WorldWideScience

Sample records for 3d noise transfer

  1. Cascaded systems analysis of the 3D noise transfer characteristics of flat-panel cone-beam CT.

    Science.gov (United States)

    Tward, Daniel J; Siewerdsen, Jeffrey H

    2008-12-01

    The physical factors that govern 2D and 3D imaging performance may be understood from quantitative analysis of the spatial-frequency-dependent signal and noise transfer characteristics [e.g., modulation transfer function (MTF), noise-power spectrum (NPS), detective quantum efficiency (DQE), and noise-equivalent quanta (NEQ)] along with a task-based assessment of performance (e.g., detectability index). This paper advances a theoretical framework based on cascaded systems analysis for calculation of such metrics in cone-beam CT (CBCT). The model considers the 2D projection NPS propagated through a series of reconstruction stages to yield the 3D NPS and allows quantitative investigation of tradeoffs in image quality associated with acquisition and reconstruction techniques. While the mathematical process of 3D image reconstruction is deterministic, it is shown that the process is irreversible, the associated reconstruction parameters significantly affect the 3D DQE and NEQ, and system optimization should consider the full 3D imaging chain. Factors considered in the cascade include: system geometry; number of projection views; logarithmic scaling; ramp, apodization, and interpolation filters; 3D back-projection; and 3D sampling (noise aliasing). The model is validated in comparison to experiment across a broad range of dose, reconstruction filters, and voxel sizes, and the effects of 3D noise correlation on detectability are explored. The work presents a model for the 3D NPS, DQE, and NEQ of CBCT that reduces to conventional descriptions of axial CT as a special case and provides a fairly general framework that can be applied to the design and optimization of CBCT systems for various applications.

  2. Signal and Noise in 3D Environments

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Signal and Noise in 3D Environments Michael B. Porter...complicated 3D environments . I have also been doing a great deal of work in modeling the noise field (the ocean soundscape) due to various sources...we have emphasized the propagation of ‘signals’. We have become increasingly interested in modeling ‘ noise ’ which can illuminate the ocean environment

  3. Wireless Power Transfer in 3D Space

    Directory of Open Access Journals (Sweden)

    C.Bhuvaneshvari

    2014-06-01

    Full Text Available The main objective of this project is to develop a system of wireless power transfer in 3D space. This concept based on low frequency to high frequency conversion. High frequency power is transmit between air-core and inductor. This work presents an experiment for wireless energy transfer by using the Inductive resonant coupling (also known as resonant energy transfer phenomenon. The basic principles will be presented about this physical phenomenon, the experiment design, and the results obtained for the measurements performed on the system. The parameters measured were the efficiency of the power transfer, and the angle between emitter and receiver. We can achieve wireless power transfer up to 10watts in 3D space using high frequency through tuned circuit. The wireless power supply is motivated by simple and comfortable use of many small electric appliances with low power input.

  4. Radiative Transfer in 3D Numerical Simulations

    CERN Document Server

    Stein, R; Stein, Robert; Nordlund, Aake

    2002-01-01

    We simulate convection near the solar surface, where the continuum optical depth is of order unity. Hence, to determine the radiative heating and cooling in the energy conservation equation, we must solve the radiative transfer equation (instead of using the diffusion or optically thin cooling approximations). A method efficient enough to calculate the radiation for thousands of time steps is needed. We assume LTE and a non-gray opacity grouped into 4 bins according to strength. We perform a formal solution of the Feautrier equation along a vertical and four straight, slanted, rays (at four azimuthal angles which are rotated 15 deg. every time step). We present details of our method. We also give some results: comparing simulated and observed line profiles for the Sun, showing the importance of 3D transfer for the structure of the mean atmosphere and the eigenfrequencies of p-modes, illustrating Stokes profiles for micropores, and analyzing the effect of radiation on p-mode asymmetries.

  5. Filtering of measurement noise with the 3D reconstruction algorithm

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Pivnenko, Sergey

    2014-01-01

    Two different antenna models are set up in GRASP and CHAMP, and noise is added to the radiated field. The noisy field is then given as input to the 3D reconstruction of DIATOOL and the SWE coefficients and the far-field radiated by the reconstructed currents are compared with the noise-free results...

  6. Seismic random noise attenuation via 3D block matching

    Science.gov (United States)

    Amani, Sajjad; Gholami, Ali; Javaheri Niestanak, Alireza

    2017-01-01

    The lack of signal to noise ratio increases the final errors of seismic interpretation. In the present study, we apply a new non-local transform domain method called "3 Dimensional Block Matching (3DBM)" for seismic random noise attenuation. Basically, 3DBM uses the similarities through the data for retrieving the amplitude of signal in a specific point in the f-x domain, and because of this, it is able to preserve discontinuities in the data such as fractures and faults. 3DBM considers each seismic profile as an image and thus it can be applied to both pre-stack and post-stack seismic data. It uses the block matching clustering method to gather similar blocks contained in 2D data into 3D groups in order to enhance the level of correlation in each 3D array. By applying a 2D transform and 1D transform (instead of a 3D transform) on each array, we can effectively attenuate the noise by shrinkage of the transform coefficients. The subsequent inverse 2D transform and inverse 1D transform yield estimates of all matched blocks. Finally, the random noise attenuated data is computed using the weighted average of all block estimates. We applied 3DBM on both synthetic and real pre-stack and post-stack seismic data and compared it with a Curvelet transform based denoising method which is one of the most powerful methods in this area. The results show that 3DBM method eventuates in higher signal to noise ratio, lower execution time and higher visual quality.

  7. Computing Radiative Transfer in a 3D Medium

    Science.gov (United States)

    Von Allmen, Paul; Lee, Seungwon

    2012-01-01

    A package of software computes the time-dependent propagation of a narrow laser beam in an arbitrary three- dimensional (3D) medium with absorption and scattering, using the transient-discrete-ordinates method and a direct integration method. Unlike prior software that utilizes a Monte Carlo method, this software enables simulation at very small signal-to-noise ratios. The ability to simulate propagation of a narrow laser beam in a 3D medium is an improvement over other discrete-ordinate software. Unlike other direct-integration software, this software is not limited to simulation of propagation of thermal radiation with broad angular spread in three dimensions or of a laser pulse with narrow angular spread in two dimensions. Uses for this software include (1) computing scattering of a pulsed laser beam on a material having given elastic scattering and absorption profiles, and (2) evaluating concepts for laser-based instruments for sensing oceanic turbulence and related measurements of oceanic mixed-layer depths. With suitable augmentation, this software could be used to compute radiative transfer in ultrasound imaging in biological tissues, radiative transfer in the upper Earth crust for oil exploration, and propagation of laser pulses in telecommunication applications.

  8. A 3D radiative transfer framework. IX. Time dependence

    Science.gov (United States)

    Jack, D.; Hauschildt, P. H.; Baron, E.

    2012-10-01

    Context. Time-dependent, 3D radiation transfer calculations are important for the modeling of a variety of objects, from supernovae and novae to simulations of stellar variability and activity. Furthermore, time-dependent calculations can be used to obtain a 3D radiative equilibrium model structure via relaxation in time. Aims: We extend our 3D radiative transfer framework to include direct time dependence of the radiation field; i.e., the ∂I/∂t terms are fully considered in the solution of radiative transfer problems. Methods: We build on the framework that we have described in previous papers in this series and develop a subvoxel method for the ∂I/∂t terms. Results: We test the implementation by comparing the 3D results to our well tested 1D time dependent radiative transfer code in spherical symmetry. A simple 3D test model is also presented. Conclusions: The 3D time dependent radiative transfer method is now included in our 3D RT framework and in PHOENIX/3D.

  9. A 3D radiative transfer framework IX. Time dependence

    CERN Document Server

    Jack, D; Baron, E

    2012-01-01

    Context. Time-dependent, 3D radiation transfer calculations are important for the modeling of a variety of objects, from supernovae and novae to simulations of stellar variability and activity. Furthermore, time-dependent calculations can be used to obtain a 3D radiative equilibrium model structure via relaxation in time. Aims. We extend our 3D radiative transfer framework to include direct time dependence of the radiation field; i.e., the $\\partial I/ \\partial t$ terms are fully considered in the solution of radiative transfer problems. Methods. We build on the framework that we have described in previous papers in this series and develop a subvoxel method for the $\\partial I/\\partial t$ terms. Results. We test the implementation by comparing the 3D results to our well tested 1D time dependent radiative transfer code in spherical symmetry. A simple 3D test model is also presented. Conclusions. The 3D time dependent radiative transfer method is now included in our 3D RT framework and in PHOENIX/3D.

  10. 3-D Radiative Transfer Modeling of Structured Winds in Massive Hot Stars with Wind3D

    CERN Document Server

    Lobel, A; Blomme, R

    2010-01-01

    We develop 3-D models of the structured winds of massive hot stars with the Wind3D radiative transfer (RT) code. We investigate the physical properties of large-scale structures observed in the wind of the B-type supergiant HD 64760 with detailed line profile fits to Discrete Absorption Components (DACs) and rotational modulations observed with IUE in Si IV {\\lambda}1395. We develop parameterized input models Wind3D with large-scale equatorial wind density- and velocity-structures, or so-called `Co-rotating Interaction Regions' (CIRs) and `Rotational Modulation Regions' (RMRs). The parameterized models offer important advantages for high-performance RT calculations over ab-initio hydrodynamic input models. The acceleration of the input model calculations permits us to simulate and investigate a wide variety of physical conditions in the extended winds of massive hot stars. The new modeling method is very flexible for constraining the dynamic and geometric wind properties of RMRs in HD 64760. We compute that t...

  11. Computational Challenges of 3D Radiative Transfer in Atmospheric Models

    Science.gov (United States)

    Jakub, Fabian; Bernhard, Mayer

    2017-04-01

    The computation of radiative heating and cooling rates is one of the most expensive components in todays atmospheric models. The high computational cost stems not only from the laborious integration over a wide range of the electromagnetic spectrum but also from the fact that solving the integro-differential radiative transfer equation for monochromatic light is already rather involved. This lead to the advent of numerous approximations and parameterizations to reduce the cost of the solver. One of the most prominent one is the so called independent pixel approximations (IPA) where horizontal energy transfer is neglected whatsoever and radiation may only propagate in the vertical direction (1D). Recent studies implicate that the IPA introduces significant errors in high resolution simulations and affects the evolution and development of convective systems. However, using fully 3D solvers such as for example MonteCarlo methods is not even on state of the art supercomputers feasible. The parallelization of atmospheric models is often realized by a horizontal domain decomposition, and hence, horizontal transfer of energy necessitates communication. E.g. a cloud's shadow at a low zenith angle will cast a long shadow and potentially needs to communication through a multitude of processors. Especially light in the solar spectral range may travel long distances through the atmosphere. Concerning highly parallel simulations, it is vital that 3D radiative transfer solvers put a special emphasis on parallel scalability. We will present an introduction to intricacies computing 3D radiative heating and cooling rates as well as report on the parallel performance of the TenStream solver. The TenStream is a 3D radiative transfer solver using the PETSc framework to iteratively solve a set of partial differential equation. We investigate two matrix preconditioners, (a) geometric algebraic multigrid preconditioning(MG+GAMG) and (b) block Jacobi incomplete LU (ILU) factorization. The

  12. Using 3D Voronoi grids in radiative transfer simulations

    CERN Document Server

    Camps, Peter; Saftly, Waad

    2013-01-01

    Probing the structure of complex astrophysical objects requires effective three-dimensional (3D) numerical simulation of the relevant radiative transfer (RT) processes. As with any numerical simulation code, the choice of an appropriate discretization is crucial. Adaptive grids with cuboidal cells such as octrees have proven very popular, however several recently introduced hydrodynamical and RT codes are based on a Voronoi tessellation of the spatial domain. Such an unstructured grid poses new challenges in laying down the rays (straight paths) needed in RT codes. We show that it is straightforward to implement accurate and efficient RT on 3D Voronoi grids. We present a method for computing straight paths between two arbitrary points through a 3D Voronoi grid in the context of a RT code. We implement such a grid in our RT code SKIRT, using the open source library Voro++ to obtain the relevant properties of the Voronoi grid cells based solely on the generating points. We compare the results obtained through t...

  13. Exponential Mixing of the 3D Stochastic Navier-Stokes Equations Driven by Mildly Degenerate Noises

    Energy Technology Data Exchange (ETDEWEB)

    Albeverio, Sergio [Bonn University, Department of Applied Mathematics (Germany); Debussche, Arnaud, E-mail: arnaud.debussche@bretagne.ens-cachan.fr [ENS Cachan Bretagne and IRMAR Campus de Ker Lann (France); Xu Lihu, E-mail: Lihu.Xu@brunel.ac.uk [Brunel University, Mathematics Department (United Kingdom)

    2012-10-15

    We prove the strong Feller property and exponential mixing for 3D stochastic Navier-Stokes equation driven by mildly degenerate noises (i.e. all but finitely many Fourier modes being forced) via a Kolmogorov equation approach.

  14. A real-time noise filtering strategy for photon counting 3D imaging lidar.

    Science.gov (United States)

    Zhang, Zijing; Zhao, Yuan; Zhang, Yong; Wu, Long; Su, Jianzhong

    2013-04-22

    For a direct-detection 3D imaging lidar, the use of Geiger mode avalanche photodiode (Gm-APD) could greatly enhance the detection sensitivity of the lidar system since each range measurement requires a single detected photon. Furthermore, Gm-APD offers significant advantages in reducing the size, mass, power and complexity of the system. However the inevitable noise, including the background noise, the dark count noise and so on, remains a significant challenge to obtain a clear 3D image of the target of interest. This paper presents a smart strategy, which can filter out false alarms in the stage of acquisition of raw time of flight (TOF) data and obtain a clear 3D image in real time. As a result, a clear 3D image is taken from the experimental system despite the background noise of the sunny day.

  15. Boosting infrared energy transfer in 3D nanoporous gold antennas.

    Science.gov (United States)

    Garoli, D; Calandrini, E; Bozzola, A; Ortolani, M; Cattarin, S; Barison, S; Toma, A; De Angelis, F

    2017-01-05

    The applications of plasmonics to energy transfer from free-space radiation to molecules are currently limited to the visible region of the electromagnetic spectrum due to the intrinsic optical properties of bulk noble metals that support strong electromagnetic field confinement only close to their plasma frequency in the visible/ultraviolet range. In this work, we show that nanoporous gold can be exploited as a plasmonic material for the mid-infrared region to obtain strong electromagnetic field confinement, co-localized with target molecules into the nanopores and resonant with their vibrational frequency. The effective optical response of the nanoporous metal enables the penetration of optical fields deep into the nanopores, where molecules can be loaded thus achieving a more efficient light-matter coupling if compared to bulk gold. In order to realize plasmonic resonators made of nanoporous gold, we develop a nanofabrication method based on polymeric templates for metal deposition and we obtain antenna arrays resonating at mid-infrared wavelengths selected by design. We then coat the antennas with a thin (3 nm) silica layer acting as the target dielectric layer for optical energy transfer. We study the strength of the light-matter coupling at the vibrational absorption frequency of silica at 1240 cm(-1) through the analysis of the experimental Fano lineshape that is benchmarked against identical structures made of bulk gold. The boost in the optical energy transfer from free-space mid-infrared radiation to molecular vibrations in nanoporous 3D nanoantenna arrays can open new application routes for plasmon-enhanced physical-chemical reactions.

  16. Composite manufacturing: Simulation of 3-D resin transfer molding

    Science.gov (United States)

    Tan, Cheng Ping

    1998-10-01

    A technique was developed for simulating the resin transfer molding (RTM) process. The major feature of the technique is a computational steering system that enables the user to make changes during the simulation. Specifically, at any instance, the user can inspect the progress of the resin front. On the basis of the observed resin front position, the user can, as needed, change the port and vent locations, open and close ports and vents, adjust the inlet and exit pressures or flow rates, and reorient the mold with respect to the gravitational field. Additionally, the user can "rewind" the simulator to any previous time in the mold filling process, make any of the above changes and then continue the simulation. The technique is augmented by a computer code which has three main components, the Simulator, the Graphics User Interface (GUI), and the Global Data Storage. The Simulator is a finite element code that calculates the resin flow inside the fiber preform. The GUI serves as the interface between the user and the Simulator; it provides the commands to the Simulator and displays the results. The Global Data Storage is the module that manages the exchange of data between the GUI and the Simulator. The computer code (designated as SUPERTMsb-3D) is suitable for simulating the resin flow inside two-dimensional as well as three-dimensional fiber preforms of arbitrary shapes. The use of this computer code is illustrated through sample problems. These problems demonstrate how (with this code) the designer can establish the port and vent locations, opening and closing sequences of ports and vents such that the fiber preform is filled completely in the shortest time with the fewest number of vents.

  17. Reduction of the recorded speckle noise in holographic 3D printer.

    Science.gov (United States)

    Utsugi, Takeru; Yamaguchi, Masahiro

    2013-01-14

    A holographic 3D printer produces a high-quality 3D image reproduced by a full-color, full-parallax holographic stereogram with high-density light-ray recording. In order to produce a high-resolution holographic stereogram, we have to solve the problem of speckle noise in this system. For equalizing an intensity distribution inside the elementary hologram, the object beam is modulated by a diffuser. However the diffuser typically generates speckles, which is recorded in the holographic stereogram. It is localized behind the reconstructed image as a granularity noise. First we show the problems of some conventional ways for suppressing the granularity noise using a band-limited diffuser, and then we analyze an approach using a moving diffuser for the reduction of this noise. In the result, it is found that recording with a moving diffuser is effective for reducing the granularity noise at infinity of reconstructed image, although an alternative noise occurs. Moreover we propose a new method introducing multiple exposures to suppress the noise effectively.

  18. Laser induced forward transfer of interconnects for 3D integration

    NARCIS (Netherlands)

    Oosterhuis, G.; Prenen, A.; Huis in 't veld, A.J.

    2011-01-01

    Interconnects are an important cost driver in advanced 3D chip packaging. This holds for Through Silicon Vias (TSVs) for chip stacking, but also for other interconnect steps like re-distribution layers and solder bumps. Especially in applications with a low number (<100 mm-2) of relatively large

  19. Noise analysis for near field 3-D FM-CW radar imaging systems

    Energy Technology Data Exchange (ETDEWEB)

    Sheen, David M.

    2015-06-19

    Near field radar imaging systems are used for several applications including concealed weapon detection in airports and other high-security venues. Despite the near-field operation, phase noise and thermal noise can limit the performance in several ways including reduction in system sensitivity and reduction of image dynamic range. In this paper, the effects of thermal noise, phase noise, and processing gain are analyzed in the context of a near field 3-D FM-CW imaging radar as might be used for concealed weapon detection. In addition to traditional frequency domain analysis, a time-domain simulation is employed to graphically demonstrate the effect of these noise sources on a fast-chirping FM-CW system.

  20. Source Methodology for Turbofan Noise Prediction (SOURCE3D Technical Documentation)

    Science.gov (United States)

    Meyer, Harold D.

    1999-01-01

    This report provides the analytical documentation for the SOURCE3D Rotor Wake/Stator Interaction Code. It derives the equations for the rotor scattering coefficients and stator source vector and scattering coefficients that are needed for use in the TFANS (Theoretical Fan Noise Design/Prediction System). SOURCE3D treats the rotor and stator as isolated source elements. TFANS uses this information, along with scattering coefficients for inlet and exit elements, and provides complete noise solutions for turbofan engines. SOURCE3D is composed of a collection of FORTRAN programs that have been obtained by extending the approach of the earlier V072 Rotor Wake/Stator Interaction Code. Similar to V072, it treats the rotor and stator as a collection of blades and vanes having zero thickness and camber contained in an infinite, hardwall annular duct. SOURCE3D adds important features to the V072 capability-a rotor element, swirl flow and vorticity waves, actuator disks for flow turning, and combined rotor/actuator disk and stator/actuator disk elements. These items allow reflections from the rotor, frequency scattering, and mode trapping, thus providing more complete noise predictions than previously. The code has been thoroughly verified through comparison with D.B. Hanson's CUP2D two- dimensional code using a narrow annulus test case.

  1. A 3-D discontinuous Galerkin Method for jet engine buzz-saw noise propagation

    Energy Technology Data Exchange (ETDEWEB)

    Remaki, M.; Habashi, W.G. [McGill Univ., Computational Fluid Dynamics Laboratory, Montreal, Quebec (Canada)]. E-mail: remaki@cfdlab.mcgill.ca; wagdi.habashi@mcgill.ca; Ait-Ali-Yahia, D. [Pratt and Whitney Canada, CFD Group, Longueuil, Quebec (Canada)]. E-mail: djaffar.Ait-Ali-Yahia@pwc.ca; Jay, A. [Pratt and Whitney Canada, Dept. of Acoustics and Installation, Longueuil, Quebec (Canada)]. E-mail: alexandre.jay@pwc.ca

    2002-07-01

    This paper presents a 3-D methodology for solving jet engine aero-acoustics problems in the presence of strong shocks and rarefactions. For example, turbofan engines suffer from Multiple Pure Tone noise, also called Buzz-saw noise, generated by the fan when the blade rotational tip speed is supersonic. These waves are composed of a series of shocks and rarefactions produced by a coalescence of shocks due to non-uniformities in the blade spacing and in the blade stagger angles, arising from manufacturing tolerances.

  2. 3-D crustal and uppermost mantle structure beneath NE China revealed by ambient noise adjoint tomography

    Science.gov (United States)

    Liu, Yaning; Niu, Fenglin; Chen, Min; Yang, Wencai

    2017-03-01

    We construct a new 3-D shear wave speed model of the crust and the uppermost mantle beneath Northeast China using the ambient noise adjoint tomography method. Without intermediate steps of measuring phase dispersion, the adjoint tomography inverts for shear wave speeds of the crust and uppermost mantle directly from 6-40 s waveforms of Empirical Green's functions (EGFs) of Rayleigh waves, which are derived from interferometry of two years of ambient noise data recorded by the 127 Northeast China Extended Seismic Array stations. With an initial 3-D model derived from traditional asymptotic surface wave tomography method, adjoint tomography refines the 3-D model by iteratively minimizing the frequency-dependent traveltime misfits between EGFs and synthetic Green's functions measured in four period bands: 6-15 s, 10-20 s, 15-30 s, and 20-40 s. Our new model shows shear wave speed anomalies that are spatially correlated with known tectonic units such as the Great Xing'an range and the Changbaishan mountain range. The new model also reveals low wave speed conduits in the mid-lower crust and the uppermost mantle with a wave speed reduction indicative of partial melting beneath the Halaha, Xilinhot-Abaga, and Jingpohu volcanic complexes, suggesting that the Cenozoic volcanism in the area has a deep origin. Overall, the adjoint tomographic images show more vertically continuous velocity anomalies with larger amplitudes due to the consideration of the finite frequency and 3-D effects.

  3. Noise tolerant selection by gaze-controlled pan and zoom in 3D

    DEFF Research Database (Denmark)

    Hansen, Dan Witzner; Jensen, Henrik Skovsgaard; Hansen, John Paulin;

    2008-01-01

    ) the subjects were able to type at acceptable rates. In a second test, seven subjects were allowed to adjust the zooming speed themselves. They achieved typing rates of more than eight words per minute without using language modeling. We conclude that the StarGazer application is an intuitive 3D interface...... tested three different display sizes (down to PDA-sized displays) and found that large screens are faster to navigate than small displays and that the error rate is higher for the smallest display. Half of the subjects were exposed to severe noise deliberately added on the cursor positions. We found...... that this had a negative impact on efficiency. However, the user remained in control and the noise did not seem to effect the error rate. Additionally, three subjects tested the effects of temporally adding noise to simulate latency in the gaze tracker. Even with a significant latency (about 200 ms...

  4. Block matching 3D random noise filtering for absorption optical projection tomography

    Energy Technology Data Exchange (ETDEWEB)

    Fumene Feruglio, P; Vinegoni, C; Weissleder, R [Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114 (United States); Gros, J [Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston MA 02115 (United States); Sbarbati, A, E-mail: cvinegoni@mgh.harvard.ed [Department of Morphological and Biomedical Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona (Italy)

    2010-09-21

    Absorption and emission optical projection tomography (OPT), alternatively referred to as optical computed tomography (optical-CT) and optical-emission computed tomography (optical-ECT), are recently developed three-dimensional imaging techniques with value for developmental biology and ex vivo gene expression studies. The techniques' principles are similar to the ones used for x-ray computed tomography and are based on the approximation of negligible light scattering in optically cleared samples. The optical clearing is achieved by a chemical procedure which aims at substituting the cellular fluids within the sample with a cell membranes' index matching solution. Once cleared the sample presents very low scattering and is then illuminated with a light collimated beam whose intensity is captured in transillumination mode by a CCD camera. Different projection images of the sample are subsequently obtained over a 360{sup 0} full rotation, and a standard backprojection algorithm can be used in a similar fashion as for x-ray tomography in order to obtain absorption maps. Because not all biological samples present significant absorption contrast, it is not always possible to obtain projections with a good signal-to-noise ratio, a condition necessary to achieve high-quality tomographic reconstructions. Such is the case for example, for early stage's embryos. In this work we demonstrate how, through the use of a random noise removal algorithm, the image quality of the reconstructions can be considerably improved even when the noise is strongly present in the acquired projections. Specifically, we implemented a block matching 3D (BM3D) filter applying it separately on each acquired transillumination projection before performing a complete three-dimensional tomographical reconstruction. To test the efficiency of the adopted filtering scheme, a phantom and a real biological sample were processed. In both cases, the BM3D filter led to a signal-to-noise ratio

  5. 3D Monte Carlo radiation transfer modelling of photodynamic therapy

    Science.gov (United States)

    Campbell, C. Louise; Christison, Craig; Brown, C. Tom A.; Wood, Kenneth; Valentine, Ronan M.; Moseley, Harry

    2015-06-01

    The effects of ageing and skin type on Photodynamic Therapy (PDT) for different treatment methods have been theoretically investigated. A multilayered Monte Carlo Radiation Transfer model is presented where both daylight activated PDT and conventional PDT are compared. It was found that light penetrates deeper through older skin with a lighter complexion, which translates into a deeper effective treatment depth. The effect of ageing was found to be larger for darker skin types. The investigation further strengthens the usage of daylight as a potential light source for PDT where effective treatment depths of about 2 mm can be achieved.

  6. Manifold Constrained Transfer of Facial Geometric Knowledge for 3D Caricature Reconstruction

    Institute of Scientific and Technical Information of China (English)

    Jun-Fa Liu; Wen-Jing He; Tao Chen; Yi-Qiang Chen

    2013-01-01

    3D caricatures are important attractive elements of the interface in virtual environment such as online game.However,very limited 3D caricatures exist in the real world.Meanwhile,creating 3D caricatures manually is rather costly,and even professional skills are needed.This paper proposes a novel and effective manifold transfer algorithm to reconstruct 3D caricatures according to their original 2D caricatures.We first manually create a small dataset with only 100 3D caricature models and use them to initialize the whole 3D dataset.After that,manifold transfer algorithm is carried out to refine the dataset.The algorithm comprises of two steps.The first is to perform manifold alignment between 2D and 3D caricatures to get a "standard" manifold map; the second is to reconstruct all the 3D caricatures based on the manifold map.The proposed approach utilizes and transfers knowledge of 2D caricatures to the target 3D caricatures well.Comparative experiments show that the approach reconstructs 3D caricatures more effectively and the results conform more to the styles of the original 2D caricatures than the Principal Components Analysis (PCA) based method.

  7. 3D filtering technique in presence of additive noise in color videos implemented on DSP

    Science.gov (United States)

    Ponomaryov, Volodymyr I.; Montenegro-Monroy, Hector; Palacios, Alfredo

    2014-05-01

    A filtering method for color videos contaminated by additive noise is presented. The proposed framework employs three filtering stages: spatial similarity filtering, neighboring frame denoising, and spatial post-processing smoothing. The difference with other state-of- the-art filtering methods, is that this approach, based on fuzzy logic, analyses basic and related gradient values between neighboring pixels into a 7 fi 7 sliding window in the vicinity of a central pixel in each of the RGB channels. Following, the similarity measures between the analogous pixels in the color bands are taken into account during the denoising. Next, two neighboring video frames are analyzed together estimating local motions between the frames using block matching procedure. In the final stage, the edges and smoothed areas are processed differently in a current frame during the post-processing filtering. Numerous simulations results confirm that this 3D fuzzy filter perform better than other state-of-the- art methods, such as: 3D-LLMMSE, WMVCE, RFMDAF, FDARTF G, VBM3D and NLM, in terms of objective criteria (PSNR, MAE, NCD and SSIM) as well as subjective perception via human vision system in the different color videos. An efficiency analysis of the designed and other mentioned filters have been performed on the DSPs TMS320 DM642 and TMS320DM648 by Texas Instruments through MATLAB and Simulink module showing that the novel 3D fuzzy filter can be used in real-time processing applications.

  8. 3D hydrodynamical and radiative transfer modeling of Eta Carinae's colliding winds

    CERN Document Server

    Madura, Thomas I; Gull, Theodore R; Kruip, Chael J H; Paardekooper, Jan-Pieter; Icke, Vincent

    2015-01-01

    We present results of full 3D hydrodynamical and radiative transfer simulations of the colliding stellar winds in the massive binary system Eta Carinae. We accomplish this by applying the SimpleX algorithm for 3D radiative transfer on an unstructured Voronoi-Delaunay grid to recent 3D smoothed particle hydrodynamics (SPH) simulations of the binary colliding winds. We use SimpleX to obtain detailed ionization fractions of hydrogen and helium, in 3D, at the resolution of the original SPH simulations. We investigate several computational domain sizes and Luminous Blue Variable primary star mass-loss rates. We furthermore present new methods of visualizing and interacting with output from complex 3D numerical simulations, including 3D interactive graphics and 3D printing. While we initially focus on Eta Car, the methods employed can be applied to numerous other colliding wind (WR 140, WR 137, WR 19) and dusty 'pinwheel' (WR 104, WR 98a) binary systems. Coupled with 3D hydrodynamical simulations, SimpleX simulatio...

  9. 3D modelling of coupled mass and heat transfer of a convection-oven roasting process

    DEFF Research Database (Denmark)

    Feyissa, Aberham Hailu; Adler-Nissen, Jens; Gernaey, Krist

    2013-01-01

    A 3D mathematical model of coupled heat and mass transfer describing oven roasting of meat has been developed from first principles. The proposed mechanism for the mass transfer of water is modified and based on a critical literature review of the effect of heat on meat. The model equations are b...

  10. Retrieval of Boundary Layer 3D Cloud Properties Using Scanning Cloud Radar and 3D Radiative Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, Roger [Univ. of Washington, Seattle, WA (United States)

    2017-01-24

    Retrievals of cloud optical and microphysical properties for boundary layer clouds, including those widely used by ASR investigators, frequently assume that clouds are sufficiently horizontally homogeneous that scattering and absorption (at all wavelengths) can be treated using one dimensional (1D) radiative transfer, and that differences in the field-of-view of different sensors are unimportant. Unfortunately, most boundary layer clouds are far from horizontally homogeneous, and numerous theoretical and observational studies show that the assumption of horizontal homogeneity leads to significant errors. The introduction of scanning cloud and precipitation radars at the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program sites presents opportunities to move beyond the horizontally homogeneous assumption. The primary objective of this project was to develop a 3D retrieval for warm-phase (liquid only) boundary layer cloud microphysical properties, and to assess errors in current 1D (non-scanning) approaches. Specific research activities also involved examination of the diurnal cycle of hydrometeors as viewed by ARM cloud radar, and continued assessment of precipitation impacts on retrievals of cloud liquid water path using passive microwaves.

  11. Direct ambient noise tomography for 3-D near surface shear velocity structure: methodology and applications

    Science.gov (United States)

    Yao, H.; Fang, H.; Li, C.; Liu, Y.; Zhang, H.; van der Hilst, R. D.; Huang, Y. C.

    2014-12-01

    Ambient noise tomography has provided essential constraints on crustal and uppermost mantle shear velocity structure in global seismology. Recent studies demonstrate that high frequency (e.g., ~ 1 Hz) surface waves between receivers at short distances can be successfully retrieved from ambient noise cross-correlation and then be used for imaging near surface or shallow crustal shear velocity structures. This approach provides important information for strong ground motion prediction in seismically active area and overburden structure characterization in oil and gas fields. Here we propose a new tomographic method to invert all surface wave dispersion data for 3-D variations of shear wavespeed without the intermediate step of phase or group velocity maps.The method uses frequency-dependent propagation paths and a wavelet-based sparsity-constrained tomographic inversion. A fast marching method is used to compute, at each period, surface wave traveltimes and ray paths between sources and receivers. This avoids the assumption of great-circle propagation that is used in most surface wave tomographic studies, but which is not appropriate in complex media. The wavelet coefficients of the velocity model are estimated with an iteratively reweighted least squares (IRLS) algorithm, and upon iterations the surface wave ray paths and the data sensitivity matrix are updated from the newly obtained velocity model. We apply this new method to determine the 3-D near surface wavespeed variations in the Taipei basin of Taiwan, Hefei urban area and a shale and gas production field in China using the high-frequency interstation Rayleigh wave dispersion data extracted from ambient noisecross-correlation. The results reveal strong effects of off-great-circle propagation of high-frequency surface waves in these regions with above 30% shear wavespeed variations. The proposed approach is more efficient and robust than the traditional two-step surface wave tomography for imaging complex

  12. Heterogeneously Assembled Metamaterials and Metadevices via 3D Modular Transfer Printing

    Science.gov (United States)

    Lee, Seungwoo; Kang, Byungsoo; Keum, Hohyun; Ahmed, Numair; Rogers, John A.; Ferreira, Placid M.; Kim, Seok; Min, Bumki

    2016-06-01

    Metamaterials have made the exotic control of the flow of electromagnetic waves possible, which is difficult to achieve with natural materials. In recent years, the emergence of functional metadevices has shown immense potential for the practical realization of highly efficient photonic devices. However, complex and heterogeneous architectures that enable diverse functionalities of metamaterials and metadevices have been challenging to realize because of the limited manufacturing capabilities of conventional fabrication methods. Here, we show that three-dimensional (3D) modular transfer printing can be used to construct diverse metamaterials in complex 3D architectures on universal substrates, which is attractive for achieving on-demand photonic properties. Few repetitive processing steps and rapid constructions are additional advantages of 3D modular transfer printing. Thus, this method provides a fascinating route to generate flexible and stretchable 2D/3D metamaterials and metadevices with heterogeneous material components, complex device architectures, and diverse functionalities.

  13. 3D vision accelerates laparoscopic proficiency and skills are transferable to 2D conditions

    DEFF Research Database (Denmark)

    Sørensen, Stine Maya Dreier; Konge, Lars; Bjerrum, Flemming

    2017-01-01

    BACKGROUND: Laparoscopy is difficult to master, in part because surgeons operate in a three-dimensional (3D) space guided by two-dimensional (2D) images. This trial explores the effect of 3D vision during a laparoscopic training program, and examine whether it is possible to transfer skills......: Mean training time were reduced in the intervention group; 231 min versus 323 min; P = 0.012. There was no significant difference in the mean times to completion of the retention test; 92 min versus 95 min; P = 0.85. CONCLUSION: 3D vision reduced time to proficiency on a virtual-reality laparoscopy...... simulator. Furthermore, skills learned with 3D vision can be transferred to 2D vision conditions. Clinicaltrials.gov (NCT02361463)....

  14. Heterogeneously Assembled Metamaterials and Metadevices via 3D Modular Transfer Printing.

    Science.gov (United States)

    Lee, Seungwoo; Kang, Byungsoo; Keum, Hohyun; Ahmed, Numair; Rogers, John A; Ferreira, Placid M; Kim, Seok; Min, Bumki

    2016-06-10

    Metamaterials have made the exotic control of the flow of electromagnetic waves possible, which is difficult to achieve with natural materials. In recent years, the emergence of functional metadevices has shown immense potential for the practical realization of highly efficient photonic devices. However, complex and heterogeneous architectures that enable diverse functionalities of metamaterials and metadevices have been challenging to realize because of the limited manufacturing capabilities of conventional fabrication methods. Here, we show that three-dimensional (3D) modular transfer printing can be used to construct diverse metamaterials in complex 3D architectures on universal substrates, which is attractive for achieving on-demand photonic properties. Few repetitive processing steps and rapid constructions are additional advantages of 3D modular transfer printing. Thus, this method provides a fascinating route to generate flexible and stretchable 2D/3D metamaterials and metadevices with heterogeneous material components, complex device architectures, and diverse functionalities.

  15. Processing of noised residual stress phase maps by using a 3D phase unwrapping algorithm

    Science.gov (United States)

    Viotti, Matias R.; Fantin, Analucia V.; Albertazzi, Armando; Willemann, Daniel P.

    2013-07-01

    The measurement of residual stress by using digital speckle pattern interferometry (DSPI) combined with the hole drilling technique is a valuable and fast tool for integrity evaluation of civil structures and mechanical parts. However, in some cases, measured phase maps are badly corrupted by noise which makes phase unwrapping a difficult and unsuccessful task. By following recommendations given by the ASTM E837 standard, 20 consecutive hole steps should be performed for the measurement of non-uniform stresses. As a consequence, 20 difference phase maps along the hole depth will be available for the DSPI technique. An adaptive phase unwrapping algorithm could be used in order to unwrap images following paths localized along well modulated pixels and performing two dimensional phase unwrapping (following paths inside a difference phase map corresponding to a hole step) or 3D phase unwrapping (similar to a temporal phase unwrapping following paths located at well-modulated pixels in a previous or a subsequent hole image). Non-corrupted and corrupted hole-drilling tests were processed with a traditional phase unwrapping algorithm as well as with the proposed 3D approach. Comparisons between unwrapped phase maps and simulated ones have shown that the proposed method gave results with best accordance than 2D results.

  16. Transfer printing of 3D hierarchical gold structures using a sequentially imprinted polymer stamp

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Fengxiang; Low, Hong Yee [Institute of Materials Research and Engineering, A-STAR - Agency for Science, Technology and Research, 3 Research Link, 117602 (Singapore)], E-mail: hy-low@imre.a-star.edu.sg

    2008-10-15

    Complex three-dimensional (3D) hierarchical structures on polymeric materials are fabricated through a process referred to as sequential imprinting. In this work, the sequentially imprinted polystyrene film is used as a soft stamp to replicate hierarchical structures onto gold (Au) films, and the Au structures are then transferred to a substrate by transfer printing at an elevated temperature and pressure. Continuous and isolated 3D structures can be selectively fabricated with the assistance of thermo-mechanical deformation of the polymer stamp. Hierarchical Au structures are achieved without the need for a corresponding three-dimensionally patterned mold.

  17. Computer-Designed Splints for Surgical Transfer of 3D Orthognathic Planning.

    Science.gov (United States)

    Zinser, Max; Zoeller, Joachim

    2015-10-01

    Advances in computers and imaging have permitted the adoption of three-dimensional (3D) planning protocols in orthognathic surgery, which may allow a paradigm shift when the computer-assisted planning can be transferred properly. The purpose of this investigation was to introduce an innovative clinical protocol using computer-aided designed and computer-aided manufactured (CAD/CAM) surgical splints for surgical transfer of 3D orthognathic planning compared with the classic technique using arbitrary occlusal splints. The clinical protocols consisted of computed tomography (CT) or cone-beam CT (CBCT) maxillofacial imaging, bone segmentation, 3D diagnosis, computer-assisted surgical treatment planning, and CAD/CAM surgical splints (group A) and manufacture of arbitrary occlusal splints (group B) for intraoperative surgical planning transfer. The observed patients underwent bimaxillary osteotomies and, if necessary, an additional genioplasty. Both techniques were evaluated by applying 13 hard tissue parameters to compare the 3D orthognathic planning (T0) with the postoperative result (T1) using 3D cephalometry. The CAD/CAM splints showed significant better precision for the maxilla (ΔT orthognathic planning, which is more precise compared with the conventional arbitrary occlusal splints.

  18. Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer

    NARCIS (Netherlands)

    Visser, Claas Willem; Pohl, Ralph; Sun, Chao; Römer, Gert-Willem; Huis in 't Veld, Bert; Lohse, Detlef

    2015-01-01

    3D printing of common metals is highly challenging because metals are generally solid at room conditions. Copper and gold pillars are manufactured with a resolution below 5 μm and a height up to 2 mm, using laser-induced forward transfer to create and eject liquid metal droplets. The solidified drop

  19. Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer

    NARCIS (Netherlands)

    Visser, C.W.; Pohl, Ralph; Sun, Chao; Römer, Gerardus Richardus, Bernardus, Engelina; Huis in 't Veld, Bert; Lohse, Detlef

    2015-01-01

    3D printing of common metals is highly challenging because metals are generally solid at room conditions. Copper and gold pillars are manufactured with a resolution below 5 μm and a height up to 2 mm, using laser-induced forward transfer to create and eject liquid metal droplets. The solidified

  20. 3D Shallow crustal structure of Madeira island revealed from ambient noise tomography

    Science.gov (United States)

    Matos, C.; Silveira, G. M.; Matias, L. M.; Ribeiro, L.; Dias, N. A.; Caldeira, R.; Rosa, C.; Krueger, F.

    2013-12-01

    Madeira is an intraplate volcanic island, located at the eastern North Atlantic Ocean, in front of the Moroccan cost, with an emerged area of 737 km2 and maximum altitude of 1861 m. Madeira shows an E-W-oriented elongation, which reflects the orientation of its rift zone. Rift zones play a fundamental role in the constitution and evolution of volcanic islands and it is important to image their internal structure as a function of depth. Constrains like source-receiver geometry, irregular seismicity distribution or, for some methods, low seismicity occurrence did not allow to obtain high-resolution models of the Madeira crustal structure using traditional passive seismology. Seismic interferometry/ambient noise surface-waves tomography allows imaging regions with a resolution that mainly depends on the seismic network coverage. From May 2011 to September 2012, a temporary pool of 23 seismometers has been continuously recording at Madeira Island. This deployment was complemented with other local permanent stations. The ambient noise data was processed following five main steps: (1) Data quality control; (2) Cross-correlation of 1 hour time windows between each station pair and subsequent stacking for the entire recording period; (3) Time-frequency analysis to measure group-velocity dispersion curves between 0.5 and 6 seconds; (4) 2D inversion to obtain lateral variations of the Rayleigh-wave group-velocities as function of the period; (5) Group velocity inversion as a function of depth to map the 3D structure beneath Madeira. From the surface to 4 km depth, the edge of the rift, along which the island possibly grow, is well correlated with a strong positive anomaly on our maps. This anomaly seems to be perturbed by the presence of low velocities at a depth of 2 km. After 5 km the rift signature is no longer visible. This work is supported by project QUAKELOC Reference: PTDC/GEO-FIQ/3522/2012

  1. A 3D analytical model for orthogonal blade-vortex interaction noise

    Science.gov (United States)

    Quaglia, Michael E.; Léonard, Thomas; Moreau, Stéphane; Roger, Michel

    2017-07-01

    A 3D analytical model of an Orthogonal Blade-Vortex Interaction (OBVI) for Counter-Rotating Open Rotor (CROR) tonal noise is investigated. The specific influence of two parameters taking into account the three-dimensionality of both the vortex velocity and the convection velocity within the rotor-rotor volume is addressed. The first step is to extract the vortex parameters from a recent unsteady Reynolds-Averaged Navier-Stokes computation and validate different vortex models. Lamb-Oseen and Scully vortices reproduce the behavior of the tip-vortex tangential velocity fairly well. Regarding the vortex axial velocity modeling, a Gaussian profile fits well with numerical results. On the one hand, the impact of the stream-tube contraction unbalances the lobes of the unsteady pressure with opposite phases produced by the OBVI event. This effect is larger than that of an equivalent blade sweep. On the other hand, adding the axial velocity deficit to the tangential one also unbalances the pressure lobes. Finally, from an acoustic point of view using Curle's acoustic analogy, both the stream-tube contraction and the axial velocity deficit have the same effect: they turn an acoustically-low efficient quadrupole into a strong dipole making these parameters fundamental for future CROR OBVI investigations.

  2. A 3D radiative transfer framework: XI. multi-level NLTE

    CERN Document Server

    Hauschildt, Peter H

    2014-01-01

    Multi-level non-local thermodynamic equilibrium (NLTE) radiation transfer calculations have become standard throughout the stellar atmospheres community and are applied to all types of stars as well as dynamical systems such as novae and supernovae. Even today spherically symmetric 1D calculations with full physics are computationally intensive. We show that full NLTE calculations can be done with fully 3 dimensional (3D) radiative transfer. With modern computational techniques and current massive parallel computational resources, full detailed solution of the multi-level NLTE problem coupled to the solution of the radiative transfer scattering problem can be solved without sacrificing the micro physics description. We extend the use of a rate operator developed to solve the coupled NLTE problem in spherically symmetric 1D systems. In order to spread memory among processors we have implemented the NLTE/3D module with a hierarchical domain decomposition method that distributes the NLTE levels, radiative rates,...

  3. Study of 3-D Numerical Simulation for Gas Transfer in the Goaf of the Coal Mining

    Institute of Scientific and Technical Information of China (English)

    WU Zheng-yan; JIANG Shu-guang; HE Xin-jian; WANG Lan-yun; LIN Bai-quan

    2007-01-01

    In order to simulate field distribution rules, mathematical models for 3-D air flows and gas transfer in the goaf of the coal mining are established, based on theories of permeability and dynamic dispersion through porous media. A gas dispersion equation in a 3-D field is calculated by use of numerical method on a weighted upstream multi-element balance. Based on data of an example with a U type ventilation mode, surface charts of air pressure distribution and gas concentration are drawn by Graphtool software. Finally, a comparison between actually measured results in the model test and the numerical simulation results is made to proves the numerical implementation feasible.

  4. Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer.

    Science.gov (United States)

    Visser, Claas Willem; Pohl, Ralph; Sun, Chao; Römer, Gert-Willem; Huis in 't Veld, Bert; Lohse, Detlef

    2015-07-15

    3D printing of common metals is highly challenging because metals are generally solid at room conditions. Copper and gold pillars are manufactured with a resolution below 5 μm and a height up to 2 mm, using laser-induced forward transfer to create and eject liquid metal droplets. The solidified drop's shape is crucial for 3D printing and is discussed as a function of the laser energy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Suppression of 3D coherent noise by areal geophone array; Menteki jushinki array ni yoru sanjigen coherent noise no yokusei

    Energy Technology Data Exchange (ETDEWEB)

    Murayama, R.; Nakagami, K.; Tanaka, H. [Japan National Oil Corp., Tokyo (Japan). Technology Research Center

    1996-05-01

    For improving the quality of data collected by reflection seismic exploration, a lattice was deployed at one point of a traverse line, and the data therefrom were used to study the 3D coherent noise suppression effect of the areal array. The test was conducted at a Japan National Oil Corporation test field in Kashiwazaki City, Niigata Prefecture. The deployed lattice had 144 vibration receiving points arrayed at intervals of 8m composing an areal array, and 187 vibration generating points arrayed at intervals of 20m extending over 6.5km. Data was collected at the vibration receiving points in the lattice, each point acting independently from the others, and processed for the composition of a large areal array, with the said data from plural vibration receiving points added up therein. As the result of analysis of the records covering the data collected at the receiving points in the lattice, it is noted that an enlarged areal array leads to a higher S/N ratio and that different reflection waves are emphasized when the array direction is changed. 1 ref., 6 figs.

  6. A transfer matrix approach to the 3D wetting and pinning problems

    OpenAIRE

    1983-01-01

    We consider the pinning of an interface on a 3D lattice by an edge potential (semi-infinite geometry). This situation models the wetting transition occurring in such physical systems as binary fluids or adsorbed gases. The transfer matrix method is used to get exact results on strips of finite width; we propose a way of extrapolating them and of deriving the phase diagram of the infinite system. The mechanism of the transition changes when the pinning and roughening temperatures coincide.

  7. Printing Functional 3D Microdevices by Laser-Induced Forward Transfer.

    Science.gov (United States)

    Luo, Jun; Pohl, Ralph; Qi, Lehua; Römer, Gert-Willem; Sun, Chao; Lohse, Detlef; Visser, Claas Willem

    2017-03-01

    Slender, out-of-plane metal microdevices are made in a new spatial domain, by using laser-induced forward transfer (LIFT) of metals. Here, a thermocouple with a thickness of 10 µm and a height of 250 µm, consisting of platinum and gold pillars is demonstrated. Multimaterial LIFT enables manufacturing in the micrometer to millimeter range, i.e., between lithography and other 3D printing technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Optical Coherence Tomography Noise Reduction Using Anisotropic Local Bivariate Gaussian Mixture Prior in 3D Complex Wavelet Domain

    Directory of Open Access Journals (Sweden)

    Hossein Rabbani

    2013-01-01

    Full Text Available In this paper, MMSE estimator is employed for noise-free 3D OCT data recovery in 3D complex wavelet domain. Since the proposed distribution for noise-free data plays a key role in the performance of MMSE estimator, a priori distribution for the pdf of noise-free 3D complex wavelet coefficients is proposed which is able to model the main statistical properties of wavelets. We model the coefficients with a mixture of two bivariate Gaussian pdfs with local parameters which are able to capture the heavy-tailed property and inter- and intrascale dependencies of coefficients. In addition, based on the special structure of OCT images, we use an anisotropic windowing procedure for local parameters estimation that results in visual quality improvement. On this base, several OCT despeckling algorithms are obtained based on using Gaussian/two-sided Rayleigh noise distribution and homomorphic/nonhomomorphic model. In order to evaluate the performance of the proposed algorithm, we use 156 selected ROIs from 650 × 512 × 128 OCT dataset in the presence of wet AMD pathology. Our simulations show that the best MMSE estimator using local bivariate mixture prior is for the nonhomomorphic model in the presence of Gaussian noise which results in an improvement of 7.8 ± 1.7 in CNR.

  9. 3D Continuum Radiative Transfer. An adaptive grid construction algorithm based on the Monte Carlo method

    Science.gov (United States)

    Niccolini, G.; Alcolea, J.

    Solving the radiative transfer problem is a common problematic to may fields in astrophysics. With the increasing angular resolution of spatial or ground-based telescopes (VLTI, HST) but also with the next decade instruments (NGST, ALMA, ...), astrophysical objects reveal and will certainly reveal complex spatial structures. Consequently, it is necessary to develop numerical tools being able to solve the radiative transfer equation in three dimensions in order to model and interpret these observations. I present a 3D radiative transfer program, using a new method for the construction of an adaptive spatial grid, based on the Monte Claro method. With the help of this tools, one can solve the continuum radiative transfer problem (e.g. a dusty medium), computes the temperature structure of the considered medium and obtain the flux of the object (SED and images).

  10. Partial redistribution in 3D non-LTE radiative transfer in solar atmosphere models

    CERN Document Server

    Sukhorukov, Andrii V

    2016-01-01

    Resonance spectral lines such as H I Ly {\\alpha}, Mg II h&k, and Ca II H&K that form in the solar chromosphere are influenced by the effects of 3D radiative transfer as well as partial redistribution (PRD). So far no one has modeled these lines including both effects simultaneously owing to the high computing demands of existing algorithms. Such modeling is however indispensable for accurate diagnostics of the chromosphere. We present a computationally tractable method to treat PRD scattering in 3D model atmospheres using a 3D non-LTE radiative transfer code. To make the method memory-friendly, we use the hybrid approximation of Leenaarts et al. (2012) for the redistribution integral. To make it fast, we use linear interpolation on equidistant frequency grids. We verify our algorithm against computations with the RH code and analyze it for stability, convergence, and usefulness of acceleration using model atoms of Mg II with the h&k lines and H I with the Ly {\\alpha} line treated in PRD. A typical...

  11. Computational Finite Element Software Assisted Development of a 3D Inductively Coupled Power Transfer System

    Directory of Open Access Journals (Sweden)

    P. Raval

    2014-02-01

    Full Text Available To date inductively coupled power transfer (ICPT systems have already found many practical applications including battery charging pads. In fact, current charging platforms tend to largely support only one- or two-dimensional planar movement in load. This paper proposes a new concept of extending the aspect ratios of the operating power transfer volume of ICPT systems to support arbitrary three dimensional load movements with respect to the primary coils. This is done by use of modern finite element method analysis software to propose the primary and secondary magnetic structures of such an ICPT system. Firstly, two primary magnetic structures are proposed based on contrasting modes of operation and different field directions. This includes a single-phase and multi-phase current model. Next, a secondary magnetic structure is customized to be compatible with both primary structures. The resulting system is shown to produce a 3D power transfer volume for battery cell charging applications.

  12. Improved grid-noise removal in single-frame digital moiré 3D shape measurement

    Science.gov (United States)

    Mohammadi, Fatemeh; Kofman, Jonathan

    2016-11-01

    A single-frame grid-noise removal technique was developed for application in single-frame digital-moiré 3D shape measurement. The ability of the stationary wavelet transform (SWT) to prevent oscillation artifacts near discontinuities, and the ability of the Fourier transform (FFT) applied to wavelet coefficients to separate grid-noise from useful image information, were combined in a new technique, SWT-FFT, to remove grid-noise from moiré-pattern images generated by digital moiré. In comparison to previous grid-noise removal techniques in moiré, SWT-FFT avoids the requirement for mechanical translation of optical components and capture of multiple frames, to enable single-frame moiré-based measurement. Experiments using FFT, Discrete Wavelet Transform (DWT), DWT-FFT, and SWT-FFT were performed on moiré-pattern images containing grid noise, generated by digital moiré, for several test objects. SWT-FFT had the best performance in removing high-frequency grid-noise, both straight and curved lines, minimizing artifacts, and preserving the moiré pattern without blurring and degradation. SWT-FFT also had the lowest noise amplitude in the reconstructed height and lowest roughness index for all test objects, indicating best grid-noise removal in comparison to the other techniques.

  13. Noise enhances information transfer in hierarchical networks.

    Science.gov (United States)

    Czaplicka, Agnieszka; Holyst, Janusz A; Sloot, Peter M A

    2013-01-01

    We study the influence of noise on information transmission in the form of packages shipped between nodes of hierarchical networks. Numerical simulations are performed for artificial tree networks, scale-free Ravasz-Barabási networks as well for a real network formed by email addresses of former Enron employees. Two types of noise are considered. One is related to packet dynamics and is responsible for a random part of packets paths. The second one originates from random changes in initial network topology. We find that the information transfer can be enhanced by the noise. The system possesses optimal performance when both kinds of noise are tuned to specific values, this corresponds to the Stochastic Resonance phenomenon. There is a non-trivial synergy present for both noisy components. We found also that hierarchical networks built of nodes of various degrees are more efficient in information transfer than trees with a fixed branching factor.

  14. 3D Radiative Transfer in Eta Carinae: Application of the SimpleX Algorithm to 3D SPH Simulations of Binary Colliding Winds

    Science.gov (United States)

    Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Icke, V.; Gull, T. R.

    2014-01-01

    Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions and evolution, and stellar wind-wind collisions. Recent three-dimensional (3D) simulations set the stage for understanding the highly complex 3D flows in Eta Car. Observations of different broad high- and low-ionization forbidden emission lines provide an excellent tool to constrain the orientation of the system, the primary's mass-loss rate, and the ionizing flux of the hot secondary. In this work we present the first steps towards generating synthetic observations to compare with available and future HST/STIS data. We present initial results from full 3D radiative transfer simulations of the interacting winds in Eta Car. We use the SimpleX algorithm to post-process the output from 3D SPH simulations and obtain the ionization fractions of hydrogen and helium assuming three different mass-loss rates for the primary star. The resultant ionization maps of both species constrain the regions where the observed forbidden emission lines can form. Including collisional ionization is necessary to achieve a better description of the ionization states, especially in the areas shielded from the secondary's radiation. We find that reducing the primary's mass-loss rate increases the volume of ionized gas, creating larger areas where the forbidden emission lines can form. We conclude that post processing 3D SPH data with SimpleX is a viable tool to create ionization maps for Eta Car.

  15. Heat Transfer Affected by Transverse Magnetic Field using 3D Modeling of Arc Plasma

    Science.gov (United States)

    Maeda, Yoshifumi; Tanaka, Tatsuro; Yamamoto, Shinji; Iwao, Toru

    2016-10-01

    Gas shielded metal arc welding is used to join the various metal because this is the high quality joining technology. Thus, this welding is used for a welding of large buildings such as bridges and LNG tanks. However, the welding defect caused by the heat transfer decrement may occur with increasing the wind velocity. This is because that the convection loss increases because the arc deflects to leeward side with increasing the wind velocity. In order to prevent from the arc deflection, it is used that the transverse magnetic field is applied to the arc. However, the arc deflection occurs with increasing the transverse magnetic field excessively. The energy balance of the arc is changed with increasing the convection loss caused by the arc deflection, and the heat transfer to the anode decreases. Therefore, the analysis including the arc and anode is necessary to elucidate the heat transfer to the anode. In this paper, the heat transfer affected by the transverse magnetic field using 3D modeling of the arc plasma is elucidated. The heat transfer to the anode is calculated by using the EMTF(electromagnetic thermal fluid) simulation with increasing the transverse magnetic field. As a result, the heat transfer decreased with increasing the transverse magnetic field.

  16. An acoustic vector based approach to locate low frequency noise sources in 3D

    NARCIS (Netherlands)

    Bree, H.-E. de; Ostendorf, C.; Basten, T.

    2009-01-01

    Although low frequency noise is an issue of huge societal importance, traditional acoustic testing methods have limitations in finding the low frequency source. It is hard to determine the direction of the noise using traditional microphones. Three dimensional sound probes capturing the particle vel

  17. Combination of Monte Carlo and transfer matrix methods to study 2D and 3D percolation

    Energy Technology Data Exchange (ETDEWEB)

    Saleur, H.; Derrida, B.

    1985-07-01

    In this paper we develop a method which combines the transfer matrix and the Monte Carlo methods to study the problem of site percolation in 2 and 3 dimensions. We use this method to calculate the properties of strips (2D) and bars (3D). Using a finite size scaling analysis, we obtain estimates of the threshold and of the exponents wich confirm values already known. We discuss the advantages and the limitations of our method by comparing it with usual Monte Carlo calculations.

  18. Melanin Transfer in Human 3D Skin Equivalents Generated Exclusively from Induced Pluripotent Stem Cells.

    Directory of Open Access Journals (Sweden)

    Karl Gledhill

    Full Text Available The current utility of 3D skin equivalents is limited by the fact that existing models fail to recapitulate the cellular complexity of human skin. They often contain few cell types and no appendages, in part because many cells found in the skin are difficult to isolate from intact tissue and cannot be expanded in culture. Induced pluripotent stem cells (iPSCs present an avenue by which we can overcome this issue due to their ability to be differentiated into multiple cell types in the body and their unlimited growth potential. We previously reported generation of the first human 3D skin equivalents from iPSC-derived fibroblasts and iPSC-derived keratinocytes, demonstrating that iPSCs can provide a foundation for modeling a complex human organ such as skin. Here, we have increased the complexity of this model by including additional iPSC-derived melanocytes. Epidermal melanocytes, which are largely responsible for skin pigmentation, represent the second most numerous cell type found in normal human epidermis and as such represent a logical next addition. We report efficient melanin production from iPSC-derived melanocytes and transfer within an entirely iPSC-derived epidermal-melanin unit and generation of the first functional human 3D skin equivalents made from iPSC-derived fibroblasts, keratinocytes and melanocytes.

  19. 3D modelling of coupled mass and heat transfer of a convection-oven roasting process.

    Science.gov (United States)

    Feyissa, Aberham Hailu; Gernaey, Krist V; Adler-Nissen, Jens

    2013-04-01

    A 3D mathematical model of coupled heat and mass transfer describing oven roasting of meat has been developed from first principles. The proposed mechanism for the mass transfer of water is modified and based on a critical literature review of the effect of heat on meat. The model equations are based on a conservation of mass and energy, coupled through Darcy's equations of porous media - the water flow is mainly pressure-driven. The developed model together with theoretical and experimental assessments were used to explain the heat and water transport and the effect of the change in microstructure (permeability, water binding capacity and elastic modulus) that occur during the meat roasting process. The developed coupled partial differential equations were solved by using COMSOL Multiphysics®3.5 and state variables are predicted as functions of both position and time. The proposed mechanism was partially validated by experiments in a convection oven where temperatures were measured online.

  20. Radiative transfer with scattering for domain-decomposed 3D MHD simulations of cool stellar atmospheres

    CERN Document Server

    Hayek, W; Carlsson, M; Trampedach, R; Collet, R; Gudiksen, B V; Hansteen, V H; Leenaarts, J

    2010-01-01

    We present the implementation of a radiative transfer solver with coherent scattering in the new BIFROST code for radiative magneto-hydrodynamical (MHD) simulations of stellar surface convection. The code is fully parallelized using MPI domain decomposition, which allows for large grid sizes and improved resolution of hydrodynamical structures. We apply the code to simulate the surface granulation in a solar-type star, ignoring magnetic fields, and investigate the importance of coherent scattering for the atmospheric structure. A scattering term is added to the radiative transfer equation, requiring an iterative computation of the radiation field. We use a short-characteristics-based Gauss-Seidel acceleration scheme to compute radiative flux divergences for the energy equation. The effects of coherent scattering are tested by comparing the temperature stratification of three 3D time-dependent hydrodynamical atmosphere models of a solar-type star: without scattering, with continuum scattering only, and with bo...

  1. Monte Carlo techniques for time-dependent radiative transfer in 3-D supernovae

    CERN Document Server

    Lucy, L B

    2004-01-01

    Monte Carlo techniques based on indivisible energy packets are described for computing light curves and spectra for 3-D supernovae. The radiative transfer is time-dependent and includes all effects of O(v/c). Monte Carlo quantization is achieved by discretizing the initial distribution of 56Ni into radioactive pellets. Each pellet decays with the emission of a single energy packet comprising gamma-ray photons representing one line from either the 56Ni or the 56Co decay spectrum. Subsequently, these energy packets propagate through the homologously-expanding ejecta with appropriate changes in the nature of their contained energy as they undergo Compton scatterings and pure absorptions. The 3-D code is tested by applying it to a spherically-symmetric SN in which the transfer of optical radiation is treated with a grey absorption coefficient. This 1-D problem is separately solved using Castor's co-moving frame moment equations. Satisfactory agreement is obtained. The Monte Carlo code is a platform onto which mor...

  2. 2.5D real waveform and real noise simulation of receiver functions in 3D models

    DEFF Research Database (Denmark)

    Schiffer, Christian; Jacobsen, B. H.; Balling, N.

    There are several reasons why a real-data receiver function differs from the theoretical receiver function in a 1D model representing the stratification under the seismometer. Main reasons are ambient noise, spectral deficiencies in the impinging P-waveform, and wavefield propagation in laterally...... seismometer is simulated individually through the following steps: A 2D section is extracted from the 3D model along the direction towards the hypocentre. A properly slanted plane or curved impulsive wavefront is propagated through this 2D section, resulting in noise free and spectrally complete synthetic...... seismometer data. The real vertical component signal is taken as a proxy of the real impingent wavefield, so by convolution and subsequent addition of real ambient noise recorded just before the P-arrival we get synthetic vertical and horizontal component data which very closely match the spectral signal...

  3. 3D Radiative Transfer in $\\eta$ Carinae: Application of the SimpleX Algorithm to 3D SPH Simulations of Binary Colliding Winds

    CERN Document Server

    Clementel, N; Kruip, C J H; Icke, V; Gull, T R

    2014-01-01

    Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions and evolution, and stellar wind-wind collisions. Recent three-dimensional (3D) simulations set the stage for understanding the highly complex 3D flows in $\\eta$ Car. Observations of different broad high- and low-ionization forbidden emission lines provide an excellent tool to constrain the orientation of the system, the primary's mass-loss rate, and the ionizing flux of the hot secondary. In this work we present the first steps towards generating synthetic observations to compare with available and future HST/STIS data. We present initial results from full 3D radiative transfer simulations of the interacting winds in $\\eta$ Car. We use the SimpleX algorithm to post-process the output from 3D SPH simulations and obtain the ionization fractions of hydrogen and helium assuming three different mass-loss rates for the primary star. The resultant ionization maps of both species constrain the regions where the observed forbidde...

  4. Validation of Heat Transfer and Film Cooling Capabilities of the 3-D RANS Code TURBO

    Science.gov (United States)

    Shyam, Vikram; Ameri, Ali; Chen, Jen-Ping

    2010-01-01

    The capabilities of the 3-D unsteady RANS code TURBO have been extended to include heat transfer and film cooling applications. The results of simulations performed with the modified code are compared to experiment and to theory, where applicable. Wilcox s k-turbulence model has been implemented to close the RANS equations. Two simulations are conducted: (1) flow over a flat plate and (2) flow over an adiabatic flat plate cooled by one hole inclined at 35 to the free stream. For (1) agreement with theory is found to be excellent for heat transfer, represented by local Nusselt number, and quite good for momentum, as represented by the local skin friction coefficient. This report compares the local skin friction coefficients and Nusselt numbers on a flat plate obtained using Wilcox's k-model with the theory of Blasius. The study looks at laminar and turbulent flows over an adiabatic flat plate and over an isothermal flat plate for two different wall temperatures. It is shown that TURBO is able to accurately predict heat transfer on a flat plate. For (2) TURBO shows good qualitative agreement with film cooling experiments performed on a flat plate with one cooling hole. Quantitatively, film effectiveness is under predicted downstream of the hole.

  5. Monitoring of resin transfer in CFRP molding using 3D-DIC technique

    Science.gov (United States)

    Chen, Dingding; Arakawa, Kazuo; Uchino, Masakazu

    2014-06-01

    Vacuum-assisted resin transfer molding (VARTM) is a manufacturing process that is used to make large and complex composite structures. While promising, VARTM still suffers from relatively low fiber volume fractions and high void content in the final products. The infusion step of VARTM is very important, because the quality of the final product is usually decided by this process. Consequently, a comprehensive understanding of the infusion process is essential. In this study, a three-dimensional digital image correlation (3D-DIC) testing system was set up to research the entire infusion process through the monitor of the thickness change of the laminates in this process. Two distinct VARTM processes, with and without a rigid cover mold, were designed to be studied. The 3D-DIC technique proved to be a valid method that not only can monitor the thickness evolution of isolated points but also can give a full-field distribution of the thickness change of the laminate. The results showed that, without the use of a rigid cover mold, the stack of reinforcements initially shrank and then expanded as the resin filled the cavities before closing the inlet, while when using a rigid cover mold there was an additional expansion period before the shrinkage occurred. Such an expansion stage could promote the flow of the resin, shortening the infusion time.

  6. 3D Hydrodynamic & Radiative Transfer Models of X-ray Emission from Colliding Wind Binaries

    CERN Document Server

    Russell, Christopher M P; Owocki, Stanley P; Corcoran, Michael F; Hamaguchi, Kenji; Sugawara, Yasuharu

    2014-01-01

    Colliding wind binaries (CWBs) are unique laboratories for X-ray astrophysics. The massive stars in these systems possess powerful stellar winds with speeds up to $\\sim$3000 km s$^{-1}$, and their collision leads to hot plasma (up to $\\sim10^8$K) that emit thermal X-rays (up to $\\sim$10 keV). Many X-ray telescopes have observed CWBs, including Suzaku, and our work aims to model these X-ray observations. We use 3D smoothed particle hydrodynamics (SPH) to model the wind-wind interaction, and then perform 3D radiative transfer to compute the emergent X-ray flux, which is folded through X-ray telescopes' response functions to compare directly with observations. In these proceedings, we present our models of Suzaku observations of the multi-year-period, highly eccentric systems $\\eta$ Carinae and WR 140. The models reproduce the observations well away from periastron passage, but only $\\eta$ Carinae's X-ray spectrum is reproduced at periastron; the WR 140 model produces too much flux during this more complicated p...

  7. SU-E-QI-17: Dependence of 3D/4D PET Quantitative Image Features On Noise

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, J; Budzevich, M; Zhang, G; Latifi, K; Dilling, T; Balagurunathan, Y; Gu, Y; Grove, O; Feygelman, V; Gillies, R; Moros, E; Lee, H. [Moffitt Cancer Center, Tampa, FL (United States)

    2014-06-15

    Purpose: Quantitative imaging is a fast evolving discipline where a large number of features are extracted from images; i.e., radiomics. Some features have been shown to have diagnostic, prognostic and predictive value. However, they are sensitive to acquisition and processing factors; e.g., noise. In this study noise was added to positron emission tomography (PET) images to determine how features were affected by noise. Methods: Three levels of Gaussian noise were added to 8 lung cancer patients PET images acquired in 3D mode (static) and using respiratory tracking (4D); for the latter images from one of 10 phases were used. A total of 62 features: 14 shape, 19 intensity (1stO), 18 GLCM textures (2ndO; from grey level co-occurrence matrices) and 11 RLM textures (2ndO; from run-length matrices) features were extracted from segmented tumors. Dimensions of GLCM were 256×256, calculated using 3D images with a step size of 1 voxel in 13 directions. Grey levels were binned into 256 levels for RLM and features were calculated in all 13 directions. Results: Feature variation generally increased with noise. Shape features were the most stable while RLM were the most unstable. Intensity and GLCM features performed well; the latter being more robust. The most stable 1stO features were compactness, maximum and minimum length, standard deviation, root-mean-squared, I30, V10-V90, and entropy. The most stable 2ndO features were entropy, sum-average, sum-entropy, difference-average, difference-variance, difference-entropy, information-correlation-2, short-run-emphasis, long-run-emphasis, and run-percentage. In general, features computed from images from one of the phases of 4D scans were more stable than from 3D scans. Conclusion: This study shows the need to characterize image features carefully before they are used in research and medical applications. It also shows that the performance of features, and thereby feature selection, may be assessed in part by noise analysis.

  8. The advantages of complementing MT profiles in 3-D environments with geomagnetic transfer function and interstation horizontal magnetic transfer function data: results from a synthetic case study

    Science.gov (United States)

    Campanyà, Joan; Ogaya, Xènia; Jones, Alan G.; Rath, Volker; Vozar, Jan; Meqbel, Naser

    2016-12-01

    As a consequence of measuring time variations of the electric and the magnetic field, which are related to current flow and charge distribution, magnetotelluric (MT) data in 2-D and 3-D environments are not only sensitive to the geoelectrical structures below the measuring points but also to any lateral anomalies surrounding the acquisition site. This behaviour complicates the characterization of the electrical resistivity distribution of the subsurface, particularly in complex areas. In this manuscript we assess the main advantages of complementing the standard MT impedance tensor (Z) data with interstation horizontal magnetic tensor (H) and geomagnetic transfer function (T) data in constraining the subsurface in a 3-D environment beneath a MT profile. Our analysis was performed using synthetic responses with added normally distributed and scattered random noise. The sensitivity of each type of data to different resistivity anomalies was evaluated, showing that the degree to which each site and each period is affected by the same anomaly depends on the type of data. A dimensionality analysis, using Z, H and T data, identified the presence of the 3-D anomalies close to the profile, suggesting a 3-D approach for recovering the electrical resistivity values of the subsurface. Finally, the capacity for recovering the geoelectrical structures of the subsurface was evaluated by performing joint inversion using different data combinations, quantifying the differences between the true synthetic model and the models from inversion process. Four main improvements were observed when performing joint inversion of Z, H and T data: (1) superior precision and accuracy at characterizing the electrical resistivity values of the anomalies below and outside the profile; (2) the potential to recover high electrical resistivity anomalies that are poorly recovered using Z data alone; (3) improvement in the characterization of the bottom and lateral boundaries of the anomalies with low

  9. Computed Tomography Image Origin Identification based on Original Sensor Pattern Noise and 3D Image Reconstruction Algorithm Footprints.

    Science.gov (United States)

    Duan, Yuping; Bouslimi, Dalel; Yang, Guanyu; Shu, Huazhong; Coatrieux, Gouenou

    2016-06-08

    In this paper, we focus on the "blind" identification of the Computed Tomography (CT) scanner that has produced a CT image. To do so, we propose a set of noise features derived from the image chain acquisition and which can be used as CT-Scanner footprint. Basically, we propose two approaches. The first one aims at identifying a CT-Scanner based on an Original Sensor Pattern Noise (OSPN) that is intrinsic to the X-ray detectors. The second one identifies an acquisition system based on the way this noise is modified by its 3D image reconstruction algorithm. As these reconstruction algorithms are manufacturer dependent and kept secret, our features are used as input to train an SVM based classifier so as to discriminate acquisition systems. Experiments conducted on images issued from 15 different CT-Scanner models of 4 distinct manufacturers demonstrate that our system identifies the origin of one CT image with a detection rate of at least 94% and that it achieves better performance than Sensor Pattern Noise (SPN) based strategy proposed for general public camera devices.

  10. Study of heat transfer in 3D fuel rods of the EPRI-9R reactor modified; Estudo da transferencia de calor em varetas combustiveis 3D do reator EPRI-9R 3D modificado

    Energy Technology Data Exchange (ETDEWEB)

    Affonso, Renato Raoni Werneck; Lava, Deise Diana; Borges, Diogo da Silva; Sampaio, Paulo Augusto Berquo de; Moreira, Maria de Lourdes, E-mail: raoniwa@yahoo.com.br, E-mail: deisedy@gmail.com, E-mail: diogosb@outlook.com, E-mail: sampaio@ien.gov.br, E-mail: malu@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    This paper aims to conduct a case study of the fuel rods that have the highest and the lowest average power of the EPRI-9R 3D reactor modified , for various positions of the control rods banks. For this, will be addressed the verification of computer code, comparing the results obtained with analytical solutions. This check is important so that, subsequently, it is possible use the program to understand the behavior of the fuel rods and the coolant channel of the EPRI-9R 3D reactor modified. Thus, in view of the scope of this paper, first a brief introducing on the heat transfer is done, including the rod equations and the equation of energy in the channel to allow the analysis of the results.

  11. High-resolution 3D dust radiative transfer in galaxies with DART-Ray

    Science.gov (United States)

    Natale, Giovanni; Popescu, Cristina C.; Tuffs, Richard. J.; Debattista, Victor P.; Grootes, Meiert W.

    2015-02-01

    DART-Ray is a 3D ray-tracing dust radiative transfer (RT) code that can be used to derive stellar and dust emission maps of galaxy models and simulations with arbitrary geometries. In addition to the previously published RT algorithm, we have now included in DART-Ray the possibility of calculating the stocastically heated dust emission from each volume element within a galaxy. To show the capabilities of the code, we performed a high-resolution (26 pc) RT calculation for a galaxy N-body+SPH simulation. The simulated galaxy we considered is characterized by a nuclear disc and a flocculent spiral structure. We analysed the derived galaxy maps for the global and local effects of dust on the galaxy attenuation as well as the contribution of scattered radiation to the predicted observed emission. In addition, by performing an additional RT calculation including only the stellar volume emissivity due to young stellar populations (SPs), we derived the contribution to the total dust emission powered by young and old SPs. Full details of this work will be presented in a forthcoming publication.

  12. The 1999 Izmit, Turkey, earthquake: A 3D dynamic stress transfer model of intraearthquake triggering

    Science.gov (United States)

    Harris, R.A.; Dolan, J.F.; Hartleb, R.; Day, S.M.

    2002-01-01

    Before the August 1999 Izmit (Kocaeli), Turkey, earthquake, theoretical studies of earthquake ruptures and geological observations had provided estimates of how far an earthquake might jump to get to a neighboring fault. Both numerical simulations and geological observations suggested that 5 km might be the upper limit if there were no transfer faults. The Izmit earthquake appears to have followed these expectations. It did not jump across any step-over wider than 5 km and was instead stopped by a narrower step-over at its eastern end and possibly by a stress shadow caused by a historic large earthquake at its western end. Our 3D spontaneous rupture simulations of the 1999 Izmit earthquake provide two new insights: (1) the west- to east-striking fault segments of this part of the North Anatolian fault are oriented so as to be low-stress faults and (2) the easternmost segment involved in the August 1999 rupture may be dipping. An interesting feature of the Izmit earthquake is that a 5-km-long gap in surface rupture and an adjacent 25° restraining bend in the fault zone did not stop the earthquake. The latter observation is a warning that significant fault bends in strike-slip faults may not arrest future earthquakes.

  13. Schottky Noise and Beam Transfer Functions

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz M.; Blaskiewicz M.

    2016-12-01

    Beam transfer functions (BTF)s encapsulate the stability properties of charged particle beams. In general one excites the beam with a sinusoidal signal and measures the amplitude and phase of the beam response. Most systems are very nearly linear and one can use various Fourier techniques to reduce the number of measurements and/or simulations needed to fully characterize the response. Schottky noise is associated with the finite number of particles in the beam. This signal is always present. Since the Schottky current drives wakefields, the measured Schottky signal is influenced by parasitic impedances.

  14. Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB

    CERN Document Server

    Mehmet, Moritz; Eberle, Tobias; Steinlechner, Sebastian; Vahlbruch, Henning; Schnabel, Roman

    2011-01-01

    Continuous-wave squeezed states of light at the wavelength of 1550 nm have recently been demonstrated, but so far the obtained factors of noise suppression still lag behind today's best squeezing values demonstrated at 1064 nm. Here we report on the realization of a half-monolithic nonlinear resonator based on periodically-poled potassium titanyl phosphate which enabled the direct detection of up to 12.3 dB of squeezing at 5 MHz. Squeezing was observed down to a frequency of 2 kHz which is well within the detection band of gravitational wave interferometers. Our results suggest that a long-term stable 1550 nm squeezed light source can be realized with strong squeezing covering the entire detection band of a 3rd generation gravitational-wave detector such as the Einstein Telescope.

  15. A Fast Hybrid (3-D/1-D) Model for Thermal Radiative Transfer in Cirrus via Successive Orders of Scattering

    Science.gov (United States)

    Fauchez, Thomas; Davis, Anthony B.; Cornet, Celine; Szczap, Frederic; Platnick, Steven; Dubuisson, Philippe; Thieuleux, Francois

    2017-01-01

    We investigate the impact of cirrus cloud heterogeneity on the direct emission by cloud or surface and on the scattering by ice particles in the thermal infrared (TIR). Realistic 3-D cirri are modeled with the 3DCLOUD code, and top-of-atmosphere radiances are simulated by the 3-D Monte Carlo radiative transfer (RT) algorithm 3DMCPOL for two (8.65 micrometers and 12.05 micrometers) channels of the Imaging Infrared Radiometer on CALIPSO. At nadir, comparisons of 1-D and 3-D RT show that 3-D radiances are larger than their 1-D counterparts for direct emission but smaller for scattered radiation. For our cirrus cases, 99% of the 3-D total radiance is computed by the third scattering order, which corresponds to 90% of the total computational effort, but larger optical thicknesses need more scattering orders. To radically accelerate the 3-D RT computations (using only few percent of 3-D RT time with a Monte Carlo code), even in the presence of large optical depths, we develop a hybrid model based on exact 3-D direct emission, the first scattering order from 1-D in each homogenized column, and an empirical adjustment linearly dependent on the optical thickness to account for higher scattering orders. Good agreement is found between the hybrid model and the exact 3-D radiances for two very different cirrus models without changing the empirical parameters. We anticipate that a future deterministic implementation of the hybrid model will be fast enough to process multiangle thermal imagery in a practical tomographic reconstruction of 3-D cirrus fields.

  16. Retrieval of cloud microphysical parameters from INSAT-3D: a feasibility study using radiative transfer simulations

    Science.gov (United States)

    Jinya, John; Bipasha, Paul S.

    2016-05-01

    Clouds strongly modulate the Earths energy balance and its atmosphere through their interaction with the solar and terrestrial radiation. They interact with radiation in various ways like scattering, emission and absorption. By observing these changes in radiation at different wavelength, cloud properties can be estimated. Cloud properties are of utmost importance in studying different weather and climate phenomena. At present, no satellite provides cloud microphysical parameters over the Indian region with high temporal resolution. INSAT-3D imager observations in 6 spectral channels from geostationary platform offer opportunity to study continuous cloud properties over Indian region. Visible (0.65 μm) and shortwave-infrared (1.67 μm) channel radiances can be used to retrieve cloud microphysical parameters such as cloud optical thickness (COT) and cloud effective radius (CER). In this paper, we have carried out a feasibility study with the objective of cloud microphysics retrieval. For this, an inter-comparison of 15 globally available radiative transfer models (RTM) were carried out with the aim of generating a Look-up- Table (LUT). SBDART model was chosen for the simulations. The sensitivity of each spectral channel to different cloud properties was investigated. The inputs to the RT model were configured over our study region (50°S - 50°N and 20°E - 130°E) and a large number of simulations were carried out using random input vectors to generate the LUT. The determination of cloud optical thickness and cloud effective radius from spectral reflectance measurements constitutes the inverse problem and is typically solved by comparing the measured reflectances with entries in LUT and searching for the combination of COT and CER that gives the best fit. The products are available on the website www.mosdac.gov.in

  17. Modelling of PCB trophic transfer in the Gulf of Lions; 3D coupled model application

    Science.gov (United States)

    Alekseenko, Elena; Thouvenin, Benedicte; Tronczynsky, Jacek; Carlotti, Francois; Garreau, Pierre; Tixier, Celine; Baklouti, Melika

    2017-04-01

    This work aims at assessing the role of plankton in the transfer of PCBs to higher trophic levels in the Gulf of Lions (NW Mediterranean Sea) using a 3D modelling approach, which is coupling biogeochemical and hydrodynamical processes and taking into account the physical-chemical properties of PCBs. Transport of various PCB species were simulated during one year: total dissolved, freely dissolved, particulate, biosorbed on plankton, assimilated by zooplankton. PCB budgets and fluxes into the Gulf of Lions between various species were governed by different processes, such as: adsorption/desorption, bacteria and plankton mortality, zooplankton excretion, grazing, mineralization, volatilization and biodegradation. CB153 (2,2',4,4',5,5' hexachlorobiphényle) congener have been considered in the model, since it presents a large amount of PCB among the other congeners in the environment of the Gulf of Lions. At first, the simulated PCBs distributions within particulate matter and plankton were compared with available in-situ measurements (COSTAS and Merlumed field campaigns) performed in the Gulf of Lions. Two size classes of plankton X (60μ msuspended solids have been considered for the comparison. In general, the magnitudes of CB153 concentrations within two size classes of plankton in April are comparable to the measured ones except the eastern station C1. The magnitudes of living CB153 concentrations in January are less close to the measured ones in vicinity of the Rhone River. Then, the analyses of spatial-temporal variations of PCB within different compartments and within three different zones (coastal, intermediate and offshore zones) of GoL have been performed in order to advance in understanding the contamination pathways from air and water to plankton. For all zones CB153 concentration is raising in January and in July 2010, what is linked with two Rhone River flood events started in the middle of December 2009 and in the middle of June 2010. In all zones

  18. Simulating 3-D radiative transfer effects over the Sierra Nevada mountains using WRF

    Directory of Open Access Journals (Sweden)

    Y. Gu

    2012-08-01

    Full Text Available A surface solar radiation parameterization based on deviations between 3-D and conventional plane-parallel radiative transfer models has been incorporated into the Weather Research and Forecasting (WRF model to understand the solar insolation over mountain/snow areas and to investigate the impact of the spatial and temporal distribution and variation of surface solar fluxes on land-surface processes. Using the Sierra Nevada in the Western United States as a testbed, we show that mountain effect could produce up to −50 to +50 W m−2 deviations in the surface solar fluxes over the mountain areas, resulting in a temperature increase of up to 1 °C on the sunny side. Upward surface sensible and latent heat fluxes are modulated accordingly to compensate for the change in surface solar fluxes. Snow water equivalent and surface albedo both show decreases on the sunny side of the mountains, indicating more snowmelt and hence reduced snow albedo associated with more solar insolation due to mountain effect. Soil moisture increases on the sunny side of the mountains due to enhanced snowmelt, while decreases on the shade side. Substantial differences are found in the morning hours from 8–10 a.m. and in the afternoon around 3–5 p.m., while differences around noon and in the early morning and late afternoon are comparatively smaller. Variation in the surface energy balance can also affect atmospheric processes, such as cloud fields, through the modulation of vertical thermal structure. Negative changes of up to −40 g m−2 are found in the cloud water path, associated with reductions in the surface insolation over the cloud region. The day-averaged deviations in the surface solar flux are positive over the mountain areas and negative in the valleys, with a range between −12~12 W m−2. Changes in sensible and latent heat fluxes and surface skin temperature follow the solar insolation pattern. Differences in the

  19. 2D and 3D interconnect fabrication by picosecond Laser Induced Forward Transfer

    NARCIS (Netherlands)

    Oosterhuis, G.; Huis in 't veld, A.J.; Chall, P.

    2011-01-01

    Interconnects are an important cost driver in advanced 3D chip packaging. This holds for Through Silicon Vias (TSV) for chip stacking, but also for other integrated Si-technology. Especially in applications with a low number (<100 mm-2) of relatively large (10-2- um diameter), high aspect ratio (1:5

  20. 2D and 3D interconnect fabrication by picosecond Laser Induced Forward Transfer

    NARCIS (Netherlands)

    Oosterhuis, G.; Huis in 't veld, A.J.; Chall, P.

    2011-01-01

    Interconnects are an important cost driver in advanced 3D chip packaging. This holds for Through Silicon Vias (TSV) for chip stacking, but also for other integrated Si-technology. Especially in applications with a low number (<100 mm-2) of relatively large (10-2- um diameter), high aspect ratio

  1. 2D and 3D interconnect fabrication by picosecond Laser Induced Forward Transfer

    NARCIS (Netherlands)

    Oosterhuis, G.; Huis in 't veld, A.J.; Chall, P.

    2011-01-01

    Interconnects are an important cost driver in advanced 3D chip packaging. This holds for Through Silicon Vias (TSV) for chip stacking, but also for other integrated Si-technology. Especially in applications with a low number (<100 mm-2) of relatively large (10-2- um diameter), high aspect ratio (1:5

  2. TFaNS Tone Fan Noise Design/Prediction System. Volume 1; System Description, CUP3D Technical Documentation and Manual for Code Developers

    Science.gov (United States)

    Topol, David A.

    1999-01-01

    TFaNS is the Tone Fan Noise Design/Prediction System developed by Pratt & Whitney under contract to NASA Lewis (presently NASA Glenn). The purpose of this system is to predict tone noise emanating from a fan stage including the effects of reflection and transmission by the rotor and stator and by the duct inlet and nozzle. These effects have been added to an existing annular duct/isolated stator noise prediction capability. TFaNS consists of: The codes that compute the acoustic properties (reflection and transmission coefficients) of the various elements and write them to files. Cup3D: Fan Noise Coupling Code that reads these files, solves the coupling problem, and outputs the desired noise predictions. AWAKEN: CFD/Measured Wake Postprocessor which reformats CFD wake predictions and/or measured wake data so it can be used by the system. This volume of the report provides technical background for TFaNS including the organization of the system and CUP3D technical documentation. This document also provides information for code developers who must write Acoustic Property Files in the CUP3D format. This report is divided into three volumes: Volume I: System Description, CUP3D Technical Documentation, and Manual for Code Developers; Volume II: User's Manual, TFaNS Vers. 1.4; Volume III: Evaluation of System Codes.

  3. Growth and Transfer of Seamless 3D Graphene-Nanotube Hybrids.

    Science.gov (United States)

    Kim, Nam Dong; Li, Yilun; Wang, Gunuk; Fan, Xiujun; Jiang, Jinlong; Li, Lei; Ji, Yongsung; Ruan, Gedeng; Hauge, Robert H; Tour, James M

    2016-02-10

    Seamlessly connected graphene and carbon nanotube hybrids (GCNTs) have great potential as carbon platform structures in electronics due to their high conductivity and high surface area. Here, we introduce a facile method for making patterned GCNTs and their intact transfer onto other substrates. The mechanism for selective growth of vertically aligned CNTs (VA-CNTs) on the patterned graphene is discussed. The complete transfer of the GCNT pattern onto other substrates is possible because of the mechanical strength of the GCNT hybrids. Electrical conductivity measurements of the transferred GCNT structures show Ohmic contact through the VA-CNTs to graphene--evidence of its integrity after the transfer process.

  4. New microangiography system development providing improved small vessel imaging, increased contrast-to-noise ratios, and multiview 3D reconstructions

    Science.gov (United States)

    Kuhls, Andrew T.; Patel, Vikas; Ionita, Ciprian; Noël, Peter B.; Walczak, Alan M.; Rangwala, Hussain S.; Hoffmann, Kenneth R.; Rudin, Stephen

    2006-03-01

    A new microangiographic system (MA) integrated into a c-arm gantry has been developed allowing precise placement of a MA at the exact same angle as the standard x-ray image intensifier (II) with unchanged source and object position. The MA can also be arbitrarily moved about the object and easily moved into the field of view (FOV) in front of the lower resolution II when higher resolution angiographic sequences are needed. The benefits of this new system are illustrated in a neurovascular study, where a rabbit is injected with contrast media for varying oblique angles. Digital subtraction angiographic (DSA) images were obtained and compared using both the MA and II detectors for the same projection view. Vessels imaged with the MA appear sharper with smaller vessels visualized. Visualization of ~100 μm vessels was possible with the MA whereas not with the II. Further, the MA could better resolve vessel overlap. Contrast to noise ratios (CNR) were calculated for vessels of varying sizes for the MA versus the II and were found to be similar for large vessels, approximately double for medium vessels, and infinitely better for the smallest vessels. In addition, a 3D reconstruction of selected vessel segments was performed, using multiple (three) projections at oblique angles, for each detector. This new MA/II integrated system should lead to improved diagnosis and image guidance of neurovascular interventions by enabling initial guidance with the low resolution large FOV II combined with use of the high resolution MA during critical parts of diagnostic and interventional procedures.

  5. 3D shear-wave velocity structure of the eastern Tennessee seismic zone from ambient noise correlation data

    Science.gov (United States)

    Arroucau, Pierre; Kuponiyi, Ayodeji; Vlahovic, Gordana; Powell, Chris

    2013-04-01

    The Eastern Tennessee Seismic Zone (ETSZ) is an intraplate seismic region characterized by frequent but low magnitude earthquakes and is the second most active seismic area in the United States east of the Rocky Mountains. One key question in the ETSZ is the actual relationship between earthquake distribution and geological structure at depth. Seismicity is mostly confined in the Precambrian basement, below the Paleozoic cover of the southern Appalachian foreland fold-and-thrust belt and shows little to no correlation with surface geological features. Since the middle of the seventies, the Center for Earthquake Research and Information (CERI) has installed and maintained several seismic networks in central and eastern United States. In this work, we use Rayleigh wave group and phase velocity dispersion information obtained from cross-correlation of seismic ambient noise at 24 short-period stations located in the vicinity of the ETSZ. The 3D velocity structure is estimated in four steps. First, dispersion curves are obtained for simultaneously recording station pairs for periods ranging from 2 to 20 s. Then, 2D group and phase velocity maps are determined for each period. Those maps are further used to reconstruct dispersion curves at fixed, regularly spaced locations. For each of these locations, a 1D shear-wave velocity profile is finally inverted for, that takes velocity information from previous studies into account. By providing new information about the upper crustal structure of this region, this work is a contribution to the understanding of the seismic activity of the ETSZ, and -to a broader extent- of the structure and evolution of the North American lithosphere.

  6. Validation of the 3D Skin Comet assay using full thickness skin models: transferability and reproducibility

    Directory of Open Access Journals (Sweden)

    Kerstin Reisinger

    2015-06-01

    Full Text Available The 3D Skin Comet assay was developed to improve the in vitro prediction of the genotoxic potential of dermally applied chemicals. For this purpose, a classical read-out for genotoxicity (i.e. comet formation was combined with reconstructed 3D skin models as well-established test systems. Five laboratories (BASF, BfR (Federal Institute for Risk Assessment, Henkel, Procter & Gamble and TNO Triskilion started to validate this assay using the Phenion® Full- Thickness (FT Skin Model and 8 coded chemicals with financial support by Cosmetics Europe and the German Ministry of Education & Research. There was an excellent overall predictivity of the expected genotoxicity (>90%. Four labs correctly identified all chemicals and the fifth correctly identified 80% of the chemicals. Background DNA damage was low and values for solvent (acetone and positive (methyl methanesulfonate (MMS controls were comparable among labs. Inclusion of the DNA-polymerase inhibitor, aphidicolin (APC, in the protocol improved the predictivity of the assay since it enabled robust detection of pro-mutagens e.g., 7,12-dimethylbenz[a]anthracene and benzo[a]pyrene. Therefore, all negative findings are now confirmed by additional APC experiments to come to a final conclusion. Furthermore, MMC, which intercalates between DNA strands causing covalent binding, was detected with the standard protocol, in which it gave weak but statistically significant responses. Stronger responses, however, were obtained using a cross-linker specific protocol in which MMC reduced the migration of MMS-induced DNA damage. These data support the use of the Phenion® FT in the Comet assay: no false-positives and only one false-negative finding in a single lab. Testing will continue to obtain data for 30 chemicals. Once validated, the 3D Skin Comet assay is foreseen to be used as a follow-up test for positive results from the current in vitro genotoxicity test battery.

  7. High-resolution, 3D radiative transfer modeling : I. The grand-design spiral galaxy M51

    CERN Document Server

    De Looze, Ilse; Baes, Maarten; Bendo, George J; Cortese, Luca; Boquien, Médéric; Boselli, Alessandro; Camps, Peter; Cooray, Asantha; Cormier, Diane; Davies, Jon I; De Geyter, Gert; Hughes, Thomas M; Jones, Anthony P; Karczewski, Oskar L; Lebouteiller, Vianney; Lu, Nanyao; Madden, Suzanne C; Rémy-Ruyer, Aurélie; Spinoglio, Luigi; Smith, Matthew W L; Viaene, Sebastien; Wilson, Christine D

    2014-01-01

    Context: Dust reprocesses about half of the stellar radiation in galaxies. The thermal re-emission by dust of absorbed energy is considered driven merely by young stars and, consequently, often applied to trace the star formation rate in galaxies. Recent studies have argued that the old stellar population might anticipate a non-negligible fraction of the radiative dust heating. Aims: In this work, we aim to analyze the contribution of young (< 100 Myr) and old (~ 10 Gyr) stellar populations to radiative dust heating processes in the nearby grand-design spiral galaxy M51 using radiative transfer modeling. High-resolution 3D radiative transfer (RT) models are required to describe the complex morphologies of asymmetric spiral arms and clumpy star-forming regions and model the propagation of light through a dusty medium. Methods: In this paper, we present a new technique developed to model the radiative transfer effects in nearby face-on galaxies. We construct a high-resolution 3D radiative transfer model with...

  8. 3D radiative transfer simulations of Eta Carinae's inner colliding winds - II: Ionization structure of helium at periastron

    CERN Document Server

    Clementel, Nicola; Kruip, Chael J H; Paardekooper, Jan-Pieter

    2015-01-01

    Spectral observations of the massive colliding wind binary Eta Carinae show phase-dependent variations, in intensity and velocity, of numerous helium emission and absorption lines throughout the entire 5.54-year orbit. Approaching periastron, the 3D structure of the wind-wind interaction region (WWIR) gets highly distorted due to the eccentric ($e \\sim 0.9$) binary orbit. The secondary star ($\\eta_{\\mathrm{B}}$) at these phases is located deep within the primary's dense wind photosphere. The combination of these effects is thought to be the cause of the particularly interesting features observed in the helium lines at periastron. We perform 3D radiative transfer simulations of $\\eta$ Car's interacting winds at periastron. Using the SimpleX radiative transfer algorithm, we post-process output from 3D smoothed particle hydrodynamic simulations of the inner 150 au of the $\\eta$ Car system for two different primary star mass-loss rates ($\\dot{M}_{\\eta_{\\mathrm{A}}}$). Using previous results from simulations at ap...

  9. A WRF simulation of the impact of 3-D radiative transfer on surface hydrology over the Rocky-Sierra Mountains

    Science.gov (United States)

    Liou, K. N.; Gu, Y.; Leung, L. R.; Lee, W. L.; Fovell, R. G.

    2013-07-01

    Essentially all modern climate models utilize a plane-parallel (PP) radiative transfer approach in physics parameterizations; however, the potential errors that arise from neglecting three-dimensional (3-D) interactions between radiation and mountains/snow on climate simulations have not been studied and quantified. This paper is a continuation of our efforts to investigate 3-D mountains/snow effects on solar flux distributions and their impact on surface hydrology over the Western United States, specifically the Rocky and Sierra-Nevada Mountains. We use the Weather Research and Forecasting (WRF) model applied at a 30 km grid resolution with incorporation of a 3-D radiative transfer parameterization covering a time period from 1 November 2007 to 31 May 2008 during which abundant snowfall occurred. Comparison of the 3-D WRF simulation with the observed snow water equivalent (SWE) and precipitation from Snowpack Telemetry (SNOTEL) sites shows reasonable agreement in terms of spatial patterns and daily and seasonal variability, although the simulation generally has a positive precipitation bias. We show that 3-D mountain features have a profound impact on the diurnal and monthly variation of surface radiative and heat fluxes and on the consequent elevation-dependence of snowmelt and precipitation distributions. In particular, during the winter months, large deviations (3-D-PP) of the monthly mean surface solar flux are found in the morning and afternoon hours due to shading effects for elevations below 2.5 km. During spring, positive deviations shift to earlier morning. Over the mountain tops above 3 km, positive deviations are found throughout the day, with the largest values of 40-60 W m-2 occurring at noon during the snowmelt season of April to May. The monthly SWE deviations averaged over the entire domain show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher elevation areas, positive SWE deviations

  10. New transfer functions for probing 3-D mantle conductivity from ground and sea

    DEFF Research Database (Denmark)

    Püthe, C.; Kuvshinov, A.; Olsen, Nils

    2014-01-01

    The C-response is a conventional transfer function in global electromagnetic induction research and is classically determined from local observations of magnetic variations in the vertical and the horizontal components. Its estimation and interpretation rely on the assumptions that the source...... conductivity, this source effect will inevitably be mistaken for conductivity anomalies. To overcome the problem connected with the assumptions for deriving C-responses, we introduce new transfer functions that relate the local vertical component of the magnetic variation to different spherical harmonic...... coefficients describing the magnetospheric source. The latter are derived from observations of magnetic variations in the horizontal components. The new transfer functions are subsequently estimated with a robust multivariate data analysis tool. By analyzing 16 years of data, collected at the global network...

  11. Chemically tuned linear energy transfer dependent quenching in a deformable, radiochromic 3D dosimeter

    DEFF Research Database (Denmark)

    Høye, Ellen Marie; Skyt, Peter Sandegaard; Balling, Peter

    2017-01-01

    the observed quenching in proton beams. The dependency of dose response on linear energy transfer, as calculated through Monte Carlo simulations of the dosimeter, was investigated in 60 MeV proton beams. We found that the amount of quenching varied with the chemical composition: peak-to-plateau ratios (1cm...... chemical compositions of the dosimeter showed dose-rate dependency; however this was not dependent on the linear energy transfer. Track-structure theory was used to explain the observed quenching effects. In conclusion, this study shows that the silicone-based dosimeter has potential for use in measuring 3...

  12. Printing Functional 3D Microdevices by Laser-Induced Forward Transfer

    NARCIS (Netherlands)

    Luo, Jun; Pohl, Ralph; Qi, Lehua; Römer, Gerardus Richardus, Bernardus, Engelina; Sun, Chao; Lohse, Detlef; Visser, C.W.

    2017-01-01

    Slender, out-of-plane metal microdevices are made in a new spatial domain, by using laser-induced forward transfer (LIFT) of metals. Here, a thermocouple with a thickness of 10 µm and a height of 250 µm, consisting of platinum and gold pillars is demonstrated. Multimaterial LIFT enables

  13. Printing Functional 3D Microdevices by Laser-Induced Forward Transfer

    NARCIS (Netherlands)

    Luo, Jun; Pohl, Ralph; Qi, Lehua; Römer, Gerardus Richardus, Bernardus, Engelina; Sun, Chao; Lohse, Detlef; Visser, C.W.

    2017-01-01

    Slender, out-of-plane metal microdevices are made in a new spatial domain, by using laser-induced forward transfer (LIFT) of metals. Here, a thermocouple with a thickness of 10 µm and a height of 250 µm, consisting of platinum and gold pillars is demonstrated. Multimaterial LIFT enables manufacturin

  14. Printing Functional 3D Microdevices by Laser-Induced Forward Transfer

    NARCIS (Netherlands)

    Luo, Jun; Pohl, Ralph; Qi, Lehua; Römer, Gert-Willem; Sun, Chao; Lohse, Detlef; Visser, Claas Willem

    2017-01-01

    Slender, out-of-plane metal microdevices are made in a new spatial domain, by using laser-induced forward transfer (LIFT) of metals. Here, a thermocouple with a thickness of 10 µm and a height of 250 µm, consisting of platinum and gold pillars is demonstrated. Multimaterial LIFT enables manufacturin

  15. Internal load transfer and damage evolution in a 3D interpenetrating metal/ceramic composite

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Siddhartha, E-mail: siddhartha.roy@kit.edu [Institute for Applied Materials, Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany); Gibmeier, Jens; Kostov, Vladimir; Weidenmann, Kay Andre [Institute for Applied Materials, Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany); Nagel, Alwin [Hochschule Aalen, Beethovenstr. 1, 73430 Aalen (Germany); Wanner, Alexander [Institute for Applied Materials, Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Internal load transfer and compressive damage in an interpenetrating composite is studied. Black-Right-Pointing-Pointer Unloading and reloading in tension initiates damage in alumina phase. Black-Right-Pointing-Pointer Load reversal causes Bauschinger effect in aluminium solid solution. Black-Right-Pointing-Pointer Compressive damage occurs by cracks at 45 Degree-Sign through the ceramic rich regions. - Abstract: The internal load transfer and compressive damage evolution in an interpenetrating Al{sub 2}O{sub 3}/AlSi12 composite have been studied in this work. The composite was fabricated by squeeze-casting eutectic aluminium-silicon alloy melt in a porous alumina preform. The preform was fabricated from a mixture of cellulose fibres and alumina particles via cold pressing and sintering. In an earlier work we reported the internal load transfer in the same composite material under monotonic compression and tension studied using energy dispersive synchrotron X-ray diffraction . The current work is a continuation of this earlier study, aimed at obtaining further understanding about load transfer occurring during load reversal and damage behaviour during external compression. The micromechanical load partitioning between the three phases present in the composite is studied during one load cycle starting in compression followed by unloading and reloading in tension until failure. Average strain and stress value in each phase is calculated from several diffraction planes of each phase and as a result the reported strain and stress are representative of the bulk material behaviour. The load transfer results allow identifying the occurrence of a substantial Bauschinger effect in the Al solid solution phase and progressive damage evolution within the alumina phase. In situ compression test inside a scanning electron microscope showed that failure of the composite occurred by propagation of cracks through the ceramic rich regions

  16. A WRF simulation of the impact of 3-D radiative transfer on surface hydrology over the Rocky–Sierra Mountains

    Directory of Open Access Journals (Sweden)

    K. N. Liou

    2013-07-01

    Full Text Available Essentially all modern climate models utilize a plane-parallel (PP radiative transfer approach in physics parameterizations; however, the potential errors that arise from neglecting three-dimensional (3-D interactions between radiation and mountains/snow on climate simulations have not been studied and quantified. This paper is a continuation of our efforts to investigate 3-D mountains/snow effects on solar flux distributions and their impact on surface hydrology over the Western United States, specifically the Rocky and Sierra-Nevada Mountains. We use the Weather Research and Forecasting (WRF model applied at a 30 km grid resolution with incorporation of a 3-D radiative transfer parameterization covering a time period from 1 November 2007 to 31 May 2008 during which abundant snowfall occurred. Comparison of the 3-D WRF simulation with the observed snow water equivalent (SWE and precipitation from Snowpack Telemetry (SNOTEL sites shows reasonable agreement in terms of spatial patterns and daily and seasonal variability, although the simulation generally has a positive precipitation bias. We show that 3-D mountain features have a profound impact on the diurnal and monthly variation of surface radiative and heat fluxes and on the consequent elevation-dependence of snowmelt and precipitation distributions. In particular, during the winter months, large deviations (3-D–PP of the monthly mean surface solar flux are found in the morning and afternoon hours due to shading effects for elevations below 2.5 km. During spring, positive deviations shift to earlier morning. Over the mountain tops above 3 km, positive deviations are found throughout the day, with the largest values of 40–60 W m−2 occurring at noon during the snowmelt season of April to May. The monthly SWE deviations averaged over the entire domain show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher elevation areas

  17. Direct observation of multistep energy transfer in LHCII with fifth-order 3D electronic spectroscopy

    Science.gov (United States)

    Zhang, Zhengyang; Lambrev, Petar H.; Wells, Kym L.; Garab, Győző; Tan, Howe-Siang

    2015-07-01

    During photosynthesis, sunlight is efficiently captured by light-harvesting complexes, and the excitation energy is then funneled towards the reaction centre. These photosynthetic excitation energy transfer (EET) pathways are complex and proceed in a multistep fashion. Ultrafast two-dimensional electronic spectroscopy (2DES) is an important tool to study EET processes in photosynthetic complexes. However, the multistep EET processes can only be indirectly inferred by correlating different cross peaks from a series of 2DES spectra. Here we directly observe multistep EET processes in LHCII using ultrafast fifth-order three-dimensional electronic spectroscopy (3DES). We measure cross peaks in 3DES spectra of LHCII that directly indicate energy transfer from excitons in the chlorophyll b (Chl b) manifold to the low-energy level chlorophyll a (Chl a) via mid-level Chl a energy states. This new spectroscopic technique allows scientists to move a step towards mapping the complete complex EET processes in photosynthetic systems.

  18. First 3D radiative transfer with scattering for domain-decomposed MHD simulations

    Energy Technology Data Exchange (ETDEWEB)

    Hayek, W [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston Creek ACT 2611 (Australia)], E-mail: hayek@mpa-garching.mpg.de

    2008-12-15

    This paper presents an implementation of the Gauss-Seidel solver for radiative transfer with scattering in the Oslo Stagger Code. It fully supports MPI parallelism through domain decomposition of the simulation box, enabling fast computation of radiative transfer at a high resolution. Continuum and line opacities are treated with either a multigroup method or opacity sampling. Line scattering probabilities are estimated using the van Regemorter approximation for de-excitation rates of electron collisions. A solar-type test simulation with continuum and line scattering exhibits a steeper temperature gradient due to decreased radiative heating above the optical surface when compared with the strict local thermodynamic equilibrium (LTE) case. The classical van Regemorter approximation may overestimate the importance of line scattering, implying that the true temperature structure will be in between the LTE case and the scattering case considered here. It is demonstrated that continuum scattering is unimportant in the case of the Sun.

  19. First 3D radiative transfer with scattering for domain-decomposed MHD simulations

    Science.gov (United States)

    Hayek, W.

    2008-12-01

    This paper presents an implementation of the Gauss Seidel solver for radiative transfer with scattering in the Oslo Stagger Code. It fully supports MPI parallelism through domain decomposition of the simulation box, enabling fast computation of radiative transfer at a high resolution. Continuum and line opacities are treated with either a multigroup method or opacity sampling. Line scattering probabilities are estimated using the van Regemorter approximation for de-excitation rates of electron collisions. A solar-type test simulation with continuum and line scattering exhibits a steeper temperature gradient due to decreased radiative heating above the optical surface when compared with the strict local thermodynamic equilibrium (LTE) case. The classical van Regemorter approximation may overestimate the importance of line scattering, implying that the true temperature structure will be in between the LTE case and the scattering case considered here. It is demonstrated that continuum scattering is unimportant in the case of the Sun.

  20. Semi-random simulation method for calculating 3-D radiation transfer problems in cavity

    Institute of Scientific and Technical Information of China (English)

    冯庭桂; 赖东显

    1996-01-01

    One of the most important issues in inertial confinement fusion (ICF) is to study the uniformity of the radiation field around the implosion pellet containing fuel.To this end,a numerical method linking Monte Carlo with iteration method is presented for calculating the radiation transfer problems in a cavity.The detail of the calculation scheme is described and some numerical examples are also given.

  1. High pressure induced charge transfer in 3d-4f bimetallic photomagnetic materials.

    Science.gov (United States)

    Wu, Lai-Chin; Nielsen, Morten Bormann; Bremholm, Martin; Madsen, Solveig Røgild; Overgaard, Jacob; Newville, Matt; Chen, Yu-Sheng; Iversen, Bo Brummerstedt

    2015-05-25

    Pressure-induced crystal color change of photo-magnetic materials [Ln(DMF)4(H2O)3(μ-CN)M(CN)5]·H2O, Ln = Y, M = Fe (1), Ln = Y, M = Co (2), Ln = Nd, M = Fe (3) (DMF = N,N-dimethyl formamide) are investigated using variable pressure X-ray Absorption Near-Edge Structure (XANES) spectroscopy and X-ray diffraction. For 1 the effect is caused by ligand-to-metal charge transfer (LMCT) on the iron site.

  2. Specular reflection treatment for the 3D radiative transfer equation solved with the discrete ordinates method

    Energy Technology Data Exchange (ETDEWEB)

    Le Hardy, D. [Université de Nantes, LTN UMR CNRS 6607 (France); Favennec, Y., E-mail: yann.favennec@univ-nantes.fr [Université de Nantes, LTN UMR CNRS 6607 (France); Rousseau, B. [Université de Nantes, LTN UMR CNRS 6607 (France); Hecht, F. [Sorbonne Universités, UPMC Université Paris 06, UMR 7598, inria de Paris, Laboratoire Jacques-Louis Lions, F-75005, Paris (France)

    2017-04-01

    The contribution of this paper relies in the development of numerical algorithms for the mathematical treatment of specular reflection on borders when dealing with the numerical solution of radiative transfer problems. The radiative transfer equation being integro-differential, the discrete ordinates method allows to write down a set of semi-discrete equations in which weights are to be calculated. The calculation of these weights is well known to be based on either a quadrature or on angular discretization, making the use of such method straightforward for the state equation. Also, the diffuse contribution of reflection on borders is usually well taken into account. However, the calculation of accurate partition ratio coefficients is much more tricky for the specular condition applied on arbitrary geometrical borders. This paper presents algorithms that calculate analytically partition ratio coefficients needed in numerical treatments. The developed algorithms, combined with a decentered finite element scheme, are validated with the help of comparisons with analytical solutions before being applied on complex geometries.

  3. Specular reflection treatment for the 3D radiative transfer equation solved with the discrete ordinates method

    Science.gov (United States)

    Le Hardy, D.; Favennec, Y.; Rousseau, B.; Hecht, F.

    2017-04-01

    The contribution of this paper relies in the development of numerical algorithms for the mathematical treatment of specular reflection on borders when dealing with the numerical solution of radiative transfer problems. The radiative transfer equation being integro-differential, the discrete ordinates method allows to write down a set of semi-discrete equations in which weights are to be calculated. The calculation of these weights is well known to be based on either a quadrature or on angular discretization, making the use of such method straightforward for the state equation. Also, the diffuse contribution of reflection on borders is usually well taken into account. However, the calculation of accurate partition ratio coefficients is much more tricky for the specular condition applied on arbitrary geometrical borders. This paper presents algorithms that calculate analytically partition ratio coefficients needed in numerical treatments. The developed algorithms, combined with a decentered finite element scheme, are validated with the help of comparisons with analytical solutions before being applied on complex geometries.

  4. Modeling induction heating and 3-D heat transfer for growth of rectangular crystals using FIDAP

    Science.gov (United States)

    Atherton, L. J.; Martin, R. W.

    1988-09-01

    We are developing a process to grow large rectangular crystals for use as solid state lasers by a Bridgman-like method. The process is based on induction heating of two graphite susceptors which transfer energy to an ampoule containing the melt and crystal. The induction heating version of FIDAP developed by Gresho and Derby is applied to this system to determine the power deposition profile in electrically conducting regions. The calculated power is subsequently used as a source term in the heat equation to calculate the temperature profile. Results are presented which examine the sensitivity of the system to electrical and thermal conductivities, and design modifications are illustrated which could improve the temperature field for crystal growth applications.

  5. A Computationally-Efficient Kinetic Approach for Gas/Particle Mass Transfer Treatments: Development, Testing, and 3-D Application

    Science.gov (United States)

    Hu, X.; Zhang, Y.

    2007-05-01

    The Weather Research and Forecast/Chemistry Model (WRF/Chem) that simulates chemistry simultaneously with meteorology has recently been developed for real-time forecasting by the U.S. National Center for Atmospheric Research (NCAR) and National Oceanic & Atmospheric Administration (NOAA). As one of the six air quality models, WRF/Chem with a modal aerosol module has been applied for ozone and PM2.5 ensemble forecasts over eastern North America as part of the 2004 New England Air Quality Study (NEAQS) program (NEAQS-2004). Significant differences exist in the partitioning of volatile species (e.g., ammonium and nitrate) simulated by the six models. Model biases are partially attributed to the equilibrium assumption used in the gas/particles mass transfer approach in some models. Development of a more accurate, yet computationally- efficient gas/particle mass transfer approach for three-dimensional (3-D) applications, in particular, real-time forecasting, is therefore warranted. Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID) has been implemented into WRF/Chem (referred to as WRF/Chem-MADRID). WRF/Chem-MADRID offers three gas/particle partitioning treatments: equilibrium, kinetic, and hybrid approaches. The equilibrium approach is computationally-efficient and commonly used in 3-D air quality models but less accurate under certain conditions (e.g., in the presence of coarse, reactive particles such as PM containing sea-salts in the coastal areas). The kinetic approach is accurate but computationally-expensive, limiting its 3-D applications. The hybrid approach attempts to provide a compromise between merits and drawbacks of the two approaches by treating fine PM (typically MADRID has recently been developed for 3-D applications based on an Analytical Predictor of Condensation (referred to as kinetic/APC). In this study, WRF/Chem-MADRID with the kinetic/APC approach will be further evaluated along with the equilibrium and hybrid approaches

  6. Land 3D-Seismic Data: Preprocessing Quality Control Utilizing Survey Design Specifications, Noise Properties, Normal Moveout, First Breaks, and Offset

    Institute of Scientific and Technical Information of China (English)

    Abdelmoneam Raef

    2009-01-01

    The recent proliferation of the 3D reflection seismic method into the near-surface area of geophysical applications, especially in response to the emergence of the need to comprehensively characterize and monitor near-surface carbon dioxide sequestration in shallow saline aquifers around the world, Justifies the emphasis on cost-effective and robust quality control and assurance (QC/QA) workflow of 3D seismic data preprocessing that is suitable for near-surface applications. The main purpose of our seismic data preprocessing QC is to enable the use of appropriate header information, data that are free of noise-dominated traces, and/or flawed vertical stacking in subsequent processing steps. In this article, I provide an account of utilizing survey design specifications, noise properties, first breaks, and normal moveout for rapid and thorough graphical QC/QA diagnostics, which are easy to apply and efficient in the diagnosis of inconsistencies. A correlated vibroseis time-lapse 3D-seismic data set from n CO2-flood monitoring survey is used for demonstrating QC dlagnostles. An Important by-product of the QC workflow is establishing the number of layers for n refraction statics model in a data-driven graphical manner that capitalizes on the spatial coverage of the 3D seismic data.

  7. Land 3D-seismic data: Preprocessing quality control utilizing survey design specifications, noise properties, normal moveout, first breaks, and offset

    Science.gov (United States)

    Raef, A.

    2009-01-01

    The recent proliferation of the 3D reflection seismic method into the near-surface area of geophysical applications, especially in response to the emergence of the need to comprehensively characterize and monitor near-surface carbon dioxide sequestration in shallow saline aquifers around the world, justifies the emphasis on cost-effective and robust quality control and assurance (QC/QA) workflow of 3D seismic data preprocessing that is suitable for near-surface applications. The main purpose of our seismic data preprocessing QC is to enable the use of appropriate header information, data that are free of noise-dominated traces, and/or flawed vertical stacking in subsequent processing steps. In this article, I provide an account of utilizing survey design specifications, noise properties, first breaks, and normal moveout for rapid and thorough graphical QC/QA diagnostics, which are easy to apply and efficient in the diagnosis of inconsistencies. A correlated vibroseis time-lapse 3D-seismic data set from a CO2-flood monitoring survey is used for demonstrating QC diagnostics. An important by-product of the QC workflow is establishing the number of layers for a refraction statics model in a data-driven graphical manner that capitalizes on the spatial coverage of the 3D seismic data. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.

  8. Modification of blowdown heat transfer models for RELAP5-3D in accordance with appendix K of 10CFR50

    Energy Technology Data Exchange (ETDEWEB)

    Chin-Jang, Chang; Liang, T.K.S. [Nuclear Engineering Div. Institute of Nuclear Energy Research, Lung-Tan, Taiwan (China); Huan-Jen, Hung; Wang, L.C. [Power Research Institute, Taiwan Power Company (China)

    2001-07-01

    The objective of this paper is to implement the blowdown heat transfer models accepted by Appendix K of 10CFR50 into RELAP5-3D and to rename it as RELAP5-3D/K. Modifications of critical heat flux (CHF) model, post-CHF model, and the heat transfer logic for nucleate and transition boiling lockout are included. Also the assessments against separate-effect experiments were evaluated for RELAP 5-3D/K. From calculation results, the conservative predictions of surface peak temperatures using RELAP5-3D/K are obtained. It demonstrated that the blowdown heat transfer models were successfully modified and implemented into RELAP5-3D in accordance with Appendix K of 10CFR50. (authors)

  9. 3D numerical study on flow structure and heat transfer in a circular tube with V-baffles☆

    Institute of Scientific and Technical Information of China (English)

    Withada Jedsadaratanachai; Nuthvipa Jayranaiwachira; Pongjet Promvonge

    2015-01-01

    A 3D numerical investigation has been carried out to examine periodic laminar flow and heat transfer character-istics in a circular tube with 45° V-baffles with isothermal wal . The computations are based on the finite volume method (FVM), and the SIMPLE algorithm has been implemented. The fluid flow and heat transfer characteristics are presented for Reynolds numbers ranging from 100 to 2000. To generate main longitudinal vortex flows through the tested section, V-baffles with an attack angle of 45° are mounted in tandem and in-line arrangement on the opposite positions of the circular tube. Effects of tube blockage ratio, flow direction on heat transfer and pressure drop in the tube are studied. It is apparent that a pair of longitudinal twisted vortices (P-vortex) created by a V-baffle can induce impingement on a wal of the inter-baffle cavity and lead a drastic increase in heat trans-fer rate at tube wall. In addition, the larger blockage ratio results in the higher Nusselt number and friction factor values. The computational results show that the optimum thermal enhancement factor is around 3.20 at baffle height of B=0.20 and B=0.25 times of the tube diameter for the V-upstream and V-downstream, respectively. © 2014 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. Al rights reserved.

  10. 1-D and 2-D resonances in an Alpine valley identified from ambient noise measurements and 3-D modelling

    Science.gov (United States)

    Le Roux, Olivier; Cornou, Cécile; Jongmans, Denis; Schwartz, Stéphane

    2012-09-01

    H/V spectral ratios are regularly used for estimating the bedrock depth in 1-D like basins exhibiting smooth lateral variations. In the case of 2-D or 3-D pronounced geometries, observational and numerical studies have shown that H/V curves exhibit peculiar shapes and that the H/V frequency generally overestimates 1-D theoretical resonance frequency. To investigate the capabilities of the H/V method in complex structures, a detailed comparison between measured and 3-D-simulated ambient vibrations was performed in the small-size lower Romanche valley (French Alps), which shows significant variations in geometry, downstream and upstream the Séchilienne basin. Analysing the H/V curve characteristics, two different wave propagation modes were identified along the valley. Relying on previous geophysical investigation, a power-law relationship was derived between the bedrock depth and the H/V peak frequency, which was used for building a 3-D model of the valley geometry. Simulated and experimental H/V curves were found to exhibit quite similar features in terms of curve shape and peak frequency values, validating the 3-D structure. This good agreement also evidenced two different propagation modes in the valley: 2-D resonance in the Séchilienne basin and 1-D resonance in the external parts. This study underlines the interest of H/V curves for investigating complex basin structures.

  11. Radiative transfer in cylindrical threads with incident radiation. V. 2D transfer with 3D velocity fields

    Science.gov (United States)

    Gouttebroze, P.

    2008-09-01

    Context: Time-resolved observations of loops embedded in the solar corona show the existence of motions of matter inside these structures, as well as the global motions of these objects themselves. Aims: We have developed a modeling tool for cylindrical objects inside the solar corona, including 2-dimensional (azimuth-dependent) radiative transfer effects and 3-dimensional velocity fields. Methods: We used numerical methods to simultaneously solve the equations of NLTE radiative transfer, statistical equilibrium of hydrogen level populations, and electric neutrality. The radiative transfer equations were solved using cylindrical coordinates and prescribed solar incident radiation. In addition to the effects of anisotropic incident radiation, treated in previous papers, we took into account the Doppler shifts produced by a 3-dimension velocity field. Results: The effects of different types of velocity fields on hydrogen line profiles and intensities are described. Motions include loop oscillations, rotation, and longitudinal flows, which produce different deformations of profiles. Doppler brightening and dimming effects are also observed. Conclusions: This is a new step in the diagnostic of physical conditions in coronal loops, allowing the study of dynamical phenomena.

  12. Tetrapeptide-coumarin conjugate 3D networks based on hydrogen-bonded charge transfer complexes: gel formation and dye release.

    Science.gov (United States)

    Guo, Zongxia; Gong, Ruiying; Jiang, Yi; Wan, Xiaobo

    2015-08-14

    Oligopeptide-based derivatives are important synthons for bio-based functional materials. In this article, a Gly-(L-Val)-Gly-(L-Val)-coumarin (GVGV-Cou) conjugate was synthesized, which forms 3D networks in ethanol. The gel nanostructures were characterized by UV-vis spectroscopy, FT-IR spectroscopy, X-ray diffraction (XRD), SEM and TEM. It is suggested that the formation of charge transfer (CT) complexes between the coumarin moieties is the main driving force for the gel formation. The capability of the gel to encapsulate and release dyes was explored. Both Congo Red (CR) and Methylene Blue (MB) can be trapped in the CT gel matrix and released over time. The present gel might be used as a functional soft material for guest encapsulation and release.

  13. Modeling 3D conjugate heat and mass transfer for turbulent air drying of Chilean papaya in a direct contact dryer

    Science.gov (United States)

    Lemus-Mondaca, Roberto A.; Vega-Gálvez, Antonio; Zambra, Carlos E.; Moraga, Nelson O.

    2017-01-01

    A 3D model considering heat and mass transfer for food dehydration inside a direct contact dryer is studied. The k- ɛ model is used to describe turbulent air flow. The samples thermophysical properties as density, specific heat, and thermal conductivity are assumed to vary non-linearly with temperature. FVM, SIMPLE algorithm based on a FORTRAN code are used. Results unsteady velocity, temperature, moisture, kinetic energy and dissipation rate for the air flow are presented, whilst temperature and moisture values for the food also are presented. The validation procedure includes a comparison with experimental and numerical temperature and moisture content results obtained from experimental data, reaching a deviation 7-10 %. In addition, this turbulent k- ɛ model provided a better understanding of the transport phenomenon inside the dryer and sample.

  14. Modeling 3D conjugate heat and mass transfer for turbulent air drying of Chilean papaya in a direct contact dryer

    Science.gov (United States)

    Lemus-Mondaca, Roberto A.; Vega-Gálvez, Antonio; Zambra, Carlos E.; Moraga, Nelson O.

    2016-03-01

    A 3D model considering heat and mass transfer for food dehydration inside a direct contact dryer is studied. The k- ɛ model is used to describe turbulent air flow. The samples thermophysical properties as density, specific heat, and thermal conductivity are assumed to vary non-linearly with temperature. FVM, SIMPLE algorithm based on a FORTRAN code are used. Results unsteady velocity, temperature, moisture, kinetic energy and dissipation rate for the air flow are presented, whilst temperature and moisture values for the food also are presented. The validation procedure includes a comparison with experimental and numerical temperature and moisture content results obtained from experimental data, reaching a deviation 7-10 %. In addition, this turbulent k- ɛ model provided a better understanding of the transport phenomenon inside the dryer and sample.

  15. Noise to lubricate qubit transfer in a spin network

    Science.gov (United States)

    Rafiee, Morteza; Lupo, Cosmo; Mancini, Stefano

    2013-09-01

    We consider quantum state transfer in a fully connected spin network, in which the results indicate that it is impossible to achieve high fidelity by free dynamics. However, the addition of certain kinds of noise can be helpful for this purpose. In fact, we introduce a model of Gaussian white noise affecting the spin-spin couplings (edges), except those linked to the input and output node, and prove that it enhances the fidelity of state transfer. The observed noise benefit is scale free as it applies to a quantum network of any size. The amount of the fidelity enhancement, depending on the noise strength as well as on the number of edges to which it is applied, can be so high as to take the fidelity close to one.

  16. Effects of image noise, respiratory motion, and motion compensation on 3D activity quantification in count-limited PET images

    Science.gov (United States)

    Siman, W.; Mawlawi, O. R.; Mikell, J. K.; Mourtada, F.; Kappadath, S. C.

    2017-01-01

    The aims of this study were to evaluate the effects of noise, motion blur, and motion compensation using quiescent-period gating (QPG) on the activity concentration (AC) distribution—quantified using the cumulative AC volume histogram (ACVH)—in count-limited studies such as 90Y-PET/CT. An International Electrotechnical Commission phantom filled with low 18F activity was used to simulate clinical 90Y-PET images. PET data were acquired using a GE-D690 when the phantom was static and subject to 1-4 cm periodic 1D motion. The static data were down-sampled into shorter durations to determine the effect of noise on ACVH. Motion-degraded PET data were sorted into multiple gates to assess the effect of motion and QPG on ACVH. Errors in ACVH at AC90 (minimum AC that covers 90% of the volume of interest (VOI)), AC80, and ACmean (average AC in the VOI) were characterized as a function of noise and amplitude before and after QPG. Scan-time reduction increased the apparent non-uniformity of sphere doses and the dispersion of ACVH. These effects were more pronounced in smaller spheres. Noise-related errors in ACVH at AC20 to AC70 were smaller (15%). The accuracy of ACmean was largely independent of the total count. Motion decreased the observed AC and skewed the ACVH toward lower values; the severity of this effect depended on motion amplitude and tumor diameter. The errors in AC20 to AC80 for the 17 mm sphere were  -25% and  -55% for motion amplitudes of 2 cm and 4 cm, respectively. With QPG, the errors in AC20 to AC80 of the 17 mm sphere were reduced to  -15% for motion amplitudes  0.5, QPG was effective at reducing errors in ACVH despite increases in image non-uniformity due to increased noise. ACVH is believed to be more relevant than mean or maximum AC to calculate tumor control and normal tissue complication probability. However, caution needs to be exercised when using ACVH in post-therapy 90Y imaging because of its susceptibility to image

  17. Thermodynamic Model of Noise Information Transfer

    Science.gov (United States)

    Hejna, Bohdan

    2008-10-01

    In this paper we apply a certain unifying physical description of the results of Information Theory. Assuming that heat entropy is a thermodynamic realization of information entropy [2], we construct a cyclical, thermodynamic, average-value model of an information transfer chain [3] as a general heat engine, in particular a Carnot engine, reversible or irreversible. A working medium of the cycle (a thermodynamic system transforming input heat energy) can be considered as a thermodynamic, average-value model or, as such, as a realization of an information transfer channel. We show that in a model realized in this way the extended II. Principle of Thermodynamics is valid [2] and we formulate its information form.

  18. 3D shallow structures in the Baogutu area, Karamay, determined by eikonal tomography of short-period ambient noise surface waves

    Science.gov (United States)

    Xu, Hongrui; Luo, Yinhe; Chen, Chao; Xu, Yixian

    2016-06-01

    Eikonal tomography based on ambient noise data is one of the most effective methods to reveal shallow earth structures. By tracking surface wave phase fronts, constructing travel time surfaces, and computing the gradients of travel time surfaces to generate phase velocity maps, eikonal tomography avoids the ray tracing and matrix construction and inversion in the traditional surface wave tomography methods. In this study, we collect continuous ambient noise data recorded by a dense seismic array in Karamay, Xinjiang to construct a 3D model of shallow structures using eikonal tomography. The seismic array consists of 35 stations with shortest interstation distance close to 1 km. 890 empirical surface wave Green's functions (EGFs) between each station pair are retrieved by cross-correlating one or two months of continuous ambient noise data. From these EGFs, surface wave travel times in the frequency range of 1.8 to 4.0 Hz are measured by a frequency-time analysis technique (FTAN). Then, eikonal tomography is adopted to construct Rayleigh wave phase velocity maps and estimate the phase velocity uncertainties. Finally, we invert the obtained phase velocity dispersion curves for 1D shear velocity profiles and then assemble these 1D profiles to construct a 3D shear velocity model. Major velocity features of our 3D model are correlated well with the known geological features. A shallow east-west velocity discontinuity is observed, which clearly reflects the lithological change between Baogutu formation (C1b) and Xibeikulasi formation (C1x) of lower Carboniferous system. Low shear velocities are observed beneath the location of porphyry copper deposit (V), possibly related to stockwork fracture and hydrothermal brecciation developed during the intrusion of deep magma in forming the deposit.

  19. 3D Numerical Study on Compound Heat Transfer Enhancement of Converging-diverging Tubes Equipped with Twin Twisted Tapes

    Institute of Scientific and Technical Information of China (English)

    洪宇翔; 邓先和; 张连山

    2012-01-01

    The paper presents a 3D numerical simulation of turbulent heat transfer and flow characteristics in converging-diverging tubes (CDs) and converging-diverg)ng tubes.equi.pped with twin counter-swirling twisted tapes (CDTs). The effects of Reynolds number (Re= 10000-20000), pitch length (P= 11.25, 22.5 mm), rib height (e = 0.5, 0.8, 1.1 ram), pitch ratio (8= 1 " 8, 5 " 4, 8 " 1), gap distance between twin t)visted tapes (b = 0.5, 4.5, 8.5 mm) and tape number (n = 2, 3, 4, 5, 6) on Nusselt number (Nu), Iriction tactor 0') and thermal enhancement factor (r/) are investigated under uniform heat flux conditions,using water as working fluid. In order to illustrate the heat transter and tlu~d tlow mechamsms, flow structures m ~StJs and ~SDIs are presented. The obtained results reveal that all geometric parameters have important effects on the thermal performance of CD and CDT, and both CD and CDT show better thermal performance than plain tube at the constant pumping power. It is also found that the increases in the Nusselt number and friction factor for CDT are, respectively, up to 6.3%-35.7% and 1.75-5.3 times of thecorresponding bare CD. All CDTs have good thermal perbrmance with greater than 1 which indicates that the compound heat transfer technique of CDT is commendable for the maximum enhanced heat transfer rate.

  20. Amplified Head Rotation in Virtual Reality and the Effects on 3D Search, Training Transfer, and Spatial Orientation.

    Science.gov (United States)

    Ragan, Eric D; Scerbo, Siroberto; Bacim, Felipe; Bowman, Doug A

    2017-08-01

    Many types of virtual reality (VR) systems allow users to use natural, physical head movements to view a 3D environment. In some situations, such as when using systems that lack a fully surrounding display or when opting for convenient low-effort interaction, view control can be enabled through a combination of physical and virtual turns to view the environment, but the reduced realism could potentially interfere with the ability to maintain spatial orientation. One solution to this problem is to amplify head rotations such that smaller physical turns are mapped to larger virtual turns, allowing trainees to view the entire surrounding environment with small head movements. This solution is attractive because it allows semi-natural physical view control rather than requiring complete physical rotations or a fully-surrounding display. However, the effects of amplified head rotations on spatial orientation and many practical tasks are not well understood. In this paper, we present an experiment that evaluates the influence of amplified head rotation on 3D search, spatial orientation, and cybersickness. In the study, we varied the amount of amplification and also varied the type of display used (head-mounted display or surround-screen CAVE) for the VR search task. By evaluating participants first with amplification and then without, we were also able to study training transfer effects. The findings demonstrate the feasibility of using amplified head rotation to view 360 degrees of virtual space, but noticeable problems were identified when using high amplification with a head-mounted display. In addition, participants were able to more easily maintain a sense of spatial orientation when using the CAVE version of the application, which suggests that visibility of the user's body and awareness of the CAVE's physical environment may have contributed to the ability to use the amplification technique while keeping track of orientation.

  1. Identification of source velocities on 3D structures in non-anechoic environments: Theoretical background and experimental validation of the inverse patch transfer functions method

    Science.gov (United States)

    Aucejo, M.; Totaro, N.; Guyader, J.-L.

    2010-08-01

    In noise control, identification of the source velocity field remains a major problem open to investigation. Consequently, methods such as nearfield acoustical holography (NAH), principal source projection, the inverse frequency response function and hybrid NAH have been developed. However, these methods require free field conditions that are often difficult to achieve in practice. This article presents an alternative method known as inverse patch transfer functions, designed to identify source velocities and developed in the framework of the European SILENCE project. This method is based on the definition of a virtual cavity, the double measurement of the pressure and particle velocity fields on the aperture surfaces of this volume, divided into elementary areas called patches and the inversion of impedances matrices, numerically computed from a modal basis obtained by FEM. Theoretically, the method is applicable to sources with complex 3D geometries and measurements can be carried out in a non-anechoic environment even in the presence of other stationary sources outside the virtual cavity. In the present paper, the theoretical background of the iPTF method is described and the results (numerical and experimental) for a source with simple geometry (two baffled pistons driven in antiphase) are presented and discussed.

  2. The advantages of complementing MT profiles in 3-D environments with geomagnetic transfer function and inter-station horizontal magnetic transfer function data: Results from a synthetic case study

    Science.gov (United States)

    Campanyà, Joan; Ogaya, Xènia; Jones, Alan G.; Rath, Volker; Vozar, Jan; Meqbel, Naser

    2016-09-01

    As a consequence of measuring time variations of the electric and the magnetic field, which are related to current flow and charge distribution, magnetotelluric (MT) data in two dimensional (2-D) and three dimensional (3-D) environments are not only sensitive to the geoelectrical structures below the measuring points but also to any lateral anomalies surrounding the acquisition site. This behaviour complicates the characterisation of the electrical resistivity distribution of the subsurface, particularly in complex areas. In this manuscript we assess the main advantages of complementing the standard MT impedance tensor (Z) data with inter-station horizontal magnetic tensor (H) and geomagnetic transfer function (T) data in constraining the subsurface in a 3-D environment beneath a MT profile. Our analysis was performed using synthetic responses with added normally distributed and scattered random noise. The sensitivity of each type of data to different resistivity anomalies is evaluated, showing that the degree to which each site and each period is affected by the same anomaly depends on the type of data. A dimensionality analysis, using Z, H and T data, identifies the presence of the 3-D anomalies close to the profile, suggesting a 3-D approach for recovering the electrical resistivity values of the subsurface. Finally, the capacity for recovering the geoelectrical structures of the subsurface is evaluated by performing joint inversion using different data combinations, quantifying the differences between the true synthetic model and the models from inversion process. Four main improvements are observed when performing joint inversion of Z, H and T data: (1) superior precision and accuracy at characterising the electrical resistivity values of the anomalies below and outside the profile; (2) the potential to recover high electrical resistivity anomalies that are poorly recovered using Z data alone; (3) improvement in the characterization of the bottom and lateral

  3. 3D Geotechnical Soil Model of Nice, France, Inferred from Seismic Noise Measurements, for Seismic Hazard Assessment.

    Science.gov (United States)

    Bertrand, E.; Duval, A.; Castan, M.; Vidal, S.

    2007-12-01

    In seismic risk studies, the assessment of lithologic site effect is based on an accurate knowledge of mechanical properties and geometry of superficial geological formations. Therefore, we built a 3D subsurface model in the city of Nice, southeastern France, using not only geological and geotechnical data but also geophysical inputs. We used especially ambient vibration recordings to supply the lack of borehole data over the city. Nice spreads over 72 km2 and roughly 20% of the city is built upon recent alluvium deposits. Other parts of the city lie on Jurassic and Cretaceous rocks to the east and thick Pliocene conglomerates to the west. Nearly 450 boreholes located mainly in the alluvial valleys were used. Because they are essentially linked to previous planned constructions (such as road network or important building), their distribution is rather heterogeneous over the studied area. In the valleys moreover, less than 40% of the boreholes are reaching the rock basement. These boreholes have been analyzed and a representative soil column made of 9 sedimentary layers has been recognized. Shear wave velocity of these layers were obtained from Standard Penetration Test values using several empirical correlation law described in the literature. Because of its cost, an extended boring survey was not feasible to complete our data set. Traditional seismic profiling was also not intended, as it is not possible to use intensive explosive sources in town. Recent years have seen many studies using ambient vibration measurements for site effect estimation. Especially, the very simple H/V technique was proven to be suitable for microzoning studies although some limitation were pointed out when dealing with 2D or 3D structures. Nevertheless, this technique alone provides only the fundamental eigenfrequency of the site under investigation. But assuming the shear wave velocity in the sediment it can helps to constrain the depth of the bedrock thanks to the well known f0=VS/4H

  4. Numerical 3D modeling of heat transfer in human tissues for microwave radiometry monitoring of brown fat metabolism

    Science.gov (United States)

    Rodrigues, Dario B.; Maccarini, Paolo F.; Salahi, Sara; Colebeck, Erin; Topsakal, Erdem; Pereira, Pedro J. S.; Limão-Vieira, Paulo; Stauffer, Paul R.

    2013-02-01

    Background: Brown adipose tissue (BAT) plays an important role in whole body metabolism and could potentially mediate weight gain and insulin sensitivity. Although some imaging techniques allow BAT detection, there are currently no viable methods for continuous acquisition of BAT energy expenditure. We present a non-invasive technique for long term monitoring of BAT metabolism using microwave radiometry. Methods: A multilayer 3D computational model was created in HFSSTM with 1.5 mm skin, 3-10 mm subcutaneous fat, 200 mm muscle and a BAT region (2-6 cm3) located between fat and muscle. Based on this model, a log-spiral antenna was designed and optimized to maximize reception of thermal emissions from the target (BAT). The power absorption patterns calculated in HFSSTM were combined with simulated thermal distributions computed in COMSOL® to predict radiometric signal measured from an ultra-low-noise microwave radiometer. The power received by the antenna was characterized as a function of different levels of BAT metabolism under cold and noradrenergic stimulation. Results: The optimized frequency band was 1.5-2.2 GHz, with averaged antenna efficiency of 19%. The simulated power received by the radiometric antenna increased 2-9 mdBm (noradrenergic stimulus) and 4-15 mdBm (cold stimulus) corresponding to increased 15-fold BAT metabolism. Conclusions: Results demonstrated the ability to detect thermal radiation from small volumes (2-6 cm3) of BAT located up to 12 mm deep and to monitor small changes (0.5 °C) in BAT metabolism. As such, the developed miniature radiometric antenna sensor appears suitable for non-invasive long term monitoring of BAT metabolism.

  5. A full 3D model of fluid flow and heat transfer in an E.B. heated liquid metal bath

    Science.gov (United States)

    Matveichev, A.; Jardy, A.; Bellot, J. P.

    2016-07-01

    In order to study the dissolution of exogeneous inclusions in the liquid metal during processing of titanium alloys, a series of dipping experiments has been performed in an Electron Beam Melting laboratory furnace. Precise determination of the dissolution kinetics requires knowing and mastering the exact thermohydrodynamic behavior of the melt pool, which implies full 3D modeling of the process. To achieve this goal, one needs to describe momentum and heat transfer, phase change, as well as the development of flow turbulence in the liquid. EB power input, thermal radiation, heat loss through the cooling circuit, surface tension effects (i.e. Marangoni-induced flow) must also be addressed in the model. Therefore a new solver dealing with all these phenomena was implemented within OpenFOAM platform. Numerical results were compared with experimental data from actual Ti melting, showing a pretty good agreement. In the second stage, the immersion of a refractory sample rod in the liquid pool was simulated. Results of the simulations showed that the introduction of the sample slightly disturbs the flow field inside the bath. The amount of such disturbance depends on the exact location of the dipping.

  6. 3D scaffolds from vertically aligned carbon nanotubes/poly(methyl methacrylate) composites via atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Tebikachew, Behabtu; Magina, Sandra [CICECO, Department of Chemistry, University of Aveiro (Portugal); Mata, Diogo; Oliveira, Filipe J.; Silva, Rui F. [CICECO, Department of Materials and Ceramic Engineering, University of Aveiro (Portugal); Barros-Timmons, Ana, E-mail: anabarros@ua.pt [CICECO, Department of Chemistry, University of Aveiro (Portugal)

    2015-01-15

    Vertically aligned carbon nanotubes (VACNTs) synthesized by Thermal Chemical Vapour Deposition (TCVD) were modified using an Ar:O{sub 2} (97:3) plasma to generate oxygen-containing functional groups on the surface for subsequent modification. X-ray photo-emission spectroscopy (XPS) and micro-Raman analyses confirmed the grafting of those functional groups onto the surface of the nanotubes as well as the removal of amorphous carbon produced and deposited on the VACNT forests during the CVD process. The plasma treated VACNT forests were further modified with 2-bromo-2-methylpropionyl bromide, an atom transfer radical polymerization (ATRP) initiator, to grow poly(methyl methacrylate) (PMMA) chains from the forests via ATRP. Scanning transmission electron microscopy (STEM) of the ensuing VACNT/PMMA composites confirmed the coating of the nanotube forests with the PMMA polymer. 3D scaffolds of polymeric composites with honeycomb like structure were then obtained. Compressive tests have shown that the VACNT/PMMA composite has higher compressive strength than the pristine forest. - Highlights: • Vertically aligned carbon nanotubes (VACNTs) were synthesized and plasma modified. • X-ray photo-emission and Raman spectroscopies confirmed the VACNTs modification. • Poly(methyl methacrylate) chains were grown via ATRP from the VACNTs. • STEM of the VACNT/PMMA composites confirmed that PMMA surrounds the nanotubes. • VACNT/PMMA composite has higher compressive strength compared to the pristine forest.

  7. 3D-ambient noise Rayleigh wave tomography of Snæfellsjökull volcano, Iceland

    Science.gov (United States)

    Obermann, Anne; Lupi, Matteo; Mordret, Aurélien; Jakobsdóttir, Steinunn S.; Miller, Stephen A.

    2016-05-01

    From May to September 2013, 21 seismic stations were deployed around the Snæfellsjökull volcano, Iceland. We cross-correlate the five months of seismic noise and measure the Rayleigh wave group velocity dispersion curves to gain more information about the geological structure of the Snæfellsjökull volcano. In particular, we investigate the occurrence of seismic wave anomalies in the first 6 km of crust. We regionalize the group velocity dispersion curves into 2-D velocity maps between 0.9 and 4.8 s. With a neighborhood algorithm we then locally invert the velocity maps to obtain accurate shear-velocity models down to 6 km depth. Our study highlights three seismic wave anomalies. The deepest, located between approximately 3.3 and 5.5 km depth, is a high velocity anomaly, possibly representing a solidified magma chamber. The second anomaly is also a high velocity anomaly east of the central volcano that starts at the surface and reaches approximately 2.5 km depth. It may represent a gabbroic intrusion or a dense swarm of inclined magmatic sheets (similar to the dike swarms found in the ophiolites), typical of Icelandic volcanic systems. The third anomaly is a low velocity anomaly extending up to 1.5 km depth. This anomaly, located directly below the volcanic edifice, may be interpreted either as a shallow magmatic reservoir (typical of Icelandic central volcanoes), or alternatively as a shallow hydrothermal system developed above the cooling magmatic reservoir.

  8. Ambient noise tomography for characterize the subsoil structure below a collapsed mine. Integration with 3D models of electric resistivity tomography and micro-gravity data inversion

    Science.gov (United States)

    Cárdenas-Soto, M.; Tejero, A.; Nava-Flores, M.; Zenil, D. E.; Vidal-Garcia, M.; Garcia-Serrano, A.

    2016-12-01

    In this work we build 3D Vs models using seismic tomography of ambient noise. The goal is to characterize the subsurface structure in order to explore the causes of a sudden mine collapse in the 2nd section of Chapultepec park, Mexico City, near to a recreation lake whose subsoil is composed of vulcano-sedimentary materials that were economically exploited in the mid-20th century, leaving a series of underground mines that were rehabilitated for the construction of the Park. In this site we record ambient noise continuously at a 250 Hz sampling rate by intervals of 30 min in three arrays of quadrangular shape with 64 - 4.5 Hz vertical geophones separated 2m. In order to confront the seismic interferometry results, we also obtain 3D models derivated from Electrical Resistivity Tomography (ERT), and inverted surface micro-gravity data. The correlograms show a well defined pulse for those pairs of receivers whose backazimut is perpendicular to the beltway, which is the main source that generates ambient noise. We show that pulses had a dispersive character due to that define a dispersion curve (fundamental mode of Rayleigh wave) whose velocity values are close to 700 m/s at a frequency of 5 Hz, and tend to average values of 380 m/s in frequencies close to 16 Hz. Then, we build tomography images from the maximum time of the envelope pulse filtering in 18 center frequencies between 4 to 16 Hz. Through the relationship f=Vs/4z we create a 3D model in function of the seudo-depth (z). This model allows to distinguish the irregularity of the subsoil around the mine colapse (5m depth), which underlies a competent structure (Vs>450 m/s) surrounded by vulcano sedimentary material with low Vs values (200 m/s). ERT model show that the low velocity zones are associated with saturation areas, result that is corroborated by low-density values derived from micro-gravity model. The results indicate that the collapse was produced by the hydrostatic imbalance of the competent materials

  9. Crustal and upper mantle 3D shear wave velocity structure of the High Lava Plains, Oregon, determined from ambient noise tomography

    Science.gov (United States)

    Hanson-Hedgecock, S.; Wagner, L.; Fouch, M. J.; James, D. E.

    2011-12-01

    We present the results of inversions for 3D shear velocity structure of the crust and uppermost mantle beneath the High Lava Plains, Oregon using data from ~300 broadband stations of the High Lava Plains seismic experiment and the EarthScope/USArray Transportable Array (TA). The High Lava Plains (HLP) is a WNW progressive silicic volcanism, initiated ~14.5 Ma near the Owyhee Plateau and is currently active at the Newberry caldera. The Yellowstone Snake River Plain (YSRP) volcanic track is temporally contemporaneous with the HLP, but trends to the northeast, parallel to North American plate motion. The cause of volcanism along the HLP is debated and has been variously attributed to Basin and Range extension, back-arc extension, rollback of the subducting Juan de Fuca plate, and an intra-continental hotspot/plume source. Additionally the relationship between the HLP, YSRP, and Columbia River Basalts (CRB), the three major post-17Ma intracontinental volcanic provinces of the Pacific Northwest, is not well understood. The 3D shear velocity structure of the crust and uppermost mantle to ~65km depth is determined from fundamental mode Rayleigh wave ambient noise phase velocity maps at periods up to 40s. The use of ambient noise tomography with the dense station spacing of the combined High Lava Plains seismic experiment and the EarthScope/USArray Transportable Array (TA) datasets allows the shallow structure of the High Lava Plains to be imaged in finer detail than previous ANT studies that focused on the entire western United States. In the crust, low velocities in central Oregon are observed in association with the Brothers Fault Zone, Jordan and Diamond Craters and Steens Mountain regions in addition to the strong low velocity zone associated with the Cascades to the west. To the east of the HLP, low velocities are observed to about 10km depth in the western SRP. In the eastern SRP we observe a shallow veneer of low velocities underlain by a ~10km thick high velocity

  10. Hybrid Microsupercapacitors with Vertically Scaled 3D Current Collectors Fabricated using a Simple Cut-and-Transfer Strategy

    KAUST Repository

    Jiang, Qiu

    2016-09-08

    By employing 3D current collectors, hybrid coplanar microsupercapacitors are fabricated. These devices show excellent energy density of 200 μW h cm−2 compared to the state-of-the-art microsupercapacitors (1–40 μW h cm−2), and superior power density (4.4 mW cm−2) compared to thin film batteries and microbatteries at comparable energy density.

  11. A WRF simulation of the impact of 3-D radiative transfer on surface hydrology over the Rocky Mountains and Sierra Nevada

    Science.gov (United States)

    Liou, K. N.; Gu, Y.; Leung, L. R.; Lee, W. L.; Fovell, R. G.

    2013-12-01

    We investigate 3-D mountains/snow effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and Sierra Nevada. The Weather Research and Forecasting (WRF) model, applied at a 30 km grid resolution, is used in conjunction with a 3-D radiative transfer parameterization covering a time period from 1 November 2007 to 31 May 2008, during which abundant snowfall occurred. A comparison of the 3-D WRF simulation with the observed snow water equivalent (SWE) and precipitation from Snowpack Telemetry (SNOTEL) sites shows reasonable agreement in terms of spatial patterns and daily and seasonal variability, although the simulation generally has a positive precipitation bias. We show that 3-D mountain features have a profound impact on the diurnal and monthly variation of surface radiative and heat fluxes, and on the consequent elevation-dependence of snowmelt and precipitation distributions. In particular, during the winter months, large deviations (3-D-PP, in which PP denotes the plane-parallel approach) of the monthly mean surface solar flux are found in the morning and afternoon hours due to shading effects for elevations below 2.5 km. During spring, positive deviations shift to the earlier morning. Over mountaintops higher than 3 km, positive deviations are found throughout the day, with the largest values of 40-60 W m-2 occurring at noon during the snowmelt season of April to May. The monthly SWE deviations averaged over the entire domain show an increase in lower elevations due to reduced snowmelt, which leads to a reduction in cumulative runoff. Over higher elevation areas, positive SWE deviations are found because of increased solar radiation available at the surface. Overall, this study shows that deviations of SWE due to 3-D radiation effects range from an increase of 18% at the lowest elevation range (1.5-2 km) to a decrease of 8% at the highest elevation range (above 3 km). Since lower

  12. 3-D radiative transfer in large-eddy simulations - experiences coupling the TenStream solver to the UCLA-LES

    Science.gov (United States)

    Jakub, Fabian; Mayer, Bernhard

    2016-04-01

    The recently developed 3-D TenStream radiative transfer solver was integrated into the University of California, Los Angeles large-eddy simulation (UCLA-LES) cloud-resolving model. This work documents the overall performance of the TenStream solver as well as the technical challenges of migrating from 1-D schemes to 3-D schemes. In particular the employed Monte Carlo spectral integration needed to be reexamined in conjunction with 3-D radiative transfer. Despite the fact that the spectral sampling has to be performed uniformly over the whole domain, we find that the Monte Carlo spectral integration remains valid. To understand the performance characteristics of the coupled TenStream solver, we conducted weak as well as strong-scaling experiments. In this context, we investigate two matrix preconditioner: geometric algebraic multigrid preconditioning (GAMG) and block Jacobi incomplete LU (ILU) factorization and find that algebraic multigrid preconditioning performs well for complex scenes and highly parallelized simulations. The TenStream solver is tested for up to 4096 cores and shows a parallel scaling efficiency of 80-90 % on various supercomputers. Compared to the widely employed 1-D delta-Eddington two-stream solver, the computational costs for the radiative transfer solver alone increases by a factor of 5-10.

  13. Performance of adaptive iterative dose reduction 3D integrated with automatic tube current modulation in radiation dose and image noise reduction compared with filtered-back projection for 80-kVp abdominal CT: Anthropomorphic phantom and patient study.

    Science.gov (United States)

    Chen, Chien-Ming; Lin, Yang-Yu; Hsu, Ming-Yi; Hung, Chien-Fu; Liao, Ying-Lan; Tsai, Hui-Yu

    2016-09-01

    Evaluate the performance of Adaptive Iterative Dose Reduction 3D (AIDR 3D) and compare with filtered-back projection (FBP) regarding radiation dosage and image quality for an 80-kVp abdominal CT. An abdominal phantom underwent four CT acquisitions and reconstruction algorithms (FBP; AIDR 3D mild, standard and strong). Sixty-three patients underwent unenhanced liver CT with FBP and standard level AIDR 3D. Further post-acquisition reconstruction with strong level AIDR 3D was made. Patients were divided into two groups (radiation dose by 72% in the phantom and 47.1% in the patient study compared with FBP. There was no difference in mean attenuations. Image noise was the lowest and signal-to-noise ratio the highest using strong level AIDR 3D in both patient groups. For Deffradiation dose and maintenance of image quality compared with FBP. Using AIDR 3D reconstruction, patients with larger abdomen circumference could be imaged at 80kVp. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Magnetotelluric Transfer Functions: Phase Tensor and Tipper Vector above a Simple Anisotropic Three-Dimensional Conductivity Anomaly and Implications for 3D Isotropic Inversion

    Science.gov (United States)

    Löwer, Alexander; Junge, Andreas

    2017-05-01

    The influence of anisotropic conductivity structures on magnetotelluric transfer functions is not easy to analyse in its entire complexity. In this study, we investigate the spatial and frequency-dependent behaviour of phase tensors and tipper vectors above a 3D anisotropic conductivity anomaly. The anomaly consists of a simple cubic block embedded in a homogeneous half space. Using a 3D FD code, we compare an isotropic, 2 anisotropic models with an anisotropy factor of 10 and one anisotropic model with the anisotropy factor of 100. The results show characteristic differences between the isotropic and anisotropic cases. For the anisotropic anomalies, the tipper vectors are parallel over the entire area despite the 3D geometry of the anomalous body. The size of the tipper vectors depends on the position of the site relative to the anomaly's boundaries and the direction of the anisotropic strike. Above the anomalous anisotropic body, the main diagonal elements of the phase tensor show the well-known split. Outside the anomaly, the phase tensor principal axis rotates according to the site position in contrast to the constant tipper direction. The 3D inversion of the forward data using an isotropic 3D code (ModEM) yields a very good fit for all cases. Whereas the inversion result matches the isotropic model, wave-like structures with high conductivity contrast occur for the anisotropic models. These structures extend far beyond the extension of the original anomalous body. Thus, the study reveals important indications of the existence of anisotropic conductivity structures for observed magnetotelluric transfer functions.

  15. Generation of a cold pulsed beam of Rb atoms by transfer from a 3D magneto-optic trap

    CERN Document Server

    Chanu, Sapam Ranjita; Natarajan, Vasant

    2016-01-01

    We demonstrate a technique for producing a cold pulsed beam of atoms by transferring a cloud of atoms trapped in a three dimensional magneto-optic trap (MOT). The MOT is loaded by heating a getter source of Rb atoms. We show that it is advantageous to transfer with two beams (with a small angle between them) compared to a single beam, because the atoms stop interacting with the beams in the two-beam technique, which results in a Gaussian velocity distribution. The atoms are further cooled in optical molasses by turning off the MOT magnetic field before the transfer beams are turned on.

  16. Tomography 3D models of S wave from cross-correlation of seismic noise to explore irregularities of subsoil under the artificial lake of Chapultepec Park

    Science.gov (United States)

    Cárdenas-Soto, M.; Valdes, J. E.; Escobedo-Zenil, D.

    2013-05-01

    In June 2006, the base of the artificial lake in Chapultepec Park collapsed. 20 thousand liters of water were filtered to the ground through a crack increasing the dimensions of initial gap. Studies indicated that the collapse was due to saturated material associated with a sudden and massive water filtration process. Geological studies indicates that all the area of this section the subsoil is composed of vulcano-sedimentary materials that were economically exploited in the mid-20th century, leaving a series of underground mines that were rehabilitated for the construction of the Park. Currently, the Lake is rehabilitated and running for recreational activities. In this study we have applied two methods of seismic noise correlation; seismic interferometry (SI) in time domain and the Spatial Power Auto Correlation (SPAC) in frequency domain, in order to explore the 3D subsoil velocity structure. The aim is to highlight major variations in velocity that can be associated with irregularities in the subsoil that may pose a risk to the stability of the Lake. For this purpose we use 96 vertical geophones of 4.5 Hz with 5-m spacing that conform a semi-circular array that provide a length of 480 m around the lake zone. For both correlation methods, we extract the phase velocity associated with the dispersion characteristics between each pair of stations in the frequency range from 4 to 12 Hz. In the SPAC method the process was through the dispersion curve, and in SI method we use the time delay of the maximum amplitude in the correlation pulse, which was previously filtered in multiple frequency bands. The results of both processes were captured in 3D velocity volumes (in the case SI a process of traveltime tomography was applied). We observed that in the frequency range from 6 to 8 Hz, appear irregular structures, with high velocity contrast in relation with the shear wave velocity of surface layer (ten thick m of saturated sediments). One of these anomalies is related

  17. 3D radiative transfer simulations of Eta Carinae's inner colliding winds - I. Ionization structure of helium at apastron

    CERN Document Server

    Clementel, Nicola; Kruip, Chael; Paardekooper, Jan-Pieter; Gull, Theodore R

    2014-01-01

    The highly eccentric binary system Eta Carinae shows numerous time-variable emission and absorption features. These observational signatures are the result of interactions between the complex three-dimensional (3D) wind-wind collision regions and photoionization by the luminous stars. Specifically, helium presents several interesting spectral features that provide important clues on the geometry and physical properties of the system and the individual stars. We use the SimpleX algorithm to post-process 3D smoothed particle hydrodynamics simulation output of the interacting winds in Eta Car in order to obtain the fractions of ionized helium assuming three different primary star mass-loss rates. The resultant ionization maps constrain the regions where helium is singly- and doubly-ionized. We find that reducing the primary's mass-loss rate increases the volume of He+. Lowering the primary mass-loss rate produces large variations in the volume of He+ in the pre-shock primary wind on the periastron side of the sy...

  18. Analysis of the Gap Junction-dependent Transfer of miRNA with 3D-FRAP Microscopy.

    Science.gov (United States)

    Lemcke, Heiko; Voronina, Natalia; Steinhoff, Gustav; David, Robert

    2017-06-19

    Small antisense RNAs, like miRNA and siRNA, play an important role in cellular physiology and pathology and, moreover, can be used as therapeutic agents in the treatment of several diseases. The development of new, innovative strategies for miRNA/siRNA therapy is based on an extensive knowledge of the underlying mechanisms. Recent data suggest that small RNAs are exchanged between cells in a gap junction-dependent manner, thereby inducing gene regulatory effects in the recipient cell. Molecular biological techniques and flow cytometric analysis are commonly used to study the intercellular exchange of miRNA. However, these methods do not provide high temporal resolution, which is necessary when studying the gap junctional flux of molecules. Therefore, to investigate the impact of miRNA/siRNA as intercellular signaling molecules, novel tools are needed that will allow for the analysis of these small RNAs at the cellular level. The present protocol describes the application of three-dimensional fluorescence recovery after photobleaching (3D-FRAP) microscopy to elucidating the gap junction-dependent exchange of miRNA molecules between cardiac cells. Importantly, this straightforward and non-invasive live-cell imaging approach allows for the visualization and quantification of the gap junctional shuttling of fluorescently labeled small RNAs in real time, with high spatio-temporal resolution. The data obtained by 3D-FRAP confirm a novel pathway of intercellular gene regulation, where small RNAs act as signaling molecules within the intercellular network.

  19. Can we trace the eastern Gondwanan margin in Australia? New perspectives from transdimensional inversion of ambient noise for 3D shear velocity structure

    Science.gov (United States)

    Pilia, S.; Rawlinson, N.; Direen, N. G.

    2013-12-01

    Although the notion of Rodinia is quite well accepted in the geoscience community, the location and nature of the eastern continental margin of the Gondwana fragment in Australia is still vague and remains one of the most hotly debated topics in Australian geology. Moreover, most post-Rodinian reconstructions models choose not to tackle the ';Tasmanian challenge', and focus only on the tectonic evolution of mainland southeast Australia, thereby conveniently ignoring the wider tectonic implications of Tasmania's complex geological history. One of the chief limitations of the tectonic reconstructions in this region is a lack of information on Paleozoic (possibly Proterozoic) basement structures. Vast Mesozoic-Cainozoic sedimentary and volcanic cover sequences obscure older outcrops and limit the power of direct observational techniques. In response to these challenges, our effort is focused on ambient seismic noise for imaging 3D crustal shear velocity structure using surface waves, which is capable of illuminating basement structure beneath younger cover. The data used in this study is sourced from the WOMBAT transportable seismic array, which is compounded by around 650 stations spanning the majority of southeastern Australia, including Tasmania and several islands in Bass Strait. To produce the highest quality Green's functions, careful processing of the data has been performed, after which group velocity dispersion measurements have been carried out using a frequency-time analysis method on the symmetric component of the empirical Green's functions (EGFs). Group dispersion measurements from the EGFs have been inverted using a novel hierarchical, transdimensional, Bayesian algorithm to obtain Rayleigh-wave group velocity maps at different periods from 2 to 30 s. The new approach has several advantages in that the number and distribution of model parameters are implicitly controlled by the data, in which the noise is treated as unknown in the inversion. This

  20. New microangiography system development providing improved small vessel imaging, increased contrast to noise ratios, and multi-view 3D reconstructions.

    Science.gov (United States)

    Kuhls, Andrew T; Patel, Vikas; Ionita, Ciprian; Noël, Peter B; Walczak, Alan M; Rangwala, Hussain S; Hoffmann, Kenneth R; Rudin, Stephen

    2006-01-01

    A new microangiographic system (MA) integrated into a c-arm gantry has been developed allowing precise placement of a MA at the exact same angle as the standard x-ray image intensifier (II) with unchanged source and object position. The MA can also be arbitrarily moved about the object and easily moved into the field of view (FOV) in front of the lower resolution II when higher resolution angiographic sequences are needed. The benefits of this new system are illustrated in a neurovascular study, where a rabbit is injected with contrast media for varying oblique angles. Digital subtraction angiographic (DSA) images were obtained and compared using both the MA and II detectors for the same projection view. Vessels imaged with the MA appear sharper with smaller vessels visualized. Visualization of ~100 μm vessels was possible with the MA whereas not with the II. Further, the MA could better resolve vessel overlap. Contrast to noise ratios (CNR) were calculated for vessels of varying sizes for the MA versus the II and were found to be similar for large vessels, approximately double for medium vessels, and infinitely better for the smallest vessels. In addition, a 3D reconstruction of selected vessel segments was performed, using multiple (three) projections at oblique angles, for each detector. This new MA/II integrated system should lead to improved diagnosis and image guidance of neurovascular interventions by enabling initial guidance with the low resolution large FOV II combined with use of the high resolution MA during critical parts of diagnostic and interventional procedures.

  1. 3D Vs ambient noise tomography in the source region of the 2016 Mw6.4 Meinong earthquake in Taiwan

    Science.gov (United States)

    Kuo-Chen, Hao; Chen, Kai-Xun; Sun, Wei-Fang; Ho, Chun-Wei; Lee, Yuan-Hsi; Guan, Zhuo-Kang; Kang, Chu-Chun; Chang, Wen-Yen

    2017-04-01

    Mw6.4 Meinong earthquake occurred on 6th February in 2016 in southern Taiwan and resulted in more than one hundred casualties and several building collapsed. The aftershocks mostly occurred at mid-to-lower crustal depths (10-30 km), which is related to a blind fault system. However, at the surface several centimeters of cosesimic uplift within the Liushuang, Erhchungli, and GutingKeng Formations, which is mainly composed of mudstone, have been recorded from the InSAR results. The uplifted pattern is similar to that of GPS and leveling data from 2000 to 2010, which indicates the deformation is accomplished by creeping due to the mudstone of the shallow structure related to mud diapir. Previous studies have shown limited information about the shallow structure in this region due to few seismic stations deployed. In this study, we deployed 36 temporary seismic stations ( 5 km spacing) for around one month after the main shock to obtain a 3-D shear wave shallow crustal velocity structure using ambient noise tomography. The reliable periods of group and phase velocities from Rayleigh wave are 0.6 to 5 seconds, which correspond to around 0-5 km at depths. As a result, the pattern of low S-wave speeds at 0-4 km depths corresponds to the uplift region from both of InSAR data for coseismic period and GPS and leveling data for interseismic period. Also, the results from this study are compatible with the reflected seismic profile. The results show that with dense seismic array deployment we can obtain a high resolution of subsurface image to link the relationship between the surface observations to the subsurface structures.

  2. Parameterization of 3D Radiative Transfer over Mountains and Investigation of its Impact on Surface Hydrology over the Western United States Using WRF

    Science.gov (United States)

    Gu, Y.; Liou, K.; Leung, L.; Lee, W.; Fovell, R. G.

    2013-12-01

    Modern climate models have used a plane-parallel (PP) radiative transfer approach in physics parameterizations; however, the potential errors that arise from neglecting three-dimensional (3D) interactions between radiation and mountains/snow on climate simulations have not been studied and quantified. We have developed a surface solar radiation parameterization based on the regression analysis of flux deviations between 3D and conventional PP radiative transfer models, which has been incorporated into the Weather Research and Forecasting (WRF) model to investigate the impact of the spatial and temporal distribution and variation of surface solar fluxes on surface hydrology. Using the Rocky and Sierra-Nevada Mountains in the Western United States as a testbed, the WRF model with the incorporation of the 3D parameterization is applied at a 30 km grid resolution covering a time period from November 1, 2007 to May 31, 2008 during which abundant snowfall occurred. Comparison of the 3D WRF simulation with the observed snow water equivalent (SWE) and precipitation from Snowpack Telemetry (SNOTEL) sites shows reasonable agreement in terms of spatial patterns and daily and seasonal variability, although the simulation generally has a positive precipitation bias. We show that 3D mountain features have a profound impact on the diurnal and monthly variation of surface radiative and heat fluxes and on the consequent elevation-dependence of snowmelt and precipitation distributions. For lower elevations, positive deviations (3D - PP) of the monthly mean surface solar flux are found in the morning and afternoon hours, while negative deviations are shown between 10 am-2 pm during the winter months, leading to reduced diurnal variations. Over the mountain tops above 3 km, positive deviations are found throughout the day, with the largest values of 40 - 60 W/m2 occurring at noon during the snowmelt season of April to May. The monthly SWE deviations averaged over the entire domain

  3. Noise-assisted quantum electron transfer in photosynthetic complexes

    CERN Document Server

    Nesterov, Alexander I; Martínez, José Manuel Sánchez; Sayre, Richard T

    2013-01-01

    Electron transfer (ET) between primary electron donors and acceptors is modeled in the photosystem II reaction center (RC). Our model includes (i) two discrete energy levels associated with donor and acceptor, interacting through a dipole-type matrix element and (ii) two continuum manifolds of electron energy levels ("sinks"), which interact directly with the donor and acceptor. Namely, two discrete energy levels of the donor and acceptor are embedded in their independent sinks through the corresponding interaction matrix elements. We also introduce classical (external) noise which acts simultaneously on the donor and acceptor (collective interaction). We derive a closed system of integro-differential equations which describes the non-Markovian quantum dynamics of the ET. A region of parameters is found in which the ET dynamics can be simplified, and described by coupled ordinary differential equations. Using these simplified equations, both sharp and flat redox potentials are analyzed. We analytically and nu...

  4. Modeling near-field radiative heat transfer from sharp objects using a general 3d numerical scattering technique

    CERN Document Server

    McCauley, Alexander P; Krüger, Matthias; Johnson, Steven G

    2011-01-01

    We examine the non-equilibrium radiative heat transfer between a plate and finite cylinders and cones, making the first accurate theoretical predictions for the total heat transfer and the spatial heat flux profile for three-dimensional compact objects including corners or tips. We find qualitatively different scaling laws for conical shapes at small separations, and in contrast to a flat/slightly-curved object, a sharp cone exhibits a local \\emph{minimum} in the spatially resolved heat flux directly below the tip. The method we develop, in which a scattering-theory formulation of thermal transfer is combined with a boundary-element method for computing scattering matrices, can be applied to three-dimensional objects of arbitrary shape.

  5. Modeling the physical structure of star-forming regions with LIME, a 3D radiative transfer code

    Science.gov (United States)

    Quénard, D.; Bottinelli, S.; Caux, E.

    2016-05-01

    The ability to predict line emission is crucial in order to make a comparison with observations. From LTE to full radiative transfer codes, the goal is always to derive the most accurately possible the physical properties of the source. Non-LTE calculations can be very time consuming but are needed in most of the cases since many studied regions are far from LTE.

  6. 3-D radiative transfer in large-eddy simulations – experiences coupling the TenStream solver to the UCLA–LES

    Directory of Open Access Journals (Sweden)

    F. Jakub

    2015-10-01

    Full Text Available The recently developed three-dimensional TenStream radiative transfer solver was integrated into the UCLA–LES cloud resolving model. This work documents the overall performance of the TenStream solver as well as the technical challenges migrating from 1-D schemes to 3-D schemes. In particular the employed Monte-Carlo-Spectral-Integration needed to be re-examined in conjunction with 3-D radiative transfer. Despite the fact that the spectral sampling has to be performed uniformly over the whole domain, we find that the Monte-Carlo-Spectral-Integration remains valid. To understand the performance characteristics of the coupled TenStream solver, we conducted weak- as well as strong-scaling experiments. In this context, we investigate two matrix-preconditioner (GAMG and block-jacobi ILU and find that algebraic multigrid preconditioning performs well for complex scenes and highly parallelized simulations. The TenStream solver is tested for up to 4096 cores and shows a parallel scaling efficiency of 80–90 % on various supercomputers. Compared to the widely employed 1-D δ-Eddington two-stream solver, the computational costs for the radiative transfer solver alone increases by a factor of five to ten.

  7. 3D Heat Transfer Analysis of a Miniature Copper-Water Vapor Chamber with Wicked Pillars Array

    OpenAIRE

    Yong Jiang; Gerardo Carbajal; Sobhan, C.B.; Ji Li

    2013-01-01

    A three-dimensional analysis of the heat and mass transfer phenomena inside a vapor chamber is essential for correctly understanding its thermal performance limitations and structural optimization. This paper presents a complete three-dimensional numerical analysis and comparative study of two different miniature vapor chambers designs with identical external geometry and dimensions but different internal structures: one having a wicked pillar array and the other one without the wicked pillar...

  8. Transfer of Problem Solving Skills from Touchscreen to 3D Model by 3- to 6-Year-Olds

    Directory of Open Access Journals (Sweden)

    Joanne Tarasuik

    2017-09-01

    Full Text Available Although much published research purports that young children struggle to solve problems from screen-based media and to transfer learning from a virtual to a physical modality, Huber et al. (2016’s recent study on children solving the Tower of Hanoi (ToH problem on a touchscreen app offers a clear counter example. Huber et al. (2016 reported that children transferred learning from media to the physical world. As this finding arguably differs from that of prior research in this area, the current study tests whether the Huber et al. (2016 results could be replicated. Additionally, we extended the scope of the Huber et al. (2016 work by testing a broader age range, including children as young as 3 years, and using a culturally distinct participant pool. The results of the current study verified Huber et al.’s (2016 conclusion that 4- to 6-year-old children are capable of transferring the ToH learning from touchscreen devices to the physical version of the puzzle. Children under 4 years of age, in contrast, showed little ability to improve at the ToH problem regardless of the practice modality—suggesting that a different problem-solving task is required to probe very young children’s ability to learn from touchscreen apps.

  9. Infrared radiative transfer modelling in a 3D scattering cloudy atmosphere: Application to limb sounding measurements of cirrus

    Energy Technology Data Exchange (ETDEWEB)

    Ewen, G.B.L. [Department of Atmospheric, Oceanic and Planetary Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU (United Kingdom)]. E-mail: gewen@atm.ox.ac.uk; Grainger, R.G. [Department of Atmospheric, Oceanic and Planetary Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU (United Kingdom); Lambert, A. [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Baran, A.J. [Met Office, Exeter (United Kingdom)

    2005-11-15

    The Monte Carlo cloud scattering forward model (McClouds{sub F}M) has been developed to simulate limb radiative transfer in the presence of cirrus clouds, for the purposes of simulating cloud contaminated measurements made by an infrared limb sounding instrument, e.g. the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). A reverse method three-dimensional Monte Carlo transfer model is combined with a line-by-line model for radiative transfer through the non-cloudy atmosphere to explicitly account for the effects of multiple scattering by the clouds. The ice cloud microphysics are characterised by a size distribution of randomly oriented ice crystals, with the single scattering properties of the distribution determined by accurate calculations accounting for non-spherical habit. A comparison of McClouds{sub F}M simulations and real MIPAS spectra of cirrus shows good agreement. Of particular interest are several noticeable spectral features (i.e. H{sub 2}O absorption lines) in the data that are replicated in the simulations: these can only be explained by upwelling tropospheric radiation scattered into the line-of-sight by the cloud ice particles.

  10. Scattering and emission from inhomogeneous vegetation canopy and alien target beneath by using three-dimensional vector radiative transfer (3D-VRT) equation

    Energy Technology Data Exchange (ETDEWEB)

    Jin Yaqiu [Center for Wave Scattering and Remote Sensing, Fudan University, Shanghai 200433 (China)]. E-mail: yqjin@fundan.ac.cn; Liang Zichang [Center for Wave Scattering and Remote Sensing, Fudan University, Shanghai 200433 (China)

    2005-05-15

    To solve the 3D-VRT equation for the model of spatially inhomogeneous scatter media, the finite enclosure of the scatter media is geometrically divided, in both vertical z and transversal (x,y) directions, to form very thin multi-boxes. The zeroth order emission, first-order Mueller matrix of each thin box and an iterative approach of high-order radiative transfer are applied to derive high-order scattering and emission of whole inhomogeneous scatter media. Numerical results of polarized brightness temperature at microwave frequency and under different radiometer resolutions from inhomogeneous scatter model such as vegetation canopy and alien target beneath canopy are simulated and discussed.

  11. 3D Radiative Transfer Effects in Multi-Angle/Multi-Spectral Radio-Polarimetric Signals from a Mixture of Clouds and Aerosols Viewed by a Non-Imaging Sensor

    Science.gov (United States)

    Davis, Anthony B.; Garay, Michael J.; Xu, Feng; Qu, Zheng; Emde, Claudia

    2013-01-01

    When observing a spatially complex mix of aerosols and clouds in a single relatively large field-of-view, nature entangles their signals non-linearly through polarized radiation transport processes that unfold in the 3D position and direction spaces. In contrast, any practical forward model in a retrieval algorithm will use only 1D vector radiative transfer (vRT) in a linear mixing technique. We assess the difference between the observed and predicted signals using synthetic data from a high-fidelity 3D vRT model with clouds generated using a Large Eddy Simulation model and an aerosol climatology. We find that this difference is signal--not noise--for the Aerosol Polarimetry Sensor (APS), an instrument developed by NASA. Moreover, the worst case scenario is also the most interesting case, namely, when the aerosol burden is large, hence hase the most impact on the cloud microphysics and dynamics. Based on our findings, we formulate a mitigation strategy for these unresolved cloud adjacency effects assuming that some spatial information is available about the structure of the clouds at higher resolution from "context" cameras, as was planned for NASA's ill-fated Glory mission that was to carry the APS but failed to reach orbit. Application to POLDER (POLarization and Directionality of Earth Reflectances) data from the period when PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) was in the A-train is briefly discussed.

  12. Single-station seismic noise measures, microgravity, and 3D electrical tomographies to assess the sinkhole susceptibility: the "Il Piano" area (Elba Island - Italy) case study

    Science.gov (United States)

    Pazzi, Veronica; Di Filippo, Michele; Di Nezza, Maria; Carlà, Tommaso; Bardi, Federica; Marini, Federico; Fontanelli, Katia; Intrieri, Emanuele; Fanti, Riccardo

    2017-04-01

    Sudden subsurface collapse, cavities, and surface depressions, regardless of shape and origin, as well as doline are currently indicate by means of the term "sinkhole". This phenomenon can be classified according to a large variety of different schemes, depending on the dominant formation processes (soluble rocks karstic processes, acidic groundwater circulation, anthropogenic caves, bedrock poor geomechanical properties), and on the geological scenario behind the development of the phenomenon. Considering that generally sinkholes are densely clustered in "sinkhole prone areas", detection, forecasting, early warning, and effective monitoring are key aspects in sinkhole susceptibility assessment and risk mitigation. Nevertheless, techniques developed specifically for sinkhole detection, forecasting and monitoring are missing, probably because of a general lack of sinkhole risk awareness, and an intrinsic difficulties involved in detecting precursory sinkhole deformations before collapse. In this framework, integration of different indirect/non-invasive geophysical methods is the best practice approach. In this paper we present the results of an integrated geophysical survey at "Il Piano" (Elba Island - Italy), where at least nine sinkholes occurred between 2008 and 2014. 120 single-station seismic noise measures, 17 3D electrical tomographies (min area 140.3 m2, max area 10,188.9 m2; min electrode spacing 2 m, max electrode spacing 5 m), 964 measurement of microgravity spaced in a grid of 6 m to 8 m were carried out at the study area. The most likely origin for these sinkholes was considered related to sediment net erosion from the alluvium, caused by downward water circulation between aquifers. Therefore, the goals of the study were: i) obtaining a suitable geological and hydrogeological model of the area; ii) detecting possible cavities which could evolve in sinkholes, and finally iii) assess the sinkhole susceptibility of the area. Among the results of the

  13. 3-D electrical resistivity structure based on geomagnetic transfer functions exploring the features of arc magmatism beneath Kyushu, Southwest Japan Arc

    Science.gov (United States)

    Hata, Maki; Uyeshima, Makoto; Handa, Shun; Shimoizumi, Masashi; Tanaka, Yoshikazu; Hashimoto, Takeshi; Kagiyama, Tsuneomi; Utada, Hisashi; Munekane, Hiroshi; Ichiki, Masahiro; Fuji-ta, Kiyoshi

    2017-01-01

    Our 3-D electrical resistivity model clearly detects particular subsurface features for magmatism associated with subduction of the Philippine Sea Plate (PSP) in three regions: a southern and a northern volcanic region, and a nonvolcanic region on the island of Kyushu. We apply 3-D inversion analyses for geomagnetic transfer function data of a short-period band, in combination with results of a previous 3-D model that was determined by using Network-Magnetotelluric response function data of a longer-period band as an initial model in the present inversion to improve resolution at shallow depths; specifically, a two-stage inversion is used instead of a joint inversion. In contrast to the previous model, the presented model clearly reveals a conductive block on the back-arc side of Kirishima volcano at shallow depths of 50 km; the block is associated with hydrothermal fluids and hydrothermal alteration zones related to the formation of epithermal gold deposits. A second feature revealed by the model is another conductive block regarded as upwelling fluids, extending from the upper surface of the PSP in the mantle under Kirishima volcano in the southern volcanic region. Third, a resistive crustal layer, which confines the conductive block in the mantle, is distributed beneath the nonvolcanic region. Fourth, our model reveals a significant resistive block, which extends below the continental Moho at the fore-arc side of the volcanic front and extends into the nonvolcanic region in central Kyushu.

  14. Noise-assisted energy transfer in quantum networks and light-harvesting complexes

    CERN Document Server

    Chin, Alex W; Caruso, Filippo; Huelga, Susana F; Plenio, Martin B

    2009-01-01

    We provide physically intuitive mechanisms for the effect of noise on excitation energy transfer (EET) in networks. Using these mechanisms of dephasing-assisted transport (DAT) in a hybrid basis of both excitons and sites, we shed new light on how noise enables energy transfer with efficiencies well above 90% across light harvesting molecules, like the Fenna-Matthew-Olson (FMO) complex. We demonstrate explicitly how noise alters the pathways of energy transfer across the complex, suppressing ineffective pathways and facilitating direct ones to the reaction centre. This understanding opens up a new paradigm of `noise-engineering' by which EET can be optimized in artificial light-harvesting structures.

  15. Determination of time of death in forensic science via a 3-D whole body heat transfer model.

    Science.gov (United States)

    Bartgis, Catherine; LeBrun, Alexander M; Ma, Ronghui; Zhu, Liang

    2016-12-01

    This study is focused on developing a whole body heat transfer model to accurately simulate temperature decay in a body postmortem. The initial steady state temperature field is simulated first and the calculated weighted average body temperature is used to determine the overall heat transfer coefficient at the skin surface, based on thermal equilibrium before death. The transient temperature field postmortem is then simulated using the same boundary condition and the temperature decay curves at several body locations are generated for a time frame of 24h. For practical purposes, curve fitting techniques are used to replace the simulations with a proposed exponential formula with an initial time delay. It is shown that the obtained temperature field in the human body agrees very well with that in the literature. The proposed exponential formula provides an excellent fit with an R(2) value larger than 0.998. For the brain and internal organ sites, the initial time delay varies from 1.6 to 2.9h, when the temperature at the measuring site does not change significantly from its original value. The curve-fitted time constant provides the measurement window after death to be between 8h and 31h if the brain site is used, while it increases 60-95% at the internal organ site. The time constant is larger when the body is exposed to colder air, since a person usually wears more clothing when it is cold outside to keep the body warm and comfortable. We conclude that a one-size-fits-all approach would lead to incorrect estimation of time of death and it is crucial to generate a database of cooling curves taking into consideration all the important factors such as body size and shape, environmental conditions, etc., therefore, leading to accurate determination of time of death.

  16. Nitrogen transfers off Walvis Bay: a 3-D coupled physical/biogeochemical modeling approach in the Namibian upwelling system

    Science.gov (United States)

    Gutknecht, E.; Dadou, I.; Marchesiello, P.; Cambon, G.; Le Vu, B.; Sudre, J.; Garçon, V.; Machu, E.; Rixen, T.; Kock, A.; Flohr, A.; Paulmier, A.; Lavik, G.

    2013-06-01

    Eastern boundary upwelling systems (EBUS) are regions of high primary production often associated with oxygen minimum zones (OMZs). They represent key regions for the oceanic nitrogen (N) cycle. By exporting organic matter (OM) and nutrients produced in the coastal region to the open ocean, EBUS can play an important role in sustaining primary production in subtropical gyres. However, losses of fixed inorganic N through denitrification and anammox processes take place in oxygen depleted environments such as EBUS, and can potentially mitigate the role of these regions as a source of N to the open ocean. EBUS can also represent a considerable source of nitrous oxide (N2O) to the atmosphere, affecting the atmospheric budget of N2O. In this paper a 3-D coupled physical/biogeochemical model (ROMS/BioEBUS) is used to investigate the N budget in the Namibian upwelling system. The main processes linked to EBUS and associated OMZs are taken into account. The study focuses on the northern part of the Benguela upwelling system (BUS), especially the Walvis Bay area (between 22° S and 24° S) where the OMZ is well developed. Fluxes of N off the Walvis Bay area are estimated in order to understand and quantify (1) the total N offshore export from the upwelling area, representing a possible N source that sustains primary production in the South Atlantic subtropical gyre; (2) export production and subsequent losses of fixed N via denitrification and anammox under suboxic conditions (O2 < 25 mmol O2 m-3); and (3) the N2O emission to the atmosphere in the upwelling area. In the mixed layer, the total N offshore export is estimated as 8.5 ± 3.9 × 1010 mol N yr-1 at 10° E off the Walvis Bay area, with a mesoscale contribution of 20%. Extrapolated to the whole BUS, the coastal N source for the subtropical gyre corresponds to 0.1 ± 0.04 mol N m-2 yr-1. This N flux represents a major source of N for the gyre compared with other N sources, and contributes 28% of the new primary

  17. Nitrogen transfers off Walvis Bay: a 3-D coupled physical/biogeochemical modeling approach in the Namibian upwelling system

    Directory of Open Access Journals (Sweden)

    E. Gutknecht

    2013-06-01

    Full Text Available Eastern boundary upwelling systems (EBUS are regions of high primary production often associated with oxygen minimum zones (OMZs. They represent key regions for the oceanic nitrogen (N cycle. By exporting organic matter (OM and nutrients produced in the coastal region to the open ocean, EBUS can play an important role in sustaining primary production in subtropical gyres. However, losses of fixed inorganic N through denitrification and anammox processes take place in oxygen depleted environments such as EBUS, and can potentially mitigate the role of these regions as a source of N to the open ocean. EBUS can also represent a considerable source of nitrous oxide (N2O to the atmosphere, affecting the atmospheric budget of N2O. In this paper a 3-D coupled physical/biogeochemical model (ROMS/BioEBUS is used to investigate the N budget in the Namibian upwelling system. The main processes linked to EBUS and associated OMZs are taken into account. The study focuses on the northern part of the Benguela upwelling system (BUS, especially the Walvis Bay area (between 22° S and 24° S where the OMZ is well developed. Fluxes of N off the Walvis Bay area are estimated in order to understand and quantify (1 the total N offshore export from the upwelling area, representing a possible N source that sustains primary production in the South Atlantic subtropical gyre; (2 export production and subsequent losses of fixed N via denitrification and anammox under suboxic conditions (O2 2 m−3; and (3 the N2O emission to the atmosphere in the upwelling area. In the mixed layer, the total N offshore export is estimated as 8.5 ± 3.9 × 1010 mol N yr−1 at 10° E off the Walvis Bay area, with a mesoscale contribution of 20%. Extrapolated to the whole BUS, the coastal N source for the subtropical gyre corresponds to 0.1 ± 0.04 mol N m−2 yr−1. This N flux represents a major source of N for the gyre compared with other N sources, and contributes 28% of the new primary

  18. 3D CFD Electrochemical and Heat Transfer Model of an Integrated-Planar Solid Oxide Electrolysis Cells

    Energy Technology Data Exchange (ETDEWEB)

    Grant Hawkes; James E. O' Brien

    2008-10-01

    A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in a new novel integrated planar porous-tube supported solid oxide electrolysis cell (SOEC). The model is of several integrated planar cells attached to a ceramic support tube. This design is being evaluated with modeling at the Idaho National Laboratory. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, activation over-potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Mean per-cell area-specific-resistance (ASR) values decrease with increasing current density. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Effects of variations in operating temperature, gas flow rate, cathode and anode exchange current density, and contact resistance from the base case are presented. Contour plots of local electrolyte temperature, current density, and Nernst potential indicated the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Results are discussed for using this design in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal efficiency, cell electrical efficiency, and Gibbs free energy are discussed and reported herein.

  19. Collaborative Project. 3D Radiative Transfer Parameterization Over Mountains/Snow for High-Resolution Climate Models. Fast physics and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Liou, Kuo-Nan [Univ. of California, Los Angeles, CA (United States)

    2016-02-09

    Under the support of the aforementioned DOE Grant, we have made two fundamental contributions to atmospheric and climate sciences: (1) Develop an efficient 3-D radiative transfer parameterization for application to intense and intricate inhomogeneous mountain/snow regions. (2) Innovate a stochastic parameterization for light absorption by internally mixed black carbon and dust particles in snow grains for understanding and physical insight into snow albedo reduction in climate models. With reference to item (1), we divided solar fluxes reaching mountain surfaces into five components: direct and diffuse fluxes, direct- and diffuse-reflected fluxes, and coupled mountain-mountain flux. “Exact” 3D Monte Carlo photon tracing computations can then be performed for these solar flux components to compare with those calculated from the conventional plane-parallel (PP) radiative transfer program readily available in climate models. Subsequently, Parameterizations of the deviations of 3D from PP results for five flux components are carried out by means of the multiple linear regression analysis associated with topographic information, including elevation, solar incident angle, sky view factor, and terrain configuration factor. We derived five regression equations with high statistical correlations for flux deviations and successfully incorporated this efficient parameterization into WRF model, which was used as the testbed in connection with the Fu-Liou-Gu PP radiation scheme that has been included in the WRF physics package. Incorporating this 3D parameterization program, we conducted simulations of WRF and CCSM4 to understand and evaluate the mountain/snow effect on snow albedo reduction during seasonal transition and the interannual variability for snowmelt, cloud cover, and precipitation over the Western United States presented in the final report. With reference to item (2), we developed in our previous research a geometric-optics surface-wave approach (GOS) for the

  20. 3D discrete angiogenesis dynamic model and stochastic simulation for the assessment of blood perfusion coefficient and impact on heat transfer between nanoparticles and malignant tumors.

    Science.gov (United States)

    Yifat, Jonathan; Gannot, Israel

    2015-03-01

    Early detection of malignant tumors plays a crucial role in the survivability chances of the patient. Therefore, new and innovative tumor detection methods are constantly searched for. Tumor-specific magnetic-core nano-particles can be used with an alternating magnetic field to detect and treat tumors by hyperthermia. For the analysis of the method effectiveness, the bio-heat transfer between the nanoparticles and the tissue must be carefully studied. Heat diffusion in biological tissue is usually analyzed using the Pennes Bio-Heat Equation, where blood perfusion plays an important role. Malignant tumors are known to initiate an angiogenesis process, where endothelial cell migration from neighboring vasculature eventually leads to the formation of a thick blood capillary network around them. This process allows the tumor to receive its extensive nutrition demands and evolve into a more progressive and potentially fatal tumor. In order to assess the effect of angiogenesis on the bio-heat transfer problem, we have developed a discrete stochastic 3D model & simulation of tumor-induced angiogenesis. The model elaborates other angiogenesis models by providing high resolution 3D stochastic simulation, capturing of fine angiogenesis morphological features, effects of dynamic sprout thickness functions, and stochastic parent vessel generator. We show that the angiogenesis realizations produced are well suited for numerical bio-heat transfer analysis. Statistical study on the angiogenesis characteristics was derived using Monte Carlo simulations. According to the statistical analysis, we provide analytical expression for the blood perfusion coefficient in the Pennes equation, as a function of several parameters. This updated form of the Pennes equation could be used for numerical and analytical analyses of the proposed detection and treatment method.

  1. An artificial neural network approach for aerodynamic performance retention in airframe noise reduction design of a 3D swept wing model

    Institute of Scientific and Technical Information of China (English)

    Tao Jun; Sun Gang

    2016-01-01

    With the progress of high-bypass turbofan and the innovation of silencing nacelle in engine noise reduction, airframe noise has now become another important sound source besides the engine noise. Thus, reducing airframe noise makes a great contribution to the overall noise reduction of a civil aircraft. However, reducing airframe noise often leads to aerodynamic perfor-mance loss in the meantime. In this case, an approach based on artificial neural network is intro-duced. An established database serves as a basis and the training sample of a back propagation (BP) artificial neural network, which uses confidence coefficient reasoning method for optimization later on. Then the most satisfactory configuration is selected for validating computations through the trained BP network. On the basis of the artificial neural network approach, an optimization pro-cess of slat cove filler (SCF) for high lift devices (HLD) on the Trap Wing is presented. Aerody-namic performance of both the baseline and optimized configurations is investigated through unsteady detached eddy simulations (DES), and a hybrid method, which combines unsteady DES method with acoustic analogy theory, is employed to validate the noise reduction effect. The numerical results indicate not merely a significant airframe noise reduction effect but also excel-lent aerodynamic performance retention simultaneously.

  2. An artificial neural network approach for aerodynamic performance retention in airframe noise reduction design of a 3D swept wing model

    Directory of Open Access Journals (Sweden)

    Tao Jun

    2016-10-01

    Full Text Available With the progress of high-bypass turbofan and the innovation of silencing nacelle in engine noise reduction, airframe noise has now become another important sound source besides the engine noise. Thus, reducing airframe noise makes a great contribution to the overall noise reduction of a civil aircraft. However, reducing airframe noise often leads to aerodynamic performance loss in the meantime. In this case, an approach based on artificial neural network is introduced. An established database serves as a basis and the training sample of a back propagation (BP artificial neural network, which uses confidence coefficient reasoning method for optimization later on. Then the most satisfactory configuration is selected for validating computations through the trained BP network. On the basis of the artificial neural network approach, an optimization process of slat cove filler (SCF for high lift devices (HLD on the Trap Wing is presented. Aerodynamic performance of both the baseline and optimized configurations is investigated through unsteady detached eddy simulations (DES, and a hybrid method, which combines unsteady DES method with acoustic analogy theory, is employed to validate the noise reduction effect. The numerical results indicate not merely a significant airframe noise reduction effect but also excellent aerodynamic performance retention simultaneously.

  3. New insights in the velocity dependency of the external mass transfer coefficient in 2D and 3D porous media for liquid chromatography.

    Science.gov (United States)

    Deridder, Sander; Desmet, Gert

    2012-03-02

    Numerical calculations of the mobile zone mass transfer rate in a variety of ordered 2D and 3D structures are presented. These calculations are in line with earlier theoretical and experimental findings made in the field of chemical engineering and suggest that the Sherwood-number (Sh(m)) appearing in the mobile phase mass transfer term of the general plate height expression of liquid chromatography is not correctly predicted by the Wilson-Geankoplis--or the Kataoka--or the penetration model expression that have been used up to now to in the field of LC, and that at least more research is needed before these expressions can be continued to be used with confidence. The aforementioned expressions were obtained by neglecting the effect of axial dispersion on the mass transfer process, and it seems that they therefore underestimate the true Sh(m)-number by a factor of 2-5 around the minimum of the van Deemter-curve. New correlations describing the variation of the Sh(m)-coefficient as a function of the reduced velocity for a number of other packing geometries (tetrahedral monolith, 2D pillar array) are proposed. These correlations are in agreement with earlier theoretical and experimental studies showing that at low velocities the local-driving force-based Sh(m)-value is of the order of 10-20 in a packed bed column with an external porosity on the order of 35-40%.

  4. Spherical 3D isotropic wavelets

    Science.gov (United States)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2012-04-01

    Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html

  5. 3D Micro-topography of Transferred Laboratory and Natural Ice Crystal Surfaces Imaged by Cryo and Environmental Scanning Electron Microscopy

    Science.gov (United States)

    Magee, N. B.; Boaggio, K.; Bancroft, L.; Bandamede, M.

    2015-12-01

    Recent work has highlighted micro-scale roughness on the surfaces of ice crystals grown and imaged in-situ within the chambers of environmental scanning electron microscopes (ESEM). These observations appear to align with theoretical and satellite observations that suggest a prevalence of rough ice in cirrus clouds. However, the atmospheric application of the lab observations are indeterminate because the observations have been based only on crystals grown on substrates and in pure-water vapor environments. In this work, we present details and results from the development of a transfer technique which allows natural and lab-grown ice and snow crystals to be captured, preserved, and transferred into the ESEM for 3D imaging. Ice crystals were gathered from 1) natural snow, 2) a balloon-borne cirrus particle capture device, and 3) lab-grown ice crystals from a diffusion chamber. Ice crystals were captured in a pre-conditioned small-volume (~1 cm3) cryo-containment cell. The cell was then sealed closed and transferred to a specially-designed cryogenic dewer (filled with liquid nitrogen or crushed dry ice) for transport to a new Hitachi Field Emission, Variable Pressure SEM (SU-5000). The cryo-cell was then removed from the dewer and quickly placed onto the pre-conditioned cryo transfer stage attached to the ESEM (Quorum 3010T). Quantitative 3D topographical digital elevation models of ice surfaces are reported from SEM for the first time, including a variety of objective measures of statistical surface roughness. The surfaces of the transported crystals clearly exhibit signatures of mesoscopic roughening that are similar to examples of roughness seen in ESEM-grown crystals. For most transported crystals, the habits and crystal edges are more intricate that those observed for ice grown directly on substrates within the ESEM chamber. Portions of some crystals do appear smooth even at magnification greater than 1000x, a rare observation in our ESEM-grown crystals. The

  6. Magnetization transfer in human achilles tendon assessed by a 3D ultrashort echo time sequence. Quantitative examinations in healthy volunteers at 3T

    Energy Technology Data Exchange (ETDEWEB)

    Syha, R.; Grosse, U.; Springer, F. [Tuebingen Univ. (Germany). Diagnostic and Interventional Radiology; Tuebingen Univ. (Germany). Section on Experimental Radiology; Martirosian, P.; Schick, F. [Tuebingen Univ. (Germany). Section on Experimental Radiology; Ketelsen, D.; Claussen, C.D. [Tuebingen Univ. (Germany). Diagnostic and Interventional Radiology

    2011-11-15

    Magnetization transfer contrast (MTC) imaging provides insight into interactions between free and bounded water. Newly developed ultrashort echo time (UTE) sequences implemented on whole-body magnetic resonance (MR) scanners allow MTC imaging in tissues with extremely fast signal decay such as tendons. The aim of this study was to develop a technique for the quantification of the MT effect in healthy Achilles tendons in-vivo at 3 Tesla. 16 normal tendons of volunteers with no history of tendinopathy were examined using a 3D-UTE sequence with a rectangular on-resonant excitation pulse and a Fermi-shaped off-resonant MT preparation pulse. The frequency of the MT pulse was varied from 1 to 5 kHz. MT effects were calculated in terms of the MT ratio (MTR) between measurements without and with MT preparation. Direct saturation effects of MT preparation on the signal intensity were evaluated using numerical simulation of Bloch equations. One patient with tendinopathy was examined to exemplarily show changes of MTR under pathologic conditions. Calculation of MTR data was feasible in all examined tendons and showed a decrease from 0.53 {+-} 0.05 to 0.25 {+-} 0.03 (1 kHz to 5 kHz) for healthy volunteers. Evaluation of variation with gender and dominance of ankle revealed no significant differences (p > 0.05). In contrast, the patient with confirmed tendinopathy showed MTR values between 0.36 (1 kHz) and 0.19 (5 kHz). MT effects in human Achilles tendons can be reliably assessed in-vivo using a 3D UTE sequence at 3 T. All healthy tendons showed similar MTR values (coefficient of variation 10.0 {+-} 1.2 %). The examined patient showed a clearly different MT effect revealing a changed microstructure in the case of tendinopathy. (orig.)

  7. Fast 3D coronary artery contrast-enhanced magnetic resonance angiography with magnetization transfer contrast, fat suppression and parallel imaging as applied on an anthropomorphic moving heart phantom.

    Science.gov (United States)

    Irwan, Roy; Rüssel, Iris K; Sijens, Paul E

    2006-09-01

    A magnetic resonance sequence for high-resolution imaging of coronary arteries in a very short acquisition time is presented. The technique is based on fast low-angle shot and uses fat saturation and magnetization transfer contrast prepulses to improve image contrast. GeneRalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) is implemented to shorten acquisition time. The sequence was tested on a moving anthropomorphic silicone heart phantom where the coronary arteries were filled with a gadolinium contrast agent solution, and imaging was performed at varying heart rates using GRAPPA. The clinical relevance of the phantom was validated by comparing the myocardial relaxation times of the phantom's homogeneous silicone cardiac wall to those of humans. Signal-to-noise ratio and contrast-to-noise ratio were higher when parallel imaging was used, possibly benefiting from the acquisition of one partition per heartbeat. Another advantage of parallel imaging for visualizing the coronary arteries is that the entire heart can be imaged within a few breath-holds.

  8. 3D video

    CERN Document Server

    Lucas, Laurent; Loscos, Céline

    2013-01-01

    While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century.The chapters in this book cover a large spectrum of areas connected to 3D video, which are presented both theoretically and technologically, while taking into account both physiological and perceptual aspects. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide th

  9. 3D Animation Essentials

    CERN Document Server

    Beane, Andy

    2012-01-01

    The essential fundamentals of 3D animation for aspiring 3D artists 3D is everywhere--video games, movie and television special effects, mobile devices, etc. Many aspiring artists and animators have grown up with 3D and computers, and naturally gravitate to this field as their area of interest. Bringing a blend of studio and classroom experience to offer you thorough coverage of the 3D animation industry, this must-have book shows you what it takes to create compelling and realistic 3D imagery. Serves as the first step to understanding the language of 3D and computer graphics (CG)Covers 3D anim

  10. BRIEF COMMUNICATIONS: Parametric noise in a nonlinear frequency up-converter of infrared signals by two-photon pumping of 3S-3D and 3S-5S transitions in sodium vapor

    Science.gov (United States)

    Galaĭchuk, Yu A.; Kudryashov, V. A.; Strizhevskiĭ, V. L.; Fontaniĭ, V. A.; Yashkir, Yu N.

    1985-07-01

    A systematic analysis was made of the spectral characteristics of resonance four-photon parametric conversion of infrared radiation as a result of two-photon resonance pumping of the 3S-3D and 3S-5S transitions in sodium and the influence of these characteristics on the threshold sensitivity of a parametric conversion detector was investigated. An experimental study was made of the characteristics of the noise radiation generated as a result of hyperparametric scattering. The results obtained can be used to select the optimal parameters of high-sensitivity detectors of weak infrared signals by parametric conversion in alkali metal vapors.

  11. Performance Analysis of Transfer function Based Active Noise Cancellation Method Using Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    Prof. Vikas Gupta

    2014-01-01

    Full Text Available Due to the exponential increase of noise pollution, the demand for noise controlling system is also increases. Basically two types of techniques are used for noise cancellation active and passive. But passive techniques are inactive for low frequency noise, hence there is an increasing demand of research and developmental work on active noise cancellation techniques. In this paper we introduce a new method in the active noise cancellation system. This new method is the transfer function based method which used Genetic and Particle swarm optimization (PSO algorithm for noise cancellation. This method is very simple and efficient for low frequency noise cancellation. Here we analysis the performance of this method in the presence of white Gaussian noise and compare the results of Particle swarm optimization (PSO and Genetic algorithm. Both algorithms are suitable for different environment, so we observe their performance in different fields. In this paper a comparative study of Genetic and Particle swarm optimization (PSO is described with proper results. It will go in depth what exactly transfer function method, how it work and advantages over neural network based method

  12. The thermal structure and the location of the snow line in the protosolar nebula: axisymmetric models with full 3-D radiative transfer

    CERN Document Server

    Min, M; Kama, M; Dominik, C

    2010-01-01

    The precise location of the water ice condensation front ('snow line') in the protosolar nebula has been a debate for a long time. Its importance stems from the expected substantial jump in the abundance of solids beyond the snow line, which is conducive to planet formation, and from the higher stickiness in collisions of ice-coated dust grains, which may help the process of coagulation of dust and the formation of planetesimals. In an optically thin nebula, the location of the snow line is easily calculated to be around 3 AU. However, in its first 5 to 10 million years, the solar nebula was optically thick, implying a smaller snow line radius due to shielding from direct sunlight, but also a larger radius because of viscous heating. Several models have attempted to treat these opposing effects. However, until recently treatments beyond an approximate 1+1D radiative transfer were unfeasible. We revisit the problem with a fully self-consistent 3D treatment in an axisymmetric disk model, including a density-dep...

  13. Study of energy transfer from the solar wind to Earth's magnetosphere using the 3D- MHD BATS-R-US global model

    Science.gov (United States)

    Jauer, P. R.; Gonzalez, W. D.; de Souza Costa, C. L.; Souza, V. M.

    2013-12-01

    The interaction, transport and conversion of energy between the solar wind and Earth's magnetosphere have been studied for decades through in situ measurements and Magnetohydrodynamics simulation, (MHD). Nevertheless, due to the vast regions of space and nonlinearities of the physical processes there are many questions that still remain without conclusive answers. Currently, the MHD simulation is a powerful tool that helps other means of already existing research, even within its theoretical limitation; it provides information of the space regions where in situ measurements are rare or nonexistent. The aim of this work is the study of energy transfer from the solar wind through the calculation of the divergence of the Poynting vector for the inner regions of the Earth's magnetosphere, especially the magneto tail using 3D global MHD numerical code Space Weather Modelling Framework (SWMF) / (Block Adaptive Tree Solar wind Roe Upwind Scheme) (BATS-R-US), developed by the University of Michigan. We conducted a simulation study for the event that occurred on September 21-27, 1999, for which the peak value of the interplanetary magnetic field was -22 nT, and gave rise to an intense magnetic storm with peak Dst of -160 nT. Furthermore, we compare the results of the power estimated by the model - through the integration of the Poynting vector in rectangular region of the tail, with a domain -130 powerful tool to reproduce the observations with a good degree of reliability.

  14. Investigating the Utility of Wavelet Transforms for Inverting a 3-D Radiative Transfer Model Using Hyperspectral Data to Retrieve Forest LAI

    Directory of Open Access Journals (Sweden)

    Jean P. Gastellu-Etchegorry

    2013-05-01

    Full Text Available The need for an efficient and standard technique for optimal spectral sampling of hyperspectral data during the inversion of canopy reflectance models has been the subject of many studies. The objective of this study was to investigate the utility of the discrete wavelet transform (DWT for extracting useful features from hyperspectral data with which forest LAI can be estimated through inversion of a three dimensional radiative transfer model, the Discrete Anisotropy Radiative Transfer (DART model. DART, coupled with the leaf optical properties model PROSPECT, was inverted with AVIRIS data using a look-up-table (LUT-based inversion approach. We used AVIRIS data and in situ LAI measurements from two different hardwood forested sites in Wisconsin, USA. Prior to inversion, model-simulated and AVIRIS hyperspectral data were transformed into discrete wavelet coefficients using Haar wavelets. The LUT inversion was performed with three different datasets, the original reflectance bands, the full set of wavelet extracted features, and two wavelet subsets containing 99.99% and 99.0% of the cumulative energy of the original signal. The energy subset containing 99.99% of the cumulative signal energy provided better estimates of LAI (RMSE = 0.46, R2 = 0.77 than the original spectral bands (RMSE = 0.60, R2 = 0.47. The results indicate that the discrete wavelet transform can increase the accuracy of LAI estimates by improving the LUT-based inversion of DART (and, potentially, by implication, other terrestrial radiative transfer models using hyperspectral data. The improvement in accuracy of LAI estimates is potentially due to different properties of wavelet analysis such as multi-scale representation, dimensionality reduction, and noise removal.

  15. 3D Surgical Simulation

    Science.gov (United States)

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  16. A framework for geometry acquisition, 3-D printing, simulation, and measurement of head-related transfer functions with a focus on hearing-assistive devices

    DEFF Research Database (Denmark)

    Harder, Stine; Paulsen, Rasmus Reinhold; Larsen, Martin

    2016-01-01

    of a three-dimensional (3D) head model for acquisition of individual HRTFs. Two aspects were investigated; whether a 3D-printed model can replace measurements on a human listener and whether numerical simulations can replace acoustic measurements. For this purpose, HRTFs were acoustically measured for four...... human listeners and for a 3D printed head model of one of these listeners. Further, HRTFs were simulated by applying the finite element method to the 3D head model. The monaural spectral features and spectral distortions were very similar between re-measurements and between human and printed...

  17. Synthesis and Exploratory Catalysis of 3d Metals: Group-Transfer Reactions, and the Activation and Functionalization of Small Molecules Including Greenhouse Gases

    Energy Technology Data Exchange (ETDEWEB)

    Mindiola, Daniel J.

    2014-05-07

    Our work over the past three years has resulted in the development of electron rich and low-coordinate vanadium fragments, molecular nitrides of vanadium and parent imide systems of titanium, and the synthesis of phosphorus containing molecules of the 3d transition metal series. Likewise, with financial support from BES Division in DOE (DE-FG02-07ER15893), we now completed the full characterization of the first single molecular magnet (SMM) of Fe(III). We demonstrated that this monomeric form of Fe(III) has an unusual slow relaxation of the magnetization under zero applied field. To make matters more interesting, this system also undergoes a rare example of an intermediate to high-spin transition (an S = 3/2 to S = 5/2 transition). In 2010 we reported the synthesis of the first neutral and low-coordinate vanadium complexes having the terminal nitride functionality. We have now completed a full study to understand formation of the nitride ligand from the metastable azide precursor, and have also explored the reactivity of the nitride ligand in the context of incomplete and complete N-atom transfer. During the 2010-2013 period we also discovered a facile approach to assemble low-coordinate and low-valent vanadium(II) complexes and exploit their multielectron chemistry ranging from 1-3 electrons. Consequently, we can now access 3d ligand frameworks such as cyclo-P3 (and its corresponding radical anion), nitride radical anions and cations, low-coordinate vanadium oxo’s, and the first example of a vanadium thionitrosyl complex. A cis-divacant iron(IV) imido having some ligand centered radical has been also discovered, and we are in the process of elucidating its electronic structure (in particular the sign of zero field splitting and the origin of its magnitude), bonding and reactivity. We have also revisited some paramagnetic and classic metallocene compounds with S >1/2 ground states in order to understand their reactivity patterns and electronic structure. Lastly

  18. Broadband sub-millimeter wave amplifer module with 38dB gain and 8.3dB noise figure

    Science.gov (United States)

    Sarkozy, S.; Leong, K.; Lai, R.; Leakey, R.; Yoshida, W.; Mei, X.; Lee, J.; Liu, P.-H.; Gorospe, B.; Deal, W. R.

    2011-05-01

    Broadband sub-millimeter wave technology has received significant attention for potential applications in security, medical, and military imaging. Despite theoretical advantages of reduced size, weight, and power compared to current millimeter-wave systems, sub-millimeter-wave systems are hampered by a fundamental lack of amplification with sufficient gain and noise figure properties. We report on the development of a sub-millimeter wave amplifier module as part of a broadband pixel operating from 300-350 GHz, biased off of a single 2V power supply. Over this frequency range, > 38 dB gain and antenna and diode detector. The low noise amplifier Sub-Millimeter-wave Monolithic Integrated Circuit (SMMIC) was originally developed under the DARPA SWIFT and THz Electronics programs and is based on sub 50 nm Indium Arsenide Composite Channel (IACC) transistor technology with a projected maximum oscillation frequency fmax > 1.0 THz. This development and demonstration may bring to life future sub-millimeter-wave and THz applications such as solutions to brown-out problems, ultra-high bandwidth satellite communication cross-links, and future planetary exploration missions.

  19. EUROPEANA AND 3D

    Directory of Open Access Journals (Sweden)

    D. Pletinckx

    2012-09-01

    Full Text Available The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  20. Markerless 3D Face Tracking

    DEFF Research Database (Denmark)

    Walder, Christian; Breidt, Martin; Bulthoff, Heinrich

    2009-01-01

    We present a novel algorithm for the markerless tracking of deforming surfaces such as faces. We acquire a sequence of 3D scans along with color images at 40Hz. The data is then represented by implicit surface and color functions, using a novel partition-of-unity type method of efficiently...... combining local regressors using nearest neighbor searches. Both these functions act on the 4D space of 3D plus time, and use temporal information to handle the noise in individual scans. After interactive registration of a template mesh to the first frame, it is then automatically deformed to track...... the scanned surface, using the variation of both shape and color as features in a dynamic energy minimization problem. Our prototype system yields high-quality animated 3D models in correspondence, at a rate of approximately twenty seconds per timestep. Tracking results for faces and other objects...

  1. IZDELAVA TISKALNIKA 3D

    OpenAIRE

    Brdnik, Lovro

    2015-01-01

    Diplomsko delo analizira trenutno stanje 3D tiskalnikov na trgu. Prikazan je razvoj in principi delovanja 3D tiskalnikov. Predstavljeni so tipi 3D tiskalnikov, njihove prednosti in slabosti. Podrobneje je predstavljena zgradba in delovanje koračnih motorjev. Opravljene so meritve koračnih motorjev. Opisana je programska oprema za rokovanje s 3D tiskalniki in komponente, ki jih potrebujemo za izdelavo. Diploma se oklepa vprašanja, ali je izdelava 3D tiskalnika bolj ekonomična kot pa naložba v ...

  2. 3D model of Campo de Dalías basement from H/V spectral ratio of ambient seismic noise

    Science.gov (United States)

    García-Jerez, Antonio; Seivane, Helena; Luzón, Francisco; Navarro, Manuel; Molina, Luis; Aranda, Carolina; Piña-Flores, José; Navarro, Francisco; Sánchez-Martos, Francisco; Vidal, Francisco; Posadas, Antonio M.; Sánchez-Sesma, Francisco J.

    2017-04-01

    Campo de Dalías is a large coastal plain in the southeastern mountain front of the Betic Cordillera (SE of the Iberian Peninsula), being one of the most seismically active regions of Spain. This area has a population of about 213.000 inhabitants, with a high growth rate during the last decades due to the development of intensive agricultural activities. Seismic risk assessment and hydrogeological issues are major topics of interest for this area, relaying on the knowledge of the geophysical properties of the basin. A passive seismic survey has been conducted throughout the basin. We have recorded ambient noise at 340 sites located approximately on the vertexes of a 1000 x 1000 m square grid, as well as around a set of deep boreholes reaching the Triassic basement. These broad-band records, of at least 45 minutes long each, have been analyzed by using the horizontal-to-vertical spectral ratio method (H/V). The spectral analysis shows clear H/V peaks with periods ranging from 0.3 s to 4 s, approximately, associated to relevant contrasts in S-wave velocity (Vs) at depth. Simulations based on the diffuse field approach (Sánchez-Sesma et al. 2011) show that long periods are explained by the effect of several hundred meters of soft sedimentary rocks (mainly Miocene marls). Well-developed high-frequency secondary peaks have been found in some specific zones (e.g. N of Roquetas de Mar town). Then, fundamental frequencies and basement depths at borehole sites have been fitted by means of a power law, which can be applied down to 900 - 970m. Larger depths are estimated by extrapolation. This relationship has been used to map the basement (main Vs contrast) throughout the plain. The prospected basement model describes well the main structural features of this smoothly folded region, namely, the El Ejido Synform and the Guardias Viejas Antiform, with ENE-WSW-trend. These features are shifted toward the south in comparison with Pedrera et al. (2015). The homogeneous

  3. Structure Segmentation and Transfer Faults in the Marcellus Shale, Clearfield County, Pennsylvania: Implications for Gas Recovery Efficiency and Risk Assessment Using 3D Seismic Attribute Analysis

    Science.gov (United States)

    Roberts, Emily D.

    The Marcellus Shale has become an important unconventional gas reservoir in the oil and gas industry. Fractures within this organic-rich black shale serve as an important component of porosity and permeability useful in enhancing production. Horizontal drilling is the primary approach for extracting hydrocarbons in the Marcellus Shale. Typically, wells are drilled perpendicular to natural fractures in an attempt to intersect fractures for effective hydraulic stimulation. If the fractures are contained within the shale, then hydraulic fracturing can enhance permeability by further breaking the already weakened rock. However, natural fractures can affect hydraulic stimulations by absorbing and/or redirecting the energy away from the wellbore, causing a decreased efficiency in gas recovery, as has been the case for the Clearfield County, Pennsylvania study area. Estimating appropriate distances away from faults and fractures, which may limit hydrocarbon recovery, is essential to reducing the risk of injection fluid migration along these faults. In an attempt to mitigate the negative influences of natural fractures on hydrocarbon extraction within the Marcellus Shale, fractures were analyzed through the aid of both traditional and advanced seismic attributes including variance, curvature, ant tracking, and waveform model regression. Through the integration of well log interpretations and seismic data, a detailed assessment of structural discontinuities that may decrease the recovery efficiency of hydrocarbons was conducted. High-quality 3D seismic data in Central Pennsylvania show regional folds and thrusts above the major detachment interval of the Salina Salt. In addition to the regional detachment folds and thrusts, cross-regional, northwest-trending lineaments were mapped. These lineaments may pose a threat to hydrocarbon productivity and recovery efficiency due to faults and fractures acting as paths of least resistance for induced hydraulic stimulation fluids

  4. Noise-assisted energy transfer in quantum networks and light-harvesting complexes

    Energy Technology Data Exchange (ETDEWEB)

    Chin, A W; Caruso, F; Huelga, S F; Plenio, M B [Institut fuer Theoretische Physik, Universitaet Ulm, D-89069, Ulm (Germany); Datta, A, E-mail: alex.chin@uni-ulm.d [Institute for Mathematical Sciences, Imperial College London, 53 Exhibition Road, London SW7 2PG (United Kingdom)

    2010-06-15

    We provide physically intuitive mechanisms for the effect of noise on excitation energy transfer (EET) in networks. Using these mechanisms of dephasing-assisted transport (DAT) in a hybrid basis of both excitons and sites, we develop a detailed picture of how noise enables energy transfer with efficiencies well above 90% across the Fenna-Matthew-Olson (FMO) complex, a type of light-harvesting molecule. We demonstrate explicitly how noise alters the pathways of energy transfer across the complex, suppressing ineffective pathways and facilitating direct ones to the reaction centre. We explain that the fundamental mechanisms underpinning DAT are expected to be robust with respect to the considered noise model but show that the specific details of the exciton-phonon coupling, which remain largely unknown in these type of complexes, and in particular the impact of non-Markovian effects, result in variations of dynamical features that should be amenable to experimental verification with current or planned technology. A detailed understanding of DAT in natural compounds could open up a new paradigm of 'noise-engineering' by which EET can be optimized in artificial light-harvesting structures.

  5. 3D and Education

    Science.gov (United States)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  6. Vibration transfers to measure the performance of vibration isolated platforms on site using background noise excitation

    NARCIS (Netherlands)

    Segerink, F.B.; Korterik, J.P.; Offerhaus, H.L.

    2011-01-01

    This article demonstrates a quick and easy way of quantifying the performance of a vibration-isolated platform. We measure the vibration transfer from floor to table using background noise excitation from the floor. As no excitation device is needed, our setup only requires two identical sensors (in

  7. 3-D shear wave velocity model of Mexico and South US: bridging seismic networks with ambient noise cross-correlations (C1) and correlation of coda of correlations (C3)

    Science.gov (United States)

    Spica, Zack; Perton, Mathieu; Calò, Marco; Legrand, Denis; Córdoba-Montiel, Francisco; Iglesias, Arturo

    2016-09-01

    This work presents an innovative strategy to enhance the resolution of surface wave tomography obtained from ambient noise cross-correlation (C1) by bridging asynchronous seismic networks through the correlation of coda of correlations (C3). Rayleigh wave group dispersion curves show consistent results between synchronous and asynchronous stations. Rayleigh wave group traveltimes are inverted to construct velocity-period maps with unprecedented resolution for a region covering Mexico and the southern United States. The resulting period maps are then used to regionalize dispersion curves in order to obtain local 1-D shear velocity models (VS) of the crust and uppermost mantle in every cell of a grid of 0.4°. The 1-D structures are obtained by iteratively adding layers until reaching a given misfit, and a global tomography model is considered as an input for depths below 150 km. Finally, a high-resolution 3-D VS model is obtained from these inversions. The major structures observed in the 3-D model are in agreement with the tectonic-geodynamic features and with previous regional and local studies. It also offers new insights to understand the present and past tectonic evolution of the region.

  8. TEHNOLOGIJE 3D TISKALNIKOV

    OpenAIRE

    Kolar, Nataša

    2016-01-01

    Diplomsko delo predstavi razvoj tiskanja skozi čas. Podrobneje so opisani 3D tiskalniki, ki uporabljajo različne tehnologije 3D tiskanja. Predstavljene so različne tehnologije 3D tiskanja, njihova uporaba in narejeni prototipi oz. končni izdelki. Diplomsko delo opiše celoten postopek, od zamisli, priprave podatkov in tiskalnika do izdelave prototipa oz. končnega izdelka.

  9. An investigation of rotor noise generation by aerodynamic disturbance. [aeroacoustic transfer functions

    Science.gov (United States)

    Whitfield, C. E.

    1977-01-01

    An open rotor was considered as a process for converting an unsteady velocity inflow into sound radiation. With the aid of crude assumptions, aero-acoustic transfer functions were defined theoretically for both discrete frequency and broad band noise. A study of the validity of these transfer functions yielded results which show good agreement at discrete frequencies though slightly less good for broad band noise. Agreement in both cases holds over three or more decades of the relevant parameters. A rotating hot wire anemometry system consisting of a single hot wire probe mounted in the nose cone of the rotor was used to quantify fluctuations in the airflow onto a single rotor blade for the transfer function results. Further theoretical analysis revealed that the sound field can be expressed in terms of blade-to-blade correlations in the airflow, and results from two probes rotating simultaneously were modelled mathematically and inserted in the theory. Preliminary results snow encouraging agreement with experimental data.

  10. Noise

    Science.gov (United States)

    Noise is all around you, from televisions and radios to lawn mowers and washing machines. Normally, you ... sensitive structures of the inner ear and cause noise-induced hearing loss. More than 30 million Americans ...

  11. A fusion of novel technologies for road traffic noise assessment (1)-3D GIS based territory wide noise model%综合先进技术的交通噪音评估(一)-以立体地理资讯系统为基础的区域噪音模型

    Institute of Scientific and Technical Information of China (English)

    李志坤; 罗志永; 戴满光; 杨国良

    2007-01-01

    为了解、组织及整理整个香港区域的道路交通噪音资料,从而确定、量化及分折交通噪音的严重性.再鉴定相关的噪音缓解措施,香港环境保护署综合了数种先进的技术,包括地理信息系统、大型的电脑噪音模型、立体影像技术等,自行开发了一套以立体地理资讯系统为基础的区域噪音模型.从这个系统和模型计算出来的交通噪音地图.加上利用地理信息系统软件、人口分布的资料库和统计学方法的帮助,评估了整个城市总共有多少居民在那些区域受着多少交通噪音的影响.这些结果可以分析交通噪音的问题,继而决定未来噪音缓解设施及制定综合的计划.以应付这噪音问题.%To understand, collate and compile the traffic noise information on a territory wide basis so as to identify, quantify and analyse the scale of the problems and then evaluate relevant mitigation mea-sures, a fusion of novel technologies such as geographic information system (GIS), large-scale computa-tional noise modelling, three-dimensional (3D) visualization tools, etc., have been utilised to develop a 3D GIS based territory wide noise model. From the resulting traffic noise exposure maps, as well as the help of the GIS software, detailed population database and statistical method, the number of people af-fected by each levels of road traffic noise in each districts are all determined. These all help to evaluate the problem and formulate the future noise mitigation measures and comprehensive plan to tackle the problem. This paper describes the novel technologies such as the GIS technologies, the 3D large-scale noise modelling and the methods used to calculate the population affected by road traffic noise.

  12. Estimation of the combustion-related noise transfer matrix of a multi-cylinder diesel engine

    Science.gov (United States)

    Lee, Moohyung; Bolton, J. Stuart; Suh, Sanghoon

    2009-01-01

    In the present paper, a procedure for estimating an engine-platform-dependent transfer matrix that relates in-cylinder pressures to radiated noise resulting from processes associated with the combustion process is described. A knowledge of that transfer matrix allows the combustion-related component of the noise radiated by a diesel engine to be estimated from a knowledge of cylinder pressure signals. The procedure makes use of multi-input/multi-output (MIMO) system modeling concepts in conjunction with cross-spectral measurements. To date, the empirical prediction of diesel engine combustion noise has usually been achieved by combining a cylinder pressure with a single, smooth structural attenuation function (e.g., the Lucas combustion noise meter) regardless of the specifications of the engine. In comparison, the procedure described in the present work provides the structural attenuation characteristics of a particular engine in the form of a transfer matrix, thus allowing accurate prediction by accounting fully for inter-cylinder correlation, cylinder-to-cylinder variation and the detailed characteristics of an engine structure. The procedure was applied to a six-cylinder diesel engine, and the various aspects of the new procedure are described.

  13. 3D virtuel udstilling

    DEFF Research Database (Denmark)

    Tournay, Bruno; Rüdiger, Bjarne

    2006-01-01

    3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s.......3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s....

  14. Physically founded modelling of transient heat transfer in diesel engine combustion chambers with application of 3D-CFD calculations. Final report; Physikalisch fundierte Modellierung des instationaeren Wandwaermeueberganges im Brennraum von Dieselmotoren mit Applikation an 3D-CFD-Rechnungen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Merker, G.P.; Lettmann, H.

    2003-05-01

    A phenomenological wall heat transfer model was developed for diesel engines, enhanced for application of the 3D-CFC code KIVA-3V, and implemented in the code. Further, the heat flow was measurement near the cylinder head, bushel and piston of a DI one-cylinder experimental diesel engine. The influence of soot radiation and convective heat transfer on the wall are modelled separately. The insulating effect of soot deposits on the walls during engine operation is taken into acount as well. The multizone model and the 3D model are in good agreement with the models by Han and Reitz (1997) and with experimental findings. The spatial resolution of heat flow at the wall further shows that both the radiative and convective heat flow are strongly locally dependent. The model presents a physically correct description of the heat flow at the wall of a diesel engine combustion chamber. [German] Im Rahmen des gesamten Forschungsvorhabens wurden ein phaenomenologisches Wandwaermeuebergangsmodell fuer Dieselmotoren entwickelt, dieses wurde fuer die Anwendung in den 3D-CFD-Code KIVA-3V erweitert und in den Code implementiert. Zusaetzlich sind Waermestrommessungen im Brennraum an Zylinderkopf, Laufbuchse und Kolben durchgefuehrt worden. Dafuer stand ein direkteinspritzender Einzylinder-Versuchsdieselmotor zur Verfuegung. Das im Rahmen dieses Vorhabens entwickelte Waermeuebergangsmodell bildet den Einfluss der Russstrahlung und des konvektiven Wandwaermeueberganges separat ab. Die isolierende Wirkung von Russwandablagerungen waehrend des gefeuerten Motorbetriebes wird dabei ebenfalls beruecksichtigt. Das Mehrzonenmodell sowie das 3D-Modell zeigen sehr gute Uebereinstimmungen des raeumlich gemittelten Wandwaermestroms mit den Modellen von Han und Reitz (1997) und den experimentellen Ergebnissen. Die raeumliche Aufloesung der Wandwaermestroeme zeigt weiter, dass auf der Brennraumoberflaeche die Strahlungswaermestroeme und die konvektiven Waermestroeme stark ortsabhaengig sind. Damit

  15. Nitrogen transfers and air-sea N2O fluxes in the upwelling off Namibia within the oxygen minimum zone: a 3-D model approach

    Directory of Open Access Journals (Sweden)

    A. Paulmier

    2011-04-01

    Full Text Available As regions of high primary production and being often associated to Oxygen Minimum Zones (OMZs, Eastern Boundary Upwelling Systems (EBUS represent key regions for the oceanic nitrogen (N cycle. Indeed, by exporting the Organic Matter (OM and nutrients produced in the coastal region to the open ocean, EBUS can play an important role in sustaining primary production in subtropical gyres. Losses of fixed inorganic N, through denitrification and anammox processes and through nitrous oxide (N2O emissions to the atmosphere, take place in oxygen depleted environments such as EBUS, and alleviate the role of these regions as a source of N. In the present study, we developed a 3-D coupled physical/biogeochemical (ROMS/BioBUS model for investigating the full N budget in the Namibian sub-system of the Benguela Upwelling System (BUS. The different state variables of a climatological experiment have been compared to different data sets (satellite and in situ observations and show that the model is able to represent this biogeochemical oceanic region. The N transfer is investigated in the Namibian upwelling system using this coupled model, especially in the Walvis Bay area between 22° S and 24° S where the OMZ is well developed (O2 2 l−1. The upwelling process advects 24.2 × 1010 mol N yr−1 of nitrate enriched waters over the first 100 m over the slope and over the continental shelf. The meridional advection by the alongshore Benguela current brings also nutrient-rich waters with 21.1 × 1010 mol N yr−1. 10.5 × 1010 mol N yr−1 of OM are exported outside of the continental shelf (between 0 and 100-m depth. 32.4% and 18.1% of this OM are exported by advection in the form of Dissolved and Particulate Organic Matters (DOM and POM, respectively, however vertical sinking of POM represents the main contributor (49.5% to OM export outside of the first 100-m depth of the water column on the continental shelf. The continental slope also represents a net N

  16. Blender 3D cookbook

    CERN Document Server

    Valenza, Enrico

    2015-01-01

    This book is aimed at the professionals that already have good 3D CGI experience with commercial packages and have now decided to try the open source Blender and want to experiment with something more complex than the average tutorials on the web. However, it's also aimed at the intermediate Blender users who simply want to go some steps further.It's taken for granted that you already know how to move inside the Blender interface, that you already have 3D modeling knowledge, and also that of basic 3D modeling and rendering concepts, for example, edge-loops, n-gons, or samples. In any case, it'

  17. Noise-Assisted Quantum Electron Transfer in Multi-Level Donor-Acceptor System

    CERN Document Server

    Gurvitz, Shmuel; Berman, Gennady P

    2014-01-01

    We analytically and numerically study noise-assisted quantum electron transfer (ET) in bio-complexes consisting of a single-level electron donor and an acceptor which is modeled by many electron energy levels. Interactions are included between the donor and the acceptor energy levels and with the protein environment, which is modeled by a diagonal classical noise acting on all donor and acceptor energy levels. Different regions of parameters characterizing (i) the number of the acceptor levels, (ii) the acceptor "band-width", and (iii) the amplitude of noise and its correlation time are considered. Under some conditions, we derive analytical expressions for the ET rate and efficiency, which reveal the coarse-grain features. We obtain equal occupation of all levels at large times, independently of the structure of the acceptor band. We discuss the multi-scale regime of the acceptor population, and the accompanying effect of quantum coherent oscillations, which are analogous to those observed in experiments on ...

  18. 3D Digital Modelling

    DEFF Research Database (Denmark)

    Hundebøl, Jesper

    wave of new building information modelling tools demands further investigation, not least because of industry representatives' somewhat coarse parlance: Now the word is spreading -3D digital modelling is nothing less than a revolution, a shift of paradigm, a new alphabet... Research qeustions. Based...... on empirical probes (interviews, observations, written inscriptions) within the Danish construction industry this paper explores the organizational and managerial dynamics of 3D Digital Modelling. The paper intends to - Illustrate how the network of (non-)human actors engaged in the promotion (and arrest) of 3......D Modelling (in Denmark) stabilizes - Examine how 3D Modelling manifests itself in the early design phases of a construction project with a view to discuss the effects hereof for i.a. the management of the building process. Structure. The paper introduces a few, basic methodological concepts...

  19. DELTA 3D PRINTER

    Directory of Open Access Journals (Sweden)

    ȘOVĂILĂ Florin

    2016-07-01

    Full Text Available 3D printing is a very used process in industry, the generic name being “rapid prototyping”. The essential advantage of a 3D printer is that it allows the designers to produce a prototype in a very short time, which is tested and quickly remodeled, considerably reducing the required time to get from the prototype phase to the final product. At the same time, through this technique we can achieve components with very precise forms, complex pieces that, through classical methods, could have been accomplished only in a large amount of time. In this paper, there are presented the stages of a 3D model execution, also the physical achievement after of a Delta 3D printer after the model.

  20. Professional Papervision3D

    CERN Document Server

    Lively, Michael

    2010-01-01

    Professional Papervision3D describes how Papervision3D works and how real world applications are built, with a clear look at essential topics such as building websites and games, creating virtual tours, and Adobe's Flash 10. Readers learn important techniques through hands-on applications, and build on those skills as the book progresses. The companion website contains all code examples, video step-by-step explanations, and a collada repository.

  1. AE3D

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-20

    AE3D solves for the shear Alfven eigenmodes and eigenfrequencies in a torodal magnetic fusion confinement device. The configuration can be either 2D (e.g. tokamak, reversed field pinch) or 3D (e.g. stellarator, helical reversed field pinch, tokamak with ripple). The equations solved are based on a reduced MHD model and sound wave coupling effects are not currently included.

  2. Noise assisted excitation energy transfer in a linear model of a selectivity filter backbone strand

    Science.gov (United States)

    Bassereh, Hassan; Salari, Vahid; Shahbazi, Farhad

    2015-07-01

    In this paper, we investigate the effect of noise and disorder on the efficiency of excitation energy transfer (EET) in a N=5 sites linear chain with ‘static’ dipole-dipole couplings. In fact, here, the disordered chain is a toy model for one strand of the selectivity filter backbone in ion channels. It has recently been discussed that the presence of quantum coherence in the selectivity filter is possible and can play a role in mediating ion-conduction and ion-selectivity in the selectivity filter. The question is ‘how a quantum coherence can be effective in such structures while the environment of the channel is dephasing (i.e. noisy)?’ Basically, we expect that the presence of the noise should have a destructive effect in the quantum transport. In fact, we show that such expectation is valid for ordered chains. However, our results indicate that introducing the dephasing in the disordered chains leads to the weakening of the localization effects, arising from the multiple back-scatterings due to the randomness, and then increases the efficiency of quantum energy transfer. Thus, the presence of noise is crucial for the enhancement of EET efficiency in disordered chains. We also show that the contribution of both classical and quantum mechanical effects are required to improve the speed of energy transfer along the chain. Our analysis may help for better understanding of fast and efficient functioning of the selectivity filters in ion channels.

  3. Noise assisted excitation energy transfer in a linear model of a selectivity filter backbone strand.

    Science.gov (United States)

    Bassereh, Hassan; Salari, Vahid; Shahbazi, Farhad

    2015-07-15

    In this paper, we investigate the effect of noise and disorder on the efficiency of excitation energy transfer (EET) in a N = 5 sites linear chain with 'static' dipole-dipole couplings. In fact, here, the disordered chain is a toy model for one strand of the selectivity filter backbone in ion channels. It has recently been discussed that the presence of quantum coherence in the selectivity filter is possible and can play a role in mediating ion-conduction and ion-selectivity in the selectivity filter. The question is 'how a quantum coherence can be effective in such structures while the environment of the channel is dephasing (i.e. noisy)?' Basically, we expect that the presence of the noise should have a destructive effect in the quantum transport. In fact, we show that such expectation is valid for ordered chains. However, our results indicate that introducing the dephasing in the disordered chains leads to the weakening of the localization effects, arising from the multiple back-scatterings due to the randomness, and then increases the efficiency of quantum energy transfer. Thus, the presence of noise is crucial for the enhancement of EET efficiency in disordered chains. We also show that the contribution of both classical and quantum mechanical effects are required to improve the speed of energy transfer along the chain. Our analysis may help for better understanding of fast and efficient functioning of the selectivity filters in ion channels.

  4. Method for the determination of the modulation transfer function (MTF) in 3D x-ray imaging systems with focus on correction for finite extent of test objects

    Science.gov (United States)

    Schäfer, Dirk; Wiegert, Jens; Bertram, Matthias

    2007-03-01

    It is well known that rotational C-arm systems are capable of providing 3D tomographic X-ray images with much higher spatial resolution than conventional CT systems. Using flat X-ray detectors, the pixel size of the detector typically is in the range of the size of the test objects. Therefore, the finite extent of the "point" source cannot be neglected for the determination of the MTF. A practical algorithm has been developed that includes bias estimation and subtraction, averaging in the spatial domain, and correction for the frequency content of the imaged bead or wire. Using this algorithm, the wire and the bead method are analyzed for flat detector based 3D X-ray systems with the use of standard CT performance phantoms. Results on both experimental and simulated data are presented. It is found that the approximation of applying the analysis of the wire method to a bead measurement is justified within 3% accuracy up to the first zero of the MTF.

  5. 3D Projection Installations

    DEFF Research Database (Denmark)

    Halskov, Kim; Johansen, Stine Liv; Bach Mikkelsen, Michelle

    2014-01-01

    Three-dimensional projection installations are particular kinds of augmented spaces in which a digital 3-D model is projected onto a physical three-dimensional object, thereby fusing the digital content and the physical object. Based on interaction design research and media studies, this article...... contributes to the understanding of the distinctive characteristics of such a new medium, and identifies three strategies for designing 3-D projection installations: establishing space; interplay between the digital and the physical; and transformation of materiality. The principal empirical case, From...... Fingerplan to Loop City, is a 3-D projection installation presenting the history and future of city planning for the Copenhagen area in Denmark. The installation was presented as part of the 12th Architecture Biennale in Venice in 2010....

  6. 3D Spectroscopic Instrumentation

    CERN Document Server

    Bershady, Matthew A

    2009-01-01

    In this Chapter we review the challenges of, and opportunities for, 3D spectroscopy, and how these have lead to new and different approaches to sampling astronomical information. We describe and categorize existing instruments on 4m and 10m telescopes. Our primary focus is on grating-dispersed spectrographs. We discuss how to optimize dispersive elements, such as VPH gratings, to achieve adequate spectral resolution, high throughput, and efficient data packing to maximize spatial sampling for 3D spectroscopy. We review and compare the various coupling methods that make these spectrographs ``3D,'' including fibers, lenslets, slicers, and filtered multi-slits. We also describe Fabry-Perot and spatial-heterodyne interferometers, pointing out their advantages as field-widened systems relative to conventional, grating-dispersed spectrographs. We explore the parameter space all these instruments sample, highlighting regimes open for exploitation. Present instruments provide a foil for future development. We give an...

  7. Radiochromic 3D Detectors

    Science.gov (United States)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  8. Interaktiv 3D design

    DEFF Research Database (Denmark)

    Villaume, René Domine; Ørstrup, Finn Rude

    2002-01-01

    Projektet undersøger potentialet for interaktiv 3D design via Internettet. Arkitekt Jørn Utzons projekt til Espansiva blev udviklet som et byggesystem med det mål, at kunne skabe mangfoldige planmuligheder og mangfoldige facade- og rumudformninger. Systemets bygningskomponenter er digitaliseret som...... 3D elementer og gjort tilgængelige. Via Internettet er det nu muligt at sammenstille og afprøve en uendelig  række bygningstyper som  systemet blev tænkt og udviklet til....

  9. Image Sequence Fusion and Denoising Based on 3D Shearlet Transform

    Directory of Open Access Journals (Sweden)

    Liang Xu

    2014-01-01

    Full Text Available We propose a novel algorithm for image sequence fusion and denoising simultaneously in 3D shearlet transform domain. In general, the most existing image fusion methods only consider combining the important information of source images and do not deal with the artifacts. If source images contain noises, the noises may be also transferred into the fusion image together with useful pixels. In 3D shearlet transform domain, we propose that the recursive filter is first performed on the high-pass subbands to obtain the denoised high-pass coefficients. The high-pass subbands are then combined to employ the fusion rule of the selecting maximum based on 3D pulse coupled neural network (PCNN, and the low-pass subband is fused to use the fusion rule of the weighted sum. Experimental results demonstrate that the proposed algorithm yields the encouraging effects.

  10. Coarse-Grained Theory of Biological Charge Transfer with Spatially and Temporally Correlated Noise.

    Science.gov (United States)

    Liu, Chaoren; Beratan, David N; Zhang, Peng

    2016-04-21

    System-environment interactions are essential in determining charge-transfer (CT) rates and mechanisms. We developed a computationally accessible method, suitable to simulate CT in flexible molecules (i.e., DNA) with hundreds of sites, where the system-environment interactions are explicitly treated with numerical noise modeling of time-dependent site energies and couplings. The properties of the noise are tunable, providing us a flexible tool to investigate the detailed effects of correlated thermal fluctuations on CT mechanisms. The noise is parametrizable by molecular simulation and quantum calculation results of specific molecular systems, giving us better molecular resolution in simulating the system-environment interactions than sampling fluctuations from generic spectral density functions. The spatially correlated thermal fluctuations among different sites are naturally built-in in our method but are not readily incorporated using approximate spectral densities. Our method has quantitative accuracy in systems with small redox potential differences (transfer rates; however, in a system of units with different site energies, spatial correlations slow the fluctuations to bring units into degeneracy, in turn, slowing the charge-transfer rates. The spatial and temporal correlations of condensed phase medium fluctuations provide another source to control and tune the kinetics and dynamics of charge-transfer systems.

  11. Amplitude and phase noises of a spin-transfer nano-oscillator synchronized by a phase-lock loop

    Science.gov (United States)

    Mitrofanov, A. A.; Safin, A. R.; Udalov, N. N.

    2015-08-01

    We have studied the amplitude and phase noises of a spin-transfer nano-oscillator (STNO) with a phase synchronization system (phase-lock loop, PLL). Spectral characteristics of the amplitude and phase noises of the isochronous and nonisochronous STNO are obtained and compared to the analogous characteristics of an autonomous (nonsynchronized) oscillator. The PLL bandwidth is determined.

  12. Experimental verification of clock noise transfer and components for space based gravitational wave detectors.

    Science.gov (United States)

    Sweeney, Dylan; Mueller, Guido

    2012-11-05

    The Laser Interferometer Space Antenna (LISA) and other space based gravitational wave detector designs require a laser communication subsystem to, among other things, transfer clock signals between spacecraft (SC) in order to cancel clock noise in post-processing. The original LISA baseline design requires frequency synthesizers to convert each SC clock into a 2 GHz signal, and electro-optic modulators (EOMs) to modulate this 2 GHz clock signal onto the laser light. Both the frequency synthesizers and the EOMs must operate with a phase fidelity of 2×10(-4)cycles/√Hz. In this paper we present measurements of the phase fidelity of frequency synthesizers and EOMs. We found that both the frequency synthesizers and the EOMs meet the requirement when tested independently and together. We also performed an electronic test of the clock noise transfer using frequency synthesizers and the University of Florida LISA Interferometry (UFLIS) phasemeter. We found that by applying a time varying fractional delay filter we could suppress the clock noise to a level below our measurement limit, which is currently determined by timing jitter and is less than an order of magnitude above the LISA requirement for phase measurements.

  13. Fast 3D coronary artery contrast-enhanced magnetic resonance angiography with magnetization transfer contrast, fat suppression and parallel imaging as applied on an anthropomorphic moving heart phantom

    NARCIS (Netherlands)

    Irwan, Roy; Russel, Inis K.; Sijens, Paul E.

    2006-01-01

    A magnetic resonance sequence for high-resolution imaging of coronary arteries in a very short acquisition time is presented. The technique is based on fast low-angle shot and uses fat saturation and magnetization transfer contrast Prepulses to improve image contrast. GeneRalized Autocalibrating Par

  14. Fast 3D coronary artery contrast-enhanced magnetic resonance angiography with magnetization transfer contrast, fat suppression and parallel imaging as applied on an anthropomorphic moving heart phantom

    NARCIS (Netherlands)

    Irwan, Roy; Russel, Inis K.; Sijens, Paul E.

    2006-01-01

    A magnetic resonance sequence for high-resolution imaging of coronary arteries in a very short acquisition time is presented. The technique is based on fast low-angle shot and uses fat saturation and magnetization transfer contrast Prepulses to improve image contrast. GeneRalized Autocalibrating Par

  15. 3D Wire 2015

    DEFF Research Database (Denmark)

    Jordi, Moréton; F, Escribano; J. L., Farias

    This document is a general report on the implementation of gamification in 3D Wire 2015 event. As the second gamification experience in this event, we have delved deeply in the previous objectives (attracting public areas less frequented exhibition in previous years and enhance networking) and ha......, improves socialization and networking, improves media impact, improves fun factor and improves encouragement of the production team....

  16. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data...

  17. Tangible 3D Modelling

    DEFF Research Database (Denmark)

    Hejlesen, Aske K.; Ovesen, Nis

    2012-01-01

    This paper presents an experimental approach to teaching 3D modelling techniques in an Industrial Design programme. The approach includes the use of tangible free form models as tools for improving the overall learning. The paper is based on lecturer and student experiences obtained through facil...

  18. Non-Hermitian approach for modeling of noise-assisted quantum electron transfer in photosynthetic complexes

    CERN Document Server

    Nesterov, Alexander I; Bishop, Alan R

    2012-01-01

    We model the quantum electron transfer (ET) in the photosynthetic reaction center (RC), using a non-Hermitian Hamiltonian approach. Our model includes (i) two protein cofactors, donor and acceptor, with discrete energy levels and (ii) a third protein pigment (sink) which has a continuous energy spectrum. Interactions are introduced between the donor and acceptor, and between the acceptor and the sink, with noise acting between the donor and acceptor. The noise is considered classically (as an external random force), and it is described by an ensemble of two-level systems (random fluctuators). Each fluctuator has two independent parameters, an amplitude and a switching rate. We represent the noise by a set of fluctuators with fitting parameters (boundaries of switching rates), which allows us to build a desired spectral density of noise in a wide range of frequencies. We analyze the quantum dynamics and the efficiency of the ET as a function of (i) the energy gap between the donor and acceptor, (ii) the streng...

  19. 3D photoacoustic imaging

    Science.gov (United States)

    Carson, Jeffrey J. L.; Roumeliotis, Michael; Chaudhary, Govind; Stodilka, Robert Z.; Anastasio, Mark A.

    2010-06-01

    Our group has concentrated on development of a 3D photoacoustic imaging system for biomedical imaging research. The technology employs a sparse parallel detection scheme and specialized reconstruction software to obtain 3D optical images using a single laser pulse. With the technology we have been able to capture 3D movies of translating point targets and rotating line targets. The current limitation of our 3D photoacoustic imaging approach is its inability ability to reconstruct complex objects in the field of view. This is primarily due to the relatively small number of projections used to reconstruct objects. However, in many photoacoustic imaging situations, only a few objects may be present in the field of view and these objects may have very high contrast compared to background. That is, the objects have sparse properties. Therefore, our work had two objectives: (i) to utilize mathematical tools to evaluate 3D photoacoustic imaging performance, and (ii) to test image reconstruction algorithms that prefer sparseness in the reconstructed images. Our approach was to utilize singular value decomposition techniques to study the imaging operator of the system and evaluate the complexity of objects that could potentially be reconstructed. We also compared the performance of two image reconstruction algorithms (algebraic reconstruction and l1-norm techniques) at reconstructing objects of increasing sparseness. We observed that for a 15-element detection scheme, the number of measureable singular vectors representative of the imaging operator was consistent with the demonstrated ability to reconstruct point and line targets in the field of view. We also observed that the l1-norm reconstruction technique, which is known to prefer sparseness in reconstructed images, was superior to the algebraic reconstruction technique. Based on these findings, we concluded (i) that singular value decomposition of the imaging operator provides valuable insight into the capabilities of

  20. Finite Element Modeling in 3D of the Impact of Superfluid Helium Filled Micro-channels on the Heat Transfer through LHC Type Cable Insulation

    CERN Document Server

    Bielert, E; ten Kate, H

    2012-01-01

    For a future luminosity upgrade of CERN’s Large Hadron Collider, a drastically improved heat removal in the inner triplet quadrupole magnets is required. One of the necessary improvements involves the cable insulation. A porous all-polyimide insulation scheme has been proposed recently. Essentially the insulation features a network of micro channels filled with superfluid helium that significantly increases the heat transfer through the insulation layer. A three dimensional Finite Element model required to simulate and study the enhanced heat transfer through the micro channels is presented here. The thermal coupling between heated cable and helium as well as the heat flux through the micro-channels are investigated. The model is validated by comparison of results with published measured data. Finally a sensitivity analysis is performed concerning the stability of the cables in magnet windings.

  1. Comparison of physical quality assurance between Scanora 3D and 3D Accuitomo 80 dental CT scanners

    Directory of Open Access Journals (Sweden)

    Ahmed S. Ali

    2015-06-01

    Full Text Available Background: The use of cone beam computed tomography (CBCT in dentistry has proven to be useful in the diagnosis and treatment planning of several oral and maxillofacial diseases. The quality of the resulting image is dictated by many factors related to the patient, unit, and operator. Materials and methods: In this work, two dental CBCT units, namely Scanora 3D and 3D Accuitomo 80, were assessed and compared in terms of quantitative effective dose delivered to specific locations in a dosimetry phantom. Resolution and contrast were evaluated in only 3D Accuitomo 80 using special quality assurance phantoms. Results: Scanora 3D, with less radiation time, showed less dosing values compared to 3D Accuitomo 80 (mean 0.33 mSv, SD±0.16 vs. 0.18 mSv, SD±0.1. Using paired t-test, no significant difference was found in Accuitomo two scan sessions (p>0.05, while it was highly significant in Scanora (p>0.05. The modulation transfer function value (at 2 lp/mm, in both measurements, was found to be 4.4%. The contrast assessment of 3D Accuitomo 80 in the two measurements showed few differences, for example, the grayscale values were the same (SD=0 while the noise level was slightly different (SD=0 and 0.67, respectively. Conclusions: The radiation dose values in these two CBCT units are significantly less than those encountered in systemic CT scans. However, the dose seems to be affected more by changing the field of view rather than the voltage or amperage. The low doses were at the expense of the image quality produced, which was still acceptable. Although the spatial resolution and contrast were inferior to the medical images produced in systemic CT units, the present results recommend adopting CBCTs in maxillofacial imaging because of low radiation dose and adequate image quality.

  2. Unoriented 3d TFTs

    CERN Document Server

    Bhardwaj, Lakshya

    2016-01-01

    This paper generalizes two facts about oriented 3d TFTs to the unoriented case. On one hand, it is known that oriented 3d TFTs having a topological boundary condition admit a state-sum construction known as the Turaev-Viro construction. This is related to the string-net construction of fermionic phases of matter. We show how Turaev-Viro construction can be generalized to unoriented 3d TFTs. On the other hand, it is known that the "fermionic" versions of oriented TFTs, known as Spin-TFTs, can be constructed in terms of "shadow" TFTs which are ordinary oriented TFTs with an anomalous Z_2 1-form symmetry. We generalize this correspondence to Pin+ TFTs by showing that they can be constructed in terms of ordinary unoriented TFTs with anomalous Z_2 1-form symmetry having a mixed anomaly with time-reversal symmetry. The corresponding Pin+ TFT does not have any anomaly for time-reversal symmetry however and hence it can be unambiguously defined on a non-orientable manifold. In case a Pin+ TFT admits a topological bou...

  3. Calculations of non-gray gas radiative heat transfer by coupling the discrete ordinates method with the Leckner model in 3D rectangular enclosures

    Science.gov (United States)

    Fathi Azarkhavarani, M. E.; Hosseini Abardeh, R.; Rahmani, M.

    2015-12-01

    In this study a new approach for radiation heat flux calculations by coupling the discrete ordinates method with the Leckner global model is introduced. The aim is to analyze the radiative heat transfer problem within a three-dimensional enclosure filled with non-gray gas mixture of H2O and CO2 . A computer code developed by this approach is applied to radiative calculations in three groups of well-known test cases published previously; considering homogeneous and inhomogeneous isothermal and non-isothermal participating media. All results are compared with well-known calculations based on statistical narrow band model. Also a new series of predictions for a medium with non-black walls and various mixture of H2O and CO2 is performed to demonstrate the applicability of the Leckner model. The effect of different compositions of H2O and CO2 on the radiative transfer within modern combustors is also examined. Based on the results obtained, it is believed that the discrete ordinates method coupled with the Leckner global model despite of its inherent simplicity and low computational cost is sufficiently accurate. For its convenient use, this method is suitable for a wide range of engineering calculations of participating media as well as for its link to previously written computational fluid dynamics codes.

  4. Signal and noise transfer properties of photoelectric interactions in diagnostic x-ray imaging detectors.

    Science.gov (United States)

    Hajdok, G; Yao, J; Battista, J J; Cunningham, I A

    2006-10-01

    Image quality in diagnostic x-ray imaging is ultimately limited by the statistical properties governing how, and where, x-ray energy is deposited in a detector. This in turn depends on the physics of the underlying x-ray interactions. In the diagnostic energy range (10-100 keV), most of the energy deposited in a detector is through photoelectric interactions. We present a theoretical model of the photoelectric effect that specifically addresses the statistical nature of energy absorption by photoelectrons, K and L characteristic x rays, and Auger electrons. A cascaded-systems approach is used that employs a complex structure of parallel cascades to describe signal and noise transfer through the photoelectric effect in terms of the modulation transfer function, Wiener noise power spectrum, and detective quantum efficiency (DQE). The model was evaluated by comparing results with Monte Carlo calculations for x-ray converters based on amorphous selenium (a-Se) and lead (Pb), representing both low and high-Z materials. When electron transport considerations can be neglected, excellent agreement (within 3%) is obtained for each metric over the entire diagnostic energy range in both a-Se and Pb detectors up to 30 cycles/mm, the highest frequency tested. The cascaded model overstates the DQE when the electron range cannot be ignored. This occurs at approximately two cycles/mm in a-Se at an incident photon energy of 80 keV, whereas in Pb, excellent agreement is obtained for the DQE over the entire diagnostic energy range. However, within the context of mammography (20 keV) and micro-computed tomography (40 keV), the effects of electron transport on the DQE are negligible compared to fluorescence reabsorption, which can lead to decreases of up to 30% and 20% in a-Se and Pb, respectively, at 20 keV; and 10% and 5%, respectively, at 40 keV. It is shown that when Swank noise is identified in a Fourier model, the Swank factor must be frequency dependent. This factor decreases

  5. 3D and beyond

    Science.gov (United States)

    Fung, Y. C.

    1995-05-01

    This conference on physiology and function covers a wide range of subjects, including the vasculature and blood flow, the flow of gas, water, and blood in the lung, the neurological structure and function, the modeling, and the motion and mechanics of organs. Many technologies are discussed. I believe that the list would include a robotic photographer, to hold the optical equipment in a precisely controlled way to obtain the images for the user. Why are 3D images needed? They are to achieve certain objectives through measurements of some objects. For example, in order to improve performance in sports or beauty of a person, we measure the form, dimensions, appearance, and movements.

  6. Measurements of Polarization Transfers in Real Compton Scattering by a proton target at JLAB. A new source of information on the 3D shape of the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Fanelli, Cristiano V. [Sapienza Univ. of Rome (Italy)

    2015-03-01

    In this thesis work, results of the analysis of the polarization transfers measured in real Compton scattering (RCS) by the Collaboration E07-002 at the Je fferson Lab Hall-C are presented. The data were collected at large scattering angle (theta_cm = 70deg) and with a polarized incident photon beam at an average energy of 3.8 GeV. Such a kind of experiments allows one to understand more deeply the reaction mechanism, that involves a real photon, by extracting both Compton form factors and Generalized Parton Distributions (GPDs) (also relevant for possibly shedding light on the total angular momentum of the nucleon). The obtained results for the longitudinal and transverse polarization transfers K_LL and K_LT, are of crucial importance, since they confirm unambiguously the disagreement between experimental data and pQCD prediction, as it was found in E99-114 experiment, and favor the Handbag mechanism. The E99-114 and E07-002 results can contribute to attract new interest on the great yield of the Compton scattering by a nucleon target, as demonstrated by the recent approval of an experimental proposal submitted to the Jefferson Lab PAC 42 for a Wide-angle Compton Scattering experiment, at 8 and 10 GeV Photon Energies. The new experiments approved to run with the updated 12 GeV electron beam at JLab, are characterized by much higher luminosities, and a new GEM tracker is under development to tackle the challenging backgrounds. Within this context, we present a new multistep tracking algorithm, based on (i) a Neural Network (NN) designed for a fast and efficient association of the hits measured by the GEM detector which allows the track identification, and (ii) the application of both a Kalman filter and Rauch-Tung-Striebel smoother to further improve the track reconstruction. The full procedure, i.e. NN and filtering, appears very promising, with high performances in terms of both association effciency and reconstruction accuracy, and these preliminary results will

  7. Numerical evaluation of source-receiver transfer functions with the Fast Multipole Boundary Element Method for predicting pass-by noise levels of automotive vehicles

    Science.gov (United States)

    Huijssen, Jacobus; Fiala, Péter; Hallez, Raphael; Donders, Stijn; Desmet, Wim

    2012-04-01

    The Fast Multipole Boundary Element Method (FMBEM) is adopted for the numerical evaluation of source-receiver transfer functions for predicting ISO-362 pass-by noise levels of automotive vehicles. The pass-by noise configuration is discussed, as well as the FMBEM approach to evaluate the transfer functions in the frequency domain. An amplitude/phase frequency interpolation scheme with a geometrically based phase unwrapping scheme is presented that enables the long time frame reconstruction of the impulse responses from coarsely sampled frequency response functions. The performance of the interpolation scheme is compared to other schemes for 12 frequency response functions obtained from measurements on a passenger vehicle in a semi-anechoic room, and a sampling and interpolation scheme is proposed that yields a mean error of 0.5 dB in the third octave band SPLs. Several parameters related to the simulation method, the most important of which is the density of the BEM surface mesh, are investigated for their influence on the trade-off between accuracy and evaluation time. Guidelines for selecting these parameters are presented which can be used to predict sound pressure levels and third octave band levels up to the 2 kHz third octave band. Compared to more accurate simulations, these guidelines result in an average approximation error in the transfer functions of 1.3 dB in the third octave band SPLs while considerably reducing the evaluation time. Comparison of the simulated and the measured transfer functions show an average error of 4 dB in the third octave band SPLs.

  8. TOWARDS: 3D INTERNET

    Directory of Open Access Journals (Sweden)

    Ms. Swapnali R. Ghadge

    2013-08-01

    Full Text Available In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot of discussions. Basically, one can look into this matter from a few different perspectives: visualization and representation of information, and creation and transportation of information, among others. All of them still constitute research challenges, as no products or services are yet available or foreseen for the near future. Nevertheless, one can try to envisage the directions that can be taken towards achieving this goal. People who take part in virtual worlds stay online longer with a heightened level of interest. To take advantage of that interest, diverse businesses and organizations have claimed an early stake in this fast-growing market. They include technology leaders such as IBM, Microsoft, and Cisco, companies such as BMW, Toyota, Circuit City, Coca Cola, and Calvin Klein, and scores of universities, including Harvard, Stanford and Penn State.

  9. Optical colours and spectral indices of z = 0.1 eagle galaxies with the 3D dust radiative transfer code skirt

    Science.gov (United States)

    Trayford, James W.; Camps, Peter; Theuns, Tom; Baes, Maarten; Bower, Richard G.; Crain, Robert A.; Gunawardhana, Madusha L. P.; Schaller, Matthieu; Schaye, Joop; Frenk, Carlos S.

    2017-09-01

    We present mock optical images, broad-band and H α fluxes, and D4000 spectral indices for 30 145 galaxies from the eagle hydrodynamical simulation at redshift z = 0.1, modelling dust with the skirt Monte Carlo radiative transfer code. The modelling includes a subgrid prescription for dusty star-forming regions, with both the subgrid obscuration of these regions and the fraction of metals in diffuse interstellar dust calibrated against far-infrared fluxes of local galaxies. The predicted optical colours as a function of stellar mass agree well with observation, with the skirt model showing marked improvement over a simple dust-screen model. The orientation dependence of attenuation is weaker than observed because eagle galaxies are generally puffier than real galaxies, due to the pressure floor imposed on the interstellar medium (ISM). The mock H α luminosity function agrees reasonably well with the data, and we quantify the extent to which dust obscuration affects observed H α fluxes. The distribution of D4000 break values is bimodal, as observed. In the simulation, 20 per cent of galaxies deemed 'passive' for the skirt model, i.e. exhibiting D4000 >1.8, are classified 'active' when ISM dust attenuation is not included. The fraction of galaxies with stellar mass greater than 1010 M⊙ that are deemed passive is slightly smaller than observed, which is due to low levels of residual star formation in these simulated galaxies. Colour images, fluxes and spectra of eagle galaxies are to be made available through the public eagle data base.

  10. On-Line Generation of 3D-Waves

    DEFF Research Database (Denmark)

    Frigaard, Peter

    1992-01-01

    The paper describes the technique of filtering white noise for on-line generation of 3D-waves on a small computer in the laboratory. The wave generation package is implemented and tested in the 3D-wave basin at the University of Aalborg.......The paper describes the technique of filtering white noise for on-line generation of 3D-waves on a small computer in the laboratory. The wave generation package is implemented and tested in the 3D-wave basin at the University of Aalborg....

  11. MRS3D: 3D Spherical Wavelet Transform on the Sphere

    Science.gov (United States)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2011-12-01

    Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D Spherical Fourier-Bessel (SFB) analysis is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. We present a new fast Discrete Spherical Fourier-Bessel Transform (DSFBT) based on both a discrete Bessel Transform and the HEALPIX angular pixelisation scheme. We tested the 3D wavelet transform and as a toy-application, applied a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and found we can successfully remove noise without much loss to the large scale structure. The new spherical 3D isotropic wavelet transform, called MRS3D, is ideally suited to analysing and denoising future 3D spherical cosmological surveys; it uses a novel discrete spherical Fourier-Bessel Transform. MRS3D is based on two packages, IDL and Healpix and can be used only if these two packages have been installed.

  12. 3D Reconstruction Technique for Tomographic PIV

    Institute of Scientific and Technical Information of China (English)

    姜楠; 包全; 杨绍琼

    2015-01-01

    Tomographic particle image velocimetry(Tomo-PIV) is a state-of-the-art experimental technique based on a method of optical tomography to achieve the three-dimensional(3D) reconstruction for three-dimensional three-component(3D-3C) flow velocity measurements. 3D reconstruction for Tomo-PIV is carried out herein. Meanwhile, a 3D simplified tomographic reconstruction model reduced from a 3D volume light inten-sity field with 2D projection images into a 2D Tomo-slice plane with 1D projecting lines, i.e., simplifying this 3D reconstruction into a problem of 2D Tomo-slice plane reconstruction, is applied thereafter. Two kinds of the most well-known algebraic reconstruction techniques, algebraic reconstruction technique(ART) and multiple algebraic reconstruction technique(MART), are compared as well. The principles of the two reconstruction algorithms are discussed in detail, which has been performed by a series of simulation images, yielding the corresponding recon-struction images that show different features between the ART and MART algorithm, and then their advantages and disadvantages are discussed. Further discussions are made for the standard particle image reconstruction when the background noise of the pre-initial particle image has been removed. Results show that the particle image recon-struction has been greatly improved. The MART algorithm is much better than the ART. Furthermore, the computa-tional analyses of two parameters(the particle density and the number of cameras), are performed to study their effects on the reconstruction. Lastly, the 3D volume particle field is reconstructed by using the improved algorithm based on the simplified 3D tomographic reconstruction model, which proves that the algorithm simplification is feasible and it can be applied to the reconstruction of 3D volume particle field in a Tomo-PIV system.

  13. 3D-kompositointi

    OpenAIRE

    Piirainen, Jere

    2015-01-01

    Opinnäytetyössä käydään läpi yleisimpiä 3D-kompositointiin liittyviä tekniikoita sekä kompositointiin käytettyjä ohjelmia ja liitännäisiä. Työssä esitellään myös kompositoinnin juuret 1800-luvun lopulta aina nykyaikaiseen digitaaliseen kompositointiin asti. Kompositointi on yksinkertaisimmillaan usean kuvan liittämistä saumattomasti yhdeksi uskottavaksi kokonaisuudeksi. Vaikka prosessi vaatii visuaalista silmää, vaatii se myös paljon teknistä osaamista. Tämän lisäksi perusymmärrys kamera...

  14. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data......, making them different from typical, existing box shaping techniques. The basis of the proposed techniques is a new algorithm for constructing a full box from just three of its corners. The evaluation of the new techniques compares their precision and completion times in a 9 degree-of-freedom (Do......F) docking experiment against an existing technique, which requires the user to perform the rotation and scaling of the box explicitly. The precision of the users' box construction is evaluated by a novel error metric measuring the difference between two boxes. The results of the experiment strongly indicate...

  15. Low-noise SQUIDs with large transfer: two-stage SQUIDs based on DROSs

    Science.gov (United States)

    Podt, M.; Flokstra, J.; Rogalla, H.

    2002-08-01

    We have realized a two-stage integrated superconducting quantum interference device (SQUID) system with a closed loop bandwidth of 2.5 MHz, operated in a direct voltage readout mode. The corresponding flux slew rate was 1.3×10 5Φ0/s and the measured white flux noise was 1.3 μ Φ0/√Hz at 4.2 K. The system is based on a conventional dc SQUID with a double relaxation oscillation SQUID (DROS) as the second stage. Because of the large flux-to-voltage transfer, the sensitivity of the system is completely determined by the sensor SQUID and not by the DROS or the room-temperature preamplifier. Decreasing the Josephson junction area enables a further improvement of the sensitivity of the two-stage SQUID systems.

  16. Intraoral 3D scanner

    Science.gov (United States)

    Kühmstedt, Peter; Bräuer-Burchardt, Christian; Munkelt, Christoph; Heinze, Matthias; Palme, Martin; Schmidt, Ingo; Hintersehr, Josef; Notni, Gunther

    2007-09-01

    Here a new set-up of a 3D-scanning system for CAD/CAM in dental industry is proposed. The system is designed for direct scanning of the dental preparations within the mouth. The measuring process is based on phase correlation technique in combination with fast fringe projection in a stereo arrangement. The novelty in the approach is characterized by the following features: A phase correlation between the phase values of the images of two cameras is used for the co-ordinate calculation. This works contrary to the usage of only phase values (phasogrammetry) or classical triangulation (phase values and camera image co-ordinate values) for the determination of the co-ordinates. The main advantage of the method is that the absolute value of the phase at each point does not directly determine the coordinate. Thus errors in the determination of the co-ordinates are prevented. Furthermore, using the epipolar geometry of the stereo-like arrangement the phase unwrapping problem of fringe analysis can be solved. The endoscope like measurement system contains one projection and two camera channels for illumination and observation of the object, respectively. The new system has a measurement field of nearly 25mm × 15mm. The user can measure two or three teeth at one time. So the system can by used for scanning of single tooth up to bridges preparations. In the paper the first realization of the intraoral scanner is described.

  17. Martian terrain - 3D

    Science.gov (United States)

    1997-01-01

    This area of terrain near the Sagan Memorial Station was taken on Sol 3 by the Imager for Mars Pathfinder (IMP). 3D glasses are necessary to identify surface detail.The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  18. 3D Printing and 3D Bioprinting in Pediatrics.

    Science.gov (United States)

    Vijayavenkataraman, Sanjairaj; Fuh, Jerry Y H; Lu, Wen Feng

    2017-07-13

    Additive manufacturing, commonly referred to as 3D printing, is a technology that builds three-dimensional structures and components layer by layer. Bioprinting is the use of 3D printing technology to fabricate tissue constructs for regenerative medicine from cell-laden bio-inks. 3D printing and bioprinting have huge potential in revolutionizing the field of tissue engineering and regenerative medicine. This paper reviews the application of 3D printing and bioprinting in the field of pediatrics.

  19. 3D printing for dummies

    CERN Document Server

    Hausman, Kalani Kirk

    2014-01-01

    Get started printing out 3D objects quickly and inexpensively! 3D printing is no longer just a figment of your imagination. This remarkable technology is coming to the masses with the growing availability of 3D printers. 3D printers create 3-dimensional layered models and they allow users to create prototypes that use multiple materials and colors.  This friendly-but-straightforward guide examines each type of 3D printing technology available today and gives artists, entrepreneurs, engineers, and hobbyists insight into the amazing things 3D printing has to offer. You'll discover methods for

  20. 3D game environments create professional 3D game worlds

    CERN Document Server

    Ahearn, Luke

    2008-01-01

    The ultimate resource to help you create triple-A quality art for a variety of game worlds; 3D Game Environments offers detailed tutorials on creating 3D models, applying 2D art to 3D models, and clear concise advice on issues of efficiency and optimization for a 3D game engine. Using Photoshop and 3ds Max as his primary tools, Luke Ahearn explains how to create realistic textures from photo source and uses a variety of techniques to portray dynamic and believable game worlds.From a modern city to a steamy jungle, learn about the planning and technological considerations for 3D modelin

  1. Scalable 3D GIS environment managed by 3D-XML-based modeling

    Science.gov (United States)

    Shi, Beiqi; Rui, Jianxun; Chen, Neng

    2008-10-01

    Nowadays, the namely 3D GIS technologies become a key factor in establishing and maintaining large-scale 3D geoinformation services. However, with the rapidly increasing size and complexity of the 3D models being acquired, a pressing needed for suitable data management solutions has become apparent. This paper outlines that storage and exchange of geospatial data between databases and different front ends like 3D models, GIS or internet browsers require a standardized format which is capable to represent instances of 3D GIS models, to minimize loss of information during data transfer and to reduce interface development efforts. After a review of previous methods for spatial 3D data management, a universal lightweight XML-based format for quick and easy sharing of 3D GIS data is presented. 3D data management based on XML is a solution meeting the requirements as stated, which can provide an efficient means for opening a new standard way to create an arbitrary data structure and share it over the Internet. To manage reality-based 3D models, this paper uses 3DXML produced by Dassault Systemes. 3DXML uses opening XML schemas to communicate product geometry, structure and graphical display properties. It can be read, written and enriched by standard tools; and allows users to add extensions based on their own specific requirements. The paper concludes with the presentation of projects from application areas which will benefit from the functionality presented above.

  2. Testing Time and Frequency Fiber-Optic Link Transfer by Hardware Emulation of Acoustic-Band Optical Noise

    Directory of Open Access Journals (Sweden)

    Lipiński Marcin

    2016-06-01

    Full Text Available The low-frequency optical-signal phase noise induced by mechanical vibration of the base occurs in field-deployed fibers. Typical telecommunication data transfer is insensitive to this type of noise but the phenomenon may influence links dedicated to precise Time and Frequency (T&F fiber-optic transfer that exploit the idea of stabilization of phase or propagation delay of the link. To measure effectiveness of suppression of acoustic noise in such a link, a dedicated measurement setup is necessary. The setup should enable to introduce a low-frequency phase corruption to the optical signal in a controllable way. In the paper, a concept of a setup in which the mechanically induced acoustic-band optical signal phase corruption is described and its own features and measured parameters are presented. Next, the experimental measurement results of the T&F transfer TFTS-2 system’s immunity as a function of the fibre-optic length vs. the acoustic-band noise are presented. Then, the dependency of the system immunity on the location of a noise source along the link is also pointed out.

  3. 3D Printing an Octohedron

    OpenAIRE

    Aboufadel, Edward F.

    2014-01-01

    The purpose of this short paper is to describe a project to manufacture a regular octohedron on a 3D printer. We assume that the reader is familiar with the basics of 3D printing. In the project, we use fundamental ideas to calculate the vertices and faces of an octohedron. Then, we utilize the OPENSCAD program to create a virtual 3D model and an STereoLithography (.stl) file that can be used by a 3D printer.

  4. Salient Local 3D Features for 3D Shape Retrieval

    CERN Document Server

    Godil, Afzal

    2011-01-01

    In this paper we describe a new formulation for the 3D salient local features based on the voxel grid inspired by the Scale Invariant Feature Transform (SIFT). We use it to identify the salient keypoints (invariant points) on a 3D voxelized model and calculate invariant 3D local feature descriptors at these keypoints. We then use the bag of words approach on the 3D local features to represent the 3D models for shape retrieval. The advantages of the method are that it can be applied to rigid as well as to articulated and deformable 3D models. Finally, this approach is applied for 3D Shape Retrieval on the McGill articulated shape benchmark and then the retrieval results are presented and compared to other methods.

  5. Railway noise measurement method for pass-by noise, total effective roughness, transfer functions and track spatial decay

    NARCIS (Netherlands)

    Janssens, M.H.A.; Dittrich, M.G.; Beer, F.G. de; Jones, C.J.C.

    2006-01-01

    In recent years, considerable effort has been spent at a European level to establish comprehensive methods for the experimental assessment of rolling noise emission of rail-bound vehicles and tracks. This work was concentrated in the European METARAIL and STAIRRS projects. The objective of these was

  6. Experimental Investigation of Pump-to-Signal Noise Transfer in One-Pump Phase Insensitive Fibre Optic Parametric Amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lund-Hansen, Toke; Peucheret, Christophe

    2011-01-01

    This paper presents a detailed experimental characterization of the relative intensity noise (RIN) transferred from the pump to the signal in one-pump phase insensitive fibre optic parametric amplifiers. We extend an existing experimental and theoretical work towards higher frequencies, showing...

  7. Noise-assisted information transfer in crayfish mechanoreceptors: stochastic resonance in a neuronal receptor

    Science.gov (United States)

    Douglass, John K.; Wilkens, Lon A.; Moss, Frank

    1993-11-01

    Adding random noise to a weak periodic signal can enhance the flow of information through certain nonlinear physical systems, via a process known as stochastic resonance (SR). We have used crayfish mechanoreceptor cells to investigate the possibility that SR can be induced in neurophysiological systems. Various signal-to-noise ratio (SNR) measurements were derived from the action potentials (spikes) of single receptor cells stimulated with weak periodic signals. Spike noise was controlled by one of two methods: (1) adding external noise to the stimulus, or (2) altering internal noise sources by changing the temperature of the cell. In external noise experiments, an optimal noise level can be identified at which the SNR is maximized. In internal noise experiments, although the SNR increases with increasing noise, no SNR maximum has been observed. These results demonstrate that SR can be induced in single neurons, and suggest that neuronal systems may also be capable of exploiting SR.

  8. 波节管纵向逆流换热性能的三维数值模拟研究%3D Numerical Simulation Investigation of Heat Transfer Performance for Vertical Countercurrent Flow in Corrugated Tube

    Institute of Scientific and Technical Information of China (English)

    金铁石; 付崇彬

    2012-01-01

    In this article, the 3D k - e Model numerical simulation is adopted to research heat transfer and frictional characteristic of the vertical countercurrent flow in corrugated tube. The working medium was helium and nitrogen in the tube side and shell side respectively. The tube bundle has used triangular arrangement. The paper has first analyzed the impact of different wave distance and Reynolds number on heat transfer rate. At the same time, the impact of different wave distance and Reynolds number on Q/Qo (heat transfer ratio between smooth and corrugated tube) and △p/△po(pressure loss ratio between smooth and corrugated) were also analyzed in order to emphasize the superiority of corrugated tube. It was found that the heat transfer and frictional characteristic of corrugated tube have decreased with the increasing of wave length, whereas the overall heat transfer performance has been improved. On the contrary, the Reynolds number has the opposite effect.%本文基于k-ε模型,针对波节管高效换热元件中纵向逆流换热的传热特性和阻力特性进行三维数值模拟研究.传热工质在管程和壳程分别为氦气和氮气,管束采用三角形布置.本文首先分析了不同波距及雷诺数下对换热量影响.为了体现高效换热元件比光管的优越性,随后分析了不同波距及雷诺数对Q/Qo(波节管与光管的换热量比)与△p/△Po(波节管与光管的压力降比).最后得出结论,波距L的增加使高效换热元件的传热性能和阻力性能有所降低,但提高了其综合传热性能.雷诺数的增加会大幅提高换热量,但同时综合传热效率也大幅降低.

  9. Laser printing of 3D metallic interconnects

    Science.gov (United States)

    Beniam, Iyoel; Mathews, Scott A.; Charipar, Nicholas A.; Auyeung, Raymond C. Y.; Piqué, Alberto

    2016-04-01

    The use of laser-induced forward transfer (LIFT) techniques for the printing of functional materials has been demonstrated for numerous applications. The printing gives rise to patterns, which can be used to fabricate planar interconnects. More recently, various groups have demonstrated electrical interconnects from laser-printed 3D structures. The laser printing of these interconnects takes place through aggregation of voxels of either molten metal or of pastes containing dispersed metallic particles. However, the generated 3D structures do not posses the same metallic conductivity as a bulk metal interconnect of the same cross-section and length as those formed by wire bonding or tab welding. An alternative is to laser transfer entire 3D structures using a technique known as lase-and-place. Lase-and-place is a LIFT process whereby whole components and parts can be transferred from a donor substrate onto a desired location with one single laser pulse. This paper will describe the use of LIFT to laser print freestanding, solid metal foils or beams precisely over the contact pads of discrete devices to interconnect them into fully functional circuits. Furthermore, this paper will also show how the same laser can be used to bend or fold the bulk metal foils prior to transfer, thus forming compliant 3D structures able to provide strain relief for the circuits under flexing or during motion from thermal mismatch. These interconnect "ridges" can span wide gaps (on the order of a millimeter) and accommodate height differences of tens of microns between adjacent devices. Examples of these laser printed 3D metallic bridges and their role in the development of next generation electronics by additive manufacturing will be presented.

  10. Visibility Histogram Based Transfer Function for 3D Visualization of Heart%基于可见性直方图的传递函数在心脏三维显示中的应用

    Institute of Scientific and Technical Information of China (English)

    顾翀; 杨新; 姚莉萍; 薛海虹; 孙锟

    2013-01-01

    Transfer function is an important tool for direct volume rendering of 3D visualization of heart. However, the complexity of heart structure makes the design of transfer function a difficult task. In this paper, we introduce visibility histogram based transfer function to display the cardiac dual source CT data. We first preprocess the cardiac dual source CT volume data and afterwards explore the transfer function based on visibility histogram. Furthermore, we propose the automatic method to design the transfer function. With these methods, users can highlight the region of interested and even observe more details of cardiac chamber. Finally, we accelerate the calculation and 3D rendering using the technology of CUD A, thus leading to the real-time dynamic display of three-dimensional volume data. The experiments show that the proposed method can effectively remove the ribs, pulmonary veins in cardiac dual source CT data, enhance the myocardial tissue, blood and some internal structures such as the aortic valve, which is of great importance for cardiologists in clinical diagnosis.%在心脏的三维可视化的研究中,传递函数是一个十分重要的工具.然而,心脏复杂的结构使传递函数的设计十分困难.本文介绍了基于可见性直方图的传递函数设计以用来显示心脏双源CT数据.先对心脏双源CT体数据做预处理,提出在视线投射算法中利用基于可见性直方图的心脏传递函数对心脏数据进行三维显示,并且提出半自动方法来确定传递函数.通过这些方法,用户可以通过调节传递函数突出显示感兴趣的部分,甚至可以观察到心腔的许多细节.最后,利用CUDA技术对计算及显示进行加速,对三维体数据进行实时动态显示.实验表明,利用本文提出的方法可以有效地去掉心脏双源CT中的肋骨,肺静脉等数据,突出显示心肌组织及血液,并且通过传递函数可以看到主动脉瓣等心脏内部结构,对于心外

  11. Holography of 3d-3d correspondence at Large N

    OpenAIRE

    Gang, Dongmin; Kim, Nakwoo; Lee, Sangmin

    2014-01-01

    We study the physics of multiple M5-branes compactified on a hyperbolic 3-manifold. On the one hand, it leads to the 3d-3d correspondence which maps an N = 2 $$ \\mathcal{N}=2 $$ superconformal field theory to a pure Chern-Simons theory on the 3-manifold. On the other hand, it leads to a warped AdS 4 geometry in M-theory holographically dual to the superconformal field theory. Combining the holographic duality and the 3d-3d correspondence, we propose a conjecture for the large N limit of the p...

  12. CFD analysis of a transfer matrix of exhaust muffler with mean flow and prediction of exhaust noise

    Institute of Scientific and Technical Information of China (English)

    Lian-yun LIU; Zhi-yong HAO; Chi LIU

    2012-01-01

    A multi-dimensional computational fluid dynamics (CFD) approach was proposed in this study aiming to calculate the transfer matrix of an engine exhaust muffler in the conditions with and without mean flow.The CFD model of the muffler with absorptive material defined as porous zone was calibrated with the measured noise reduction without mean flow,and was further employed to study the effect of the mean flow on the acoustic performance of the muffler.Furthermore,the exhaust acoustical source was derived from the calculated transfer matrices of six different additional acoustic loads obtained by the proposed CFD approach as well as the measured tail noise based on a multiload least squares method.Finally,the exhaust noise was predicted based on Thevenin's theorem.The proposed CFD approach was suggested to be able to predict the acoustic performance of a complex muffler considering mean flow (without and with mean flow) and heat transfer,and provide reasonable results of the exhaust noise.

  13. Expert System for 3D Collar Intelligent Design

    Institute of Scientific and Technical Information of China (English)

    LIU Yan; GENG Zhao-feng

    2004-01-01

    A method to set up 3D collar prototype is developed in this paper by using the technique of cubic spline and bicubic surface patch. Then the relationship between the parameters of 3D collar prototype and different collar styles are studied. Based on the relationship, we can develop some algorithms of transferring style requirements to the parameters value of the collar prototype, and obtain some generation rules for the design of 3D collar style. As such, the knowledge base can be constructed, and the intelligent design system of 3D collar style is built. Using the system, various 3D collar styles can be designed automatically to satisfy various style requirements.

  14. 3D Spectroscopy in Astronomy

    Science.gov (United States)

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco

    2011-09-01

    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  15. 3D IBFV : Hardware-Accelerated 3D Flow Visualization

    NARCIS (Netherlands)

    Telea, Alexandru; Wijk, Jarke J. van

    2003-01-01

    We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique for 2D flow visualization in two main directions. First, we decompose the 3D flow visualization problem in a

  16. 3D Elevation Program—Virtual USA in 3D

    Science.gov (United States)

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  17. Radiative transfer with scattering for domain-decomposed 3D MHD simulations of cool stellar atmospheres. Numerical methods and application to the quiet, non-magnetic, surface of a solar-type star

    Science.gov (United States)

    Hayek, W.; Asplund, M.; Carlsson, M.; Trampedach, R.; Collet, R.; Gudiksen, B. V.; Hansteen, V. H.; Leenaarts, J.

    2010-07-01

    Aims: We present the implementation of a radiative transfer solver with coherent scattering in the new BIFROST code for radiative magneto-hydrodynamical (MHD) simulations of stellar surface convection. The code is fully parallelized using MPI domain decomposition, which allows for large grid sizes and improved resolution of hydrodynamical structures. We apply the code to simulate the surface granulation in a solar-type star, ignoring magnetic fields, and investigate the importance of coherent scattering for the atmospheric structure. Methods: A scattering term is added to the radiative transfer equation, requiring an iterative computation of the radiation field. We use a short-characteristics-based Gauss-Seidel acceleration scheme to compute radiative flux divergences for the energy equation. The effects of coherent scattering are tested by comparing the temperature stratification of three 3D time-dependent hydrodynamical atmosphere models of a solar-type star: without scattering, with continuum scattering only, and with both continuum and line scattering. Results: We show that continuum scattering does not have a significant impact on the photospheric temperature structure for a star like the Sun. Including scattering in line-blanketing, however, leads to a decrease of temperatures by about 350 K below log10 τ5000 ⪉ -4. The effect is opposite to that of 1D hydrostatic models in radiative equilibrium, where scattering reduces the cooling effect of strong LTE lines in the higher layers of the photosphere. Coherent line scattering also changes the temperature distribution in the high atmosphere, where we observe stronger fluctuations compared to a treatment of lines as true absorbers.

  18. A 3-D Contextual Classifier

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    1997-01-01

    . This includes the specification of a Gaussian distribution for the pixel values as well as a prior distribution for the configuration of class variables within the cross that is m ade of a pixel and its four nearest neighbours. We will extend this algorithm to 3-D, i.e. we will specify a simultaneous Gaussian...... distr ibution for a pixel and its 6 nearest 3-D neighbours, and generalise the class variable configuration distribution within the 3-D cross. The algorithm is tested on a synthetic 3-D multivariate dataset....

  19. 3D Bayesian contextual classifiers

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    2000-01-01

    We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours.......We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours....

  20. Using 3D in Visualization

    DEFF Research Database (Denmark)

    Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen

    2005-01-01

    to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...... with abstracted representations embedded in a 3D space. The interactions between development of geovisualization, the technology used to implement it and the theory surrounding cartographic representation are explored. The dominance of computing technologies, driven particularly by the gaming industry...

  1. Interactive 3D multimedia content

    CERN Document Server

    Cellary, Wojciech

    2012-01-01

    The book describes recent research results in the areas of modelling, creation, management and presentation of interactive 3D multimedia content. The book describes the current state of the art in the field and identifies the most important research and design issues. Consecutive chapters address these issues. These are: database modelling of 3D content, security in 3D environments, describing interactivity of content, searching content, visualization of search results, modelling mixed reality content, and efficient creation of interactive 3D content. Each chapter is illustrated with example a

  2. 3D for Graphic Designers

    CERN Document Server

    Connell, Ellery

    2011-01-01

    Helping graphic designers expand their 2D skills into the 3D space The trend in graphic design is towards 3D, with the demand for motion graphics, animation, photorealism, and interactivity rapidly increasing. And with the meteoric rise of iPads, smartphones, and other interactive devices, the design landscape is changing faster than ever.2D digital artists who need a quick and efficient way to join this brave new world will want 3D for Graphic Designers. Readers get hands-on basic training in working in the 3D space, including product design, industrial design and visualization, modeling, ani

  3. 3-D printers for libraries

    CERN Document Server

    Griffey, Jason

    2014-01-01

    As the maker movement continues to grow and 3-D printers become more affordable, an expanding group of hobbyists is keen to explore this new technology. In the time-honored tradition of introducing new technologies, many libraries are considering purchasing a 3-D printer. Jason Griffey, an early enthusiast of 3-D printing, has researched the marketplace and seen several systems first hand at the Consumer Electronics Show. In this report he introduces readers to the 3-D printing marketplace, covering such topics asHow fused deposition modeling (FDM) printing workBasic terminology such as build

  4. Research on steady-state visual evoked potentials in 3D displays

    Science.gov (United States)

    Chien, Yu-Yi; Lee, Chia-Ying; Lin, Fang-Cheng; Huang, Yi-Pai; Ko, Li-Wei; Shieh, Han-Ping D.

    2015-05-01

    Brain-computer interfaces (BCIs) are intuitive systems for users to communicate with outer electronic devices. Steady state visual evoked potential (SSVEP) is one of the common inputs for BCI systems due to its easy detection and high information transfer rates. An advanced interactive platform integrated with liquid crystal displays is leading a trend to provide an alternative option not only for the handicapped but also for the public to make our lives more convenient. Many SSVEP-based BCI systems have been studied in a 2D environment; however there is only little literature about SSVEP-based BCI systems using 3D stimuli. 3D displays have potentials in SSVEP-based BCI systems because they can offer vivid images, good quality in presentation, various stimuli and more entertainment. The purpose of this study was to investigate the effect of two important 3D factors (disparity and crosstalk) on SSVEPs. Twelve participants participated in the experiment with a patterned retarder 3D display. The results show that there is a significant difference (p-value<0.05) between large and small disparity angle, and the signal-to-noise ratios (SNRs) of small disparity angles is higher than those of large disparity angles. The 3D stimuli with smaller disparity and lower crosstalk are more suitable for applications based on the results of 3D perception and SSVEP responses (SNR). Furthermore, we can infer the 3D perception of users by SSVEP responses, and modify the proper disparity of 3D images automatically in the future.

  5. Visual Fixation for 3D Video Stabilization

    Directory of Open Access Journals (Sweden)

    Hans-Peter Seidel

    2011-03-01

    Full Text Available Visual fixation is employed by humans and some animals to keep a specific 3D location at the center of the visual gaze. Inspired by this phenomenon in nature, this paper explores the idea to transfer this mechanism to the context of video stabilization for a hand-held video camera. A novel approach is presented that stabilizes a video by fixating on automatically extracted 3D target points. This approach is different from existing automatic solutions that stabilize the video by smoothing. To determine the 3D target points, the recorded scene is analyzed with a state-of-the-art structure-from-motion algorithm, which estimates camera motion and reconstructs a 3D point cloud of the static scene objects. Special algorithms are presented that search either virtual or real 3D target points, which back-project close to the center of the image for as long a period of time as possible. The stabilization algorithm then transforms the original images of the sequence so that these 3D target points are kept exactly in the center of the image, which, in case of real 3D target points, produces a perfectly stable result at the image center. Furthermore, different methods of additional user interaction are investigated. It is shown that the stabilization process can easily be controlled and that it can be combined with state-of-the-art tracking techniques in order to obtain a powerful image stabilization tool. The approach is evaluated on a variety of videos taken with a hand-held camera in natural scenes.

  6. Perception of 3D spatial relations for 3D displays

    Science.gov (United States)

    Rosen, Paul; Pizlo, Zygmunt; Hoffmann, Christoph; Popescu, Voicu S.

    2004-05-01

    We test perception of 3D spatial relations in 3D images rendered by a 3D display (Perspecta from Actuality Systems) and compare it to that of a high-resolution flat panel display. 3D images provide the observer with such depth cues as motion parallax and binocular disparity. Our 3D display is a device that renders a 3D image by displaying, in rapid succession, radial slices through the scene on a rotating screen. The image is contained in a glass globe and can be viewed from virtually any direction. In the psychophysical experiment several families of 3D objects are used as stimuli: primitive shapes (cylinders and cuboids), and complex objects (multi-story buildings, cars, and pieces of furniture). Each object has at least one plane of symmetry. On each trial an object or its "distorted" version is shown at an arbitrary orientation. The distortion is produced by stretching an object in a random direction by 40%. This distortion must eliminate the symmetry of an object. The subject's task is to decide whether or not the presented object is distorted under several viewing conditions (monocular/binocular, with/without motion parallax, and near/far). The subject's performance is measured by the discriminability d', which is a conventional dependent variable in signal detection experiments.

  7. 3D Printing for Bricks

    OpenAIRE

    ECT Team, Purdue

    2015-01-01

    Building Bytes, by Brian Peters, is a project that uses desktop 3D printers to print bricks for architecture. Instead of using an expensive custom-made printer, it uses a normal standard 3D printer which is available for everyone and makes it more accessible and also easier for fabrication.

  8. Market study: 3-D eyetracker

    Science.gov (United States)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  9. Spherical 3D Isotropic Wavelets

    CERN Document Server

    Lanusse, F; Starck, J -L

    2011-01-01

    Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D Spherical Fourier-Bessel (SFB) analysis in is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the Fourier-Bessel decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. 2006. We also present a new fast Discrete Spherical Fourier-Bessel Transform (DSFBT) based on both a discrete Bessel Transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large...

  10. Improvement of 3D Scanner

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The disadvantage remaining in 3D scanning system and its reasons are discussed. A new host-and-slave structure with high speed image acquisition and processing system is proposed to quicken the image processing and improve the performance of 3D scanning system.

  11. Remote Collaborative 3D Printing - Process Investigation

    Science.gov (United States)

    2016-04-01

    such products. 9.1. Additive Manufacturing Hardware Wish List • Multi-axis FDM machine capable of complex layups: An FDM system with a 4th and...transferring, receiving, manipulating, and printing a digital 3D model into an additively manufactured component. Several digital models were...into an additively manufactured component. Several digital models were exchanged, and the steps, barriers, workarounds, and results have been

  12. Advanced 3-D Ultrasound Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer

    to produce high quality 3-D images. Because of the large matrix transducers with integrated custom electronics, these systems are extremely expensive. The relatively low price of ultrasound scanners is one of the factors for the widespread use of ultrasound imaging. The high price tag on the high quality 3-D......The main purpose of the PhD project was to develop methods that increase the 3-D ultrasound imaging quality available for the medical personnel in the clinic. Acquiring a 3-D volume gives the medical doctor the freedom to investigate the measured anatomy in any slice desirable after the scan has...... been completed. This allows for precise measurements of organs dimensions and makes the scan more operator independent. Real-time 3-D ultrasound imaging is still not as widespread in use in the clinics as 2-D imaging. A limiting factor has traditionally been the low image quality achievable using...

  13. Using 3D in Visualization

    DEFF Research Database (Denmark)

    Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen

    2005-01-01

    The notion of three-dimensionality is applied to five stages of the visualization pipeline. While 3D visulization is most often associated with the visual mapping and representation of data, this chapter also identifies its role in the management and assembly of data, and in the media used...... to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...... with abstracted representations embedded in a 3D space. The interactions between development of geovisualization, the technology used to implement it and the theory surrounding cartographic representation are explored. The dominance of computing technologies, driven particularly by the gaming industry...

  14. 3D printing in dentistry.

    Science.gov (United States)

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  15. 3D vision system assessment

    Science.gov (United States)

    Pezzaniti, J. Larry; Edmondson, Richard; Vaden, Justin; Hyatt, Bryan; Chenault, David B.; Kingston, David; Geulen, Vanilynmae; Newell, Scott; Pettijohn, Brad

    2009-02-01

    In this paper, we report on the development of a 3D vision system consisting of a flat panel stereoscopic display and auto-converging stereo camera and an assessment of the system's use for robotic driving, manipulation, and surveillance operations. The 3D vision system was integrated onto a Talon Robot and Operator Control Unit (OCU) such that direct comparisons of the performance of a number of test subjects using 2D and 3D vision systems were possible. A number of representative scenarios were developed to determine which tasks benefited most from the added depth perception and to understand when the 3D vision system hindered understanding of the scene. Two tests were conducted at Fort Leonard Wood, MO with noncommissioned officers ranked Staff Sergeant and Sergeant First Class. The scenarios; the test planning, approach and protocols; the data analysis; and the resulting performance assessment of the 3D vision system are reported.

  16. PLOT3D user's manual

    Science.gov (United States)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  17. Automatic 2D-to-3D image conversion using 3D examples from the internet

    Science.gov (United States)

    Konrad, J.; Brown, G.; Wang, M.; Ishwar, P.; Wu, C.; Mukherjee, D.

    2012-03-01

    The availability of 3D hardware has so far outpaced the production of 3D content. Although to date many methods have been proposed to convert 2D images to 3D stereopairs, the most successful ones involve human operators and, therefore, are time-consuming and costly, while the fully-automatic ones have not yet achieved the same level of quality. This subpar performance is due to the fact that automatic methods usually rely on assumptions about the captured 3D scene that are often violated in practice. In this paper, we explore a radically different approach inspired by our work on saliency detection in images. Instead of relying on a deterministic scene model for the input 2D image, we propose to "learn" the model from a large dictionary of stereopairs, such as YouTube 3D. Our new approach is built upon a key observation and an assumption. The key observation is that among millions of stereopairs available on-line, there likely exist many stereopairs whose 3D content matches that of the 2D input (query). We assume that two stereopairs whose left images are photometrically similar are likely to have similar disparity fields. Our approach first finds a number of on-line stereopairs whose left image is a close photometric match to the 2D query and then extracts depth information from these stereopairs. Since disparities for the selected stereopairs differ due to differences in underlying image content, level of noise, distortions, etc., we combine them by using the median. We apply the resulting median disparity field to the 2D query to obtain the corresponding right image, while handling occlusions and newly-exposed areas in the usual way. We have applied our method in two scenarios. First, we used YouTube 3D videos in search of the most similar frames. Then, we repeated the experiments on a small, but carefully-selected, dictionary of stereopairs closely matching the query. This, to a degree, emulates the results one would expect from the use of an extremely large 3D

  18. BUSICO 3D: building simulation and control in unity 3D

    DEFF Research Database (Denmark)

    Fürst, Jonathan; Fierro, Gabe; Bonnet, Philippe

    2014-01-01

    with simulations and easier transferring of schedules and configurations from the simulated virtual environment to a real-world deployment. We provide an implementation using a widely used game engine (Unity 3D) and sMAP (Simple Measurement and Actuation Profile), a developed time series database and metadata...

  19. ADT-3D Tumor Detection Assistant in 3D

    Directory of Open Access Journals (Sweden)

    Jaime Lazcano Bello

    2008-12-01

    Full Text Available The present document describes ADT-3D (Three-Dimensional Tumor Detector Assistant, a prototype application developed to assist doctors diagnose, detect and locate tumors in the brain by using CT scan. The reader may find on this document an introduction to tumor detection; ADT-3D main goals; development details; description of the product; motivation for its development; result’s study; and areas of applicability.

  20. Unassisted 3D camera calibration

    Science.gov (United States)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  1. Bioprinting of 3D hydrogels.

    Science.gov (United States)

    Stanton, M M; Samitier, J; Sánchez, S

    2015-08-07

    Three-dimensional (3D) bioprinting has recently emerged as an extension of 3D material printing, by using biocompatible or cellular components to build structures in an additive, layer-by-layer methodology for encapsulation and culture of cells. These 3D systems allow for cell culture in a suspension for formation of highly organized tissue or controlled spatial orientation of cell environments. The in vitro 3D cellular environments simulate the complexity of an in vivo environment and natural extracellular matrices (ECM). This paper will focus on bioprinting utilizing hydrogels as 3D scaffolds. Hydrogels are advantageous for cell culture as they are highly permeable to cell culture media, nutrients, and waste products generated during metabolic cell processes. They have the ability to be fabricated in customized shapes with various material properties with dimensions at the micron scale. 3D hydrogels are a reliable method for biocompatible 3D printing and have applications in tissue engineering, drug screening, and organ on a chip models.

  2. Tuotekehitysprojekti: 3D-tulostin

    OpenAIRE

    Pihlajamäki, Janne

    2011-01-01

    Opinnäytetyössä tutustuttiin 3D-tulostamisen teknologiaan. Työssä käytiin läpi 3D-tulostimesta tehty tuotekehitysprojekti. Sen lisäksi esiteltiin yleisellä tasolla tuotekehitysprosessi ja syntyneiden tulosten mahdollisia suojausmenetelmiä. Tavoitteena tässä työssä oli kehittää markkinoilta jo löytyvää kotitulostin-tasoista 3D-laiteteknologiaa lähemmäksi ammattilaistason ratkaisua. Tavoitteeseen pyrittiin keskittymällä parantamaan laitteella saavutettavaa tulostustarkkuutta ja -nopeutt...

  3. Color 3D Reverse Engineering

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper presents a principle and a method of col or 3D laser scanning measurement. Based on the fundamental monochrome 3D measureme nt study, color information capture, color texture mapping, coordinate computati on and other techniques are performed to achieve color 3D measurement. The syste m is designed and composed of a line laser light emitter, one color CCD camera, a motor-driven rotary filter, a circuit card and a computer. Two steps in captu ring object's images in the measurement process: Firs...

  4. Exploration of 3D Printing

    OpenAIRE

    Lin, Zeyu

    2014-01-01

    3D printing technology is introduced and defined in this Thesis. Some methods of 3D printing are illustrated and their principles are explained with pictures. Most of the essential parts are presented with pictures and their effects are explained within the whole system. Problems on Up! Plus 3D printer are solved and a DIY product is made with this machine. The processes of making product are recorded and the items which need to be noticed during the process are the highlight in this th...

  5. Handbook of 3D integration

    CERN Document Server

    Garrou , Philip; Ramm , Peter

    2014-01-01

    Edited by key figures in 3D integration and written by top authors from high-tech companies and renowned research institutions, this book covers the intricate details of 3D process technology.As such, the main focus is on silicon via formation, bonding and debonding, thinning, via reveal and backside processing, both from a technological and a materials science perspective. The last part of the book is concerned with assessing and enhancing the reliability of the 3D integrated devices, which is a prerequisite for the large-scale implementation of this emerging technology. Invaluable reading fo

  6. Conducting polymer 3D microelectrodes

    DEFF Research Database (Denmark)

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...

  7. Accepting the T3D

    Energy Technology Data Exchange (ETDEWEB)

    Rich, D.O.; Pope, S.C.; DeLapp, J.G.

    1994-10-01

    In April, a 128 PE Cray T3D was installed at Los Alamos National Laboratory`s Advanced Computing Laboratory as part of the DOE`s High-Performance Parallel Processor Program (H4P). In conjunction with CRI, the authors implemented a 30 day acceptance test. The test was constructed in part to help them understand the strengths and weaknesses of the T3D. In this paper, they briefly describe the H4P and its goals. They discuss the design and implementation of the T3D acceptance test and detail issues that arose during the test. They conclude with a set of system requirements that must be addressed as the T3D system evolves.

  8. 3-D Vector Flow Imaging

    DEFF Research Database (Denmark)

    Holbek, Simon

    For the last decade, the field of ultrasonic vector flow imaging has gotten an increasingly attention, as the technique offers a variety of new applications for screening and diagnostics of cardiovascular pathologies. The main purpose of this PhD project was therefore to advance the field of 3-D...... ultrasonic vector flow estimation and bring it a step closer to a clinical application. A method for high frame rate 3-D vector flow estimation in a plane using the transverse oscillation method combined with a 1024 channel 2-D matrix array is presented. The proposed method is validated both through phantom......, if this significant reduction in the element count can still provide precise and robust 3-D vector flow estimates in a plane. The study concludes that the RC array is capable of estimating precise 3-D vector flow both in a plane and in a volume, despite the low channel count. However, some inherent new challenges...

  9. Coherence transfer of subhertz-linewidth laser light via an optical fiber noise compensated by remote users.

    Science.gov (United States)

    Wu, Lifei; Jiang, Yanyi; Ma, Chaoqun; Yu, Hongfu; Bi, Zhiyi; Ma, Longsheng

    2016-09-15

    We present a technique for the coherence transfer of laser light through a fiber link, where the optical phase noise induced by environmental perturbation via the fiber link is compensated by remote users. When compensating the fiber noise by remote users, the time base at the remote site independent from that at the local site does not destroy the performance of the fiber output light. Using this technique, we demonstrate the transfer of subhertz-linewidth laser light through a 25-km-long, lab-based spooled fiber. After being compensated, the relative linewidth between the fiber input and output light is 1 mHz, and the relative frequency instability is 4×10-17 at 1 s averaging time and scales down to 2×10-19 at 800 s averaging time. The frequency uncertainty of the light after transferring through the fiber relative to that of the input light is 3.0×10-19. This system is suitable for the simultaneous transfer of an optical signal to a number of end users within a city.

  10. Difference in performance between 3D and 4D CBCT for lung imaging: a dose and image quality analysis.

    Science.gov (United States)

    Thengumpallil, Sheeba; Smith, Kathleen; Monnin, Pascal; Bourhis, Jean; Bochud, François; Moeckli, Raphaël

    2016-11-08

    The study was to describe and to compare the performance of 3D and 4D CBCT imaging modalities by measuring and analyzing the delivered dose and the image quality. The 3D (Chest) and 4D (Symmetry) CBCT Elekta XVI lung IGRT protocols were analyzed. Dose profiles were measured with TLDs inside a dedicated phantom. The dosimetric indicator cone-beam dose index (CBDI) was evaluated. The image quality analysis was performed by assessing the contrast transfer function (CTF), the noise power spectrum (NPS) and the noise-equivalent quanta (NEQ). Artifacts were also evaluated by simulating irregular breathing variations. The two imaging modalities showed different dose distributions within the phantom. At the center, the 3D CBCT delivered twice the dose of the 4D CBCT. The CTF was strongly reduced by motion compared to static conditions, resulting in a CTF reduction of 85% for the 3D CBCT and 65% for the 4D CBCT. The amplitude of the NPS was two times higher for the 4D CBCT than for the 3D CBCT. In the presence of motion, the NEQ of the 4D CBCT was 50% higher than the 3D CBCT. In the presence of breathing irregularities, the 4D CBCT protocol was mainly affected by view-aliasing artifacts, which were typically cone-beam artifacts, while the 3D CBCT protocol was mainly affected by duplication artifacts. The results showed that the 4D CBCT ensures a reasonable dose and better image quality when mov-ing targets are involved compared to 3D CBCT. Therefore, 4D CBCT is a reliable imaging modality for lung free-breathing radiation therapy.

  11. Signal and noise transfer properties of CMOS based active pixel flat panel imager coupled to structured CsI:Tl.

    Science.gov (United States)

    Arvanitis, C D; Bohndiek, S E; Blakesley, J; Olivo, A; Speller, R D

    2009-01-01

    Complementary metal-oxide-semiconductors (CMOS) active pixel sensors can be optically coupled to CsI:Tl phosphors forming a indirect active pixel flat panel imager (APFPI) for high performance medical imaging. The aim of this work is to determine the x-ray imaging capabilities of CMOS-based APFPI and study the signal and noise transfer properties of CsI:Tl phosphors. Three different CsI:Tl phosphors from two different vendors have been used to produce three system configurations. The performance of each system configuration has been studied in terms of the modulation transfer function (MTF), noise power spectra, and detective quantum efficiency (DQE) in the mammographic energy range. A simple method to determine quantum limited systems in this energy range is also presented. In addition, with aid of monochromatic synchrotron radiation, the effect of iodine characteristic x-rays of the CsI:Tl on the MTF has been determined. A Monte Carlo simulation of the signal transfer properties of the imager is also presented in order to study the stages that degrade the spatial resolution of our current system. The effect of using substrate patterning during the growth of CsI:Tl columnar structure was also studied, along with the effect of CsI:Tl fixed pattern noise due to local variations in the scintillation light. CsI:Tl fixed pattern noise appears to limit the performance of our current system configurations. All the system configurations are quantum limited at 0.23 microC/kg with two of them having DQE (0) equal to 0.57. Active pixel flat panel imagers are shown to be digital x-ray imagers with almost constant DQE throughout a significant part of their dynamic range and in particular at very low exposures.

  12. 3D Face Apperance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Astrom, K

    2006-01-01

    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations......We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations...

  13. 3D Face Appearance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Åström, Kalle

    2006-01-01

    We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}......We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}...

  14. Main: TATCCAYMOTIFOSRAMY3D [PLACE

    Lifescience Database Archive (English)

    Full Text Available TATCCAYMOTIFOSRAMY3D S000256 01-August-2006 (last modified) kehi TATCCAY motif foun...d in rice (O.s.) RAmy3D alpha-amylase gene promoter; Y=T/C; a GATA motif as its antisense sequence; TATCCAY ...motif and G motif (see S000130) are responsible for sugar repression (Toyofuku et al. 1998); GATA; amylase; sugar; repression; rice (Oryza sativa) TATCCAY ...

  15. Planetary Torque in 3D Isentropic Disks

    Science.gov (United States)

    Fung, Jeffrey; Masset, Frédéric; Lega, Elena; Velasco, David

    2017-03-01

    Planetary migration is inherently a three-dimensional (3D) problem, because Earth-size planetary cores are deeply embedded in protoplanetary disks. Simulations of these 3D disks remain challenging due to the steep resolution requirements. Using two different hydrodynamics codes, FARGO3D and PEnGUIn, we simulate disk–planet interaction for a one to five Earth-mass planet embedded in an isentropic disk. We measure the torque on the planet and ensure that the measurements are converged both in resolution and between the two codes. We find that the torque is independent of the smoothing length of the planet’s potential (r s), and that it has a weak dependence on the adiabatic index of the gaseous disk (γ). The torque values correspond to an inward migration rate qualitatively similar to previous linear calculations. We perform additional simulations with explicit radiative transfer using FARGOCA, and again find agreement between 3D simulations and existing torque formulae. We also present the flow pattern around the planets that show active flow is present within the planet’s Hill sphere, and meridional vortices are shed downstream. The vertical flow speed near the planet is faster for a smaller r s or γ, up to supersonic speeds for the smallest r s and γ in our study.

  16. Planetary Torque in 3D Isentropic Disks

    CERN Document Server

    Fung, Jeffrey; Lega, Elena; Velasco, David

    2016-01-01

    Planet migration is inherently a three-dimensional (3D) problem, because Earth-size planetary cores are deeply embedded in protoplanetary disks. Simulations of these 3D disks remain challenging due to the steep requirement in resolution. Using two different hydrodynamics code, FARGO3D and PEnGUIn, we simulate disk-planet interaction for a 1 to 5 Earth-mass planet embedded in an isentropic disk. We measure the torque on the planet and ensure that the measurements are converged both in resolution and between the two codes. We find that the torque is independent of the smoothing length of the planet's potential ($r_{\\rm s}$), and that it has a weak dependence on the adiabatic index of the gaseous disk ($\\gamma$). The torque values correspond to an inward migration rate qualitatively similar to previous linear calculations. We perform additional simulations with explicit radiative transfer using FARGOCA, and again find agreement between 3D simulations and existing torque formulae. We also present the flow pattern...

  17. Superfast 3D absolute shape measurement using five binary patterns

    Science.gov (United States)

    Hyun, Jae-Sang; Zhang, Song

    2017-03-01

    This paper presents a method that recovers high-quality 3D absolute coordinates point by point with only five binary patterns. Specifically, three dense binary dithered patterns are used to compute the wrapped phase; and the average intensity is combined with two additional binary patterns to determine fringe order pixel by pixel in phase domain. The wrapped phase is temporarily unwrapped point by point by referring to the fringe order. We further developed a computational framework to reduce random noise impact due to dithering, defocusing and random noise. Since only five binary fringe patterns are required to recover one 3D frame, extremely high speed 3D shape measurement can be achieved. For example, we developed a system that captures 2D images at 3333 Hz, and thus performs 3D shape measurement at 667 Hz.

  18. Immersive 3D geovisualisation in higher education

    Science.gov (United States)

    Philips, Andrea; Walz, Ariane; Bergner, Andreas; Graeff, Thomas; Heistermann, Maik; Kienzler, Sarah; Korup, Oliver; Lipp, Torsten; Schwanghart, Wolfgang; Zeilinger, Gerold

    2014-05-01

    Through geovisualisation we explore spatial data, we analyse it towards a specific questions, we synthesise results, and we present and communicate them to a specific audience (MacEachren & Kraak 1997). After centuries of paper maps, the means to represent and visualise our physical environment and its abstract qualities have changed dramatically since the 1990s - and accordingly the methods how to use geovisualisation in teaching. Whereas some people might still consider the traditional classroom as ideal setting for teaching and learning geographic relationships and its mapping, we used a 3D CAVE (computer-animated virtual environment) as environment for a problem-oriented learning project called "GEOSimulator". Focussing on this project, we empirically investigated, if such a technological advance like the CAVE make 3D visualisation, including 3D geovisualisation, not only an important tool for businesses (Abulrub et al. 2012) and for the public (Wissen et al. 2008), but also for educational purposes, for which it had hardly been used yet. The 3D CAVE is a three-sided visualisation platform, that allows for immersive and stereoscopic visualisation of observed and simulated spatial data. We examined the benefits of immersive 3D visualisation for geographic research and education and synthesized three fundamental technology-based visual aspects: First, the conception and comprehension of space and location does not need to be generated, but is instantaneously and intuitively present through stereoscopy. Second, optical immersion into virtual reality strengthens this spatial perception which is in particular important for complex 3D geometries. And third, a significant benefit is interactivity, which is enhanced through immersion and allows for multi-discursive and dynamic data exploration and knowledge transfer. Based on our problem-oriented learning project, which concentrates on a case study on flood risk management at the Wilde Weisseritz in Germany, a river

  19. 3D Printed Dry EEG Electrodes

    Directory of Open Access Journals (Sweden)

    Sammy Krachunov

    2016-10-01

    Full Text Available Electroencephalography (EEG is a procedure that records brain activity in a non-invasive manner. The cost and size of EEG devices has decreased in recent years, facilitating a growing interest in wearable EEG that can be used out-of-the-lab for a wide range of applications, from epilepsy diagnosis, to stroke rehabilitation, to Brain-Computer Interfaces (BCI. A major obstacle for these emerging applications is the wet electrodes, which are used as part of the EEG setup. These electrodes are attached to the human scalp using a conductive gel, which can be uncomfortable to the subject, causes skin irritation, and some gels have poor long-term stability. A solution to this problem is to use dry electrodes, which do not require conductive gel, but tend to have a higher noise floor. This paper presents a novel methodology for the design and manufacture of such dry electrodes. We manufacture the electrodes using low cost desktop 3D printers and off-the-shelf components for the first time. This allows quick and inexpensive electrode manufacturing and opens the possibility of creating electrodes that are customized for each individual user. Our 3D printed electrodes are compared against standard wet electrodes, and the performance of the proposed electrodes is suitable for BCI applications, despite the presence of additional noise.

  20. Designing TSVs for 3D Integrated Circuits

    CERN Document Server

    Khan, Nauman

    2013-01-01

    This book explores the challenges and presents best strategies for designing Through-Silicon Vias (TSVs) for 3D integrated circuits.  It describes a novel technique to mitigate TSV-induced noise, the GND Plug, which is superior to others adapted from 2-D planar technologies, such as a backside ground plane and traditional substrate contacts. The book also investigates, in the form of a comparative study, the impact of TSV size and granularity, spacing of C4 connectors, off-chip power delivery network, shared and dedicated TSVs, and coaxial TSVs on the quality of power delivery in 3-D ICs. The authors provide detailed best design practices for designing 3-D power delivery networks.  Since TSVs occupy silicon real-estate and impact device density, this book provides four iterative algorithms to minimize the number of TSVs in a power delivery network. Unlike other existing methods, these algorithms can be applied in early design stages when only functional block- level behaviors and a floorplan are available....

  1. MPML3D: Scripting Agents for the 3D Internet.

    Science.gov (United States)

    Prendinger, Helmut; Ullrich, Sebastian; Nakasone, Arturo; Ishizuka, Mitsuru

    2011-05-01

    The aim of this paper is two-fold. First, it describes a scripting language for specifying communicative behavior and interaction of computer-controlled agents ("bots") in the popular three-dimensional (3D) multiuser online world of "Second Life" and the emerging "OpenSimulator" project. While tools for designing avatars and in-world objects in Second Life exist, technology for nonprogrammer content creators of scenarios involving scripted agents is currently missing. Therefore, we have implemented new client software that controls bots based on the Multimodal Presentation Markup Language 3D (MPML3D), a highly expressive XML-based scripting language for controlling the verbal and nonverbal behavior of interacting animated agents. Second, the paper compares Second Life and OpenSimulator platforms and discusses the merits and limitations of each from the perspective of agent control. Here, we also conducted a small study that compares the network performance of both platforms.

  2. Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance

    Science.gov (United States)

    Douglass, John K.; Wilkens, Lon; Pantazelou, Eleni; Moss, Frank

    1993-09-01

    IN linear information theory, electrical engineering and neurobiology, random noise has traditionally been viewed as a detriment to information transmission. Stochastic resonance (SR) is a nonlinear, statistical dynamics whereby information flow in a multistate system is enhanced by the presence of optimized, random noise1 4. A major consequence of SR for signal reception is that it makes possible substantial improvements in the detection of weak periodic signals. Although SR has recently been demonstrated in several artificial physical systems5,6, it may also occur naturally, and an intriguing possibility is that biological systems have evolved the capability to exploit SR by optimizing endogenous sources of noise. Sensory systems are an obvious place to look for SR, as they excel at detecting weak signals in a noisy environment. Here we demonstrate SR using external noise applied to crayfish mechanoreceptor cells. Our results show that individual neurons can provide a physiological substrate for SR in sensory systems.

  3. 3D-mallinnus ja 3D-animaatiot biovoimalaitoksesta

    OpenAIRE

    Hiltula, Tytti

    2014-01-01

    Opinnäytetyössä tehtiin biovoimalaitoksen piirustuksista 3D-mallinnus ja animaatiot. Työn tarkoituksena oli saada valmiiksi Recwell Oy:lle markkinointiin tarkoitetut kuva- ja videomateriaalit. Työssä perehdyttiin 3D-mallintamisen perustietoihin ja lähtökohtiin sekä animaation laatimiseen. Työ laadittiin kokonaisuudessaan AutoCAD-ohjelmalla, ja työn aikana tutustuttiin huolellisesti myös ohjelman käyttöohjeisiin. Piirustusten mitoituksessa huomattiin jo alkuvaiheessa suuria puutteita, ...

  4. From 3D view to 3D print

    Science.gov (United States)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  5. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    Science.gov (United States)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  6. Materialedreven 3d digital formgivning

    DEFF Research Database (Denmark)

    Hansen, Flemming Tvede

    2010-01-01

    Formålet med forskningsprojektet er for det første at understøtte keramikeren i at arbejde eksperimenterende med digital formgivning, og for det andet at bidrage til en tværfaglig diskurs om brugen af digital formgivning. Forskningsprojektet fokuserer på 3d formgivning og derved på 3d digital...... formgivning og Rapid Prototyping (RP). RP er en fællesbetegnelse for en række af de teknikker, der muliggør at overføre den digitale form til 3d fysisk form. Forskningsprojektet koncentrerer sig om to overordnede forskningsspørgsmål. Det første handler om, hvordan viden og erfaring indenfor det keramiske...... fagområde kan blive udnyttet i forhold til 3d digital formgivning. Det andet handler om, hvad en sådan tilgang kan bidrage med, og hvordan den kan blive udnyttet i et dynamisk samspil med det keramiske materiale i formgivningen af 3d keramiske artefakter. Materialedreven formgivning er karakteriseret af en...

  7. Novel 3D media technologies

    CERN Document Server

    Dagiuklas, Tasos

    2015-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The contributions are based on the results of the FP7 European Project ROMEO, which focuses on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the future Internet. The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of consistent video quality to fixed and mobile users. ROMEO will present hybrid networking solutions that combine the DVB-T2 and DVB-NGH broadcas...

  8. 3D future internet media

    CERN Document Server

    Dagiuklas, Tasos

    2014-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The main contributions are based on the results of the FP7 European Projects ROMEO, which focus on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the Future Internet (www.ict-romeo.eu). The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of constant video quality to both fixed and mobile users. ROMEO will design and develop hybrid-networking solutions that co...

  9. Speaking Volumes About 3-D

    Science.gov (United States)

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  10. MEDICAL IMAGE COLOUR TRANSFER AND 3 D RECONSTRUCTION BASED ON IMPROVED GENETIC ALGORITHM%基于改进遗传算法的医学图片颜色迁移及重构

    Institute of Scientific and Technical Information of China (English)

    蒋先刚; 丘赟立; 熊娟

    2013-01-01

    为了得到有效和符合真实人体器官组织的彩色仿真图片,通过灰色MRI切片和真彩图像的亮度及纹理的适应度的搜索取优而实现灰度MRI切片的颜色迁移。着重研究将改进遗传算法与点邻域亮度纹理分布和局部颜色结构分布相结合,并应用于Welsh图像彩色化算法和比较,探索用于遗传算法的种群选择、交叉和变异、编码方式和码值渐变自适应等调整技术和方法。将点邻域分布和彩色局部分布的彩色特征通过穷举法、随机法和遗传算法进行最优彩色点搜索分析比较。最后得到的彩色化的MRI切片的三维重构模型能多层次清晰地反映器官组织的分布和构造。%In order to gain the colourful simulated image of human organs and tissues which are valid and in line with the real , we realise the colour transferring of a gray MRI slice by searching and picking up the optimal fitness of a gray MRI slice to the brightness and textures of a true colour image .In this paper we particularly study the combination of the improved genetic algorithm with the distribution of brightness and textures within pixel neighbourhood and the local colour structure , and apply our study to Welsh image colourisation algorithm and comparison, probe the adjustment technologies and ways of population selection , crossover and mutation , coding mode and code value gradual varying adaptiveness , all are used in genetic algorithm .By using exhaust algorithm , random algorithm and genetic algorithm , colour characteristics with pixels neighbourhood distribution and with local colour distribution are analysed and compared for best colour points search.The reconstructed 3D model of colourised MRI slices eventually derived can clearly and in multi-level reflect the distribution and construction of human organs and tissues .

  11. Modification of 3D milling machine to 3D printer

    OpenAIRE

    Halamíček, Lukáš

    2015-01-01

    Tato práce se zabývá přestavbou gravírovací frézky na 3D tiskárnu. V první části se práce zabývá možnými technologiemi 3D tisku a možností jejich využití u přestavby. Dále jsou popsány a vybrány vhodné součásti pro přestavbu. V další části je realizováno řízení ohřevu podložky, trysky a řízení posuvu drátu pomocí softwaru TwinCat od společnosti Beckhoff na průmyslovém počítači. Výsledkem práce by měla být oživená 3D tiskárna. This thesis deals with rebuilding of engraving machine to 3D pri...

  12. Aspects of defects in 3d-3d correspondence

    Energy Technology Data Exchange (ETDEWEB)

    Gang, Dongmin [Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo,Chiba 277-8583 (Japan); Kim, Nakwoo [Department of Physics and Research Institute of Basic Science, Kyung Hee University,Seoul 02447 (Korea, Republic of); School of Physics, Korea Institute for Advanced Study,Seoul 02455 (Korea, Republic of); Romo, Mauricio; Yamazaki, Masahito [Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo,Chiba 277-8583 (Japan); School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States)

    2016-10-12

    In this paper we study supersymmetric co-dimension 2 and 4 defects in the compactification of the 6d (2,0) theory of type A{sub N−1} on a 3-manifold M. The so-called 3d-3d correspondence is a relation between complexified Chern-Simons theory (with gauge group SL(N,ℂ)) on M and a 3d N=2 theory T{sub N}[M]. We study this correspondence in the presence of supersymmetric defects, which are knots/links inside the 3-manifold. Our study employs a number of different methods: state-integral models for complex Chern-Simons theory, cluster algebra techniques, domain wall theory T[SU(N)], 5d N=2 SYM, and also supergravity analysis through holography. These methods are complementary and we find agreement between them. In some cases the results lead to highly non-trivial predictions on the partition function. Our discussion includes a general expression for the cluster partition function, which can be used to compute in the presence of maximal and certain class of non-maximal punctures when N>2. We also highlight the non-Abelian description of the 3d N=2T{sub N}[M] theory with defect included, when such a description is available. This paper is a companion to our shorter paper http://dx.doi.org/10.1088/1751-8113/49/30/30LT02, which summarizes our main results.

  13. Aspects of defects in 3d-3d correspondence

    Science.gov (United States)

    Gang, Dongmin; Kim, Nakwoo; Romo, Mauricio; Yamazaki, Masahito

    2016-10-01

    In this paper we study supersymmetric co-dimension 2 and 4 defects in the compactification of the 6d (2, 0) theory of type A N -1 on a 3-manifold M . The so-called 3d-3d correspondence is a relation between complexified Chern-Simons theory (with gauge group SL(N,C) ) on M and a 3d N=2 theory T N [ M ]. We study this correspondence in the presence of supersymmetric defects, which are knots/links inside the 3-manifold. Our study employs a number of different methods: state-integral models for complex Chern-Simons theory, cluster algebra techniques, domain wall theory T [SU( N )], 5d N=2 SYM, and also supergravity analysis through holography. These methods are complementary and we find agreement between them. In some cases the results lead to highly non-trivial predictions on the partition function. Our discussion includes a general expression for the cluster partition function, which can be used to compute in the presence of maximal and certain class of non-maximal punctures when N > 2. We also highlight the non-Abelian description of the 3d N=2 T N [ M ] theory with defect included, when such a description is available. This paper is a companion to our shorter paper [1], which summarizes our main results.

  14. Holography of 3d-3d correspondence at large N

    Energy Technology Data Exchange (ETDEWEB)

    Gang, Dongmin [School of Physics, Korea Institute for Advanced Study,85 Hoegiro, Dongdaemun-gu, Seoul, 130-722 (Korea, Republic of); Kim, Nakwoo [Department of Physics and Research Institute of Basic Science, Kyung Hee University,26 Kyungheedaero, Dongdaemun-gu, Seoul, 130-701 (Korea, Republic of); Lee, Sangmin [School of Physics, Korea Institute for Advanced Study,85 Hoegiro, Dongdaemun-gu, Seoul, 130-722 (Korea, Republic of); Center for Theoretical Physics, Department of Physics and Astronomy, College of Liberal Studies,Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 151-742 (Korea, Republic of)

    2015-04-20

    We study the physics of multiple M5-branes compactified on a hyperbolic 3-manifold. On the one hand, it leads to the 3d-3d correspondence which maps an N=2 superconformal field theory to a pure Chern-Simons theory on the 3-manifold. On the other hand, it leads to a warped AdS{sub 4} geometry in M-theory holographically dual to the superconformal field theory. Combining the holographic duality and the 3d-3d correspondence, we propose a conjecture for the large N limit of the perturbative free energy of a Chern-Simons theory on hyperbolic 3-manifold. The conjecture claims that the tree, one-loop and two-loop terms all share the same N{sup 3} scaling behavior and are proportional to the volume of the 3-manifold, while the three-loop and higher terms are suppressed at large N. Under mild assumptions, we prove the tree and one-loop parts of the conjecture. For the two-loop part, we test the conjecture numerically in a number of examples and find precise agreement. We also confirm the suppression of higher loop terms in a few examples.

  15. 3D vector flow imaging

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes

    The main purpose of this PhD project is to develop an ultrasonic method for 3D vector flow imaging. The motivation is to advance the field of velocity estimation in ultrasound, which plays an important role in the clinic. The velocity of blood has components in all three spatial dimensions, yet...... conventional methods can estimate only the axial component. Several approaches for 3D vector velocity estimation have been suggested, but none of these methods have so far produced convincing in vivo results nor have they been adopted by commercial manufacturers. The basis for this project is the Transverse...... on the TO fields are suggested. They can be used to optimize the TO method. In the third part, a TO method for 3D vector velocity estimation is proposed. It employs a 2D phased array transducer and decouples the velocity estimation into three velocity components, which are estimated simultaneously based on 5...

  16. 3-D Vector Flow Imaging

    DEFF Research Database (Denmark)

    Holbek, Simon

    studies and in vivo. Phantom measurements are compared with their corresponding reference value, whereas the in vivo measurement is validated against the current golden standard for non-invasive blood velocity estimates, based on magnetic resonance imaging (MRI). The study concludes, that a high precision......, if this significant reduction in the element count can still provide precise and robust 3-D vector flow estimates in a plane. The study concludes that the RC array is capable of estimating precise 3-D vector flow both in a plane and in a volume, despite the low channel count. However, some inherent new challenges......For the last decade, the field of ultrasonic vector flow imaging has gotten an increasingly attention, as the technique offers a variety of new applications for screening and diagnostics of cardiovascular pathologies. The main purpose of this PhD project was therefore to advance the field of 3-D...

  17. Microfluidic 3D Helix Mixers

    Directory of Open Access Journals (Sweden)

    Georgette B. Salieb-Beugelaar

    2016-10-01

    Full Text Available Polymeric microfluidic systems are well suited for miniaturized devices with complex functionality, and rapid prototyping methods for 3D microfluidic structures are increasingly used. Mixing at the microscale and performing chemical reactions at the microscale are important applications of such systems and we therefore explored feasibility, mixing characteristics and the ability to control a chemical reaction in helical 3D channels produced by the emerging thread template method. Mixing at the microscale is challenging because channel size reduction for improving solute diffusion comes at the price of a reduced Reynolds number that induces a strictly laminar flow regime and abolishes turbulence that would be desired for improved mixing. Microfluidic 3D helix mixers were rapidly prototyped in polydimethylsiloxane (PDMS using low-surface energy polymeric threads, twisted to form 2-channel and 3-channel helices. Structure and flow characteristics were assessed experimentally by microscopy, hydraulic measurements and chromogenic reaction, and were modeled by computational fluid dynamics. We found that helical 3D microfluidic systems produced by thread templating allow rapid prototyping, can be used for mixing and for controlled chemical reaction with two or three reaction partners at the microscale. Compared to the conventional T-shaped microfluidic system used as a control device, enhanced mixing and faster chemical reaction was found to occur due to the combination of diffusive mixing in small channels and flow folding due to the 3D helix shape. Thus, microfluidic 3D helix mixers can be rapidly prototyped using the thread template method and are an attractive and competitive method for fluid mixing and chemical reactions at the microscale.

  18. 3D Printed Bionic Nanodevices.

    Science.gov (United States)

    Kong, Yong Lin; Gupta, Maneesh K; Johnson, Blake N; McAlpine, Michael C

    2016-06-01

    The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and 'living' platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the

  19. 3D Printed Bionic Nanodevices

    Science.gov (United States)

    Kong, Yong Lin; Gupta, Maneesh K.; Johnson, Blake N.; McAlpine, Michael C.

    2016-01-01

    Summary The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and ‘living’ platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with

  20. Ideal 3D asymmetric concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Botella, Angel [Departamento Fisica Aplicada a los Recursos Naturales, Universidad Politecnica de Madrid, E.T.S.I. de Montes, Ciudad Universitaria s/n, 28040 Madrid (Spain); Fernandez-Balbuena, Antonio Alvarez; Vazquez, Daniel; Bernabeu, Eusebio [Departamento de Optica, Universidad Complutense de Madrid, Fac. CC. Fisicas, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2009-01-15

    Nonimaging optics is a field devoted to the design of optical components for applications such as solar concentration or illumination. In this field, many different techniques have been used for producing reflective and refractive optical devices, including reverse engineering techniques. In this paper we apply photometric field theory and elliptic ray bundles method to study 3D asymmetric - without rotational or translational symmetry - concentrators, which can be useful components for nontracking solar applications. We study the one-sheet hyperbolic concentrator and we demonstrate its behaviour as ideal 3D asymmetric concentrator. (author)

  1. 3D digitization of mosaics

    Directory of Open Access Journals (Sweden)

    Anna Maria Manferdini

    2012-11-01

    Full Text Available In this paper we present a methodology developed to access to Cultural Heritage information using digital 3d reality-based models as graphic interfaces. The case studies presented belong to the wide repertoire of mosaics of Ravenna. One of the most peculiar characteristics of mosaics that often limits their digital survey is their multi-scale complexity; nevertheless their models could be used in 3d information systems, for digital exhibitions, for reconstruction aims and to document their conservation conditions in order to conduct restoration interventions in digital environments aiming at speeding and performing more reliable evaluations.

  2. PubChem3D: Biologically relevant 3-D similarity

    Directory of Open Access Journals (Sweden)

    Kim Sunghwan

    2011-07-01

    Full Text Available Abstract Background The use of 3-D similarity techniques in the analysis of biological data and virtual screening is pervasive, but what is a biologically meaningful 3-D similarity value? Can one find statistically significant separation between "active/active" and "active/inactive" spaces? These questions are explored using 734,486 biologically tested chemical structures, 1,389 biological assay data sets, and six different 3-D similarity types utilized by PubChem analysis tools. Results The similarity value distributions of 269.7 billion unique conformer pairs from 734,486 biologically tested compounds (all-against-all from PubChem were utilized to help work towards an answer to the question: what is a biologically meaningful 3-D similarity score? The average and standard deviation for the six similarity measures STST-opt, CTST-opt, ComboTST-opt, STCT-opt, CTCT-opt, and ComboTCT-opt were 0.54 ± 0.10, 0.07 ± 0.05, 0.62 ± 0.13, 0.41 ± 0.11, 0.18 ± 0.06, and 0.59 ± 0.14, respectively. Considering that this random distribution of biologically tested compounds was constructed using a single theoretical conformer per compound (the "default" conformer provided by PubChem, further study may be necessary using multiple diverse conformers per compound; however, given the breadth of the compound set, the single conformer per compound results may still apply to the case of multi-conformer per compound 3-D similarity value distributions. As such, this work is a critical step, covering a very wide corpus of chemical structures and biological assays, creating a statistical framework to build upon. The second part of this study explored the question of whether it was possible to realize a statistically meaningful 3-D similarity value separation between reputed biological assay "inactives" and "actives". Using the terminology of noninactive-noninactive (NN pairs and the noninactive-inactive (NI pairs to represent comparison of the "active/active" and

  3. Viewing galaxies in 3D

    CERN Document Server

    Krajnović, Davor

    2016-01-01

    Thanks to a technique that reveals galaxies in 3D, astronomers can now show that many galaxies have been wrongly classified. Davor Krajnovi\\'c argues that the classification scheme proposed 85 years ago by Edwin Hubble now needs to be revised.

  4. 3D terahertz beam profiling

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Strikwerda, Andrew; Wang, Tianwu

    2013-01-01

    We present a characterization of THz beams generated in both a two-color air plasma and in a LiNbO3 crystal. Using a commercial THz camera, we record intensity images as a function of distance through the beam waist, from which we extract 2D beam profiles and visualize our measurements into 3D beam...

  5. 3D Printing: Exploring Capabilities

    Science.gov (United States)

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  6. When Art Meets 3D

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The presentation of the vanguard work,My Dream3D,the innovative production by the China Disabled People’s Performing Art Troupe(CDPPAT),directed by Joy Joosang Park,provided the film’s domestic premiere at Beijing’s Olympic Park onApril7.The show provided an intriguing insight not

  7. 3D Printing of Metals

    Directory of Open Access Journals (Sweden)

    Manoj Gupta

    2017-09-01

    Full Text Available The potential benefits that could be derived if the science and technology of 3D printing were to be established have been the crux behind monumental efforts by governments, in most countries, that invest billions of dollars to develop this manufacturing technology.[...

  8. Making Inexpensive 3-D Models

    Science.gov (United States)

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  9. 3D Printing: Exploring Capabilities

    Science.gov (United States)

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  10. Priprava 3D modelov za 3D tisk

    OpenAIRE

    2015-01-01

    Po mnenju nekaterih strokovnjakov bo aditivna proizvodnja (ali 3D tiskanje) spremenila proizvodnjo industrijo, saj si bo vsak posameznik lahko natisnil svoj objekt po želji. V diplomski nalogi so predstavljene nekatere tehnologije aditivne proizvodnje. V nadaljevanju diplomske naloge je predstavljena izdelava makete hiše v merilu 1:100, vse od modeliranja do tiskanja. Poseben poudarek je posvečen predelavi modela, da je primeren za tiskanje, kjer je razvit pristop za hitrejše i...

  11. Post processing of 3D models for 3D printing

    OpenAIRE

    2015-01-01

    According to the opinion of some experts the additive manufacturing or 3D printing will change manufacturing industry, because any individual could print their own model according to his or her wishes. In this graduation thesis some of the additive manufacturing technologies are presented. Furthermore in the production of house scale model in 1:100 is presented, starting from modeling to printing. Special attention is given to postprocessing of the building model elements us...

  12. Transfer-field methods for electronic noise in submicron semiconductor structures

    Energy Technology Data Exchange (ETDEWEB)

    Shiktorov, P.; Starikov, E.; Gruzinskis, V. [Semiconductor Physics Instute, Vilnius (Lithuania); Gonzalez, T.; Mateos, J.; De Pardo, D. [Salamanca Univ., Salamanca (Spain). Dept. de Fisica Aplicada; Reggiani, L. [Lecce Univ., Lecce (Italy). Dipt. di Ingegneria dell' Innovazione]|[Istituto Nazionale della Fisica della Materia, National Nanostructure Laboratory, Lecce (Italy); Varani, L.; Vaissiere, J. C. [Montpellier Univ., Montpellier (France). Centre d' Electronique et de Micro-optoelectronique de Montpellier

    2001-07-01

    With the discovery of the transistor and the explosive application of semiconductor materials in many fields of strategic importance (computing, telecommunications, electronics in general, etc.) noise characterization and its microscopic interpretation remained crucial up to present days. The recent trend of scaling down the dimensions of a device below the micron size has further emphasized the importance of a better understanding of far-from-equilibrium phenomena. This is the case of modern semiconductor structures, where hot carrier effects due to local electric fields of very strong intensity (above 10k/V cm) modify essentially both the small signal response (admittance or impedance) and the electronic noise. The aim of this review is to address the above issue by revisiting the physical background of the IF method and providing what it is considered a necessary implementation of the method able to account effectively for non-local effects typical of deep submicron devices. Generally speaking, there are at least two ways to overcome the problem of accounting for the spatial correlation of conduction current fluctuations within the IF method. The first way is to generalize eq. (1) to the case when the standard nose source, i.e. the conduction current fluctuations, includes the spatial correlation and their spectral power is described by the two-point spectral density Sjj (x{sub 1}, x{sub 2}, f). Since, as it shall be seen in this paper, only the velocity fluctuations must be accounted for in such a noise source and any fluctuations of concentration must be omitted, it shall be referred to this way as the velocity fluctuation scheme. The second one is to reformulate the noise source content, i.e. to come back to the primitive noise source keeping its Markovian nature, and, hence, its {delta}-correlation in time and space, as is required by the BL scheme. It shall be referred to this way as the acceleration fluctuation scheme.

  13. Surgeon-Based 3D Printing for Microvascular Bone Flaps.

    Science.gov (United States)

    Taylor, Erin M; Iorio, Matthew L

    2017-07-01

    Background Three-dimensional (3D) printing has developed as a revolutionary technology with the capacity to design accurate physical models in preoperative planning. We present our experience in surgeon-based design of 3D models, using home 3D software and printing technology for use as an adjunct in vascularized bone transfer. Methods Home 3D printing techniques were used in the design and execution of vascularized bone flap transfers to the upper extremity. Open source imaging software was used to convert preoperative computed tomography scans and create 3D models. These were printed in the surgeon's office as 3D models for the planned reconstruction. Vascularized bone flaps were designed intraoperatively based on the 3D printed models. Results Three-dimensional models were created for intraoperative use in vascularized bone flaps, including (1) medial femoral trochlea (MFT) flap for scaphoid avascular necrosis and nonunion, (2) MFT flap for lunate avascular necrosis and nonunion, (3) medial femoral condyle (MFC) flap for wrist arthrodesis, and (4) free fibula osteocutaneous flap for distal radius septic nonunion. Templates based on the 3D models allowed for the precise and rapid contouring of well-vascularized bone flaps in situ, prior to ligating the donor pedicle. Conclusions Surgeon-based 3D printing is a feasible, innovative technology that allows for the precise and rapid contouring of models that can be created in various configurations for pre- and intraoperative planning. The technology is easy to use, convenient, and highly economical as compared with traditional send-out manufacturing. Surgeon-based 3D printing is a useful adjunct in vascularized bone transfer. Level of Evidence Level IV. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  14. Impact of turbulent phase noise on frequency transfer with asymmetric two-way ground-satellite coherent optical links

    Science.gov (United States)

    Robert, Clélia; Conan, Jean-Marc; Wolf, Peter

    2016-06-01

    Bidirectional ground-satellite laser links suffer from turbulence-induced scintillation and phase distortion. We study how turbulence impacts on coherent detection capacity and on the associated phase noise that restricts clock transfer precision. We evaluate the capacity to obtain a two-way cancellation of atmospheric effects despite the asymmetry between up and down link that limits the link reciprocity. For ground-satellite links, the asymmetry is induced by point-ahead angle and possibly the use, for the ground terminal, of different transceiver diameters, in reception and emission. The quantitative analysis is obtained thanks to refined end- to-end simulations under realistic turbulence and wind conditions as well as satellite cinematic. These temporally resolved simulations allow characterizing the coherent detection in terms of time series of heterodyne efficiency for different system parameters. We show that Tip/Tilt correction on ground is mandatory at reception for the down link and as a pre-compensation of the up link. Good correlation between up and down phase noise is obtained even with asymmetric apertures of the ground transceiver and in spite of pointing ahead angle. The reduction to less than 1 rad2 of the two-way differential phase noise is very promising for clock comparisons.

  15. Analysis of the heat transfer models for the development of the 3D model of thermal hydraulics of the BWR core and possible implementation in the SUN-RAH; Analisis de modelos de transferencia de calor para el desarrollo de modelo 3D de la termohidraulica del nucleo de un BWR y posible implementacion en el SUN-RAH

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez S, R.A.; Morales S, J.B. [UNAM, DEPFI, Campus Morelos, en IMTA Jiutepec, Morelos (Mexico)]. e-mail: rsanchez_15@yahoo.com.mx

    2005-07-01

    In previous versions of the SUN-RAH, the core of the reactor was simulated starting from the punctual kinetics of neutrons of the same one. Different mathematical models to implement an unidimensional simulation of the thermal hydraulics of the core of the reactor to have a tool but exact were proposed. Of among the different ones modeling, those of Heat Transfer of n nodes and that of a differential equation of heat transfer were chosen. Both present the mathematical derivation of the equations of radial transfer of the heat generated in a bar of fuel, numeric routines for the calculation of the typical thermodynamic properties, calculation of the stationary state and dynamic response of some premature operational occurrences. It was carried out the comparison among both proposals with the purpose of being implemented in the SUN-RAH. This simulator includes all the main components of the thermodynamic cycle, with that the implementation of the one dimension models of the core, will be transform it into a tool but reliable. To make congruent the multidimensional kinetics of neutrons is necessary to have a model of heat transfer congruent with her for that here an analysis is made of that model of transfer it can be used in a great number of neutronic nodes. (Author)

  16. Photogrammetric 3D reconstruction using mobile imaging

    Science.gov (United States)

    Fritsch, Dieter; Syll, Miguel

    2015-03-01

    In our paper we demonstrate the development of an Android Application (AndroidSfM) for photogrammetric 3D reconstruction that works on smartphones and tablets likewise. The photos are taken with mobile devices, and can thereafter directly be calibrated using standard calibration algorithms of photogrammetry and computer vision, on that device. Due to still limited computing resources on mobile devices, a client-server handshake using Dropbox transfers the photos to the sever to run AndroidSfM for the pose estimation of all photos by Structure-from-Motion and, thereafter, uses the oriented bunch of photos for dense point cloud estimation by dense image matching algorithms. The result is transferred back to the mobile device for visualization and ad-hoc on-screen measurements.

  17. 3D-SPACE与3D-CISS序列内耳成像的比较研究%Comparative study of MRI 3D-SPACE,3D-CISS sequences at inner-ear

    Institute of Scientific and Technical Information of China (English)

    程亚宝; 范伟雄; 刘可夫; 孙岩

    2016-01-01

    目的:比较MRI三维可变翻转角快速自旋回波序列(3-dimensional sampling perfection with application optimized contrast using different flip angle evolutions,3D-SPACE)、三维稳态进动结构相干(3D-constructive interference in the steady sate,3D-CISS)成像序列在内耳半规管的成像质量.方法:在1.5 T MRI仪上对15例志愿者进行检查.比较3D-SPACE和3D-CISS序列在前庭和脑干的对比信噪比(contrast to noise ratio,CNR).用三分法评价2种序列对半规管、面神经、位听神经的显示,同样用三分法对诊断信心进行评价.结果:3D-SPACE序列的CNR和对半规管的显示与3D-CISS差异有统计学意义(P<0.05);而在面神经和听神经的显示上2种序列差异无统计学意义(P=0.059);3D-SPACE序列的诊断信心比3D-CISS序列更高(P<0.05).结论:相比3D-CISS序列,3D-SPACE序列能更好地显示内耳半规管结构.

  18. 3D Printable Graphene Composite.

    Science.gov (United States)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-08

    In human being's history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today's personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite's linear thermal coefficient is below 75 ppm·°C(-1) from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  19. Forensic 3D Scene Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.

    1999-10-12

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  20. 3D Printed Robotic Hand

    Science.gov (United States)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  1. Medical 3D thermography system

    OpenAIRE

    GRUBIŠIĆ, IVAN

    2011-01-01

    Infrared (IR) thermography determines the surface temperature of an object or human body using thermal IR measurement camera. It is an imaging technology which is contactless and completely non-invasive. These propertiesmake IR thermography a useful method of analysis that is used in various industrial applications to detect, monitor and predict irregularities in many fields from engineering to medical and biological observations. This paper presents a conceptual model of Medical 3D Thermo...

  2. 3D super-virtual refraction interferometry

    KAUST Repository

    Lu, Kai

    2014-08-05

    Super-virtual refraction interferometry enhances the signal-to-noise ratio of far-offset refractions. However, when applied to 3D cases, traditional 2D SVI suffers because the stationary positions of the source-receiver pairs might be any place along the recording plane, not just along a receiver line. Moreover, the effect of enhancing the SNR can be limited because of the limitations in the number of survey lines, irregular line geometries, and azimuthal range of arrivals. We have developed a 3D SVI method to overcome these problems. By integrating along the source or receiver lines, the cross-correlation or the convolution result of a trace pair with the source or receiver at the stationary position can be calculated without the requirement of knowing the stationary locations. In addition, the amplitudes of the cross-correlation and convolution results are largely strengthened by integration, which is helpful to further enhance the SNR. In this paper, both synthetic and field data examples are presented, demonstrating that the super-virtual refractions generated by our method have accurate traveltimes and much improved SNR.

  3. High resolution 3-D wavelength diversity imaging

    Science.gov (United States)

    Farhat, N. H.

    1981-09-01

    A physical optics, vector formulation of microwave imaging of perfectly conducting objects by wavelength and polarization diversity is presented. The results provide the theoretical basis for optimal data acquisition and three-dimensional tomographic image retrieval procedures. These include: (a) the selection of highly thinned (sparse) receiving array arrangements capable of collecting large amounts of information about remote scattering objects in a cost effective manner and (b) techniques for 3-D tomographic image reconstruction and display in which polarization diversity data is fully accounted for. Data acquisition employing a highly attractive AMTDR (Amplitude Modulated Target Derived Reference) technique is discussed and demonstrated by computer simulation. Equipment configuration for the implementation of the AMTDR technique is also given together with a measurement configuration for the implementation of wavelength diversity imaging in a roof experiment aimed at imaging a passing aircraft. Extension of the theory presented to 3-D tomographic imaging of passive noise emitting objects by spectrally selective far field cross-correlation measurements is also given. Finally several refinements made in our anechoic-chamber measurement system are shown to yield drastic improvement in performance and retrieved image quality.

  4. New Transfer Theory Relationships for Signal and Noise Analyses of X-Ray Detectors

    Science.gov (United States)

    2007-11-02

    0.3 and 4 MeV, coinciding with most of the spectrum of a 6-MV therapy beam. In this section, we describe the influence of energy deposited by Compton ...rays in radiograhic screen using CCD camera (equipment 11-5) Write paper describing generalized cross-spectral density term and comparison of...deposits energy into the detector, primarily by photo-electric and Compton interactions. Image noise is directly related to the number of interacting

  5. Low-noise SQUIDs with large transfer: two-stage SQUIDs based on DROSs

    NARCIS (Netherlands)

    Podt, M.; Flokstra, Jakob; Rogalla, Horst

    2002-01-01

    We have realized a two-stage integrated superconducting quantum interference device (SQUID) system with a closed loop bandwidth of 2.5 MHz, operated in a direct voltage readout mode. The corresponding flux slew rate was 1.3×105 Φ0/s and the measured white flux noise was 1.3 μΦ0/√Hz at 4.2 K. The

  6. 3D silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Parzefall, Ulrich [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany)], E-mail: ulrich.parzefall@physik.uni-freiburg.de; Bates, Richard [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Boscardin, Maurizio [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Dalla Betta, Gian-Franco [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Eckert, Simon [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Eklund, Lars; Fleta, Celeste [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Jakobs, Karl; Kuehn, Susanne [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Lozano, Manuel [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pahn, Gregor [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Parkes, Chris [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Pellegrini, Giulio [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pennicard, David [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Piemonte, Claudio; Ronchin, Sabina [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Szumlak, Tomasz [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Zoboli, Andrea [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Zorzi, Nicola [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy)

    2009-06-01

    While the Large Hadron Collider (LHC) at CERN has started operation in autumn 2008, plans for a luminosity upgrade to the Super-LHC (sLHC) have already been developed for several years. This projected luminosity increase by an order of magnitude gives rise to a challenging radiation environment for tracking detectors at the LHC experiments. Significant improvements in radiation hardness are required with respect to the LHC. Using a strawman layout for the new tracker of the ATLAS experiment as an example, silicon strip detectors (SSDs) with short strips of 2-3 cm length are foreseen to cover the region from 28 to 60 cm distance to the beam. These SSD will be exposed to radiation levels up to 10{sup 15}N{sub eq}/cm{sup 2}, which makes radiation resistance a major concern for the upgraded ATLAS tracker. Several approaches to increasing the radiation hardness of silicon detectors exist. In this article, it is proposed to combine the radiation hard 3D-design originally conceived for pixel-style applications with the benefits of the established planar technology for strip detectors by using SSDs that have regularly spaced doped columns extending into the silicon bulk under the detector strips. The first 3D SSDs to become available for testing were made in the Single Type Column (STC) design, a technological simplification of the original 3D design. With such 3D SSDs, a small number of prototype sLHC detector modules with LHC-speed front-end electronics as used in the semiconductor tracking systems of present LHC experiments were built. Modules were tested before and after irradiation to fluences of 10{sup 15}N{sub eq}/cm{sup 2}. The tests were performed with three systems: a highly focused IR-laser with 5{mu}m spot size to make position-resolved scans of the charge collection efficiency, an Sr{sup 90}{beta}-source set-up to measure the signal levels for a minimum ionizing particle (MIP), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of

  7. Output-sensitive 3D line integral convolution.

    Science.gov (United States)

    Falk, Martin; Weiskopf, Daniel

    2008-01-01

    We propose an output-sensitive visualization method for 3D line integral convolution (LIC) whose rendering speed is largely independent of the data set size and mostly governed by the complexity of the output on the image plane. Our approach of view-dependent visualization tightly links the LIC generation with the volume rendering of the LIC result in order to avoid the computation of unnecessary LIC points: early-ray termination and empty-space leaping techniques are used to skip the computation of the LIC integral in a lazy-evaluation approach; both ray casting and texture slicing can be used as volume-rendering techniques. The input noise is modeled in object space to allow for temporal coherence under object and camera motion. Different noise models are discussed, covering dense representations based on filtered white noise all the way to sparse representations similar to oriented LIC. Aliasing artifacts are avoided by frequency control over the 3D noise and by employing a 3D variant of MIPmapping. A range of illumination models is applied to the LIC streamlines: different codimension-2 lighting models and a novel gradient-based illumination model that relies on precomputed gradients and does not require any direct calculation of gradients after the LIC integral is evaluated. We discuss the issue of proper sampling of the LIC and volume-rendering integrals by employing a frequency-space analysis of the noise model and the precomputed gradients. Finally, we demonstrate that our visualization approach lends itself to a fast graphics processing unit (GPU) implementation that supports both steady and unsteady flow. Therefore, this 3D LIC method allows users to interactively explore 3D flow by means of high-quality, view-dependent, and adaptive LIC volume visualization. Applications to flow visualization in combination with feature extraction and focus-and-context visualization are described, a comparison to previous methods is provided, and a detailed performance

  8. EDGE REMOVAL OF 3D POLYGONAL MODEL USING MAYA API

    Directory of Open Access Journals (Sweden)

    SAMEER ARORA

    2010-09-01

    Full Text Available In various applications of computer graphics, 3D polygonal modeling is used, which consists millions of triangular polygon. In this polygon attributes – vertices, edges and faces’ details are to be stored. In order to control the processing time, storing space, and transfer speed, it is often required to reduce the information ofthese polygonal 3D models. In this paper an effort is made to reduce the number of edges. There are various methods to reduce faces and edges of these 3D models. A C++ dynamic link library as Maya Plugin has been created to remove number of edges of 3D triangular polygon model using the Quadric Error Metrics (QEM in MAYA v2010 x64 API. QEM allows fast and accurate geometric simplification of 3D models.

  9. 3D augmented reality with integral imaging display

    Science.gov (United States)

    Shen, Xin; Hua, Hong; Javidi, Bahram

    2016-06-01

    In this paper, a three-dimensional (3D) integral imaging display for augmented reality is presented. By implementing the pseudoscopic-to-orthoscopic conversion method, elemental image arrays with different capturing parameters can be transferred into the identical format for 3D display. With the proposed merging algorithm, a new set of elemental images for augmented reality display is generated. The newly generated elemental images contain both the virtual objects and real world scene with desired depth information and transparency parameters. The experimental results indicate the feasibility of the proposed 3D augmented reality with integral imaging.

  10. Interactive 3D Mars Visualization

    Science.gov (United States)

    Powell, Mark W.

    2012-01-01

    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.

  11. Wireless 3D Chocolate Printer

    Directory of Open Access Journals (Sweden)

    FROILAN G. DESTREZA

    2014-02-01

    Full Text Available This study is for the BSHRM Students of Batangas State University (BatStateU ARASOF for the researchers believe that the Wireless 3D Chocolate Printer would be helpful in their degree program especially on making creative, artistic, personalized and decorative chocolate designs. The researchers used the Prototyping model as procedural method for the successful development and implementation of the hardware and software. This method has five phases which are the following: quick plan, quick design, prototype construction, delivery and feedback and communication. This study was evaluated by the BSHRM Students and the assessment of the respondents regarding the software and hardware application are all excellent in terms of Accuracy, Effecitveness, Efficiency, Maintainability, Reliability and User-friendliness. Also, the overall level of acceptability of the design project as evaluated by the respondents is excellent. With regard to the observation about the best raw material to use in 3D printing, the chocolate is good to use as the printed material is slightly distorted,durable and very easy to prepare; the icing is also good to use as the printed material is not distorted and is very durable but consumes time to prepare; the flour is not good as the printed material is distorted, not durable but it is easy to prepare. The computation of the economic viability level of 3d printer with reference to ROI is 37.14%. The recommendation of the researchers in the design project are as follows: adding a cooling system so that the raw material will be more durable, development of a more simplified version and improving the extrusion process wherein the user do not need to stop the printing process just to replace the empty syringe with a new one.

  12. Virtual 3-D Facial Reconstruction

    Directory of Open Access Journals (Sweden)

    Martin Paul Evison

    2000-06-01

    Full Text Available Facial reconstructions in archaeology allow empathy with people who lived in the past and enjoy considerable popularity with the public. It is a common misconception that facial reconstruction will produce an exact likeness; a resemblance is the best that can be hoped for. Research at Sheffield University is aimed at the development of a computer system for facial reconstruction that will be accurate, rapid, repeatable, accessible and flexible. This research is described and prototypical 3-D facial reconstructions are presented. Interpolation models simulating obesity, ageing and ethnic affiliation are also described. Some strengths and weaknesses in the models, and their potential for application in archaeology are discussed.

  13. How 3-D Movies Work

    Institute of Scientific and Technical Information of China (English)

    吕铁雄

    2011-01-01

    难度:★★★★☆词数:450 建议阅读时间:8分钟 Most people see out of two eyes. This is a basic fact of humanity,but it’s what makes possible the illusion of depth(纵深幻觉) that 3-D movies create. Human eyes are spaced about two inches apart, meaning that each eye gives the brain a slightly different perspective(透视感)on the same object. The brain then uses this variance to quickly determine an object’s distance.

  14. Positional Awareness Map 3D (PAM3D)

    Science.gov (United States)

    Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise

    2012-01-01

    The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.

  15. Coupling of a discrete ordinate 3-D radiant heat transfer model with the PHOENICS fluid mechanics software; Couplage d`un modele radiatif tridimensionnel aux ordonnees discretes au logiciel de mecanique des fluides phoenics

    Energy Technology Data Exchange (ETDEWEB)

    Muller, J. [IRSID, Institut de Recherches Siderurgie, 57 - Maizieres-les-Metz (France)

    1996-12-31

    Radiant heat transfer is the main solution retained in many iron and steel metallurgy installations (re-heating and annealing furnaces etc..). Today, it has become important to dispose of performing radiant heat transfer models in heat transfer and fluid mechanics simulation softwares, and well adapted to multidimensional industrial problems. This work presents the discrete ordinate radiant heat transfer model developed at the IRSID (the French institute of research in iron and steel metallurgy) and coupled with the PHOENICS heat transfer-fluid mechanics software. Three modeling approaches are presented concerning the radiative properties of gases (H{sub 2}O-CO{sub 2}). A ``weighted grey gases sum`` model gives satisfactory results for several 1-D validation cases. (J.S.) 20 refs.

  16. 3D Printable Graphene Composite

    Science.gov (United States)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  17. 3D medical thermography device

    Science.gov (United States)

    Moghadam, Peyman

    2015-05-01

    In this paper, a novel handheld 3D medical thermography system is introduced. The proposed system consists of a thermal-infrared camera, a color camera and a depth camera rigidly attached in close proximity and mounted on an ergonomic handle. As a practitioner holding the device smoothly moves it around the human body parts, the proposed system generates and builds up a precise 3D thermogram model by incorporating information from each new measurement in real-time. The data is acquired in motion, thus it provides multiple points of view. When processed, these multiple points of view are adaptively combined by taking into account the reliability of each individual measurement which can vary due to a variety of factors such as angle of incidence, distance between the device and the subject and environmental sensor data or other factors influencing a confidence of the thermal-infrared data when captured. Finally, several case studies are presented to support the usability and performance of the proposed system.

  18. 3D Printed Bionic Ears

    Science.gov (United States)

    Mannoor, Manu S.; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A.; Soboyejo, Winston O.; Verma, Naveen; Gracias, David H.; McAlpine, Michael C.

    2013-01-01

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the precise anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  19. 3D printed bionic ears.

    Science.gov (United States)

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.

  20. Ultra-wide-band 3D microwave imaging scanner for the detection of concealed weapons

    Science.gov (United States)

    Rezgui, Nacer-Ddine; Andrews, David A.; Bowring, Nicholas J.

    2015-10-01

    The threat of concealed weapons, explosives and contraband in footwear, bags and suitcases has led to the development of new devices, which can be deployed for security screening. To address known deficiencies of metal detectors and x-rays, an UWB 3D microwave imaging scanning apparatus using FMCW stepped frequency working in the K and Q bands and with a planar scanning geometry based on an x y stage, has been developed to screen suspicious luggage and footwear. To obtain microwave images of the concealed weapons, the targets are placed above the platform and the single transceiver horn antenna attached to the x y stage is moved mechanically to perform a raster scan to create a 2D synthetic aperture array. The S11 reflection signal of the transmitted sweep frequency from the target is acquired by a VNA in synchronism with each position step. To enhance and filter from clutter and noise the raw data and to obtain the 2D and 3D microwave images of the concealed weapons or explosives, data processing techniques are applied to the acquired signals. These techniques include background subtraction, Inverse Fast Fourier Transform (IFFT), thresholding, filtering by gating and windowing and deconvolving with the transfer function of the system using a reference target. To focus the 3D reconstructed microwave image of the target in range and across the x y aperture without using focusing elements, 3D Synthetic Aperture Radar (SAR) techniques are applied to the post-processed data. The K and Q bands, between 15 to 40 GHz, show good transmission through clothing and dielectric materials found in luggage and footwear. A description of the system, algorithms and some results with replica guns and a comparison of microwave images obtained by IFFT, 2D and 3D SAR techniques are presented.

  1. Single-shot 3D motion picture camera with a dense point cloud

    CERN Document Server

    Willomitzer, Florian

    2016-01-01

    We introduce a method and a 3D-camera for single-shot 3D shape measurement, with unprecedented features: The 3D-camera does not rely on pattern codification and acquires object surfaces at the theoretical limit of the information efficiency: Up to 30% of the available camera pixels display independent (not interpolated) 3D points. The 3D-camera is based on triangulation with two properly positioned cameras and a projected multi-line pattern, in combination with algorithms that solve the ambiguity problem. The projected static line pattern enables 3D-acquisition of fast processes and the take of 3D-motion-pictures. The depth resolution is at its physical limit, defined by electronic noise and speckle noise. The requisite low cost technology is simple.

  2. Video Coding Using 3D Dual-Tree Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Vetro Anthony

    2007-01-01

    Full Text Available This work investigates the use of the 3D dual-tree discrete wavelet transform (DDWT for video coding. The 3D DDWT is an attractive video representation because it isolates image patterns with different spatial orientations and motion directions and speeds in separate subbands. However, it is an overcomplete transform with 4: 1 redundancy when only real parts are used. We apply the noise-shaping algorithm proposed by Kingsbury to reduce the number of coefficients. To code the remaining significant coefficients, we propose two video codecs. The first one applies separate 3D set partitioning in hierarchical trees (SPIHT on each subset of the DDWT coefficients (each forming a standard isotropic tree. The second codec exploits the correlation between redundant subbands, and codes the subbands jointly. Both codecs do not require motion compensation and provide better performance than the 3D SPIHT codec using the standard DWT, both objectively and subjectively. Furthermore, both codecs provide full scalability in spatial, temporal, and quality dimensions. Besides the standard isotropic decomposition, we propose an anisotropic DDWT, which extends the superiority of the normal DDWT with more directional subbands without adding to the redundancy. This anisotropic structure requires significantly fewer coefficients to represent a video after noise shaping. Finally, we also explore the benefits of combining the 3D DDWT with the standard DWT to capture a wider set of orientations.

  3. 3D biometrics systems and applications

    CERN Document Server

    Zhang, David

    2013-01-01

    Includes discussions on popular 3D imaging technologies, combines them with biometric applications, and then presents real 3D biometric systems Introduces many efficient 3D feature extraction, matching, and fusion algorithms Techniques presented have been supported by experimental results using various 3D biometric classifications

  4. Platform for Distributed 3D Gaming

    Directory of Open Access Journals (Sweden)

    A. Jurgelionis

    2009-01-01

    Full Text Available Video games are typically executed on Windows platforms with DirectX API and require high performance CPUs and graphics hardware. For pervasive gaming in various environments like at home, hotels, or internet cafes, it is beneficial to run games also on mobile devices and modest performance CE devices avoiding the necessity of placing a noisy workstation in the living room or costly computers/consoles in each room of a hotel. This paper presents a new cross-platform approach for distributed 3D gaming in wired/wireless local networks. We introduce the novel system architecture and protocols used to transfer the game graphics data across the network to end devices. Simultaneous execution of video games on a central server and a novel streaming approach of the 3D graphics output to multiple end devices enable the access of games on low cost set top boxes and handheld devices that natively lack the power of executing a game with high-quality graphical output.

  5. Surface Plasmons in 3D Topological Insulators

    Science.gov (United States)

    Kogar, Anshul; Vig, Sean; Cho, Gil; Thaler, Alexander; Xiao, Yiran; Hughes, Taylor; Wong, Man-Hong; Chiang, Tai-Chang; MacDougall, Greg; Abbamonte, Peter

    2015-03-01

    Most studies of three-dimensional (3D) topological insulators have concentrated on their one-electron properties as exhibited by angle-resolved photoemission spectroscopy (ARPES) or by scanning tunneling microscopy (STM). Many-body interactions are often neglected in the treatment of models of topological insulators, such as in the Kane-Mele and Bernevig-Hughes-Zhang models. Using angle-resolved inelastic electron scattering from the surface, I will present data on the collective mode that owes its existence to the presence of many-body interactions, the surface plasmon (SP), in two known 3D topological insulators, Bi2Se3 and Bi0.5Sb1.5Se1 . 5 + xTe1 . 5 - x. Surprisingly, the SP was prominent even after depressing the Fermi energy into the bulk band gap. Having studied the SP as a function of doping, momentum transfer and its aging properties, I will present evidence to suggest that bulk-surface coupling is crucial in explaining many of its properties. A simple model with dynamic bulk screening will be presented showing qualitative agreement with the observations. Lastly, the relation of the observed surface plasmon to the predicted spin-plasmon mode and to the kinks seen in the electronic dispersion as measured by ARPES will be discussed. The work was supported as part of the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science.

  6. Conducting Polymer 3D Microelectrodes

    Directory of Open Access Journals (Sweden)

    Jenny Emnéus

    2010-12-01

    Full Text Available Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements.

  7. 3D PERSPECTIVE OF MAXILLOFACIAL TRAUMA

    Directory of Open Access Journals (Sweden)

    Surekha

    2016-03-01

    Full Text Available AIM Role of 3 Dimensional Computed Tomography in facial fractures. METHODS AND MATERIALS 133 patients with history of head trauma were scanned using multi slice CT for a period of 2 yrs. Data acquisition was performed using - 16 Slice GE Bright Speed Elite CT Scanner. The datasets were transferred to workstation and VR post-processing protocols were applied. RESULTS 122 patients were male and 11 were female. The mean age of patients with fractures was 32.3 years old. Fractures included the mandible, the maxilla, the frontal bone, the zygomatic arch and the nasal bone. CONCLUSION Continuing advances in computer software algorithms and improved precision in the acquisition of radiographic data makes 3D reformatted CT imaging a necessary complement to traditional 2D CT imaging in the management of complex facial trauma. CT is the investigation of choice in the evaluation of patients with maxillofacial trauma.

  8. Supernova Remnant in 3-D

    Science.gov (United States)

    2009-01-01

    of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through. The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave. This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron. High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these structures, but their orientation and

  9. 3D Printing of Graphene Aerogels.

    Science.gov (United States)

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-01

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction.

  10. Metrology of 3D nanostructures.

    Energy Technology Data Exchange (ETDEWEB)

    Barsic, Anthony; Piestun, Rafael; Boye, Robert R.

    2012-10-01

    We propose a superresolution technique to resolve dense clusters of blinking emitters. The method relies on two basic assumptions: the emitters are statistically independent, and a model of the imaging system is known. We numerically analyze the performance limits of the method as a function of the emitter density and the noise level. Numerical simulations show that five closely packed emitters can be resolved and localized to a precision of 17nm. The experimental resolution of five quantum dots located within a diffraction limited spot confirms the applicability of this approach.

  11. The Feasibility of 3d Point Cloud Generation from Smartphones

    Science.gov (United States)

    Alsubaie, N.; El-Sheimy, N.

    2016-06-01

    This paper proposes a new technique for increasing the accuracy of direct geo-referenced image-based 3D point cloud generated from low-cost sensors in smartphones. The smartphone's motion sensors are used to directly acquire the Exterior Orientation Parameters (EOPs) of the captured images. These EOPs, along with the Interior Orientation Parameters (IOPs) of the camera/ phone, are used to reconstruct the image-based 3D point cloud. However, because smartphone motion sensors suffer from poor GPS accuracy, accumulated drift and high signal noise, inaccurate 3D mapping solutions often result. Therefore, horizontal and vertical linear features, visible in each image, are extracted and used as constraints in the bundle adjustment procedure. These constraints correct the relative position and orientation of the 3D mapping solution. Once the enhanced EOPs are estimated, the semi-global matching algorithm (SGM) is used to generate the image-based dense 3D point cloud. Statistical analysis and assessment are implemented herein, in order to demonstrate the feasibility of 3D point cloud generation from the consumer-grade sensors in smartphones.

  12. THE FEASIBILITY OF 3D POINT CLOUD GENERATION FROM SMARTPHONES

    Directory of Open Access Journals (Sweden)

    N. Alsubaie

    2016-06-01

    Full Text Available This paper proposes a new technique for increasing the accuracy of direct geo-referenced image-based 3D point cloud generated from low-cost sensors in smartphones. The smartphone’s motion sensors are used to directly acquire the Exterior Orientation Parameters (EOPs of the captured images. These EOPs, along with the Interior Orientation Parameters (IOPs of the camera/ phone, are used to reconstruct the image-based 3D point cloud. However, because smartphone motion sensors suffer from poor GPS accuracy, accumulated drift and high signal noise, inaccurate 3D mapping solutions often result. Therefore, horizontal and vertical linear features, visible in each image, are extracted and used as constraints in the bundle adjustment procedure. These constraints correct the relative position and orientation of the 3D mapping solution. Once the enhanced EOPs are estimated, the semi-global matching algorithm (SGM is used to generate the image-based dense 3D point cloud. Statistical analysis and assessment are implemented herein, in order to demonstrate the feasibility of 3D point cloud generation from the consumer-grade sensors in smartphones.

  13. 3D laser imaging for concealed object identification

    Science.gov (United States)

    Berechet, Ion; Berginc, Gérard; Berechet, Stefan

    2014-09-01

    This paper deals with new optical non-conventional 3D laser imaging. Optical non-conventional imaging explores the advantages of laser imaging to form a three-dimensional image of the scene. 3D laser imaging can be used for threedimensional medical imaging, topography, surveillance, robotic vision because of ability to detect and recognize objects. In this paper, we present a 3D laser imaging for concealed object identification. The objective of this new 3D laser imaging is to provide the user a complete 3D reconstruction of the concealed object from available 2D data limited in number and with low representativeness. The 2D laser data used in this paper come from simulations that are based on the calculation of the laser interactions with the different interfaces of the scene of interest and from experimental results. We show the global 3D reconstruction procedures capable to separate objects from foliage and reconstruct a threedimensional image of the considered object. In this paper, we present examples of reconstruction and completion of three-dimensional images and we analyse the different parameters of the identification process such as resolution, the scenario of camouflage, noise impact and lacunarity degree.

  14. 3D multiplexed immunoplasmonics microscopy

    Science.gov (United States)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  15. An integrable 3D lattice model with positive Boltzmann weights

    CERN Document Server

    Mangazeev, Vladimir V; Sergeev, Sergey M

    2013-01-01

    In this paper we construct a three-dimensional (3D) solvable lattice model with non-negative Boltzmann weights. The spin variables in the model are assigned to edges of the 3D cubic lattice and run over an infinite number of discrete states. The Boltzmann weights satisfy the tetrahedron equation, which is a 3D generalisation of the Yang-Baxter equation. The weights depend on a free parameter 0transfer matrices of the model form a two-parameter commutative family. This is the first example of a solvable 3D lattice model with non-negative Boltzmann weights.

  16. Robust Reconstruction and Generalized Dual Hahn Moments Invariants Extraction for 3D Images

    Science.gov (United States)

    Mesbah, Abderrahim; Zouhri, Amal; El Mallahi, Mostafa; Zenkouar, Khalid; Qjidaa, Hassan

    2017-03-01

    In this paper, we introduce a new set of 3D weighed dual Hahn moments which are orthogonal on a non-uniform lattice and their polynomials are numerically stable to scale, consequent, producing a set of weighted orthonormal polynomials. The dual Hahn is the general case of Tchebichef and Krawtchouk, and the orthogonality of dual Hahn moments eliminates the numerical approximations. The computational aspects and symmetry property of 3D weighed dual Hahn moments are discussed in details. To solve their inability to invariability of large 3D images, which cause to overflow issues, a generalized version of these moments noted 3D generalized weighed dual Hahn moment invariants are presented where whose as linear combination of regular geometric moments. For 3D pattern recognition, a generalized expression of 3D weighted dual Hahn moment invariants, under translation, scaling and rotation transformations, have been proposed where a new set of 3D-GWDHMIs have been provided. In experimental studies, the local and global capability of free and noisy 3D image reconstruction of the 3D-WDHMs has been compared with other orthogonal moments such as 3D Tchebichef and 3D Krawtchouk moments using Princeton Shape Benchmark database. On pattern recognition using the 3D-GWDHMIs like 3D object descriptors, the experimental results confirm that the proposed algorithm is more robust than other orthogonal moments for pattern classification of 3D images with and without noise.

  17. Crowdsourcing Based 3d Modeling

    Science.gov (United States)

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  18. Vrste i tehnike 3D modeliranja

    OpenAIRE

    Bernik, Andrija

    2010-01-01

    Proces stvaranja 3D stvarnih ili imaginarnih objekata naziva se 3D modeliranje. Razvoj računalne tehnologije omogućuje korisniku odabir raznih metoda i tehnika kako bi se postigla optimalna učinkovitost. Odabir je vezan za klasično 3D modeliranje ili 3D skeniranje pomoću specijaliziranih programskih i sklopovskih rješenja. 3D tehnikama modeliranja korisnik može izraditi 3D model na nekoliko načina: koristi poligone, krivulje ili hibrid dviju spomenutih tehnika pod nazivom subdivizijsko modeli...

  19. Kuvaus 3D-tulostamisesta hammastekniikassa

    OpenAIRE

    Munne, Mauri; Mustonen, Tuomas; Vähäjylkkä, Jaakko

    2013-01-01

    3D-tulostaminen kehittyy nopeasti ja yleistyy koko ajan. Tulostimien tarkkuuksien kehittyessä 3D-tulostus on ottamassa myös jalansijaa hammastekniikan alalta. Tämän opinnäytetyön tarkoituksena on kuvata 3D-tulostamisen tilaa hammastekniikassa. 3D-tulostaminen on Suomessa vielä melko harvinaista, joten opinnäytetyön tavoitteena on koota yhteen kaikki mahdollinen tieto liittyen 3D-tulostamiseen hammastekniikassa. Tavoitteena on myös 3D-tulostimen testaaminen käytännössä aina suun skannaami...

  20. Rebinning and reconstruction techniques for 3D TOF-PET

    Energy Technology Data Exchange (ETDEWEB)

    Vandenberghe, Stefaan [Philips Research USA, Briarcliff NY (United States)]. E-mail: stefaan.vandenberghe@ugent.be; Karp, Joel [PET instrumentation group, University of Pennsylvania, Philadelphia, PA (United States)

    2006-12-20

    The measured time difference in 3D Time-of-Flight (TOF) positron emission tomography (PET) makes it possible to improve the signal-to-noise ratio of reconstructed images. The improvement in signal-to-noise ratio will probably be used to reduce imaging time. To keep up with workflow there will be a need for faster reconstruction methods. A variety of reconstruction and rebinning methods have been developed in the past for 2D and 3D TOF-PET data. The TOF information makes very simple reconstruction methods possible. These allow real time reconstruction but the obtained image quality is lower. Relative fast reconstructions can be obtained using rebinning techniques. Fully 3D iterative listmode reconstruction makes no approximations but comes at the expense of long reconstruction times. Data from Monte Carlo simulations of 3D TOF-PET scanners are used to quantify differences in noise and contrast between the different methods. Real time methods are useful for direct display after or even during acquisition, but do not generate useful data for reviewing. Rebinning methods can be used to reduce the reconstruction time with a small loss in image quality and the image quality loss is quite small if good timing resolution can be achieved. Fully 3D iterative listmode reconstruction maximizes the obtained image quality and should be used if not even a small loss in image quality is acceptable. When timing resolution is improved the difference between the different methods become clearly smaller and in the limit where timing resolution is equal to spatial resolution, the methods are equivalent.

  1. Statistical 3D damage accumulation model for ion implant simulators

    CERN Document Server

    Hernandez-Mangas, J M; Enriquez, L E; Bailon, L; Barbolla, J; Jaraiz, M

    2003-01-01

    A statistical 3D damage accumulation model, based on the modified Kinchin-Pease formula, for ion implant simulation has been included in our physically based ion implantation code. It has only one fitting parameter for electronic stopping and uses 3D electron density distributions for different types of targets including compound semiconductors. Also, a statistical noise reduction mechanism based on the dose division is used. The model has been adapted to be run under parallel execution in order to speed up the calculation in 3D structures. Sequential ion implantation has been modelled including previous damage profiles. It can also simulate the implantation of molecular and cluster projectiles. Comparisons of simulated doping profiles with experimental SIMS profiles are presented. Also comparisons between simulated amorphization and experimental RBS profiles are shown. An analysis of sequential versus parallel processing is provided.

  2. Statistical 3D damage accumulation model for ion implant simulators

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Mangas, J.M. E-mail: jesman@ele.uva.es; Lazaro, J.; Enriquez, L.; Bailon, L.; Barbolla, J.; Jaraiz, M

    2003-04-01

    A statistical 3D damage accumulation model, based on the modified Kinchin-Pease formula, for ion implant simulation has been included in our physically based ion implantation code. It has only one fitting parameter for electronic stopping and uses 3D electron density distributions for different types of targets including compound semiconductors. Also, a statistical noise reduction mechanism based on the dose division is used. The model has been adapted to be run under parallel execution in order to speed up the calculation in 3D structures. Sequential ion implantation has been modelled including previous damage profiles. It can also simulate the implantation of molecular and cluster projectiles. Comparisons of simulated doping profiles with experimental SIMS profiles are presented. Also comparisons between simulated amorphization and experimental RBS profiles are shown. An analysis of sequential versus parallel processing is provided.

  3. Efficiency measurements for 3D silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Parzefall, Ulrich, E-mail: ulrich.parzefall@physik.uni-freiburg.d [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Dalla Betta, Gian-Franco [INFN Trento and Universita di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Boscardin, Maurizio [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Eckert, Simon [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Eklund, Lars; Fleta, Celeste [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Jakobs, Karl; Koehler, Michael; Kuehn, Susanne; Pahn, Gregor [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Parkes, Chris; Pennicard, David [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Ronchin, Sabina [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Zoboli, Andrea [INFN Trento and Universita di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Zorzi, Nicola [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy)

    2010-11-01

    Silicon strip detectors are widely used as part of the inner tracking layers in particle physics experiments. For applications at the luminosity upgrade of the Large Hadron Collider (LHC), the sLHC, silicon detectors with extreme radiation hardness are required. The 3D detector design, where electrodes are processed from underneath the strips into the silicon bulk material, provides a way to enhance the radiation tolerance of standard planar silicon strip detectors. Detectors with several innovative 3D designs that constitute a simpler and more cost-effective processing than the 3D design initially proposed were connected to read-out electronics from LHC experiments and subsequently tested. Results on the amount of charge collected, the noise and the uniformity of charge collection are given.

  4. Validation of optical codes based on 3D nanostructures

    Science.gov (United States)

    Carnicer, Artur; Javidi, Bahram

    2017-05-01

    Image information encoding using random phase masks produce speckle-like noise distributions when the sample is propagated in the Fresnel domain. As a result, information cannot be accessed by simple visual inspection. Phase masks can be easily implemented in practice by attaching cello-tape to the plain-text message. Conventional 2D-phase masks can be generalized to 3D by combining glass and diffusers resulting in a more complex, physical unclonable function. In this communication, we model the behavior of a 3D phase mask using a simple approach: light is propagated trough glass using the angular spectrum of plane waves whereas the diffusor is described as a random phase mask and a blurring effect on the amplitude of the propagated wave. Using different designs for the 3D phase mask and multiple samples, we demonstrate that classification is possible using the k-nearest neighbors and random forests machine learning algorithms.

  5. High-resolution 3D X-ray imaging of intracranial nitinol stents

    Energy Technology Data Exchange (ETDEWEB)

    Snoeren, Rudolph M.; With, Peter H.N. de [Eindhoven University of Technology (TU/e), Faculty Electrical Engineering, Signal Processing Systems group (SPS), Eindhoven (Netherlands); Soederman, Michael [Karolinska University Hospital, Department of Neuroradiology, Stockholm (Sweden); Kroon, Johannes N.; Roijers, Ruben B.; Babic, Drazenko [Philips Healthcare, Best (Netherlands)

    2012-02-15

    To assess an optimized 3D imaging protocol for intracranial nitinol stents in 3D C-arm flat detector imaging. For this purpose, an image quality simulation and an in vitro study was carried out. Nitinol stents of various brands were placed inside an anthropomorphic head phantom, using iodine contrast. Experiments with objects were preceded by image quality and dose simulations. We varied X-ray imaging parameters in a commercially interventional X-ray system to set 3D image quality in the contrast-noise-sharpness space. Beam quality was varied to evaluate contrast of the stents while keeping absorbed dose below recommended values. Two detector formats were used, paired with an appropriate pixel size and X-ray focus size. Zoomed reconstructions were carried out and snapshot images acquired. High contrast spatial resolution was assessed with a CT phantom. We found an optimal protocol for imaging intracranial nitinol stents. Contrast resolution was optimized for nickel-titanium-containing stents. A high spatial resolution larger than 2.1 lp/mm allows struts to be visualized. We obtained images of stents of various brands and a representative set of images is shown. Independent of the make, struts can be imaged with virtually continuous strokes. Measured absorbed doses are shown to be lower than 50 mGy Computed Tomography Dose Index (CTDI). By balancing the modulation transfer of the imaging components and tuning the high-contrast imaging capabilities, we have shown that thin nitinol stent wires can be reconstructed with high contrast-to-noise ratio and good detail, while keeping radiation doses within recommended values. Experimental results compare well with imaging simulations. (orig.)

  6. EISCAT Aperture Synthesis Imaging (EASI _3D) for the EISCAT_3D Project

    Science.gov (United States)

    La Hoz, Cesar; Belyey, Vasyl

    2012-07-01

    Aperture Synthesis Imaging Radar (ASIR) is one of the technologies adopted by the EISCAT_3D project to endow it with imaging capabilities in 3-dimensions that includes sub-beam resolution. Complemented by pulse compression, it will provide 3-dimensional images of certain types of incoherent scatter radar targets resolved to about 100 metres at 100 km range, depending on the signal-to-noise ratio. This ability will open new research opportunities to map small structures associated with non-homogeneous, unstable processes such as aurora, summer and winter polar radar echoes (PMSE and PMWE), Natural Enhanced Ion Acoustic Lines (NEIALs), structures excited by HF ionospheric heating, meteors, space debris, and others. The underlying physico-mathematical principles of the technique are the same as the technique employed in radioastronomy to image stellar objects; both require sophisticated inversion techniques to obtain reliable images.

  7. Algorithms for 3D shape scanning with a depth camera.

    Science.gov (United States)

    Cui, Yan; Schuon, Sebastian; Thrun, Sebastian; Stricker, Didier; Theobalt, Christian

    2013-05-01

    We describe a method for 3D object scanning by aligning depth scans that were taken from around an object with a Time-of-Flight (ToF) camera. These ToF cameras can measure depth scans at video rate. Due to comparably simple technology, they bear potential for economical production in big volumes. Our easy-to-use, cost-effective scanning solution, which is based on such a sensor, could make 3D scanning technology more accessible to everyday users. The algorithmic challenge we face is that the sensor's level of random noise is substantial and there is a nontrivial systematic bias. In this paper, we show the surprising result that 3D scans of reasonable quality can also be obtained with a sensor of such low data quality. Established filtering and scan alignment techniques from the literature fail to achieve this goal. In contrast, our algorithm is based on a new combination of a 3D superresolution method with a probabilistic scan alignment approach that explicitly takes into account the sensor's noise characteristics.

  8. Forward ramp in 3D

    Science.gov (United States)

    1997-01-01

    Mars Pathfinder's forward rover ramp can be seen successfully unfurled in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This ramp was not used for the deployment of the microrover Sojourner, which occurred at the end of Sol 2. When this image was taken, Sojourner was still latched to one of the lander's petals, waiting for the command sequence that would execute its descent off of the lander's petal.The image helped Pathfinder scientists determine whether to deploy the rover using the forward or backward ramps and the nature of the first rover traverse. The metallic object at the lower left of the image is the lander's low-gain antenna. The square at the end of the ramp is one of the spacecraft's magnetic targets. Dust that accumulates on the magnetic targets will later be examined by Sojourner's Alpha Proton X-Ray Spectrometer instrument for chemical analysis. At right, a lander petal is visible.The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  9. Sliding Adjustment for 3D Video Representation

    Directory of Open Access Journals (Sweden)

    Galpin Franck

    2002-01-01

    Full Text Available This paper deals with video coding of static scenes viewed by a moving camera. We propose an automatic way to encode such video sequences using several 3D models. Contrary to prior art in model-based coding where 3D models have to be known, the 3D models are automatically computed from the original video sequence. We show that several independent 3D models provide the same functionalities as one single 3D model, and avoid some drawbacks of the previous approaches. To achieve this goal we propose a novel algorithm of sliding adjustment, which ensures consistency of successive 3D models. The paper presents a method to automatically extract the set of 3D models and associate camera positions. The obtained representation can be used for reconstructing the original sequence, or virtual ones. It also enables 3D functionalities such as synthetic object insertion, lightning modification, or stereoscopic visualization. Results on real video sequences are presented.

  10. An interactive multiview 3D display system

    Science.gov (United States)

    Zhang, Zhaoxing; Geng, Zheng; Zhang, Mei; Dong, Hui

    2013-03-01

    The progresses in 3D display systems and user interaction technologies will help more effective 3D visualization of 3D information. They yield a realistic representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them. In this paper, we describe an autostereoscopic multiview 3D display system with capability of real-time user interaction. Design principle of this autostereoscopic multiview 3D display system is presented, together with the details of its hardware/software architecture. A prototype is built and tested based upon multi-projectors and horizontal optical anisotropic display structure. Experimental results illustrate the effectiveness of this novel 3D display and user interaction system.

  11. Will 3D printers manufacture your meals?

    NARCIS (Netherlands)

    Bommel, K.J.C. van

    2013-01-01

    These days, 3D printers are laying down plastics, metals, resins, and other materials in whatever configurations creative people can dream up. But when the next 3D printing revolution comes, you'll be able to eat it.

  12. 3D ultrasound in fetal spina bifida.

    Science.gov (United States)

    Schramm, T; Gloning, K-P; Minderer, S; Tutschek, B

    2008-12-01

    3D ultrasound can be used to study the fetal spine, but skeletal mode can be inconclusive for the diagnosis of fetal spina bifida. We illustrate a diagnostic approach using 2D and 3D ultrasound and indicate possible pitfalls.

  13. 3D Flash LIDAR Space Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc. (ASC) is a small business that has developed 3D Flash LIDAR systems for space and terrestrial applications. 3D Flash LIDAR is...

  14. Eesti 3D jaoks kitsas / Virge Haavasalu

    Index Scriptorium Estoniae

    Haavasalu, Virge

    2009-01-01

    Produktsioonifirma Digitaalne Sputnik: Kaur ja Kaspar Kallas tegelevad filmide produtseerimise ning 3D digitaalkaamerate tootearendusega (Silicon Imaging LLC). Vendade Kallaste 3D-kaamerast. Kommenteerib Eesti Filmi Sihtasutuse direktor Marge Liiske

  15. Will 3D printers manufacture your meals?

    NARCIS (Netherlands)

    Bommel, K.J.C. van

    2013-01-01

    These days, 3D printers are laying down plastics, metals, resins, and other materials in whatever configurations creative people can dream up. But when the next 3D printing revolution comes, you'll be able to eat it.

  16. 3D printing of microscopic bacterial communities

    National Research Council Canada - National Science Library

    Jodi L. Connell; Eric T. Ritschdorff; Marvin Whiteley; Jason B. Shear

    2013-01-01

    .... Here, we describe a microscopic threedimensional (3D) printing strategy that enables multiple populations of bacteria to be organized within essentially any 3D geometry, including adjacent, nested, and free-floating...

  17. 3D Scanning technology for offshore purposes

    DEFF Research Database (Denmark)

    Christoffersen, Morten Thoft

    2005-01-01

    New scanning technology makes for construction of precision 3D models of production plants and offshore production facilities......New scanning technology makes for construction of precision 3D models of production plants and offshore production facilities...

  18. Stolen twin: fascination and curiosity/twin research reports: evolution of sleep length; dental treatment of craniopagus twins; cryopreserved double embryo transfer; gender options in multiple pregnancy/current events: appendectomy in one twin; autistic twin marathon runners; 3D facial recognition; twin biathletes.

    Science.gov (United States)

    Segal, Nancy L

    2014-02-01

    The story of her allegedly stolen twin brother in Armenia is recounted by a 'singleton twin' living in the United States. The behavioral consequences and societal implications of this loss are considered. This case is followed by twin research reports on the evolution of sleep length, dental treatment of craniopagus conjoined twins, cryopreserved double embryo transfer (DET), and gender options in multiple pregnancy. Current events include the diagnosis of appendectomy in one identical twin, the accomplishments of autistic twin marathon runners, the power of three-dimensional (3D) facial recognition, and the goals of twin biathletes heading to the 2014 Sochi Olympics in Russia.

  19. Laser Based 3D Volumetric Display System

    Science.gov (United States)

    1993-03-01

    Literature, Costa Mesa, CA July 1983. 3. "A Real Time Autostereoscopic Multiplanar 3D Display System", Rodney Don Williams, Felix Garcia, Jr., Texas...8217 .- NUMBERS LASER BASED 3D VOLUMETRIC DISPLAY SYSTEM PR: CD13 0. AUTHOR(S) PE: N/AWIU: DN303151 P. Soltan, J. Trias, W. Robinson, W. Dahlke 7...laser generated 3D volumetric images on a rotating double helix, (where the 3D displays are computer controlled for group viewing with the naked eye

  20. 3D-Printed Millimeter Wave Structures

    Science.gov (United States)

    2016-03-14

    demonstrates the resolution of the printer with a 10 micron nozzle. Figure 2: Measured loss tangent of SEBS and SBS samples. 3D - Printed Millimeter... 3D printing of styrene-butadiene-styrene (SBS) and styrene ethylene/butylene-styrene (SEBS) is used to demonstrate the feasibility of 3D - printed ...Additionally, a dielectric lens is printed which improves the antenna gain of an open-ended WR-28 waveguide from 7 to 8.5 dBi. Keywords: 3D printing

  1. 3D Printing and Its Urologic Applications

    Science.gov (United States)

    Soliman, Youssef; Feibus, Allison H; Baum, Neil

    2015-01-01

    3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology. PMID:26028997

  2. Beowulf 3D: a case study

    Science.gov (United States)

    Engle, Rob

    2008-02-01

    This paper discusses the creative and technical challenges encountered during the production of "Beowulf 3D," director Robert Zemeckis' adaptation of the Old English epic poem and the first film to be simultaneously released in IMAX 3D and digital 3D formats.

  3. Expanding Geometry Understanding with 3D Printing

    Science.gov (United States)

    Cochran, Jill A.; Cochran, Zane; Laney, Kendra; Dean, Mandi

    2016-01-01

    With the rise of personal desktop 3D printing, a wide spectrum of educational opportunities has become available for educators to leverage this technology in their classrooms. Until recently, the ability to create physical 3D models was well beyond the scope, skill, and budget of many schools. However, since desktop 3D printers have become readily…

  4. Imaging a Sustainable Future in 3D

    Science.gov (United States)

    Schuhr, W.; Lee, J. D.; Kanngieser, E.

    2012-07-01

    It is the intention of this paper, to contribute to a sustainable future by providing objective object information based on 3D photography as well as promoting 3D photography not only for scientists, but also for amateurs. Due to the presentation of this article by CIPA Task Group 3 on "3D Photographs in Cultural Heritage", the presented samples are masterpieces of historic as well as of current 3D photography concentrating on cultural heritage. In addition to a report on exemplarily access to international archives of 3D photographs, samples for new 3D photographs taken with modern 3D cameras, as well as by means of a ground based high resolution XLITE staff camera and also 3D photographs taken from a captive balloon and the use of civil drone platforms are dealt with. To advise on optimum suited 3D methodology, as well as to catch new trends in 3D, an updated synoptic overview of the 3D visualization technology, even claiming completeness, has been carried out as a result of a systematic survey. In this respect, e.g., today's lasered crystals might be "early bird" products in 3D, which, due to lack in resolution, contrast and color, remember to the stage of the invention of photography.

  5. 3D Printing and Its Urologic Applications.

    Science.gov (United States)

    Soliman, Youssef; Feibus, Allison H; Baum, Neil

    2015-01-01

    3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology.

  6. Expanding Geometry Understanding with 3D Printing

    Science.gov (United States)

    Cochran, Jill A.; Cochran, Zane; Laney, Kendra; Dean, Mandi

    2016-01-01

    With the rise of personal desktop 3D printing, a wide spectrum of educational opportunities has become available for educators to leverage this technology in their classrooms. Until recently, the ability to create physical 3D models was well beyond the scope, skill, and budget of many schools. However, since desktop 3D printers have become readily…

  7. 3D immersive and interactive learning

    CERN Document Server

    Cai, Yiyu

    2014-01-01

    This book reviews innovative uses of 3D for immersive and interactive learning, covering gifted programs, normal stream and special needs education. Reports on curriculum-based 3D learning in classrooms, and co-curriculum-based 3D student research projects.

  8. Imaging articular cartilage defects with 3D fat-suppressed echo planar imaging: comparison with conventional 3D fat-suppressed gradient echo sequence and correlation with histology.

    Science.gov (United States)

    Trattnig, S; Huber, M; Breitenseher, M J; Trnka, H J; Rand, T; Kaider, A; Helbich, T; Imhof, H; Resnick, D

    1998-01-01

    Our goal was to shorten examination time in articular cartilage imaging by use of a recently developed 3D multishot echo planar imaging (EPI) sequence with fat suppression (FS). We performed comparisons with 3D FS GE sequence using histology as the standard of reference. Twenty patients with severe gonarthrosis who were scheduled for total knee replacement underwent MRI prior to surgery. Hyaline cartilage was imaged with a 3D FS EPI and a 3D FS GE sequence. Signal intensities of articular structures were measured, and contrast-to-noise (C/N) ratios were calculated. Each knee was subdivided into 10 cartilage surfaces. From a total of 188 (3D EPI sequence) and 198 (3D GE sequence) cartilage surfaces, 73 and 79 histologic specimens could be obtained and analyzed. MR grading of cartilage lesions on both sequences was based on a five grade classification scheme and compared with histologic grading. The 3D FS EPI sequence provided a high C/N ratio between cartilage and subchondral bone similar to that of the 3D FS GE sequence. The C/N ratio between cartilage and effusion was significantly lower on the 3D EPI sequence due to higher signal intensity of fluid. MR grading of cartilage abnormalities using 3D FS EPI and 3D GE sequence correlated well with histologic grading. 3D FS EPI sequence agreed within one grade in 69 of 73 (94.5%) histologically proven cartilage lesions and 3D FS GE sequence agreed within one grade in 76 of 79 (96.2%) lesions. The gradings were identical in 38 of 73 (52.1%) and in 46 of 79 (58.3%) cases, respectively. The difference between the sensitivities was statistically not significant. The 3D FS EPI sequence is comparable with the 3D FS GE sequence in the noninvasive evaluation of advanced cartilage abnormalities but reduces scan time by a factor of 4.

  9. Enhanced photovoltaic performance utilizing effective charge transfers and light scattering effects by the combination of mesoporous, hollow 3D-ZnO along with 1D-ZnO in CdS quantum dot sensitized solar cells.

    Science.gov (United States)

    Chetia, Tridip Ranjan; Barpuzary, Dipankar; Qureshi, Mohammad

    2014-05-28

    A combination of 3-dimensional (3D) hollow mesoporous ZnO microspheres (ZnO HMSP) and vertically grown one-dimensional ZnO nanowires (1D ZnO NWs) on a fluorine doped tin oxide (FTO) coated glass substrate has been investigated as a photoanode for a CdS quantum dot-sensitized solar cell (QSSC). A comparative study of the photovoltaic performance of the solar cell with devices fabricated with pristine ZnO HMSPs and ZnO NWs was carried out. The proposed photovoltaic device exhibits an enhancement in power conversion efficiency (PCE) upto ∼74% and ∼35%, as compared to the 1D ZnO NW and ZnO HMSP based solar cells. The maximum incident photon-to-current conversion efficiency (IPCE) for the solar cell was observed to be ∼40%, whereas for the devices fabricated with bare ZnO HMSP and ZnO NW the IPCE were only ∼32% and ∼19%, respectively. The enhanced photovoltaic performance of the solar cell is attributed to the high Brunauer-Emmett-Teller (BET) surface area, efficient light-scattering effects and facilitated diffusion of the electrolyte for better functioning of the redox couple (S(2-)/Sn(2-)) in the hybrid photoanode. Moreover, a faster electron transport through 1D ZnO NWs provides better charge collection from the photoactive layer, which leads to an increase in the short circuit current density of the device. The present study highlights the design and development of a new hybrid photoanode for solar harvesting.

  10. Mathematical structure of three - dimensional (3D) Ising model

    CERN Document Server

    Zhang, Zhi-dong

    2013-01-01

    An overview of the mathematical structure of the three-dimensional (3D) Ising model is given, from the viewpoints of topologic, algebraic and geometric aspects. By analyzing the relations among transfer matrices of the 3D Ising model, Reidemeister moves in the knot theory, Yang-Baxter and tetrahedron equations, the following facts are illustrated for the 3D Ising model: 1) The complexified quaternion basis constructed for the 3D Ising model represents naturally the rotation in a (3 + 1) - dimensional space-time, as a relativistic quantum statistical mechanics model, which is consistent with the 4-fold integrand of the partition function by taking the time average. 2) A unitary transformation with a matrix being a spin representation in 2^(nlo)-space corresponds to a rotation in 2nlo-space, which serves to smooth all the crossings in the transfer matrices and contributes as the non-trivial topologic part of the partition function of the 3D Ising model. 3) A tetrahedron relation would ensure the commutativity o...

  11. 3D Reconstruction of Human Motion from Monocular Image Sequences.

    Science.gov (United States)

    Wandt, Bastian; Ackermann, Hanno; Rosenhahn, Bodo

    2016-08-01

    This article tackles the problem of estimating non-rigid human 3D shape and motion from image sequences taken by uncalibrated cameras. Similar to other state-of-the-art solutions we factorize 2D observations in camera parameters, base poses and mixing coefficients. Existing methods require sufficient camera motion during the sequence to achieve a correct 3D reconstruction. To obtain convincing 3D reconstructions from arbitrary camera motion, our method is based on a-priorly trained base poses. We show that strong periodic assumptions on the coefficients can be used to define an efficient and accurate algorithm for estimating periodic motion such as walking patterns. For the extension to non-periodic motion we propose a novel regularization term based on temporal bone length constancy. In contrast to other works, the proposed method does not use a predefined skeleton or anthropometric constraints and can handle arbitrary camera motion. We achieve convincing 3D reconstructions, even under the influence of noise and occlusions. Multiple experiments based on a 3D error metric demonstrate the stability of the proposed method. Compared to other state-of-the-art methods our algorithm shows a significant improvement.

  12. Wafer level 3-D ICs process technology

    CERN Document Server

    Tan, Chuan Seng; Reif, L Rafael

    2009-01-01

    This book focuses on foundry-based process technology that enables the fabrication of 3-D ICs. The core of the book discusses the technology platform for pre-packaging wafer lever 3-D ICs. However, this book does not include a detailed discussion of 3-D ICs design and 3-D packaging. This is an edited book based on chapters contributed by various experts in the field of wafer-level 3-D ICs process technology. They are from academia, research labs and industry.

  13. View-based 3-D object retrieval

    CERN Document Server

    Gao, Yue

    2014-01-01

    Content-based 3-D object retrieval has attracted extensive attention recently and has applications in a variety of fields, such as, computer-aided design, tele-medicine,mobile multimedia, virtual reality, and entertainment. The development of efficient and effective content-based 3-D object retrieval techniques has enabled the use of fast 3-D reconstruction and model design. Recent technical progress, such as the development of camera technologies, has made it possible to capture the views of 3-D objects. As a result, view-based 3-D object retrieval has become an essential but challenging res

  14. Investigating Mobile Stereoscopic 3D Touchscreen Interaction

    OpenAIRE

    Colley, Ashley; Hakkila, Jonna; SCHOENING, Johannes; Posti, Maaret

    2013-01-01

    3D output is no longer limited to large screens in cinemas or living rooms. Nowadays more and more mobile devices are equipped with autostereoscopic 3D (S3D) touchscreens. As a consequence interaction with 3D content now also happens whilst users are on the move. In this paper we carried out a user study with 27 participants to assess how mobile interaction, i.e. whilst walking, with mobile S3D devices, differs from interaction with 2D mobile touchscreens. We investigate the difference in tou...

  15. Laser printing of cells into 3D scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Ovsianikov, A; Gruene, M; Koch, L; Maiorana, F; Chichkov, B [Nanotechnology Department, Laser Zentrum Hannover eV, Hollerithallee 8, 30419 Hannover (Germany); Pflaum, M; Wilhelmi, M; Haverich, A, E-mail: a.ovsianikov@lzh.d [Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover (Germany)

    2010-03-15

    One of the most promising approaches in tissue engineering is the application of 3D scaffolds, which provide cell support and guidance in the initial tissue formation stage. The porosity of the scaffold and internal pore organization influence cell migration and play a major role in its biodegradation dynamics, nutrient diffusion and mechanical stability. In order to control cell migration and cellular interactions within the scaffold, novel technologies capable of producing 3D structures in accordance with predefined design are required. The two-photon polymerization (2PP) technique, used in this report for the fabrication of scaffolds, allows the realization of arbitrary 3D structures with submicron spatial resolution. Highly porous 3D scaffolds, produced by 2PP of acrylated poly(ethylene glycol), are seeded with cells by means of laser-induced forward transfer (LIFT). In this laser printing approach, a propulsive force, resulting from laser-induced shock wave, is used to propel individual cells or cell groups from a donor substrate towards the receiver substrate. We demonstrate that with this technique printing of multiple cell types into 3D scaffolds is possible. Combination of LIFT and 2PP provides a route for the realization of 3D multicellular tissue constructs and artificial ECM engineered on the microscale.

  16. Laser printing of cells into 3D scaffolds.

    Science.gov (United States)

    Ovsianikov, A; Gruene, M; Pflaum, M; Koch, L; Maiorana, F; Wilhelmi, M; Haverich, A; Chichkov, B

    2010-03-01

    One of the most promising approaches in tissue engineering is the application of 3D scaffolds, which provide cell support and guidance in the initial tissue formation stage. The porosity of the scaffold and internal pore organization influence cell migration and play a major role in its biodegradation dynamics, nutrient diffusion and mechanical stability. In order to control cell migration and cellular interactions within the scaffold, novel technologies capable of producing 3D structures in accordance with predefined design are required. The two-photon polymerization (2PP) technique, used in this report for the fabrication of scaffolds, allows the realization of arbitrary 3D structures with submicron spatial resolution. Highly porous 3D scaffolds, produced by 2PP of acrylated poly(ethylene glycol), are seeded with cells by means of laser-induced forward transfer (LIFT). In this laser printing approach, a propulsive force, resulting from laser-induced shock wave, is used to propel individual cells or cell groups from a donor substrate towards the receiver substrate. We demonstrate that with this technique printing of multiple cell types into 3D scaffolds is possible. Combination of LIFT and 2PP provides a route for the realization of 3D multicellular tissue constructs and artificial ECM engineered on the microscale.

  17. 3-D numerical study of the effect of Reynolds number and baffle angle on heat transfer and pressure drop of turbulent flow of air through rectangular duct of very small height

    Directory of Open Access Journals (Sweden)

    Abhijit Paul

    2016-09-01

    Full Text Available Present article illustrates a computational study of three-dimensional steady state heat transfer and high turbulent flow characteristics through a rectangular duct with constant heat fluxed upper wall and single rectangular cross-sectioned baffle insertion at different angles. RNG k–ɛ model along with standard wall function based computations has been accomplished applying the finite volume method, and SIMPLE algorithm has been executed for solving the governing equations. For a Reynolds number, Re of 10,000 to 50,000, Prandtl Number, Pr of 0.707 and baffle angle, α of 30°, 60°, 90°, 120°, 150°, computational studies are executed, centred onto the hydraulic diameter, Dh, test section and hydrodynamic entry length of the duct. Flow field has been solved using Ansys Fluent 14.0 software. Study exposes that baffled rectangular duct has a higher average Nusselt number, Nu and Darcy friction factor, f compared to a smooth rectangular duct. Nu as well as f are found to be maximum at 90° baffle angle. Results illustrate that both α and Re play a significant role in heat transfer as well as flow characteristics and also effects TEF. The correctness of the results attained in this study is corroborated by comparing the results with those existing in the literature for smooth rectangular duct within a precision of ±2% for f and ±4% for Nu.

  18. 内置螺旋弹簧换热管内流动与传热三维数值模拟%3D numerical simulation of fluid flow and heat transfer in heat exchange tube with helical coil inserts

    Institute of Scientific and Technical Information of China (English)

    徐建民; 彭坤; 胡小霞; 黄伟; 余海燕

    2012-01-01

    In order to investigate single-tube heat transfer enhancement principles of heat exchange tube with helical coil inserts,the flow and heat transfer characteristics were simulated using Fluent software.The effects of spring application on flow field,pressure drop and heat transfer performance were investigated.The pitch of coil spring was set as 2 mm,4 mm,5 mm.The effects of spring pitch on the heat transfer enhancement performance were analyzed.The numerical results showed that the fluid in tube with helical coil inserts presents the helical flow,the cutting speed and the radial velocity of flow near the wall had been improved to some extent.Thus the fluid was mixed completely,boundary layer was disturbed fully and heat was exchanged thoroughly.And the temperature difference between inlet and outlet increased as well,with the maximum increase of 0.9 ℃.Under the conditions of the same Reynolds number,the Nusselt number in tube with helical coil inserts was higher than plain tube,but pressure drop and friction factor increased obviously.With the reduced spring pitch,heat transfer was enhanced and friction factor was increased.%为研究内置螺旋弹簧换热管单管强化传热原理,采用Fluent软件对内置螺旋弹簧换热管内流体流动与传热特性进行数值模拟,考察了弹簧的应用对管内流场、压降和换热性能的影响,并分别取螺旋弹簧节距p分别为2 mm、4 mm、5 mm初步研究了弹簧的节距对强化传热效果的影响。模拟结果显示:弹簧管内流体呈螺旋流动状态,管壁附近流体切向速度和径向速度有一定程度的提高,从而加剧了管内流体的混合及边界层的扰动,充分换热,弹簧管进出口温度差较光管有所增加,最高增加了0.9℃;相同雷诺数条件下,内置螺旋弹簧换热管Nu数均高于光管,而压降和阻力系数相比光管有明显增加,随着弹簧节距减小换热增强而摩擦阻力系数增加。

  19. Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion

    Science.gov (United States)

    Handy Turner, Tara

    2010-02-01

    From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.

  20. Web-based interactive visualization of 3D video mosaics using X3D standard

    Institute of Scientific and Technical Information of China (English)

    CHON Jaechoon; LEE Yang-Won; SHIBASAKI Ryosuke

    2006-01-01

    We present a method of 3D image mosaicing for real 3D representation of roadside buildings, and implement a Web-based interactive visualization environment for the 3D video mosaics created by 3D image mosaicing. The 3D image mosaicing technique developed in our previous work is a very powerful method for creating textured 3D-GIS data without excessive data processing like the laser or stereo system. For the Web-based open access to the 3D video mosaics, we build an interactive visualization environment using X3D, the emerging standard of Web 3D. We conduct the data preprocessing for 3D video mosaics and the X3D modeling for textured 3D data. The data preprocessing includes the conversion of each frame of 3D video mosaics into concatenated image files that can be hyperlinked on the Web. The X3D modeling handles the representation of concatenated images using necessary X3D nodes. By employing X3D as the data format for 3D image mosaics, the real 3D representation of roadside buildings is extended to the Web and mobile service systems.

  1. User-centered 3D geovisualisation

    DEFF Research Database (Denmark)

    Nielsen, Anette Hougaard

    2004-01-01

    3D Geovisualisation is a multidisciplinary science mainly utilizing geographically related data, developing software systems for 3D visualisation and producing relevant models. In this paper the connection between geoinformation stored as 3D objects and the end user is of special interest....... In a broader perspective, the overall aim is to develop a language in 3D Geovisualisation gained through usability projects and the development of a theoretical background. A conceptual level of user-centered 3D Geovisualisation is introduced by applying a categorisation originating from Virtual Reality....... The conceptual level is used to structure and organise user-centered 3D Geovisualisation into four categories: representation, rendering, interface and interaction. The categories reflect a process of development of 3D Geovisualisation where objects can be represented verisimilar to the real world...

  2. 3D laptop for defense applications

    Science.gov (United States)

    Edmondson, Richard; Chenault, David

    2012-06-01

    Polaris Sensor Technologies has developed numerous 3D display systems using a US Army patented approach. These displays have been developed as prototypes for handheld controllers for robotic systems and closed hatch driving, and as part of a TALON robot upgrade for 3D vision, providing depth perception for the operator for improved manipulation and hazard avoidance. In this paper we discuss the prototype rugged 3D laptop computer and its applications to defense missions. The prototype 3D laptop combines full temporal and spatial resolution display with the rugged Amrel laptop computer. The display is viewed through protective passive polarized eyewear, and allows combined 2D and 3D content. Uses include robot tele-operation with live 3D video or synthetically rendered scenery, mission planning and rehearsal, enhanced 3D data interpretation, and simulation.

  3. 2 types of spicules "observed" in 3D realistic models

    CERN Document Server

    Martínez-Sykora, Juan

    2010-01-01

    Realistic numerical 3D models of the outer solar atmosphere show two different kind of spicule-like phenomena, as also observed on the solar limb. The numerical models are calculated using the 2 types of spicules "observed" in 3D realistic models Oslo Staggered Code (OSC) to solve the full MHD equations with non-grey and NLTE radiative transfer and thermal conduction along the magnetic field lines. The two types of spicules arise as a natural result of the dynamical evolution in the models. We discuss the different properties of these two types of spicules, their differences from observed spicules and what needs to be improved in the models.

  4. Investigations of direct combustion noise in a single-cylinder diesel engine. Untersuchungen des direkten Verbrennungsgeraeusches an einem Einzylinder-Dieselmotor

    Energy Technology Data Exchange (ETDEWEB)

    Schluender, W.

    1986-05-09

    The author investigated the possibility of noise reduction by primary measures in a single-cylinder diesel engine. The acoustic transfer constant was first determined in model combustion chambers. Excitation spectra were measured at various points inside the combustion chamber. Pressure variations (spatial resonances, excitation of vibrations), acoustic characteristics of the cylinder pressure curve (spectra), and the acoustic transfer constant (separation of noise components, combustion process) were determined. It was found that combustion control measures will minimize cyclic noise level variations in the excitation spectrum, so that noise levels may be reduced by up to 3dB. (HWJ).

  5. Separation of rolling noise and aerodynamic noise by in-service measurement of combined roughness and transfer functions on a high speed slab track

    NARCIS (Netherlands)

    Jansen, H.W.; Dittrich, M.G.

    2012-01-01

    Combined sound and vibration measurements during train pass-bys can be used to quantify contributions from the excitation and transmission of rolling noise. This is useful for the identification of sound sources and the assessment of the track contribution. In this paper, a practical application on

  6. Separation of rolling noise and aerodynamic noise by in-service measurement of combined roughness and transfer functions on a high speed slab track

    NARCIS (Netherlands)

    Jansen, H.W.; Dittrich, M.G.

    2012-01-01

    Combined sound and vibration measurements during train pass-bys can be used to quantify contributions from the excitation and transmission of rolling noise. This is useful for the identification of sound sources and the assessment of the track contribution. In this paper, a practical application on

  7. 3D Modelling of Kizildag Monument

    Science.gov (United States)

    Karauguz, Güngör; Kalayci, İbrahim; Öğütcü, Sermet

    2016-10-01

    The most important cultural property that the nations possess is their historical accumulation, and bringing these to light, taking measures to preserve them or at least maintain the continuity of transferring them to next generations by means of recent technic and technology, ought to be the business of present generations. Although, nowadays, intensive documentation and archiving studies are done by means of classical techniques, besides studies towards preserving historical objects, modelling one-to-one or scaled modelling were not possible until recently. Computing devices and the on-going reflection of this, which is acknowledged as digital technology, is widely used in many areas and makes it possible to document and archive historical works. Even virtual forms in quantitative environments can be transferred to next generations in a scaled and one-to-one modelled way. Within this scope, every single artefact categorization belonging to any era or civilization present in our country can be considered in separate study areas. Furthermore, any work or likewise can be evaluated in separate categories. Also, it is possible to construct travelable virtual 3D museums that make it possible to visit these artefacts. Under the auspices of these technologies, it is quite possible to construct single virtual indoor museums or also, at the final stage, a 3D travelable open-air museum, a platform or more precisely, to establish a data system that spreads all over the country on a broad spectrum. With a long-termed, significant and extensive study and a substantial organization, such a data system can be established, which also serves as a serious infrastructure for alternative tourism possibilities. Located beside a stepped altar and right above the Kizildag IV inscription, the offering pot is destructed and rolled away a few meters to the south slope of the mould. Every time visiting these artefacts with our undergraduate students, unfortunately, we observe more

  8. FROM 3D MODEL DATA TO SEMANTICS

    Directory of Open Access Journals (Sweden)

    My Abdellah Kassimi

    2012-01-01

    Full Text Available The semantic-based 3D models retrieval systems have become necessary since the increase of 3D modelsdatabases. In this paper, we propose a new method for the mapping problem between 3D model data andsemantic data involved in semantic based retrieval for 3D models given by polygonal meshes. First, wefocused on extracting invariant descriptors from the 3D models and analyzing them to efficient semanticannotation and to improve the retrieval accuracy. Selected shape descriptors provide a set of termscommonly used to describe visually a set of objects using linguistic terms and are used as semanticconcept to label 3D model. Second, spatial relationship representing directional, topological anddistance relationships are used to derive other high-level semantic features and to avoid the problem ofautomatic 3D model annotation. Based on the resulting semantic annotation and spatial concepts, anontology for 3D model retrieval is constructed and other concepts can be inferred. This ontology is usedto find similar 3D models for a given query model. We adopted the query by semantic example approach,in which the annotation is performed mostly automatically. The proposed method is implemented in our3D search engine (SB3DMR, tested using the Princeton Shape Benchmark Database.

  9. RT3D tutorials for GMS users

    Energy Technology Data Exchange (ETDEWEB)

    Clement, T.P. [Pacific Northwest National Lab., Richland, WA (United States); Jones, N.L. [Brigham Young Univ., Provo, UT (United States)

    1998-02-01

    RT3D (Reactive Transport in 3-Dimensions) is a computer code that solves coupled partial differential equations that describe reactive-flow and transport of multiple mobile and/or immobile species in a three dimensional saturated porous media. RT3D was developed from the single-species transport code, MT3D (DoD-1.5, 1997 version). As with MT3D, RT3D also uses the USGS groundwater flow model MODFLOW for computing spatial and temporal variations in groundwater head distribution. This report presents a set of tutorial problems that are designed to illustrate how RT3D simulations can be performed within the Department of Defense Groundwater Modeling System (GMS). GMS serves as a pre- and post-processing interface for RT3D. GMS can be used to define all the input files needed by RT3D code, and later the code can be launched from within GMS and run as a separate application. Once the RT3D simulation is completed, the solution can be imported to GMS for graphical post-processing. RT3D v1.0 supports several reaction packages that can be used for simulating different types of reactive contaminants. Each of the tutorials, described below, provides training on a different RT3D reaction package. Each reaction package has different input requirements, and the tutorials are designed to describe these differences. Furthermore, the tutorials illustrate the various options available in GMS for graphical post-processing of RT3D results. Users are strongly encouraged to complete the tutorials before attempting to use RT3D and GMS on a routine basis.

  10. 3D change detection - Approaches and applications

    Science.gov (United States)

    Qin, Rongjun; Tian, Jiaojiao; Reinartz, Peter

    2016-12-01

    Due to the unprecedented technology development of sensors, platforms and algorithms for 3D data acquisition and generation, 3D spaceborne, airborne and close-range data, in the form of image based, Light Detection and Ranging (LiDAR) based point clouds, Digital Elevation Models (DEM) and 3D city models, become more accessible than ever before. Change detection (CD) or time-series data analysis in 3D has gained great attention due to its capability of providing volumetric dynamics to facilitate more applications and provide more accurate results. The state-of-the-art CD reviews aim to provide a comprehensive synthesis and to simplify the taxonomy of the traditional remote sensing CD techniques, which mainly sit within the boundary of 2D image/spectrum analysis, largely ignoring the particularities of 3D aspects of the data. The inclusion of 3D data for change detection (termed 3D CD), not only provides a source with different modality for analysis, but also transcends the border of traditional top-view 2D pixel/object-based analysis to highly detailed, oblique view or voxel-based geometric analysis. This paper reviews the recent developments and applications of 3D CD using remote sensing and close-range data, in support of both academia and industry researchers who seek for solutions in detecting and analyzing 3D dynamics of various objects of interest. We first describe the general considerations of 3D CD problems in different processing stages and identify CD types based on the information used, being the geometric comparison and geometric-spectral analysis. We then summarize relevant works and practices in urban, environment, ecology and civil applications, etc. Given the broad spectrum of applications and different types of 3D data, we discuss important issues in 3D CD methods. Finally, we present concluding remarks in algorithmic aspects of 3D CD.

  11. Multi Sensor Data Integration for AN Accurate 3d Model Generation

    Science.gov (United States)

    Chhatkuli, S.; Satoh, T.; Tachibana, K.

    2015-05-01

    The aim of this paper is to introduce a novel technique of data integration between two different data sets, i.e. laser scanned RGB point cloud and oblique imageries derived 3D model, to create a 3D model with more details and better accuracy. In general, aerial imageries are used to create a 3D city model. Aerial imageries produce an overall decent 3D city models and generally suit to generate 3D model of building roof and some non-complex terrain. However, the automatically generated 3D model, from aerial imageries, generally suffers from the lack of accuracy in deriving the 3D model of road under the bridges, details under tree canopy, isolated trees, etc. Moreover, the automatically generated 3D model from aerial imageries also suffers from undulated road surfaces, non-conforming building shapes, loss of minute details like street furniture, etc. in many cases. On the other hand, laser scanned data and images taken from mobile vehicle platform can produce more detailed 3D road model, street furniture model, 3D model of details under bridge, etc. However, laser scanned data and images from mobile vehicle are not suitable to acquire detailed 3D model of tall buildings, roof tops, and so forth. Our proposed approach to integrate multi sensor data compensated each other's weakness and helped to create a very detailed 3D model with better accuracy. Moreover, the additional details like isolated trees, street furniture, etc. which were missing in the original 3D model derived from aerial imageries could also be integrated in the final model automatically. During the process, the noise in the laser scanned data for example people, vehicles etc. on the road were also automatically removed. Hence, even though the two dataset were acquired in different time period the integrated data set or the final 3D model was generally noise free and without unnecessary details.

  12. Biomaterials for integration with 3-D bioprinting.

    Science.gov (United States)

    Skardal, Aleksander; Atala, Anthony

    2015-03-01

    Bioprinting has emerged in recent years as an attractive method for creating 3-D tissues and organs in the laboratory, and therefore is a promising technology in a number of regenerative medicine applications. It has the potential to (i) create fully functional replacements for damaged tissues in patients, and (ii) rapidly fabricate small-sized human-based tissue models, or organoids, for diagnostics, pathology modeling, and drug development. A number of bioprinting modalities have been explored, including cellular inkjet printing, extrusion-based technologies, soft lithography, and laser-induced forward transfer. Despite the innovation of each of these technologies, successful implementation of bioprinting relies heavily on integration with compatible biomaterials that are responsible for supporting the cellular components during and after biofabrication, and that are compatible with the bioprinting device requirements. In this review, we will evaluate a variety of biomaterials, such as curable synthetic polymers, synthetic gels, and naturally derived hydrogels. Specifically we will describe how they are integrated with the bioprinting technologies above to generate bioprinted constructs with practical application in medicine.

  13. Non-isothermal 3D SDPD Simulations

    Science.gov (United States)

    Yang, Jun; Potami, Raffaele; Gatsonis, Nikolaos

    2012-11-01

    The study of fluids at micro and nanoscale requires new modeling and computational approaches. Smooth Particle Dissipative Dynamics (SDPD) is a mesh-free method that provides a bridge between the continuum equations of hydrodynamics embedded in the Smooth Particle Hydrodynamics approach and the molecular nature embedded in the DPD approach. SDPD is thermodynamically consistent, does not rely on arbitrary coefficients for its thermostat, involves realistic transport coefficients, and includes fluctuation terms. SDPD is implemented in our work for arbitrary 3D geometries with a methodology to model solid wall boundary conditions. We present simulations for isothermal flows for verification of our approach. The entropy equation is implemented with a velocity-entropy Verlet integration algorithm Flows with heat transfer are simulated for verification of the SDPD. We present also the self-diffusion coefficient derived from SDPD simulations for gases and liquids. Results show the scale dependence of self-diffusion coefficient on SDPD particle size. Computational Mathematics Program of the Air Force Office of Scientific Research under grant/contract number FA9550-06-1-0236.

  14. 3D Systems” ‘Stuck in the Middle’ of the 3D Printer Boom?

    NARCIS (Netherlands)

    A. Hoffmann (Alan)

    2014-01-01

    textabstract3D Systems, the pioneer of 3D printing, predicted a future where "kids from 8 to 80" could design and print their ideas at home. By 2013, 9 years after the creation of the first working 3D printer, there were more than 30 major 3D printing companies competing for market share. 3DS and it

  15. 3D-Barolo: 3D fitting tool for the kinematics of galaxies

    NARCIS (Netherlands)

    Di Teodoro, E. M.; Fraternali, F.

    3D-Barolo (3D-Based Analysis of Rotating Object via Line Observations) or BBarolo is a tool for fitting 3D tilted-ring models to emission-line datacubes. BBarolo works with 3D FITS files, i.e. image arrays with two spatial and one spectral dimensions. BBarolo recovers the true rotation curve and

  16. 3D Systems” ‘Stuck in the Middle’ of the 3D Printer Boom?

    NARCIS (Netherlands)

    A. Hoffmann (Alan)

    2014-01-01

    textabstract3D Systems, the pioneer of 3D printing, predicted a future where "kids from 8 to 80" could design and print their ideas at home. By 2013, 9 years after the creation of the first working 3D printer, there were more than 30 major 3D printing companies competing for market share. 3DS and

  17. 3D WHOLE-PROMINENCE FINE STRUCTURE MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Gunár, Stanislav; Mackay, Duncan H. [School of Mathematics and Statistics, University of St Andrews, North Haugh, St Andrews, KY16 9SS (United Kingdom)

    2015-04-20

    We present the first 3D whole-prominence fine structure model. The model combines a 3D magnetic field configuration of an entire prominence obtained from nonlinear force-free field simulations, with a detailed description of the prominence plasma. The plasma is located in magnetic dips in hydrostatic equilibrium and is distributed along multiple fine structures within the 3D magnetic model. Through the use of a novel radiative transfer visualization technique for the Hα line such plasma-loaded magnetic field model produces synthetic images of the modeled prominence comparable with high-resolution observations. This allows us for the first time to use a single technique to consistently study, in both emission on the limb and absorption against the solar disk, the fine structures of prominences/filaments produced by a magnetic field model.

  18. 3D- VISUALIZATION BY RAYTRACING IMAGE SYNTHESIS ON GPU

    Directory of Open Access Journals (Sweden)

    Al-Oraiqat Anas M.

    2016-06-01

    Full Text Available This paper presents a realization of the approach to spatial 3D stereo of visualization of 3D images with use parallel Graphics processing unit (GPU. The experiments of realization of synthesis of images of a 3D stage by a method of trace of beams on GPU with Compute Unified Device Architecture (CUDA have shown that 60 % of the time is spent for the decision of a computing problem approximately, the major part of time (40 % is spent for transfer of data between the central processing unit and GPU for calculations and the organization process of visualization. The study of the influence of increase in the size of the GPU network at the speed of calculations showed importance of the correct task of structure of formation of the parallel computer network and general mechanism of parallelization.

  19. Stability Criteria of 3D Inviscid Shears

    CERN Document Server

    Li, Y Charles

    2009-01-01

    The classical plane Couette flow, plane Poiseuille flow, and pipe Poiseuille flow share some universal 3D steady coherent structure in the form of "streak-roll-critical layer". As the Reynolds number approaches infinity, the steady coherent structure approaches a 3D limiting shear of the form ($U(y,z), 0, 0$) in velocity variables. All such 3D shears are steady states of the 3D Euler equations. This raises the importance of investigating the stability of such inviscid 3D shears in contrast to the classical Rayleigh theory of inviscid 2D shears. Several general criteria of stability for such inviscid 3D shears are derived. In the Appendix, an argument is given to show that a 2D limiting shear can only be the classical laminar shear.

  20. 3D-tulostus : case Printrbot

    OpenAIRE

    Arvekari, Lassi

    2013-01-01

    Opinnäytetyön tavoitteena on selvittää 3D-tulostustekniikan perusteita ja 3D-tulostuksen nykytilannetta. 3D-tulostukseen sopivien mallien luomista tutkitaan ja mallin tekemiseen on etsitty toimivia ohjesääntöjä. Tärkeä osa työtä on tutkia mitä vaiheita 3D-tulostimen hankinnassa kotikäyttöön tulee vastaan. Käytännön kokeita varten opinnäytetyössä on case Printrbot, jossa on tutustuttu edulliseen 3D-tulostuslaitteeseen kokoonpanosta lähtien. Työn kuluessa selvisi että edulliset 3D-tulos...

  1. Diamond Pixel Detectors and 3D Diamond Devices

    Science.gov (United States)

    Venturi, N.

    2016-12-01

    Results from detectors of poly-crystalline chemical vapour deposited (pCVD) diamond are presented. These include the first analysis of data of the ATLAS Diamond Beam Monitor (DBM). The DBM module consists of pCVD diamond sensors instrumented with pixellated FE-I4 front-end electronics. Six diamond telescopes, each with three modules, are placed symmetrically around the ATLAS interaction point. The DBM tracking capabilities allow it to discriminate between particles coming from the interaction point and background particles passing through the ATLAS detector. Also, analysis of test beam data of pCVD DBM modules are presented. A new low threshold tuning algorithm based on noise occupancy was developed which increases the DBM module signal to noise ratio significantly. Finally first results from prototypes of a novel detector using pCVD diamond and resistive electrodes in the bulk, forming a 3D diamond device, are discussed. 3D devices based on pCVD diamond were successfully tested with test beams at CERN. The measured charge is compared to that of a strip detector mounted on the same pCVD diamond showing that the 3D device collects significantly more charge than the planar device.

  2. Single-shot 3D sensing with improved data density

    CERN Document Server

    Willomitzer, Florian; Faber, Christian; Häusler, Gerd

    2014-01-01

    We introduce a novel concept for motion robust optical 3D-sensing. The concept is based on multi-line triangulation. The aim is to evaluate a large number of projected lines (high data density) in a large measurement volume with high precision. Implementing all those three attributes at the same time allows for the "perfect" real-time 3D movie camera (our long term goal). The key problem towards this goal is ambiguous line indexing: we will demonstrate that the necessary information for unique line indexing can be acquired by two synchronized cameras and a back projection scheme. The introduced concept preserves high lateral resolution, since the lines are as narrow as the sampling theorem allows, no spatial bandwidth is consumed by encoding of the lines. In principle, the distance uncertainty is only limited by shot noise and coherent noise. The concept can be also advantageously implemented with a hand-guided sensor and real-time registration, for a complete and dense 3D-acquisition of complicated scenes.

  3. 干熄焦炉内三维流动及传热的数值模拟%3D numerical simulation of flow and heat transfer in coke dry quenching process

    Institute of Scientific and Technical Information of China (English)

    常庆明; 靳振伟; 程平平; 李亚伟; 董良君

    2014-01-01

    A mathematical model for quenching gas flow and heat transfer between gas and coke in the coke dry quenching (CDQ) unit was established .In the model ,secondary development was done on the platform of Fluent by employing the user defined functions (UDF) and the user defined scalars (UDS) .The calculation results show a bias flow of quenching gas in the chutes ,i .e .more gas flows to the annular gas passage through the chutes near the outlet with relatively larger velocity .The pres-sure loss of the flowing gas mainly takes place in the cooling chamber ,and the heat transfer rate be-tween gas and coke near the side in the chamber is larger than that at the center .Simulation results find that the heated gas temperature can reach about 1101 K at the gas outlet w hile the cooled coke temperature decreases to about 439 K at the coke outlet w hen the circulating air volume is 200 000 m3/h .This can not only meet the cooling requirement of the coke but also supply the recycle gas with high grade heat for further heating or power generation .%以Fluent软件为平台,通过流体在多孔介质中的流动模型来处理冷却气体在干熄焦炉内的三维流动,借助于UDS和UDF进行二次开发,建立干熄焦炉内冷却气体及焦炭的流动传热模型,并分析了循环风量对气固换热的影响。结果表明,冷却室气体在通过斜道进入环形气道时有偏流现象,即靠近总出口附近的斜道有更多的气体流出,且气流速度最快;气体的压力损失主要发生在冷却室;冷却室内周边的换热效果比中心换热效果要好。模拟计算发现,循环风量为200000 m3/h时,换热后的冷却气体温度为1101 K ,焦炭温度为439 K ,这不仅满足了焦炭的冷却要求,而且还能提供用于供暖或发电的高品位热量的循环气体。

  4. 基于PLC的升降横移立体车库控制系统设计%Design of the PLC-based Control System for 3-D Lifting and Transferring Parking Garage

    Institute of Scientific and Technical Information of China (English)

    陆波; 王荣扬

    2015-01-01

    Along with the ascension of car ownership, dimensional garage has become the first choice to solve the problem of urban parking. The lifting and transferring 4-storey 9-parking position 3-dimensional garage is designed by using UG software, and the automatic control system is developed based on PLC and inverter. The operational principle and hardware composition of the control system are researched, the control process of the system and execution protection strategy are described. The results indicate that this garage features simple structure, low operating cost, small footprint, and safety and reliable operation, and the control system is easy to operate; thus it can effectively solve the difficulty of urban parking.%随着汽车保有量的上升,立体车库成为解决城市停车问题的首要选择。采用UG软件设计了一种4层9车位升降横移立体车库,开发了一种基于PLC及变频器的自动控制系统。对控制系统的工作原理和硬件组成进行了研究,阐述了系统控制流程和执行保护策略。结果表明,该升降横移立体车库具有结构简单、运行成本低、占地少及运行安全可靠等优点,且控制系统易于操作,能有效且可行地解决城市停车难问题。

  5. ERP system for 3D printing industry

    Directory of Open Access Journals (Sweden)

    Deaky Bogdan

    2017-01-01

    Full Text Available GOCREATE is an original cloud-based production management and optimization service which helps 3D printing service providers to use their resources better. The proposed Enterprise Resource Planning system can significantly increase income through improved productivity. With GOCREATE, the 3D printing service providers get a much higher production efficiency at a much lower licensing cost, to increase their competitiveness in the fast growing 3D printing market.

  6. Reconhecimento de faces 3D com Kinect

    OpenAIRE

    Cardia Neto, João Baptista [UNESP

    2014-01-01

    For person identification, facil recognition has several advantages over other biometric traits due mostly to its high universelly, collectability, and acceptability. When dealing with 2D face images several problems arise related to pose, illumination, and facial expressions. To increase the performance of facial recognition, 3D mehtods have been proposed and developedm since working with 3D objects allow us to handle better the aforementioned problems. With 3D object, it is possible to rota...

  7. Ultrasonic Sensor Based 3D Mapping & Localization

    Directory of Open Access Journals (Sweden)

    Shadman Fahim Ahmad

    2016-04-01

    Full Text Available This article provides a basic level introduction to 3D mapping using sonar sensors and localization. It describes the methods used to construct a low-cost autonomous robot along with the hardware and software used as well as an insight to the background of autonomous robotic 3D mapping and localization. We have also given an overview to what the future prospects of the robot may hold in 3D based mapping.

  8. Ekologinen 3D-tulostettava asuste

    OpenAIRE

    Paulasaari, Laura

    2014-01-01

    Tämän opinnäytetyön aiheena oli ekologisuus 3D-tulostuksessa ja sen hyödynnettävyys erityisesti asustesuunnittelussa. Työn tarkoituksena oli selvittää, kuinka 3D-tulostusta voi tehdä ekologisemmin ja mitä vaihtoehtoja kuluttajalle tällä hetkellä on. Työ tehtiin Young skills –osuuskunnalle. 3D-tulostuksella on mahdollisuus antaa todella paljon tulevaisuuden tuotantomenetelmille ja se vapauttaa tuotteiden muotoilua täysin uudella tavalla. 3D-tulostuksen avulla voidaan keskittyä enemmän esim...

  9. Topology Dictionary for 3D Video Understanding

    OpenAIRE

    2012-01-01

    This paper presents a novel approach that achieves 3D video understanding. 3D video consists of a stream of 3D models of subjects in motion. The acquisition of long sequences requires large storage space (2 GB for 1 min). Moreover, it is tedious to browse data sets and extract meaningful information. We propose the topology dictionary to encode and describe 3D video content. The model consists of a topology-based shape descriptor dictionary which can be generated from either extracted pattern...

  10. Perspectives on Materials Science in 3D

    DEFF Research Database (Denmark)

    Juul Jensen, Dorte

    2016-01-01

    Materials characterization in 3D has opened a new era in materials science, which is discussed in this paper. The original motivations and visions behind the development of one of the new 3D techniques, namely the three dimensional x-ray diffraction (3DXRD) method, are presented and the route...... to its implementation is described. The present status of materials science in 3D is illustrated by examples related to recrystallization. Finally, challenges and suggestions for the future success for 3D Materials Science relating to hardware evolution, data analysis, data exchange and modeling...

  11. Virtual Realization using 3D Password

    Directory of Open Access Journals (Sweden)

    A.B.Gadicha

    2012-03-01

    Full Text Available Current authentication systems suffer from many weaknesses. Textual passwords are commonly used; however, users do not follow their requirements. Users tend to choose meaningful words from dictionaries, which make textual passwords easy to break and vulnerable to dictionary or brute force attacks. Many available graphical passwords have a password space that is less than or equal to the textual password space. Smart cards or tokens can be stolen. Many biometric authentications have been proposed; however, users tend to resist using biometrics because of their intrusiveness and the effect on their privacy. Moreover, biometrics cannot be revoked. In this paper, we present and evaluate our contribution, i.e., the 3D password. The 3D password is a multifactor authentication scheme. To be authenticated, we present a 3D virtual environment where the user navigates and interacts with various objects. The sequence of actions and interactions toward the objects inside the 3D environment constructs the user’s 3D password. The 3D password can combine most existing authentication schemes such as textual passwords, graphical passwords, and various types of biometrics into a 3D virtual environment. The design of the 3D virtual environment and the type of objects selected determine the 3D password key space.

  12. Dimensional accuracy of 3D printed vertebra

    Science.gov (United States)

    Ogden, Kent; Ordway, Nathaniel; Diallo, Dalanda; Tillapaugh-Fay, Gwen; Aslan, Can

    2014-03-01

    3D printer applications in the biomedical sciences and medical imaging are expanding and will have an increasing impact on the practice of medicine. Orthopedic and reconstructive surgery has been an obvious area for development of 3D printer applications as the segmentation of bony anatomy to generate printable models is relatively straightforward. There are important issues that should be addressed when using 3D printed models for applications that may affect patient care; in particular the dimensional accuracy of the printed parts needs to be high to avoid poor decisions being made prior to surgery or therapeutic procedures. In this work, the dimensional accuracy of 3D printed vertebral bodies derived from CT data for a cadaver spine is compared with direct measurements on the ex-vivo vertebra and with measurements made on the 3D rendered vertebra using commercial 3D image processing software. The vertebra was printed on a consumer grade 3D printer using an additive print process using PLA (polylactic acid) filament. Measurements were made for 15 different anatomic features of the vertebral body, including vertebral body height, endplate width and depth, pedicle height and width, and spinal canal width and depth, among others. It is shown that for the segmentation and printing process used, the results of measurements made on the 3D printed vertebral body are substantially the same as those produced by direct measurement on the vertebra and measurements made on the 3D rendered vertebra.

  13. Illustrating Mathematics using 3D Printers

    OpenAIRE

    Knill, Oliver; Slavkovsky, Elizabeth

    2013-01-01

    3D printing technology can help to visualize proofs in mathematics. In this document we aim to illustrate how 3D printing can help to visualize concepts and mathematical proofs. As already known to educators in ancient Greece, models allow to bring mathematics closer to the public. The new 3D printing technology makes the realization of such tools more accessible than ever. This is an updated version of a paper included in book Low-Cost 3D Printing for science, education and Sustainable Devel...

  14. Calibration for 3D Structured Light Measurement

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A calibration procedure was developed for three-dimensional(3D) binocular structured light measurement systems. In virtue of a specially designed pattern, matching points in stereo images are extracted. And then sufficient 3D space points are obtained through pairs of images with the intrinsic and extrinsic parameters of each camera estimated prior and consequently some lights are calibrated by means of multi point fitting. Finally, a mathematical model is applied to interpolate and approximate all dynamic scanning lights based on geometry. The process of calibration method is successfully used in the binocular 3D measurement system based on structured lights and the 3D reconstruction results are satisfying.

  15. Getting started in 3D with Maya

    CERN Document Server

    Watkins, Adam

    2012-01-01

    Deliver professional-level 3D content in no time with this comprehensive guide to 3D animation with Maya. With over 12 years of training experience, plus several award winning students under his belt, author Adam Watkins is the ideal mentor to get you up to speed with 3D in Maya. Using a structured and pragmatic approach Getting Started in 3D with Maya begins with basic theory of fundamental techniques, then builds on this knowledge using practical examples and projects to put your new skills to the test. Prepared so that you can learn in an organic fashion, each chapter builds on the know

  16. Lossless compression of 3D hyperspectral sounder data using the wavelet and Burrows-Wheeler transforms

    Science.gov (United States)

    Wei, Shih-Chieh; Huang, Bormin

    2004-10-01

    Hyperspectral sounder data is used for retrieval of useful geophysical parameters which promise better weather prediction. It features two characteristics. First it is huge in size with 2D spatial coverage and high spectral resolution in the infrared region. Second it allows low tolerance of noise and error in retrieving the geophysical parameters where a mathematically ill-posed problem is involved. Therefore compression is better to be lossless or near lossless for data transfer and archive. Meanwhile medical data from X-ray computerized tomography (CT) or magnetic resonance imaging (MRI) techniques also possesses similar characteristics. It provides motivation to apply lossless compression schemes for medical data to the hyperspectral sounder data. In this paper, we explore the use of a wavelet-based lossless data compression scheme for the 3D hyperspectral data which uses in sequence a forward difference scheme, an integer wavelet transform, a Burrows-Wheeler transform and an arithmetic coder. Compared to previous work, our approach is shown to outperform the CALIC and 3D EZW schemes.

  17. FastScript3D - A Companion to Java 3D

    Science.gov (United States)

    Koenig, Patti

    2005-01-01

    FastScript3D is a computer program, written in the Java 3D(TM) programming language, that establishes an alternative language that helps users who lack expertise in Java 3D to use Java 3D for constructing three-dimensional (3D)-appearing graphics. The FastScript3D language provides a set of simple, intuitive, one-line text-string commands for creating, controlling, and animating 3D models. The first word in a string is the name of a command; the rest of the string contains the data arguments for the command. The commands can also be used as an aid to learning Java 3D. Developers can extend the language by adding custom text-string commands. The commands can define new 3D objects or load representations of 3D objects from files in formats compatible with such other software systems as X3D. The text strings can be easily integrated into other languages. FastScript3D facilitates communication between scripting languages [which enable programming of hyper-text markup language (HTML) documents to interact with users] and Java 3D. The FastScript3D language can be extended and customized on both the scripting side and the Java 3D side.

  18. COGNITIVE ASPECTS OF COLLABORATION IN 3D VIRTUAL ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    V. Juřík

    2016-06-01

    Full Text Available Human-computer interaction has entered the 3D era. The most important models representing spatial information — maps — are transferred into 3D versions regarding the specific content to be displayed. Virtual worlds (VW become promising area of interest because of possibility to dynamically modify content and multi-user cooperation when solving tasks regardless to physical presence. They can be used for sharing and elaborating information via virtual images or avatars. Attractiveness of VWs is emphasized also by possibility to measure operators’ actions and complex strategies. Collaboration in 3D environments is the crucial issue in many areas where the visualizations are important for the group cooperation. Within the specific 3D user interface the operators' ability to manipulate the displayed content is explored regarding such phenomena as situation awareness, cognitive workload and human error. For such purpose, the VWs offer a great number of tools for measuring the operators’ responses as recording virtual movement or spots of interest in the visual field. Study focuses on the methodological issues of measuring the usability of 3D VWs and comparing them with the existing principles of 2D maps. We explore operators’ strategies to reach and interpret information regarding the specific type of visualization and different level of immersion.

  19. Cognitive Aspects of Collaboration in 3d Virtual Environments

    Science.gov (United States)

    Juřík, V.; Herman, L.; Kubíček, P.; Stachoň, Z.; Šašinka, Č.

    2016-06-01

    Human-computer interaction has entered the 3D era. The most important models representing spatial information — maps — are transferred into 3D versions regarding the specific content to be displayed. Virtual worlds (VW) become promising area of interest because of possibility to dynamically modify content and multi-user cooperation when solving tasks regardless to physical presence. They can be used for sharing and elaborating information via virtual images or avatars. Attractiveness of VWs is emphasized also by possibility to measure operators' actions and complex strategies. Collaboration in 3D environments is the crucial issue in many areas where the visualizations are important for the group cooperation. Within the specific 3D user interface the operators' ability to manipulate the displayed content is explored regarding such phenomena as situation awareness, cognitive workload and human error. For such purpose, the VWs offer a great number of tools for measuring the operators' responses as recording virtual movement or spots of interest in the visual field. Study focuses on the methodological issues of measuring the usability of 3D VWs and comparing them with the existing principles of 2D maps. We explore operators' strategies to reach and interpret information regarding the specific type of visualization and different level of immersion.

  20. Optimalisasi Desain Parameter Lapangan Untuk Data Resistivitas Pseudo 3D

    Directory of Open Access Journals (Sweden)

    . Makhrani

    2013-05-01

    Full Text Available Penelitian yang berjudul Optimalisasi Desain Parameter Lapangan Untuk Data Resistivitas Pseudo 3D dilakukan dengan tujuan memprediksi model geologi dan mengestimasi parameter-parameter geofisika, menentukan sensitivitas dari konfigurasi Wenner-Schlumberger dan Wenner dalam mendeteksi anomali, membuat Pseudo 3D dari profil 2D serta meningkatkan kemampuan dalam memilih parameter survei  yang optimal  berdasarkan perbandingan kekuatan signal yang diharapkan dan kharakteristik dari bising (noise. Proses pengambilan data dilakukan dengan menggunakan metode geolistrik konfigurasi Wenner-Schlumberger dan konfigurasi Wenner. Pengolahan data geolistrik resistivitas dalam penelitian ini diawali dengan pengolahan data sintetik hasil forward modeling. Data ini dapat dijadikan sebagai data masukan pada perangkat lunak Surfer 9 untuk menggambarkan profil 2D. Seluruh hasil inversi dalam bentuk profil 2D akan digabungkan sehingga menjadi profil pseudo 3D, proses ini akan dilakukan dengan menggunakan perangkat lunak Matlab R2008a. Kedua konfigurasi yang digunakan dalam penelitian ini masing-masing memiliki keunggulan dan kelemahan dalam hal sensitivitas, baik konfigurasi Wenner-Schlumberger maupun konfigurasi Wenner. Meskipun kedua konfigurasi mendeteksi anomali yang dibuat, namun konfigurasi Wenner-Schlumberger lebih menonjolkan anomali, baik pada data sintetik maupun pada hasil pengukuran. Selain itu, pembuatan pseudo 3D dari profil 2D dapat membantu dalam menginterpretasi data pada lintasan yang saling berpotongan.

  1. Oblique Photogrammetry Supporting 3d Urban Reconstruction of Complex Scenarios

    Science.gov (United States)

    Toschi, I.; Ramos, M. M.; Nocerino, E.; Menna, F.; Remondino, F.; Moe, K.; Poli, D.; Legat, K.; Fassi, F.

    2017-05-01

    Accurate 3D city models represent an important source of geospatial information to support various "smart city" applications, such as space management, energy assessment, 3D cartography, noise and pollution mapping as well as disaster management. Even though remarkable progress has been made in recent years, there are still many open issues, especially when it comes to the 3D modelling of complex urban scenarios like historical and densely-built city centres featuring narrow streets and non-conventional building shapes. Most approaches introduce strong building priors/constraints on symmetry and roof typology that penalize urban environments having high variations of roof shapes. Furthermore, although oblique photogrammetry is rapidly maturing, the use of slanted views for façade reconstruction is not completely included in the reconstruction pipeline of state-of-the-art software. This paper aims to investigate state-of-the-art methods for 3D building modelling in complex urban scenarios with the support of oblique airborne images. A reconstruction approach based on roof primitives fitting is tested. Oblique imagery is then exploited to support the manual editing of the generated building models. At the same time, mobile mapping data are collected at cm resolution and then integrated with the aerial ones. All approaches are tested on the historical city centre of Bergamo (Italy).

  2. An efficient stochastic framework for 3D human motion tracking

    Science.gov (United States)

    Ni, Bingbing; Winkler, Stefan; Kassim, Ashraf Ali

    2008-02-01

    In this paper, we present a stochastic framework for articulated 3D human motion tracking. Tracking full body human motion is a challenging task, because the tracking performance normally suffers from several issues such as self-occlusion, foreground segmentation noise and high computational cost. In our work, we use explicit 3D reconstructions of the human body based on a visual hull algorithm as our system input, which effectively eliminates self-occlusion. To improve tracking efficiency as well as robustness, we use a Kalman particle filter framework based on an interacting multiple model (IMM). The posterior density is approximated by a set of weighted particles, which include both sample means and covariances. Therefore, tracking is equivalent to searching the maximum a posteriori (MAP) of the probability distribution. During Kalman filtering, several dynamical models of human motion (e.g., zero order, first order) are assumed which interact with each other for more robust tracking results. Our measurement step is performed by a local optimization method using simulated physical force/moment for 3D registration. The likelihood function is designed to be the fitting score between the reconstructed human body and our 3D human model, which is composed of a set of cylinders. This proposed tracking framework is tested on a real motion sequence. Our experimental results show that the proposed method improves the sampling efficiency compared with most particle filter based methods and achieves high tracking accuracy.

  3. An aerial 3D printing test mission

    Science.gov (United States)

    Hirsch, Michael; McGuire, Thomas; Parsons, Michael; Leake, Skye; Straub, Jeremy

    2016-05-01

    This paper provides an overview of an aerial 3D printing technology, its development and its testing. This technology is potentially useful in its own right. In addition, this work advances the development of a related in-space 3D printing technology. A series of aerial 3D printing test missions, used to test the aerial printing technology, are discussed. Through completing these test missions, the design for an in-space 3D printer may be advanced. The current design for the in-space 3D printer involves focusing thermal energy to heat an extrusion head and allow for the extrusion of molten print material. Plastics can be used as well as composites including metal, allowing for the extrusion of conductive material. A variety of experiments will be used to test this initial 3D printer design. High altitude balloons will be used to test the effects of microgravity on 3D printing, as well as parabolic flight tests. Zero pressure balloons can be used to test the effect of long 3D printing missions subjected to low temperatures. Vacuum chambers will be used to test 3D printing in a vacuum environment. The results will be used to adapt a current prototype of an in-space 3D printer. Then, a small scale prototype can be sent into low-Earth orbit as a 3-U cube satellite. With the ability to 3D print in space demonstrated, future missions can launch production hardware through which the sustainability and durability of structures in space will be greatly improved.

  4. The 3D-city model

    DEFF Research Database (Denmark)

    Holmgren, Steen; Rüdiger, Bjarne; Tournay, Bruno

    2001-01-01

    We have worked with the construction and use of 3D city models for about ten years. This work has given us valuable experience concerning model methodology. In addition to this collection of knowledge, our perception of the concept of city models has changed radically. In order to explain...... of 3D city models....

  5. 3D, or Not to Be?

    Science.gov (United States)

    Norbury, Keith

    2012-01-01

    It may be too soon for students to be showing up for class with popcorn and gummy bears, but technology similar to that behind the 3D blockbuster movie "Avatar" is slowly finding its way into college classrooms. 3D classroom projectors are taking students on fantastic voyages inside the human body, to the ruins of ancient Greece--even to faraway…

  6. User-centered 3D geovisualisation

    DEFF Research Database (Denmark)

    Nielsen, Anette Hougaard

    2004-01-01

    . In a broader perspective, the overall aim is to develop a language in 3D Geovisualisation gained through usability projects and the development of a theoretical background. A conceptual level of user-centered 3D Geovisualisation is introduced by applying a categorisation originating from Virtual Reality...

  7. 3D Printing. What's the Harm?

    Science.gov (United States)

    Love, Tyler S.; Roy, Ken

    2016-01-01

    Health concerns from 3D printing were first documented by Stephens, Azimi, Orch, and Ramos (2013), who found that commercially available 3D printers were producing hazardous levels of ultrafine particles (UFPs) and volatile organic compounds (VOCs) when plastic materials were melted through the extruder. UFPs are particles less than 100 nanometers…

  8. 3D Printing of Molecular Models

    Science.gov (United States)

    Gardner, Adam; Olson, Arthur

    2016-01-01

    Physical molecular models have played a valuable role in our understanding of the invisible nano-scale world. We discuss 3D printing and its use in producing models of the molecules of life. Complex biomolecular models, produced from 3D printed parts, can demonstrate characteristics of molecular structure and function, such as viral self-assembly,…

  9. 3D printing of functional structures

    NARCIS (Netherlands)

    Krijnen, Gijsbertus J.M.

    2016-01-01

    The technology colloquial known as ‘3D printing’ has developed in such diversity in printing technologies and application fields that meanwhile it seems anything is possible. However, clearly the ideal 3D Printer, with high resolution, multi-material capability, fast printing, etc. is yet to be deve

  10. 3D printing of functional structures

    NARCIS (Netherlands)

    Krijnen, Gijsbertus J.M.

    The technology colloquial known as ‘3D printing’ has developed in such diversity in printing technologies and application fields that meanwhile it seems anything is possible. However, clearly the ideal 3D Printer, with high resolution, multi-material capability, fast printing, etc. is yet to be

  11. 3D Printed Block Copolymer Nanostructures

    Science.gov (United States)

    Scalfani, Vincent F.; Turner, C. Heath; Rupar, Paul A.; Jenkins, Alexander H.; Bara, Jason E.

    2015-01-01

    The emergence of 3D printing has dramatically advanced the availability of tangible molecular and extended solid models. Interestingly, there are few nanostructure models available both commercially and through other do-it-yourself approaches such as 3D printing. This is unfortunate given the importance of nanotechnology in science today. In this…

  12. 3D elastic control for mobile devices.

    Science.gov (United States)

    Hachet, Martin; Pouderoux, Joachim; Guitton, Pascal

    2008-01-01

    To increase the input space of mobile devices, the authors developed a proof-of-concept 3D elastic controller that easily adapts to mobile devices. This embedded device improves the completion of high-level interaction tasks such as visualization of large documents and navigation in 3D environments. It also opens new directions for tomorrow's mobile applications.

  13. Parametrizable cameras for 3D computational steering

    NARCIS (Netherlands)

    Mulder, J.D.; Wijk, J.J. van

    1997-01-01

    We present a method for the definition of multiple views in 3D interfaces for computational steering. The method uses the concept of a point-based parametrizable camera object. This concept enables a user to create and configure multiple views on his custom 3D interface in an intuitive graphical man

  14. 3D printing of functional structures

    NARCIS (Netherlands)

    Krijnen, G.J.M.

    2016-01-01

    The technology colloquial known as ‘3D printing’ has developed in such diversity in printing technologies and application fields that meanwhile it seems anything is possible. However, clearly the ideal 3D Printer, with high resolution, multi-material capability, fast printing, etc. is yet to be deve

  15. 3D Printed Block Copolymer Nanostructures

    Science.gov (United States)

    Scalfani, Vincent F.; Turner, C. Heath; Rupar, Paul A.; Jenkins, Alexander H.; Bara, Jason E.

    2015-01-01

    The emergence of 3D printing has dramatically advanced the availability of tangible molecular and extended solid models. Interestingly, there are few nanostructure models available both commercially and through other do-it-yourself approaches such as 3D printing. This is unfortunate given the importance of nanotechnology in science today. In this…

  16. 3D Printing of Molecular Models

    Science.gov (United States)

    Gardner, Adam; Olson, Arthur

    2016-01-01

    Physical molecular models have played a valuable role in our understanding of the invisible nano-scale world. We discuss 3D printing and its use in producing models of the molecules of life. Complex biomolecular models, produced from 3D printed parts, can demonstrate characteristics of molecular structure and function, such as viral self-assembly,…

  17. 3D Printing. What's the Harm?

    Science.gov (United States)

    Love, Tyler S.; Roy, Ken

    2016-01-01

    Health concerns from 3D printing were first documented by Stephens, Azimi, Orch, and Ramos (2013), who found that commercially available 3D printers were producing hazardous levels of ultrafine particles (UFPs) and volatile organic compounds (VOCs) when plastic materials were melted through the extruder. UFPs are particles less than 100 nanometers…

  18. 3D background aerodynamics using CFD

    DEFF Research Database (Denmark)

    Sørensen, Niels N.

    2002-01-01

    3D rotor computations for the Greek Geovilogiki (GEO) 44 meter rotor equipped with 19 meters blades are performed. The lift and drag polars are extracted at five spanvise locations r/R= (.37, .55, .71, .82, .93) based on identification of stagnationpoints between 2D and 3D computations. The inner...

  19. Topology dictionary for 3D video understanding.

    Science.gov (United States)

    Tung, Tony; Matsuyama, Takashi

    2012-08-01

    This paper presents a novel approach that achieves 3D video understanding. 3D video consists of a stream of 3D models of subjects in motion. The acquisition of long sequences requires large storage space (2 GB for 1 min). Moreover, it is tedious to browse data sets and extract meaningful information. We propose the topology dictionary to encode and describe 3D video content. The model consists of a topology-based shape descriptor dictionary which can be generated from either extracted patterns or training sequences. The model relies on 1) topology description and classification using Reeb graphs, and 2) a Markov motion graph to represent topology change states. We show that the use of Reeb graphs as the high-level topology descriptor is relevant. It allows the dictionary to automatically model complex sequences, whereas other strategies would require prior knowledge on the shape and topology of the captured subjects. Our approach serves to encode 3D video sequences, and can be applied for content-based description and summarization of 3D video sequences. Furthermore, topology class labeling during a learning process enables the system to perform content-based event recognition. Experiments were carried out on various 3D videos. We showcase an application for 3D video progressive summarization using the topology dictionary.

  20. Integration of real-time 3D image acquisition and multiview 3D display

    Science.gov (United States)

    Zhang, Zhaoxing; Geng, Zheng; Li, Tuotuo; Li, Wei; Wang, Jingyi; Liu, Yongchun

    2014-03-01

    Seamless integration of 3D acquisition and 3D display systems offers enhanced experience in 3D visualization of the real world objects or scenes. The vivid representation of captured 3D objects displayed on a glasses-free 3D display screen could bring the realistic viewing experience to viewers as if they are viewing real-world scene. Although the technologies in 3D acquisition and 3D display have advanced rapidly in recent years, effort is lacking in studying the seamless integration of these two different aspects of 3D technologies. In this paper, we describe our recent progress on integrating a light-field 3D acquisition system and an autostereoscopic multiview 3D display for real-time light field capture and display. This paper focuses on both the architecture design and the implementation of the hardware and the software of this integrated 3D system. A prototype of the integrated 3D system is built to demonstrate the real-time 3D acquisition and 3D display capability of our proposed system.

  1. Limited Feedback for 3D Massive MIMO under 3D-UMa and 3D-UMi Scenarios

    Directory of Open Access Journals (Sweden)

    Zheng Hu

    2015-01-01

    Full Text Available For three-dimensional (3D massive MIMO utilizing the uniform rectangular array (URA in the base station (BS, we propose a limited feedback transmission scheme in which the channel state information (CSI feedback operations for horizontal domain and vertical domain are separate. Compared to the traditional feedback scheme, the scheme can reduce the feedback overhead, code word index search complexity, and storage requirement. Also, based on the zenith of departure angle (ZoD distribution in 3D-Urban Macro Cell (3D-UMa and 3D-Urban Micro Cell (3D-UMi scenarios, we propose the angle quantization codebook for vertical domain, while the codebook of long term evolution-advanced (LTE-Advanced is still adopted in horizontal domain to preserve compatibility with the LTE-Advanced. Based on the angle quantization codebook, the subsampled 3-bit DFT codebook is designed for vertical domain. The system-level simulation results reveal that, to compromise the feedback overhead and system performance, 2-bit codebook for 3D-UMa scenario and 3-bit codebook for 3D-UMi scenario can meet requirements in vertical domain. The feedback period for vertical domain can also be extended appropriately to reduce the feedback overhead.

  2. Anisotropic 3D texture synthesis with application to volume rendering

    DEFF Research Database (Denmark)

    Laursen, Lasse Farnung; Ersbøll, Bjarne Kjær; Bærentzen, Jakob Andreas

    2011-01-01

    We present a novel approach to improving volume rendering by using synthesized textures in combination with a custom transfer function. First, we use existing knowledge to synthesize anisotropic solid textures to fit our volumetric data. As input to the synthesis method, we acquire high quality....... This method is applied to a high quality visualization of a pig carcass, where samples of meat, bone, and fat have been used to produce the anisotropic 3D textures....

  3. 6D Interpretation of 3D Gravity

    Science.gov (United States)

    Herfray, Yannick; Krasnov, Kirill; Scarinci, Carlos

    2017-02-01

    We show that 3D gravity, in its pure connection formulation, admits a natural 6D interpretation. The 3D field equations for the connection are equivalent to 6D Hitchin equations for the Chern–Simons 3-form in the total space of the principal bundle over the 3-dimensional base. Turning this construction around one gets an explanation of why the pure connection formulation of 3D gravity exists. More generally, we interpret 3D gravity as the dimensional reduction of the 6D Hitchin theory. To this end, we show that any \\text{SU}(2) invariant closed 3-form in the total space of the principal \\text{SU}(2) bundle can be parametrised by a connection together with a 2-form field on the base. The dimensional reduction of the 6D Hitchin theory then gives rise to 3D gravity coupled to a topological 2-form field.

  4. 6D Interpretation of 3D Gravity

    CERN Document Server

    Herfray, Yannick; Scarinci, Carlos

    2016-01-01

    We show that 3D gravity, in its pure connection formulation, admits a natural 6D interpretation. The 3D field equations for the connection are equivalent to 6D Hitchin equations for the Chern-Simons 3-form in the total space of the principal bundle over the 3-dimensional base. Turning this construction around one gets an explanation of why the pure connection formulation of 3D gravity exists. More generally, we interpret 3D gravity as the dimensional reduction of the 6D Hitchin theory. To this end, we show that any SU(2) invariant closed 3-form in the total space of the principal SU(2) bundle can be parametrised by a connection together with a 2-form field on the base. The dimensional reduction of the 6D Hitchin theory then gives rise to 3D gravity coupled to a topological 2-form field.

  5. 2D/3D switchable displays

    Science.gov (United States)

    Dekker, T.; de Zwart, S. T.; Willemsen, O. H.; Hiddink, M. G. H.; IJzerman, W. L.

    2006-02-01

    A prerequisite for a wide market acceptance of 3D displays is the ability to switch between 3D and full resolution 2D. In this paper we present a robust and cost effective concept for an auto-stereoscopic switchable 2D/3D display. The display is based on an LCD panel, equipped with switchable LC-filled lenticular lenses. We will discuss 3D image quality, with the focus on display uniformity. We show that slanting the lenticulars in combination with a good lens design can minimize non-uniformities in our 20" 2D/3D monitors. Furthermore, we introduce fractional viewing systems as a very robust concept to further improve uniformity in the case slanting the lenticulars and optimizing the lens design are not sufficient. We will discuss measurements and numerical simulations of the key optical characteristics of this display. Finally, we discuss 2D image quality, the switching characteristics and the residual lens effect.

  6. Density-Based 3D Shape Descriptors

    Directory of Open Access Journals (Sweden)

    Schmitt Francis

    2007-01-01

    Full Text Available We propose a novel probabilistic framework for the extraction of density-based 3D shape descriptors using kernel density estimation. Our descriptors are derived from the probability density functions (pdf of local surface features characterizing the 3D object geometry. Assuming that the shape of the 3D object is represented as a mesh consisting of triangles with arbitrary size and shape, we provide efficient means to approximate the moments of geometric features on a triangle basis. Our framework produces a number of 3D shape descriptors that prove to be quite discriminative in retrieval applications. We test our descriptors and compare them with several other histogram-based methods on two 3D model databases, Princeton Shape Benchmark and Sculpteur, which are fundamentally different in semantic content and mesh quality. Experimental results show that our methodology not only improves the performance of existing descriptors, but also provides a rigorous framework to advance and to test new ones.

  7. Fabrication of 3D Silicon Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; /SINTEF, Oslo; Kenney, C.; Hasi, J.; /SLAC; Da Via, C.; /Manchester U.; Parker, S.I.; /Hawaii U.

    2012-06-06

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  8. Maintaining and troubleshooting your 3D printer

    CERN Document Server

    Bell, Charles

    2014-01-01

    Maintaining and Troubleshooting Your 3D Printer by Charles Bell is your guide to keeping your 3D printer running through preventive maintenance, repair, and diagnosing and solving problems in 3D printing. If you've bought or built a 3D printer such as a MakerBot only to be confounded by jagged edges, corner lift, top layers that aren't solid, or any of a myriad of other problems that plague 3D printer enthusiasts, then here is the book to help you get past all that and recapture the joy of creative fabrication. The book also includes valuable tips for builders and those who want to modify the

  9. 3D Visualization Development of SIUE Campus

    Science.gov (United States)

    Nellutla, Shravya

    Geographic Information Systems (GIS) has progressed from the traditional map-making to the modern technology where the information can be created, edited, managed and analyzed. Like any other models, maps are simplified representations of real world. Hence visualization plays an essential role in the applications of GIS. The use of sophisticated visualization tools and methods, especially three dimensional (3D) modeling, has been rising considerably due to the advancement of technology. There are currently many off-the-shelf technologies available in the market to build 3D GIS models. One of the objectives of this research was to examine the available ArcGIS and its extensions for 3D modeling and visualization and use them to depict a real world scenario. Furthermore, with the advent of the web, a platform for accessing and sharing spatial information on the Internet, it is possible to generate interactive online maps. Integrating Internet capacity with GIS functionality redefines the process of sharing and processing the spatial information. Enabling a 3D map online requires off-the-shelf GIS software, 3D model builders, web server, web applications and client server technologies. Such environments are either complicated or expensive because of the amount of hardware and software involved. Therefore, the second objective of this research was to investigate and develop simpler yet cost-effective 3D modeling approach that uses available ArcGIS suite products and the free 3D computer graphics software for designing 3D world scenes. Both ArcGIS Explorer and ArcGIS Online will be used to demonstrate the way of sharing and distributing 3D geographic information on the Internet. A case study of the development of 3D campus for the Southern Illinois University Edwardsville is demonstrated.

  10. The psychology of the 3D experience

    Science.gov (United States)

    Janicke, Sophie H.; Ellis, Andrew

    2013-03-01

    With 3D televisions expected to reach 50% home saturation as early as 2016, understanding the psychological mechanisms underlying the user response to 3D technology is critical for content providers, educators and academics. Unfortunately, research examining the effects of 3D technology has not kept pace with the technology's rapid adoption, resulting in large-scale use of a technology about which very little is actually known. Recognizing this need for new research, we conducted a series of studies measuring and comparing many of the variables and processes underlying both 2D and 3D media experiences. In our first study, we found narratives within primetime dramas had the power to shift viewer attitudes in both 2D and 3D settings. However, we found no difference in persuasive power between 2D and 3D content. We contend this lack of effect was the result of poor conversion quality and the unique demands of 3D production. In our second study, we found 3D technology significantly increased enjoyment when viewing sports content, yet offered no added enjoyment when viewing a movie trailer. The enhanced enjoyment of the sports content was shown to be the result of heightened emotional arousal and attention in the 3D condition. We believe the lack of effect found for the movie trailer may be genre-related. In our final study, we found 3D technology significantly enhanced enjoyment of two video games from different genres. The added enjoyment was found to be the result of an increased sense of presence.

  11. Noise Gating Solar Images

    Science.gov (United States)

    DeForest, Craig; Seaton, Daniel B.; Darnell, John A.

    2017-08-01

    I present and demonstrate a new, general purpose post-processing technique, "3D noise gating", that can reduce image noise by an order of magnitude or more without effective loss of spatial or temporal resolution in typical solar applications.Nearly all scientific images are, ultimately, limited by noise. Noise can be direct Poisson "shot noise" from photon counting effects, or introduced by other means such as detector read noise. Noise is typically represented as a random variable (perhaps with location- or image-dependent characteristics) that is sampled once per pixel or once per resolution element of an image sequence. Noise limits many aspects of image analysis, including photometry, spatiotemporal resolution, feature identification, morphology extraction, and background modeling and separation.Identifying and separating noise from image signal is difficult. The common practice of blurring in space and/or time works because most image "signal" is concentrated in the low Fourier components of an image, while noise is evenly distributed. Blurring in space and/or time attenuates the high spatial and temporal frequencies, reducing noise at the expense of also attenuating image detail. Noise-gating exploits the same property -- "coherence" -- that we use to identify features in images, to separate image features from noise.Processing image sequences through 3-D noise gating results in spectacular (more than 10x) improvements in signal-to-noise ratio, while not blurring bright, resolved features in either space or time. This improves most types of image analysis, including feature identification, time sequence extraction, absolute and relative photometry (including differential emission measure analysis), feature tracking, computer vision, correlation tracking, background modeling, cross-scale analysis, visual display/presentation, and image compression.I will introduce noise gating, describe the method, and show examples from several instruments (including SDO

  12. SWIPT in 3-D Bipolar Ad Hoc Networks with Sectorized Antennas

    OpenAIRE

    Krikidis, Ioannis

    2016-01-01

    In this letter, we study the simultaneous wireless information and power transfer (SWIPT) concept in 3-D bipolar ad hoc networks with spatial randomness. Due to three spatial dimensions of the network, we introduce a 3-D antenna sectorization that exploits the horizontal and the vertical spatial separation. The impact of 3-D antenna sectorization on SWIPT performance is evaluated for the power-splitting technique by using stochastic geometry tools. Theoretical and numerical results show that ...

  13. Neural networks in 3D medical scan visualization

    CERN Document Server

    Zukic, Dzenan; Avdagic, Zikrija; Domik, Gitta

    2008-01-01

    For medical volume visualization, one of the most important tasks is to reveal clinically relevant details from the 3D scan (CT, MRI ...), e.g. the coronary arteries, without obscuring them with less significant parts. These volume datasets contain different materials which are difficult to extract and visualize with 1D transfer functions based solely on the attenuation coefficient. Multi-dimensional transfer functions allow a much more precise classification of data which makes it easier to separate different surfaces from each other. Unfortunately, setting up multi-dimensional transfer functions can become a fairly complex task, generally accomplished by trial and error. This paper explains neural networks, and then presents an efficient way to speed up visualization process by semi-automatic transfer function generation. We describe how to use neural networks to detect distinctive features shown in the 2D histogram of the volume data and how to use this information for data classification.

  14. Digital relief generation from 3D models

    Science.gov (United States)

    Wang, Meili; Sun, Yu; Zhang, Hongming; Qian, Kun; Chang, Jian; He, Dongjian

    2016-09-01

    It is difficult to extend image-based relief generation to high-relief generation, as the images contain insufficient height information. To generate reliefs from three-dimensional (3D) models, it is necessary to extract the height fields from the model, but this can only generate bas-reliefs. To overcome this problem, an efficient method is proposed to generate bas-reliefs and high-reliefs directly from 3D meshes. To produce relief features that are visually appropriate, the 3D meshes are first scaled. 3D unsharp masking is used to enhance the visual features in the 3D mesh, and average smoothing and Laplacian smoothing are implemented to achieve better smoothing results. A nonlinear variable scaling scheme is then employed to generate the final bas-reliefs and high-reliefs. Using the proposed method, relief models can be generated from arbitrary viewing positions with different gestures and combinations of multiple 3D models. The generated relief models can be printed by 3D printers. The proposed method provides a means of generating both high-reliefs and bas-reliefs in an efficient and effective way under the appropriate scaling factors.

  15. 3D imaging in forensic odontology.

    Science.gov (United States)

    Evans, Sam; Jones, Carl; Plassmann, Peter

    2010-06-16

    This paper describes the investigation of a new 3D capture method for acquiring and subsequent forensic analysis of bite mark injuries on human skin. When documenting bite marks with standard 2D cameras errors in photographic technique can occur if best practice is not followed. Subsequent forensic analysis of the mark is problematic when a 3D structure is recorded into a 2D space. Although strict guidelines (BAFO) exist, these are time-consuming to follow and, due to their complexity, may produce errors. A 3D image capture and processing system might avoid the problems resulting from the 2D reduction process, simplifying the guidelines and reducing errors. Proposed Solution: a series of experiments are described in this paper to demonstrate that the potential of a 3D system might produce suitable results. The experiments tested precision and accuracy of the traditional 2D and 3D methods. A 3D image capture device minimises the amount of angular distortion, therefore such a system has the potential to create more robust forensic evidence for use in courts. A first set of experiments tested and demonstrated which method of forensic analysis creates the least amount of intra-operator error. A second set tested and demonstrated which method of image capture creates the least amount of inter-operator error and visual distortion. In a third set the effects of angular distortion on 2D and 3D methods of image capture were evaluated.

  16. Medical 3D Printing for the Radiologist.

    Science.gov (United States)

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A; Cai, Tianrun; Kumamaru, Kanako K; George, Elizabeth; Wake, Nicole; Caterson, Edward J; Pomahac, Bohdan; Ho, Vincent B; Grant, Gerald T; Rybicki, Frank J

    2015-01-01

    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article. (©)RSNA, 2015.

  17. 3D object-oriented image analysis in 3D geophysical modelling

    DEFF Research Database (Denmark)

    Fadel, I.; van der Meijde, M.; Kerle, N.

    2015-01-01

    Non-uniqueness of satellite gravity interpretation has traditionally been reduced by using a priori information from seismic tomography models. This reduction in the non-uniqueness has been based on velocity-density conversion formulas or user interpretation of the 3D subsurface structures (objects......) based on the seismic tomography models and then forward modelling these objects. However, this form of object-based approach has been done without a standardized methodology on how to extract the subsurface structures from the 3D models. In this research, a 3D object-oriented image analysis (3D OOA......) approach was implemented to extract the 3D subsurface structures from geophysical data. The approach was applied on a 3D shear wave seismic tomography model of the central part of the East African Rift System. Subsequently, the extracted 3D objects from the tomography model were reconstructed in the 3D...

  18. The reactor dynamics code DYN3D

    Energy Technology Data Exchange (ETDEWEB)

    Kliem, Soeren; Bilodid, Yuri; Fridman, Emil; Baier, Silvio; Grahn, Alexander; Gommlich, Andre; Nikitin, Evgeny; Rohde, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany)

    2016-05-15

    The article provides an overview on the code DYN3D which is a three-dimensional core model for steady-state, dynamic and depletion calculations in reactor cores with quadratic or hexagonal fuel assembly geometry being developed by the Helmholtz-Zentrum Dresden-Rossendorf for more than 20 years. The current paper gives an overview on the basic DYN3D models and the available code couplings. The verification and validation status is shortly outlined. The paper concludes with the current developments of the DYN3D code. For more detailed information the reader is referred to the publications cited in the corresponding chapters.

  19. Automatic balancing of 3D models

    DEFF Research Database (Denmark)

    Christiansen, Asger Nyman; Schmidt, Ryan; Bærentzen, Jakob Andreas

    2014-01-01

    3D printing technologies allow for more diverse shapes than are possible with molds and the cost of making just one single object is negligible compared to traditional production methods. However, not all shapes are suitable for 3D print. One of the remaining costs is therefore human time spent......, in these cases, we will apply a rotation of the object which only deforms the shape a little near the base. No user input is required but it is possible to specify manufacturing constraints related to specific 3D print technologies. Several models have successfully been balanced and printed using both polyjet...

  20. Participation and 3D Visualization Tools

    DEFF Research Database (Denmark)

    Mullins, Michael; Jensen, Mikkel Holm; Henriksen, Sune

    2004-01-01

    With a departure point in a workshop held at the VR Media Lab at Aalborg University , this paper deals with aspects of public participation and the use of 3D visualisation tools. The workshop grew from a desire to involve a broad collaboration between the many actors in the city through using new...... perceptions of architectural representation in urban design where 3D visualisation techniques are used. It is the authors? general finding that, while 3D visualisation media have the potential to increase understanding of virtual space for the lay public, as well as for professionals, the lay public require...