the focal gain of the system extraordinary increases in the strongly nonlinear regime (Mach number of 6.1 × 10−4). Particularly, the harmonic generation is locally activated at the focal spot, and the second harmonic beam is characterized by strongly reduced side-lobes and an excellent beam profile as experiments show in agreement with theory. The results can motivate applications in medical therapy or second harmonic imaging
Nonlinear focusing of ultrasonic waves by an axisymmetric diffraction grating embedded in water
Jiménez, N.; Romero-García, V.; Picó, R.; Garcia-Raffi, L. M.; Staliunas, K.
2015-11-01
We report the nonlinear focusing of ultrasonic waves by an axisymmetric diffraction grating immersed in water. In the linear regime, the system presents high focal gain (32 dB), with a narrow beam-width and intense side lobes as it is common in focusing by Fresnel-like lenses. Activating the nonlinearity of the host medium by using high amplitude incident waves, the focusing properties of the lens dramatically change. Theoretical predictions show that the focal gain of the system extraordinary increases in the strongly nonlinear regime (Mach number of 6.1 × 10-4). Particularly, the harmonic generation is locally activated at the focal spot, and the second harmonic beam is characterized by strongly reduced side-lobes and an excellent beam profile as experiments show in agreement with theory. The results can motivate applications in medical therapy or second harmonic imaging.
National Aeronautics and Space Administration — Aqua, Latin for water, is a NASA Earth Science satellite mission named for the large amount of information that the mission is collecting about the Earth's water...
Advanced 3-D Ultrasound Imaging
DEFF Research Database (Denmark)
Rasmussen, Morten Fischer
been completed. This allows for precise measurements of organs dimensions and makes the scan more operator independent. Real-time 3-D ultrasound imaging is still not as widespread in use in the clinics as 2-D imaging. A limiting factor has traditionally been the low image quality achievable using...... and removes the need to integrate custom made electronics into the probe. A downside of row-column addressing 2-D arrays is the creation of secondary temporal lobes, or ghost echoes, in the point spread function. In the second part of the scientific contributions, row-column addressing of 2-D arrays...... was investigated. An analysis of how the ghost echoes can be attenuated was presented.Attenuating the ghost echoes were shown to be achieved by minimizing the first derivative of the apodization function. In the literature, a circular symmetric apodization function was proposed. A new apodization layout...
Conducting Polymer 3D Microelectrodes
Directory of Open Access Journals (Sweden)
Jenny Emnéus
2010-12-01
Full Text Available Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements.
Institute of Scientific and Technical Information of China (English)
余新洲
2016-01-01
为了实现细粒级尾砂用于尾矿库上游法筑坝，需解决细颗粒尾砂抗剪强度低、固结排水难的问题，提出组合运用土工合成材料作为尾矿库堆积坝三维立体式排渗系统。通过建立某尾矿库二维有限元渗流计算模型，对比不同方案下尾矿库渗流场情况，得出该排渗方式的合理有效性。结果表明，采用水平土工席垫+垂直塑料盲沟排渗技术可以有效降低坝体浸润线，最大降幅达230.43%；排渗系统对降低渗透比降有明显作用，可减小堆积坝体发生渗透破坏可能性。%To achieve construction of fine tailings dam by upstream method, the problems of low shear strength and consolidation draining difficulty need to be solved. United application of earthwork synthetic materials as 3D solid water seepage system of tailings dam is put forward. By establishing 2D finite element model for seepage calculation of a tailing reservoir, the seepage fields are compared in different schemes, and reasonableness and effectiveness of the water seepage method are obtained. The results show that the application of horizontal geomat and vertical plastic blind drain water seepage technology can effectively reduce the saturation line of tailings dam, and the maximum amplitude reduction reaches 230.43%. The water seepage system can significantly decrease the gradient of permeation, reducing the possibility of seepage failure.
2009-01-01
of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through. The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave. This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron. High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these structures, but their orientation and
Vrecica, Teodor; Toledo, Yaron
2015-04-01
One-dimensional deterministic and stochastic evolution equations are derived for the dispersive nonlinear waves while taking dissipation of energy into account. The deterministic nonlinear evolution equations are formulated using operational calculus by following the approach of Bredmose et al. (2005). Their formulation is extended to include the linear and nonlinear effects of wave dissipation due to friction and breaking. The resulting equation set describes the linear evolution of the velocity potential for each wave harmonic coupled by quadratic nonlinear terms. These terms describe the nonlinear interactions between triads of waves, which represent the leading-order nonlinear effects in the near-shore region. The equations are translated to the amplitudes of the surface elevation by using the approach of Agnon and Sheremet (1997) with the correction of Eldeberky and Madsen (1999). The only current possibility for calculating the surface gravity wave field over large domains is by using stochastic wave evolution models. Hence, the above deterministic model is formulated as a stochastic one using the method of Agnon and Sheremet (1997) with two types of stochastic closure relations (Benney and Saffman's, 1966, and Hollway's, 1980). These formulations cannot be applied to the common wave forecasting models without further manipulation, as they include a non-local wave shoaling coefficients (i.e., ones that require integration along the wave rays). Therefore, a localization method was applied (see Stiassnie and Drimer, 2006, and Toledo and Agnon, 2012). This process essentially extracts the local terms that constitute the mean nonlinear energy transfer while discarding the remaining oscillatory terms, which transfer energy back and forth. One of the main findings of this work is the understanding that the approximated non-local coefficients behave in two essentially different manners. In intermediate water depths these coefficients indeed consist of rapidly
The genetic algorithm for the nonlinear programming of water pollution control system
Energy Technology Data Exchange (ETDEWEB)
Wei, J.; Zhang, J. [China University of Geosciences (China)
1999-08-01
In the programming of water pollution control system the combined method of optimization with simulation is used generally. It is not only laborious in calculation, but also the global optimum of the obtained solution is guaranteed difficult. In this paper, the genetic algorithm (GA) used in the nonlinear programming of water pollution control system is given, by which the preferred conception for the programming of waste water system is found in once-through operation. It is more succinct than the conventional method and the global optimum of the obtained solution could be ensured. 6 refs., 4 figs., 3 tabs.
3D Inverse problem: Seawater intrusions
Steklova, K.; Haber, E.
2013-12-01
Modeling of seawater intrusions (SWI) is challenging as it involves solving the governing equations for variable density flow, multiple time scales and varying boundary conditions. Due to the nonlinearity of the equations and the large aquifer domains, 3D computations are a costly process, particularly when solving the inverse SWI problem. In addition the heads and concentration measurements are difficult to obtain due to mixing, saline wedge location is sensitive to aquifer topography, and there is general uncertainty in initial and boundary conditions and parameters. Some of these complications can be overcome by using indirect geophysical data next to standard groundwater measurements, however, the inverse problem is usually simplified, e.g. by zonation for the parameters based on geological information, steady state substitution of the unknown initial conditions, decoupling the equations or reducing the amount of unknown parameters by covariance analysis. In our work we present a discretization of the flow and solute mass balance equations for variable groundwater (GW) flow. A finite difference scheme is to solve pressure equation and a Semi - Lagrangian method for solute transport equation. In this way we are able to choose an arbitrarily large time step without losing stability up to an accuracy requirement coming from the coupled character of the variable density flow equations. We derive analytical sensitivities of the GW model for parameters related to the porous media properties and also the initial solute distribution. Analytically derived sensitivities reduce the computational cost of inverse problem, but also give insight for maximizing information in collected data. If the geophysical data are available it also enables simultaneous calibration in a coupled hydrogeophysical framework. The 3D inverse problem was tested on artificial time dependent data for pressure and solute content coming from a GW forward model and/or geophysical forward model. Two
3D CFD CONV code: validation and verification
International Nuclear Information System (INIS)
During some years in IBRAE a set of 3D CFD modules (CONV code) for safety analysis of the operated Nuclear Power Plants (NPPs) is developing. These modules are based on the developed algorithms with small scheme diffusion, for which the discrete approximations are constructed with use of finite-volume methods and fully staggered grids. For solving of convection problem the regularized nonlinear monotonic operator-splitting scheme is developed. The Richardson iterative method with Chebyshev's set of parameters using FFT solver for Laplace's operator as pre-conditioner is applied for solving pressure equation. Such approach for solving of the elliptical equations with variable coefficients gives multiple acceleration in a comparison with a usual method of conjugate gradients. For modeling of 3D turbulent single-phase flows LES approach (commutative filters) is used. The CONV code is fully parallelized and highly effective at the high performance computers. The developed modules were validated on a series of the well known tests in a wide range of Rayleigh numbers from a range 106-1016 and Reynolds numbers from a range 103-105. The developed software has been applied to the simulation of the experiment on RASPLAV facility and of large-scale RCW test conducted in the frames of MASCA Project. As a result of numerical modeling of aforementioned experiments qualitative and quantitative agreement with experimental data was obtained including amount of the molten corium and form of the molten pool, distribution of temperature in corium, fluxes and temperatures in a test-wall. The software has been applied also to the analysis results of test L1 and joint analyses on transient molten pool thermal hydraulics in the LIVE facility in the framework of ISTC project. In this paper the examples of use of the developed software for modeling of a fuel assembly, namely, for research of a hydraulic resistance factor of a spacer are demonstrated. The calculations are carried out on a
3D simulation studies of tokamak plasmas using MHD and extended-MHD models
International Nuclear Information System (INIS)
The M3D (Multi-level 3D) tokamak simulation project aims at the simulation of tokamak plasmas using a multi-level tokamak code package. Several current applications using MHD and Extended-MHD models are presented; high-β disruption studies in reversed shear plasmas using the MHD level MH3D code, ω*i stabilization and nonlinear island saturation of TAE mode using the hybrid particle/MHD level MH3D-K code, and unstructured mesh MH3D++ code studies. In particular, three internal mode disruption mechanisms are identified from simulation results which agree which agree well with experimental data
MC3D modelling of stratified explosion
International Nuclear Information System (INIS)
It is known that a steam explosion can occur in a stratified geometry and that the observed yields are lower than in the case of explosion in a premixture configuration. However, very few models are available to quantify the amount of melt which can be involved and the pressure peak that can be developed. In the stratified application of the MC3D code, mixing and fragmentation of the melt are explained by the growth of Kelvin Helmholtz instabilities due to the shear flow of the two phase coolant above the melt. Such a model is then used to recalculate the Frost-Ciccarelli tin-water experiment. Pressure peak, speed of propagation, bubble shape and erosion height are well reproduced as well as the influence of the inertial constraint (height of the water pool). (author)
Fully Nonlinear Boussinesq-Type Equations with Optimized Parameters for Water Wave Propagation
Institute of Scientific and Technical Information of China (English)
荆海晓; 刘长根; 龙文; 陶建华
2015-01-01
For simulating water wave propagation in coastal areas, various Boussinesq-type equations with improved properties in intermediate or deep water have been presented in the past several decades. How to choose proper Boussinesq-type equations has been a practical problem for engineers. In this paper, approaches of improving the characteristics of the equations, i.e. linear dispersion, shoaling gradient and nonlinearity, are reviewed and the advantages and disadvantages of several different Boussinesq-type equations are compared for the applications of these Boussinesq-type equations in coastal engineering with relatively large sea areas. Then for improving the properties of Boussinesq-type equations, a new set of fully nonlinear Boussinseq-type equations with modified representative velocity are derived, which can be used for better linear dispersion and nonlinearity. Based on the method of minimizing the overall error in different ranges of applications, sets of parameters are determined with optimized linear dispersion, linear shoaling and nonlinearity, respectively. Finally, a test example is given for validating the results of this study. Both results show that the equations with optimized parameters display better characteristics than the ones obtained by matching with padé approximation.
On applicability of the 3D nodal code DYN3D for the analysis of SFR cores
International Nuclear Information System (INIS)
DYN3D is an advanced multi-group nodal diffusion code originally developed for the 3D steady-state and transient analysis of the Light Water Reactor (LWR) systems with square and hexagonal fuel assembly geometries. The main objective of this work is to demonstrate the feasibility of using DYN3D for the modeling of Sodium cooled Fast Reactors (SFRs). In this study a prototypic European Sodium Fast Reactor (ESFR) core is simulated by DYN3D using homogenized multi-group cross sections produced with Monte Carlo (MC) reactor physics code Serpent. The results of the full core DYN3D calculations are in a very good agreement with the reference full core Serpent MC solution. (author)
3D multiplexed immunoplasmonics microscopy
Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel
2016-07-01
Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed
Kuvaus 3D-tulostamisesta hammastekniikassa
Munne, Mauri; Mustonen, Tuomas; Vähäjylkkä, Jaakko
2013-01-01
3D-tulostaminen kehittyy nopeasti ja yleistyy koko ajan. Tulostimien tarkkuuksien kehittyessä 3D-tulostus on ottamassa myös jalansijaa hammastekniikan alalta. Tämän opinnäytetyön tarkoituksena on kuvata 3D-tulostamisen tilaa hammastekniikassa. 3D-tulostaminen on Suomessa vielä melko harvinaista, joten opinnäytetyön tavoitteena on koota yhteen kaikki mahdollinen tieto liittyen 3D-tulostamiseen hammastekniikassa. Tavoitteena on myös 3D-tulostimen testaaminen käytännössä aina suun skannaami...
NIF Ignition Target 3D Point Design
Energy Technology Data Exchange (ETDEWEB)
Jones, O; Marinak, M; Milovich, J; Callahan, D
2008-11-05
We have developed an input file for running 3D NIF hohlraums that is optimized such that it can be run in 1-2 days on parallel computers. We have incorporated increasing levels of automation into the 3D input file: (1) Configuration controlled input files; (2) Common file for 2D and 3D, different types of capsules (symcap, etc.); and (3) Can obtain target dimensions, laser pulse, and diagnostics settings automatically from NIF Campaign Management Tool. Using 3D Hydra calculations to investigate different problems: (1) Intrinsic 3D asymmetry; (2) Tolerance to nonideal 3D effects (e.g. laser power balance, pointing errors); and (3) Synthetic diagnostics.
3D multiplexed immunoplasmonics microscopy.
Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel
2016-07-21
Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K(+) channel subunit KV1.1) on human cancer CD44(+) EGFR(+) KV1.1(+) MDA-MB-231 cells and reference CD44(-) EGFR(-) KV1.1(+) 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third
ORMGEN3D, 3-D Crack Geometry FEM Mesh Generator
International Nuclear Information System (INIS)
1 - Description of program or function: ORMGEN3D is a finite element mesh generator for computational fracture mechanics analysis. The program automatically generates a three-dimensional finite element model for six different crack geometries. These geometries include flat plates with straight or curved surface cracks and cylinders with part-through cracks on the outer or inner surface. Mathematical or user-defined crack shapes may be considered. The curved cracks may be semicircular, semi-elliptical, or user-defined. A cladding option is available that allows for either an embedded or penetrating crack in the clad material. 2 - Method of solution: In general, one eighth or one-quarter of the structure is modelled depending on the configuration or option selected. The program generates a core of special wedge or collapsed prism elements at the crack front to introduce the appropriate stress singularity at the crack tip. The remainder of the structure is modelled with conventional 20-node iso-parametric brick elements. Element group I of the finite element model consists of an inner core of special crack tip elements surrounding the crack front enclosed by a single layer of conventional brick elements. Eight element divisions are used in a plane orthogonal to the crack front, while the number of element divisions along the arc length of the crack front is user-specified. The remaining conventional brick elements of the model constitute element group II. 3 - Restrictions on the complexity of the problem: Maxima of 5,500 nodes, 4 layers of clad elements
A stabilised nodal spectral element method for fully nonlinear water waves
DEFF Research Database (Denmark)
Engsig-Karup, Allan Peter; Eskilsson, C.; Bigoni, Daniele
2016-01-01
We present an arbitrary-order spectral element method for general-purpose simulation of non-overturning water waves, described by fully nonlinear potential theory. The method can be viewed as a high-order extension of the classical finite element method proposed by Cai et al. (1998) [5], although...... the numerical implementation differs greatly. Features of the proposed spectral element method include: nodal Lagrange basis functions, a general quadrature-free approach and gradient recovery using global L2 projections. The quartic nonlinear terms present in the Zakharov form of the free surface...... wave propagation. The benefit of using a high-order – possibly adapted – spatial discretisation for accurate water wave propagation over long times and distances is particularly attractive for marine hydrodynamics applications....
3d particle simulations on ultra short laser interaction
Energy Technology Data Exchange (ETDEWEB)
Nishihara, Katsunobu; Okamoto, Takashi; Yasui, Hidekazu [Osaka Univ., Suita (Japan). Inst. of Laser Engineering
1998-03-01
Two topics related to ultra short laser interaction with matter, linear and nonlinear high frequency conductivity of a solid density hydrogen plasma and anisotropic self-focusing of an intense laser in an overdense plasma, have been investigated with the use of 3-d particle codes. Frequency dependence of linear conductivity in a dense plasma is obtained, which shows anomalous conductivity near plasma frequency. Since nonlinear conductivity decreases with v{sub o}{sup -3}, where v{sub o} is a quivering velocity, an optimum amplitude exists leading to a maximum electron heating. Anisotropic self-focusing of a linear polarized intense laser is observed in an overdense plasma. (author)
3D multiplexed immunoplasmonics microscopy
Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel
2016-07-01
Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed
Crowdsourcing Based 3d Modeling
Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.
2016-06-01
Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.
3D simulation studies of tokamak plasmas using MHD and extended-MHD models
International Nuclear Information System (INIS)
The M3D (Multi-level 3D) tokamak simulation project aims at the simulation of tokamak plasmas using a multi-level tokamak code package. Several current applications using MHD and Extended-MHD models are presented; high-β disruption studies in reversed shear plasmas using the MHD level MH3D code, ω*i stabilization and nonlinear island rotation studies using the two-fluid level MH3D-T code, studies of nonlinear saturation of TAE modes using the hybrid particle/MHD level MH3D-K code, and unstructured mesh MH3D++ code studies. In particular, three internal mode disruption mechanisms are identified from simulation results which agree well with experimental data
3D simulation studies of tokamak plasmas using MHD and extended-MHD models
International Nuclear Information System (INIS)
The M3D (Multi-level 3D) tokamak simulation project aims at the simulation of tokamak plasmas using a multi-level tokamak code package. Several current applications using MHD and Extended-MHD models are presented: high-β disruption studies in reversed shear plasmas using the MHD level MH3D code; ω*i stabilization and nonlinear island rotation studies using the two-fluid level MH3D-T code; studies of nonlinear saturation of TAE modes using the hybrid particle/MHD level MH3D-K code; and unstructured mesh MH3D++ code studies. In particular, three internal mode disruption mechanisms are identified from simulation results which agree well with experimental data. (author). 18 refs, 5 figs
A Mechanistic Study of Wetting Superhydrophobic Porous 3D Meshes
Yohe, Stefan T.; Freedman, Jonathan D.; Falde, Eric J.; Colson, Yolonda L.; Grinstaff, Mark W.
2013-01-01
Superhydrophobic, porous, 3D materials composed of poly( ε -caprolactone) (PCL) and the hydrophobic polymer dopant poly(glycerol monostearate-co- ε -caprolactone) (PGC-C18) are fabricated using the electrospinning technique. These 3D materials are distinct from 2D superhydrophobic surfaces, with maintenance of air at the surface as well as within the bulk of the material. These superhydrophobic materials float in water, and when held underwater and pressed, an air bubble is released and will ...
Recovering 3D human pose from monocular images
Agarwal, Ankur; Triggs, Bill
2006-01-01
We describe a learning-based method for recovering 3D human body pose from single images and monocular image sequences. Our approach requires neither an explicit body model nor prior labeling of body parts in the image. Instead, it recovers pose by direct nonlinear regression against shape descriptor vectors extracted automatically from image silhouettes. For robustness against local silhouette segmentation errors, silhouette shape is encoded by histogram-of-shape-contexts descriptors. We eva...
3D Human Pose from Silhouettes by Relevance Vector Regression
Agarwal, Ankur; Triggs, Bill
2004-01-01
We describe a learning based method for recovering 3D human body pose from single images and monocular image sequences. Our approach requires neither an explicit body model nor prior labelling of body pans in the image. Instead, it recovers pose by direct nonlinear regression against shape descriptor vectors extracted automatically from image silhouettes. For robustness against local silhouette segmentation errors, silhouette shape is encoded by histogram-of-shape-contexts descriptors. For th...
Wax-bonding 3D microfluidic chips
Gong, Xiuqing
2013-10-10
We report a simple, low-cost and detachable microfluidic chip incorporating easily accessible paper, glass slides or other polymer films as the chip materials along with adhesive wax as the recycling bonding material. We use a laser to cut through the paper or film to form patterns and then sandwich the paper and film between glass sheets or polymer membranes . The hot-melt adhesive wax can realize bridge bonding between various materials, for example, paper, polymethylmethacrylate (PMMA) film, glass sheets, or metal plate. The bonding process is reversible and the wax is reusable through a melting and cooling process. With this process, a three-dimensional (3D) microfluidic chip is achievable by vacuating and venting the chip in a hot-water bath. To study the biocompatibility and applicability of the wax-based microfluidic chip, we tested the PCR compatibility with the chip materials first. Then we applied the wax-paper based microfluidic chip to HeLa cell electroporation (EP ). Subsequently, a prototype of a 5-layer 3D chip was fabricated by multilayer wax bonding. To check the sealing ability and the durability of the chip, green fluorescence protein (GFP) recombinant Escherichia coli (E. coli) bacteria were cultured, with which the chemotaxis of E. coli was studied in order to determine the influence of antibiotic ciprofloxacin concentration on the E. coli migration.
3-D Printed High Power Microwave Magnetrons
Jordan, Nicholas; Greening, Geoffrey; Exelby, Steven; Gilgenbach, Ronald; Lau, Y. Y.; Hoff, Brad
2015-11-01
The size, weight, and power requirements of HPM systems are critical constraints on their viability, and can potentially be improved through the use of additive manufacturing techniques, which are rapidly increasing in capability and affordability. Recent experiments on the UM Recirculating Planar Magnetron (RPM), have explored the use of 3-D printed components in a HPM system. The system was driven by MELBA-C, a Marx-Abramyan system which delivers a -300 kV voltage pulse for 0.3-1.0 us, with a 0.15-0.3 T axial magnetic field applied by a pair of electromagnets. Anode blocks were printed from Water Shed XC 11122 photopolymer using a stereolithography process, and prepared with either a spray-coated or electroplated finish. Both manufacturing processes were compared against baseline data for a machined aluminum anode, noting any differences in power output, oscillation frequency, and mode stability. Evolution and durability of the 3-D printed structures were noted both visually and by tracking vacuum inventories via a residual gas analyzer. Research supported by AFOSR (grant #FA9550-15-1-0097) and AFRL.
Will 3D printers manufacture your meals?
Bommel, K.J.C. van
2013-01-01
These days, 3D printers are laying down plastics, metals, resins, and other materials in whatever configurations creative people can dream up. But when the next 3D printing revolution comes, you'll be able to eat it.
Eesti 3D jaoks kitsas / Virge Haavasalu
Haavasalu, Virge
2009-01-01
Produktsioonifirma Digitaalne Sputnik: Kaur ja Kaspar Kallas tegelevad filmide produtseerimise ning 3D digitaalkaamerate tootearendusega (Silicon Imaging LLC). Vendade Kallaste 3D-kaamerast. Kommenteerib Eesti Filmi Sihtasutuse direktor Marge Liiske
3D Printing Making the Digital Real .
Directory of Open Access Journals (Sweden)
Miss Prachi More
2013-07-01
Full Text Available 3D printing is quickly expanding field, with the popularity and uses for 3D printers growing every day. 3D printing can be used to prototype, create replacement parts, and is even versatile enough to print prostheses and medical implants. It will have a growing impact on our world, as more and more people gain access to these amazing machines.[1] In this article, we would like to attempt to give an introduction of the technology. 3Dimensions printing is a method of converting a virtual 3D model into a physical object. 3D printing is a category of rapid prototyping technology. 3D printers typically work by printing successive layers on top of the previous to build up a three dimensional object. 3D printing is a revolutionary method for creating 3D models with the use of inkjet technology.[7
Sliding Adjustment for 3D Video Representation
Directory of Open Access Journals (Sweden)
Galpin Franck
2002-01-01
Full Text Available This paper deals with video coding of static scenes viewed by a moving camera. We propose an automatic way to encode such video sequences using several 3D models. Contrary to prior art in model-based coding where 3D models have to be known, the 3D models are automatically computed from the original video sequence. We show that several independent 3D models provide the same functionalities as one single 3D model, and avoid some drawbacks of the previous approaches. To achieve this goal we propose a novel algorithm of sliding adjustment, which ensures consistency of successive 3D models. The paper presents a method to automatically extract the set of 3D models and associate camera positions. The obtained representation can be used for reconstructing the original sequence, or virtual ones. It also enables 3D functionalities such as synthetic object insertion, lightning modification, or stereoscopic visualization. Results on real video sequences are presented.
3D Flash LIDAR Space Laser Project
National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc. (ASC) is a small business that has developed 3D Flash LIDAR systems for space and terrestrial applications. 3D Flash LIDAR is...
Numerical Approximation of a Nonlinear 3D Heat Radiation Problem
Czech Academy of Sciences Publication Activity Database
Liu, L.; Huang, M.; Yuan, K.; Křížek, Michal
2009-01-01
Roč. 1, č. 1 (2009), s. 125-139. ISSN 2070-0733 R&D Projects: GA AV ČR(CZ) IAA100190803 Institutional research plan: CEZ:AV0Z10190503 Keywords : heat radiation problem * Stefan-Boltzmann condition * Newton iterative method Subject RIV: BA - General Mathematics
3D Additive Manufacturing Symposium & Workshop
Unver, Ertu; Taylor, Andrew
2015-01-01
The IMI /3M BIC 3D Additive Manufacturing Symposium and Workshop was hosted by 3M Buckley Innovation Centre on March 17th 2015. The event was attended by the major players in precision engineering, 3D additive design and manufacturing: Representatives from EOS, Renishaw, HK 3D Printing IMI Plc Senior Management team, design engineers, programmers and academics from the University of Huddersfield School of Art Design & Architecture, 3M Buckley centre 3D printing management and designers shared...
Face Detection with a 3D Model
Barbu, Adrian; Lay, Nathan; Gramajo, Gary
2014-01-01
This paper presents a part-based face detection approach where the spatial relationship between the face parts is represented by a hidden 3D model with six parameters. The computational complexity of the search in the six dimensional pose space is addressed by proposing meaningful 3D pose candidates by image-based regression from detected face keypoint locations. The 3D pose candidates are evaluated using a parameter sensitive classifier based on difference features relative to the 3D pose. A...
3D PHOTOGRAPHS IN CULTURAL HERITAGE
Schuhr, W.; J. D. Lee; Kiel, St.
2013-01-01
This paper on providing "oo-information" (= objective object-information) on cultural monuments and sites, based on 3D photographs is also a contribution of CIPA task group 3 to the 2013 CIPA Symposium in Strasbourg. To stimulate the interest in 3D photography for scientists as well as for amateurs, 3D-Masterpieces are presented. Exemplary it is shown, due to their high documentary value ("near reality"), 3D photography support, e.g. the recording, the visualization, the interpret...
3D textiles for composite reinforcements
Fangueiro, Raúl; Mingxing, Z.; Hong, H; Soutinho, Hélder Filipe Cunha; Gonçalves, P.; Araújo, Mário Duarte de
2010-01-01
This paper presents an overview on the last developments on 3D textile structures for composite reinforcements. The application of innovative 3D shaped weft-knitted preforms in GFRP tube joints is presented and discussed. Moreover, the mechanical behaviour of 3D hybrid basalt fiber reinforced composite material sis also presented and discussed.
3D modelling for multipurpose cadastre
Abduhl Rahman, A.; Van Oosterom, P.J.M.; Hua, T.C.; Sharkawi, K.H.; Duncan, E.E.; Azri, N.; Hassan, M.I.
2012-01-01
Three-dimensional (3D) modelling of cadastral objects (such as legal spaces around buildings, around utility networks and other spaces) is one of the important aspects for a multipurpose cadastre (MPC). This paper describes the 3D modelling of the objects for MPC and its usage to the knowledge of 3D
Institute of Scientific and Technical Information of China (English)
陆仁强; 何璐珂
2012-01-01
Taking the coast of Tianjin as an example,the water environmental quality was simulated based on Delft3D model. Firstly, the study area was divided into grids by the Grid module of Delf3D model. Secondly,the pollutant emissions data of five outfalls was valued as the closed boundary conditions of the simulation model, and the open boundary conditions and model parameters were determined according to the actual data. Finally,the coastal flow,float's transfer locus and water environmental quality were simulated by the Flow and Waq modules of DelfBD model. The simulation results showed that the flow of Tianjin's coast was divided into two parts, and the pollutant distributions of five outfalls has the regional characteristics obviously. The results were matched with the actual situation of Tianjin's coast,and could be used to supply the decision support for the regional management of coastal water.%以天津市近岸海域为例,基于Delft3D数学模型,开展了近海水环境质量数值模拟研究.首先,采用Delft3D模型中的Grid模块对研究海域进行网格划分和地形处理；然后,以5个主要陆源入海河口的排污数据作为模拟模型闭边界取值,并根据实测资料设定模型的开边界条件及模型参数；最后,采用Delft3D模型中的水动力模块Flow和水质模块Waq,对5个陆源入海河口处的示踪浮子运动轨迹及近海流场、水质变化规律进行了模拟研究.模拟结果表明:天津市近岸海域的流场基本可分为大沽口以南的逆时针流场和大沽口以北的顺时针流场两大区域,在该流场的驱动下,不同陆源入海河口处排放的污染物有着较为规律的运动轨迹和相应的影响范围,表现出明显的区域性污染特征,模拟分析结果与天津市近岸海域实际情况基本一致,可为天津市近海水环境的区域化管理提供决策支持.
The upcoming 3D-printing revolution in microfluidics.
Bhattacharjee, Nirveek; Urrios, Arturo; Kang, Shawn; Folch, Albert
2016-05-21
In the last two decades, the vast majority of microfluidic systems have been built in poly(dimethylsiloxane) (PDMS) by soft lithography, a technique based on PDMS micromolding. A long list of key PDMS properties have contributed to the success of soft lithography: PDMS is biocompatible, elastomeric, transparent, gas-permeable, water-impermeable, fairly inexpensive, copyright-free, and rapidly prototyped with high precision using simple procedures. However, the fabrication process typically involves substantial human labor, which tends to make PDMS devices difficult to disseminate outside of research labs, and the layered molding limits the 3D complexity of the devices that can be produced. 3D-printing has recently attracted attention as a way to fabricate microfluidic systems due to its automated, assembly-free 3D fabrication, rapidly decreasing costs, and fast-improving resolution and throughput. Resins with properties approaching those of PDMS are being developed. Here we review past and recent efforts in 3D-printing of microfluidic systems. We compare the salient features of PDMS molding with those of 3D-printing and we give an overview of the critical barriers that have prevented the adoption of 3D-printing by microfluidic developers, namely resolution, throughput, and resin biocompatibility. We also evaluate the various forces that are persuading researchers to abandon PDMS molding in favor of 3D-printing in growing numbers. PMID:27101171
3-D Perspective Pasadena, California
2000-01-01
This perspective view shows the western part of the city of Pasadena, California, looking north towards the San Gabriel Mountains. Portions of the cities of Altadena and La Canada, Flintridge are also shown. The image was created from three datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation data; Landsat data from November 11, 1986 provided the land surface color (not the sky) and U.S. Geological Survey digital aerial photography provides the image detail. The Rose Bowl, surrounded by a golf course, is the circular feature at the bottom center of the image. The Jet Propulsion Laboratory is the cluster of large buildings north of the Rose Bowl at the base of the mountains. A large landfill, Scholl Canyon, is the smooth area in the lower left corner of the scene. This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Wildfires strip the mountains of vegetation, increasing the hazards from flooding and mudflows for several years afterwards. Data such as shown on this image can be used to predict both how wildfires will spread over the terrain and also how mudflows will be channeled down the canyons. The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency
Esiselvitys elintarvikkeiden 3D-tulostamisesta
Teva, Arno
2015-01-01
Opinnäytetyön tavoitteena oli laatia esiselvitys 3D-tulostamisesta elintarvikealalla. 3D-tulostaminen on uusi ja jatkuvasti kehittyvä ala, joka tulee vaikuttamaan myös elintarvikealan kehittymiseen. Työn tarkoituksena oli selvittää elintarvikenäkökulmasta 3D-tulostamiseen liittyviä tekijöitä. Aiheen toimeksiantajana oli Hämeen ammattikorkeakoulu ja kohderyhmänä elintarvikealan Pk-yritykset. Opinnäytetyössä esitellään yleisimpiä 3D-tulostusmenetelmiä ja selvitetään 3D-tulostamista tietokone...
Črešnik, Igor
2015-01-01
V diplomskem delu predstavljamo pripravo modela na 3D-tisk. V prvem delu smo preleteli zgodovino tiska. Predstavili smo tehnologijo 3D-tiska ter različne tehnike tiskanja, ki jih uporabljajo določeni tiskalniki. V nadaljevanju smo pregledali različne tipe 3D-tiskalnikov, ki se uporabljajo za domačo ali komercialno uporabo ter izpostavili njihove prednosti in slabosti. V zadnjem delu diplomskega dela smo na praktičnem primeru 3D-modela hiše prikazali proces priprave modela za 3D-tisk. Pri delu...
3D-tulostimien tutkiminen painotalolle
Toivonen, Aleksi
2014-01-01
Opinnäytetyön tavoitteena oli perehtyä 3D-tulostamiseen ja tutkia painotaloon sopivia 3D-tulostimia ja 3D-tulostamiseen liittyviä tekniikoita. Opinnäytetyön tavoitteena oli myös pohtia painotalolle mahdollisia 3D-tulostamiseen liittyviä tuotekonsepteja yrityksille ja yksityisille kuluttajille. Painoalan yrityksen tarkoituksena on sijoittaa lähitulevaisuudessa 3D-tulostimeen, joten opinnäytetyö oli ajankohtainen tutkimustyö yritykselle. Opinnäytetyön toimeksiantajana toimi painoalan yritys. ...
BUILDING A HOMEMADE 3D PRINTER
Tunc, Baran
2015-01-01
3D printing has been attracted much attention around the world due to its high potential of new application fields. In this respect, developing and inventing new filament materials for 3D printers or new techniques of 3D printing are the main interest of the many materials scientists. This paper reports a comprehensive overview of 3D printing followed by a summary of my ongoing study of building a composite homemade 3D printer. At this stage of this study, a CNC router was successfully conver...
Taylor, Andrew; Unver, Ertu
2015-01-01
This 3D Printing our Future:Now talk and visual presentation was given to delegates at the IMI 3D Workshop held at 3M Buckley Innovation Centre on 17th March 2015. The event was hosted by 3Mbuckley Innovation Centre for IMI plc a global engineering company, 3M, and leading 3D additive manufacturing technology providers: EOS, Renishaw and HK 3D printing to disseminate and share their experience on the latest 3D additive design and manufacturing technologies available to the engineering an...
Investigating Mobile Stereoscopic 3D Touchscreen Interaction
Colley, Ashley; Hakkila, Jonna; SCHOENING, Johannes; Posti, Maaret
2013-01-01
3D output is no longer limited to large screens in cinemas or living rooms. Nowadays more and more mobile devices are equipped with autostereoscopic 3D (S3D) touchscreens. As a consequence interaction with 3D content now also happens whilst users are on the move. In this paper we carried out a user study with 27 participants to assess how mobile interaction, i.e. whilst walking, with mobile S3D devices, differs from interaction with 2D mobile touchscreens. We investigate the difference in tou...
Scopigno, Roberto
2005-01-01
Nearly all of our cultural heritage is inherently three-dimensional. Recent hard- and software developments enabled 3D computer graphics to be one of the most powerful means to represent complex data sets. The ViHAP3D project (ViHAP3D is an acronym for Virtual Heritage - High Quality 3D Acquisition and Presentation) aimed therefore at preserving, presenting, accessing, and promoting cultural heritage using interactive, high-quality 3D graphics. The vision of the project was to create an exact...
Wafer level 3-D ICs process technology
Tan, Chuan Seng; Reif, L Rafael
2009-01-01
This book focuses on foundry-based process technology that enables the fabrication of 3-D ICs. The core of the book discusses the technology platform for pre-packaging wafer lever 3-D ICs. However, this book does not include a detailed discussion of 3-D ICs design and 3-D packaging. This is an edited book based on chapters contributed by various experts in the field of wafer-level 3-D ICs process technology. They are from academia, research labs and industry.
View-based 3-D object retrieval
Gao, Yue
2014-01-01
Content-based 3-D object retrieval has attracted extensive attention recently and has applications in a variety of fields, such as, computer-aided design, tele-medicine,mobile multimedia, virtual reality, and entertainment. The development of efficient and effective content-based 3-D object retrieval techniques has enabled the use of fast 3-D reconstruction and model design. Recent technical progress, such as the development of camera technologies, has made it possible to capture the views of 3-D objects. As a result, view-based 3-D object retrieval has become an essential but challenging res
Web-based interactive visualization of 3D video mosaics using X3D standard
Institute of Scientific and Technical Information of China (English)
CHON Jaechoon; LEE Yang-Won; SHIBASAKI Ryosuke
2006-01-01
We present a method of 3D image mosaicing for real 3D representation of roadside buildings, and implement a Web-based interactive visualization environment for the 3D video mosaics created by 3D image mosaicing. The 3D image mosaicing technique developed in our previous work is a very powerful method for creating textured 3D-GIS data without excessive data processing like the laser or stereo system. For the Web-based open access to the 3D video mosaics, we build an interactive visualization environment using X3D, the emerging standard of Web 3D. We conduct the data preprocessing for 3D video mosaics and the X3D modeling for textured 3D data. The data preprocessing includes the conversion of each frame of 3D video mosaics into concatenated image files that can be hyperlinked on the Web. The X3D modeling handles the representation of concatenated images using necessary X3D nodes. By employing X3D as the data format for 3D image mosaics, the real 3D representation of roadside buildings is extended to the Web and mobile service systems.
POD/DEIM Nonlinear model order reduction of an ADI implicit shallow water equations model
Stefanescu, Razvan
2012-01-01
In the present paper we consider a 2-D shallow-water equations (SWE) model on a $\\beta$-plane solved using an alternating direction fully implicit (ADI) finite-difference scheme on a rectangular domain. The scheme was shown to be unconditionally stable for the linearized equations. The discretization yields a number of nonlinear systems of algebraic equations. We then use a proper orthogonal decomposition (POD) to reduce the dimension of the SWE model. Due to the model nonlinearities, the computational complexity of the reduced model still depends on the number of variables of the full shallow - water equations model. By employing the discrete empirical interpolation method (DEIM) we reduce the computational complexity of the reduced order model due to its depending on the nonlinear full dimension model and regain the full model reduction expected from the POD model. To emphasize the CPU gain in performance due to use of POD/DEIM, we also propose testing an explicit Euler finite difference scheme (EE) as an a...
Maraghechi, Borna; Hasani, Mojtaba H; Kolios, Michael C; Tavakkoli, Jahan
2016-05-01
Ultrasound-based thermometry requires a temperature-sensitive acoustic parameter that can be used to estimate the temperature by tracking changes in that parameter during heating. The objective of this study is to investigate the temperature dependence of acoustic harmonics generated by nonlinear ultrasound wave propagation in water at various pulse transmit frequencies from 1 to 20 MHz. Simulations were conducted using an expanded form of the Khokhlov-Zabolotskaya-Kuznetsov nonlinear acoustic wave propagation model in which temperature dependence of the medium parameters was included. Measurements were performed using single-element transducers at two different transmit frequencies of 3.3 and 13 MHz which are within the range of frequencies simulated. The acoustic pressure signals were measured by a calibrated needle hydrophone along the axes of the transducers. The water temperature was uniformly increased from 26 °C to 46 °C in increments of 5 °C. The results show that the temperature dependence of the harmonic generation is different at various frequencies which is due to the interplay between the mechanisms of absorption, nonlinearity, and focusing gain. At the transmit frequencies of 1 and 3.3 MHz, the harmonic amplitudes decrease with increasing the temperature, while the opposite temperature dependence is observed at 13 and 20 MHz. PMID:27250143
Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion
Handy Turner, Tara
2010-02-01
From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.
3D laptop for defense applications
Edmondson, Richard; Chenault, David
2012-06-01
Polaris Sensor Technologies has developed numerous 3D display systems using a US Army patented approach. These displays have been developed as prototypes for handheld controllers for robotic systems and closed hatch driving, and as part of a TALON robot upgrade for 3D vision, providing depth perception for the operator for improved manipulation and hazard avoidance. In this paper we discuss the prototype rugged 3D laptop computer and its applications to defense missions. The prototype 3D laptop combines full temporal and spatial resolution display with the rugged Amrel laptop computer. The display is viewed through protective passive polarized eyewear, and allows combined 2D and 3D content. Uses include robot tele-operation with live 3D video or synthetically rendered scenery, mission planning and rehearsal, enhanced 3D data interpretation, and simulation.
User-centered 3D geovisualisation
DEFF Research Database (Denmark)
Nielsen, Anette Hougaard
2004-01-01
3D Geovisualisation is a multidisciplinary science mainly utilizing geographically related data, developing software systems for 3D visualisation and producing relevant models. In this paper the connection between geoinformation stored as 3D objects and the end user is of special interest....... In a broader perspective, the overall aim is to develop a language in 3D Geovisualisation gained through usability projects and the development of a theoretical background. A conceptual level of user-centered 3D Geovisualisation is introduced by applying a categorisation originating from Virtual Reality....... The conceptual level is used to structure and organise user-centered 3D Geovisualisation into four categories: representation, rendering, interface and interaction. The categories reflect a process of development of 3D Geovisualisation where objects can be represented verisimilar to the real world...
3D Chaotic Functions for Image Encryption
Directory of Open Access Journals (Sweden)
Pawan N. Khade
2012-05-01
Full Text Available This paper proposes the chaotic encryption algorithm based on 3D logistic map, 3D Chebyshev map, and 3D, 2D Arnolds cat map for color image encryption. Here the 2D Arnolds cat map is used for image pixel scrambling and 3D Arnolds cat map is used for R, G, and B component substitution. 3D Chebyshev map is used for key generation and 3D logistic map is used for image scrambling. The use of 3D chaotic functions in the encryption algorithm provide more security by using the, shuffling and substitution to the encrypted image. The Chebyshev map is used for public key encryption and distribution of generated private keys.
A Stabilised Nodal Spectral Element Method for Fully Nonlinear Water Waves
Engsig-Karup, Allan Peter; Bigoni, Daniele
2015-01-01
We present an arbitrary-order spectral element method for general-purpose simulation of non-overturning water waves, described by fully nonlinear potential theory. The method can be viewed as a high-order extension of the classical finite element method proposed by Cai et al (1998) \\cite{CaiEtAl1998}, although the numerical implementation differs greatly. Features of the proposed spectral element method include: nodal Lagrange basis functions, a general quadrature-free approach and gradient recovery using global $L^2$ projections. The quartic nonlinear terms present in the Zakharov form of the free surface conditions can cause severe aliasing problems and consequently numerical instability for marginally resolved or very steep waves. We show how the scheme can be stabilised through a combination of over-integration of the Galerkin projections and a mild spectral filtering on a per element basis. This effectively removes any aliasing driven instabilities while retaining the high-order accuracy of the numerical...
Light Attenuation Method for 3D data acquisition (LAM3D) of bottom particle deposits
Er, Jenn Wei; Law, Adrian W. K.; Adams, E. Eric; Yang, Yang
2015-11-01
We have developed a novel experimental technique, Light Attenuation Method for 3D data acquisition (LAM3D), to acquire three-dimensional spatial characteristics and temporal development of bottom particle deposits. The new technique performs data acquisition with higher spatial and temporal resolution than existing approaches with laser and ultrasonic 3D profilers, and is therefore ideal for laboratory investigations with fast varying changes in the sediment bed, such as the developing deposition profile from sediment clouds commonly formed during dredging or land reclamation projects and the dynamic evolution in movable bed processes in rivers. The principle of the technique is based on the analysis of the light attenuation due to multiple light scattering through the particle deposits layer compared to the clear water column. With appropriate calibration, the particles size and distribution thickness can be quantified by the transmitted light spectrum. In the presentation, we will first show our measurement setup with a light panel for calibrated illumination and a system of DSLR cameras for the light capturing. Subsequently, we shall present the experimental results of fast evolving deposition profile of a barge-disposed sediment cloud upon its bottom impact on the sea bed.
Sugioka, Koji; Xu, Jian; Wu, Dong; Hanada, Yasutaka; Wang, Zhongke; Cheng, Ya; Midorikawa, Katsumi
2014-09-21
Femtosecond lasers have unique characteristics of ultrashort pulse width and extremely high peak intensity; however, one of the most important features of femtosecond laser processing is that strong absorption can be induced only at the focus position inside transparent materials due to nonlinear multiphoton absorption. This exclusive feature makes it possible to directly fabricate three-dimensional (3D) microfluidic devices in glass microchips by two methods: 3D internal modification using direct femtosecond laser writing followed by chemical wet etching (femtosecond laser-assisted etching, FLAE) and direct ablation of glass in water (water-assisted femtosecond laser drilling, WAFLD). Direct femtosecond laser writing also enables the integration of micromechanical, microelectronic, and microoptical components into the 3D microfluidic devices without stacking or bonding substrates. This paper gives a comprehensive review on the state-of-the-art femtosecond laser 3D micromachining for the fabrication of microfluidic, optofluidic, and electrofluidic devices. A new strategy (hybrid femtosecond laser processing) is also presented, in which FLAE is combined with femtosecond laser two-photon polymerization to realize a new type of biochip termed the ship-in-a-bottle biochip. PMID:25012238
Eris, Ebru; Wittenberg, Hartmut
2015-11-01
Because of water transfers through fissures, cavities, caves and phreatic channels of various sizes and unknown directions, the topographic watersheds of karst catchments have little significance for their aquifers. Most of the flow in the Manavgat River in South Anatolia has its origin outside of the surface watershed and is transferred through karst pathways. Previous investigations found evidence for this by groundwater tracing techniques. In this study, flow recession analysis and baseflow separation are applied to the time series of daily flows 1992-2008 from three gauging stations. Flow recessions were found corresponding to the nonlinear storage-baseflow relationship S = a·Qb, with b values around 0.5 as typical for unconfined groundwater, while the coefficient a showed marked seasonal variations with higher values in the rainy winter time and decreasing values towards the dry summer. For catchments which receive water transfers from other areas, the decrease of a is retarded. Flow recession is slower since more water is available. Baseflow separation by using the same nonlinear model revealed that direct flow, which is mainly surface flow, corresponds roughly to the surface catchments while baseflow, which accounts for most of the total flow, is highly influenced by transfers from karst sink areas outside the surface watersheds. The subsurface transfer was simulated by a nonlinear reservoir routing algorithm. Time series of monthly baseflow from catchments which receive transfer water were compared with those of sinkhole (loss) areas. The procedure allows inferring the origin area of the inflows and estimating the retention or lag time of the transfer.
3-D Technology Approaches for Biological Ecologies
Liu, Liyu; Austin, Robert; U. S-China Physical-Oncology Sciences Alliance (PS-OA) Team
Constructing three dimensional (3-D) landscapes is an inevitable issue in deep study of biological ecologies, because in whatever scales in nature, all of the ecosystems are composed by complex 3-D environments and biological behaviors. Just imagine if a 3-D technology could help complex ecosystems be built easily and mimic in vivo microenvironment realistically with flexible environmental controls, it will be a fantastic and powerful thrust to assist researchers for explorations. For years, we have been utilizing and developing different technologies for constructing 3-D micro landscapes for biophysics studies in in vitro. Here, I will review our past efforts, including probing cancer cell invasiveness with 3-D silicon based Tepuis, constructing 3-D microenvironment for cell invasion and metastasis through polydimethylsiloxane (PDMS) soft lithography, as well as explorations of optimized stenting positions for coronary bifurcation disease with 3-D wax printing and the latest home designed 3-D bio-printer. Although 3-D technologies is currently considered not mature enough for arbitrary 3-D micro-ecological models with easy design and fabrication, I hope through my talk, the audiences will be able to sense its significance and predictable breakthroughs in the near future. This work was supported by the State Key Development Program for Basic Research of China (Grant No. 2013CB837200), the National Natural Science Foundation of China (Grant No. 11474345) and the Beijing Natural Science Foundation (Grant No. 7154221).
FROM 3D MODEL DATA TO SEMANTICS
Directory of Open Access Journals (Sweden)
My Abdellah Kassimi
2012-01-01
Full Text Available The semantic-based 3D models retrieval systems have become necessary since the increase of 3D modelsdatabases. In this paper, we propose a new method for the mapping problem between 3D model data andsemantic data involved in semantic based retrieval for 3D models given by polygonal meshes. First, wefocused on extracting invariant descriptors from the 3D models and analyzing them to efficient semanticannotation and to improve the retrieval accuracy. Selected shape descriptors provide a set of termscommonly used to describe visually a set of objects using linguistic terms and are used as semanticconcept to label 3D model. Second, spatial relationship representing directional, topological anddistance relationships are used to derive other high-level semantic features and to avoid the problem ofautomatic 3D model annotation. Based on the resulting semantic annotation and spatial concepts, anontology for 3D model retrieval is constructed and other concepts can be inferred. This ontology is usedto find similar 3D models for a given query model. We adopted the query by semantic example approach,in which the annotation is performed mostly automatically. The proposed method is implemented in our3D search engine (SB3DMR, tested using the Princeton Shape Benchmark Database.
Energy Technology Data Exchange (ETDEWEB)
Chabchoub, A., E-mail: achabchoub@swin.edu.au [Centre for Ocean Engineering Science and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Kibler, B.; Finot, C.; Millot, G. [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS, Université de Bourgogne, 21078 Dijon (France); Onorato, M. [Dipartimento di Fisica, Università degli Studi di Torino, Torino 10125 (Italy); Istituto Nazionale di Fisica Nucleare, INFN, Sezione di Torino, Torino 10125 (Italy); Dudley, J.M. [Institut FEMTO-ST, UMR 6174 CNRS- Université de Franche-Comté, 25030 Besançon (France); Babanin, A.V. [Centre for Ocean Engineering Science and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia)
2015-10-15
The dynamics of waves in weakly nonlinear dispersive media can be described by the nonlinear Schrödinger equation (NLSE). An important feature of the equation is that it can be derived in a number of different physical contexts; therefore, analogies between different fields, such as for example fiber optics, water waves, plasma waves and Bose–Einstein condensates, can be established. Here, we investigate the similarities between wave propagation in optical Kerr media and water waves. In particular, we discuss the modulation instability (MI) in both media. In analogy to the water wave problem, we derive for Kerr-media the Benjamin–Feir index, i.e. a nondimensional parameter related to the probability of formation of rogue waves in incoherent wave trains.
International Nuclear Information System (INIS)
The dynamics of waves in weakly nonlinear dispersive media can be described by the nonlinear Schrödinger equation (NLSE). An important feature of the equation is that it can be derived in a number of different physical contexts; therefore, analogies between different fields, such as for example fiber optics, water waves, plasma waves and Bose–Einstein condensates, can be established. Here, we investigate the similarities between wave propagation in optical Kerr media and water waves. In particular, we discuss the modulation instability (MI) in both media. In analogy to the water wave problem, we derive for Kerr-media the Benjamin–Feir index, i.e. a nondimensional parameter related to the probability of formation of rogue waves in incoherent wave trains
Nonlinear dynamic analysis of hydrodynamically-coupled stainless steel structures
International Nuclear Information System (INIS)
Spent nuclear fuel is usually stored temporarily on the site of nuclear power plants. The spent fuel storage racks are nuclear-safety-related stainless steel structures required to be analyzed for seismic loads. When the storage pool is subjected to three-dimensional (3-D) floor seismic excitations, rack modules, stored fuel bundles, adjacent racks and pool walls, and surrounding water are hydrodynamically coupled. Hydrodynamic coupling (HC) significantly affects the dynamic responses of the racks that are free-standing and submerged in water within the pool. A nonlinear time-history dynamic analysis is usually needed to describe the motion behavior of the racks that are both geometrically nonlinear and material nonlinear in nature. The nonlinearities include the friction resistance between the rack supporting legs and the pool floor, and various potential impacts of fuel-rack, rack-rack, and rack-pool wall. The HC induced should be included in the nonlinear dynamic analysis using the added-hydrodynamic-mass concept based on potential theory per the US Nuclear Regulatory Commission (USNRC) acceptance criteria. To this end, a finite element analysis constitutes a feasible and effective tool. However, most people perform somewhat simplified 1-D, or 2-D, or 3-D single rack and 2-D multiple rack analyses. These analyses are incomplete because a 3-D single rack model behaves quite differently from a 2-D mode. Furthermore, a 3-D whole pool multi-rack model behaves differently than a 3-D single rack model, especially when the strong HC effects are unsymmetrical. In this paper 3-D nonlinear dynamic time-history analyses were performed in a more quantitative manner using sophisticated finite element models developed for a single rack as well as all twelve racks in the whole-pool. Typical response results due to different HC effects are determined and discussed
Applications of Open Source 3-D Printing on Small Farms
Directory of Open Access Journals (Sweden)
Joshua M. Pearce
2013-12-01
Full Text Available There is growing evidence that low-cost open-source 3-D printers can reduce costs by enabling distributed manufacturing of substitutes for both specialty equipment and conventional mass-manufactured products. The rate of 3-D printable designs under open licenses is growing exponentially and there arealready hundreds of designs applicable to small-scale organic farming. It has also been hypothesized that this technology could assist sustainable development in rural communities that rely on small-scale organic agriculture. To gauge the present utility of open-source 3-D printers in this organic farm context both in the developed and developing world, this paper reviews the current open-source designs available and evaluates the ability of low-cost 3-D printers to be effective at reducing the economic costs of farming.This study limits the evaluation of open-source 3-D printers to only the most-developed fused filament fabrication of the bioplastic polylactic acid (PLA. PLA is a strong biodegradable and recyclable thermoplastic appropriate for a range of representative products, which are grouped into five categories of prints: handtools, food processing, animal management, water management and hydroponics. The advantages and shortcomings of applying 3-D printing to each technology are evaluated. The results show a general izabletechnical viability and economic benefit to adopting open-source 3-D printing for any of the technologies, although the individual economic impact is highly dependent on needs and frequency of use on a specific farm. Capital costs of a 3-D printer may be saved from on-farm printing of a single advanced analytical instrument in a day or replacing hundreds of inexpensive products over a year. In order for the full potential of open-source 3-D printing to be realized to assist organic farm economic resiliency and self-sufficiency, future work is outlined in five core areas: designs of 3-D printable objects, 3-D printing
3D Systems” ‘Stuck in the Middle’ of the 3D Printer Boom?
A. Hoffmann (Alan)
2014-01-01
textabstract3D Systems, the pioneer of 3D printing, predicted a future where "kids from 8 to 80" could design and print their ideas at home. By 2013, 9 years after the creation of the first working 3D printer, there were more than 30 major 3D printing companies competing for market share. 3DS and it
Implementation of a Stress-dependent Strength Material Model in PLAXIS 3D
DEFF Research Database (Denmark)
Knudsen, Bjørn S.; Østergaard, Martin Underlin; Clausen, Johan
, and in the region of small stresses, a non-linear behaviour is observed - unlike the linear behaviour normally assumed in Mohr-Coulomb. To better model this non-linearity, a stress-dependent model for the strength of the soil material is sought to be implemented in PLAXIS 3D through FORTRAN to improve...
Arvekari, Lassi
2013-01-01
Opinnäytetyön tavoitteena on selvittää 3D-tulostustekniikan perusteita ja 3D-tulostuksen nykytilannetta. 3D-tulostukseen sopivien mallien luomista tutkitaan ja mallin tekemiseen on etsitty toimivia ohjesääntöjä. Tärkeä osa työtä on tutkia mitä vaiheita 3D-tulostimen hankinnassa kotikäyttöön tulee vastaan. Käytännön kokeita varten opinnäytetyössä on case Printrbot, jossa on tutustuttu edulliseen 3D-tulostuslaitteeseen kokoonpanosta lähtien. Työn kuluessa selvisi että edulliset 3D-tulos...
Identification of the transition arrays 3d74s-3d74p in Br X and 3d64s-3d64p in Br XI
International Nuclear Information System (INIS)
We report a beam-foil study of multiply ionized bromine in the region 400-1300A, performed with 6 and 8 MeV Br ions from a tandem accelerator. At these energies transitions belonging to Fe-like Br X and Mn-like Br XI are expected to be prominent. We have identified 31 lines as 3d74s-3d74p transitions in Br X, from which 16 levels of the previously unknown 3d74s configuration could be established. We have also added 6 new 3d74p levels to the 99 previously known. For Br XI we have classified 9 lines as 3d64s-3d64p combinations. The line identifications have been corroborated by isoelectronic comparisons and theoretical calculations using the superposition-of-configurations technique. (orig.)
3D Dynamic Echocardiography with a Digitizer
Oshiro, Osamu; Matani, Ayumu; Chihara, Kunihiro
1998-05-01
In this paper,a three-dimensional (3D) dynamic ultrasound (US) imaging system,where a US brightness-mode (B-mode) imagetriggered with an R-wave of electrocardiogram (ECG)was obtained with an ultrasound diagnostic deviceand the location and orientation of the US probewere simultaneously measured with a 3D digitizer, is described.The obtained B-mode imagewas then projected onto a virtual 3D spacewith the proposed interpolation algorithm using a Gaussian operator.Furthermore, a 3D image was presented on a cathode ray tube (CRT)and stored in virtual reality modeling language (VRML).We performed an experimentto reconstruct a 3D heart image in systole using this system.The experimental results indicatethat the system enables the visualization ofthe 3D and internal structure of a heart viewed from any angleand has potential for use in dynamic imaging,intraoperative ultrasonography and tele-medicine.
Forward model nonlinearity versus inverse model nonlinearity
Mehl, S.
2007-01-01
The issue of concern is the impact of forward model nonlinearity on the nonlinearity of the inverse model. The question posed is, "Does increased nonlinearity in the head solution (forward model) always result in increased nonlinearity in the inverse solution (estimation of hydraulic conductivity)?" It is shown that the two nonlinearities are separate, and it is not universally true that increased forward model nonlinearity increases inverse model nonlinearity. ?? 2007 National Ground Water Association.
SOLUTION OF NONLINEAR PROBLEMS IN WATER RESOURCES SYSTEMS BY GENETIC ALGORITHM
Directory of Open Access Journals (Sweden)
Ahmet BAYLAR
1998-03-01
Full Text Available Genetic Algorithm methodology is a genetic process treated on computer which is considering evolution process in the nature. The genetic operations takes place within the chromosomes stored in computer memory. By means of various operators, the genetic knowledge in chromosomes change continuously and success of the community progressively increases as a result of these operations. The primary purpose of this study is calculation of nonlinear programming problems in water resources systems by Genetic Algorithm. For this purpose a Genetic Algoritm based optimization program were developed. It can be concluded that the results obtained from the genetic search based method give the precise results.
Rubber Impact on 3D Textile Composites
Heimbs, Sebastian; Van Den Broucke, Björn; DUPLESSIS KERGOMARD, Yann; Dau, Frédéric; MALHERBE, Benoit
2012-01-01
A low velocity impact study of aircraft tire rubber on 3D textile-reinforced composite plates was performed experimentally and numerically. In contrast to regular unidirectional composite laminates, no delaminations occur in such a 3D textile composite. Yarn decohesions, matrix cracks and yarn ruptures have been identified as the major damage mechanisms under impact load. An increase in the number of 3D warp yarns is proposed to improve the impact damage resistance. The characteristic o...
Spatial data modelling for 3D GIS
Abdul-Rahman, Alias
2007-01-01
This book covers fundamental aspects of spatial data modelling specifically on the aspect of three-dimensional (3D) modelling and structuring. Realisation of ""true"" 3D GIS spatial system needs a lot of effort, and the process is taking place in various research centres and universities in some countries. The development of spatial data modelling for 3D objects is the focus of this book.
MMDB: 3D structures and macromolecular interactions
Madej, Thomas; Addess, Kenneth J.; Fong, Jessica H.; Geer, Lewis Y.; Geer, Renata C.; Lanczycki, Christopher J; Liu, Chunlei; Lu, Shennan; Marchler-Bauer, Aron; Panchenko, Anna R.; Chen, Jie; Thiessen, Paul A; Wang, Yanli; Zhang, Dachuan; Bryant, Stephen H.
2011-01-01
Close to 60% of protein sequences tracked in comprehensive databases can be mapped to a known three-dimensional (3D) structure by standard sequence similarity searches. Potentially, a great deal can be learned about proteins or protein families of interest from considering 3D structure, and to this day 3D structure data may remain an underutilized resource. Here we present enhancements in the Molecular Modeling Database (MMDB) and its data presentation, specifically pertaining to biologically...
Compression of 3D models with NURBS
Santa Cruz Ducci, Diego; Ebrahimi, Touradj
2005-01-01
With recent progress in computing, algorithmics and telecommunications, 3D models are increasingly used in various multimedia applications. Examples include visualization, gaming, entertainment and virtual reality. In the multimedia domain 3D models have been traditionally represented as polygonal meshes. This piecewise planar representation can be thought of as the analogy of bitmap images for 3D surfaces. As bitmap images, they enjoy great flexibility and are particularly well suited to des...
Volume-Rendering-Based Interactive 3D Measurement for Quantitative Analysis of 3D Medical Images
Yakang Dai; Jian Zheng; Yuetao Yang; Duojie Kuai; Xiaodong Yang
2013-01-01
3D medical images are widely used to assist diagnosis and surgical planning in clinical applications, where quantitative measurement of interesting objects in the image is of great importance. Volume rendering is widely used for qualitative visualization of 3D medical images. In this paper, we introduce a volume-rendering-based interactive 3D measurement framework for quantitative analysis of 3D medical images. In the framework, 3D widgets and volume clipping are integrated with volume render...
3D Printing Making the Digital Real .
Miss Prachi More
2013-01-01
3D printing is quickly expanding field, with the popularity and uses for 3D printers growing every day. 3D printing can be used to prototype, create replacement parts, and is even versatile enough to print prostheses and medical implants. It will have a growing impact on our world, as more and more people gain access to these amazing machines.[1] In this article, we would like to attempt to give an introduction of the technology. 3Dimensions printing is a method of converting a virtual 3D mod...
3D-tulostuksen viipalointiohjelmien vertailu
Virolainen, Ville
2015-01-01
Opinnäytetyön tavoitteena on selventää 3D-tulostamisen prosessia yksityisen käyttäjän näkökulmasta sekä luoda testitulostuksia, joiden perusteella pystytään vertailemaan prosessissa käytettävien viipalointiohjelmien toimintaa keskenään. Työssä perehdytään aluksi 3D-tulostuksen teoriataustaan, jonka jälkeen suoritetaan 3D-tulostimella testitulostukset käyttäen kolmea eri viipalointiohjelmaa. 3D-tulostamisella tarkoitetaan prosessia, jonka tarkoituksena on luoda kolmiulotteinen objekti käyt...
Illustrating Mathematics using 3D Printers
Knill, Oliver; Slavkovsky, Elizabeth
2013-01-01
3D printing technology can help to visualize proofs in mathematics. In this document we aim to illustrate how 3D printing can help to visualize concepts and mathematical proofs. As already known to educators in ancient Greece, models allow to bring mathematics closer to the public. The new 3D printing technology makes the realization of such tools more accessible than ever. This is an updated version of a paper included in book Low-Cost 3D Printing for science, education and Sustainable Devel...
Myllykoski, Joonas; Palonen, Teemu
2015-01-01
Tämän opinnäytetyön tavoitteena oli selvittää miten Tekla Structures ohjelmalla luotu 3D-malli saadaan tulostettua koulun 3D-tulostimella sekä tutkittiin voidaanko Tekla Structuresin ominaisuuksia hyödyntää 3D-tulostamisessa ja miten tulostus onnistuu autocadilla. Selvitimme myös mahdollisia 3D-tulostusteknologian sovelluksia tulevaisuuden rakennustuotannossa ja sen näkymiä rakennusteollisuudessa sekä erilaisia tulostus menetelmiä joita voitaisiin mahdollisesti hyödyntää rakennusteollisuudess...
Xu, Minghui
2014-01-01
3D game has widely been accepted and loved by many game players. More and more different kinds of 3D games were developed to feed people’s needs. The most common programming language for development of 3D game is C++ nowadays. Python is a high-level scripting language. It is simple and clear. The concise syntax could speed up the development cycle. This project was to develop a 3D game using only Python. The game is about how a cat lives in the street. In order to live, the player need...
Interaktiivinen 3D HTML5-selaimissa
Aaltonen, Jani
2013-01-01
Insinöörityön tavoitteena oli tutkia Metropolia Ammattikorkeakoulun mahdollisuuksia tuottaa interaktiivista 3D:tä verkkoselaimiin WebGL:n avulla ja käyttäen ammattikorkeakoulun 3D-mallinnusohjelmaa. WebGL on ohjelmointirajapinta, jolla saadaan luotua 3D-grafiikkaa verkkoselaimeen ilman ylimääräisiä liitännäisiä. Insinöörityö tehtiin Metropolia Ammattikorkeakoululle, ja sen tuloksia käytetään sekä osana opetusta että mahdollisesti 3D-sisällön tuottamiseen ammattikorkeakoulua varten. Työssä...
Calibration for 3D Structured Light Measurement
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A calibration procedure was developed for three-dimensional(3D) binocular structured light measurement systems. In virtue of a specially designed pattern, matching points in stereo images are extracted. And then sufficient 3D space points are obtained through pairs of images with the intrinsic and extrinsic parameters of each camera estimated prior and consequently some lights are calibrated by means of multi point fitting. Finally, a mathematical model is applied to interpolate and approximate all dynamic scanning lights based on geometry. The process of calibration method is successfully used in the binocular 3D measurement system based on structured lights and the 3D reconstruction results are satisfying.
Getting started in 3D with Maya
Watkins, Adam
2012-01-01
Deliver professional-level 3D content in no time with this comprehensive guide to 3D animation with Maya. With over 12 years of training experience, plus several award winning students under his belt, author Adam Watkins is the ideal mentor to get you up to speed with 3D in Maya. Using a structured and pragmatic approach Getting Started in 3D with Maya begins with basic theory of fundamental techniques, then builds on this knowledge using practical examples and projects to put your new skills to the test. Prepared so that you can learn in an organic fashion, each chapter builds on the know
Can 3D Printing change your business?
Unver, Ertu
2013-01-01
This presentation is given to businesses / companies with an interest in 3D Printing and Additive Manufacturing in West Yorkshire, UK Organised by the Calderdale and Kirklees Manufacturing Alliance. http://www.ckma.co.uk/ by Dr Ertu Unver Senior Lecturer / Product Design / MA 3D Digital Design / University of Huddersfield Location : 3M BIC, Date : 11th April, Time : 5.30 – 8pm Additive manufacturing or 3D printing is a process of making a three-dimensional (3D) objects from...
Dimensional accuracy of 3D printed vertebra
Ogden, Kent; Ordway, Nathaniel; Diallo, Dalanda; Tillapaugh-Fay, Gwen; Aslan, Can
2014-03-01
3D printer applications in the biomedical sciences and medical imaging are expanding and will have an increasing impact on the practice of medicine. Orthopedic and reconstructive surgery has been an obvious area for development of 3D printer applications as the segmentation of bony anatomy to generate printable models is relatively straightforward. There are important issues that should be addressed when using 3D printed models for applications that may affect patient care; in particular the dimensional accuracy of the printed parts needs to be high to avoid poor decisions being made prior to surgery or therapeutic procedures. In this work, the dimensional accuracy of 3D printed vertebral bodies derived from CT data for a cadaver spine is compared with direct measurements on the ex-vivo vertebra and with measurements made on the 3D rendered vertebra using commercial 3D image processing software. The vertebra was printed on a consumer grade 3D printer using an additive print process using PLA (polylactic acid) filament. Measurements were made for 15 different anatomic features of the vertebral body, including vertebral body height, endplate width and depth, pedicle height and width, and spinal canal width and depth, among others. It is shown that for the segmentation and printing process used, the results of measurements made on the 3D printed vertebral body are substantially the same as those produced by direct measurement on the vertebra and measurements made on the 3D rendered vertebra.
3D modelling for multipurpose cadastre
Abduhl Rahman, A.; P. J. M. Van Oosterom; T. C. Hua; Sharkawi, K.H.; E. E. Duncan; Azri, N.; Hassan, M. I.
2012-01-01
Three-dimensional (3D) modelling of cadastral objects (such as legal spaces around buildings, around utility networks and other spaces) is one of the important aspects for a multipurpose cadastre (MPC). This paper describes the 3D modelling of the objects for MPC and its usage to the knowledge of 3D cadastre since more and more related agencies attempt to develop or embed 3D components into the MPC. We also intend to describe the initiative by Malaysian national mapping and cadastral agency (...
Rohde, Ulrich; Grundmann, Ulrich
2010-01-01
The code DYN3D/M2 is used for investigations of reactivity transients in cores of thermal power reactors with hexagonal fuel elements. The 3-dimensional neutron kinetics model HEXDYN3D of the code is based on a nodal expansion method for solving the two-group neutron diffusion equation. The thermo-hydraulic part FLOCAL consists of a two-phase flow model describing coolant behaviour and a fuel rod model. The fuel elements are simulated by separate coolant channels. Additional, some hot channel...
Institute of Scientific and Technical Information of China (English)
于荣泽; 卞亚南; 王凯军; 杨正明; 姜瑞忠
2012-01-01
A non-linear flow mathematical model is established according to the fluid flow characteristics in ultra-low permeability oil reservoir. The non-linear flow numerical stimulator is developed based on black-oil model. Taking a five-spot well pattern unit as example, and the comparative analysis between different types of non-linear flow curves and the results of Darcy flow simulation is conducted. The simulation results show that comparing with Darcy flow and considering non-linear flow, for non-linear flow, the low oil production, rapid production decline, low-efficiency water-displacement and lagged injection response are obvious; of producing wells and water propulsion speeds along vertical direction of artificial fracture are slow; and moreover, water absorbing capacity of the injectors is poorer, the advance speed along vertical fractures becomes slower; under the condition of the same injection-production pressure difference, waterflood results are rather imperfect; the shut-up pressure area near the injectors is pretty large, more driving energy is exhausted for the fluids flowing in the formation, so the waterflood efficiency is reduced; in the course of oil-permeability oil reservoir development, except larger formation pressure gradient near the bole hole, the gradient in most part of the formation is rather lower, non-linear flow plays dominant role. Based on the laws .of non-linear flow, the developed numerical simulation software can more accurately predict the dynamic characteristics of ultra-low permeability oil reservoir development.%根据特低渗透油藏流体渗流特征,建立了非线性渗流油藏数学模型.在黑油模型基础上,开发了特低渗透油藏非线性渗流数值模拟器.以五点井网单元为例进行算例分析,将不同类型的非线性渗流曲线与达西渗流模拟结果进行对比分析.模拟结果表明:与达西渗流相比,考虑非线性渗流规律的油井产油量低,产量递减快,注水见效缓
FastScript3D - A Companion to Java 3D
Koenig, Patti
2005-01-01
FastScript3D is a computer program, written in the Java 3D(TM) programming language, that establishes an alternative language that helps users who lack expertise in Java 3D to use Java 3D for constructing three-dimensional (3D)-appearing graphics. The FastScript3D language provides a set of simple, intuitive, one-line text-string commands for creating, controlling, and animating 3D models. The first word in a string is the name of a command; the rest of the string contains the data arguments for the command. The commands can also be used as an aid to learning Java 3D. Developers can extend the language by adding custom text-string commands. The commands can define new 3D objects or load representations of 3D objects from files in formats compatible with such other software systems as X3D. The text strings can be easily integrated into other languages. FastScript3D facilitates communication between scripting languages [which enable programming of hyper-text markup language (HTML) documents to interact with users] and Java 3D. The FastScript3D language can be extended and customized on both the scripting side and the Java 3D side.
3D PDF - a means of public access to geological 3D - objects, using the example of GTA3D
Slaby, Mark-Fabian; Reimann, Rüdiger
2013-04-01
In geology, 3D modeling has become very important. In the past, two-dimensional data such as isolines, drilling profiles, or cross-sections based on those, were used to illustrate the subsurface geology, whereas now, we can create complex digital 3D models. These models are produced with special software, such as GOCAD ®. The models can be viewed, only through the software used to create them, or through viewers available for free. The platform-independent PDF (Portable Document Format), enforced by Adobe, has found a wide distribution. This format has constantly evolved over time. Meanwhile, it is possible to display CAD data in an Adobe 3D PDF file with the free Adobe Reader (version 7). In a 3D PDF, a 3D model is freely rotatable and can be assembled from a plurality of objects, which can thus be viewed from all directions on their own. In addition, it is possible to create moveable cross-sections (profiles), and to assign transparency to the objects. Based on industry-standard CAD software, 3D PDFs can be generated from a large number of formats, or even be exported directly from this software. In geoinformatics, different approaches to creating 3D PDFs exist. The intent of the Authority for Mining, Energy and Geology to allow free access to the models of the Geotectonic Atlas (GTA3D), could not be realized with standard software solutions. A specially designed code converts the 3D objects to VRML (Virtual Reality Modeling Language). VRML is one of the few formats that allow using image files (maps) as textures, and to represent colors and shapes correctly. The files were merged in Acrobat X Pro, and a 3D PDF was generated subsequently. A topographic map, a display of geographic directions and horizontal and vertical scales help to facilitate the use.
Peralta, R. C.; Aly, Alaa H.
1998-01-01
REMAX is a software package designed to assist water managers in developing optimal ground water or coordinated ground water/surface water strategies for a wide range of management problems. REMAX uses MODFLOW, MT3D, and other simulation models to develop the response matrix or response surface equations employed in the final optimization model. To address nonlinear systems (e.g., unconfined aquifers) accurately, REMAX uses a modified response-matrix method. REMAX several nonlinear functions ...
An aerial 3D printing test mission
Hirsch, Michael; McGuire, Thomas; Parsons, Michael; Leake, Skye; Straub, Jeremy
2016-05-01
This paper provides an overview of an aerial 3D printing technology, its development and its testing. This technology is potentially useful in its own right. In addition, this work advances the development of a related in-space 3D printing technology. A series of aerial 3D printing test missions, used to test the aerial printing technology, are discussed. Through completing these test missions, the design for an in-space 3D printer may be advanced. The current design for the in-space 3D printer involves focusing thermal energy to heat an extrusion head and allow for the extrusion of molten print material. Plastics can be used as well as composites including metal, allowing for the extrusion of conductive material. A variety of experiments will be used to test this initial 3D printer design. High altitude balloons will be used to test the effects of microgravity on 3D printing, as well as parabolic flight tests. Zero pressure balloons can be used to test the effect of long 3D printing missions subjected to low temperatures. Vacuum chambers will be used to test 3D printing in a vacuum environment. The results will be used to adapt a current prototype of an in-space 3D printer. Then, a small scale prototype can be sent into low-Earth orbit as a 3-U cube satellite. With the ability to 3D print in space demonstrated, future missions can launch production hardware through which the sustainability and durability of structures in space will be greatly improved.
3D ultrafast ultrasound imaging in vivo
International Nuclear Information System (INIS)
Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32 × 32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra—and inter-observer variability. (fast track communication)