WorldWideScience

Sample records for 3d negative index

  1. A Soft 3D Acoustic Metafluid with Dual-Band Negative Refractive Index.

    Raffy, Simon; Mascaro, Benoit; Brunet, Thomas; Mondain-Monval, Olivier; Leng, Jacques

    2016-03-02

    Spherical silica xerogels are efficient acoustic Mie resonators. When these sub-wavelength inclusions are dispersed in a matrix, the final metafluid may display a negative acoustic refractive index upon a set of precise constraints concerning material properties, concentration, size, and dispersity of the inclusions. Because xerogels may sustain both pressure and shear waves, several bands with negative index can be tailored.

  2. Metallo-dielectric core-shell nanospheres as building blocks for optical 3D isotropic negative-index metamaterials

    Paniagua-Domínguez, R; Marqués, R

    2011-01-01

    We propose a fully 3D, isotropic metamaterial with strong electric and magnetic response in the optical regime, based on metal-dielectric core-shell nanospheres. The magnetic response stems from the lowest, magnetic-dipole resonance of the dielectric nanoshell with high refractive index. The magnetic resonance can be tuned to coincide with the plasmon resonance of the metal core, responsible for the electric response. Since the response does not stem from coupling between structures, no particular periodic arrangement needs to be imposed.

  3. Factorization of the 3d superconformal index

    Hwang, Chiung; Park, Jaemo

    2012-01-01

    We prove that 3d superconformal index for general $\\mathcal N=2$ U(N) gauge group with fundamentals and anti-fundmentals with/without Chern-Simons terms is factorized into vortex and anti-vortex partition function. We show that for simple cases, 3d vortex partition function coincides with a suitable topological open string partition function. We provide much more elegant derivation at the index level for $\\mathcal N=2$ Seiberg-like dualities of unitary gauge groups with fundamantal matters and $\\mathcal N=4$ mirror symmetry

  4. Factorising the 3D Topologically Twisted Index

    Cabo-Bizet, Alejandro

    2016-01-01

    In this work, path integral representations of the 3D topologically twisted index were studied. First, the index can be "factorised" into a couple of "blocks". The "blocks" being the partition functions of a type A semi-topological twisting of 3D N = 2 SYM placed on $\\mathbb{S}_2\\times (0, \\pi)$ and $\\mathbb{S}_2 \\times (\\pi, 2 \\pi)$ respectively. Second, as the path integral of the aforementioned theory over $\\mathbb{S}_2$ times $\\mathbb{S}_1$ with a point excluded. In this way we recover the sum over fluxes from integration over the real path and without sacrificing positive definiteness of the bosonic part of the localising action. We also reproduce the integration over the complex contour by using the localising term with positive definite bosonic part.

  5. Double Negativity in 3D Space Coiling Metamaterials

    Maurya, Santosh K.; Pandey, Abhishek; Shukla, Shobha; Saxena, Sumit

    2016-09-01

    Metamaterials displaying negative refractive index has remarkable potential to facilitate the manipulation of incident waves for wide variety of applications such as cloaking, superlensing and the like. Space-coiling approach is a recently explored technique to achieve extreme properties. The space coiling phenomena cause less energy absorption as compared to local resonating phenomena for obtaining extreme parameters. Here we show extreme properties in doubly negative 3D space coiling acoustic metamaterials. Frequency dispersive spectrum of extreme constitutive parameters has been calculated for 2D maze and 3D space coiling labyrinthine structure. This is in good agreement to the calculated acoustic band dispersion.

  6. Double Negativity in 3D Space Coiling Metamaterials.

    Maurya, Santosh K; Pandey, Abhishek; Shukla, Shobha; Saxena, Sumit

    2016-09-21

    Metamaterials displaying negative refractive index has remarkable potential to facilitate the manipulation of incident waves for wide variety of applications such as cloaking, superlensing and the like. Space-coiling approach is a recently explored technique to achieve extreme properties. The space coiling phenomena cause less energy absorption as compared to local resonating phenomena for obtaining extreme parameters. Here we show extreme properties in doubly negative 3D space coiling acoustic metamaterials. Frequency dispersive spectrum of extreme constitutive parameters has been calculated for 2D maze and 3D space coiling labyrinthine structure. This is in good agreement to the calculated acoustic band dispersion.

  7. The 3D-index and normal surfaces

    Garoufalidis, Stavros; Hoffman, Neil; Rubinstein, Hyam

    2016-01-01

    Dimofte, Gaiotto and Gukov introduced a powerful invariant, the 3D-index, associated to a suitable ideal triangulation of a 3-manifold with torus boundary components. The 3D-index is a collection of formal power series in $q^{1/2}$ with integer coefficients. Our goal is to explain how the 3D-index is a generating series of normal surfaces associated to the ideal triangulation. This shows a connection of the 3D-index with classical normal surface theory, and fulfills a dream of constructing topological invariants of 3-manifolds using normal surfaces.

  8. 3D Model Retrieval Based on Semantic and Shape Indexes

    Kassimi, My Abdellah

    2011-01-01

    The size of 3D models used on the web or stored in databases is becoming increasingly high. Then, an efficient method that allows users to find similar 3D objects for a given 3D model query has become necessary. Keywords and the geometry of a 3D model cannot meet the needs of users' retrieval because they do not include the semantic information. In this paper, a new method has been proposed to 3D models retrieval using semantic concepts combined with shape indexes. To obtain these concepts, we use the machine learning methods to label 3D models by k-means algorithm in measures and shape indexes space. Moreover, semantic concepts have been organized and represented by ontology language OWL and spatial relationships are used to disambiguate among models of similar appearance. The SPARQL query language has been used to question the information displayed in this language and to compute the similarity between two 3D models. We interpret our results using the Princeton Shape Benchmark Database and the results show ...

  9. Structural Indexing for 3D Solid Digital Library

    2001-01-01

    In a very large digital library that support computer-aidedcollabora t ive design, an indexing process is crucial whenever the retrieval process has to select among many possible designs. In this paper, we address the problem of re trieving important design and engineering information by structural indexing. A design is represented by a model dependency graph, therefor, the indexing proble m is to determine whether a graph is present or absent in a database of model de pendency graphs. we present a novel graph indexing method using polynomial chara cterization of a model dependency graph and on hashing. Such an approach is able to create an high efficient 3D solid digital library for retrieving and extract ing solid geometric model and engineering information.

  10. Negative refractive index metamaterials

    Willie J. Padilla

    2006-07-01

    Full Text Available Engineered materials composed of designed inclusions can exhibit exotic and unique electromagnetic properties not inherent in the individual constituent components. These artificially structured composites, known as metamaterials, have the potential to fill critical voids in the electromagnetic spectrum where material response is limited and enable the construction of novel devices. Recently, metamaterials that display negative refractive index – a property not found in any known naturally occurring material – have drawn significant scientific interest, underscoring the remarkable potential of metamaterials to facilitate new developments in electromagnetism.

  11. 3D refractive index measurements of special optical fibers

    Yan, Cheng; Huang, Su-Juan; Miao, Zhuang; Chang, Zheng; Zeng, Jun-Zhang; Wang, Ting-Yun

    2016-09-01

    A digital holographic microscopic chromatography-based approach with considerably improved accuracy, simplified configuration and performance stability is proposed to measure three dimensional refractive index of special optical fibers. Based on the approach, a measurement system is established incorporating a modified Mach-Zehnder interferometer and lab-developed supporting software for data processing. In the system, a phase projection distribution of an optical fiber is utilized to obtain an optimal digital hologram recorded by a CCD, and then an angular spectrum theory-based algorithm is adopted to extract the phase distribution information of an object wave. The rotation of the optic fiber enables the experimental measurements of multi-angle phase information. Based on the filtered back projection algorithm, a 3D refraction index of the optical fiber is thus obtained at high accuracy. To evaluate the proposed approach, both PANDA fibers and special elliptical optical fiber are considered in the system. The results measured in PANDA fibers agree well with those measured using S14 Refractive Index Profiler, which is, however, not suitable for measuring the property of a special elliptical fiber.

  12. View subspaces for indexing and retrieval of 3D models

    Dutagaci, Helin; Sankur, Bulent; Yemez, Yücel

    2011-01-01

    View-based indexing schemes for 3D object retrieval are gaining popularity since they provide good retrieval results. These schemes are coherent with the theory that humans recognize objects based on their 2D appearances. The viewbased techniques also allow users to search with various queries such as binary images, range images and even 2D sketches. The previous view-based techniques use classical 2D shape descriptors such as Fourier invariants, Zernike moments, Scale Invariant Feature Transform-based local features and 2D Digital Fourier Transform coefficients. These methods describe each object independent of others. In this work, we explore data driven subspace models, such as Principal Component Analysis, Independent Component Analysis and Nonnegative Matrix Factorization to describe the shape information of the views. We treat the depth images obtained from various points of the view sphere as 2D intensity images and train a subspace to extract the inherent structure of the views within a database. We a...

  13. Negative refractive index with negative absorption

    Wuestner, Sebastian; Tsakmakidis, Kosmas L; Hamm, Joachim M; Hess, Ortwin

    2010-01-01

    On the basis of a full-vectorial three-dimensional Maxwell-Bloch approach we investigate the possibility of using gain to overcome losses in a negative refractive index fishnet metamaterial. We show that appropriate placing of optically pumped laser dyes (gain) into the metamaterial structure results in a frequency band where the non-bianisotropic metamaterial becomes amplifying. In that region both the real and the imaginary part of the effective refractive index become simultaneously negative and the figure-of-merit diverges at two distinct frequency points.

  14. 3D Shape Indexing and Retrieval Using Characteristics level images

    Abdelghni Lakehal

    2012-05-01

    Full Text Available In this paper, we propose an improved version of the descriptor that we proposed before. The descriptor is based on a set of binary images extracted from the 3D model called level images noted LI. The set LI is often bulky, why we introduced the X-means technique to reduce its size instead of K-means used in the old version. A 2D binary image descriptor was introduced to extract the vectors descriptors of the 3D model. For a comparative study of two versions of the descriptor, we used the National Taiwan University (NTU database of 3D object.

  15. Contact printed masks for 3D microfabrication in negative resists

    Häfliger, Daniel; Boisen, Anja

    2005-01-01

    We present a process based on contact printed shadow masks for three dimensional microfabrication of soft and sensitive overhanging membranes in SU-8. A metal mask is transferred onto unexposed SU-8 from an elastomer stamp made of polydimethylsiloxane. This mask is subsequently embedded into the ......We present a process based on contact printed shadow masks for three dimensional microfabrication of soft and sensitive overhanging membranes in SU-8. A metal mask is transferred onto unexposed SU-8 from an elastomer stamp made of polydimethylsiloxane. This mask is subsequently embedded...... into the negative resist to protect buried material from UV-exposure. Unlike direct evaporation-deposition of a mask onto the SU-8, printing avoids high stress and radiation, thus preventing resist wrinkling and prepolymerization. We demonstrate effective monolithic fabrication of soft, 4-μm thick and 100-μm long...

  16. Three-dimensional optical metamaterial with a negative refractive index.

    Valentine, Jason; Zhang, Shuang; Zentgraf, Thomas; Ulin-Avila, Erick; Genov, Dentcho A; Bartal, Guy; Zhang, Xiang

    2008-09-18

    Metamaterials are artificially engineered structures that have properties, such as a negative refractive index, not attainable with naturally occurring materials. Negative-index metamaterials (NIMs) were first demonstrated for microwave frequencies, but it has been challenging to design NIMs for optical frequencies and they have so far been limited to optically thin samples because of significant fabrication challenges and strong energy dissipation in metals. Such thin structures are analogous to a monolayer of atoms, making it difficult to assign bulk properties such as the index of refraction. Negative refraction of surface plasmons was recently demonstrated but was confined to a two-dimensional waveguide. Three-dimensional (3D) optical metamaterials have come into focus recently, including the realization of negative refraction by using layered semiconductor metamaterials and a 3D magnetic metamaterial in the infrared frequencies; however, neither of these had a negative index of refraction. Here we report a 3D optical metamaterial having negative refractive index with a very high figure of merit of 3.5 (that is, low loss). This metamaterial is made of cascaded 'fishnet' structures, with a negative index existing over a broad spectral range. Moreover, it can readily be probed from free space, making it functional for optical devices. We construct a prism made of this optical NIM to demonstrate negative refractive index at optical frequencies, resulting unambiguously from the negative phase evolution of the wave propagating inside the metamaterial. Bulk optical metamaterials open up prospects for studies of 3D optical effects and applications associated with NIMs and zero-index materials such as reversed Doppler effect, superlenses, optical tunnelling devices, compact resonators and highly directional sources.

  17. Negative refractive index in chiral metamaterials.

    Zhang, Shuang; Park, Yong-Shik; Li, Jensen; Lu, Xinchao; Zhang, Weili; Zhang, Xiang

    2009-01-16

    We experimentally demonstrate a chiral metamaterial exhibiting negative refractive index at terahertz frequencies. The presence of strong chirality in the terahertz metamaterial lifts the degeneracy for the two circularly polarized waves and allows for the achievement of negative refractive index without requiring simultaneously negative permittivity and negative permeability. The realization of terahertz chiral negative index metamaterials offers opportunities for investigation of their novel electromagnetic properties, such as negative refraction and negative reflection, as well as important terahertz device applications.

  18. Tomographic active optical trapping of arbitrarily shaped objects by exploiting 3-D refractive index maps

    Kim, Kyoohyun

    2016-01-01

    Optical trapping can be used to manipulate the three-dimensional (3-D) motion of spherical particles based on the simple prediction of optical forces and the responding motion of samples. However, controlling the 3-D behaviour of non-spherical particles with arbitrary orientations is extremely challenging, due to experimental difficulties and the extensive computations. Here, we achieved the real-time optical control of arbitrarily shaped particles by combining the wavefront shaping of a trapping beam and measurements of the 3-D refractive index (RI) distribution of samples. Engineering the 3-D light field distribution of a trapping beam based on the measured 3-D RI map of samples generates a light mould, which can be used to manipulate colloidal and biological samples which have arbitrary orientations and/or shapes. The present method provides stable control of the orientation and assembly of arbitrarily shaped particles without knowing a priori information about the sample geometry. The proposed method can ...

  19. Step-index optical fibre drawn from 3D printed preforms

    CooK, Kevin; Canning, John; Chartier, Loic; Athanaze, Tristan; Hossain, Md Arafat; Han, Chunyang; Comatti, Jade-Edouard; Luo, Yanhua; Peng, Gang-Ding

    2016-01-01

    Optical fibre is drawn from a dual-head 3D printer fabricated preform made of two optically transparent plastics with a high index core (NA ~ 0.25, V > 60). The asymmetry observed in the fibre arises from asymmetry in the 3D printing process. The highly multi-mode optical fibre has losses measured by cut-back as low as {\\alpha} ~ 0.44 dB/cm in the near IR.

  20. Label-free characterization of white blood cells by measuring 3D refractive index maps

    Yoon, Jonghee; Park, HyunJoo; Choi, Chulhee; Jang, Seongsoo; Park, YongKeun

    2015-01-01

    The characterization of white blood cells (WBCs) is crucial for blood analyses and disease diagnoses. However, current standard techniques rely on cell labeling, a process which imposes significant limitations. Here we present three-dimensional (3D) optical measurements and the label-free characterization of mouse WBCs using optical diffraction tomography. 3D refractive index (RI) tomograms of individual WBCs are constructed from multiple two-dimensional quantitative phase images of samples illuminated at various angles of incidence. Measurements of the 3D RI tomogram of WBCs enable the separation of heterogeneous populations of WBCs using quantitative morphological and biochemical information. Time-lapse tomographic measurements also provide the 3D trajectory of micrometer-sized beads ingested by WBCs. These results demonstrate that optical diffraction tomography can be a useful and versatile tool for the study of WBCs.

  1. Energy flow in negative index materials

    Lorenzo Bolla; Michele Midrio; Carlo G. Someda

    2004-01-01

    From Maxwell's equations, we compute the speed and the direction of propagation of active power refractedfrom air into a negative index material. We prove, both analytically and numerically that the power mayrefract positively even if phase fronts refract negatively. Considerations on the usage of ray optics inproblems involving negative index materials are drawn.

  2. Rapid object indexing using locality sensitive hashing and joint 3D-signature space estimation.

    Matei, Bogdan; Shan, Ying; Sawhney, Harpreet S; Tan, Yi; Kumar, Rakesh; Huber, Daniel; Hebert, Martial

    2006-07-01

    We propose a new method for rapid 3D object indexing that combines feature-based methods with coarse alignment-based matching techniques. Our approach achieves a sublinear complexity on the number of models, maintaining at the same time a high degree of performance for real 3D sensed data that is acquired in largely uncontrolled settings. The key component of our method is to first index surface descriptors computed at salient locations from the scene into the whole model database using the Locality Sensitive Hashing (LSH), a probabilistic approximate nearest neighbor method. Progressively complex geometric constraints are subsequently enforced to further prune the initial candidates and eliminate false correspondences due to inaccuracies in the surface descriptors and the errors of the LSH algorithm. The indexed models are selected based on the MAP rule using posterior probability of the models estimated in the joint 3D-signature space. Experiments with real 3D data employing a large database of vehicles, most of them very similar in shape, containing 1,000,000 features from more than 365 models demonstrate a high degree of performance in the presence of occlusion and obscuration, unmodeled vehicle interiors and part articulations, with an average processing time between 50 and 100 seconds per query.

  3. A NEW TECHNIQUE FOR THE EXTRACTION OF CHARACTERISTIC VIEWS FOR 2D/3D INDEXATION

    Mohamed El far,

    2010-07-01

    Full Text Available The tridimensional models are increasingly used in applications that require visualizing realistic objects (CAD/CAO, medical simulations, games, virtual reality, etc.. Therefore, the management of collecting 3D data of big size is becoming a significant field.For example, the indexation of these data allows a designer to easily retrieve the data that are visually and semantically similar to a featured query object. To that effect, two main approaches exist: searching by using a 3D model directly and searching by using a 2D view of the 3D query object. In our case/study, we are interested by this last approach and we emphasize on the extraction of haracteristic views of 3D models using the Datamining Algorithms “Apriori and extraction of association rules” from a description ofcharacteristic views based on the moments of Zernike. Moreover, the featured system relies on a Bayesian probabilistic approach. We present the obtained results in a set of 120 3D models of the rinceton benchmark. Then we compare them to results obtained using classical methods

  4. Hyperbolically Patterned 3D Graphene Metamaterial with Negative Poisson's Ratio and Superelasticity.

    Zhang, Qiangqiang; Xu, Xiang; Lin, Dong; Chen, Wenli; Xiong, Guoping; Yu, Yikang; Fisher, Timothy S; Li, Hui

    2016-03-16

    A hyperbolically patterned 3D graphene metamaterial (GM) with negative Poisson's ratio and superelasticity is highlighted. It is synthesized by a modified hydrothermal approach and subsequent oriented freeze-casting strategy. GM presents a tunable Poisson's ratio by adjusting the structural porosity, macroscopic aspect ratio (L/D), and freeze-casting conditions. Such a GM suggests promising applications as soft actuators, sensors, robust shock absorbers, and environmental remediation.

  5. Matching-index-of-refraction of transparent 3D printing models for flow visualization

    Song, Min Seop; Choi, Hae Yoon; Seong, Jee Hyun; Kim, Eung Soo, E-mail: kes7741@snu.ac.kr

    2015-04-01

    Matching-index-of-refraction (MIR) has been used for obtaining high-quality flow visualization data for the fundamental nuclear thermal-hydraulic researches. By this method, distortions of the optical measurements such as PIV and LDV have been successfully minimized using various combinations of the model materials and the working fluids. This study investigated a novel 3D printing technology for manufacturing models and an oil-based working fluid for matching the refractive indices. Transparent test samples were fabricated by various rapid prototyping methods including selective layer sintering (SLS), stereolithography (SLA), and vacuum casting. As a result, the SLA direct 3D printing was evaluated to be the most suitable for flow visualization considering manufacturability, transparency, and refractive index. In order to match the refractive indices of the 3D printing models, a working fluid was developed based on the mixture of herb essential oils, which exhibit high refractive index, high transparency, high density, low viscosity, low toxicity, and low price. The refractive index and viscosity of the working fluid range 1.453–1.555 and 2.37–6.94 cP, respectively. In order to validate the MIR method, a simple test using a twisted prism made by the SLA technique and the oil mixture (anise and light mineral oil) was conducted. The experimental results show that the MIR can be successfully achieved at the refractive index of 1.51, and the proposed MIR method is expected to be widely used for flow visualization studies and CFD validation for the nuclear thermal-hydraulic researches.

  6. Study of negative hydrogen ion beam optics using the 3D3V PIC model

    Miyamoto, K., E-mail: kmiyamot@naruto-u.ac.jp [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima, 772-8502 (Japan); Nishioka, S.; Goto, I.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522 (Japan); Hanada, M.; Kojima, A. [Japan Atomic Energy Agency, 801-1,Mukoyama, Naka, 319-0913 (Japan)

    2015-04-08

    The mechanism of negative ion extraction under real conditions with the complex magnetic field is studied by using the 3D PIC simulation code. The extraction region of the negative ion source for the negative ion based neutral beam injection system in fusion reactors is modelled. It is shown that the E x B drift of electrons is caused by the magnetic filter and the electron suppression magnetic field, and the resultant asymmetry of the plasma meniscus. Furthermore, it is indicated that that the asymmetry of the plasma meniscus results in the asymmetry of negative ion beam profile including the beam halo. It could be demonstrated theoretically that the E x B drift is not significantly weakened by the elastic collisions of the electrons with neutral particles.

  7. Negative Index of Refraction in Optical Metamaterials

    Shalaev, V M; Chettiar, U; Yuan, H K; Sarychev, A K; Drachev, V P; Kildishev, A V; Shalaev, Vladimir M.; Cai, Wenshan; Chettiar, Uday; Yuan, Hsiao-Kuan; Sarychev, Andrey K.; Drachev, Vladimir P.; Kildishev, Alexander V.

    2005-01-01

    An array of pairs of parallel gold nanorods is shown to have a negative refractive index in the optical range, close to a wavelength of 1 micron. Such behavior results from the plasmon resonance in the pairs of nanorods for both the electric and magnetic components of light. The metal rods act as inductive elements whereas the dielectric gaps perform as capacitive elements, forming an optical LC-circuit. Our experiments and simulations demonstrate the resonant behavior for an index of refraction. Above the resonance, the refractive index becomes negative. Paired metal nanorods open new opportunities for developing negative-refraction materials in optics.

  8. Prediction of positive and negative elastic dilatancy in 2D and 3D liquid foams

    Rognon, P.; Molino, F.; Gay, C.

    2010-05-01

    Liquid foams have been observed to behave like immersed granular materials in at least one respect: deformation tends to raise their liquid contents, a phenomenon called dilatancy. While experimental observations evidenced the effect of a continuous deformation rate (dynamic dilatancy), we present a geometrical interpretation of both main contributions to elastic dilatancy (during elastic deformation) in foams squeezed between two solid plates (2D GG foams), which contain pseudo Plateau borders along the plates, and in 3D foams. The positive contribution is related to the increase in total Plateau border length while the negative contribution reflects the increase in total surface area of the foam. In 2D, we show that the negative dilatancy predicted by Weaire and Hutzler (Philos. Mag., 83 (2003) 2747) at very low liquid fractions is specific to ideal 2D foams (with no glass plates). In 3D, we predict that dilatancy should be positive at low liquid fractions (below 1%) and negative at moderate liquid fractions (above 4%).

  9. Negative refractive index in artificial metamaterials.

    Grigorenko, A N

    2006-08-15

    We discuss optical constants in artificial metamaterials showing negative magnetic permeability and electric permittivity and suggest a simple formula for the refractive index of a general optical medium. Using the effective-field theory, we calculate the effective permeability and the refractive index of nanofabricated media composed of pairs of identical gold nanopillars with magnetic response in the visible spectrum.

  10. Recovering Old Stereoscopic Negatives and Producing Digital 3d Models of Former Appearances of Historic Buildings

    Rodríguez Miranda, Á.; Valle Melón, J. M.

    2017-02-01

    Three-dimensional models with photographic textures have become a usual product for the study and dissemination of elements of heritage. The interest for cultural heritage also includes evolution along time; therefore, apart from the 3D models of the current state, it is interesting to be able to generate models representing how they were in the past. To that end, it is necessary to resort to archive information corresponding to the moments that we want to visualize. This text analyses the possibilities of generating 3D models of surfaces with photographic textures from old collections of analog negatives coming from works of terrestrial stereoscopic photogrammetry of historic buildings. The case studies presented refer to the geometric documentation of a small hermitage (done in 1996) and two sections of a wall (year 2000). The procedure starts with the digitization of the film negatives and the processing of the images generated, after which a combination of different methods for 3D reconstruction and texture wrapping are applied: techniques working simultaneously with several images (such as the algorithms of Structure from Motion - SfM) and single image techniques (such as the reconstruction based on vanishing points). Then, the features of the obtained models are described according to the geometric accuracy, completeness and aesthetic quality. In this way, it is possible to establish the real applicability of the models in order to be useful for the aforementioned historical studies and dissemination purposes. The text also wants to draw attention to the importance of preserving the documentary heritage available in the collections of negatives in archival custody and to the increasing difficulty of using them due to: (1) problems of access and physical conservation, (2) obsolescence of the equipment for scanning and stereoplotting and (3) the fact that the software for processing digitized photographs is discontinued.

  11. Application of 3-D Urbanization Index to Assess Impact of Urbanization on Air Temperature

    Wu, Chih-Da; Lung, Shih-Chun Candice

    2016-04-01

    The lack of appropriate methodologies and indicators to quantify three-dimensional (3-D) building constructions poses challenges to authorities and urban planners when formulating polices to reduce health risks due to heat stress. This study evaluated the applicability of an innovative three-dimensional Urbanization Index (3DUI), based on remote sensing database, with a 5 m spatial resolution of 3-D man-made constructions to representing intra-urban variability of air temperature by assessing correlation of 3DUI with air temperature from a 3-D perspective. The results showed robust high correlation coefficients, ranging from 0.83 to 0.85, obtained within the 1,000 m circular buffer around weather stations regardless of season, year, or spatial location. Our findings demonstrated not only the strength of 3DUI in representing intra-urban air-temperature variability, but also its great potential for heat stress assessment within cities. In view of the maximum correlation between building volumes within the 1,000 m circular buffer and ambient air temperature, urban planning should consider setting ceilings for man-made construction volume in each 2 × 2 km2 residential community for thermal environment regulation, especially in Asian metropolis with high population density in city centers.

  12. Microwave gain medium with negative refractive index.

    Ye, Dexin; Chang, Kihun; Ran, Lixin; Xin, Hao

    2014-12-19

    Artificial effective media are attractive because of the fantastic applications they may enable, such as super lensing and electromagnetic invisibility. However, the inevitable loss due to their strongly dispersive nature is one of the fundamental challenges preventing such applications from becoming a reality. In this study, we demonstrate an effective gain medium based on negative resistance, to overcompensate the loss of a conventional passive metamaterial, meanwhile keeping its original negative-index property. Energy conservation-based theory, full-wave simulation and experimental measurement show that a fabricated sample consisting of conventional sub-wavelength building blocks with embedded microwave tunnel diodes exhibits a band-limited Lorentzian dispersion simultaneously with a negative refractive index and a net gain. Our work provides experimental evidence to the assertion that a stable net gain in negative-index gain medium is achievable, proposing a potential solution for the critical challenge current metamateiral technology faces in practical applications.

  13. Microwave gain medium with negative refractive index

    Ye, Dexin; Chang, Kihun; Ran, Lixin; Xin, Hao

    2014-12-01

    Artificial effective media are attractive because of the fantastic applications they may enable, such as super lensing and electromagnetic invisibility. However, the inevitable loss due to their strongly dispersive nature is one of the fundamental challenges preventing such applications from becoming a reality. In this study, we demonstrate an effective gain medium based on negative resistance, to overcompensate the loss of a conventional passive metamaterial, meanwhile keeping its original negative-index property. Energy conservation-based theory, full-wave simulation and experimental measurement show that a fabricated sample consisting of conventional sub-wavelength building blocks with embedded microwave tunnel diodes exhibits a band-limited Lorentzian dispersion simultaneously with a negative refractive index and a net gain. Our work provides experimental evidence to the assertion that a stable net gain in negative-index gain medium is achievable, proposing a potential solution for the critical challenge current metamateiral technology faces in practical applications.

  14. Visible calculation of mining index based on stope 3D surveying and block modeling

    Liu Xiaoming; Luo Zhouquan; Yang Biao; Lu Guang; Cao Shengxiang; Jiang Xinjian

    2012-01-01

    Aimed at the CMS laser scanning theory and characteristic,a combined actual situation of stope N4-5 of Fankou Lead-Zinc Mine and complementary monitoring of the stope were carried out by carefully choosing two measuring points.The cavity 3D visible model was created by large-scale mining industry software Surpac after changing the measured data.The stope mine design model,bottom structural model and backfill model of the south and north sides of the stope N4-5 were established according to the stope design data.On this basis,the stope block model was established,and then block attribute was estimated.The amount the ore remains,mullock,backfill and total mined ore were calculated through the solid model restrains.Finally,the stope mining dilution rate and loss rate reached 8.2%and 1.47%,respectively.The practice indicates that the mining index visible calculation method based on cavity 3D monitoring and stope block modeling can make up the deficiency of adopting the solid model to directly carry out the Boolean operation.The stope mining indexes obtained by this method are accurate and reliable,and can be used to guide the actual production management and estimate the mining quality.

  15. Uniform Refraction in Negative Refractive Index Materials

    Gutierrez, Cristian E

    2015-01-01

    We study the problem of constructing an optical surface separating two homogeneous, isotropic media, one of which has a negative refractive index. In doing so, we develop a vector form of Snell's law, which is used to study surfaces possessing a certain uniform refraction property, both in the near and far field cases. In the near field problem, unlike the case when both materials have positive refractive index, we show that the resulting surfaces can be neither convex nor concave.

  16. Scalability of the muscular action in a parametric 3D model of the index finger.

    Sancho-Bru, Joaquín L; Vergara, Margarita; Rodríguez-Cervantes, Pablo-Jesús; Giurintano, David J; Pérez-González, Antonio

    2008-01-01

    A method for scaling the muscle action is proposed and used to achieve a 3D inverse dynamic model of the human finger with all its components scalable. This method is based on scaling the physiological cross-sectional area (PCSA) in a Hill muscle model. Different anthropometric parameters and maximal grip force data have been measured and their correlations have been analyzed and used for scaling the PCSA of each muscle. A linear relationship between the normalized PCSA and the product of the length and breadth of the hand has been finally used for scaling, with a slope of 0.01315 cm(-2), with the length and breadth of the hand expressed in centimeters. The parametric muscle model has been included in a parametric finger model previously developed by the authors, and it has been validated reproducing the results of an experiment in which subjects from different population groups exerted maximal voluntary forces with their index finger in a controlled posture.

  17. CCTV Coverage Index Based on Surveillance Resolution and Its Evaluation Using 3D Spatial Analysis

    Kyoungah Choi

    2015-09-01

    Full Text Available We propose a novel approach to evaluating how effectively a closed circuit television (CCTV system can monitor a targeted area. With 3D models of the target area and the camera parameters of the CCTV system, the approach produces surveillance coverage index, which is newly defined in this study as a quantitative measure for surveillance performance. This index indicates the proportion of the space being monitored with a sufficient resolution to the entire space of the target area. It is determined by computing surveillance resolution at every position and orientation, which indicates how closely a specific object can be monitored with a CCTV system. We present full mathematical derivation for the resolution, which depends on the location and orientation of the object as well as the geometric model of a camera. With the proposed approach, we quantitatively evaluated the surveillance coverage of a CCTV system in an underground parking area. Our evaluation process provided various quantitative-analysis results, compelling us to examine the design of the CCTV system prior to its installation and understand the surveillance capability of an existing CCTV system.

  18. Finite checkerboards of dissipative negative refractive index.

    Chakrabarti, Sangeeta; Ramakrishna, S Anantha; Guenneau, S

    2006-12-25

    The electromagnetic properties of finite checkerboards consisting of alternating rectangular cells of positive refractive index (epsilon= +1, micro= +1) and negative refractive index (epsilon= -1, micro= -1) have been investigated numerically. We show that the numerical calculations have to be carried out with very fine discretization to accurately model the highly singular behaviour of these checkerboards. Our solutions show that, within the accuracy of the numerical calculations, the focusing properties of these checkerboards are reasonably robust in the presence of moderate levels of dissipation. We also show that even small systems of checkerboards can display focussing effects to some extent.

  19. Negative refractive index in coaxial plasmon waveguides.

    de Waele, René; Burgos, Stanley P; Atwater, Harry A; Polman, Albert

    2010-06-07

    We theoretically show that coaxial waveguides composed of a metallic core, surrounded by a dielectric cylinder and clad by a metal outer layer exhibit negative refractive index modes over a broad spectral range in the visible. For narrow dielectric gaps (10 nm GaP embedded in Ag) a figure-of-merit of 18 can be achieved at lambda(0) = 460 nm. For larger dielectric gaps the negative index spectral range extends well below the surface plasmon resonance frequency. By fine-tuning the coaxial geometry the special case of n = -1 at a figure-of-merit of 5, or n = 0 for a decay length of 500 nm can be achieved.

  20. Uniform refraction in negative refractive index materials.

    Gutiérrez, Cristian E; Stachura, Eric

    2015-11-01

    We study the problem of constructing an optical surface separating two homogeneous, isotropic media, one of which has a negative refractive index. In doing so, we develop a vector form of Snell's law, which is used to study surfaces possessing a certain uniform refraction property, in both the near- and far-field cases. In the near-field problem, unlike the case when both materials have positive refractive indices, we show that the resulting surfaces can be neither convex nor concave.

  1. Studies on Negative Refractive Index without Absorption

    Rajapakse, R M; Yelin, S F

    2012-01-01

    Which systems are ideal to obtain negative refraction with no absorption? Electromagnetically induced transparency (EIT) is a method to suppress absorption and make a material transparent to a field of a given frequency. Such a system has been discussed in [1]; however the main limitations for negative refraction introduced are the necessity of resonant electric and magnetic dipole transitions, and the necessity of very dense media. We suggest using frequency translators in a composite system that would provide negative refraction for a range of optical frequencies while attempting to overcome the limitations discussed above. In the process of using frequency translators, we also find composite systems that can be used for refractive index enhancement.

  2. Towards negative index self-assembled metamaterials

    Fruhnert, Martin; Lederer, Falk; Rockstuhl, Carsten

    2016-01-01

    We investigate the magnetic response of meta-atoms that can be fabricated by a bottom-up technique. Usually such meta-atoms consist of a dielectric core surrounded by a large number of solid metallic nanoparticles. In contrast to those meta-atoms considered thus far, we study here for the first time hollow metallic nanoparticles (shells). In doing so we solve one of the most pertinent problems of current self-assembled metamaterials, namely implementing meta-atoms with sufficiently large resonance strength and small absorption. Both conditions have to be met for deep sub-wavelength meta-atoms to obtain effectively homogeneous metamaterials which may be meaningfully described by negative material parameters. Eventually we show that by using these findings self-assembled negative index materials come in reach.

  3. Crosstalk reduction in stereoscopic 3D displays: disparity adjustment using crosstalk visibility index for crosstalk cancellation.

    Sohn, Hosik; Jung, Yong Ju; Man Ro, Yong

    2014-02-10

    Stereoscopic displays provide viewers with a truly fascinating viewing experience. However, current stereoscopic displays suffer from crosstalk that is detrimental to image quality, depth quality, and visual comfort. In order to reduce the perceived crosstalk in stereoscopic displays, this paper proposes a crosstalk reduction method that combines disparity adjustment and crosstalk cancellation. The main idea of the proposed method is to displace the visible crosstalk using the disparity adjustment in a way that less amounts of intensity leakage occur on perceptually important regions in a scene. To this purpose, we estimate a crosstalk visibility index map for the scene that represents pixel-by-pixel importance values associated with the amount of perceived crosstalk and negative-after-effects of the crosstalk cancellation. Based on the crosstalk visibility index, we introduce a new disparity adjustment method that reduces the annoying crosstalk in processed images, which is followed by the crosstalk cancellation. The effectiveness of the proposed method has been successfully evaluated by subjective assessments of image quality and viewing preference. Experimental results demonstrate that the proposed method effectively improves the image quality and overall viewing quality of stereoscopic videos.

  4. Negative Refractive Index in Optics of Metal-Dielectric Composites

    Kildishev, A.V.; Cai, W; Chettiar, U K; Yuan, H.-K.; Sarychev, A. K.; Drachev, V. P.; Shalaev, V. M.

    2005-01-01

    Specially designed metal-dielectric composites can have a negative refractive index in the optical range. Specifically, it is shown that arrays of single and paired nanorods can provide such negative refraction. For pairs of metal rods, a negative refractive index has been observed at 1.5 micrometer. The inverted structure of paired voids in metal films may also exhibit a negative refractive index. A similar effect can be accomplished with metal strips in which the refractive index can reach ...

  5. A new class of negative refractive index transmission line

    2007-01-01

    We propose a new class of negative refractive index transmission line in which ideal operational amplifiers are applied to form the periodically loaded negative-impedance-converted inductors and capacitors. The phase response of the new transmission line is opposite to that of a positive refractive index conventional transmission line. Unlike the existing negative refractive index transmission line, the new negative refractive index transmission line is non-dispersive and thus can lead to many novel applications such as designing new broadband devices.

  6. Analysis of the beam halo in negative ion sources by using 3D3V PIC code

    Miyamoto, K., E-mail: kmiyamot@naruto-u.ac.jp [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Nishioka, S.; Goto, I.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Hanada, M.; Kojima, A.; Hiratsuka, J. [Japan Atomic Energy Agency, 801-1 Mukouyama, Naka 319-0913 (Japan)

    2016-02-15

    The physical mechanism of the formation of the negative ion beam halo and the heat loads of the multi-stage acceleration grids are investigated with the 3D PIC (particle in cell) simulation. The following physical mechanism of the beam halo formation is verified: The beam core and the halo consist of the negative ions extracted from the center and the periphery of the meniscus, respectively. This difference of negative ion extraction location results in a geometrical aberration. Furthermore, it is shown that the heat loads on the first acceleration grid and the second acceleration grid are quantitatively improved compared with those for the 2D PIC simulation result.

  7. Analysis of the beam halo in negative ion sources by using 3D3V PIC code.

    Miyamoto, K; Nishioka, S; Goto, I; Hatayama, A; Hanada, M; Kojima, A; Hiratsuka, J

    2016-02-01

    The physical mechanism of the formation of the negative ion beam halo and the heat loads of the multi-stage acceleration grids are investigated with the 3D PIC (particle in cell) simulation. The following physical mechanism of the beam halo formation is verified: The beam core and the halo consist of the negative ions extracted from the center and the periphery of the meniscus, respectively. This difference of negative ion extraction location results in a geometrical aberration. Furthermore, it is shown that the heat loads on the first acceleration grid and the second acceleration grid are quantitatively improved compared with those for the 2D PIC simulation result.

  8. Comparing 3D Gyrification Index and area-independent curvature-based measures in quantifying neonatal brain folding

    Rodriguez-Carranza, Claudia E.; Mukherjee, P.; Vigneron, Daniel; Barkovich, James; Studholme, Colin

    2007-03-01

    In this work we compare 3D Gyrification Index and our recently proposed area-independent curvature-based surface measures [26] for the in-vivo quantification of brain surface folding in clinically acquired neonatal MR image data. A meaningful comparison of gyrification across brains of different sizes and their subregions will only be possible through the quantification of folding with measures that are independent of the area of the region of analysis. This work uses a 3D implementation of the classical Gyrification Index, a 2D measure that quantifies folding based on the ratio of the inner and outer contours of the brain and which has been used to study gyral patterns in adults with schizophrenia, among other conditions. The new surface curvature-based measures and the 3D Gyrification Index were calculated on twelve premature infants (age 28-37 weeks) from which surfaces of cerebrospinal fluid/gray matter (CSF/GM) interface and gray matter/white matter (GM/WM) interface were extracted. Experimental results show that our measures better quantify folding on the CSF/GM interface than Gyrification Index, and perform similarly on the GM/WM interface.

  9. Matching Index-of-Refraction for 3D Printing Model Using Mixture of Herb Essential Oil and Light Mineral Oil

    Song, Min Seop; Choi, Hae Yoon; Kim, Eung Soo [Seoul National Univ., Seoul (Korea, Republic of)

    2013-10-15

    This study has extensively investigated the emerging 3-D printing technologies for use of MIR-based flow field visualization methods such as PIV and LDV. As a result, mixture of Herb essential oil and light mineral oil has been evaluated to be great working fluid due to its adequate properties. Using this combination, the RIs between 1.45 and 1.55 can be accurately matched, and most of the transparent materials are found to be ranged in here. Conclusively, the proposed MIR method are expected to provide large flexibility of model materials and geometries for laser based optical measurements. Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV) are the two major optical technologies used for flow field visualization in the latest fundamental thermal-hydraulics researches. Those techniques seriously require minimizing optical distortions for enabling high quality data. Therefore, matching index of refraction (MIR) between model materials and working fluids are an essential part of minimizing measurement uncertainty. This paper proposes to use 3-D Printing technology for manufacturing models for the MIR-based optical measurements. Because of the large flexibility in geometries and materials of the 3-D Printing, its application is obviously expected to provide tremendous advantages over the traditional MIR-based optical measurements. This study focuses on the 3-D printing models and investigates their optical properties, transparent printing techniques, and index-matching fluids.

  10. Negative Refractive Index Metasurfaces for Enhanced Biosensing

    Dragan Tanasković

    2010-12-01

    Full Text Available In this paper we review some metasurfaces with negative values of effective refractive index, as scaffolds for a new generation of surface plasmon polariton-based biological or chemical sensors. The electromagnetic properties of a metasurface may be tuned by its full immersion into analyte, or by the adsorption of a thin layer on it, both of which change its properties as a plasmonic guide. We consider various simple forms of plasmonic crystals suitable for this purpose. We start with the basic case of a freestanding, electromagnetically symmetrical plasmonic slab and analyze different ultrathin, multilayer structures, to finally consider some two-dimensional “wallpaper” geometries like split ring resonator arrays and fishnet structures. A part of the text is dedicated to the possibility of multifunctionalization where a metasurface structure is simultaneously utilized both for sensing and for selectivity enhancement. Finally we give an overview of surface-bound intrinsic electromagnetic noise phenomena that limits the ultimate performance of a metasurfaces sensor.

  11. 3-D photo-patterning of refractive index structures in photosensitive thin film materials

    Potter, Jr., Barrett George; Potter, Kelly Simmons

    2002-01-01

    A method of making a three-dimensional refractive index structure in a photosensitive material using photo-patterning. The wavelengths at which a photosensitive material exhibits a change in refractive index upon exposure to optical radiation is first determined and then a portion of the surface of the photosensitive material is optically irradiated at a wavelength at which the photosensitive material exhibits a change in refractive index using a designed illumination system to produce a three-dimensional refractive index structure. The illumination system can be a micro-lenslet array, a macroscopic refractive lens array, or a binary optic phase mask. The method is a single-step, direct-write procedure to produce a designed refractive index structure.

  12. SU-E-T-316: The Design of a Risk Index Method for 3D Patient Specific QA

    Cho, W; Wu, H [Seoul National University Hospital, Seoul (Korea, Republic of); Xing, L [Stanford University, Stanford, CA (United States); Suh, T [Catholic UniversityMedical College, Seoul (Korea, Republic of)

    2014-06-01

    Purpose: To suggest a new guidance for the evaluation of 3D patient specific QA, a structure-specific risk-index (RI) method was designed and implemented. Methods: A new algorithm was designed to assign the score of Pass, Fail or Pass with Risk to all 3D voxels in each structure by improving a conventional Gamma Index (GI) algorithm, which implied the degree of the risk of under-dose to the treatment target or over-dose to the organ at risks (OAR). Structure-specific distance to agreement (DTOA), dose difference and minimum checkable dose were applied to the GI algorithm, and additional parameters such as dose gradient factor and dose limit of structures were used to the RI method. Maximum passing rate (PR) and minimum PR were designed and calculated for each structure with the RI method. 3D doses were acquired from a spine SBRT plan by simulating the shift of beam iso-center, and tested to show the feasibility of the suggested method. Results: When the iso-center was shifted by 1 mm, 2 mm, and 3 mm, the PR of conventional GI method between shifted and non-shifted 3D doses were 99.9%, 97.4%, and 89.7% for PTV, 99.8%, 84.8%, and 63.2% for spinal cord, and 100%, 99.5%, 91.7% for right lung. The minimum PRs from the RI method were 98.9%, 96.9%, and 89.5% for PTV, and 96.1%, 79.3%, 57.5% for spinal cord, and 92.5%, 92.0%, 84.4% for right lung, respectively. The maximum PRs from the RI method were equal or less than the PRs from the conventional GI evaluation. Conclusion: Designed 3D RI method showed more strict acceptance level than the conventional GI method, especially for OARs. The RI method is expected to give the degrees of risks in the delivered doses, as well as the degrees of agreements between calculated 3D doses and measured (or simulated) 3D doses.

  13. Optical-CT 3D Dosimetry Using Fresnel Lenses with Minimal Refractive-Index Matching Fluid.

    Steven Bache

    Full Text Available Telecentric optical computed tomography (optical-CT is a state-of-the-art method for visualizing and quantifying 3-dimensional dose distributions in radiochromic dosimeters. In this work a prototype telecentric system (DFOS-Duke Fresnel Optical-CT Scanner is evaluated which incorporates two substantial design changes: the use of Fresnel lenses (reducing lens costs from $10-30K t0 $1-3K and the use of a 'solid tank' (which reduces noise, and the volume of refractively matched fluid from 1 ltr to 10 cc. The efficacy of DFOS was evaluated by direct comparison against commissioned scanners in our lab. Measured dose distributions from all systems were compared against the predicted dose distributions from a commissioned treatment planning system (TPS. Three treatment plans were investigated including a simple four-field box treatment, a multiple small field delivery, and a complex IMRT treatment. Dosimeters were imaged within 2 h post irradiation, using consistent scanning techniques (360 projections acquired at 1 degree intervals, reconstruction at 2mm. DFOS efficacy was evaluated through inspection of dose line-profiles, and 2D and 3D dose and gamma maps. DFOS/TPS gamma pass rates with 3%/3mm dose difference/distance-to-agreement criteria ranged from 89.3% to 92.2%, compared to from 95.6% to 99.0% obtained with the commissioned system. The 3D gamma pass rate between the commissioned system and DFOS was 98.2%. The typical noise rates in DFOS reconstructions were up to 3%, compared to under 2% for the commissioned system. In conclusion, while the introduction of a solid tank proved advantageous with regards to cost and convenience, further work is required to improve the image quality and dose reconstruction accuracy of the new DFOS optical-CT system.

  14. GPU-based rapid reconstruction of cellular 3D refractive index maps from tomographic phase microscopy (Conference Presentation)

    Dardikman, Gili; Shaked, Natan T.

    2016-03-01

    We present highly parallel and efficient algorithms for real-time reconstruction of the quantitative three-dimensional (3-D) refractive-index maps of biological cells without labeling, as obtained from the interferometric projections acquired by tomographic phase microscopy (TPM). The new algorithms are implemented on the graphic processing unit (GPU) of the computer using CUDA programming environment. The reconstruction process includes two main parts. First, we used parallel complex wave-front reconstruction of the TPM-based interferometric projections acquired at various angles. The complex wave front reconstructions are done on the GPU in parallel, while minimizing the calculation time of the Fourier transforms and phase unwrapping needed. Next, we implemented on the GPU in parallel the 3-D refractive index map retrieval using the TPM filtered-back projection algorithm. The incorporation of algorithms that are inherently parallel with a programming environment such as Nvidia's CUDA makes it possible to obtain real-time processing rate, and enables high-throughput platform for label-free, 3-D cell visualization and diagnosis.

  15. Study of plasma meniscus formation and beam halo in negative ion source using the 3D3VPIC model

    Nishioka, S.; Goto, I.; Hatayama, A. [Graduate school of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Fukano, A. [Tokyo Metropolitan Collage of Industrial Technology, Higashioi, Shinagawa, Tokyo 140-0011 (Japan)

    2015-04-08

    In this paper, the effect of the electron confinement time on the plasma meniscus and the fraction of the beam halo is investigated by 3D3V-PIC (three dimension in real space and three dimension in velocity space) (Particle in Cell) simulation in the extraction region of negative ion source. The electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of diffusion across the magnetic field. Our 3D3V-PIC results support the previous result by 2D3V-PIC results i.e., it is confirmed that the penetration of the plasma meniscus becomes deep into the source plasma region when the effective confinement time is short.

  16. Reliability of a Novel CBCT-Based 3D Classification System for Maxillary Canine Impactions in Orthodontics: The KPG Index

    Domenico Dalessandri

    2013-01-01

    Full Text Available The aim of this study was to evaluate both intra- and interoperator reliability of a radiological three-dimensional classification system (KPG index for the assessment of degree of difficulty for orthodontic treatment of maxillary canine impactions. Cone beam computed tomography (CBCT scans of fifty impacted canines, obtained using three different scanners (NewTom, Kodak, and Planmeca, were classified using the KPG index by three independent orthodontists. Measurements were repeated one month later. Based on these two sessions, several recommendations on KPG Index scoring were elaborated. After a joint calibration session, these recommendations were explained to nine orthodontists and the two measurement sessions were repeated. There was a moderate intrarater agreement in the precalibration measurement sessions. After the calibration session, both intra- and interrater agreement were almost perfect. Indexes assessed with Kodak Dental Imaging 3D module software showed a better reliability in z-axis values, whereas indexes assessed with Planmeca Romexis software showed a better reliability in x- and y-axis values. No differences were found between the CBCT scanners used. Taken together, these findings indicate that the application of the instructions elaborated during this study improved KPG index reliability, which was nevertheless variously influenced by the use of different software for images evaluation.

  17. Reliability of a novel CBCT-based 3D classification system for maxillary canine impactions in orthodontics: the KPG index.

    Dalessandri, Domenico; Migliorati, Marco; Rubiano, Rachele; Visconti, Luca; Contardo, Luca; Di Lenarda, Roberto; Martin, Conchita

    2013-01-01

    The aim of this study was to evaluate both intra- and interoperator reliability of a radiological three-dimensional classification system (KPG index) for the assessment of degree of difficulty for orthodontic treatment of maxillary canine impactions. Cone beam computed tomography (CBCT) scans of fifty impacted canines, obtained using three different scanners (NewTom, Kodak, and Planmeca), were classified using the KPG index by three independent orthodontists. Measurements were repeated one month later. Based on these two sessions, several recommendations on KPG Index scoring were elaborated. After a joint calibration session, these recommendations were explained to nine orthodontists and the two measurement sessions were repeated. There was a moderate intrarater agreement in the precalibration measurement sessions. After the calibration session, both intra- and interrater agreement were almost perfect. Indexes assessed with Kodak Dental Imaging 3D module software showed a better reliability in z-axis values, whereas indexes assessed with Planmeca Romexis software showed a better reliability in x- and y-axis values. No differences were found between the CBCT scanners used. Taken together, these findings indicate that the application of the instructions elaborated during this study improved KPG index reliability, which was nevertheless variously influenced by the use of different software for images evaluation.

  18. Reliability of a Novel CBCT-Based 3D Classification System for Maxillary Canine Impactions in Orthodontics: The KPG Index

    Visconti, Luca; Martin, Conchita

    2013-01-01

    The aim of this study was to evaluate both intra- and interoperator reliability of a radiological three-dimensional classification system (KPG index) for the assessment of degree of difficulty for orthodontic treatment of maxillary canine impactions. Cone beam computed tomography (CBCT) scans of fifty impacted canines, obtained using three different scanners (NewTom, Kodak, and Planmeca), were classified using the KPG index by three independent orthodontists. Measurements were repeated one month later. Based on these two sessions, several recommendations on KPG Index scoring were elaborated. After a joint calibration session, these recommendations were explained to nine orthodontists and the two measurement sessions were repeated. There was a moderate intrarater agreement in the precalibration measurement sessions. After the calibration session, both intra- and interrater agreement were almost perfect. Indexes assessed with Kodak Dental Imaging 3D module software showed a better reliability in z-axis values, whereas indexes assessed with Planmeca Romexis software showed a better reliability in x- and y-axis values. No differences were found between the CBCT scanners used. Taken together, these findings indicate that the application of the instructions elaborated during this study improved KPG index reliability, which was nevertheless variously influenced by the use of different software for images evaluation. PMID:24235889

  19. Negative refractive index metamaterials aided by extraordinary optical transmission.

    García-Meca, C; Ortuño, R; Rodríguez-Fortuño, F J; Martí, J; Martínez, A

    2009-04-13

    We study under which conditions extraordinary optical transmission (EOT) structures can be used to build negative refractive index media. As a result, we present a metamaterial with superimposed EOT and negative index at visible wavelengths. The tailoring process starting from a simple hole array until achieving the negative index is detailed. We also discuss the so-called fishnet metamaterial (previously linked to EOT) under the same prism. Using the ideas put forward in this work, other structures with negative index could be engineered in the optical or visible spectrum.

  20. Micro-Structured Two-Component 3D Metamaterials with Negative Thermal-Expansion Coefficient from Positive Constituents

    Qu, Jingyuan; Kadic, Muamer; Naber, Andreas; Wegener, Martin

    2017-01-01

    Controlling the thermal expansion of materials is of great technological importance. Uncontrolled thermal expansion can lead to failure or irreversible destruction of structures and devices. In ordinary crystals, thermal expansion is governed by the asymmetry of the microscopic binding potential, which cannot be adjusted easily. In artificial crystals called metamaterials, thermal expansion can be controlled by structure. Here, following previous theoretical work, we fabricate three-dimensional (3D) two-component polymer micro-lattices by using gray-tone laser lithography. We perform cross-correlation analysis of optical microscopy images taken at different sample temperatures. The derived displacement-vector field reveals that the thermal expansion and resulting bending of the bi-material beams leads to a rotation of the 3D chiral crosses arranged onto a 3D checkerboard pattern within one metamaterial unit cell. These rotations can compensate the expansion of the all positive constituents, leading to an effectively near-zero thermal length-expansion coefficient, or over-compensate the expansion, leading to an effectively negative thermal length-expansion coefficient. This evidences a striking level of thermal-expansion control.

  1. A three-dimensional self-supporting low loss microwave lens with a negative refractive index

    Ehrenberg, Isaac M.; Sarma, Sanjay E.; Wu, Bae-Ian

    2012-10-01

    Demonstrations of focusing with metamaterial lenses have predominantly featured two dimensional structures or stacks of planar elements, both limited by losses which hinder realized gain near the focal region. In this study, we present a plano-concave lens built from a 3D self-supporting metamaterial structure featuring a negative refractive index between 10 and 12 GHz. Fabricated using macroscopic layered prototyping, the lens curvature, negative index and low loss contribute to a recognizable focus and free space gains above 13 dB.

  2. 3-D mapping with ellipsometrically determined physical thickness/refractive index of spin coated sol–gel silica layer

    S Das; P Pal; S Roy; S Chakraboarty; P K Biswas

    2002-11-01

    Precursor sol for sol–gel silica layer was prepared from the starting material, tetraethylorthosilicate (TEOS). The sol was deposited onto borosilicate crown (BSC) glass by the spinning technique (rpm 2500). The gel layer thus formed transformed to oxide layer on heating to 450°C for ∼ 30 min. The physical thicknessand the refractive index of the layer were measured ellipsometrically (Rudolph Auto EL II) at 632.8 nm. About 10 × 10 mm surface area of the silica layer was chosen for evaluation of thickness and refractive index values at different points (121 nos.) with 1 mm gap between two points. Those data were utilized in the Autolisp programme for 3-D mapping. Radial distribution of the evaluated values was also displayed.

  3. Negative refraction and Negative refractive index in an optical uniaxial absorbent medium

    Jen, Yi-Jun; Yu, Ching-Wei; Lin, Chin-Te

    2009-01-01

    This work demonstrates the existence of both negative refraction and a negative refractive index in an optical uniaxial absorbent medium that can be characterized by ordinary and extraordinary refractive indices. Negative refraction occurs in any absorbent uniaxial medium if the real part of the extraordinary index is less than its imaginary part. The refractive index is negative when the incident medium is sufficiently dense and the incident angle exceeds a critical angle that is defined here.

  4. Why is the refractive index cannot be negative

    Davidovich, Michael V

    2014-01-01

    It has been shown that for left-handed metamaterials and generally for negative refraction media the refraction index cannot be entered unequivocally and cannot be considered as real, and especially as negative. This index for above referred media is not expedient

  5. Comment on "Negative refractive index in artificial metamaterials".

    Kildishev, Alexander V; Drachev, Vladimir P; Chettiar, Uday K; Shalaev, Vladimir M; Werner, Douglas H; Kwon, Do-Hoon

    2007-06-01

    We dispute Grigorenko's statement [Opt. Lett. 31, 2483 (2006)] that measuring only the reflection intensity spectrum is sufficient for determining the effective refractive index. In addition, our simulations do not confirm his conclusions regarding the negative refractive index and the negative permeability of the nanopillar sample in the visible range.

  6. Bulk isotropic negative-index material design for infrared

    Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei

    Responding to the strong call for isotropic bulk negative index material we propose a Split Cube in Car-cass design. It shows negative refractive index -1.5, figure-of-merit 2 and transmittivity 30% for one layer at the telecommunication wavelength 1.6 μm. Effective parameters converge fast with ...

  7. Numerical modeling of the Linac4 negative ion source extraction region by 3D PIC-MCC code ONIX

    Mochalskyy, S; Minea, T; Lifschitz, AF; Schmitzer, C; Midttun, O; Steyaert, D

    2013-01-01

    At CERN, a high performance negative ion (NI) source is required for the 160 MeV H- linear accelerator Linac4. The source is planned to produce 80 mA of H- with an emittance of 0.25 mm mradN-RMS which is technically and scientifically very challenging. The optimization of the NI source requires a deep understanding of the underling physics concerning the production and extraction of the negative ions. The extraction mechanism from the negative ion source is complex involving a magnetic filter in order to cool down electrons’ temperature. The ONIX (Orsay Negative Ion eXtraction) code is used to address this problem. The ONIX is a selfconsistent 3D electrostatic code using Particles-in-Cell Monte Carlo Collisions (PIC-MCC) approach. It was written to handle the complex boundary conditions between plasma, source walls, and beam formation at the extraction hole. Both, the positive extraction potential (25kV) and the magnetic field map are taken from the experimental set-up, in construction at CERN. This contrib...

  8. Optical properties of multilayer optics including negative index materials

    Lequime, Michel; Gralak, Boris; guenneau, sebastien; Zerrad, Myriam; Amra, Claude

    2013-01-01

    Negative indices are revisited through the thin-film admittance formalism. Effective indices and phase delay associated with wave propagation through negative index layers are carefully defined and computational rules easily implementable in standard thin-film software are derived from this approach. This admittance formalism is then used to recover the main features of the perfect lens and to highlight the benefit of such negative index materials to improve the performances of quarter-wavele...

  9. Electromagnetic field energy density in homogeneous negative index materials.

    Shivanand; Webb, Kevin J

    2012-05-07

    An exact separation of both electric and magnetic energies into stored and lost energies is shown to be possible in the special case when the wave impedance is independent of frequency. A general expression for the electromagnetic energy density in such a dispersive medium having a negative refractive index is shown to be accurate in comparison with numerical results. Using an example metamaterial response that provides a negative refractive index, it is shown that negative time-averaged stored energy can occur. The physical meaning of this negative energy is explained as the energy temporarily borrowed by the field from the material. This observation for negative index materials is of interest when approaching properties for a perfect lens. In the broader context, the observation of negative stored energy is of consequence in the study of dispersive materials.

  10. Radiation Pressure and Photon Momentum in Negative-Index Media

    Mansuripur, Masud

    2013-01-01

    Radiation pressure and photon momentum in negative-index media are no different than their counterparts in ordinary (positive-index) materials. This is because the parameters responsible for these properties are the admittance, sqrt(epsilon/mu), and the group refractive index n_g of the material (both positive entities), and not the phase refractive index, n=sqrt(epsilon*mu), which is negative in negative-index media. One approach to investigating the exchange of momentum between electromagnetic waves and material media is via the Doppler shift phenomenon. In this paper we use the Doppler shift to arrive at an expression for the radiation pressure on a mirror submerged in a negative-index medium. In preparation for the analysis, we investigate the phenomenon of Doppler shift in various settings, and show the conditions under which a so-called "inverse" Doppler shift could occur. We also argue that a recent observation of the inverse Doppler shift upon reflection from a negative-index medium cannot be correct,...

  11. Optical properties of multilayer optics including negative index materials

    Lequime, Michel; Guenneau, Sebastien; Zerrad, Myriam; Amra, Claude

    2013-01-01

    Negative indices are revisited through the thin-film admittance formalism. Effective indices and phase delay associated with wave propagation through negative index layers are carefully defined and computational rules easily implementable in standard thin-film software are derived from this approach. This admittance formalism is then used to recover the main features of the perfect lens and to highlight the benefit of such negative index materials to improve the performances of quarter-wavelength Bragg mirrors and Fabry-Perot band-pass filters.

  12. Negative Index Materials and Plasmonic Antennas Based Nanocouplers

    Andryieuski, Andrei

    an optical fiber and future optical integrated circuit. Multiple nanocoupler possibilities are analyzed. Two realizations are investigated: negative index metamaterial and plasmonic nanoantenna based. The cubic symmetric negative index metamaterial Split cube in Cage and Split cube in Carcass designs...... for the telecom frequencies are proposed. It is shown that despite the exceptional bulkness (effective properties do not depend on the number of layers) and cubic symmetry the abovementioned designs exhibit strong spatial dispersion in the frequency range of interest. That prevents treating them as an isotropic...... negative index material. The wave propagation retrieval method for metamaterials with linear and circular eigenpolarizations and the field averaging of the restored Bloch mode method are proposed for metamaterials effective properties characterization. The methods are based on observation of the wave...

  13. Overcoming losses with gain in a negative refractive index metamaterial.

    Wuestner, Sebastian; Pusch, Andreas; Tsakmakidis, Kosmas L; Hamm, Joachim M; Hess, Ortwin

    2010-09-17

    On the basis of a full-vectorial three-dimensional Maxwell-Bloch approach we investigate the possibility of using gain to overcome losses in a negative refractive index fishnet metamaterial. We show that appropriate placing of optically pumped laser dyes (gain) into the metamaterial structure results in a frequency band where the nonbianisotropic metamaterial becomes amplifying. In that region both the real and the imaginary part of the effective refractive index become simultaneously negative and the figure of merit diverges at two distinct frequency points.

  14. Broadband negative refractive index obtained by plasmonic hybridization in metamaterials

    Nguyen, Hien T.; Bui, Tung S.; Yan, Sen; Vandenbosch, Guy A. E.; Lievens, Peter; Vu, Lam D.; Janssens, Ewald

    2016-11-01

    We experimentally demonstrate a broadband negative refractive index (NRI) behavior in combined dimer and fishnet dimer metamaterials operating in the GHz frequency range. The observations can be well explained by a hybridization model and are in agreement with numerical modelling results. Hybridization of the magnetic resonances is obtained by reducing the distance between the layers in the dimer structures. A ratio of the double negative refractive index bandwidth to operational frequency of approximately 10% was achieved in the fishnet dimer. The applicable frequency range of the broadband NRI was shown to scale with the size of the structures from the microwave to the far infrared.

  15. Towards a Negative Refractive Index in an Atomic System

    Simmons, Zach; Brewer, Nick; Yavuz, Deniz

    2014-05-01

    The goal of our experiments is to obtain a negative index of refraction in the optical region of the spectrum using an atomic system. The concept of negative refraction, which was first predicted by Veselago more than four decades ago, has recently emerged as a very exciting field of science. Negative index materials exhibit many seemingly strange properties such as electromagnetic vectors forming a left-handed triad. A key potential application for these materials was discovered in 2000 when Pendry predicted that a slab with a negative refractive index can image objects with a resolution far better than the diffraction limit. Thus far, research in negative index materials has primarily focused on meta-materials. The fixed response and often large absorption of these engineered materials motivates our efforts to work in an atomic system. An atomic media offers the potential to be actively modified, for example by changing laser parameters, and can be tuned to cancel absorption. A doped crystal allows for high atomic densities compared to other atomic systems. So far we have identified a transition in such a material, Eu:YSO, as a candidate for these experiments and are performing spectroscopy on this material.

  16. Enlargement of zero averaged refractive index gaps in the photonic heterostructures containing negative-index materials.

    Xiang, Yuanjiang; Dai, Xiaoyu; Wen, Shuangchun; Fan, Dianyuan

    2007-11-01

    We show that the frequency range of the zero averaged refractive index gap in a photonic heterostructure containing negative-index materials can be enlarged owing to the property that its lower and upper frequency edges depend on the thickness ratio of the positive- and negative-index materials. Compared to the zero averaged refractive index gap of a single photonic crystal, the frequency range of the zero averaged refractive index gaps in a photonic heterostructure can be notably enlarged. Moreover, it is shown that the band edge of the zero averaged refractive index gap is determined not only by the TM polarization but also by the TE polarization, which is obviously different from the omnidirectional band gaps in conventional photonic crystals, whose bandwidth is determined by the TM polarization.

  17. Negative-index metamaterials: looking into the unit cell

    Burresi, M.; Diessel, D.; van Oosten, D.; Linden, Stefan; Wegener, M.; Kuipers, L.

    2010-01-01

    With their potential for spectacular applications, like superlensing and cloaking, metamaterials are a powerful class of nanostructured materials. All these applications rely on the metamaterials acting as a homogeneous material. We investigate a negative index metamaterial with a phase-sensitive ne

  18. Influence of the Aral Sea negative water balance on its seasonal circulation patterns: use of a 3D hydrodynamic model

    Sirjacobs, D.; Grégoire, M.; Delhez, E.; Nihoul, J. C. J.

    2004-06-01

    A 3D hydrodynamic model of the Aral Sea was successfully implemented to address the complex hydrodynamic changes induced by the combined effect of hydrologic and climatic change in the Aral region. The first barotropic numerical experiments allowed us to produce a comparative description of the mean general seasonal circulation patterns corresponding to the original situation (1956-1960) and of the average situation for the period from 1981 to 1985, a very low river flow period. The dominant anticyclonic circulation suggested by our seasonal simulation is in good agreement with previous investigations. In addition, this main anticyclonic gyre was shown to be stable and clearly established from February to September, while winter winds led to another circulation scenario. In winter, the main anticyclonic gyre was considerably limited, and cyclonic circulations appeared in the deep western basin and in the northeast of the shallow basin. In contrast, stronger anticyclonic circulation was observed in the Small Aral Sea during winter. As a consequence of the 10-m sea level drop observed between the two periods considered, the 1981-1985 simulation suggests an intensification of seasonal variability. Total water transport of the main gyre was reduced with sea level drop by a minimum of 30% in May and up to 54% in September. Before 1960, the study of the net flows through Berg and Kokaral Straits allowed us to evaluate the component of water exchange between the Small and the Large Seas linked with the general anticyclonic circulation around Kokaral Island. This exchange was lowest in summer (with a mean anticyclonic exchange of 222 m 3/s for July and August), highest in fall and winter (with a mean value of 1356 m 3/s from September to February) and briefly reversed in the spring (mean cyclonic circulation of 316 m 3/s for April and May). In summer, the water exchange due to local circulation at the scale of each strait was comparatively more important because net flows

  19. On the Fourier coefficients of negative index meromorphic Jacobi forms

    Bringmann, Kathrin; Zwegers, Sander

    2015-01-01

    In this paper, we consider the Fourier coefficients of meromorphic Jacobi forms of negative index. This extends recent work of Creutzig and the first two authors for the special case of Kac-Wakimoto characters which occur naturally in Lie theory, and yields, as easy corollaries, many important PDEs arising in combinatorics such as the famous rank-crank PDE of Atkin and Garvan. Moreover, we discuss the relation of our results to partial theta functions and quantum modular forms as introducted by Zagier, which together with previous work on positive index meromorphic Jacobi forms illuminates the general structure of the Fourier coefficients of meromorphic Jacobi forms.

  20. Optical Properties of Synthetic Cannabinoids with Negative Indexes

    Shen, Yao

    2016-01-01

    Some kinds of psychoactive drugs have the structures which are called split-ring resonators (SRRs). SRRs might result in negative permittivity and permeability simultaneously in electromagnetic field. Simultaneous negative indexes can lead to the famous phenomenon of negative refraction. This optical property makes it possible to distinguish synthetic cannabinoids from other abusive psychoactive drugs in the UV-vis region. This optical method is non-damaged and superior in forensic science. In this paper, we use tight-binding model calculating the permittivity and permeability of the main ingredients of synthetic cannabinoids. At the same time, we give two more results of zolpidem and caffeine. Further we discuss the negative refraction of the category of zepam qualitatively.

  1. Textile inspired flexible metamaterial with negative refractive index

    Burgnies, L.; Lheurette, É.; Lippens, D.

    2015-04-01

    This work introduces metallo-dielectric woven fabric as a metamaterial for phase-front manipulation. Dispersion diagram as well as effective medium parameters retrieved from reflection and transmission coefficients point out negative values of refractive index. By numerical simulations, it is evidenced that a pair of meandered metallic wires, arranged in a top to bottom configuration, can yield to a textile metamaterial with simultaneously negative permittivity and permeability. While the effective negative permittivity stems from the metallic grid arrangement, resonating current loop resulting from the top to bottom configuration of two meandered metallic wires in near proximity produces magnetic activity with negative permeability. By adjusting the distance between pairs of metallic wires, the electric plasma frequency can be shifted to overlap the magnetic resonance. Finally, it is shown that the woven metamaterial is insensitive to the incident angle up to around 60°.

  2. Numerical simulations of negative-index refraction in a lamellar composite with alternating single negative layers

    Dong Zheng-Gao; Zhu Shi-Ning; Liu Hui

    2006-01-01

    Negative-index refraction is demonstrated in a lamellar composite with epsilon-negative (ENG) and mu-negative (MNG) materials stacked alternatively. Based on the effective medium approximation, simultaneously negative effective permittivity and permeability of such a lamellar composite are obtained theoretically and further proven by full-wave simulations. Consequently, the renowned left-handed metamaterial comprising split ring resonators and wires is interpreted as an analogy of such ENG-MNG layers. In addition, beyond the effective medium approximation, the propagating field squeezed near the ENG/MNG interface is demonstrated to be left-handed surface waves with backward phase velocity.

  3. KPG Index versus OPG Measurements: A Comparison between 3D and 2D Methods in Predicting Treatment Duration and Difficulty Level for Patients with Impacted Maxillary Canines

    Domenico Dalessandri

    2014-01-01

    Full Text Available Aim. The aim of this study was to test the agreement between orthopantomography (OPG based 2D measurements and the KPG index, a new index based on 3D Cone Beam Computed Tomography (CBCT images, in predicting orthodontic treatment duration and difficulty level of impacted maxillary canines. Materials and Methods. OPG and CBCT images of 105 impacted canines were independently scored by three orthodontists at t0 and after 1 month (t1, using the KPG index and the following 2D methods: distance from cusp tip and occlusal plane, cusp tip position in relation to the lateral incisor, and canine inclination. Pearson’s coefficients were used to evaluate the degree of agreement and the χ2 with Yates correction test was used to assess the independence between them. Results. Inter- and intrarater reliability were higher with KPG compared to 2D methods. Pearson’s coefficients showed a statistically significant association between all the indexes, while the χ2 with Yates correction test resulted in a statistically significant rejection of independency only for one 2D index. Conclusions. 2D indexes for predicting impacted maxillary canines treatment duration and difficulty sometimes are discordant; a 3D index like the KPG index could be useful in solving these conflicts.

  4. Negative refractive index metamaterials using only metallic cut wires.

    Sellier, Alexandre; Burokur, Shah Nawaz; Kanté, Boubacar; de Lustrac, André

    2009-04-13

    We present, design and analyze a novel planar Left-Handed (LH) metamaterial at microwave frequencies. This metamaterial is composed of only metallic cut wires and is used under normal-to-plane incidence. Using Finite Element Method (FEM) based simulations and microwave experiments, we have investigated the material properties of the structure. Simultaneous negative values are observed for the permittivity epsilon and permeability mu by the inversion method from the transmission and reflection responses. A negative index n is verified in a bulk prism engineered by stacking several layers of the metamaterial. Our work demonstrates the feasibility of a LH metamaterial composed of only cut wires.

  5. Merging Nonlinear Optics and Negative-Index Metamaterials

    Popov, Alexander K

    2011-01-01

    The extraordinary properties of nonlinear optical propagation processes in double-domain positive/negative index metamaterials are reviewed. These processes include second harmonic generation, three- and four-wave frequency mixing, and optical parametric amplification. Striking contrasts with the properties of the counterparts in ordinary materials are shown. We also discuss the possibilities for compensating strong losses inherent to plasmonic metamaterials, which present a major obstacle in numerous exciting applications, and the possibilities for creation of unique ultracompact photonic devices such as data processing chips and nonlinear-optical sensors. Finally, we propose similar extraordinary three-wave mixing processes in crystals based on optical phonons with negative dispersion.

  6. Giant negative Goos-Hänchen shifts for a photonic crystal with a negative effective index.

    He, Jinlong; Yi, Jin; He, Sailing

    2006-04-03

    The Goos-Hänchen effects are investigated for a monochromatic Gaussian beam totally reflected by a photonic crystal with a negative effective index. By choosing an appropriate thickness for the homogeneous cladding layer, a giant negative GH lateral shift can be obtained and the totally reflected beam retains a single beam of good profile even for a very narrow incident beam. The GH lateral shift can be very sensitive to the change of the refractive index of the cladding layer, and this property can be utilized for e.g. the switching applications.

  7. Origami with negative refractive index to generate super-lenses.

    Guenneau, Fanny; Chakrabarti, Sangeeta; Guenneau, Sebastien; Ramakrishna, S Anantha

    2014-10-08

    Negative refractive index materials (NRIM) enable unique effects including superlenses with a high degree of sub-wavelength image resolution, a capability that stems from the ability of NRIM to support a host of surface plasmon states. Using a generalized lens theorem and the powerful tools of transformational optics, a variety of focusing configurations involving complementary positive and negative refractive index media can be generated. A paradigm of such complementary media are checkerboards that consist of alternating cells of positive and negative refractive index, and are associated with very singular electromagnetics. We present here a variety of multi-scale checkerboard lenses that we call origami lenses and investigate their electromagnetic properties both theoretically and computationally. Some of these meta-structures in the plane display thin bridges of complementary media, and this highly enhances their plasmonic response. We demonstrate the design of three-dimensional checkerboard meta-structures of complementary media using transformational optics to map the checkerboard onto three-dimensional corner lenses, the only restriction being that the corresponding unfolded structures in the plane are constrained by the four color-map theorem.

  8. Numerical Study of Negative-Refractive Index Ferrite Waveguide

    Mohammed O. Sid-Ahmed

    2012-03-01

    Full Text Available Consider a magnetized ferrite-wire waveguide structure situated between two half free spaces. Ferrites to provide negative permeability and wire array to provide negative permittivity. The structure form left-handed material (LHM with negative refractive index. The transmission of electromagnetic waves through the structure is investigated theoretically. Maxwell's equations are used to determine the electric and magnetic fields of the incident waves at each layer. Snell's law is applied and the boundary conditions are imposed at each layer interface to calculate the reflected and transmitted powers of the structure. Numerical results are illustrated to show the effect of frequency, applied magnetic fields, angle of incidence and LHM thickness on the mentioned powers. The analyzed results show that the transmission is very good when the permeability and permittivity of the structure are both simultaneously negative. The frequency band corresponding to this transmission can be tuned by changing the applied magnetic fields. The obtained results are in agreement with the law of conservation of energy. Consider a magnetized ferrite-wire waveguide structure situated between two half free spaces. Ferrites to provide negative permeability and wire array to provide negative permittivity. The structure form left-handed material (LHM with negative refractive index. The transmission of electromagnetic waves through the structure is investigated theoretically. Maxwell's equations are used to determine the electric and magnetic fields of the incident waves at each layer. Snell's law is applied and the boundary conditions are imposed at each layer interface to calculate the reflected and transmitted powers of the structure. Numerical results are illustrated to show the effect of frequency, applied magnetic fields, angle of incidence and LHM thickness on the mentioned powers. The analyzed results show that the transmission is very good when the permeability and

  9. Science Letters: Lattice type transmission line of negative refractive index

    2008-01-01

    In this letter, we introduce a novel passive transmission line of negative refractive index (i.e., left-handedness) based on identical symmetrical lattice type structures [thus called "lattice type transmission line" (LT-TL)]. The dispersion characteristic and the transmission response of the proposed LT-TL are analyzed. While all the other left-handed passive transmission lines are of high pass, the present passive left-handed transmission line is of low pass. Compared with a conventional transmission line, the LT-TL has a phase shift of 180° in the entire wide pass-band.

  10. Negative refractive index induced by percolation in disordered metamaterials

    Slovick, Brian A

    2016-01-01

    An effective medium model is developed for disordered metamaterials containing a spatially random distribution of dielectric spheres. Similar to effective medium models for ordered metamaterials, this model predicts resonances in the effective permeability and permittivity arising from electric- and magnetic-dipole Mie resonances in the spheres. In addition, the model predicts a redshift of the electric resonance with increasing particle loading. Interestingly, when the particle loading exceeds the percolation threshold of 33\\%, the model predicts that the electric resonance overlaps with the magnetic resonance, resulting in a negative refractive index.

  11. Reliability of a Novel CBCT-Based 3D Classification System for Maxillary Canine Impactions in Orthodontics: The KPG Index

    Domenico Dalessandri; Marco Migliorati; Rachele Rubiano; Luca Visconti; Luca Contardo; Roberto Di Lenarda; Conchita Martin

    2013-01-01

    The aim of this study was to evaluate both intra- and interoperator reliability of a radiological three-dimensional classification system (KPG index) for the assessment of degree of difficulty for orthodontic treatment of maxillary canine impactions. Cone beam computed tomography (CBCT) scans of fifty impacted canines, obtained using three different scanners (NewTom, Kodak, and Planmeca), were classified using the KPG index by three independent orthodontists. Measurements were repeated one mo...

  12. Large N matrix models for 3d {N} = 2 theories: twisted index, free energy and black holes

    Hosseini, Seyed Morteza; Zaffaroni, Alberto

    2016-08-01

    We provide general formulae for the topologically twisted index of a general three-dimensional {N} ≥ 2 gauge theory with an M-theory or massive type IIA dual in the large N limit. The index is defined as the supersymmetric path integral of the theory on S 2 × S 1 in the presence of background magnetic fluxes for the R- and global symmetries and it is conjectured to reproduce the entropy of magnetically charged static BPS AdS4 black holes. For a class of theories with an M-theory dual, we show that the logarithm of the index scales indeed as N 3/2 (and N 5/3 in the massive type IIA case). We find an intriguing relation with the (apparently unrelated) large N limit of the partition function on S 3. We also provide a universal formula for extracting the index from the large N partition function on S 3 and its derivatives and point out its analogy with the attractor mechanism for AdS black holes.

  13. Large $N$ matrix models for 3d ${\\cal N}=2$ theories: twisted index, free energy and black holes

    Hosseini, Seyed Morteza

    2016-01-01

    We provide general formulae for the topologically twisted index of a general three-dimensional ${\\cal N}\\geq 2$ gauge theory with an M-theory or massive type IIA dual in the large $N$ limit. The index is defined as the supersymmetric path integral of the theory on $S^2\\times S^1$ in the presence of background magnetic fluxes for the R- and global symmetries and it is conjectured to reproduce the entropy of magnetically charged static BPS AdS$_4$ black holes. For a class of theories with an M-theory dual, we show that the logarithm of the index scales indeed as $N^{3/2}$ (and $N^{5/3}$ in the massive type IIA case). We find an intriguing relation with the (apparently unrelated) large $N$ limit of the partition function on $S^3$. We also provide a universal formula for extracting the index from the large $N$ partition function on $S^3$ and its derivatives and point out its analogy with the attractor mechanism for AdS black holes.

  14. Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials.

    Kaina, Nadège; Lemoult, Fabrice; Fink, Mathias; Lerosey, Geoffroy

    2015-09-03

    Metamaterials, man-made composite media structured on a scale much smaller than a wavelength, offer surprising possibilities for engineering the propagation of waves. One of the most interesting of these is the ability to achieve superlensing--that is, to focus or image beyond the diffraction limit. This originates from the left-handed behavior--the property of refracting waves negatively--that is typical of negative index metamaterials. Yet reaching this goal requires the design of 'double negative' metamaterials, which act simultaneously on the permittivity and permeability in electromagnetics, or on the density and compressibility in acoustics; this generally implies the use of two different kinds of building blocks or specific particles presenting multiple overlapping resonances. Such a requirement limits the applicability of double negative metamaterials, and has, for example, hampered any demonstration of subwavelength focusing using left-handed acoustic metamaterials. Here we show that these strict conditions can be largely relaxed by relying on media that consist of only one type of single resonant unit cell. Specifically, we show with a simple yet general semi-analytical model that judiciously breaking the symmetry of a single negative metamaterial is sufficient to turn it into a double negative one. We then demonstrate that this occurs solely because of multiple scattering of waves off the metamaterial resonant elements, a phenomenon often disregarded in these media owing to their subwavelength patterning. We apply our approach to acoustics and verify through numerical simulations that it allows the realization of negative index acoustic metamaterials based on Helmholtz resonators only. Finally, we demonstrate the operation of a negative index acoustic superlens, achieving subwavelength focusing and imaging with spot width and resolution 7 and 3.5 times better than the diffraction limit, respectively. Our findings have profound implications for the

  15. 3D model of a matrix source of negative ions: RF driving by a large area planar coil

    Demerdzhiev, A.; Lishev, St.; Tarnev, Kh.; Shivarova, A.

    2015-04-01

    Based on three-dimensional (3D) modeling, different manners of a planar-coil inductive discharge driving of a plasma source completed as a matrix of small-radius hydrogen discharges are studied regarding a proper choice of an efficient and alike rf power deposition into the separate discharges of the matrix. Driving the whole matrix by a single coil and splitting it to blocks of discharge tubes, with single coil driving of each block, are the two cases considered. The results from the self-consistent model presented for a block of discharge tubes show its reliability in ensuring the same spatial distribution of the plasma parameters in the discharges completing the block. Since regarding the construction of the matrix, its driving as a whole by a single coil is the most reasonable decision, three modifications of the coil design have been tested: two zigzag coils with straight conductors passing, respectively, between and through the bottoms of the discharge tubes and a coil with an "omega" shaped conductor on the bottom of each tube. Among these three configurations, the latter ‒ a coil with an Ω-shaped conductor on the bottom of each tube ‒ shows up with the highest rf efficiency of an inductive discharge driving, shown by results for the rf current induced in the discharges obtained from an electrodynamical description. In all the cases considered the spatial distribution of the induced current density is analysed based on the manner of the penetration into the plasma of the wave field sustaining the inductive discharges.

  16. Chiral Swiss rolls show a negative refractive index.

    Wiltshire, M C K; Pendry, J B; Hajnal, J V

    2009-07-22

    Chiral Swiss rolls, consisting of a metal/dielectric laminate tape helically wound on an insulating mandrel, have been developed to form the basis of a highly chiral metamaterial. We have fabricated these elements using a custom-built machine, and have characterized them. We find that the permeability, permittivity, and chirality are all resonant in the region of 80 MHz. The chirality is so strong that it can be directly measured by observing the magnetic response to an applied electric field, and is larger than either the permeability or the permittivity. We have estimated the refractive indices from these data, and find both strong circular dichroism and a wide frequency range where the refractive index is negative.

  17. Sub-picosecond optical switching with a negative index metamaterial

    Dani, Keshav M [Los Alamos National Laboratory; Upadhya, Prashant C [Los Alamos National Laboratory; Zahyum, Ku [CHTM-UNM

    2009-01-01

    Development of all-optical signal processing, eliminating the performance and cost penalties of optical-electrical-optical conversion, is important for continu,ing advances in Terabits/sec (Tb/s) communications.' Optical nonlinearities are generally weak, traditionally requiring long-path, large-area devicesl,2 or very high-Q, narrow-band resonator structures.3 Optical metamaterials offer unique capabilities for optical-optical interactions. Here we report 600 femtosecond (fs) all-optical modulation using a fIShnet (2D-perforated metallamorphous-Si (a-Si)/metal film stack) negative-index meta material with a structurally tunable broad-band response near 1.2 {micro}m. Over 20% modulation (experimentally limited) is achieved in a path length of only 116 nm by photo-excitation of carriers in the a-Si layer. This has the potential for Tb/s aU-optical communication and will lead to other novel, compact, tunable sub-picosecond (ps) photonic devices.

  18. Feasibility study for pseudoscopic problem in integral imaging using negative refractive index materials.

    Zhang, JianLei; Wang, XiaoRui; Chen, YuJiao; Zhang, QiPing; Yu, Shuo; Yuan, Ying; Guo, BingTao

    2014-08-25

    To solve the pseudoscopic problem, we propose a one-step integral imaging system with negative refractive index materials, which can avoid the deterioration in resolution inherent to the optical or digital two-step processes. Specifically, the proposed method is based on the novel feature of negative refractive index materials, bending light to a negative angle relative to the surface normal. The pseudoscopic imaging property of the negative refractive index material slab is theoretically investigated. For formation of orthoscopic reconstructed images, the matching condition of the negative index lens array and the positive index lens array is deduced. Two types of conceptual prototypes of integral imaging system with negative refractive index materials are designed. Experimental results show the validity of the proposed method. To the best of our knowledge, this is the first time to explore the application of negative index materials in eliminating the pseudoscopic effect in integral imaging.

  19. 3-D refractive index tomograms and deformability of individual human red blood cells from cord blood of newborn infants and maternal blood

    Park, HyunJoo; Kim, Kyoohyun; Lee, Sangyun; Kook, Songyi; Lee, Dongheon; Suh, In Bum; Nab, Sunghun; Park, YongKeun

    2015-01-01

    Red blood cells (RBCs) from the cord blood of newborn infants have distinctive functions for fetal and infant development. To systematically investigate the biophysical characteristics of individual cord RBCs in newborn infants, a comparative study was performed of RBCs from cord blood of newborn infants, and of adult RBCs from mothers or non-pregnant women, employing optical holographic micro-tomography. Optical measurements of 3-D refractive index distributions, and of dynamic membrane fluctuations of individual RBCs, enabled retrieval of the morphological, biochemical, and mechanical properties of cord, maternal, and adult RBCs at the individual cell level. The volume and surface area of the cord RBCs were significant larger than those of RBCs from non-pregnant women, and cord RBCs have more flattened shapes than RBCs in adults. In addition, the Hb content in the cord RBCs of newborns was significantly greater. The Hb concentration in cord RBCs was higher than for non-pregnant women or maternal RBCs, but t...

  20. 3D Quantification of Wall Shear Stress and Oscillatory Shear Index Using a Finite-Element Method in 3D CINE PC-MRI Data of the Thoracic Aorta.

    Sotelo, Julio; Urbina, Jesus; Valverde, Israel; Tejos, Cristian; Irarrazaval, Pablo; Andia, Marcelo E; Uribe, Sergio; Hurtado, Daniel E

    2016-06-01

    Several 2D methods have been proposed to estimate WSS and OSI from PC-MRI, neglecting the longitudinal velocity gradients that typically arise in cardiovascular flow, particularly on vessel geometries whose cross section and centerline orientation strongly vary in the axial direction. Thus, the contribution of longitudinal velocity gradients remains understudied. In this work, we propose a 3D finite-element method for the quantification of WSS and OSI from 3D-CINE PC-MRI that accounts for both in-plane and longitudinal velocity gradients. We demonstrate the convergence and robustness of the method on cylindrical geometries using a synthetic phantom based on the Poiseuille flow equation. We also show that, in the presence of noise, the method is both stable and accurate. Using computational fluid dynamics simulations, we show that the proposed 3D method results in more accurate WSS estimates than those obtained from a 2D analysis not considering out-of-plane velocity gradients. Further, we conclude that for irregular geometries the accurate prediction of WSS requires the consideration of longitudinal gradients in the velocity field. Additionally, we compute 3D maps of WSS and OSI for 3D-CINE PC-MRI data sets from an aortic phantom and sixteen healthy volunteers and two patients. The OSI values show a greater dispersion than WSS, which is strongly dependent on the PC-MRI resolution. We envision that the proposed 3D method will improve the estimation of WSS and OSI from 3D-CINE PC-MRI images, allowing for more accurate estimates in vessels with pathologies that induce high longitudinal velocity gradients, such as coarctations and aneurisms.

  1. Generalized Analytical Solutions for Nonlinear Positive-Negative Index Couplers

    Zh. Kudyshev

    2012-01-01

    Full Text Available We find and analyze a generalized analytical solution for nonlinear wave propagation in waveguide couplers with opposite signs of the linear refractive index, nonzero phase mismatch between the channels, and arbitrary nonlinear coefficients.

  2. Relationship between the Kramers-Kronig relations and negative index of refraction

    Hickey, Mark C; Kussow, Adil-Gerai

    2010-01-01

    The condition for a negative index of refraction with respect to the vacuum index is established in terms of permittivity and permeability susceptibilities. It is found that the imposition of analyticity to satisfy the Kramers-Kronig relations is a sufficiently general criterion for a physical negative index. The satisfaction of the Kramers-Kronig relations is a manifestation of the principle of causality and the predicted frequency region of negative index agrees with the Depine-Lakhtakia condition for the phase velocity being anti-directed to the Poynting vector, although the conditions presented here do not assume {\\it a priori} a negative solution branch for n.

  3. Deposited metamaterial thin film with negative refractive index and permeability in the visible regime.

    Jen, Yi-Jun; Chen, Chih-Hui; Yu, Ching-Wei

    2011-03-15

    Thin films are fabricated from arrays of silver nanorods with thicknesses of 160 nm and 200 nm, to function as a metamaterial. The negative refractive index and negative permeability are retrieved from measured reflection and transmission coefficients using walk-off interferometer in the visible regime. A negative-index-material thin film with negative permittivity or (and) permeability can be produced by glancing angle deposition.

  4. The use of a negative index planoconcave lens array for wide-viewing angle integral imaging.

    Kim, Hwi; Hahn, Joonku; Lee, Byoungho

    2008-12-22

    Wide-viewing angle integral imaging by means of a negative refractive index planoconcave lens array is theoretically investigated. The optical properties of a negative refractive index lens are analyzed from the point of view of integral imaging. The effective focal length of a positive index planoconvex lens and a negative index planoconcave lens with the same surface spherical curvature R are approximated as fP,eff = 2R and fN,eff = 0.4 R, respectively. This short effective focal length of the negative index lens is advantageous for extending the viewing angle of the integral imaging. In addition, some other optical properties of a negative index lens are analyzed and compared for a positive index lens. Three-dimensional ray-tracing observation simulations of integral imaging systems with a negative index lens array and a positive index lens array are then performed, in a comparative study of the wide- ewing angle mode for integral imaging. A three-dimensional ray-tracing simulator for an integral imaging system is then developed. Some interesting issues that appear in the wide-viewing mode of integral imaging are discussed. The negative refractive index planoconcave lens was found to give a wider viewing angle of -60(deg.) approximately +60(deg.) and reduces aberration with only a single spherical planoconcave lens.

  5. Tailoring the refractive index of Ge-S based glass for 3D embedded waveguides operating in the mid-IR region.

    Bérubé, J P; Messaddeq, S H; Bernier, M; Skripachev, I; Messaddeq, Y; Vallée, R

    2014-10-20

    The photosensitivity of GeS(x) binary glasses in response to irradiation to femtosecond pulses at 800 nm is investigated. Samples with three different molecular compositions were irradiated under different exposure conditions. The material response to laser exposure was characterized by both refractometry and micro-Raman spectroscopy. It is shown that the relative content of sulfur in the glass matrix influences the photo-induced refractive index modification. At low sulfur content, both positive and negative index changes can be obtained while at high sulfur content, only a positive index change can be reached. These changes were correlated with variations in the Raman response of exposed glass which were interpreted in terms of structural modifications of the glass network. Under optimized exposure conditions, waveguides with positive index changes of up to 7.8 x 10(-3)and a controllable diameter from 14 to 25 μm can be obtained. Direct inscription of low insertion losses (IL = 3.1 - 3.9 dB) waveguides is demonstrated in a sample characterized by a S/Ge ratio of 4. The current results open a pathway towards the use of Ge-S binary glasses for the fabrication of integrated mid-infrared photonic components.

  6. Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms.

    Momeni, Babak; Huang, Jiandong; Soltani, Mohammad; Askari, Murtaza; Mohammadi, Saeed; Rakhshandehroo, Mohammad; Adibi, Ali

    2006-03-20

    Here, we demonstrate a compact photonic crystal wavelength demultiplexing device based on a diffraction compensation scheme with two orders of magnitude performance improvement over the conventional superprism structures reported to date. We show that the main problems of the conventional superprism-based wavelength demultiplexing devices can be overcome by combining the superprism effect with two other main properties of photonic crystals, i.e., negative diffraction and negative refraction. Here, a 4-channel optical demultiplexer with a channel spacing of 8 nm and cross-talk level of better than -6.5 dB is experimentally demonstrated using a 4500 microm(2) photonic crystal region.

  7. Toxicity evaluation of magnetic hyperthermia induced by remote actuation of magnetic nanoparticles in 3D micrometastasic tumor tissue analogs for triple negative breast cancer.

    Stocke, Nathanael A; Sethi, Pallavi; Jyoti, Amar; Chan, Ryan; Arnold, Susanne M; Hilt, J Zach; Upreti, Meenakshi

    2017-03-01

    Magnetic hyperthermia as a treatment modality is acquiring increased recognition for loco-regional therapy of primary and metastatic lung malignancies by pulmonary delivery of magnetic nanoparticles (MNP). The unique characteristic of magnetic nanoparticles to induce localized hyperthermia in the presence of an alternating magnetic field (AMF) allows for preferential killing of cells at the tumor site. In this study we demonstrate the effect of hyperthermia induced by low and high dose of MNP under the influence of an AMF using 3D tumor tissue analogs (TTA) representing the micrometastatic, perfusion independent stage of triple negative breast cancer (TNBC) that infiltrates the lungs. While application of inhalable magnetic nanocomposite microparticles or magnetic nanocomposites (MnMs) to the micrometastatic TNBC model comprised of TTA generated from cancer and stromal cells, showed no measureable adverse effects in the absence of AMF-exposure, magnetic hyperthermia generated under the influence of an AMF in TTA incubated in a high concentration of MNP (1 mg/mL) caused significant increase in cellular death/damage with mechanical disintegration and release of cell debris indicating the potential of these inhalable composites as a promising approach for thermal treatment of diseased lungs. The novelty and significance of this study lies in the development of methods to evaluate in vitro the application of inhalable composites containing MNPs in thermal therapy using a physiologically relevant metastatic TNBC model representative of the microenvironmental characteristics in secondary lung malignancies.

  8. Low-loss negative index metamaterials for X, Ku, and K microwave bands

    David A. Lee

    2015-04-01

    Full Text Available Low-loss, negative-index of refraction metamaterials were designed and tested for X, Ku, and K microwave frequency bands. An S-shaped, split-ring resonator was used as a unit cell to design homogeneous slabs of negative-index metamaterials. Then, the slabs of metamaterials were cut unto prisms to measure experimentally the negative index of refraction of a plane electromagnetic wave. Theoretical simulations using High-Frequency Structural Simulator, a finite element equation solver, were in good agreement with experimental measurements. The negative index of refraction was retrieved from the angle- and frequency-dependence of the transmitted intensity of the microwave beam through the metamaterial prism and compared well to simulations; in addition, near-field electromagnetic intensity mapping was conducted with an infrared camera, and there was also a good match with the simulations for expected frequency ranges for the negative index of refraction.

  9. Measurement of a broadband negative index with space-coiling acoustic metamaterials.

    Xie, Yangbo; Popa, Bogdan-Ioan; Zigoneanu, Lucian; Cummer, Steven A

    2013-04-26

    We report the experimental demonstration of a broadband negative refractive index obtained in a labyrinthine acoustic metamaterial structure. Two different approaches were employed to prove the metamaterial negative index nature: one-dimensional extractions of effective parameters from reflection and transmission measurements and two-dimensional prism-based measurements that convincingly show the transmission angle corresponding to negative refraction. The transmission angles observed in the latter case also agree very well with the refractive index obtained in the one-dimensional measurements and numerical simulations. We expect this labyrinthine metamaterial to become the unit cell of choice for practical acoustic metamaterial devices that require broadband and significantly negative indices of refraction.

  10. Measurement of a Broadband Negative Index with Space-Coiling Acoustic Metamaterials

    Xie, Yangbo; Popa, Bogdan-Ioan; Zigoneanu, Lucian; Cummer, Steven A.

    2013-04-01

    We report the experimental demonstration of a broadband negative refractive index obtained in a labyrinthine acoustic metamaterial structure. Two different approaches were employed to prove the metamaterial negative index nature: one-dimensional extractions of effective parameters from reflection and transmission measurements and two-dimensional prism-based measurements that convincingly show the transmission angle corresponding to negative refraction. The transmission angles observed in the latter case also agree very well with the refractive index obtained in the one-dimensional measurements and numerical simulations. We expect this labyrinthine metamaterial to become the unit cell of choice for practical acoustic metamaterial devices that require broadband and significantly negative indices of refraction.

  11. Resolving the wave vector in negative refractive index media.

    Ramakrishna, S Anantha; Martin, Olivier J F

    2005-10-01

    We address the general issue of resolving the wave vector in complex electromagnetic media including negative refractive media. This requires us to make a physical choice of the sign of a square root imposed merely by conditions of causality. By considering the analytic behavior of the wave vector in the complex plane, it is shown that there are a total of eight physically distinct cases in the four quadrants of two Riemann sheets.

  12. A novel approach to design microwave medium of negative refractive index and simulation verification

    CAO YunJian; WEN GuangJun; WU KaiMin; XU XinHe

    2007-01-01

    In this paper, a novel approach is presented to synthesize microwave medium of negative refractive index by incorporating metallic wire array with negative effective permittivity into the host media such as ferrimagnet-YIG (yttrium iron garnet) applied by external magnetic field whose permeability is negative. We have designed the composite medium having negative refractive index in C/X band frequencies, analyzed and simulated its electromagnetic (EM) properties by use of EM EDA package based on time-domain finite integration method. The simulation results show that: ① the effective permittivity of the designed metallic wire array is negative in the frequency range from 7.02 GHz to 9.80 GHz; ② the permeability of YIG substrate immersed into an external magnetic field is negative in the frequency range from 5.22 GHz to 8.14 GHz; ③ EM wave can pass through the composite medium synthesized by the above designed metallic wire array and YIG substrate, and ④ the negative refraction behavior occurs on the interface between the composite medium and the normal material with positive refractive index in 7.51-8.13 GHz frequency range, in which the effective permittivity of the metallic wire array and the permeability of YIG substrate are negative simultaneously. The full wave simulation has demonstrated that the effective refractive index of the designed composite medium is indeed negative and ascertained that the proposed approach to design microwave medium with negative refractive index is viable.

  13. Probing negative refractive index of metamaterials by terahertz time-domain spectroscopy.

    Han, Jiaguang

    2008-01-21

    Terahertz time-domain spectroscopy (THz-TDS) offers a new perspective for extraction of negative refractive index of low-loss metamaterials directly. We present the detailed extraction procedure how to obtain the negative refractive index of metamaterials through THz-TDS measurement. The basic equations are deduced to obtain the negative index through comparison of THz data measured for the sample and reference, respectively. Further simulation examples matching the practical experimental cases are given, which verifies that the extraction procedure is reliable. This approach demonstrates the potential use of THz-TDS in study of metamaterials and is helpful for design of metamaterial devices.

  14. Thermal radiation antennas made of multilayer structures containing negative index metamaterials

    Maksimovic, M.; Hammer, M.; Jaksic, Z.; Greiner, C.M.; Waechter, C.A.

    2008-01-01

    We investigate the thermal antenna behavior of emissive/absorptive substrates coated by passive optical multilayer systems that contain negative refractive index metamaterials (NIM). Spectral and angular distributions of the thermal radiation emittance for periodic defect-containing multilayer with

  15. Plasmon-Enhanced Photonic Crystal Negative Index Materials for Superlensing Applications Project

    National Aeronautics and Space Administration — Negative index materials (NIMs) offer tremendous potential for the formation of highly compact as well as large-area deployable thin-film optical components. Omega...

  16. Spin angular momentum transfer from TEM(00) focused Gaussian beams to negative refractive index spherical particles.

    Ambrosio, Leonardo A; Hernández-Figueroa, Hugo E

    2011-08-01

    We investigate optical torques over absorbent negative refractive index spherical scatterers under the influence of linear and circularly polarized TEM(00) focused Gaussian beams, in the framework of the generalized Lorenz-Mie theory with the integral localized approximation. The fundamental differences between optical torques due to spin angular momentum transfer in positive and negative refractive index optical trapping are outlined, revealing the effect of the Mie scattering coefficients in one of the most fundamental properties in optical trapping systems.

  17. Long wave-short wave resonance in nonlinear negative refractive index media.

    Chowdhury, Aref; Tataronis, John A

    2008-04-18

    We show that long wave-short wave resonance can be achieved in a second-order nonlinear negative refractive index medium when the short wave lies on the negative index branch. With the medium exhibiting a second-order nonlinear susceptibility, a number of nonlinear phenomena such as solitary waves, paired solitons, and periodic wave trains are possible or enhanced through the cascaded second-order effect. Potential applications include the generation of terahertz waves from optical pulses.

  18. Theory of negative-refractive-index response of double-fishnet structures.

    Mary, A; Rodrigo, Sergio G; Garcia-Vidal, F J; Martin-Moreno, L

    2008-09-05

    A theory is presented of the negative refractive index observed in the so-called double-fishnet structures. We find that the electrical response of these structures is dominated by the cutoff frequency of the hole waveguide whereas the resonant magnetic response is due to the excitation of gap surface plasmon polaritons propagating along the dielectric slab. Associated with this origin, we show how the negative refractive index in these metamaterials presents strong dispersion with the parallel momentum of the incident light.

  19. Negative radiation pressure and negative effective refractive index via dielectric birefringence.

    Nemirovsky, Jonathan; Rechtsman, Mikael C; Segev, Mordechai

    2012-04-09

    We show that light guided in a planar dielectric slab geometry incorporating a biaxial medium has lossless modes with group and phase velocities in opposite directions. Particles in a vacuum gap inserted into the structure experience negative radiation pressure: the particles are pulled by light rather than pushed by it. This effectively one-dimensional dielectric structure represents a new geometry for achieving negative radiation pressure in a wide range of frequencies with minimal loss. Moreover, this geometry provides a straightforward platform for experimentally resolving the Abrahams-Minkowski dilemma.

  20. Experimental characterization of negative refractive index material NRM at Ka band

    Chatterjee, Sougata

    2016-01-01

    In this paper, we discuss the experimental characterization of a negative refractive material NRM at Ka band using LR labyrinth Ring and wire array WA. We describe in detail the the LR and wire array characterization separately, and after that the combined experimental results, for NRM are reported. The LRs analytical and simulation study is not new but design in Ka band and different experimental procedure for the characterization of the negative refractive index is the novelty of this paper. For performing a negative refractive index experiment we made prism of 150 Prism angle . We get enhanced transmittance of more than 20 dB from background, at a negative angle of refraction. The values of the negative refractive index in a band of about 1 G Hz around 31 GHz are retrieved from the experimental data.

  1. Simulations and realizations of active right-handed metamaterials with negative refractive index.

    Nistad, Bertil; Skaar, Johannes

    2007-08-20

    The theory of determining the sign of the refractive index in active materials is discussed. Animations of numerical simulations are presented, supporting the claim that negative refractive index may occur in right-handed media. An example of such a medium, in the form of a lumped circuit model with active and passive resonances, is presented.

  2. Spectral response of Cantor multilayers made of materials with negative refractive index

    Gerardin, Jaline; Lakhtakia, Akhlesh

    2002-01-01

    Whereas Cantor multilayers made of an isotropic dielectric-magnetic material with positive refractive index will show power-law characteristics, low-order Cantor multilayers made of materials with negative refractive index will not exhibit the power-law nature. A reason for this anomalous behavior is presented.

  3. Simulations and realizations of active right-handed metamaterials with negative refractive index

    Nistad, Bertil; Skaar, Johannes

    2007-01-01

    The theory of determining the sign of the refractive index in active materials is discussed. Animations of numerical simulations are presented, supporting the claim that negative refractive index may occur in right-handed media. An example of such a medium, in the form of a lumped circuit model with active and passive resonances, is presented.

  4. Bi-layer cross chiral structure with strong optical activity and negative refractive index.

    Dong, Jianfeng; Zhou, Jiangfeng; Koschny, Thomas; Soukoulis, Costas

    2009-08-03

    The properties of periodic pairs of mutually twisted metallic (silver) crosses separated by dielectric layer have been investigated by numerical simulation. The results show that the exceptionally strong polarization rotation and circular dichroism, negative permeability and negative refractive index are found at the infrared communication wavelength (1.55 microm).

  5. Invertebrate superposition eyes-structures that behave like metamaterial with negative refractive index

    Stavenga, D. G.

    2006-01-01

    The superposition eyes of moths and lobsters are described with the geometrical optics for a refractive surface between two media, where the refractive index of the image space is negative. Consequently, the eye power and the object focal length are negative, whereas the image focal length is positi

  6. Electromagnetic scattering by spherical negative-refractive-index particles: Low-frequency resonance and localization parameters.

    Liu, Zheng; Lin, Zhifang; Chui, S T

    2004-01-01

    The Mie scattering of electromagnetic waves of wave vector k by spherical negative-refractive-index particles of radius a exhibits an unusual resonance at ka-->0. The scattering enhancement from the ka-->0 resonance is insensitive to the size of scatterers, distinct from the Mie scattering resonances from positive-refractive-index particles. For media consisting of a collection of the negative-refractive-index particles, the unusual resonance results in a significant reduction of the localization parameter, providing a possibility to reach the light localization transition by reducing the wave vector k, in analogy to electronic systems.

  7. Creating double negative index materials using the Babinet principle with one metasurface

    Zhang, Lei; Koschny, Thomas; Soukoulis, C. M.

    2013-01-01

    Metamaterials are patterned metallic structures which permit access to a novel electromagnetic response, negative index of refraction, impossible to achieve with naturally occurring materials. Using the Babinet principle, the complementary split ring resonator (SRR) is etched in a metallic plate to provide negative ɛ, with perpendicular direction. Here we propose a new design, etched in a metallic plate to provide negative magnetic permeability μ, with perpendicular direction. The combined electromagnetic response of this planar metamaterial, where the negative μ comes from the aperture and the negative ɛ from the remainder of the continuous metallic plate, allows achievement of a double negative index metamaterial (NIM) with only one metasurface and strong transmission. These designs can be used to fabricate NIMs at microwave and optical wavelengths and three-dimensional metamaterials.

  8. Composite chiral metamaterials with negative refractive index and high values of the figure of merit.

    Li, Zhaofeng; Alici, Kamil Boratay; Caglayan, Humeyra; Kafesaki, Maria; Soukoulis, Costas M; Ozbay, Ekmel

    2012-03-12

    A composite chiral metamaterial (CCMM) is designed and studied both numerically and experimentally. The CCMM is constructed by the combination of a continuous metallic wires structure and a purely chiral metamaterial (CMM) that consists of conjugated Rosettes. For the CMM, only very small, useful bands of negative index can be obtained for circularly polarized waves. These bands are all above the chiral resonance frequencies because of the high value of the effective parameter of relative permittivity ε. After the addition of the continuous metallic wires, which provide negative permittivity, the high value of ε can be partially compensated. Thus, a negative index band for the left circularly polarized wave that is below the chiral resonance frequency is obtained for the CCMM. At the same time, a negative index band for the right circularly polarized wave that is above the chiral resonance frequency is also obtained. Furthermore, both negative index bands correspond to the transmission peaks and have high values of the figure of merit. Therefore, the CCMM design that is proposed here is more suitable than the CMM for the construction of chiral metamaterials with a negative index.

  9. 3D Animation Essentials

    Beane, Andy

    2012-01-01

    The essential fundamentals of 3D animation for aspiring 3D artists 3D is everywhere--video games, movie and television special effects, mobile devices, etc. Many aspiring artists and animators have grown up with 3D and computers, and naturally gravitate to this field as their area of interest. Bringing a blend of studio and classroom experience to offer you thorough coverage of the 3D animation industry, this must-have book shows you what it takes to create compelling and realistic 3D imagery. Serves as the first step to understanding the language of 3D and computer graphics (CG)Covers 3D anim

  10. 3D video

    Lucas, Laurent; Loscos, Céline

    2013-01-01

    While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century.The chapters in this book cover a large spectrum of areas connected to 3D video, which are presented both theoretically and technologically, while taking into account both physiological and perceptual aspects. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide th

  11. A cluster of many small holes with negative imaginary surface impedances may generate a negative refraction index

    Alsaedi, Ahmed; Ahmad, Bashir; Challa, Durga Prasad; Kirane, Mokhtar; Sini, Mourad

    2016-09-01

    We deal with the scattering of an acoustic medium modeled by an index of refraction $n$ varying in a bounded region $\\Omega$ of $\\mathbb{R}^3$ and equal to unity outside $\\Omega$. This region is perforated with an extremely large number of small holes $D_m$'s of maximum radius $a$, $a0$ and $\\lambda_{m,0}$ being constants and eventually complex numbers. Under some natural conditions on the parameters $\\beta, t$ and $\\lambda_{m,0}$, we characterize the equivalent medium generating, approximately, the same scattered waves as the original perforated acoustic medium. We give an explicit error estimate between the scattered waves generated by the perforated medium and the equivalent one respectively, as $a \\rightarrow 0$. As applications of these results, we discuss the following findings: 1. If we choose negative valued imaginary surface impedance functions, attached to each surface of the holes, then the equivalent medium behaves as a passive acoustic medium only if it is an acoustic metamaterial with index of refraction $\\tilde{n}(x)=-n(x),\\; x \\in \\Omega$ and $\\tilde{n}(x)=1,\\; x \\in \\mathbb{R}^3\\setminus{\\overline{\\Omega}}$. This means that, with this process, we can switch the sign of the index of the refraction from positive to negative values. 2. We can choose the surface impedance functions attached to each surface of the holes so that the equivalent index of refraction $\\tilde{n}$ is $\\tilde{n}(x)=1,\\; x \\in \\mathbb{R}^3$. This means that the region $\\Omega$ modeled by the original index of refraction $n$ is approximately cloaked.

  12. An anisotropic negative refractive index medium operated at multiple-angle incidences.

    Yang, Tien-Chung; Yang, Yu-Hang; Yen, Ta-Jen

    2009-12-21

    Recently metamaterials have been demonstrating new physics to enable various unprecedented electromagnetic properties, but pratically they are so sensitive to incident angles of the external excitation that their applications are restricted. Therefore, we present an anisotropic negative refractive index medium operated at multiple-angle incidences (NRIM for MAI) to ease such a burden. Both the simulated and measured transmittance, reflectance and the corresponding material parameters indicate that our structure does possess the anisotropic negative refractive index with respect to different incident angles. In addition, the opposite directions of group and phase velocities are also demonstrated under both grazing-angle, normal and 45-degree incidences to further verify the negative refractive index of the designed monolithic NRIM structure for multiple-angle incidences.

  13. Influence of Filling Medium of Holes on the Negative-Index Response of Sandwiched Metamaterials

    WANG Xu-Dong; YE Yong-Hong; MA Ji; JIANG Mei-Ping

    2010-01-01

    @@ We numerically study the negative index properties of sandwiched metamaterials,perforated with a square array of circle holes filled with different media.Transmission spectra indicate that the filling medium can effectively change the position of the localized resonant peak,while keeping the position of the other transmission peaks hardly changed.Reflection spectra and retrieved effective impedance verify that an appropriate choice of the filling medium can provide a perfect impedance match.Due to the perfect impedance match,the electromagnetic responses of the negative index band based on the internal surface plasmon polaritons change in many aspects,such as a stronger magnetic resonance,a higher figure of merit and a narrower negative refractive index band.

  14. Negative-index gratings formed by femtosecond laser overexposure and thermal regeneration.

    He, Jun; Wang, Yiping; Liao, Changrui; Wang, Chao; Liu, Shen; Yang, Kaiming; Wang, Ying; Yuan, Xiaocong; Wang, Guo Ping; Zhang, Wenjing

    2016-03-16

    We demonstrate a method for the preparation of negative-index fibre Bragg gratings (FBGs) using 800 nm femtosecond laser overexposure and thermal regeneration. A positive-index type I-IR FBG was first inscribed in H2-free single-mode fibre using a femtosecond laser directed through a phase mask, and then a highly polarization dependant phase-shifted FBG (P-PSFBG) was fabricated from the type I-IR FBG by overexposure to the femtosecond laser. Subsequently, the P-PSFBG was thermally annealed at 800 °C for 12 hours. Grating regeneration was observed during thermal annealing, and a negative-index FBG was finally obtained with a high reflectivity of 99.22%, an ultra-low insertion loss of 0.08 dB, a blueshift of 0.83 nm in the Bragg wavelength, and an operating temperature of up to 1000 °C for more than 10 hours. Further annealing tests showed that the thermal stability of the negative-index FBG was lower than that of a type II-IR FBG, but much higher than that of a type I-IR FBG. Moreover, the formation of such a negative-index grating may result from thermally regenerated type IIA photosensitivity.

  15. Design of fiber metamaterials with negative refractive index in the infrared.

    Townsend, Scott; Zhou, Shiwei; Li, Qing

    2015-07-13

    Metamaterials possess intricate, sub-wavelength microstructures, making scalability a salient concern in regard to their practicality. Fiber-drawing offers a route to producing large quantities of material at relatively low cost, though to our knowledge, a fiber-based design capable of negative refractive index behaviour has not yet been proposed. We submit that the electric and magnetic dipole resonance modes of the fiber can be enhanced by including in the fiber aligned metallic inclusions. Addition of a solid metallic core can effect a synchronisation of these modes, allowing a collection of the fibers to possess negative refractive index.

  16. Design of fishnet metamaterials with broadband negative refractive index in the visible spectrum.

    Zhou, Shiwei; Townsend, Scott; Xie, Yi Min; Huang, Xiaodong; Shen, Jianhu; Li, Qing

    2014-04-15

    We propose a technique capable of designing fishnet metamaterials that have a negative refractive index (NRI) over a broad range in the visible and infrared. The technique relies on optimizing the shape and scale of the fishnet apertures as well as the depth of different layers of the composite. A metamaterial is obtained that exhibits an unbroken 552 nm bandwidth of NRI, covering the entire red and infrared regions. Moreover, two fishnet structures perforated with star-like holes are found to render refractive index negative in the yellow and green spectra.

  17. Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides

    Verhagen, Ewold; L.,; Kuipers,; Polman, Albert

    2010-01-01

    We identify a route towards achieving a negative index of refraction at optical frequencies based on coupling between plasmonic waveguides that support backwards waves. We show how modal symmetry can be exploited in metal-dielectric waveguide pairs to achieve negative refraction of both phase and energy. By properly controlling coupling between adjacent waveguides, a metamaterial consisting of a one-dimensional multilayer stack exhibiting an isotropic index of -1 can be achieved at a free-space wavelength of 400 nm. The general concepts developed here may inspire new low-loss metamaterial designs operating close to the metal plasma frequency.

  18. Three-Dimensional Negative Index of Refraction at Optical Frequencies by Coupling Plasmonic Waveguides

    Verhagen, Ewold; de Waele, René; Kuipers, L.; Polman, Albert

    2010-11-01

    We identify a route towards achieving a negative index of refraction at optical frequencies based on coupling between plasmonic waveguides that support backwards waves. We show how modal symmetry can be exploited in metal-dielectric waveguide pairs to achieve negative refraction of both phase and energy. Control of waveguide coupling yields a metamaterial consisting of a one-dimensional multilayer stack that exhibits an isotropic index of -1 at a free-space wavelength of 400 nm. The concepts developed here may inspire new low-loss metamaterial designs operating close to the metal plasma frequency.

  19. Relations between Multi-Poly-Bernoulli numbers and Poly-Bernoulli numbers of negative index

    Komaki, Hiroyuki

    2015-01-01

    Poly-Bernoulli numbers $B_n^{(k)}\\in\\mathbb{Q}$\\,($n \\geq 0$,\\,$k \\in \\mathbb{Z}$) are defined by Kaneko in 1997. Multi-Poly-Bernoulli numbers\\,$B_n^{(k_1,k_2,\\ldots, k_r)}$, defined by using multiple polylogarithms, are generations of Kaneko's Poly-Bernoulli numbers\\,$B_n^{(k)}$. We researched relations between Multi-Poly-Bernoulli numbers and Poly-Bernoulli numbers of negative index in particular. In section 2, we introduce a identity for Multi-Poly-Bernoulli numbers of negative index which...

  20. Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides.

    Verhagen, Ewold; de Waele, René; Kuipers, L; Polman, Albert

    2010-11-26

    We identify a route towards achieving a negative index of refraction at optical frequencies based on coupling between plasmonic waveguides that support backwards waves. We show how modal symmetry can be exploited in metal-dielectric waveguide pairs to achieve negative refraction of both phase and energy. Control of waveguide coupling yields a metamaterial consisting of a one-dimensional multilayer stack that exhibits an isotropic index of -1 at a free-space wavelength of 400 nm. The concepts developed here may inspire new low-loss metamaterial designs operating close to the metal plasma frequency.

  1. Analysis of surface plasmon waves in metaldielectric- metal structures and the criterion for negative refractive index.

    Yang, Tian; Crozier, Kenneth B

    2009-01-19

    Surface plasmon waves in metal-dielectric-metal structures have been theoretically examined. Because of the existence of evanescent waves that can have comparable or smaller decay rates than the propagating waves, the sign of dispersion does not necessarily indicate the sign of effective refractive index for these structures. By using the direction of energy decay to distinguish the sign of index, we have obtained different results and insights from previous reports. We also propose an approach to increase the bandwidth and decrease the loss of negative index surface Plasmon propagation in the MDM structure, by simply changing the properties of its dielectric layer.

  2. Effect of body mass index on clinical and morphological characteristics of triple negative breast cancer

    I. B. Schepotin

    2014-01-01

    Full Text Available Triple negative breast cancer phenotype characterized by a more aggressive than other molecular types of tumor. In addition to non-modifiable clinical and pathological factors of aggressiveness of triple negative breast cancer is caused by potentially modifiable lifestyle (obesity, alcohol consumption, hypodynamia etc.. In this study we investigated the relationship between body mass index at diagnosis, clinical and morphological outcome predictors, and the impact of obesity on overall and disease-free survival of patients with triple negative breast cancer.

  3. E3D R-Tree: An Index Structure for Indexing the Histories in Moving Object Database%E3D R-Tree:一种处理移动对象数据库历史查询的索引结构

    张文杰; 李建中; 张炜

    2005-01-01

    历史查询是移动对象数据库管理的一个重要方面.为提高历史查询效率,在3D R-Tree基础上实现了优化的索引结构E3D R-Tree.在E3D R-Tree中,结合移动对象数据特征引入空白区域作为新的插入代价参数,同时,在插入算法中利用最小代价优先搜索算法确定全局最优插入路径,并给出算法正确性证明.实验结果表明,E3D R-Tree查询效率高于3D R-Tree.

  4. Low-loss 3D-laser-written mid-infrared LiNbO3 depressed-index cladding waveguides for both TE and TM polarizations.

    Nguyen, Huu-Dat; Ródenas, Airán; Vázquez de Aldana, Javier R; Martín, Guillermo; Martínez, Javier; Aguiló, Magdalena; Pujol, Maria Cinta; Díaz, Francesc

    2017-02-20

    We report mid-infrared LiNbO3 depressed-index microstructured cladding waveguides fabricated by three-dimensional laser writing showing low propagation losses (~1.5 dB/cm) at 3.68 µm wavelength for both the transverse electric and magnetic polarized modes, a feature previously unachieved due to the strong anisotropic properties of this type of laser microstructured waveguides and which is of fundamental importance for many photonic applications. Using a heuristic modeling-testing iteration design approach which takes into account cladding induced stress-optic index changes, the fabricated cladding microstructure provides low-loss single mode operation for the mid-IR for both orthogonal polarizations. The dependence of the localized refractive index changes within the cladding microstructure with post-fabrication thermal annealing processes was also investigated, revealing its complex dependence of the laser induced refractive index changes on laser fabrication conditions and thermal post-processing steps. The waveguide modes properties and their dependence on thermal post-processing were numerically modeled and fitted to the experimental values by systematically varying three fundamental parameters of this type of waveguides: depressed refractive index values at sub-micron laser-written tracks, track size changes, and piezo-optic induced refractive index changes.

  5. Comparison of negative refractive index materials with circular, elliptical and rectangular holes.

    Ku, Zahyun; Brueck, S R J

    2007-04-16

    Negative-index metamaterials (NIMs) at near infrared wavelengths (~2 mum) are fabricated with circular, elliptical and rectangular holes penetrating through metal/dielectric/metal films. All three NIM structures exhibit similar figures of merit; however, the transmission is higher for the NIM with rectangular holes as a result of an improved impedance match with the substrate-superstrate (air-glass) combination.

  6. (Department of Science)On certain properties of poly-Bernoulli numbers with negative index

    坂田, 実加; 大野, 泰生

    2013-01-01

    Poly-Bernoulli numbers were introduced and studied by M. Kaneko as a generalization of classical Bernoulli numbers. In this article, for any prime number ρ, certain congruence properties of poly-Bernoulli numbers with negative index modulo ρare given.

  7. Unassisted 3D camera calibration

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  8. Implementation of 3D spatial indexing and compression in a large-scale molecular dynamics simulation database for rapid atomic contact detection

    Toofanny Rudesh D

    2011-08-01

    Full Text Available Abstract Background Molecular dynamics (MD simulations offer the ability to observe the dynamics and interactions of both whole macromolecules and individual atoms as a function of time. Taken in context with experimental data, atomic interactions from simulation provide insight into the mechanics of protein folding, dynamics, and function. The calculation of atomic interactions or contacts from an MD trajectory is computationally demanding and the work required grows exponentially with the size of the simulation system. We describe the implementation of a spatial indexing algorithm in our multi-terabyte MD simulation database that significantly reduces the run-time required for discovery of contacts. The approach is applied to the Dynameomics project data. Spatial indexing, also known as spatial hashing, is a method that divides the simulation space into regular sized bins and attributes an index to each bin. Since, the calculation of contacts is widely employed in the simulation field, we also use this as the basis for testing compression of data tables. We investigate the effects of compression of the trajectory coordinate tables with different options of data and index compression within MS SQL SERVER 2008. Results Our implementation of spatial indexing speeds up the calculation of contacts over a 1 nanosecond (ns simulation window by between 14% and 90% (i.e., 1.2 and 10.3 times faster. For a 'full' simulation trajectory (51 ns spatial indexing reduces the calculation run-time between 31 and 81% (between 1.4 and 5.3 times faster. Compression resulted in reduced table sizes but resulted in no significant difference in the total execution time for neighbour discovery. The greatest compression (~36% was achieved using page level compression on both the data and indexes. Conclusions The spatial indexing scheme significantly decreases the time taken to calculate atomic contacts and could be applied to other multidimensional neighbor discovery

  9. 3D laser-written silica glass step-index high-contrast waveguides for the 3.5 μm mid-infrared range.

    Martínez, Javier; Ródenas, Airán; Fernandez, Toney; Vázquez de Aldana, Javier R; Thomson, Robert R; Aguiló, Magdalena; Kar, Ajoy K; Solis, Javier; Díaz, Francesc

    2015-12-15

    We report on the direct laser fabrication of step-index waveguides in fused silica substrates for operation in the 3.5 μm mid-infrared wavelength range. We demonstrate core-cladding index contrasts of 0.7% at 3.39 μm and propagation losses of 1.3 (6.5) dB/cm at 3.39 (3.68) μm, close to the intrinsic losses of the glass. We also report on the existence of three different laser modified SiO₂ glass volumes, their different micro-Raman spectra, and their different temperature-dependent populations of color centers, tentatively clarifying the SiO₂ lattice changes that are related to the large index changes.

  10. A Novel Multiphase Sn-Sb-Cu Alloy Electrodeposited on 3D Interconnected Microporous Cu Current Collector as Negative Electrode for Lithium Ion Battery

    Sengupta, Srijan; Patra, Arghya; Deo, Yash; Das, Karabi; Majumder, Subhasish Basu; Das, Siddhartha

    2017-03-01

    We report a novel, active-active-inactive-type tin-antimony-copper alloy with dendritic morphology electrodeposited on 3D interconnected microporous copper foam ( 70 μm pore diameter) as a promising high specific capacity anode for Li-ion batteries. The multiphase composition, SnSb and Cu6Sn5 "reactant" intermetallics embedded in Sn "matrix," alleviates the volumetric stress generated during cycling by lithiating at different step potentials (0.84, 0.66, 0.57, 0.42, 0.39, and 0.38 to 0.33 V vs Li/Li+). Copper foam successfully acts as a stress buffer preventing both pulverization and delamination. This combination of properties in tin-antimony-copper anode on copper foam results in 2nd cycle discharge capacity of 723 mAh/g, superior rate capability, and stable cycle retention with a capacity loss of 16 pct in the last 70 cycles at a rate of 400 mA/g (0.5 C) while preserving its structural integrity in comparison to tin-antimony-copper anode deposited on a planar copper foil as a current collector.

  11. Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths

    Garcia-Meca, Carlos

    2012-02-01

    Over the last decade, metamaterials have attracted a great interest thanks to their potential to expand the range of electromagnetic properties found in natural materials. In particular, the possibility of achieving negative refractive index media (NIM) enables us to implement superlenses and optical storing devices. Since the first experimental demonstration at microwave frequencies, much effort has been put in extending negative refraction to the visible spectrum, where we can take full advantage of NIM properties. For instance, the superior imaging ability of NIM would be essential for visible microscopy. The desired features for NIM are low loss and isotropy. This last property includes polarization independence and negative-index behavior in all spatial directions. None of these features have been attained in previous experiments. Thus, the current challenge is to improve such aspects in order to make NIM suitable for practical applications. In this work, we experimentally demonstrate a low-loss multilayer metamaterial exhibiting a double-negative index in the visible spectrum, while presenting polarization independence at normal incidence. This has been achieved by exploiting the properties of a second-order magnetic resonance of the so-called fishnet structure, in contrast to previous works that used first-order magnetic resonances, both related to gap surface plasmon polariton (SPP) modes. The low-loss nature of the employed magnetic resonance, together with the effect of the interacting adjacent layers, results in a figure of merit as high as 3.34. A wide spectral range of negative index is achieved, covering the wavelength region between 620 and 806 nm with only two different designs. The fabricated metamaterials are the first experimental multilayer NIM in the visible spectrum, which entails an important step towards homogeneous NIM in this range. Finally, we found that the SPP modes determining the permeability resonance display weak angular dispersion.

  12. W-band Pancharatnam half-wave plate based on negative refractive index metamaterials.

    Mohamed, Imran; Pisano, Giampaolo; Ng, Ming Wah

    2014-04-01

    Electromagnetic metamaterials, made from arrangements of subwavelength-sized structures, can be used to manipulate radiation. Designing metamaterials that have a positive refractive index along one axis and a negative refractive index along the orthogonal axis can result in birefringences, Δn>1. The effect can be used to create wave plates with subwavelength thicknesses. Previous attempts at making wave plates in this way have resulted in very narrow usable bandwidths. In this paper, we use the Pancharatnam method to increase the usable bandwidth. A combination of finite element method and transmission line models was used to optimize the final design. Experimental results are compared with the modeled data.

  13. W-Band Pancharatnam Half Wave Plate Based on Negative Refractive Index Metamaterials

    Mohamed, Imran; Ng, Ming Wah

    2014-01-01

    Electromagnetic metamaterials, made from arrangements of subwavelength sized structures, can be used to manipulate radiation. Designing metamaterials that have a positive refractive index along one axis and a negative refractive index along the orthogonal axis can result in birefringences, $\\Delta n>1$. The effect can be used to create wave plates with subwavelength thicknesses. Previous attempts at making wave plates in this way have resulted in very narrow usable bandwidths. In this paper, we use the Pancharatnam method to increase the usable bandwidth. A combination of Finite Element Method and Transmission Line models were used to optimise the final design. Experimental results are compared to the modelled data.

  14. IZDELAVA TISKALNIKA 3D

    Brdnik, Lovro

    2015-01-01

    Diplomsko delo analizira trenutno stanje 3D tiskalnikov na trgu. Prikazan je razvoj in principi delovanja 3D tiskalnikov. Predstavljeni so tipi 3D tiskalnikov, njihove prednosti in slabosti. Podrobneje je predstavljena zgradba in delovanje koračnih motorjev. Opravljene so meritve koračnih motorjev. Opisana je programska oprema za rokovanje s 3D tiskalniki in komponente, ki jih potrebujemo za izdelavo. Diploma se oklepa vprašanja, ali je izdelava 3D tiskalnika bolj ekonomična kot pa naložba v ...

  15. 大规模点云数据的二维与三维混合索引方法%A Combined 2D and 3D Spatial Indexing of Very Large Point-cloud Data Sets

    王晏民; 郭明

    2012-01-01

    为提高点云查询效率和按需提取数据,提出一种二维与三维混合索引的大规模点云数据管理方法。采用二维四叉树和三维最小外包盒结构管理原始点云,以3D-R树管理多站点云,利用对象关系数据库管理全部点云模型和相关属性数据。利用古建筑大规模点云数据在微机上实现了点云模型的数据存储与可视化。结果表明本方法能够管理超过10 GB级的点云模型数据和十亿级有效点,数据可视化效率较高。%A database management algorithm based on combined 2D and 3D indexing of very large point-cloud data is proposed,for extracting the point cloud in need and improving the query efficiency.Single-station point-cloud is managed with 2D quad tree and 3D MBB structure.Multi-station point-clouds are indexed with 3D-R tree.Finally the organized hierarchical model and other attribute data are stored in ralation-object database.The data storage,management and visualization of very large point-clouds are implimented on personal computer with massive point clouds from the ancient buildings such as Forbidden City.Result shows that the algorithm is able to manage more than 10 GB-level data and one billion effective points with satisfactory drawing efficiency.

  16. Nonlinear wave mixing and susceptibility properties of negative refractive index materials.

    Chowdhury, Aref; Tataronis, John A

    2007-01-01

    We present an analysis of second-order and third-order nonlinear susceptibilities and wave-mixing properties of negative refractive index materials. We show that the nonlinear susceptibilities for noncentrosymmetric and centrosymmetric media may be positive or negative and away from resonance depending on the frequency of interest relative to the resonant frequencies of the material. Manipulation of the signs of the nonlinear susceptibilities is important in the field of optics, particularly for solitons and compensation of nonlinear effects. We also show that three- and four-wave mixing can be naturally phase matched in the material.

  17. Vapor-deposited thin films with negative real refractive index in the visible regime.

    Jen, Yi-Jun; Lakhtakia, Akhlesh; Yu, Ching-Wei; Lin, Chin-Te

    2009-05-11

    A thin film comprising parallel tilted nanorods was deposited by directing silver vapor obliquely towards a plane substrate. The reflection and transmission coefficients of the thin film were measured at three wavelengths in the visible regime for normal-illumination conditions, using ellipsometry and walk-off interferometry. The thin film was found to display a negative real refractive index. Since vapor deposition is a well-established industrial technique to deposit thin films, this finding is promising for large-scale production of negatively refracting metamaterials.

  18. High symmetry versus optical isotropy of a negative-index metamaterial

    Menzel, Christoph; Rockstuhl, Carsten; Lliew, Rumen;

    2010-01-01

    Optically isotropic metamaterials MMs are required for the implementation of subwavelength imaging systems. At first glance one would expect that their design should be based on unit cells exhibiting a cubic symmetry being the highest crystal symmetry. It is anticipated that this is a sufficient...... in carcass negative index MM. We show that this MM is basically optically isotropic but not in the spectral domain where it exhibits negative refraction. The primary goal of this contribution is to introduce a tool that allows to probe a MM against optical isotropy....

  19. Observation of the inverse Doppler effect in negative-index materials at optical frequencies

    Chen, Jiabi; Wang, Yan; Jia, Baohua; Geng, Tao; Li, Xiangping; Feng, Lie; Qian, Wei; Liang, Bingming; Zhang, Xuanxiong; Gu, Min; Zhuang, Songlin

    2011-04-01

    The Doppler effect is a fundamental frequency shift phenomenon that occurs whenever a wave source and an observer are moving with respect to one another. It has well-established applications in astrophotonics, biological diagnostics, weather and aircraft radar systems, velocimetry and vibrometry. The counterintuitive inverse Doppler effect was theoretically predicted in 1968 by Veselago in negative-index materials. However, because of the tremendous challenges of frequency shift measurements inside such materials, most investigations of the inverse Doppler effect have been limited to theoretical predictions and numerical simulations. Indirect experimental measurements have been conducted only in nonlinear transmission lines at ~1-2 GHz (ref. 8) and in acoustic media at 1-3 kHz (ref. 9). Here, we report the first experimental observation of the inverse Doppler shift at an optical frequency (λ = 10.6 µm) by refracting a laser beam in a photonic-crystal prism that has the properties of a negative-index material.

  20. Symmetry relations in the generalized Lorenz-Mie theory for lossless negative refractive index media

    André Ambrosio, Leonardo

    2016-09-01

    In this paper we present a theoretical analysis of the generalized Lorenz-Mie theory for negative refractive index (NRI) media and spherical scatterers, extending the well-known concepts and definitions found in the literature involving dielectric or positive refractive index (PRI) particles. The consequences of a negative phase velocity and an anti-parallelism of the wave vector with respect to the Poynting vector are investigated and interpreted in this framework and, together with the symmetries found for the beam-shape coefficients when compared to the conventional PRI case, it is shown that the description of plane waves, Gaussian beams and, more generally, on-axis azimuthally symmetric waves along a NRI medium, their fields and all physical properties can be conveniently correlated with that of dielectric media once the electromagnetic response functions are replaced by their corresponding dielectric counterparts.

  1. Plasmonic interaction of light with negative index and gold nano-checkerboards

    Chakrabarti, Sangeeta; Shukla, Neeraj; Guenneau, Fanny; Kadic, Muamer; Guenneau, Sebastien; Enoch, Stefan

    2011-01-01

    Negative refractive index materials (NRIM) make possible unique effects such as a convergent at lens due to the reversed Snell-Descartes laws of refraction. NRIM are also known to be able to support a host of surface plasmon states for both polarizations of light which are responsible for the sub-wavelength image resolution achieved by a slab of NRIM. A generalized lens theorem provides us with a class of spatially varying slab lenses satisfying the prerequisite symmetries to fold the optical space onto itself. This theorem can be derived using powerful tools of transformational optics. A paradigm of such complementary media are checkerboards consisting of alternating cells of positive and negative refractive index that represent a very singular situation in which the local density of modes at the corners are enormously enhanced. We have considered several theoretical and numerical aspects of such structured films including a finite slabs of multi-scale checkerboards of NRIM satisfying the generalized lens th...

  2. Supervised non-negative matrix factorization based latent semantic image indexing

    Dong Liang; Jie Yang; Yuchou Chang

    2006-01-01

    @@ A novel latent semantic indexing (LSI) approach for content-based image retrieval is presented in this paper. Firstly, an extension of non-negative matrix factorization (NMF) to supervised initialization isdiscussed. Then, supervised NMF is used in LSI to find the relationships between low-level features and high-level semantics. The retrieved results are compared with other approaches and a good performance is obtained.

  3. Optic-null space medium for cover-up cloaking without any negative refraction index materials

    Fei Sun; Sailing He

    2016-01-01

    With the help of optic-null medium, we propose a new way to achieve invisibility by covering up the scattering without using any negative refraction index materials. Compared with previous methods to achieve invisibility, the function of our cloak is to cover up the scattering of the objects to be concealed by a background object of strong scattering. The concealed object can receive information from the outside world without being detected. Numerical simulations verify the performance of our...

  4. Properties of defect modes in periodic lossy multilayer with negative index materials

    Aghajamali, Alireza

    2013-01-01

    Transmission properties of one-dimensional lossy photonic crystals composed of negative and positive refractive index layers with one lossless defect layer at the center of the crystal are investigated by the characteristic matrix method. The results show that as the refractive index and thickness of the defect layer increase the frequency of the defect mode decreases. In addition, it is shown that the frequency of the defect mode is sensitive to the incidence angle, polarization and physical properties of the defect layer but it is insensitive to the small lattice loss factor. The height of the defect mode is very sensitive to the loss factor, incidence angle, polarization, refractive index and thickness of the defect layer. It was also shown that the height and the width of the defect mode are affected by the number of the lattice period and the loss factor. The results can lead to designing new types of narrow filter structures and other optical devices.

  5. 3D and Education

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  6. TEHNOLOGIJE 3D TISKALNIKOV

    Kolar, Nataša

    2016-01-01

    Diplomsko delo predstavi razvoj tiskanja skozi čas. Podrobneje so opisani 3D tiskalniki, ki uporabljajo različne tehnologije 3D tiskanja. Predstavljene so različne tehnologije 3D tiskanja, njihova uporaba in narejeni prototipi oz. končni izdelki. Diplomsko delo opiše celoten postopek, od zamisli, priprave podatkov in tiskalnika do izdelave prototipa oz. končnega izdelka.

  7. Potential Negative Impact of DG on Reliability Index: A Study Based on Time-Domain Modeling

    Ran, Xuanchang

    This thesis presents an original insight of the negative impact of distributed generation on reliability index based on dynamic time-domain modeling. Models for essential power system components, such as protective devices and synchronous generators, were developed and tested. A 4 kV distribution loop which carries relatively high power demand was chosen for the analysis. The characteristic curves of all protective devices were extracted from utility database and applied to the time domain relay model. The performance of each device was investigated in details. The negative effect on reliability is due to the fuse opening caused by the installation of DG at the wrong location and inappropriate relay setup. Over 50% of the possible DG locations can produce an undesirable impact. The study conclusion is that there exists a significant potential for the installation of DG to negatively affect the reliability of power systems.

  8. Tamm plasmon-polariton with negative group velocity induced by a negative index meta-material capping layer at metal-Bragg reflector interface.

    Liu, Cunding; Kong, Mingdong; Li, Bincheng

    2014-05-05

    Influence of a negative refractive index meta-material (NIM) capping layer on properties of Tamm plasmon-polariton at the interface of metal-Bragg reflector structure is investigated. Conditions for excitation of the plasmon-polariton is determined from reflectivity mapping calculation and analyzed with cavity mode theory. For specific thicknesses of capping layers, Tamm plasmon-polariton with negative group velocity is revealed in a wide region of frequency. Different from backward optical propagation induced by negative effective-group-refractive-index in dispersive media, negative group velocity of Tamm plasmon-polariton results from opposite signs of cross-section-integrated field energy and Poynting vector.

  9. Determination of refractive index of a simple negative, positive, or zero power lens using wedged plated interferometer

    Shukla, R. P.; Perera, G. M.; George, M. C.; Venkateswarlu, P.

    1990-01-01

    A nondestructive technique for measuring the refractive index of a negative lens using a wedged plate interferometer is described. The method can be also used for measuring the refractive index of convex or zero power lenses. Schematic diagrams are presented for the use of a wedged plate interferometer for measuring the refractive index of a concave lens and of a convex lens.

  10. 3D strain measurement in soft tissue: demonstration of a novel inverse finite element model algorithm on MicroCT images of a tissue phantom exposed to negative pressure wound therapy.

    Wilkes, R; Zhao, Y; Cunningham, K; Kieswetter, K; Haridas, B

    2009-07-01

    This study describes a novel system for acquiring the 3D strain field in soft tissue at sub-millimeter spatial resolution during negative pressure wound therapy (NPWT). Recent research in advanced wound treatment modalities theorizes that microdeformations induced by the application of sub-atmospheric (negative) pressure through V.A.C. GranuFoam Dressing, a reticulated open-cell polyurethane foam (ROCF), is instrumental in regulating the mechanobiology of granulation tissue formation [Saxena, V., Hwang, C.W., Huang, S., Eichbaum, Q., Ingber, D., Orgill, D.P., 2004. Vacuum-assisted closure: Microdeformations of wounds and cell proliferation. Plast. Reconstr. Surg. 114, 1086-1096]. While the clinical response is unequivocal, measurement of deformations at the wound-dressing interface has not been possible due to the inaccessibility of the wound tissue beneath the sealed dressing. Here we describe the development of a bench-test wound model for microcomputed tomography (microCT) imaging of deformation induced by NPWT and an algorithm set for quantifying the 3D strain field at sub-millimeter resolution. Microdeformations induced in the tissue phantom revealed average tensile strains of 18%-23% at sub-atmospheric pressures of -50 to -200 mmHg (-6.7 to -26.7 kPa). The compressive strains (22%-24%) and shear strains (20%-23%) correlate with 2D FEM studies of microdeformational wound therapy in the reference cited above. We anticipate that strain signals quantified using this system can then be used in future research aimed at correlating the effects of mechanical loading on the phenotypic expression of dermal fibroblasts in acute and chronic ulcer models. Furthermore, the method developed here can be applied to continuum deformation analysis in other contexts, such as 3D cell culture via confocal microscopy, full scale CT and MRI imaging, and in machine vision.

  11. 3D virtuel udstilling

    Tournay, Bruno; Rüdiger, Bjarne

    2006-01-01

    3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s.......3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s....

  12. Antisymmetric PT-photonic structures with balanced positive and negative index materials

    Ge, Li

    2012-01-01

    In this Letter we study a new class of synthetic materials in which the refractive index satisfies a special symmetry, n(-x)=-n^*(x), which we term antisymmetric parity-time (APT) systems. Unlike PT-symmetric systems which require balanced gain and loss, i.e. n(-x)=n^*(x), APT systems consist of balanced positive and negative index materials (NIMs). Despite the seemingly PT-symmetric optical potential $V(x)\\equiv n(x)^2\\omega^2/c^2$, such systems are not invariant under combined PT operation due to the discontinuity of the spatial derivative of the wavefunction. We show that APT systems display intriguing properties such as spontaneous phase transition of the scattering matrix, bidirectional invisibility, and a continuous lasing spectrum.

  13. Aberration-free two-thin-lens systems based on negative-index materials

    Lin Zhi-Li; Ding Jie-Chen; Zhang Pu

    2008-01-01

    Since the complete correction of all five monochromatic Seidel aberrations for a singlet lens with random shape or a two-thin-lens system is unprocurable merely by using the conventional positive-index materials both in theory and practice, this paper proposes that when one or both of the two lenses is/are made from negative-index materials, an imaging system composed of a pair of spherical thin lenses is possible to form a real image, in air, free from all five monochromatic Seidel aberrations. The calculated numerical solutions to the structural parameters of such lens systems possessing superior performance are provided and examples of them are illustrated for the given combinations of the two lenses' refractive indices, including an ultimately-remote imaging system.

  14. How to realize a negative refractive index material at the atomic level in an optical frequency range?

    Shen, Jian-qi; Ruan, Zhi-chao; He, Sai-ling

    2004-11-01

    The theoretical mechanism for realizing a negative refractive index material in an optical frequency range with an atomic gas system of electromagnetically induced transparency (EIT) is studied. It is shown that under certain conditions such a dense gas can exhibit simultaneously negative permittivity and negative permeability, and negligibly small loss.

  15. Science Letters: How to realize a negative refractive index material at the atomic level in an optical frequency range?

    沈建其; 阮智超; 何赛灵

    2004-01-01

    The theoretical mechanism for realizing a negative refractive index material in an optical frequency range with an atomic gas system of electromagnetically induced transparency (EIT) is studied. It is shown that under certain conditions such a dense gas can exhibit simultaneously negative permittivity and negative permeability, and negligibly small loss.

  16. Low-loss and high-symmetry negative refractive index media by hybrid dielectric resonators.

    Lai, Yueh-Chun; Chen, Cheng-Kuang; Yang, Yu-Hang; Yen, Ta-Jen

    2012-01-30

    Based on Maxwell's equations and Mie theory, strong sub-wavelength artificial magnetic and electric dipole resonances can be excited within dielectric resonators, and their resonant frequencies can be tailored simply by scaling the size of the dielectric resonators. Therefore, in this work we hybridize commercially available zirconia and alumina structures to harvest their individual artificial magnetic and electric response simultaneously, presenting a negative refractive index medium (NRIM). Comparing with the conventional NRIM constructed by metallic structures, the demonstrated all-dielectric NRIM possesses low-loss and high-symmetry advantages, thus benefiting practical applications in communication components, perfect lenses, invisible cloaking and other novel electromagnetic devices.

  17. Optic-null space medium for cover-up cloaking without any negative refraction index materials

    Sun, Fei; He, Sailing

    2016-07-01

    With the help of optic-null medium, we propose a new way to achieve invisibility by covering up the scattering without using any negative refraction index materials. Compared with previous methods to achieve invisibility, the function of our cloak is to cover up the scattering of the objects to be concealed by a background object of strong scattering. The concealed object can receive information from the outside world without being detected. Numerical simulations verify the performance of our cloak. The proposed method will be a great addition to existing invisibility technology.

  18. Ultra-compact chiral metamaterial with negative refractive index based on miniaturized structure

    Li, Minhua; Song, Jian; Wu, Fei

    2017-03-01

    An ultra-compact chiral metamaterial with thin thickness and small unit cells is proposed. Echelon meandered conjugated gammadions are introduced into the planar miniaturized design. In particular, the ratio between period (p) and resonant wavelength (λ) is as small as 1/10.8 in experiment. Negative refractive indexes for circularly polarized waves are demonstrated and the effective parameters are retrieved. The effects of the length of the swing arms, number of folded lines and dielectric layer thickness on the optical activity have also been investigated. This miniaturized structure has great potential application in electronic and photonic devices with small size and integration.

  19. Causality-based criteria for a negative refractive index must be used with care.

    Kinsler, P; McCall, M W

    2008-10-17

    Using the principle of causality as expressed in the Kramers-Kronig relations, we derive a generalized criterion for a negative refractive index that admits imperfect transparency at an observation frequency omega. It also allows us to relate the global properties of the loss (i.e., its frequency response) to its local behavior at omega. However, causality-based criteria rely on the group velocity, not the Poynting vector. Since the two are not equivalent, we provide some simple examples to compare the two criteria.

  20. Free-standing terahertz chiral meta-foils exhibiting strong optical activity and negative refractive index

    Wu, Jianfeng; Ng, Binghao; Turaga, Shuvan P.; Breese, Mark B. H.; Maier, Stefan A.; Hong, Minghui; Bettiol, Andrew A.; Moser, Herbert O.

    2013-09-01

    A chiral meta-foil consisting of a self-supported square array of interconnected conjugated rosettes is demonstrated at terahertz frequencies. It exhibits strong optical activity and circular dichroism. Negative refractive index with a figure-of-merit as high as 4.2 is achieved, attributed to its free-standing nature. Experimental results are in good agreement with numerical simulation. Free-standing chiral meta-foils provide a unique approach to create a completely all-metal chiral metamaterial, which can be flexibly integrated into optical setups while eliminating dielectric insertion losses.

  1. Causality-based criteria for a negative refractive index must be used with care

    Kinsler, P; 10.1103/PhysRevLett.101.167401

    2008-01-01

    Using the principle of causality as expressed in the Kramers-Kronig relations, we derive a generalized criterion for a negative refractive index that admits imperfect transparency at an observation frequency $\\omega$. It also allows us to relate the global properties of the loss (i.e. its frequency response) to its local behaviour at $\\omega$. However, causality-based criteria rely the on the group velocity, not the Poynting vector. Since the two are not equivalent, we provide some simple examples to compare the two criteria.

  2. Cavity equations for a positive- or negative-refraction-index material with electric and magnetic nonlinearities

    Mártin, Daniel A.; Hoyuelos, Miguel

    2009-11-01

    We study evolution equations for electric and magnetic field amplitudes in a ring cavity with plane mirrors. The cavity is filled with a positive or negative-refraction-index material with third-order effective electric and magnetic nonlinearities. Two coupled nonlinear equations for the electric and magnetic amplitudes are obtained. We prove that the description can be reduced to one Lugiato-Lefever equation with generalized coefficients. A stability analysis of the homogeneous solution, complemented with numerical integration, shows that any combination of the parameters should correspond to one of three characteristic behaviors.

  3. Tunable omnidirectional multichannel filters based on dual-defective photonic crystals containing negative-index materials

    Chen, Yihang, E-mail: kallenmail@sina.co [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)

    2009-04-07

    Multiple defect modes may generate in one-dimensional dual-defective photonic crystals containing negative-index materials. The interference between the two kinds of defect states of the proposed structure is avoided. Therefore, the frequency, frequency interval and number of the defect modes corresponding to different kinds of defects can be tuned independently as desired. These defect modes inside the zero n-bar gap are insensitive to the incident angle. It thus opens a promising way to fabricate omnidirectional multichannel filters with specific channels.

  4. Optic-null space medium for cover-up cloaking without any negative refraction index materials.

    Sun, Fei; He, Sailing

    2016-07-07

    With the help of optic-null medium, we propose a new way to achieve invisibility by covering up the scattering without using any negative refraction index materials. Compared with previous methods to achieve invisibility, the function of our cloak is to cover up the scattering of the objects to be concealed by a background object of strong scattering. The concealed object can receive information from the outside world without being detected. Numerical simulations verify the performance of our cloak. The proposed method will be a great addition to existing invisibility technology.

  5. Transmission spectra of one-dimensional photonic crystals including negative-refractive-index media

    SHEN Xiao-ming; CHEN Xian-feng; JIANG Mei-ping; SHI Du-fang

    2005-01-01

    We introduce a new model of one-dimensional (1D) photonic crystal composed of alternately arranged RHM and LHM layers with positive and negative refractive indices respectively, for which the transmission spectra of the model are calculated numerically with the transfer matrix method, and the band-gap structure and the polarization properties are analyzed. We found that the introduction of negative refractive index layers (i.e.LHM medium layers) gives rise to some peculiar band-gap structure and polarization properties as follows. Firstly, the forbidden bands are extremely wide and the transmission bands are very sharp without oscillation;and secondly, the change of incident angle has different influences on the forbidden bands of TE and TM modes. For the TM mode, the forbidden band width decreases substantially and finally vanishes, and for the TE mode with central wavelength, the total reflection happens at any incident angle.

  6. Blender 3D cookbook

    Valenza, Enrico

    2015-01-01

    This book is aimed at the professionals that already have good 3D CGI experience with commercial packages and have now decided to try the open source Blender and want to experiment with something more complex than the average tutorials on the web. However, it's also aimed at the intermediate Blender users who simply want to go some steps further.It's taken for granted that you already know how to move inside the Blender interface, that you already have 3D modeling knowledge, and also that of basic 3D modeling and rendering concepts, for example, edge-loops, n-gons, or samples. In any case, it'

  7. 3D Digital Modelling

    Hundebøl, Jesper

    wave of new building information modelling tools demands further investigation, not least because of industry representatives' somewhat coarse parlance: Now the word is spreading -3D digital modelling is nothing less than a revolution, a shift of paradigm, a new alphabet... Research qeustions. Based...... on empirical probes (interviews, observations, written inscriptions) within the Danish construction industry this paper explores the organizational and managerial dynamics of 3D Digital Modelling. The paper intends to - Illustrate how the network of (non-)human actors engaged in the promotion (and arrest) of 3......D Modelling (in Denmark) stabilizes - Examine how 3D Modelling manifests itself in the early design phases of a construction project with a view to discuss the effects hereof for i.a. the management of the building process. Structure. The paper introduces a few, basic methodological concepts...

  8. Professional Papervision3D

    Lively, Michael

    2010-01-01

    Professional Papervision3D describes how Papervision3D works and how real world applications are built, with a clear look at essential topics such as building websites and games, creating virtual tours, and Adobe's Flash 10. Readers learn important techniques through hands-on applications, and build on those skills as the book progresses. The companion website contains all code examples, video step-by-step explanations, and a collada repository.

  9. AE3D

    2016-06-20

    AE3D solves for the shear Alfven eigenmodes and eigenfrequencies in a torodal magnetic fusion confinement device. The configuration can be either 2D (e.g. tokamak, reversed field pinch) or 3D (e.g. stellarator, helical reversed field pinch, tokamak with ripple). The equations solved are based on a reduced MHD model and sound wave coupling effects are not currently included.

  10. A negative refractive index metamaterial wave plate for millimetre-wave applications

    Mohamed, I.; Pisano, G.; Ng, M. W.; Maffei, B.; Haynes, V.; Ozturk, F.

    2012-09-01

    By use of a metamaterial based on the ‘cut wire pair’ geometry, highly birefringent wave plates may be constructed by virtue of the geometry’s ability of having a negative and positive refractive index along its perpendicular axes. Past implementations have been narrow band in nature due to the reliance on producing a resonance to achieve a negative refractive index band and the steep gradient in the phase difference that results. In this paper we attempt to design and manufacture a W-band quarter wave plate embedded in polypropylene that applies the Pancharatnam method to increase the useable bandwidth. Our modelling demonstrates that a broadening of the phase difference’s bandwidth defined as the region 90° +/- 2° is possible from 0.6% (101.7 GHz - 102.3 GHz) to 7.8% (86.2 GHz - 93.1 GHz). Our experimental results show some agreement with our modelling but differ at higher frequencies.

  11. Photonic band gaps in quasiperiodic photonic crystals with negative refractive index

    Vasconcelos, M. S.; Mauriz, P. W.; de Medeiros, F. F.; Albuquerque, E. L.

    2007-10-01

    We investigate the photonic band gaps in quasiperiodic photonic crystals made up of both positive (SiO2) and negative refractive index materials using a theoretical model based on a transfer matrix treatment. The quasiperiodic structures are characterized by the nature of their Fourier spectrum, which can be dense pure point (Fibonacci sequences) or singular continuous (Thue-Morse and double-period sequences). These substitutional sequences are described in terms of a series of generations that obey peculiar recursion relations. We discussed the photonic band gap spectra for both the ideal cases, where the negative refractive index material can be approximated as a constant in the frequency range considered, as well as the more realistic case, taking into account the frequency-dependent electric permittivity γ and magnetic permeability μ . We also present a quantitative analysis of the results, pointing out the distribution of the allowed photonic bandwidths for high generations, which gives a good insight about their localization and power laws.

  12. Investigation of beam deflection reduction and multi-beamlet focus at a large-area negative ion source for a neutral beam injector with 3-D beam trajectory simulation

    Tanaka, M; Asano, E; Oka, Y; Osakabe, M; Tsumori, K; Kaneko, O; Yamashita, Y

    2000-01-01

    We investigated the reduction of ion beam deflection caused by electron deflection magnets, and focus of multi-beamlets at a large-area negative ion source of a neutral beam injector (NBI) in order to reduce beam loss during long-distance beam transport (>10 m) and beam injection into a nuclear fusion device. The electrostatic lens effect by displacement of the beam extraction aperture of a grounded grid (GG) was utilized for the beam deflection reduction and the multi-beamlet focus. We proposed an analysis process to adjust the aperture displacement which avoids beam collision with the GG by too much displacement. The analysis process includes a 3-D beam trajectory simulation used for analyzing the beam deflection angle and beam radius as well as theoretical calculations, which are used to calculate the aperture displacement based on the 3-D simulation results. Applicability of the analysis process was examined for a large-area high-current H sup - ion source of an NBI (0.25 mx1.25 m, 40 A, 180 keV). The ana...

  13. Three-layered metallodielectric nanoshells: plausible meta-atoms for metamaterials with isotropic negative refractive index at visible wavelengths.

    Wu, DaJian; Jiang, ShuMin; Cheng, Ying; Liu, XiaoJun

    2013-01-14

    A three-layered Ag-low-permittivity (LP)-high-permittivity (HP) nanoshell is proposed as a plausible meta-atom for building the three-dimensional isotropic negative refractive index metamaterials (NIMs). The overlap between the electric and magnetic responses of Ag-LP-HP nanoshell can be realized by designing the geometry of the particle, which can lead to the negative electric and magnetic polarizabilities. Then, the negative refractive index is found in the random arrangement of Ag-LP-HP nanoshells. Especially, the modulation of the middle LP layer can move the negative refractive index range into the visible region. Because the responses arise from the each meta-atom, the metamaterial is intrinsically isotropic and polarization independent. It is further found with the increase of the LP layer thickness that the negative refractive index range of the random arrangement shows a large blue-shift and becomes narrow. With the decrease of the filling fraction, the negative refractive index range shows a blue-shift and becomes narrow while the maximum of the negative refractive index decreases.

  14. 多峰负氢离子源全三维数值模拟研究%3D numerical simulation of multi-peak negative hydrogen ion sources

    2013-01-01

    The mechanism of the negative hydrogen ion volume production is analysed theoretically. The negative hydrogen ion source restrained by multi⁃peak megnetic field was numerically simulated with self⁃developed 3D simulation software PIC⁃MCC,in which the influence of leading⁃out megnetic field,primary energy and position of discharge on the collision efficiency excited by vibration are simulated. The optimization means for the multi⁃peak negative hydrogen ion source are explored. The re⁃sults show that the more the fast electrons move into the extraction region and the more severe the negative y⁃direction drift is, the more frequent the vibrational excitation collision happens and the higher the relative collision rate becomes,in other word, the higher the volume production efficiency of negative hydrogen ions appears.%  理论分析了负氢离子体积产生机制,采用自主开发的三维PIC⁃MCC模拟软件,对多峰磁场约束的负氢离子源进行数值模拟研究。模拟了引出磁场、放电初始能量、及放电位置对振动激发碰撞效率的影响,探索了多峰负氢离子源的优化手段。研究表明:如果进入引出区的快电子越多且-y方向漂移越剧烈,那么振动碰撞越频繁且相对碰撞率越高,即负氢离子体积产生效率越高。

  15. Effects of negative index medium defect layers on the trans mission properties of one-dimensional photonic crystal

    XIANG Yuan-jiang; DAI Xiao-yu; WEN Shuang-chun

    2007-01-01

    School of Computer and Communication, Hunan University, Changsha 410082, ChinaThe photonic band gap structure of 1D photonic crystal with a negative index medium defect layer is studied by using the transfer matrix method. Investigations show that the introdution of negative index medium defect layer and the increase of the negative index value will result in an extension of the band gap. Moreover, by increasing the negative index, the width of defect layer and the numbers of period photonic crystal, the width of defect modes will be narrowed, which is advantaged to obtain optical filters with narrow band. Finally, the effects of absorption on the properties of band gap and on defect modes have been discussed.

  16. Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion

    Handy Turner, Tara

    2010-02-01

    From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.

  17. Radiochromic 3D Detectors

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  18. 3D Spectroscopic Instrumentation

    Bershady, Matthew A

    2009-01-01

    In this Chapter we review the challenges of, and opportunities for, 3D spectroscopy, and how these have lead to new and different approaches to sampling astronomical information. We describe and categorize existing instruments on 4m and 10m telescopes. Our primary focus is on grating-dispersed spectrographs. We discuss how to optimize dispersive elements, such as VPH gratings, to achieve adequate spectral resolution, high throughput, and efficient data packing to maximize spatial sampling for 3D spectroscopy. We review and compare the various coupling methods that make these spectrographs ``3D,'' including fibers, lenslets, slicers, and filtered multi-slits. We also describe Fabry-Perot and spatial-heterodyne interferometers, pointing out their advantages as field-widened systems relative to conventional, grating-dispersed spectrographs. We explore the parameter space all these instruments sample, highlighting regimes open for exploitation. Present instruments provide a foil for future development. We give an...

  19. 3D Projection Installations

    Halskov, Kim; Johansen, Stine Liv; Bach Mikkelsen, Michelle

    2014-01-01

    Three-dimensional projection installations are particular kinds of augmented spaces in which a digital 3-D model is projected onto a physical three-dimensional object, thereby fusing the digital content and the physical object. Based on interaction design research and media studies, this article...... contributes to the understanding of the distinctive characteristics of such a new medium, and identifies three strategies for designing 3-D projection installations: establishing space; interplay between the digital and the physical; and transformation of materiality. The principal empirical case, From...... Fingerplan to Loop City, is a 3-D projection installation presenting the history and future of city planning for the Copenhagen area in Denmark. The installation was presented as part of the 12th Architecture Biennale in Venice in 2010....

  20. Interaktiv 3D design

    Villaume, René Domine; Ørstrup, Finn Rude

    2002-01-01

    Projektet undersøger potentialet for interaktiv 3D design via Internettet. Arkitekt Jørn Utzons projekt til Espansiva blev udviklet som et byggesystem med det mål, at kunne skabe mangfoldige planmuligheder og mangfoldige facade- og rumudformninger. Systemets bygningskomponenter er digitaliseret som...... 3D elementer og gjort tilgængelige. Via Internettet er det nu muligt at sammenstille og afprøve en uendelig  række bygningstyper som  systemet blev tænkt og udviklet til....

  1. Slow light in a dielectric waveguide with negative-refractive-index photonic crystal cladding.

    He, Jinlong; Jin, Yi; Hong, Zhi; He, Sailing

    2008-07-21

    A slow light waveguide made of a dielectric slab inserted in a two-dimensional photonic crystal with a negative effective refractive index is proposed and numerically studied. The waveguide may possess modes with zero group velocity, and its frequency varies with the thickness of the waveguide. A linearly tapered left-handed photonic crystal waveguide is also proposed and studied. It is shown that the so-called 'trapped rainbow' proposed by Tsakmakidis, Boardman, and Hess [1] is difficult to realize due to a coupling of forward- and backward-propagating modes near zero group velocity. However, different frequency components of a broadband excitation can still be separated through partial accumulation at waveguide sections of different thicknesses.

  2. Double Doppler effect in two-dimensional photonic crystal with negative effective index

    Jiang, Qiang; Chen, Jiabi; Liang, Binming; Zhuang, Songlin

    2016-11-01

    The inverse Doppler effect in photonic crystal with negative refractive index had been proofed experimentally in our previous research. In this paper, we studied the spatial harmonics of Bloch wave propagating in such PhCs by FFT method. The lagging and front phase evolutions reveal that both backward wave and forward wave exist in these harmonics. Subsequently, we studied the double Doppler effect phenomenon that both the normal and inverse Doppler exist in one photonic crystal simultaneously by using the improved dynamic FDTD method which we made it suitable for dealing with moving objects. The simulative Doppler frequency shifts were consistent with the theoretical values. Our study provides a potential technology in measurement area.

  3. Topological insulator metamaterials with tunable negative refractive index in the optical region.

    Cao, Tun; Wang, Shuai

    2013-12-13

    A blueshift tunable metamaterial (MM) exhibiting a double-negative refractive index based on a topological insulator (bismuth selenide, Bi2Se3) has been demonstrated in the near-infrared (NIR) spectral region. The potential of Bi2Se3 as a dielectric interlayer of the multilayer MM is explored. The optical response of elliptical nanohole arrays penetrating through Au/Bi2Se3/Au films is numerically investigated using the finite difference time domain (FDTD) method. The blueshift tuning range of the MM is as high as 370 nm (from 2,140 to 1,770 nm) after switching the Bi2Se3 between its trigonal and orthorhombic states.

  4. Creating wide-band negative-index-of-refraction metamaterials with fractal-based geometry

    Penney, Keith

    2009-11-01

    A burgeoning topic of modern research in electrodynamics and antenna design is the design and fabrication of ``left-handed'' metamaterials. This ``left-handedness'' is often created through use of an array of conductive structures with geometry appropriate for coupling on the wavelength scale with incident radiation to produce a phase-shifted reflected wave that cancels out incoming radiation and prevents transmission. This property has been demonstrated in several papers published in the last decade. In every instance, though the ``left-handed'' response is only exhibited in a small bandwidth centered about a specific frequency (bandwidth typically less that 0.1 GHz). I will show that through use of tessellated, fractal-based structures, one can create a repeatable geometry that exhibits a negative index of refraction (NIR) for multiple frequency bands, limited only by fabrication precision, with the ultimate goal being a wide-band absorptive response.

  5. Negative refractive index and higher-order harmonics in layered metallodielectric optical metamaterials

    Maas, Ruben; Parsons, James; Polman, Albert

    2014-01-01

    We study the propagation of light in a three-dimensional double-periodic Ag/TiO2 multilayer metamaterial composed of coupled plasmonic waveguides operating in the visible and UV spectral range. For these frequencies, light propagation in the plane of the waveguides is described by a negative phase velocity, while for the orthogonal direction light propagation is described by a Bloch wave composed of a large number of harmonics. As a result, the material cannot generally be described by a single phase index: decomposing the Bloch wave into different harmonics we show that for the wavelength range of interest the positive index m=1 harmonic dominates the propagation of light in the orthogonal direction. These results are corroborated by numerical simulations and optical refraction experiments on a double-periodic Ag/TiO2 multilayer metamaterial prism in the 380-600 nm spectral range, which show that positive refraction associated with right-handed harmonics dominates. Studying the isofrequency contours we find ...

  6. Tangible 3D Modelling

    Hejlesen, Aske K.; Ovesen, Nis

    2012-01-01

    This paper presents an experimental approach to teaching 3D modelling techniques in an Industrial Design programme. The approach includes the use of tangible free form models as tools for improving the overall learning. The paper is based on lecturer and student experiences obtained through...

  7. Shaping 3-D boxes

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data...

  8. 3D Wire 2015

    Jordi, Moréton; F, Escribano; J. L., Farias

    This document is a general report on the implementation of gamification in 3D Wire 2015 event. As the second gamification experience in this event, we have delved deeply in the previous objectives (attracting public areas less frequented exhibition in previous years and enhance networking) and ha......, improves socialization and networking, improves media impact, improves fun factor and improves encouragement of the production team....

  9. 3D photoacoustic imaging

    Carson, Jeffrey J. L.; Roumeliotis, Michael; Chaudhary, Govind; Stodilka, Robert Z.; Anastasio, Mark A.

    2010-06-01

    Our group has concentrated on development of a 3D photoacoustic imaging system for biomedical imaging research. The technology employs a sparse parallel detection scheme and specialized reconstruction software to obtain 3D optical images using a single laser pulse. With the technology we have been able to capture 3D movies of translating point targets and rotating line targets. The current limitation of our 3D photoacoustic imaging approach is its inability ability to reconstruct complex objects in the field of view. This is primarily due to the relatively small number of projections used to reconstruct objects. However, in many photoacoustic imaging situations, only a few objects may be present in the field of view and these objects may have very high contrast compared to background. That is, the objects have sparse properties. Therefore, our work had two objectives: (i) to utilize mathematical tools to evaluate 3D photoacoustic imaging performance, and (ii) to test image reconstruction algorithms that prefer sparseness in the reconstructed images. Our approach was to utilize singular value decomposition techniques to study the imaging operator of the system and evaluate the complexity of objects that could potentially be reconstructed. We also compared the performance of two image reconstruction algorithms (algebraic reconstruction and l1-norm techniques) at reconstructing objects of increasing sparseness. We observed that for a 15-element detection scheme, the number of measureable singular vectors representative of the imaging operator was consistent with the demonstrated ability to reconstruct point and line targets in the field of view. We also observed that the l1-norm reconstruction technique, which is known to prefer sparseness in reconstructed images, was superior to the algebraic reconstruction technique. Based on these findings, we concluded (i) that singular value decomposition of the imaging operator provides valuable insight into the capabilities of

  10. Nanofabrication of planar split ring resonators for negative refractive index metamaterials in the infrared range

    ZORAN JAKSIC

    2006-06-01

    Full Text Available Experimental nanofabrication of planar structures for one-dimensional metamaterials designed to achieve a negative effective refractive index in the mid-infrared range (5–10 micrometers was performed. Double split ring and complementary double split ring resonators (SRR and CSRR with square and circular geometries, were chosen to be fabricated since these are the basic building blocks to achieve a negative effective dielectric permittivity and magnetic permeability. Scanning probe nanolithography with z-scanner movement was used to fabricate straight-line and curvilinear segments with a line width of 80 – 120 nm. The geometries were delineated in 20 nm thin silver layers sputter-deposited on a positive photoresist substrate spin-coated on polished single crystal silicon wafers, as well as on polycarbonate slabs. The morphology of the structures was characterized by atomic force microscopy. The feature repeatibility was 60 – 150 nm, depending on the process conditions and the feature complexity. The nanolithographic groove depth in different samples ranged from 4 nm to 80 nm.

  11. Increased gut hormones and insulin sensitivity index following a 3-d intervention with a barley kernel-based product: a randomised cross-over study in healthy middle-aged subjects.

    Nilsson, Anne C; Johansson-Boll, Elin V; Björck, Inger M E

    2015-09-28

    Certain purified indigestible carbohydrates such as inulin have been shown to stimulate gut-derived hormones involved in glycaemic regulation and appetite regulation, and to counteract systemic inflammation through a gut microbiota-mediated mechanism. Less is known about the properties of indigestible carbohydrates intrinsic to food. The aim of this study was to investigate the possibility to affect release of endogenous gut hormones and ameliorate appetite control and glycaemic control by ingestion of a whole-grain cereal food product rich in NSP and resistant starch in healthy humans. In all, twenty middle-aged subjects were provided with a barley kernel-based bread (BB) or a reference white wheat bread during 3 consecutive days, respectively, in a randomised cross-over design study. At a standardised breakfast the following day (day 4), blood was collected for the analysis of blood (b) glucose regulation, gastrointestinal hormones, markers of inflammation and markers of colonic fermentation; 3 d of intervention with BB increased gut hormones in plasma (p) the next morning at fasting (p-glucagon-like peptide-1; 56%) and postprandially (p-glucagon-like peptide-2; 13% and p-peptide YY; 18%). Breath H₂ excretion and fasting serum (s) SCFA concentrations were increased (363 and 18%, respectively), and b-glucose (22%) and s-insulin responses (17%) were decreased after BB intervention. Insulin sensitivity index (ISI(composite)) was also improved (25%) after BB. In conclusion, 3 d of intervention with BB increased systemic levels of gut hormones involved in appetite regulation, metabolic control and maintenance of gut barrier function, as well as improved markers of glucose homoeostasis in middle-aged subjects, altogether relevant for the prevention of obesity and the metabolic syndrome.

  12. Unoriented 3d TFTs

    Bhardwaj, Lakshya

    2016-01-01

    This paper generalizes two facts about oriented 3d TFTs to the unoriented case. On one hand, it is known that oriented 3d TFTs having a topological boundary condition admit a state-sum construction known as the Turaev-Viro construction. This is related to the string-net construction of fermionic phases of matter. We show how Turaev-Viro construction can be generalized to unoriented 3d TFTs. On the other hand, it is known that the "fermionic" versions of oriented TFTs, known as Spin-TFTs, can be constructed in terms of "shadow" TFTs which are ordinary oriented TFTs with an anomalous Z_2 1-form symmetry. We generalize this correspondence to Pin+ TFTs by showing that they can be constructed in terms of ordinary unoriented TFTs with anomalous Z_2 1-form symmetry having a mixed anomaly with time-reversal symmetry. The corresponding Pin+ TFT does not have any anomaly for time-reversal symmetry however and hence it can be unambiguously defined on a non-orientable manifold. In case a Pin+ TFT admits a topological bou...

  13. Negative effects of obesity analyzed through bioimpedance, indirect calorimetry, the sympathovagal index and the orthoclinostatic test.

    Cadena, Miguel; Azpiroz, Joaquín; Martinez, Fabiola; Borja, Gisella; Ramos, Norma; Velázquez, Consuelo; Rodríguez, Magdalena; Díaz, Rafael

    2012-01-01

    Early analysis of the negative effects of obesity is important to prevent the development of chronic diseases related to this condition. There is a need to monitor these effects through simple instrumentation that measures fat-free mass (FFM) catabolism. Obesity leads to a decrease in the FFM energy expenditure and to an increase in the autonomic nervous system (ANS) activity. Thus, the measurement of FFM dynamic catabolism can provide information regarding the effects of obesity. The hypothesis is that this increased ANS activity produces an increase of energy expenditure of carbohydrates and fats when the subjects are under stress; in this case after an 8-hour fast and while they are undergoing an orthoclinostatic test. A pilot study was conducted on 29 volunteers, 16 women and 13 men. The results show significant statistical differences (p<0.1) in fat and carbohydrate utilization during the orthoclinostatic tests: A move from the clinostatic to the orthostatic positions produced the following: Fat metabolism varied from 97.2 to 105.9 gr/day of fat for women and 24.9 to 35.7 gr/day of fat for men; carbohydrate metabolism changed from 38 to 39 gr/day for women and 239 to 277 gr/day for men; FFM averages were 47 Kg for women and 57.6 Kg for men; changes in the sympathovagal index (SVI) averages were 0.4 to 1.8 for women and 0.8 to 2.7 for men. The conclusions show that the methodology's sensitivity is such that gender differences can be used as a model to prove FFM metabolic differences. We believe that further studies will lead to the development of a robust methodology for the early detection of the negative effects of obesity.

  14. A Miniaturized Antenna with Negative Index Metamaterial Based on Modified SRR and CLS Unit Cell for UWB Microwave Imaging Applications

    Md. Moinul Islam

    2015-01-01

    Full Text Available A miniaturized antenna employing a negative index metamaterial with modified split-ring resonator (SRR and capacitance-loaded strip (CLS unit cells is presented for Ultra wideband (UWB microwave imaging applications. Four left-handed (LH metamaterial (MTM unit cells are located along one axis of the antenna as the radiating element. Each left-handed metamaterial unit cell combines a modified split-ring resonator (SRR with a capacitance-loaded strip (CLS to obtain a design architecture that simultaneously exhibits both negative permittivity and negative permeability, which ensures a stable negative refractive index to improve the antenna performance for microwave imaging. The antenna structure, with dimension of 16 × 21 × 1.6 mm3, is printed on a low dielectric FR4 material with a slotted ground plane and a microstrip feed. The measured reflection coefficient demonstrates that this antenna attains 114.5% bandwidth covering the frequency band of 3.4–12.5 GHz for a voltage standing wave ratio of less than 2 with a maximum gain of 5.16 dBi at 10.15 GHz. There is a stable harmony between the simulated and measured results that indicate improved nearly omni-directional radiation characteristics within the operational frequency band. The stable surface current distribution, negative refractive index characteristic, considerable gain and radiation properties make this proposed negative index metamaterial antenna optimal for UWB microwave imaging applications.

  15. Direct inoculation method using BacT/ALERT 3D and BD Phoenix System allows rapid and accurate identification and susceptibility testing for both Gram-positive cocci and Gram-negative rods in aerobic blood cultures.

    Yonetani, Shota; Okazaki, Mitsuhiro; Araki, Koji; Makino, Hiroshi; Fukugawa, Yoko; Okuyama, Takahiro; Ohnishi, Hiroaki; Watanabe, Takashi

    2012-06-01

    This study describes a direct inoculation method using the automated BacT/ALERT 3D and the BD Phoenix System in combination for identification and susceptibility testing of isolates from positive blood cultures. Organism identification and susceptibility results were compared with the conventional method for 211 positive aerobic blood cultures. Of 110 Gram-positive cocci (GPCs), 98 (89.1%) isolates were correctly identified to the species level. Of 101 Gram-negative rods (GNRs), 98 (97.0%) isolates were correctly identified to the species level. The overall categorical agreement in antimicrobial susceptibility testing among the 110 GPCs was 92.7%, with 0.04% very major and 0.7% major error rates. The overall categorical agreement among 78 isolates of enterobacteria and 23 isolates of nonfermenters in GNRs was 99.5% and 91.1%, respectively, with no major errors identified. We conclude that, compared with previously reported direct inoculation methods, our method is superior in identification and susceptibility testing of GPCs.

  16. Miniaturisation of WLAN Feeler Using Media with a Negative Refractive Index

    Bimal Garg

    2013-07-01

    Full Text Available It presents a rectangular microstrip patch antenna integrated with combination of pentagonal and hexagonal shaped structure etched at the height of 3.276 mm from the ground plane. It is demonstrated that the application of the media with a negative refractive index or metamaterial eliminates the spurious harmonics (these are those unwanted dips which shows in the S11 graph associated with the original structure. Furthermore the return loss is improved by the inclusion of the metamaterial structure reaching -27.1919 dB compared with -10.1286 dB achieved by the original patch antenna structure alone. Main focus in this design process is not to reduce the return loss but reduce the size of the antenna and this target has been achieved by reducing the size of antenna up to 65%. Numerical simulation results show that this proposed design possesses several desirable characteristics, for instance, high bandwidth, low loss and improved directivity compared to the alone RMPA. The CST-MWS software is used for designing and simulation, and MS-Excel for metamaterial proving.

  17. Backward phase-matching for nonlinear optical generation in negative-index materials

    Lan, Shoufeng; Kang, Lei; Schoen, David T.; Rodrigues, Sean P.; Cui, Yonghao; Brongersma, Mark L.; Cai, Wenshan

    2015-08-01

    Metamaterials have enabled the realization of unconventional electromagnetic properties not found in nature, which provokes us to rethink the established rules of optics in both the linear and nonlinear regimes. One of the most intriguing phenomena in nonlinear metamaterials is `backward phase-matching', which describes counter-propagating fundamental and harmonic waves in a negative-index medium. Predicted nearly a decade ago, this process is still awaiting a definitive experimental confirmation at optical frequencies. Here, we report optical measurements showing backward phase-matching by exploiting two distinct modes in a nonlinear plasmonic waveguide, where the real parts of the mode refractive indices are 3.4 and -3.4 for the fundamental and the harmonic waves respectively. The observed peak conversion efficiency at the excitation wavelength of ~780 nm indicates the fulfilment of the phase-matching condition of k2ω = 2kω and n2ω = -nω, where the coherent harmonic wave emerges along a direction opposite to that of the incoming fundamental light.

  18. Coexistence of positive and negative refractive index sensitivity in the liquid-core photonic crystal fiber based plasmonic sensor.

    Shuai, Binbin; Xia, Li; Liu, Deming

    2012-11-05

    We present and numerically characterize a liquid-core photonic crystal fiber based plasmonic sensor. The coupling properties and sensing performance are investigated by the finite element method. It is found that not only the plasmonic mode dispersion relation but also the fundamental mode dispersion relation is rather sensitive to the analyte refractive index (RI). The positive and negative RI sensitivity coexist in the proposed design. It features a positive RI sensitivity when the increment of the SPP mode effective index is larger than that of the fundamental mode, but the sensor shows a negative RI sensitivity once the increment of the fundamental mode gets larger. A maximum negative RI sensitivity of -5500nm/RIU (Refractive Index Unit) is achieved in the sensing range of 1.50-1.53. The effects of the structural parameters on the plasmonic excitations are also studied, with a view of tuning and optimizing the resonant spectrum.

  19. Negative refractive index of metallic cross-I-shaped pairs: origin and evolution with pair gap width.

    Ma, Y G; Wang, X C; Ong, C K

    2008-07-01

    A structured composite of the negative index of refraction was fabricated by one layer of cross-I-shaped metal pairs. In this structure, the electric and magnetic inclusions were effectively integrated into one small unit. We varied the spacing of the cross pair to control the location of the magnetic resonance mode and their intercoupling with the electric mode. The frequency dependences of permittivity, permeability, and refractive indices with different gap widths of the pairs were systematically discussed by free-space measurement as well as numerical simulation. A spacing window dependent on the geometrical parameters was found in which the real part of the refractive index could have a negative value. The one-layer cross-pair pattern proposed in this work can be extended to three-dimensional structures with well-controlled interlayer coupling that will greatly facilitate the fabrication and measurement of negative-index materials in high frequencies.

  20. Negative Index Refraction in the Complex Ginzburg—Landau Equation in Connection with the Experimental CIMA Reaction

    Yuan, Xu-Jin

    2012-09-01

    In comparison with the phenomenon of negative index refraction observed in artificial meta-materials, it is interesting to ask if this type of behavior also exists or not in reaction-diffusion systems that support nonlinear chemical waves. Previous studies indicate that the negative index refraction could occur on a interface between a medium of a normal wave and a medium that supports anti-waves. Here we investigate the phenomenon in the complex Ginzburg—Landau equation (CGLE) in a close relationship with the quantitative model for the chloriteiodide-malonic acid (CIMA) reaction. The amplitude equation CGLE is deduced from the CIMA reaction, and simulations with mapped parameters from the reaction-diffusion equation reveal that the competition between normal waves and anti-waves on the interface determines whether the negative index refraction occurs or not.

  1. 3D and beyond

    Fung, Y. C.

    1995-05-01

    This conference on physiology and function covers a wide range of subjects, including the vasculature and blood flow, the flow of gas, water, and blood in the lung, the neurological structure and function, the modeling, and the motion and mechanics of organs. Many technologies are discussed. I believe that the list would include a robotic photographer, to hold the optical equipment in a precisely controlled way to obtain the images for the user. Why are 3D images needed? They are to achieve certain objectives through measurements of some objects. For example, in order to improve performance in sports or beauty of a person, we measure the form, dimensions, appearance, and movements.

  2. Density Index:Extension of Shape Index in Describing Local Intensity Variations in a 3D Image%密度指数:形状指数在描述三维图像时的推广

    杨四海; 徐建武; Kenji Suzuki

    2016-01-01

    针对将形状指数(SI)应用于三维图像时缺乏对应的推广形式,常通过计算三维图像的3个截面的 SI 来组合表达,导致在肠道肿瘤检测等应用中造成了大量的误检的问题,研究了三维情形 SI 的推广.首先选取球坐标系表达的单位球面以消除灰度变化尺度的影响;然后分析了球面的6个等价区域,并选取其一作为灰度变化的表征区域;由于 SI 原有的表达式不利于推广到三维空间,因此推导了一种等价的表达式,并通过分析此表达式在三维情形的推广,得到了描述三维图像局部灰度变化的指标——密度指数(DI).通过研究 DI 所表征区域的几何特性,得到了一条具有重要性质的曲线——逆Z线,并分析了其上典型特征点所对应的灰度变化模式.仿真实验结果表明,对于肠道肿瘤检测的典型情况,使用DI检测的误检率明显低于SI.%When applying to the quantifying intensity variation of the neighborhood of a voxel in a 3D image, shape index (SI) lacks an extended form and currently uses the combination of the three computed SI values based on three orthogonal sections of the neighborhood, which results in massive false detection. To cope with the problem, the extended form of SI was studied. First, in a spherical coordinates system, an unit sphere was chosen to remove the interference stemmed from the variation of intensity scale; Second, in the unit sphere, 6 equivalent regions were analyzed and one of them was selected as the representative region; Third, because the original cal-culation formula of SI is hard to extend, an equivalent formula of SI was deduced and it was extended to the case of describing the variation of intensity for a local region of a 3D image and the derived index is density index (DI); Fourth, by analyzing the geometrical properties of the definition domain of DI, a curve with important qualities— inverse Z line was introduced and the

  3. 3D Surgical Simulation

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  4. TOWARDS: 3D INTERNET

    Ms. Swapnali R. Ghadge

    2013-08-01

    Full Text Available In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot of discussions. Basically, one can look into this matter from a few different perspectives: visualization and representation of information, and creation and transportation of information, among others. All of them still constitute research challenges, as no products or services are yet available or foreseen for the near future. Nevertheless, one can try to envisage the directions that can be taken towards achieving this goal. People who take part in virtual worlds stay online longer with a heightened level of interest. To take advantage of that interest, diverse businesses and organizations have claimed an early stake in this fast-growing market. They include technology leaders such as IBM, Microsoft, and Cisco, companies such as BMW, Toyota, Circuit City, Coca Cola, and Calvin Klein, and scores of universities, including Harvard, Stanford and Penn State.

  5. 3D Hilbert Space Filling Curves in 3D City Modeling for Faster Spatial Queries

    Ujang, Uznir; Antón Castro, Francesc/François; Azri, Suhaibah;

    2014-01-01

    are presented in this paper. The advantages of implementing space-filling curves in 3D city modeling will improve data retrieval time by means of optimized 3D adjacency, nearest neighbor information and 3D indexing. The Hilbert mapping, which maps a sub-interval of the ([0,1]) interval to the corresponding...... method, retrieving portions of and especially searching these 3D city models, will not be done optimally. Even though current developments are based on an open data model allotted by the Open Geospatial Consortium (OGC) called CityGML, its XML-based structure makes it challenging to cluster the 3D urban...... web standards. However, these 3D city models consume much more storage compared to two dimensional (2 D) spatial data. They involve extra geometrical and topological information together with semantic data. Without a proper spatial data clustering method and its corresponding spatial data access...

  6. Limited Feedback for 3D Massive MIMO under 3D-UMa and 3D-UMi Scenarios

    Zheng Hu

    2015-01-01

    Full Text Available For three-dimensional (3D massive MIMO utilizing the uniform rectangular array (URA in the base station (BS, we propose a limited feedback transmission scheme in which the channel state information (CSI feedback operations for horizontal domain and vertical domain are separate. Compared to the traditional feedback scheme, the scheme can reduce the feedback overhead, code word index search complexity, and storage requirement. Also, based on the zenith of departure angle (ZoD distribution in 3D-Urban Macro Cell (3D-UMa and 3D-Urban Micro Cell (3D-UMi scenarios, we propose the angle quantization codebook for vertical domain, while the codebook of long term evolution-advanced (LTE-Advanced is still adopted in horizontal domain to preserve compatibility with the LTE-Advanced. Based on the angle quantization codebook, the subsampled 3-bit DFT codebook is designed for vertical domain. The system-level simulation results reveal that, to compromise the feedback overhead and system performance, 2-bit codebook for 3D-UMa scenario and 3-bit codebook for 3D-UMi scenario can meet requirements in vertical domain. The feedback period for vertical domain can also be extended appropriately to reduce the feedback overhead.

  7. Exploring Electrical and Magnetic Resonances from Coherently Correlated Long-Lived Radical Pairs towards Development of Negative Refractive-Index Materials

    2015-01-03

    Resonances from Coherently Correlated Long-Lived Radical Pairs towards Development of Negative Refractive - Index materials Grant/Contract Number AFOSR... Refractive - Index Materials Subtitle: Task 1: Radicals Based Molecular Metamaterials Task 2: Thin-Film Based Polymer Thermoelectric Devices 5a...and Magnetic Resonances from Coherently Correlated Long-Lived Radical Pairs towards Development of Negative - Index Materials Principle Investigator

  8. Radiation pressure cross sections and optical forces over negative refractive index spherical particles by ordinary Bessel beams.

    Ambrosio, Leonardo A; Hernández-Figueroa, Hugo E

    2011-08-01

    When impinged by an arbitrary laser beam, lossless and homogeneous negative refractive index (NRI) spherical particles refract and reflect light in an unusual way, giving rise to different scattered and internal fields when compared to their equivalent positive refractive index particles. In the generalized Lorenz-Mie theory, the scattered fields are dependent upon the Mie scattering coefficients, whose values must reflect the metamaterial behavior of an NRI scatterer, thus leading to new optical properties such as force and torque. In this way, this work is devoted to the analysis of both radial and longitudinal optical forces exerted on lossless and simple NRI particles by zero-order Bessel beams, revealing how the force profiles are changed whenever the refractive index becomes negative.

  9. Defect modes properties in periodic lossy multilayer containing negative index materials with symmetric and asymmetric geometric structures

    Aghajamali, Alireza; Barati, Mahmood; Wu, Chien-Jang

    2014-01-01

    In this paper the characteristic matrix method is used to study the propagation of electromagnetic waves through one-dimensional lossy photonic crystals composed of negative and positive refractive index material layers with symmetric and asymmetric geometric structures with a defect layer at the center of the structure. First, the positive index material defect layer is considered, and the effects of the polarization and the angle of incidence on the defect mode in the transmission spectra of the both structures are investigated. The results show that the number of the defect modes in the transmission spectra depends on the geometry (symmetric or asymmetric) of the structure. In addition, it is shown that the defect mode frequency increases as the angle of incidence increases. This property is independent of the geometry of the structure. Then, for normal incidence, the negative index material defect layer is considered, and the properties of defect modes for both structures are investigated. The results can...

  10. 3D printing for dummies

    Hausman, Kalani Kirk

    2014-01-01

    Get started printing out 3D objects quickly and inexpensively! 3D printing is no longer just a figment of your imagination. This remarkable technology is coming to the masses with the growing availability of 3D printers. 3D printers create 3-dimensional layered models and they allow users to create prototypes that use multiple materials and colors.  This friendly-but-straightforward guide examines each type of 3D printing technology available today and gives artists, entrepreneurs, engineers, and hobbyists insight into the amazing things 3D printing has to offer. You'll discover methods for

  11. Intraoral 3D scanner

    Kühmstedt, Peter; Bräuer-Burchardt, Christian; Munkelt, Christoph; Heinze, Matthias; Palme, Martin; Schmidt, Ingo; Hintersehr, Josef; Notni, Gunther

    2007-09-01

    Here a new set-up of a 3D-scanning system for CAD/CAM in dental industry is proposed. The system is designed for direct scanning of the dental preparations within the mouth. The measuring process is based on phase correlation technique in combination with fast fringe projection in a stereo arrangement. The novelty in the approach is characterized by the following features: A phase correlation between the phase values of the images of two cameras is used for the co-ordinate calculation. This works contrary to the usage of only phase values (phasogrammetry) or classical triangulation (phase values and camera image co-ordinate values) for the determination of the co-ordinates. The main advantage of the method is that the absolute value of the phase at each point does not directly determine the coordinate. Thus errors in the determination of the co-ordinates are prevented. Furthermore, using the epipolar geometry of the stereo-like arrangement the phase unwrapping problem of fringe analysis can be solved. The endoscope like measurement system contains one projection and two camera channels for illumination and observation of the object, respectively. The new system has a measurement field of nearly 25mm × 15mm. The user can measure two or three teeth at one time. So the system can by used for scanning of single tooth up to bridges preparations. In the paper the first realization of the intraoral scanner is described.

  12. Martian terrain - 3D

    1997-01-01

    This area of terrain near the Sagan Memorial Station was taken on Sol 3 by the Imager for Mars Pathfinder (IMP). 3D glasses are necessary to identify surface detail.The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  13. Pleural fluid cell-free DNA integrity index to identify cytologically negative malignant pleural effusions including mesotheliomas

    Sriram Krishna B

    2012-09-01

    Full Text Available Abstract Background The diagnosis of malignant pleural effusions (MPE is often clinically challenging, especially if the cytology is negative for malignancy. DNA integrity index has been reported to be a marker of malignancy. The aim of this study was to evaluate the utility of pleural fluid DNA integrity index in the diagnosis of MPE. Methods We studied 75 pleural fluid and matched serum samples from consecutive subjects. Pleural fluid and serum ALU DNA repeats [115bp, 247bp and 247bp/115bp ratio (DNA integrity index] were assessed by real-time quantitative PCR. Pleural fluid and serum mesothelin levels were quantified using ELISA. Results Based on clinico-pathological evaluation, 52 subjects had MPE (including 16 mesotheliomas and 23 had benign effusions. Pleural fluid DNA integrity index was higher in MPE compared with benign effusions (1.2 vs. 0.8; p Conclusion Pleural fluid DNA integrity index is a promising diagnostic biomarker for identification of MPEs, including mesothelioma. This biomarker may be particularly useful in cases of MPE where pleural aspirate cytology is negative, and could guide the decision to undertake more invasive definitive testing. A prospective validation study is being undertaken to validate our findings and test the clinical utility of this biomarker for altering clinical practice.

  14. 3D Printing an Octohedron

    Aboufadel, Edward F.

    2014-01-01

    The purpose of this short paper is to describe a project to manufacture a regular octohedron on a 3D printer. We assume that the reader is familiar with the basics of 3D printing. In the project, we use fundamental ideas to calculate the vertices and faces of an octohedron. Then, we utilize the OPENSCAD program to create a virtual 3D model and an STereoLithography (.stl) file that can be used by a 3D printer.

  15. Salient Local 3D Features for 3D Shape Retrieval

    Godil, Afzal

    2011-01-01

    In this paper we describe a new formulation for the 3D salient local features based on the voxel grid inspired by the Scale Invariant Feature Transform (SIFT). We use it to identify the salient keypoints (invariant points) on a 3D voxelized model and calculate invariant 3D local feature descriptors at these keypoints. We then use the bag of words approach on the 3D local features to represent the 3D models for shape retrieval. The advantages of the method are that it can be applied to rigid as well as to articulated and deformable 3D models. Finally, this approach is applied for 3D Shape Retrieval on the McGill articulated shape benchmark and then the retrieval results are presented and compared to other methods.

  16. Wide band negative magnetic permeability materials (NMPM) with composite metalsemiconductor structures based on the Drude model, and applications to negative-refractive index (NIM).

    Benedetti, A; Sibilia, C; Bertolotti, M

    2007-05-28

    Composite structures based on metal open rings and thin wires are well established, for obtaining efficient negative index materials (NIM), acting as metamaterials in the long wavelength regime. The main losses are due both to metal absorption and to the inner electric resistance of metals; to overcome this latter loss we propose a new metal-semiconductor structure dimensioned by direct synthesis method, which offers an almost perfect Drude-like effective magnetic permeability. The choice of particular semiconductor components allows to get a negative resistance for the current induced by the electromagnetic field, which cancels that of the metal but puts a limit to the spectral response of the metamaterial. We consider some parasite effects, such as bianisotropy and incorrect values of structural parameters, to see limitations and features of this new NIM technology.

  17. Tunneling modes and giant Goos-Hänchen effect of a symmetric heterostructure containing negative-zero-positive index metamaterials

    Wang, Xinglin; Shen, Ming; Wang, Huisheng

    2015-07-01

    The photonic band gaps and the corresponding tunneling modes in a symmetric heterostructure containing negative-zero-positive index metamaterials (NZPIM) are studied systematically. The zero- gap is found to be insensitive to incident angle in contrast to the Bragg gap. Due to the linear dispersion of NZPIM, there exists an asymmetric Dirac point band gap which is always absent of the defect tunneling mode. The tunneling modes inside the gaps and the corresponding giant positive and negative Goos-Hänchen shifts are further investigated. Our results may have potential application in integrated optics and optical devices and also suggest analogous phenomena of valence electron in graphene superlattice.

  18. Ultra low-loss, isotropic 2D optical negative-index metamaterial based on hybrid metal-semiconductor nanowires

    Paniagua-Dominguez, R; Sanchez-Gil, J A

    2012-01-01

    In the past few years, many of the fascinating and previously almost unconceivable properties predicted for those novel, artificial, man-made materials, so called metamaterials, were demonstrated to be not only a tangible reality, but a very useful one. However, plenty of the best achievements in that newly discovered field are far from having a direct translation to the, in many aspects more interesting, high frequency range, without being burdened not only by technological difficulties, but also conceptual ones. Of particular importance within the realm of optical metamaterials having a negative index of refraction, often designated negative-index metamaterials (NIM), is the issue of simultaneously achieving a strong response of the system and low associated losses. In the present work, we demonstrate the possibility to use hybrid metal-semiconductor nanowires to obtain an isotropic optical NIM, with very strong electric and magnetic responses, which exhibits extremely low losses (about two orders of magnit...

  19. Experimental and theoretical verification of focusing in a large, periodically loaded transmission line negative refractive index metamaterial.

    Iyer, Ashwin; Kremer, Peter; Eleftheriades, George

    2003-04-07

    We have previously shown that a new class of Negative Refractive Index (NRI) metamaterials can be constructed by periodically loading a host transmission line medium with inductors and capacitors in a dual (high-pass) configuration. A small planar NRI lens interfaced with a Positive Refractive Index (PRI) parallel-plate waveguide recently succeeded in demonstrating focusing of cylindrical waves. In this paper, we present theoretical and experimental data describing the focusing and dispersion characteristics of a significantly improved device that exhibits minimal edge effects, a larger NRI region permitting precise extraction of dispersion data, and a PRI region consisting of a microstrip grid, over which the fields may be observed. The experimentally obtained dispersion data exhibits excellent agreement with the theory predicted by periodic analysis, and depicts an extremely broadband region from 960MHz to 2.5GHz over which the refractive index remains negative. At the frequency at which the theory predicts a relative refractive index of -1, the measured field distribution shows a focal spot with a maximum beam width under one-half of a guide wavelength. These results are compared with field distributions obtained through mathematical simulations based on the plane-wave expansion technique, and exhibit a qualitative correspondence. The success of this experiment attests to the repeatability of the original experiment and affirms the viability of the transmission line approach to the design of NRI metamaterials.

  20. Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges.

    Yannopapas, Vassilios; Moroz, Alexander

    2005-06-29

    We present a new set of artificial structures which can exhibit a negative refractive index band in excess of 6% in a broad frequency range from the deep infrared to the terahertz region. The structures are composites of two different kinds of non-overlapping spheres, one made from inherently non-magnetic polaritonic and the other from a Drude-like material. The polaritonic spheres are responsible for the existence of negative effective magnetic permeability whilst the Drude-like spheres are responsible for negative effective electric permittivity. The resulting negative refractive index structures are truly subwavelength structures with wavelength-to-structure ratio 14:1, which is almost 50% higher than has been previously achieved. Our results are explained in the context of the extended Maxwell-Garnett theory and are reproduced by calculations based on the layer Korringa-Kohn-Rostoker method, an ab initio multiple scattering theory. The role of absorption in the constituent materials is discussed. Effective medium computer F77 code is freely available at http://www.wave-scattering.com.

  1. Resonance-based metamaterial in the shallow sub-wavelength regime: negative refractive index and nearly perfect absorption

    Trang Pham, Thi; Nguyen, Hoang Tung; Tuyen Le, Dac; Tong, Ba Tuan; Giang Trinh, Thi; Tuong Pham, Van; Vu, Dinh Lam

    2016-12-01

    The research on magnetic resonances in typical meta-atoms has led to the discovery of electromagnetic metamaterials (MMs). These new materials played a crucial role in achieving extraordinary phenomena as well as promised potential applications. In this paper, we numerically and experimentally investigated two different MM effects: the absorption and the negative refraction, which induced by magnetic resonances in a symmetric structure. The meta-atom sandwich model that includes two parallel flat rings separated by an insulating slab was designed. Firstly, three resonances in sub-wavelength range were demonstrated, revealing the negative permittivity and permeability effects. Notably, negative refractive index (NRI) was gained at the third-gap resonance, resulting from superposition of the rest of the electric resonance and the magnetic one accompanied by multi-plasmon. Moreover, the manipulation of the structural parameters could control the NRI behavior and, interestingly, a nearly perfect absorption peak arises in shallow sub-wavelength regime.

  2. Optical Pulse Dynamics in Active Metamaterials with Positive and Negative Refractive Index

    Korotkevich, Alexander O; Kovacic, Gregor; Roytburd, Victor; Maimistov, Andrei I; Gabitov, Ildar R; .,

    2013-01-01

    We study numerically the propagation of two-color light pulses through a metamaterial doped with active atoms such that the carrier frequencies of the pulses are in resonance with two atomic transitions in the $\\Lambda$ configuration and that one color propagates in the regime of positive refraction and the other in the regime of negative refraction. In such a metamaterial, one resonant color of light propagates with positive and the other with negative group velocity. We investigate nonlinear interaction of these forward- and backward-propagating waves, and find self-trapped waves, counter-propagating radiation waves, and hot spots of medium excitation.

  3. Impact of reward and punishment motivation on behavior monitoring as indexed by the error-related negativity.

    Potts, Geoffrey F

    2011-09-01

    The error-related negativity (ERN) is thought to index a neural behavior monitoring system with its source in anterior cingulate cortex (ACC). While ACC is involved in a wide variety of cognitive and emotional tasks, there is debate as to what aspects of ACC function are indexed by the ERN. In one model the ERN indexes purely cognitive function, responding to mismatch between intended and executed actions. Another model posits that the ERN is more emotionally driven, elicited when an action is inconsistent with motivational goals. If the ERN indexes mismatch between intended and executed actions, then it should be insensitive to motivational valence, e.g. reward or punishment; in contrast if the ERN indexes the evaluation of responses relative to goals, then it might respond differentially under differing motivational valence. This study used a flanker task motivated by potential reward and potential punishment on different trials and also examined the N2 and P3 to the imperative stimulus, the response Pe, and the FRN and P3 to the outcome feedback to assess the impact of motivation valence on other stages of information processing in this choice reaction time task. Participants were slower on punishment motivated trials and both the N2 and ERN were larger on punishment motivated trials, indicating that loss aversion has an impact on multiple stages of information processing including behavior monitoring.

  4. 3D Spectroscopy in Astronomy

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco

    2011-09-01

    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  5. Spherical 3D isotropic wavelets

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2012-04-01

    Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html

  6. Development of Preparatory Activity Indexed by the Contingent Negative Variation in Children

    Flores, Angelica B.; Digiacomo, Marcia R.; Meneres, Susana; Trigo, Eva; Gomez, Carlos M.

    2009-01-01

    Objectives: The present study investigated the effect of age on task-specific preparatory activation induced by a spatial cue using the central cue Posner's paradigm. The behavioral responses and the contingent negative variation (CNV) generated between S1 (the warning stimulus) and S2 (the imperative stimulus) were compared between 16 healthy…

  7. 3D IBFV : Hardware-Accelerated 3D Flow Visualization

    Telea, Alexandru; Wijk, Jarke J. van

    2003-01-01

    We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique for 2D flow visualization in two main directions. First, we decompose the 3D flow visualization problem in a

  8. 3D Elevation Program—Virtual USA in 3D

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  9. Interactive 3D multimedia content

    Cellary, Wojciech

    2012-01-01

    The book describes recent research results in the areas of modelling, creation, management and presentation of interactive 3D multimedia content. The book describes the current state of the art in the field and identifies the most important research and design issues. Consecutive chapters address these issues. These are: database modelling of 3D content, security in 3D environments, describing interactivity of content, searching content, visualization of search results, modelling mixed reality content, and efficient creation of interactive 3D content. Each chapter is illustrated with example a

  10. A 3-D Contextual Classifier

    Larsen, Rasmus

    1997-01-01

    . This includes the specification of a Gaussian distribution for the pixel values as well as a prior distribution for the configuration of class variables within the cross that is m ade of a pixel and its four nearest neighbours. We will extend this algorithm to 3-D, i.e. we will specify a simultaneous Gaussian...... distr ibution for a pixel and its 6 nearest 3-D neighbours, and generalise the class variable configuration distribution within the 3-D cross. The algorithm is tested on a synthetic 3-D multivariate dataset....

  11. 3D Bayesian contextual classifiers

    Larsen, Rasmus

    2000-01-01

    We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours.......We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours....

  12. 3-D printers for libraries

    Griffey, Jason

    2014-01-01

    As the maker movement continues to grow and 3-D printers become more affordable, an expanding group of hobbyists is keen to explore this new technology. In the time-honored tradition of introducing new technologies, many libraries are considering purchasing a 3-D printer. Jason Griffey, an early enthusiast of 3-D printing, has researched the marketplace and seen several systems first hand at the Consumer Electronics Show. In this report he introduces readers to the 3-D printing marketplace, covering such topics asHow fused deposition modeling (FDM) printing workBasic terminology such as build

  13. 3D for Graphic Designers

    Connell, Ellery

    2011-01-01

    Helping graphic designers expand their 2D skills into the 3D space The trend in graphic design is towards 3D, with the demand for motion graphics, animation, photorealism, and interactivity rapidly increasing. And with the meteoric rise of iPads, smartphones, and other interactive devices, the design landscape is changing faster than ever.2D digital artists who need a quick and efficient way to join this brave new world will want 3D for Graphic Designers. Readers get hands-on basic training in working in the 3D space, including product design, industrial design and visualization, modeling, ani

  14. Pyrolytic 3D Carbon Microelectrodes for Electrochemistry

    Hemanth, Suhith; Caviglia, Claudia; Amato, Letizia

    2016-01-01

    electrochemical activity, chemical stability, and ease in surface functionalization [1]. The most common carbon microfabrication techniques (i.e. screen printing) produce two-dimensional (2D) electrodes, which limit the detection sensitivity. Hence several 3D microfabrication techniques have been explored......This work presents the fabrication and characterization of multi-layered three-dimensional (3D) pyrolysed carbon microelectrodes for electrochemical applications. For this purpose, an optimized UV photolithography and pyrolysis process with the negative tone photoresist SU-8 has been developed...... carbon [2]. This process enables fabrication of 2D and 3D electrodes with possibility for tailoring ad-hoc designs and unique sensitivities for specific applications. Due to this, pyrolysed carbon is becoming increasingly attractive for numerous applications, such as novel sensors and scaffolds for cell...

  15. Tunable dual-band negative refractive index in ferrite-based metamaterials.

    Bi, Ke; Zhou, Ji; Zhao, Hongjie; Liu, Xiaoming; Lan, Chuwen

    2013-05-06

    A tunable dual-band ferrite-based metamaterial has been investigated by experiments and simulations. The negative permeability is realized around the ferromagnetic resonance (FMR) frequency which can be influenced by the dimension of the ferrites. Due to having two negative permeability frequency regions around the two FMR frequencies, the metamaterials consisting of metallic wires and ferrite rods with different sizes possess two passbands in the transmission spectra. The microwave transmission properties of the ferrite-based metamaterials can be not only tuned by the applied magnetic field, but also adjusted by the dimension of the ferrite rods. A good agreement between experimental and simulated results is demonstrated, which confirms that the tunable dual-band ferrite-based metamaterials can be used for cloaks, antennas and absorbers.

  16. Multiple 3D medical data watermarking for healthcare data management.

    Lee, Suk-Hwan; Kwon, Ki-Ryong

    2011-12-01

    The rapid development of healthcare information management for 3D digital medical libraries, 3D PACS, and 3D medical diagnosis has addressed the security issues pertaining to medical IT technology. This paper presents multiple watermarking schemes for a healthcare information management system for 3D medical image data for the protection, authentication, indexing, and hiding of diagnosis information. The proposed scheme, which is based on POCS watermarking, embeds a robust watermark for a doctor's digital signature and an information retrieval indexing key to the distribution of vertex curvedness; the scheme also embeds a fragile watermark for diagnosis information and an authentication reference message to the vertex distance difference. The multiple embedding process creates three convex sets for robustness, fragileness, and invisibility and projects the 3D medical image data onto these three convex sets alternately and iteratively. Experimental results confirmed that the proposed scheme has the robustness and fragileness to handle various 3D geometric and mesh modifiers simultaneously.

  17. Spherical 3D Isotropic Wavelets

    Lanusse, F; Starck, J -L

    2011-01-01

    Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D Spherical Fourier-Bessel (SFB) analysis in is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the Fourier-Bessel decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. 2006. We also present a new fast Discrete Spherical Fourier-Bessel Transform (DSFBT) based on both a discrete Bessel Transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large...

  18. Improvement of 3D Scanner

    2003-01-01

    The disadvantage remaining in 3D scanning system and its reasons are discussed. A new host-and-slave structure with high speed image acquisition and processing system is proposed to quicken the image processing and improve the performance of 3D scanning system.

  19. 3D Printing for Bricks

    ECT Team, Purdue

    2015-01-01

    Building Bytes, by Brian Peters, is a project that uses desktop 3D printers to print bricks for architecture. Instead of using an expensive custom-made printer, it uses a normal standard 3D printer which is available for everyone and makes it more accessible and also easier for fabrication.

  20. 3D vision system assessment

    Pezzaniti, J. Larry; Edmondson, Richard; Vaden, Justin; Hyatt, Bryan; Chenault, David B.; Kingston, David; Geulen, Vanilynmae; Newell, Scott; Pettijohn, Brad

    2009-02-01

    In this paper, we report on the development of a 3D vision system consisting of a flat panel stereoscopic display and auto-converging stereo camera and an assessment of the system's use for robotic driving, manipulation, and surveillance operations. The 3D vision system was integrated onto a Talon Robot and Operator Control Unit (OCU) such that direct comparisons of the performance of a number of test subjects using 2D and 3D vision systems were possible. A number of representative scenarios were developed to determine which tasks benefited most from the added depth perception and to understand when the 3D vision system hindered understanding of the scene. Two tests were conducted at Fort Leonard Wood, MO with noncommissioned officers ranked Staff Sergeant and Sergeant First Class. The scenarios; the test planning, approach and protocols; the data analysis; and the resulting performance assessment of the 3D vision system are reported.

  1. PLOT3D user's manual

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  2. 3D printing in dentistry.

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  3. Using 3D in Visualization

    Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen

    2005-01-01

    The notion of three-dimensionality is applied to five stages of the visualization pipeline. While 3D visulization is most often associated with the visual mapping and representation of data, this chapter also identifies its role in the management and assembly of data, and in the media used...... to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...... with abstracted representations embedded in a 3D space. The interactions between development of geovisualization, the technology used to implement it and the theory surrounding cartographic representation are explored. The dominance of computing technologies, driven particularly by the gaming industry...

  4. Indexed

    Hagy, Jessica

    2008-01-01

    Jessica Hagy is a different kind of thinker. She has an astonishing talent for visualizing relationships, capturing in pictures what is difficult for most of us to express in words. At indexed.blogspot.com, she posts charts, graphs, and Venn diagrams drawn on index cards that reveal in a simple and intuitive way the large and small truths of modern life. Praised throughout the blogosphere as “brilliant,” “incredibly creative,” and “comic genius,” Jessica turns her incisive, deadpan sense of humor on everything from office politics to relationships to religion. With new material along with some of Jessica’s greatest hits, this utterly unique book will thrill readers who demand humor that makes them both laugh and think.

  5. Cavity equations for a positive or negative refraction index material with electric and magnetic non-linearities

    Mártin, Daniel A; 10.1103/PhysRevE.80.056601

    2012-01-01

    We study evolution equations for electric and magnetic field amplitudes in a ring cavity with plane mirrors. The cavity is filled with a positive or negative refraction index material with third order effective electric and magnetic non-linearities. Two coupled non-linear equations for the electric and magnetic amplitudes are obtained. We prove that the description can be reduced to one Lugiato Lefever equation with generalized coefficients. A stability analysis of the homogeneous solution, complemented with numerical integration, shows that any combination of the parameters should correspond to one of three characteristic behaviors.

  6. Resonant tunneling of a wave through a structure that contains a layer with a negative refractive index

    Afanas'ev, S. A.; Sementsov, D. I.; Yakimov, Ya. V.

    2016-05-01

    We have investigated the transmission ability of a layered structure the central layer of which is made of a "left-handed" material (its refractive index is negative) and is separated by two air slabs from a "right-handed" dielectric medium that surrounds the structure. We consider tunneling of energy fluxes through the structure and determine conditions for the complete (reflectionless) transmission of the power of the incident wave through it. We show that this effect is resonant and is observed when the tangential component of the wave vector of the incident wave coincides with the longitudinal wave vector of one of waveguiding eigenmodes of the left-handed layer.

  7. Measurements of the negative refractive index of sub-diffraction waves propagating in an indefinite permittivity medium.

    Korobkin, Dmitriy; Neuner, Burton; Fietz, Chris; Jegenyes, Nikoletta; Ferro, Gabriel; Shvets, Gennady

    2010-10-25

    An indefinite permittivity medium (IPM) has been fabricated and optically characterized in mid-infrared spectral range (10.7 µm-11.3 µm). Phase and amplitude transmission measurements reveal two remarkable properties of IPMs: (i) transmission of sub-diffraction waves (as short as λ/4) can exceed those of diffraction-limited ones, and (ii) sub-diffraction waves can propagate with negative refractive index. We describe a novel double-detector optical technique relying on the interference between sub-diffraction and diffraction-limited waves for accurate measurement of the transmission amplitude and phase of the former.

  8. Non-linear states of a positive or negative refraction index material in a cavity with feedback

    Mártin, D. A.; Hoyuelos, M.

    2010-06-01

    We study a system composed by a cavity with plane mirrors containing a positive or negative refraction index material with third order effective electric and magnetic non-linearities. The aim of the work is to present a general picture of possible non-linear states in terms of the relevant parameters of the system. The parameters are the ones that appear in a reduced description that has the form of the Lugiato-Lefever equation. This equation is obtained from two coupled non-linear Schrödinger equations for the electric and magnetic field amplitudes.

  9. Tightly coupled tripole conductor pairs as constituents for a planar 2D-isotropic negative refractive index metamaterial.

    Vallecchi, Andrea; Capolino, Filippo

    2009-08-17

    A metamaterial, arranged by stacking layers of planar constituents suitably shaped to be responsive to arbitrarily linearly polarized incident waves is here shown to exhibit 2D-isotropic effective negative refractive index (NRI). The general concept underlying this metamaterial design consists of closely pairing two metallic particles to accomplish, as a result of their tight coupling, both symmetric and antisymmetric resonance modes, whose proper superposition can lead to an effective negative refraction response. The proposed structure is composed by layers of periodically arranged pairs of face coupled loaded tripoles printed on the opposite sides of a single dielectric substrate. Through a comprehensive characterization of the transmission properties of such metamaterial, together with the analysis of its dispersion diagram, conclusive evidence that the medium exhibits effective NRI properties as well as good impedance matching to free space is provided. We also describe some guidelines to design the proposed metamaterial with a prescribed operational frequency bandwidth, dependently on the structure parameters.

  10. ADT-3D Tumor Detection Assistant in 3D

    Jaime Lazcano Bello

    2008-12-01

    Full Text Available The present document describes ADT-3D (Three-Dimensional Tumor Detector Assistant, a prototype application developed to assist doctors diagnose, detect and locate tumors in the brain by using CT scan. The reader may find on this document an introduction to tumor detection; ADT-3D main goals; development details; description of the product; motivation for its development; result’s study; and areas of applicability.

  11. Bioprinting of 3D hydrogels.

    Stanton, M M; Samitier, J; Sánchez, S

    2015-08-07

    Three-dimensional (3D) bioprinting has recently emerged as an extension of 3D material printing, by using biocompatible or cellular components to build structures in an additive, layer-by-layer methodology for encapsulation and culture of cells. These 3D systems allow for cell culture in a suspension for formation of highly organized tissue or controlled spatial orientation of cell environments. The in vitro 3D cellular environments simulate the complexity of an in vivo environment and natural extracellular matrices (ECM). This paper will focus on bioprinting utilizing hydrogels as 3D scaffolds. Hydrogels are advantageous for cell culture as they are highly permeable to cell culture media, nutrients, and waste products generated during metabolic cell processes. They have the ability to be fabricated in customized shapes with various material properties with dimensions at the micron scale. 3D hydrogels are a reliable method for biocompatible 3D printing and have applications in tissue engineering, drug screening, and organ on a chip models.

  12. Transmission of evanescent wave modes through a slab of negative-refractive-index material.

    de Wolf, David A

    2011-02-01

    There has been a long-standing argument about Pendry's suggestion that a plane harmonic evanescent (surface) wave along the interface between free space and a slab of ɛ=-1, μ=-1 double-negative (DNG) medium will emerge on the far side with recovery of phase and amplitude. While this is possible, it is subject to parameter restrictions. This work generalizes previous work and now gives analytical criteria for when to expect such a recovery in a Smith-Kroll DNG medium. Basically this requires, among other things, a relatively narrow bandwidth and relatively small transverse-mode component. There also is a very strong dependence on the ratio of slabwidth to plasma wavelength.

  13. Tuotekehitysprojekti: 3D-tulostin

    Pihlajamäki, Janne

    2011-01-01

    Opinnäytetyössä tutustuttiin 3D-tulostamisen teknologiaan. Työssä käytiin läpi 3D-tulostimesta tehty tuotekehitysprojekti. Sen lisäksi esiteltiin yleisellä tasolla tuotekehitysprosessi ja syntyneiden tulosten mahdollisia suojausmenetelmiä. Tavoitteena tässä työssä oli kehittää markkinoilta jo löytyvää kotitulostin-tasoista 3D-laiteteknologiaa lähemmäksi ammattilaistason ratkaisua. Tavoitteeseen pyrittiin keskittymällä parantamaan laitteella saavutettavaa tulostustarkkuutta ja -nopeutt...

  14. Handbook of 3D integration

    Garrou , Philip; Ramm , Peter

    2014-01-01

    Edited by key figures in 3D integration and written by top authors from high-tech companies and renowned research institutions, this book covers the intricate details of 3D process technology.As such, the main focus is on silicon via formation, bonding and debonding, thinning, via reveal and backside processing, both from a technological and a materials science perspective. The last part of the book is concerned with assessing and enhancing the reliability of the 3D integrated devices, which is a prerequisite for the large-scale implementation of this emerging technology. Invaluable reading fo

  15. Color 3D Reverse Engineering

    2002-01-01

    This paper presents a principle and a method of col or 3D laser scanning measurement. Based on the fundamental monochrome 3D measureme nt study, color information capture, color texture mapping, coordinate computati on and other techniques are performed to achieve color 3D measurement. The syste m is designed and composed of a line laser light emitter, one color CCD camera, a motor-driven rotary filter, a circuit card and a computer. Two steps in captu ring object's images in the measurement process: Firs...

  16. Exploration of 3D Printing

    Lin, Zeyu

    2014-01-01

    3D printing technology is introduced and defined in this Thesis. Some methods of 3D printing are illustrated and their principles are explained with pictures. Most of the essential parts are presented with pictures and their effects are explained within the whole system. Problems on Up! Plus 3D printer are solved and a DIY product is made with this machine. The processes of making product are recorded and the items which need to be noticed during the process are the highlight in this th...

  17. 嵌入式三维电子地图空间数据索引研究%RESEARCH ON SPATIAL DATA INDEX OF 3D DIGITAL MAP IN EMBEDDED SYSTEM

    沈永增; 徐均; 刘东岳

    2012-01-01

    研究各种索引结构,如B树、四叉树、八叉树、网格、R树等,在此基础上提出一种网格索引和R树索引结合的索引方式.它适合作为嵌入式环境下的三维电子地图的外存索引.它比单纯的网格索引减少了数据冗余;比单纯的R树索引减少了区域重叠情况,降低了R树的高度,减少了检索的时间.并且其有效性在Android系统中得到了验证.%In this paper, we propose a new indexing way which combines the grid-based index with R-tree index on the basis of studying various index structures such as B-tree, Quad-tree, Octree, grid, R-tree and so on. It is suitable for the index of three-dimensional digital map in embedded external memory. It has less redundancy data than the simple grid-based index, and has less overlapped areas than the simple R-tree index and lowers the height of R-tree as well as lessens the search time. The effectiveness of the new way has been verified in android system.

  18. Planetary Torque in 3D Isentropic Disks

    Fung, Jeffrey; Lega, Elena; Velasco, David

    2016-01-01

    Planet migration is inherently a three-dimensional (3D) problem, because Earth-size planetary cores are deeply embedded in protoplanetary disks. Simulations of these 3D disks remain challenging due to the steep requirement in resolution. Using two different hydrodynamics code, FARGO3D and PEnGUIn, we simulate disk-planet interaction for a 1 to 5 Earth-mass planet embedded in an isentropic disk. We measure the torque on the planet and ensure that the measurements are converged both in resolution and between the two codes. We find that the torque is independent of the smoothing length of the planet's potential ($r_{\\rm s}$), and that it has a weak dependence on the adiabatic index of the gaseous disk ($\\gamma$). The torque values correspond to an inward migration rate qualitatively similar to previous linear calculations. We perform additional simulations with explicit radiative transfer using FARGOCA, and again find agreement between 3D simulations and existing torque formulae. We also present the flow pattern...

  19. Planetary Torque in 3D Isentropic Disks

    Fung, Jeffrey; Masset, Frédéric; Lega, Elena; Velasco, David

    2017-03-01

    Planetary migration is inherently a three-dimensional (3D) problem, because Earth-size planetary cores are deeply embedded in protoplanetary disks. Simulations of these 3D disks remain challenging due to the steep resolution requirements. Using two different hydrodynamics codes, FARGO3D and PEnGUIn, we simulate disk–planet interaction for a one to five Earth-mass planet embedded in an isentropic disk. We measure the torque on the planet and ensure that the measurements are converged both in resolution and between the two codes. We find that the torque is independent of the smoothing length of the planet’s potential (r s), and that it has a weak dependence on the adiabatic index of the gaseous disk (γ). The torque values correspond to an inward migration rate qualitatively similar to previous linear calculations. We perform additional simulations with explicit radiative transfer using FARGOCA, and again find agreement between 3D simulations and existing torque formulae. We also present the flow pattern around the planets that show active flow is present within the planet’s Hill sphere, and meridional vortices are shed downstream. The vertical flow speed near the planet is faster for a smaller r s or γ, up to supersonic speeds for the smallest r s and γ in our study.

  20. Task difficulty affects the predictive process indexed by visual mismatch negativity

    Motohiro eKimura

    2013-06-01

    Full Text Available Visual mismatch negativity (MMN is an event-related brain potential (ERP component that is elicited by prediction-incongruent events in successive visual stimulation. Previous oddball studies have shown that visual MMN in response to task-irrelevant deviant stimuli is insensitive to the manipulation of task difficulty, which supports the notion that visual MMN reflects attention-independent predictive processes. In these studies, however, visual MMN was evaluated in deviant-minus-standard difference waves, which may lead to an underestimation of the effects of task difficulty due to the possible superposition of N1-difference reflecting refractory effects. In the present study, we investigated the effects of task difficulty on visual MMN, less contaminated by N1-difference. While the participant performed a size-change detection task regarding a continuously-presented central fixation circle, we presented oddball sequences consisting of deviant and standard bar stimuli with different orientations (9.1% and 90.9% and equiprobable sequences consisting of 11 types of control bar stimuli with different orientations (9.1% each at the surrounding visual fields. Task difficulty was manipulated by varying the magnitude of the size-change. We found that the peak latencies of visual MMN evaluated in the deviant-minus-control difference waves were delayed as a function of task difficulty. Therefore, in contrast to the previous understanding, the present findings support the notion that visual MMN is associated with attention-demanding predictive processes.

  1. Accepting the T3D

    Rich, D.O.; Pope, S.C.; DeLapp, J.G.

    1994-10-01

    In April, a 128 PE Cray T3D was installed at Los Alamos National Laboratory`s Advanced Computing Laboratory as part of the DOE`s High-Performance Parallel Processor Program (H4P). In conjunction with CRI, the authors implemented a 30 day acceptance test. The test was constructed in part to help them understand the strengths and weaknesses of the T3D. In this paper, they briefly describe the H4P and its goals. They discuss the design and implementation of the T3D acceptance test and detail issues that arose during the test. They conclude with a set of system requirements that must be addressed as the T3D system evolves.

  2. Advanced 3-D Ultrasound Imaging

    Rasmussen, Morten Fischer

    The main purpose of the PhD project was to develop methods that increase the 3-D ultrasound imaging quality available for the medical personnel in the clinic. Acquiring a 3-D volume gives the medical doctor the freedom to investigate the measured anatomy in any slice desirable after the scan has...... been completed. This allows for precise measurements of organs dimensions and makes the scan more operator independent. Real-time 3-D ultrasound imaging is still not as widespread in use in the clinics as 2-D imaging. A limiting factor has traditionally been the low image quality achievable using...... Field II simulations and measurements with the ultrasound research scanner SARUS and a 3.5MHz 1024 element 2-D transducer array. In all investigations, 3-D synthetic aperture imaging achieved a smaller main-lobe, lower sidelobes, higher contrast, and better signal to noise ratio than parallel...

  3. Conducting polymer 3D microelectrodes

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...

  4. 3D Face Apperance Model

    Lading, Brian; Larsen, Rasmus; Astrom, K

    2006-01-01

    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations......We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations...

  5. 3D Face Appearance Model

    Lading, Brian; Larsen, Rasmus; Åström, Kalle

    2006-01-01

    We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}......We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}...

  6. Main: TATCCAYMOTIFOSRAMY3D [PLACE

    Full Text Available TATCCAYMOTIFOSRAMY3D S000256 01-August-2006 (last modified) kehi TATCCAY motif foun...d in rice (O.s.) RAmy3D alpha-amylase gene promoter; Y=T/C; a GATA motif as its antisense sequence; TATCCAY ...motif and G motif (see S000130) are responsible for sugar repression (Toyofuku et al. 1998); GATA; amylase; sugar; repression; rice (Oryza sativa) TATCCAY ...

  7. DNA repair prognostic index modelling reveals an essential role for base excision repair in influencing clinical outcomes in ER negative and triple negative breast cancers

    Abdel-Fatah, Tarek M.A.; Arora, Arvind; Moseley, Paul M.; Perry, Christina; Rakha, Emad A.; Green, Andrew R.; Chan, Stephen Y.T.; Ellis, Ian O.; Madhusudan, Srinivasan

    2015-01-01

    Stratification of oestrogen receptor (ER) negative and triple negative breast cancers (TNBCs) is urgently needed. In the current study, a cohort of 880 ER- (including 635 TNBCs) was immuno-profiled for a panel of DNA repair proteins including: Pol β, FEN1, APE1, XRCC1, SMUG1, PARP1, BRCA1, ATR, ATM, DNA-PKcs, Chk1, Chk2, p53, and TOPO2. Multivariate Cox proportional hazards models (with backward stepwise exclusion of these factors, using a criterion of p < 0.05 for retention of factors in the model) were used to identify factors that were independently associated with clinical outcomes. XRCC1 (p = 0.002), pol β (p = 0.032) FEN1 (p = 0.001) and BRCA1 (p = 0.040) levels were independently associated with poor BCSS. Subsequently, DNA repair index prognostic (DRPI) scores for breast cancer specific survival (BCSS) were calculated and two prognostic groups (DRPI-PGs) were identified. Patients in prognostic group 2 (DRPI-PG2) have higher risk of death (p < 0.001). Furthermore, in DRPI-PG2 patients, exposure to anthracycline reduced the risk of death [(HR (95% CI) = 0.79 (0.64–0.98), p = 0.032) by 21–26%. In addition, DRPI-PG2 patients have adverse clinicopathological features including higher grade, lympho-vascular invasion, Her-2 positive phenotype, compared to those in DRPI-PG1 (p < 0.01). Receiver operating characteristic (ROC) curves indicated that the DRPI outperformed the currently used prognostic factors and adding DRPI to lymph node stage significantly improved their performance as a predictor for BCSS [p < 0.00001, area under curve (AUC) = 0.70]. BER strongly influences pathogenesis of ER- and TNBCs. The DRPI accurately predicts BCSS and can also serve as a valuable prognostic and predictive tool for TNBCs. PMID:26267318

  8. MPML3D: Scripting Agents for the 3D Internet.

    Prendinger, Helmut; Ullrich, Sebastian; Nakasone, Arturo; Ishizuka, Mitsuru

    2011-05-01

    The aim of this paper is two-fold. First, it describes a scripting language for specifying communicative behavior and interaction of computer-controlled agents ("bots") in the popular three-dimensional (3D) multiuser online world of "Second Life" and the emerging "OpenSimulator" project. While tools for designing avatars and in-world objects in Second Life exist, technology for nonprogrammer content creators of scenarios involving scripted agents is currently missing. Therefore, we have implemented new client software that controls bots based on the Multimodal Presentation Markup Language 3D (MPML3D), a highly expressive XML-based scripting language for controlling the verbal and nonverbal behavior of interacting animated agents. Second, the paper compares Second Life and OpenSimulator platforms and discusses the merits and limitations of each from the perspective of agent control. Here, we also conducted a small study that compares the network performance of both platforms.

  9. From 3D view to 3D print

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  10. 3D-mallinnus ja 3D-animaatiot biovoimalaitoksesta

    Hiltula, Tytti

    2014-01-01

    Opinnäytetyössä tehtiin biovoimalaitoksen piirustuksista 3D-mallinnus ja animaatiot. Työn tarkoituksena oli saada valmiiksi Recwell Oy:lle markkinointiin tarkoitetut kuva- ja videomateriaalit. Työssä perehdyttiin 3D-mallintamisen perustietoihin ja lähtökohtiin sekä animaation laatimiseen. Työ laadittiin kokonaisuudessaan AutoCAD-ohjelmalla, ja työn aikana tutustuttiin huolellisesti myös ohjelman käyttöohjeisiin. Piirustusten mitoituksessa huomattiin jo alkuvaiheessa suuria puutteita, ...

  11. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  12. 3D future internet media

    Dagiuklas, Tasos

    2014-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The main contributions are based on the results of the FP7 European Projects ROMEO, which focus on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the Future Internet (www.ict-romeo.eu). The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of constant video quality to both fixed and mobile users. ROMEO will design and develop hybrid-networking solutions that co...

  13. Materialedreven 3d digital formgivning

    Hansen, Flemming Tvede

    2010-01-01

    Formålet med forskningsprojektet er for det første at understøtte keramikeren i at arbejde eksperimenterende med digital formgivning, og for det andet at bidrage til en tværfaglig diskurs om brugen af digital formgivning. Forskningsprojektet fokuserer på 3d formgivning og derved på 3d digital...... formgivning og Rapid Prototyping (RP). RP er en fællesbetegnelse for en række af de teknikker, der muliggør at overføre den digitale form til 3d fysisk form. Forskningsprojektet koncentrerer sig om to overordnede forskningsspørgsmål. Det første handler om, hvordan viden og erfaring indenfor det keramiske...... fagområde kan blive udnyttet i forhold til 3d digital formgivning. Det andet handler om, hvad en sådan tilgang kan bidrage med, og hvordan den kan blive udnyttet i et dynamisk samspil med det keramiske materiale i formgivningen af 3d keramiske artefakter. Materialedreven formgivning er karakteriseret af en...

  14. Novel 3D media technologies

    Dagiuklas, Tasos

    2015-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The contributions are based on the results of the FP7 European Project ROMEO, which focuses on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the future Internet. The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of consistent video quality to fixed and mobile users. ROMEO will present hybrid networking solutions that combine the DVB-T2 and DVB-NGH broadcas...

  15. Speaking Volumes About 3-D

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  16. Significant negative impact of adjuvant chemotherapy on Health-Related Ouality of Life (HR-OoL) in women with breast cancer treated by conserving surgery and postoperative 3-D radiotherapy. A prospective measurement

    Galalae, R.M.; Michel, J.; Kimmig, B. [Clinic for Radiation Therapy (Radiooncology), Univ. Hospital Schleswig-Holstein, Campus Kiel (Germany); Siebmann, J.U.; Kuechler, T.; Eilf, K. [Dept. of General and Thoracic Surgery/Reference Center on Quality of Life in Oncology, Univ. Hospital Schleswig-Holstein, Campus Kiel (Germany)

    2005-10-01

    Purpose: to prospectively assess health-related quality of life (HR-QoL) in women after conserving surgery for breast cancer during/after postoperative 3-D radiotherapy. Patients and methods: 109 consecutively treated patients were analyzed. HR-QoL was assessed at initiation (t1), end (t2), and 6 weeks after radiotherapy (t3) using the EORTC modules QLQ-C30/BR23. Patients were divided into three therapy groups. Group I comprised 41 patients (radiotherapy and adjuvant chemotherapy), group II 45 patients (radiotherapy and adjuvant hormonal therapy), and group III 23 patients (radiotherapy alone). Reliability was tested. Scale means were calculated. Univariate (ANOVA) and multivariate (MANCOVA) analyses were performed. Results: reliability testing revealed mean Cronbach's {alpha} > 0.70 at all measurement points. ANOVA/MANCOVA statistics revealed significantly better HR-QoL for patients in group II versus I. Patients receiving radiotherapy alone (group III) showed the best results in HR-QoL. However, scale mean differences between groups II and III were not significant. Conclusion: HR-QoL measurement using EORTC instruments during/after radiotherapy is reliable. Adjuvant chemotherapy significantly lowered HR-QoL versus hormones or radiotherapy alone. Chemotherapy patients did not recover longitudinally (from t1 to t3). (orig.)

  17. Modification of 3D milling machine to 3D printer

    Halamíček, Lukáš

    2015-01-01

    Tato práce se zabývá přestavbou gravírovací frézky na 3D tiskárnu. V první části se práce zabývá možnými technologiemi 3D tisku a možností jejich využití u přestavby. Dále jsou popsány a vybrány vhodné součásti pro přestavbu. V další části je realizováno řízení ohřevu podložky, trysky a řízení posuvu drátu pomocí softwaru TwinCat od společnosti Beckhoff na průmyslovém počítači. Výsledkem práce by měla být oživená 3D tiskárna. This thesis deals with rebuilding of engraving machine to 3D pri...

  18. Aspects of defects in 3d-3d correspondence

    Gang, Dongmin; Kim, Nakwoo; Romo, Mauricio; Yamazaki, Masahito

    2016-10-01

    In this paper we study supersymmetric co-dimension 2 and 4 defects in the compactification of the 6d (2, 0) theory of type A N -1 on a 3-manifold M . The so-called 3d-3d correspondence is a relation between complexified Chern-Simons theory (with gauge group SL(N,C) ) on M and a 3d N=2 theory T N [ M ]. We study this correspondence in the presence of supersymmetric defects, which are knots/links inside the 3-manifold. Our study employs a number of different methods: state-integral models for complex Chern-Simons theory, cluster algebra techniques, domain wall theory T [SU( N )], 5d N=2 SYM, and also supergravity analysis through holography. These methods are complementary and we find agreement between them. In some cases the results lead to highly non-trivial predictions on the partition function. Our discussion includes a general expression for the cluster partition function, which can be used to compute in the presence of maximal and certain class of non-maximal punctures when N > 2. We also highlight the non-Abelian description of the 3d N=2 T N [ M ] theory with defect included, when such a description is available. This paper is a companion to our shorter paper [1], which summarizes our main results.

  19. 3-D Vector Flow Imaging

    Holbek, Simon

    studies and in vivo. Phantom measurements are compared with their corresponding reference value, whereas the in vivo measurement is validated against the current golden standard for non-invasive blood velocity estimates, based on magnetic resonance imaging (MRI). The study concludes, that a high precision......, if this significant reduction in the element count can still provide precise and robust 3-D vector flow estimates in a plane. The study concludes that the RC array is capable of estimating precise 3-D vector flow both in a plane and in a volume, despite the low channel count. However, some inherent new challenges......For the last decade, the field of ultrasonic vector flow imaging has gotten an increasingly attention, as the technique offers a variety of new applications for screening and diagnostics of cardiovascular pathologies. The main purpose of this PhD project was therefore to advance the field of 3-D...

  20. 3D vector flow imaging

    Pihl, Michael Johannes

    The main purpose of this PhD project is to develop an ultrasonic method for 3D vector flow imaging. The motivation is to advance the field of velocity estimation in ultrasound, which plays an important role in the clinic. The velocity of blood has components in all three spatial dimensions, yet...... conventional methods can estimate only the axial component. Several approaches for 3D vector velocity estimation have been suggested, but none of these methods have so far produced convincing in vivo results nor have they been adopted by commercial manufacturers. The basis for this project is the Transverse...... on the TO fields are suggested. They can be used to optimize the TO method. In the third part, a TO method for 3D vector velocity estimation is proposed. It employs a 2D phased array transducer and decouples the velocity estimation into three velocity components, which are estimated simultaneously based on 5...

  1. Markerless 3D Face Tracking

    Walder, Christian; Breidt, Martin; Bulthoff, Heinrich

    2009-01-01

    We present a novel algorithm for the markerless tracking of deforming surfaces such as faces. We acquire a sequence of 3D scans along with color images at 40Hz. The data is then represented by implicit surface and color functions, using a novel partition-of-unity type method of efficiently...... combining local regressors using nearest neighbor searches. Both these functions act on the 4D space of 3D plus time, and use temporal information to handle the noise in individual scans. After interactive registration of a template mesh to the first frame, it is then automatically deformed to track...... the scanned surface, using the variation of both shape and color as features in a dynamic energy minimization problem. Our prototype system yields high-quality animated 3D models in correspondence, at a rate of approximately twenty seconds per timestep. Tracking results for faces and other objects...

  2. The Oslo Health Study: A Dietary Index Estimating Frequent Intake of Soft Drinks and Rare Intake of Fruit and Vegetables Is Negatively Associated with Bone Mineral Density

    Arne Torbjørn Høstmark

    2011-01-01

    Full Text Available Background. Since nutritional factors may affect bone mineral density (BMD, we have investigated whether BMD is associated with an index estimating the intake of soft drinks, fruits, and vegetables. Methods. BMD was measured in distal forearm in a subsample of the population-based Oslo Health Study. 2126 subjects had both valid BMD measurements and answered all the questions required for calculating a Dietary Index = the sum of intake estimates of colas and non-cola beverages divided by the sum of intake estimates of fruits and vegetables. We did linear regression analyses to study whether the Dietary Index and the single food items included in the index were associated with BMD. Results. There was a consistent negative association between the Dietary Index and forearm BMD. Among the single index components, colas and non-cola soft drinks were negatively associated with BMD. The negative association between the Dietary Index and BMD prevailed after adjusting for gender, age, and body mass index, length of education, smoking, alcohol intake, and physical activity. Conclusion. An index reflecting frequent intake of soft drinks and rare intake of fruit and vegetables was inversely related to distal forearm bone mineral density.

  3. The oslo health study: a dietary index estimating frequent intake of soft drinks and rare intake of fruit and vegetables is negatively associated with bone mineral density.

    Høstmark, Arne Torbjørn; Søgaard, Anne Johanne; Alvær, Kari; Meyer, Haakon E

    2011-01-01

    Background. Since nutritional factors may affect bone mineral density (BMD), we have investigated whether BMD is associated with an index estimating the intake of soft drinks, fruits, and vegetables. Methods. BMD was measured in distal forearm in a subsample of the population-based Oslo Health Study. 2126 subjects had both valid BMD measurements and answered all the questions required for calculating a Dietary Index = the sum of intake estimates of colas and non-cola beverages divided by the sum of intake estimates of fruits and vegetables. We did linear regression analyses to study whether the Dietary Index and the single food items included in the index were associated with BMD. Results. There was a consistent negative association between the Dietary Index and forearm BMD. Among the single index components, colas and non-cola soft drinks were negatively associated with BMD. The negative association between the Dietary Index and BMD prevailed after adjusting for gender, age, and body mass index, length of education, smoking, alcohol intake, and physical activity. Conclusion. An index reflecting frequent intake of soft drinks and rare intake of fruit and vegetables was inversely related to distal forearm bone mineral density.

  4. The Oslo Health Study: A Dietary Index Estimating Frequent Intake of Soft Drinks and Rare Intake of Fruit and Vegetables Is Negatively Associated with Bone Mineral Density

    Høstmark, Arne Torbjørn; Søgaard, Anne Johanne; Alvær, Kari; Meyer, Haakon E.

    2011-01-01

    Background. Since nutritional factors may affect bone mineral density (BMD), we have investigated whether BMD is associated with an index estimating the intake of soft drinks, fruits, and vegetables. Methods. BMD was measured in distal forearm in a subsample of the population-based Oslo Health Study. 2126 subjects had both valid BMD measurements and answered all the questions required for calculating a Dietary Index = the sum of intake estimates of colas and non-cola beverages divided by the sum of intake estimates of fruits and vegetables. We did linear regression analyses to study whether the Dietary Index and the single food items included in the index were associated with BMD. Results. There was a consistent negative association between the Dietary Index and forearm BMD. Among the single index components, colas and non-cola soft drinks were negatively associated with BMD. The negative association between the Dietary Index and BMD prevailed after adjusting for gender, age, and body mass index, length of education, smoking, alcohol intake, and physical activity. Conclusion. An index reflecting frequent intake of soft drinks and rare intake of fruit and vegetables was inversely related to distal forearm bone mineral density. PMID:21772969

  5. 3D Printed Bionic Nanodevices.

    Kong, Yong Lin; Gupta, Maneesh K; Johnson, Blake N; McAlpine, Michael C

    2016-06-01

    The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and 'living' platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the

  6. Microfluidic 3D Helix Mixers

    Georgette B. Salieb-Beugelaar

    2016-10-01

    Full Text Available Polymeric microfluidic systems are well suited for miniaturized devices with complex functionality, and rapid prototyping methods for 3D microfluidic structures are increasingly used. Mixing at the microscale and performing chemical reactions at the microscale are important applications of such systems and we therefore explored feasibility, mixing characteristics and the ability to control a chemical reaction in helical 3D channels produced by the emerging thread template method. Mixing at the microscale is challenging because channel size reduction for improving solute diffusion comes at the price of a reduced Reynolds number that induces a strictly laminar flow regime and abolishes turbulence that would be desired for improved mixing. Microfluidic 3D helix mixers were rapidly prototyped in polydimethylsiloxane (PDMS using low-surface energy polymeric threads, twisted to form 2-channel and 3-channel helices. Structure and flow characteristics were assessed experimentally by microscopy, hydraulic measurements and chromogenic reaction, and were modeled by computational fluid dynamics. We found that helical 3D microfluidic systems produced by thread templating allow rapid prototyping, can be used for mixing and for controlled chemical reaction with two or three reaction partners at the microscale. Compared to the conventional T-shaped microfluidic system used as a control device, enhanced mixing and faster chemical reaction was found to occur due to the combination of diffusive mixing in small channels and flow folding due to the 3D helix shape. Thus, microfluidic 3D helix mixers can be rapidly prototyped using the thread template method and are an attractive and competitive method for fluid mixing and chemical reactions at the microscale.

  7. Making Inexpensive 3-D Models

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  8. 3D terahertz beam profiling

    Pedersen, Pernille Klarskov; Strikwerda, Andrew; Wang, Tianwu

    2013-01-01

    We present a characterization of THz beams generated in both a two-color air plasma and in a LiNbO3 crystal. Using a commercial THz camera, we record intensity images as a function of distance through the beam waist, from which we extract 2D beam profiles and visualize our measurements into 3D beam...

  9. 3D Printing: Exploring Capabilities

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  10. When Art Meets 3D

    2011-01-01

    The presentation of the vanguard work,My Dream3D,the innovative production by the China Disabled People’s Performing Art Troupe(CDPPAT),directed by Joy Joosang Park,provided the film’s domestic premiere at Beijing’s Olympic Park onApril7.The show provided an intriguing insight not

  11. When fast atom diffraction turns 3D

    Zugarramurdi, Asier; Borisov, Andrei G., E-mail: andrei.borissov@u-psud.fr

    2013-12-15

    Fast atom diffraction at surfaces (FAD) in grazing incidence geometry is characterized by the slow motion in the direction perpendicular to the surface and fast motion parallel to the surface plane along a low index direction. It is established experimentally that for the typical surfaces the FAD reveals the 2D diffraction patterns associated with exchange of the reciprocal lattice vector perpendicular to the direction of fast motion. The reciprocal lattice vector exchange along the direction of fast motion is negligible. The usual approximation made in the description of the experimental data is then to assume that the effective potential leading to the diffraction results from the averaging of the 3D surface potential along the atomic strings forming the axial channel. In this work we use full quantum wave packet propagation calculations to study theoretically the possibility to observe the 3D diffraction in FAD experiments. We show that for the surfaces with large unit cell, such as can be the case for reconstructed or vicinal surfaces, the 3D diffraction can be observed. The reciprocal lattice vector exchange along the direction of fast motion leads to several Laue circles in the diffraction pattern.

  12. Priprava 3D modelov za 3D tisk

    2015-01-01

    Po mnenju nekaterih strokovnjakov bo aditivna proizvodnja (ali 3D tiskanje) spremenila proizvodnjo industrijo, saj si bo vsak posameznik lahko natisnil svoj objekt po želji. V diplomski nalogi so predstavljene nekatere tehnologije aditivne proizvodnje. V nadaljevanju diplomske naloge je predstavljena izdelava makete hiše v merilu 1:100, vse od modeliranja do tiskanja. Poseben poudarek je posvečen predelavi modela, da je primeren za tiskanje, kjer je razvit pristop za hitrejše i...

  13. Post processing of 3D models for 3D printing

    2015-01-01

    According to the opinion of some experts the additive manufacturing or 3D printing will change manufacturing industry, because any individual could print their own model according to his or her wishes. In this graduation thesis some of the additive manufacturing technologies are presented. Furthermore in the production of house scale model in 1:100 is presented, starting from modeling to printing. Special attention is given to postprocessing of the building model elements us...

  14. Forensic 3D Scene Reconstruction

    LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.

    1999-10-12

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  15. 3D Printed Robotic Hand

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  16. 3D Printable Graphene Composite.

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-08

    In human being's history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today's personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite's linear thermal coefficient is below 75 ppm·°C(-1) from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  17. Medical 3D thermography system

    GRUBIŠIĆ, IVAN

    2011-01-01

    Infrared (IR) thermography determines the surface temperature of an object or human body using thermal IR measurement camera. It is an imaging technology which is contactless and completely non-invasive. These propertiesmake IR thermography a useful method of analysis that is used in various industrial applications to detect, monitor and predict irregularities in many fields from engineering to medical and biological observations. This paper presents a conceptual model of Medical 3D Thermo...

  18. Fully 3D refraction correction dosimetry system

    Manjappa, Rakesh; Sharath Makki, S.; Kumar, Rajesh; Mohan Vasu, Ram; Kanhirodan, Rajan

    2016-02-01

    The irradiation of selective regions in a polymer gel dosimeter results in an increase in optical density and refractive index (RI) at those regions. An optical tomography-based dosimeter depends on rayline path through the dosimeter to estimate and reconstruct the dose distribution. The refraction of light passing through a dose region results in artefacts in the reconstructed images. These refraction errors are dependant on the scanning geometry and collection optics. We developed a fully 3D image reconstruction algorithm, algebraic reconstruction technique-refraction correction (ART-rc) that corrects for the refractive index mismatches present in a gel dosimeter scanner not only at the boundary, but also for any rayline refraction due to multiple dose regions inside the dosimeter. In this study, simulation and experimental studies have been carried out to reconstruct a 3D dose volume using 2D CCD measurements taken for various views. The study also focuses on the effectiveness of using different refractive-index matching media surrounding the gel dosimeter. Since the optical density is assumed to be low for a dosimeter, the filtered backprojection is routinely used for reconstruction. We carry out the reconstructions using conventional algebraic reconstruction (ART) and refractive index corrected ART (ART-rc) algorithms. The reconstructions based on FDK algorithm for cone-beam tomography has also been carried out for comparison. Line scanners and point detectors, are used to obtain reconstructions plane by plane. The rays passing through dose region with a RI mismatch does not reach the detector in the same plane depending on the angle of incidence and RI. In the fully 3D scanning setup using 2D array detectors, light rays that undergo refraction are still collected and hence can still be accounted for in the reconstruction algorithm. It is found that, for the central region of the dosimeter, the usable radius using ART-rc algorithm with water as RI matched

  19. Fully 3D refraction correction dosimetry system.

    Manjappa, Rakesh; Makki, S Sharath; Kumar, Rajesh; Vasu, Ram Mohan; Kanhirodan, Rajan

    2016-02-21

    The irradiation of selective regions in a polymer gel dosimeter results in an increase in optical density and refractive index (RI) at those regions. An optical tomography-based dosimeter depends on rayline path through the dosimeter to estimate and reconstruct the dose distribution. The refraction of light passing through a dose region results in artefacts in the reconstructed images. These refraction errors are dependant on the scanning geometry and collection optics. We developed a fully 3D image reconstruction algorithm, algebraic reconstruction technique-refraction correction (ART-rc) that corrects for the refractive index mismatches present in a gel dosimeter scanner not only at the boundary, but also for any rayline refraction due to multiple dose regions inside the dosimeter. In this study, simulation and experimental studies have been carried out to reconstruct a 3D dose volume using 2D CCD measurements taken for various views. The study also focuses on the effectiveness of using different refractive-index matching media surrounding the gel dosimeter. Since the optical density is assumed to be low for a dosimeter, the filtered backprojection is routinely used for reconstruction. We carry out the reconstructions using conventional algebraic reconstruction (ART) and refractive index corrected ART (ART-rc) algorithms. The reconstructions based on FDK algorithm for cone-beam tomography has also been carried out for comparison. Line scanners and point detectors, are used to obtain reconstructions plane by plane. The rays passing through dose region with a RI mismatch does not reach the detector in the same plane depending on the angle of incidence and RI. In the fully 3D scanning setup using 2D array detectors, light rays that undergo refraction are still collected and hence can still be accounted for in the reconstruction algorithm. It is found that, for the central region of the dosimeter, the usable radius using ART-rc algorithm with water as RI matched

  20. User experience while viewing stereoscopic 3D television.

    Read, Jenny C A; Bohr, Iwo

    2014-01-01

    3D display technologies have been linked to visual discomfort and fatigue. In a lab-based study with a between-subjects design, 433 viewers aged from 4 to 82 years watched the same movie in either 2D or stereo 3D (S3D), and subjectively reported on a range of aspects of their viewing experience. Our results suggest that a minority of viewers, around 14%, experience adverse effects due to viewing S3D, mainly headache and eyestrain. A control experiment where participants viewed 2D content through 3D glasses suggests that around 8% may report adverse effects which are not due directly to viewing S3D, but instead are due to the glasses or to negative preconceptions about S3D (the 'nocebo effect'). Women were slightly more likely than men to report adverse effects with S3D. We could not detect any link between pre-existing eye conditions or low stereoacuity and the likelihood of experiencing adverse effects with S3D.

  1. 3D silicon strip detectors

    Parzefall, Ulrich [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany)], E-mail: ulrich.parzefall@physik.uni-freiburg.de; Bates, Richard [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Boscardin, Maurizio [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Dalla Betta, Gian-Franco [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Eckert, Simon [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Eklund, Lars; Fleta, Celeste [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Jakobs, Karl; Kuehn, Susanne [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Lozano, Manuel [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pahn, Gregor [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Parkes, Chris [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Pellegrini, Giulio [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pennicard, David [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Piemonte, Claudio; Ronchin, Sabina [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Szumlak, Tomasz [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Zoboli, Andrea [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Zorzi, Nicola [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy)

    2009-06-01

    While the Large Hadron Collider (LHC) at CERN has started operation in autumn 2008, plans for a luminosity upgrade to the Super-LHC (sLHC) have already been developed for several years. This projected luminosity increase by an order of magnitude gives rise to a challenging radiation environment for tracking detectors at the LHC experiments. Significant improvements in radiation hardness are required with respect to the LHC. Using a strawman layout for the new tracker of the ATLAS experiment as an example, silicon strip detectors (SSDs) with short strips of 2-3 cm length are foreseen to cover the region from 28 to 60 cm distance to the beam. These SSD will be exposed to radiation levels up to 10{sup 15}N{sub eq}/cm{sup 2}, which makes radiation resistance a major concern for the upgraded ATLAS tracker. Several approaches to increasing the radiation hardness of silicon detectors exist. In this article, it is proposed to combine the radiation hard 3D-design originally conceived for pixel-style applications with the benefits of the established planar technology for strip detectors by using SSDs that have regularly spaced doped columns extending into the silicon bulk under the detector strips. The first 3D SSDs to become available for testing were made in the Single Type Column (STC) design, a technological simplification of the original 3D design. With such 3D SSDs, a small number of prototype sLHC detector modules with LHC-speed front-end electronics as used in the semiconductor tracking systems of present LHC experiments were built. Modules were tested before and after irradiation to fluences of 10{sup 15}N{sub eq}/cm{sup 2}. The tests were performed with three systems: a highly focused IR-laser with 5{mu}m spot size to make position-resolved scans of the charge collection efficiency, an Sr{sup 90}{beta}-source set-up to measure the signal levels for a minimum ionizing particle (MIP), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of

  2. Wireless 3D Chocolate Printer

    FROILAN G. DESTREZA

    2014-02-01

    Full Text Available This study is for the BSHRM Students of Batangas State University (BatStateU ARASOF for the researchers believe that the Wireless 3D Chocolate Printer would be helpful in their degree program especially on making creative, artistic, personalized and decorative chocolate designs. The researchers used the Prototyping model as procedural method for the successful development and implementation of the hardware and software. This method has five phases which are the following: quick plan, quick design, prototype construction, delivery and feedback and communication. This study was evaluated by the BSHRM Students and the assessment of the respondents regarding the software and hardware application are all excellent in terms of Accuracy, Effecitveness, Efficiency, Maintainability, Reliability and User-friendliness. Also, the overall level of acceptability of the design project as evaluated by the respondents is excellent. With regard to the observation about the best raw material to use in 3D printing, the chocolate is good to use as the printed material is slightly distorted,durable and very easy to prepare; the icing is also good to use as the printed material is not distorted and is very durable but consumes time to prepare; the flour is not good as the printed material is distorted, not durable but it is easy to prepare. The computation of the economic viability level of 3d printer with reference to ROI is 37.14%. The recommendation of the researchers in the design project are as follows: adding a cooling system so that the raw material will be more durable, development of a more simplified version and improving the extrusion process wherein the user do not need to stop the printing process just to replace the empty syringe with a new one.

  3. Interactive 3D Mars Visualization

    Powell, Mark W.

    2012-01-01

    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.

  4. How 3-D Movies Work

    吕铁雄

    2011-01-01

    难度:★★★★☆词数:450 建议阅读时间:8分钟 Most people see out of two eyes. This is a basic fact of humanity,but it’s what makes possible the illusion of depth(纵深幻觉) that 3-D movies create. Human eyes are spaced about two inches apart, meaning that each eye gives the brain a slightly different perspective(透视感)on the same object. The brain then uses this variance to quickly determine an object’s distance.

  5. Virtual 3-D Facial Reconstruction

    Martin Paul Evison

    2000-06-01

    Full Text Available Facial reconstructions in archaeology allow empathy with people who lived in the past and enjoy considerable popularity with the public. It is a common misconception that facial reconstruction will produce an exact likeness; a resemblance is the best that can be hoped for. Research at Sheffield University is aimed at the development of a computer system for facial reconstruction that will be accurate, rapid, repeatable, accessible and flexible. This research is described and prototypical 3-D facial reconstructions are presented. Interpolation models simulating obesity, ageing and ethnic affiliation are also described. Some strengths and weaknesses in the models, and their potential for application in archaeology are discussed.

  6. An integrable 3D lattice model with positive Boltzmann weights

    Mangazeev, Vladimir V; Sergeev, Sergey M

    2013-01-01

    In this paper we construct a three-dimensional (3D) solvable lattice model with non-negative Boltzmann weights. The spin variables in the model are assigned to edges of the 3D cubic lattice and run over an infinite number of discrete states. The Boltzmann weights satisfy the tetrahedron equation, which is a 3D generalisation of the Yang-Baxter equation. The weights depend on a free parameter 03D lattice model with non-negative Boltzmann weights.

  7. A hybrid 3D spatial access method based on quadtrees and R-trees for globe data

    Gong, Jun; Ke, Shengnan; Li, Xiaomin; Qi, Shuhua

    2009-10-01

    3D spatial access method for globe data is very crucial technique for virtual earth. This paper presents a brand-new maintenance method to index 3d objects distributed on the whole surface of the earth, which integrates the 1:1,000,000- scale topographic map tiles, Quad-tree and R-tree. Furthermore, when traditional methods are extended into 3d space, the performance of spatial index deteriorates badly, for example 3D R-tree. In order to effectively solve this difficult problem, a new algorithm of dynamic R-tree is put forward, which includes two sub-procedures, namely node-choosing and node-split. In the node-choosing algorithm, a new strategy is adopted, not like the traditional mode which is from top to bottom, but firstly from bottom to top then from top to bottom. This strategy can effectively solve the negative influence of node overlap. In the node-split algorithm, 2-to-3 split mode substitutes the traditional 1-to-2 mode, which can better concern the shape and size of nodes. Because of the rational tree shape, this R-tree method can easily integrate the concept of LOD. Therefore, it will be later implemented in commercial DBMS and adopted in time-crucial 3d GIS system.

  8. 3D medical thermography device

    Moghadam, Peyman

    2015-05-01

    In this paper, a novel handheld 3D medical thermography system is introduced. The proposed system consists of a thermal-infrared camera, a color camera and a depth camera rigidly attached in close proximity and mounted on an ergonomic handle. As a practitioner holding the device smoothly moves it around the human body parts, the proposed system generates and builds up a precise 3D thermogram model by incorporating information from each new measurement in real-time. The data is acquired in motion, thus it provides multiple points of view. When processed, these multiple points of view are adaptively combined by taking into account the reliability of each individual measurement which can vary due to a variety of factors such as angle of incidence, distance between the device and the subject and environmental sensor data or other factors influencing a confidence of the thermal-infrared data when captured. Finally, several case studies are presented to support the usability and performance of the proposed system.

  9. 3D Printable Graphene Composite

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  10. 3D printed bionic ears.

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.

  11. 3D biometrics systems and applications

    Zhang, David

    2013-01-01

    Includes discussions on popular 3D imaging technologies, combines them with biometric applications, and then presents real 3D biometric systems Introduces many efficient 3D feature extraction, matching, and fusion algorithms Techniques presented have been supported by experimental results using various 3D biometric classifications

  12. 3D Printing of Graphene Aerogels.

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-01

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction.

  13. Conducting Polymer 3D Microelectrodes

    Jenny Emnéus

    2010-12-01

    Full Text Available Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements.

  14. Supernova Remnant in 3-D

    2009-01-01

    of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through. The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave. This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron. High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these structures, but their orientation and

  15. Indirect effect of financial strain on daily cortisol output through daily negative to positive affect index in the Coronary Artery Risk Development in Young Adults Study.

    Puterman, Eli; Haritatos, Jana; Adler, Nancy E; Sidney, Steve; Schwartz, Joseph E; Epel, Elissa S

    2013-12-01

    Daily affect is important to health and has been linked to cortisol. The combination of high negative affect and low positive affect may have a bigger impact on increasing HPA axis activity than either positive or negative affect alone. Financial strain may both dampen positive affect as well as increase negative affect, and thus provides an excellent context for understanding the associations between daily affect and cortisol. Using random effects mixed modeling with maximum likelihood estimation, we examined the relationship between self-reported financial strain and estimated mean daily cortisol level (latent cortisol variable), based on six salivary cortisol assessments throughout the day, and whether this relationship was mediated by greater daily negative to positive affect index measured concurrently in a sample of 776 Coronary Artery Risk Development in Young Adults (CARDIA) Study participants. The analysis revealed that while no total direct effect existed for financial strain on cortisol, there was a significant indirect effect of high negative affect to low positive affect, linking financial strain to elevated cortisol. In this sample, the effects of financial strain on cortisol through either positive affect or negative affect alone were not significant. A combined affect index may be a more sensitive and powerful measure than either negative or positive affect alone, tapping the burden of chronic financial strain, and its effects on biology.

  16. Properties of defect mode and optical enhancement of 1D photonic crystals with a defect layer of negative refractive index material

    CHEN Xian-feng; SHEN Xiao-ming; JIANG Mei-ping; SHI Du-fang

    2005-01-01

    The band gap properties of one-dimensional photonic crystals with a defect layer of negative refractive index materials are studied.The defect mode width is bigger than that of conventional one-dimensional photonic crystals with a defect layer of positive refractive index materials.The defect mode of the former is different from that of the latter,shifts towards the direction of high frequency (short wavelength),and has a bigger shifting velocity.Furthermore the effects on the transmission properties of the former photonic crystals caused by change in the position of the defect layer of negative refractive index are investigated.Finally the optical enhancement of the former photonic crystals is also investigated.

  17. Face recognition using SIFT features under 3D meshes

    ZHANG Cheng; GU Yu-zhang; HU Ke-li; WANG Ying-guan

    2015-01-01

    Expression, occlusion, and pose variations are three main challenges for 3D face recognition. A novel method is presented to address 3D face recognition using scale-invariant feature transform (SIFT) features on 3D meshes. After preprocessing, shape index extrema on the 3D facial surface are selected as keypoints in the difference scale space and the unstable keypoints are removed after two screening steps. Then, a local coordinate system for each keypoint is established by principal component analysis (PCA). Next, two local geometric features are extracted around each keypoint through the local coordinate system. Additionally, the features are augmented by the symmetrization according to the approximate left-right symmetry in human face. The proposed method is evaluated on the Bosphorus, BU-3DFE, and Gavab databases, respectively. Good results are achieved on these three datasets. As a result, the proposed method proves robust to facial expression variations, partial external occlusions and large pose changes.

  18. 3D multiplexed immunoplasmonics microscopy

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  19. SOI-Based 3dB MMI Splitter

    魏红振; 余金中; 刘忠立; 张晓峰; 史伟; 房昌水

    2000-01-01

    A type of SOI-based MMI 3dB splitter has been demonstrated. The geometry was analyzed and designed by effective index method and guide mode method. The fabrication tolerance was analyzed too. The device was fabricated and near-field output was obtained. The device shows large width tolerance, low loss and low power uniformity.

  20. Kuvaus 3D-tulostamisesta hammastekniikassa

    Munne, Mauri; Mustonen, Tuomas; Vähäjylkkä, Jaakko

    2013-01-01

    3D-tulostaminen kehittyy nopeasti ja yleistyy koko ajan. Tulostimien tarkkuuksien kehittyessä 3D-tulostus on ottamassa myös jalansijaa hammastekniikan alalta. Tämän opinnäytetyön tarkoituksena on kuvata 3D-tulostamisen tilaa hammastekniikassa. 3D-tulostaminen on Suomessa vielä melko harvinaista, joten opinnäytetyön tavoitteena on koota yhteen kaikki mahdollinen tieto liittyen 3D-tulostamiseen hammastekniikassa. Tavoitteena on myös 3D-tulostimen testaaminen käytännössä aina suun skannaami...

  1. Stereoscopic 3D video games and their effects on engagement

    Hogue, Andrew; Kapralos, Bill; Zerebecki, Chris; Tawadrous, Mina; Stanfield, Brodie; Hogue, Urszula

    2012-03-01

    With television manufacturers developing low-cost stereoscopic 3D displays, a large number of consumers will undoubtedly have access to 3D-capable televisions at home. The availability of 3D technology places the onus on content creators to develop interesting and engaging content. While the technology of stereoscopic displays and content generation are well understood, there are many questions yet to be answered surrounding its effects on the viewer. Effects of stereoscopic display on passive viewers for film are known, however video games are fundamentally different since the viewer/player is actively (rather than passively) engaged in the content. Questions of how stereoscopic viewing affects interaction mechanics have previously been studied in the context of player performance but very few have attempted to quantify the player experience to determine whether stereoscopic 3D has a positive or negative influence on their overall engagement. In this paper we present a preliminary study of the effects stereoscopic 3D have on player engagement in video games. Participants played a video game in two conditions, traditional 2D and stereoscopic 3D and their engagement was quantified using a previously validated self-reporting tool. The results suggest that S3D has a positive effect on immersion, presence, flow, and absorption.

  2. Crowdsourcing Based 3d Modeling

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  3. 3D Flash LIDAR Space Laser Project

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc. (ASC) is a small business that has developed 3D Flash LIDAR systems for space and terrestrial applications. 3D Flash LIDAR is...

  4. Eesti 3D jaoks kitsas / Virge Haavasalu

    Haavasalu, Virge

    2009-01-01

    Produktsioonifirma Digitaalne Sputnik: Kaur ja Kaspar Kallas tegelevad filmide produtseerimise ning 3D digitaalkaamerate tootearendusega (Silicon Imaging LLC). Vendade Kallaste 3D-kaamerast. Kommenteerib Eesti Filmi Sihtasutuse direktor Marge Liiske

  5. Will 3D printers manufacture your meals?

    Bommel, K.J.C. van

    2013-01-01

    These days, 3D printers are laying down plastics, metals, resins, and other materials in whatever configurations creative people can dream up. But when the next 3D printing revolution comes, you'll be able to eat it.

  6. An interactive multiview 3D display system

    Zhang, Zhaoxing; Geng, Zheng; Zhang, Mei; Dong, Hui

    2013-03-01

    The progresses in 3D display systems and user interaction technologies will help more effective 3D visualization of 3D information. They yield a realistic representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them. In this paper, we describe an autostereoscopic multiview 3D display system with capability of real-time user interaction. Design principle of this autostereoscopic multiview 3D display system is presented, together with the details of its hardware/software architecture. A prototype is built and tested based upon multi-projectors and horizontal optical anisotropic display structure. Experimental results illustrate the effectiveness of this novel 3D display and user interaction system.

  7. Sliding Adjustment for 3D Video Representation

    Galpin Franck

    2002-01-01

    Full Text Available This paper deals with video coding of static scenes viewed by a moving camera. We propose an automatic way to encode such video sequences using several 3D models. Contrary to prior art in model-based coding where 3D models have to be known, the 3D models are automatically computed from the original video sequence. We show that several independent 3D models provide the same functionalities as one single 3D model, and avoid some drawbacks of the previous approaches. To achieve this goal we propose a novel algorithm of sliding adjustment, which ensures consistency of successive 3D models. The paper presents a method to automatically extract the set of 3D models and associate camera positions. The obtained representation can be used for reconstructing the original sequence, or virtual ones. It also enables 3D functionalities such as synthetic object insertion, lightning modification, or stereoscopic visualization. Results on real video sequences are presented.

  8. Fundamentals of negative refractive index optical trapping: forces and radiation pressures exerted by focused Gaussian beams using the generalized Lorenz-Mie theory.

    Ambrosio, Leonardo A; Hernández-Figueroa, Hugo E

    2010-11-04

    Based on the generalized Lorenz-Mie theory (GLMT), this paper reveals, for the first time in the literature, the principal characteristics of the optical forces and radiation pressure cross-sections exerted on homogeneous, linear, isotropic and spherical hypothetical negative refractive index (NRI) particles under the influence of focused Gaussian beams in the Mie regime. Starting with ray optics considerations, the analysis is then extended through calculating the Mie coefficients and the beam-shape coefficients for incident focused Gaussian beams. Results reveal new and interesting trapping properties which are not observed for commonly positive refractive index particles and, in this way, new potential applications in biomedical optics can be devised.

  9. Forward ramp in 3D

    1997-01-01

    Mars Pathfinder's forward rover ramp can be seen successfully unfurled in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This ramp was not used for the deployment of the microrover Sojourner, which occurred at the end of Sol 2. When this image was taken, Sojourner was still latched to one of the lander's petals, waiting for the command sequence that would execute its descent off of the lander's petal.The image helped Pathfinder scientists determine whether to deploy the rover using the forward or backward ramps and the nature of the first rover traverse. The metallic object at the lower left of the image is the lander's low-gain antenna. The square at the end of the ramp is one of the spacecraft's magnetic targets. Dust that accumulates on the magnetic targets will later be examined by Sojourner's Alpha Proton X-Ray Spectrometer instrument for chemical analysis. At right, a lander petal is visible.The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  10. Laser Based 3D Volumetric Display System

    1993-03-01

    Literature, Costa Mesa, CA July 1983. 3. "A Real Time Autostereoscopic Multiplanar 3D Display System", Rodney Don Williams, Felix Garcia, Jr., Texas...8217 .- NUMBERS LASER BASED 3D VOLUMETRIC DISPLAY SYSTEM PR: CD13 0. AUTHOR(S) PE: N/AWIU: DN303151 P. Soltan, J. Trias, W. Robinson, W. Dahlke 7...laser generated 3D volumetric images on a rotating double helix, (where the 3D displays are computer controlled for group viewing with the naked eye

  11. 3D Printing and Its Urologic Applications.

    Soliman, Youssef; Feibus, Allison H; Baum, Neil

    2015-01-01

    3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology.

  12. Beowulf 3D: a case study

    Engle, Rob

    2008-02-01

    This paper discusses the creative and technical challenges encountered during the production of "Beowulf 3D," director Robert Zemeckis' adaptation of the Old English epic poem and the first film to be simultaneously released in IMAX 3D and digital 3D formats.

  13. 3D Printing and Its Urologic Applications

    Soliman, Youssef; Feibus, Allison H; Baum, Neil

    2015-01-01

    3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology. PMID:26028997

  14. Expanding Geometry Understanding with 3D Printing

    Cochran, Jill A.; Cochran, Zane; Laney, Kendra; Dean, Mandi

    2016-01-01

    With the rise of personal desktop 3D printing, a wide spectrum of educational opportunities has become available for educators to leverage this technology in their classrooms. Until recently, the ability to create physical 3D models was well beyond the scope, skill, and budget of many schools. However, since desktop 3D printers have become readily…

  15. Visual Semantic Based 3D Video Retrieval System Using HDFS.

    Kumar, C Ranjith; Suguna, S

    2016-08-01

    This paper brings out a neoteric frame of reference for visual semantic based 3d video search and retrieval applications. Newfangled 3D retrieval application spotlight on shape analysis like object matching, classification and retrieval not only sticking up entirely with video retrieval. In this ambit, we delve into 3D-CBVR (Content Based Video Retrieval) concept for the first time. For this purpose, we intent to hitch on BOVW and Mapreduce in 3D framework. Instead of conventional shape based local descriptors, we tried to coalesce shape, color and texture for feature extraction. For this purpose, we have used combination of geometric & topological features for shape and 3D co-occurrence matrix for color and texture. After thriving extraction of local descriptors, TB-PCT (Threshold Based- Predictive Clustering Tree) algorithm is used to generate visual codebook and histogram is produced. Further, matching is performed using soft weighting scheme with L2 distance function. As a final step, retrieved results are ranked according to the Index value and acknowledged to the user as a feedback .In order to handle prodigious amount of data and Efficacious retrieval, we have incorporated HDFS in our Intellection. Using 3D video dataset, we future the performance of our proposed system which can pan out that the proposed work gives meticulous result and also reduce the time intricacy.

  16. Investigating Mobile Stereoscopic 3D Touchscreen Interaction

    Colley, Ashley; Hakkila, Jonna; SCHOENING, Johannes; Posti, Maaret

    2013-01-01

    3D output is no longer limited to large screens in cinemas or living rooms. Nowadays more and more mobile devices are equipped with autostereoscopic 3D (S3D) touchscreens. As a consequence interaction with 3D content now also happens whilst users are on the move. In this paper we carried out a user study with 27 participants to assess how mobile interaction, i.e. whilst walking, with mobile S3D devices, differs from interaction with 2D mobile touchscreens. We investigate the difference in tou...

  17. Wafer level 3-D ICs process technology

    Tan, Chuan Seng; Reif, L Rafael

    2009-01-01

    This book focuses on foundry-based process technology that enables the fabrication of 3-D ICs. The core of the book discusses the technology platform for pre-packaging wafer lever 3-D ICs. However, this book does not include a detailed discussion of 3-D ICs design and 3-D packaging. This is an edited book based on chapters contributed by various experts in the field of wafer-level 3-D ICs process technology. They are from academia, research labs and industry.

  18. View-based 3-D object retrieval

    Gao, Yue

    2014-01-01

    Content-based 3-D object retrieval has attracted extensive attention recently and has applications in a variety of fields, such as, computer-aided design, tele-medicine,mobile multimedia, virtual reality, and entertainment. The development of efficient and effective content-based 3-D object retrieval techniques has enabled the use of fast 3-D reconstruction and model design. Recent technical progress, such as the development of camera technologies, has made it possible to capture the views of 3-D objects. As a result, view-based 3-D object retrieval has become an essential but challenging res

  19. Web-based interactive visualization of 3D video mosaics using X3D standard

    CHON Jaechoon; LEE Yang-Won; SHIBASAKI Ryosuke

    2006-01-01

    We present a method of 3D image mosaicing for real 3D representation of roadside buildings, and implement a Web-based interactive visualization environment for the 3D video mosaics created by 3D image mosaicing. The 3D image mosaicing technique developed in our previous work is a very powerful method for creating textured 3D-GIS data without excessive data processing like the laser or stereo system. For the Web-based open access to the 3D video mosaics, we build an interactive visualization environment using X3D, the emerging standard of Web 3D. We conduct the data preprocessing for 3D video mosaics and the X3D modeling for textured 3D data. The data preprocessing includes the conversion of each frame of 3D video mosaics into concatenated image files that can be hyperlinked on the Web. The X3D modeling handles the representation of concatenated images using necessary X3D nodes. By employing X3D as the data format for 3D image mosaics, the real 3D representation of roadside buildings is extended to the Web and mobile service systems.

  20. 3D laptop for defense applications

    Edmondson, Richard; Chenault, David

    2012-06-01

    Polaris Sensor Technologies has developed numerous 3D display systems using a US Army patented approach. These displays have been developed as prototypes for handheld controllers for robotic systems and closed hatch driving, and as part of a TALON robot upgrade for 3D vision, providing depth perception for the operator for improved manipulation and hazard avoidance. In this paper we discuss the prototype rugged 3D laptop computer and its applications to defense missions. The prototype 3D laptop combines full temporal and spatial resolution display with the rugged Amrel laptop computer. The display is viewed through protective passive polarized eyewear, and allows combined 2D and 3D content. Uses include robot tele-operation with live 3D video or synthetically rendered scenery, mission planning and rehearsal, enhanced 3D data interpretation, and simulation.

  1. User-centered 3D geovisualisation

    Nielsen, Anette Hougaard

    2004-01-01

    3D Geovisualisation is a multidisciplinary science mainly utilizing geographically related data, developing software systems for 3D visualisation and producing relevant models. In this paper the connection between geoinformation stored as 3D objects and the end user is of special interest....... In a broader perspective, the overall aim is to develop a language in 3D Geovisualisation gained through usability projects and the development of a theoretical background. A conceptual level of user-centered 3D Geovisualisation is introduced by applying a categorisation originating from Virtual Reality....... The conceptual level is used to structure and organise user-centered 3D Geovisualisation into four categories: representation, rendering, interface and interaction. The categories reflect a process of development of 3D Geovisualisation where objects can be represented verisimilar to the real world...

  2. FROM 3D MODEL DATA TO SEMANTICS

    My Abdellah Kassimi

    2012-01-01

    Full Text Available The semantic-based 3D models retrieval systems have become necessary since the increase of 3D modelsdatabases. In this paper, we propose a new method for the mapping problem between 3D model data andsemantic data involved in semantic based retrieval for 3D models given by polygonal meshes. First, wefocused on extracting invariant descriptors from the 3D models and analyzing them to efficient semanticannotation and to improve the retrieval accuracy. Selected shape descriptors provide a set of termscommonly used to describe visually a set of objects using linguistic terms and are used as semanticconcept to label 3D model. Second, spatial relationship representing directional, topological anddistance relationships are used to derive other high-level semantic features and to avoid the problem ofautomatic 3D model annotation. Based on the resulting semantic annotation and spatial concepts, anontology for 3D model retrieval is constructed and other concepts can be inferred. This ontology is usedto find similar 3D models for a given query model. We adopted the query by semantic example approach,in which the annotation is performed mostly automatically. The proposed method is implemented in our3D search engine (SB3DMR, tested using the Princeton Shape Benchmark Database.

  3. 3D change detection - Approaches and applications

    Qin, Rongjun; Tian, Jiaojiao; Reinartz, Peter

    2016-12-01

    Due to the unprecedented technology development of sensors, platforms and algorithms for 3D data acquisition and generation, 3D spaceborne, airborne and close-range data, in the form of image based, Light Detection and Ranging (LiDAR) based point clouds, Digital Elevation Models (DEM) and 3D city models, become more accessible than ever before. Change detection (CD) or time-series data analysis in 3D has gained great attention due to its capability of providing volumetric dynamics to facilitate more applications and provide more accurate results. The state-of-the-art CD reviews aim to provide a comprehensive synthesis and to simplify the taxonomy of the traditional remote sensing CD techniques, which mainly sit within the boundary of 2D image/spectrum analysis, largely ignoring the particularities of 3D aspects of the data. The inclusion of 3D data for change detection (termed 3D CD), not only provides a source with different modality for analysis, but also transcends the border of traditional top-view 2D pixel/object-based analysis to highly detailed, oblique view or voxel-based geometric analysis. This paper reviews the recent developments and applications of 3D CD using remote sensing and close-range data, in support of both academia and industry researchers who seek for solutions in detecting and analyzing 3D dynamics of various objects of interest. We first describe the general considerations of 3D CD problems in different processing stages and identify CD types based on the information used, being the geometric comparison and geometric-spectral analysis. We then summarize relevant works and practices in urban, environment, ecology and civil applications, etc. Given the broad spectrum of applications and different types of 3D data, we discuss important issues in 3D CD methods. Finally, we present concluding remarks in algorithmic aspects of 3D CD.

  4. Tailoring the negative-refractive-index metamaterials composed of semiconductor-metal-semiconductor gold ring/disk cavity heptamers to support strong Fano resonances in the visible spectrum.

    Ahmadivand, Arash; Pala, Nezih

    2015-02-01

    In this study, we investigated numerically the plasmon response of a planar negative-index metamaterial composed of symmetric molecular orientations of Au ring/disk nanocavities in a heptamer cluster. Using the plasmon hybridization theory and considering the optical response of an individual nanocluster, we determined the accurate geometrical sizes for a ring/disk nanocavity heptamer. It is shown that the proposed well-organized nanocluster can be tailored to support strong and sharp Fano resonances in the visible spectrum. Surrounding and filling the heptamer clusters by various metasurfaces with different chemical characteristics, and illuminating the structure with an incident light source, we proved that this configuration reflects low losses and isotropic features, including a pronounced Fano dip in the visible spectrum. Technically, employing numerical methods and tuning the geometrical sizes of the structure, we tuned and induced the Fano dip in the visible range, while the dark and bright plasmon resonance extremes are blueshifted to shorter wavelengths dramatically. Considering the calculated transmission window, we quantified the effective refractive index for the structure, while the substance of the substrate material was varied. Using Si, GaP, and InP semiconductors as substrate materials, we calculated and compared the corresponding figure of merit (FOM) for different regimes. The highest possible FOM was obtained for the GaP-Au-GaP negative-refractive-index metamaterial composed of ring/disk nanocavity heptamers as 62.4 at λ∼690  nm (arounnd the position of the Fano dip). Despite the outstanding symmetric nature of the suggested heptamer array, we provided sharp Fano dips by the appropriate tuning of the geometrical and chemical parameters. This study yields a method to employ ring/disk nanocavity heptamers as a negative-refractive-index metamaterial in designing highly accurate localization of surface plasmon resonance sensing devices and

  5. 3D Medical Image Segmentation Based on Rough Set Theory

    CHEN Shi-hao; TIAN Yun; WANG Yi; HAO Chong-yang

    2007-01-01

    This paper presents a method which uses multiple types of expert knowledge together in 3D medical image segmentation based on rough set theory. The focus of this paper is how to approximate a ROI (region of interest) when there are multiple types of expert knowledge. Based on rough set theory, the image can be split into three regions:positive regions; negative regions; boundary regions. With multiple knowledge we refine ROI as an intersection of all of the expected shapes with single knowledge. At last we show the results of implementing a rough 3D image segmentation and visualization system.

  6. 3D Systems” ‘Stuck in the Middle’ of the 3D Printer Boom?

    A. Hoffmann (Alan)

    2014-01-01

    textabstract3D Systems, the pioneer of 3D printing, predicted a future where "kids from 8 to 80" could design and print their ideas at home. By 2013, 9 years after the creation of the first working 3D printer, there were more than 30 major 3D printing companies competing for market share. 3DS and it

  7. 3D-tulostus : case Printrbot

    Arvekari, Lassi

    2013-01-01

    Opinnäytetyön tavoitteena on selvittää 3D-tulostustekniikan perusteita ja 3D-tulostuksen nykytilannetta. 3D-tulostukseen sopivien mallien luomista tutkitaan ja mallin tekemiseen on etsitty toimivia ohjesääntöjä. Tärkeä osa työtä on tutkia mitä vaiheita 3D-tulostimen hankinnassa kotikäyttöön tulee vastaan. Käytännön kokeita varten opinnäytetyössä on case Printrbot, jossa on tutustuttu edulliseen 3D-tulostuslaitteeseen kokoonpanosta lähtien. Työn kuluessa selvisi että edulliset 3D-tulos...

  8. Stability Criteria of 3D Inviscid Shears

    Li, Y Charles

    2009-01-01

    The classical plane Couette flow, plane Poiseuille flow, and pipe Poiseuille flow share some universal 3D steady coherent structure in the form of "streak-roll-critical layer". As the Reynolds number approaches infinity, the steady coherent structure approaches a 3D limiting shear of the form ($U(y,z), 0, 0$) in velocity variables. All such 3D shears are steady states of the 3D Euler equations. This raises the importance of investigating the stability of such inviscid 3D shears in contrast to the classical Rayleigh theory of inviscid 2D shears. Several general criteria of stability for such inviscid 3D shears are derived. In the Appendix, an argument is given to show that a 2D limiting shear can only be the classical laminar shear.

  9. Ultrasonic Sensor Based 3D Mapping & Localization

    Shadman Fahim Ahmad

    2016-04-01

    Full Text Available This article provides a basic level introduction to 3D mapping using sonar sensors and localization. It describes the methods used to construct a low-cost autonomous robot along with the hardware and software used as well as an insight to the background of autonomous robotic 3D mapping and localization. We have also given an overview to what the future prospects of the robot may hold in 3D based mapping.

  10. ERP system for 3D printing industry

    Deaky Bogdan

    2017-01-01

    Full Text Available GOCREATE is an original cloud-based production management and optimization service which helps 3D printing service providers to use their resources better. The proposed Enterprise Resource Planning system can significantly increase income through improved productivity. With GOCREATE, the 3D printing service providers get a much higher production efficiency at a much lower licensing cost, to increase their competitiveness in the fast growing 3D printing market.

  11. Reconhecimento de faces 3D com Kinect

    Cardia Neto, João Baptista [UNESP

    2014-01-01

    For person identification, facil recognition has several advantages over other biometric traits due mostly to its high universelly, collectability, and acceptability. When dealing with 2D face images several problems arise related to pose, illumination, and facial expressions. To increase the performance of facial recognition, 3D mehtods have been proposed and developedm since working with 3D objects allow us to handle better the aforementioned problems. With 3D object, it is possible to rota...

  12. Topology Dictionary for 3D Video Understanding

    2012-01-01

    This paper presents a novel approach that achieves 3D video understanding. 3D video consists of a stream of 3D models of subjects in motion. The acquisition of long sequences requires large storage space (2 GB for 1 min). Moreover, it is tedious to browse data sets and extract meaningful information. We propose the topology dictionary to encode and describe 3D video content. The model consists of a topology-based shape descriptor dictionary which can be generated from either extracted pattern...

  13. Illustrating Mathematics using 3D Printers

    Knill, Oliver; Slavkovsky, Elizabeth

    2013-01-01

    3D printing technology can help to visualize proofs in mathematics. In this document we aim to illustrate how 3D printing can help to visualize concepts and mathematical proofs. As already known to educators in ancient Greece, models allow to bring mathematics closer to the public. The new 3D printing technology makes the realization of such tools more accessible than ever. This is an updated version of a paper included in book Low-Cost 3D Printing for science, education and Sustainable Devel...

  14. Calibration for 3D Structured Light Measurement

    2007-01-01

    A calibration procedure was developed for three-dimensional(3D) binocular structured light measurement systems. In virtue of a specially designed pattern, matching points in stereo images are extracted. And then sufficient 3D space points are obtained through pairs of images with the intrinsic and extrinsic parameters of each camera estimated prior and consequently some lights are calibrated by means of multi point fitting. Finally, a mathematical model is applied to interpolate and approximate all dynamic scanning lights based on geometry. The process of calibration method is successfully used in the binocular 3D measurement system based on structured lights and the 3D reconstruction results are satisfying.

  15. Getting started in 3D with Maya

    Watkins, Adam

    2012-01-01

    Deliver professional-level 3D content in no time with this comprehensive guide to 3D animation with Maya. With over 12 years of training experience, plus several award winning students under his belt, author Adam Watkins is the ideal mentor to get you up to speed with 3D in Maya. Using a structured and pragmatic approach Getting Started in 3D with Maya begins with basic theory of fundamental techniques, then builds on this knowledge using practical examples and projects to put your new skills to the test. Prepared so that you can learn in an organic fashion, each chapter builds on the know

  16. Virtual Realization using 3D Password

    A.B.Gadicha

    2012-03-01

    Full Text Available Current authentication systems suffer from many weaknesses. Textual passwords are commonly used; however, users do not follow their requirements. Users tend to choose meaningful words from dictionaries, which make textual passwords easy to break and vulnerable to dictionary or brute force attacks. Many available graphical passwords have a password space that is less than or equal to the textual password space. Smart cards or tokens can be stolen. Many biometric authentications have been proposed; however, users tend to resist using biometrics because of their intrusiveness and the effect on their privacy. Moreover, biometrics cannot be revoked. In this paper, we present and evaluate our contribution, i.e., the 3D password. The 3D password is a multifactor authentication scheme. To be authenticated, we present a 3D virtual environment where the user navigates and interacts with various objects. The sequence of actions and interactions toward the objects inside the 3D environment constructs the user’s 3D password. The 3D password can combine most existing authentication schemes such as textual passwords, graphical passwords, and various types of biometrics into a 3D virtual environment. The design of the 3D virtual environment and the type of objects selected determine the 3D password key space.

  17. Ekologinen 3D-tulostettava asuste

    Paulasaari, Laura

    2014-01-01

    Tämän opinnäytetyön aiheena oli ekologisuus 3D-tulostuksessa ja sen hyödynnettävyys erityisesti asustesuunnittelussa. Työn tarkoituksena oli selvittää, kuinka 3D-tulostusta voi tehdä ekologisemmin ja mitä vaihtoehtoja kuluttajalle tällä hetkellä on. Työ tehtiin Young skills –osuuskunnalle. 3D-tulostuksella on mahdollisuus antaa todella paljon tulevaisuuden tuotantomenetelmille ja se vapauttaa tuotteiden muotoilua täysin uudella tavalla. 3D-tulostuksen avulla voidaan keskittyä enemmän esim...

  18. An aerial 3D printing test mission

    Hirsch, Michael; McGuire, Thomas; Parsons, Michael; Leake, Skye; Straub, Jeremy

    2016-05-01

    This paper provides an overview of an aerial 3D printing technology, its development and its testing. This technology is potentially useful in its own right. In addition, this work advances the development of a related in-space 3D printing technology. A series of aerial 3D printing test missions, used to test the aerial printing technology, are discussed. Through completing these test missions, the design for an in-space 3D printer may be advanced. The current design for the in-space 3D printer involves focusing thermal energy to heat an extrusion head and allow for the extrusion of molten print material. Plastics can be used as well as composites including metal, allowing for the extrusion of conductive material. A variety of experiments will be used to test this initial 3D printer design. High altitude balloons will be used to test the effects of microgravity on 3D printing, as well as parabolic flight tests. Zero pressure balloons can be used to test the effect of long 3D printing missions subjected to low temperatures. Vacuum chambers will be used to test 3D printing in a vacuum environment. The results will be used to adapt a current prototype of an in-space 3D printer. Then, a small scale prototype can be sent into low-Earth orbit as a 3-U cube satellite. With the ability to 3D print in space demonstrated, future missions can launch production hardware through which the sustainability and durability of structures in space will be greatly improved.

  19. Highly-stretchable 3D-architected Mechanical Metamaterials

    Jiang, Yanhui; Wang, Qiming

    2016-09-01

    Soft materials featuring both 3D free-form architectures and high stretchability are highly desirable for a number of engineering applications ranging from cushion modulators, soft robots to stretchable electronics; however, both the manufacturing and fundamental mechanics are largely elusive. Here, we overcome the manufacturing difficulties and report a class of mechanical metamaterials that not only features 3D free-form lattice architectures but also poses ultrahigh reversible stretchability (strain > 414%), 4 times higher than that of the existing counterparts with the similar complexity of 3D architectures. The microarchitected metamaterials, made of highly stretchable elastomers, are realized through an additive manufacturing technique, projection microstereolithography, and its postprocessing. With the fabricated metamaterials, we reveal their exotic mechanical behaviors: Under large-strain tension, their moduli follow a linear scaling relationship with their densities regardless of architecture types, in sharp contrast to the architecture-dependent modulus power-law of the existing engineering materials; under large-strain compression, they present tunable negative-stiffness that enables ultrahigh energy absorption efficiencies. To harness their extraordinary stretchability and microstructures, we demonstrate that the metamaterials open a number of application avenues in lightweight and flexible structure connectors, ultraefficient dampers, 3D meshed rehabilitation structures and stretchable electronics with designed 3D anisotropic conductivity.

  20. Integral identities for 3d dualities with SP(2N) gauge groups

    Amariti, Antonio

    2015-01-01

    In this note we study the reduction of 4d Seiberg duality to 3d for SP(2N) SQCD with an adjoint field. We follow a general prescription that consists in compactifying the dual 4d theories on the circle. This generates an effective 3d duality. The pure 3d duality is obtained by combining the zero radius limit with a real mass flow. Here we perform this limit by a double scaling procedure: we turn on real masses proportional to the radius before shrinking the circle. We apply this mechanism to the reduction of the 4d superconformal index to the three sphere partition function. While the reduction of the 4d index on the circle is straightforward, the 3d limit necessitates the double scaling. We describe this limit on the index, finding the integral identity for the partition functions of the 3d dual theories.

  1. Integration of real-time 3D image acquisition and multiview 3D display

    Zhang, Zhaoxing; Geng, Zheng; Li, Tuotuo; Li, Wei; Wang, Jingyi; Liu, Yongchun

    2014-03-01

    Seamless integration of 3D acquisition and 3D display systems offers enhanced experience in 3D visualization of the real world objects or scenes. The vivid representation of captured 3D objects displayed on a glasses-free 3D display screen could bring the realistic viewing experience to viewers as if they are viewing real-world scene. Although the technologies in 3D acquisition and 3D display have advanced rapidly in recent years, effort is lacking in studying the seamless integration of these two different aspects of 3D technologies. In this paper, we describe our recent progress on integrating a light-field 3D acquisition system and an autostereoscopic multiview 3D display for real-time light field capture and display. This paper focuses on both the architecture design and the implementation of the hardware and the software of this integrated 3D system. A prototype of the integrated 3D system is built to demonstrate the real-time 3D acquisition and 3D display capability of our proposed system.

  2. 3D Printed Block Copolymer Nanostructures

    Scalfani, Vincent F.; Turner, C. Heath; Rupar, Paul A.; Jenkins, Alexander H.; Bara, Jason E.

    2015-01-01

    The emergence of 3D printing has dramatically advanced the availability of tangible molecular and extended solid models. Interestingly, there are few nanostructure models available both commercially and through other do-it-yourself approaches such as 3D printing. This is unfortunate given the importance of nanotechnology in science today. In this…

  3. Parametrizable cameras for 3D computational steering

    Mulder, J.D.; Wijk, J.J. van

    1997-01-01

    We present a method for the definition of multiple views in 3D interfaces for computational steering. The method uses the concept of a point-based parametrizable camera object. This concept enables a user to create and configure multiple views on his custom 3D interface in an intuitive graphical man

  4. 3D elastic control for mobile devices.

    Hachet, Martin; Pouderoux, Joachim; Guitton, Pascal

    2008-01-01

    To increase the input space of mobile devices, the authors developed a proof-of-concept 3D elastic controller that easily adapts to mobile devices. This embedded device improves the completion of high-level interaction tasks such as visualization of large documents and navigation in 3D environments. It also opens new directions for tomorrow's mobile applications.

  5. 3D printing of functional structures

    Krijnen, G.J.M.

    2016-01-01

    The technology colloquial known as ‘3D printing’ has developed in such diversity in printing technologies and application fields that meanwhile it seems anything is possible. However, clearly the ideal 3D Printer, with high resolution, multi-material capability, fast printing, etc. is yet to be deve

  6. 3D, or Not to Be?

    Norbury, Keith

    2012-01-01

    It may be too soon for students to be showing up for class with popcorn and gummy bears, but technology similar to that behind the 3D blockbuster movie "Avatar" is slowly finding its way into college classrooms. 3D classroom projectors are taking students on fantastic voyages inside the human body, to the ruins of ancient Greece--even to faraway…

  7. The 3D-city model

    Holmgren, Steen; Rüdiger, Bjarne; Tournay, Bruno

    2001-01-01

    We have worked with the construction and use of 3D city models for about ten years. This work has given us valuable experience concerning model methodology. In addition to this collection of knowledge, our perception of the concept of city models has changed radically. In order to explain...... of 3D city models....

  8. 3D Printing of Molecular Models

    Gardner, Adam; Olson, Arthur

    2016-01-01

    Physical molecular models have played a valuable role in our understanding of the invisible nano-scale world. We discuss 3D printing and its use in producing models of the molecules of life. Complex biomolecular models, produced from 3D printed parts, can demonstrate characteristics of molecular structure and function, such as viral self-assembly,…

  9. 3D Printing. What's the Harm?

    Love, Tyler S.; Roy, Ken

    2016-01-01

    Health concerns from 3D printing were first documented by Stephens, Azimi, Orch, and Ramos (2013), who found that commercially available 3D printers were producing hazardous levels of ultrafine particles (UFPs) and volatile organic compounds (VOCs) when plastic materials were melted through the extruder. UFPs are particles less than 100 nanometers…

  10. Topology dictionary for 3D video understanding.

    Tung, Tony; Matsuyama, Takashi

    2012-08-01

    This paper presents a novel approach that achieves 3D video understanding. 3D video consists of a stream of 3D models of subjects in motion. The acquisition of long sequences requires large storage space (2 GB for 1 min). Moreover, it is tedious to browse data sets and extract meaningful information. We propose the topology dictionary to encode and describe 3D video content. The model consists of a topology-based shape descriptor dictionary which can be generated from either extracted patterns or training sequences. The model relies on 1) topology description and classification using Reeb graphs, and 2) a Markov motion graph to represent topology change states. We show that the use of Reeb graphs as the high-level topology descriptor is relevant. It allows the dictionary to automatically model complex sequences, whereas other strategies would require prior knowledge on the shape and topology of the captured subjects. Our approach serves to encode 3D video sequences, and can be applied for content-based description and summarization of 3D video sequences. Furthermore, topology class labeling during a learning process enables the system to perform content-based event recognition. Experiments were carried out on various 3D videos. We showcase an application for 3D video progressive summarization using the topology dictionary.

  11. 3D background aerodynamics using CFD

    Sørensen, Niels N.

    2002-01-01

    3D rotor computations for the Greek Geovilogiki (GEO) 44 meter rotor equipped with 19 meters blades are performed. The lift and drag polars are extracted at five spanvise locations r/R= (.37, .55, .71, .82, .93) based on identification of stagnationpoints between 2D and 3D computations. The inner...

  12. Energy flux pattern of inverse Goos-Hanchen shift in photonic crystals with negative index of refraction

    Hu, Jinbing; Chen, Jiabi; Jiang, Qiang; Wang, Yan; Zhuang, Songlin

    2015-01-01

    The energy flux patterns of inverse Goos-Hanchen (GH) shift around the interface between air and negatively refractive photonic crystal (NRPhC) with different surface terminations is investigated. Results show that NRPhC exhibits inverse GH shift in TM and TE polarization, and the localization and pattern of energy flux differ in TM and TE polarizations and are strongly affected by surface termination. This is different to the condition of negative permittivity materials (i.e., metal), which only presents inverse GH shift in TM polarization. In the case of TE polarization, the energy flux pattern exhibits the flux of backward wave whose localization changes from the surface to inside of NRPhC with the variation of surface termination. In the case of TM polarization, the energy flux pattern is always confined within the surface of NRPhC, whereas its pattern changes from the flux of backward wave to vortices at the surface of NRPhC, which is different to the energy flux of TM polarization of metal. By properly ...

  13. Fabrication of 3D Silicon Sensors

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; /SINTEF, Oslo; Kenney, C.; Hasi, J.; /SLAC; Da Via, C.; /Manchester U.; Parker, S.I.; /Hawaii U.

    2012-06-06

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  14. Maintaining and troubleshooting your 3D printer

    Bell, Charles

    2014-01-01

    Maintaining and Troubleshooting Your 3D Printer by Charles Bell is your guide to keeping your 3D printer running through preventive maintenance, repair, and diagnosing and solving problems in 3D printing. If you've bought or built a 3D printer such as a MakerBot only to be confounded by jagged edges, corner lift, top layers that aren't solid, or any of a myriad of other problems that plague 3D printer enthusiasts, then here is the book to help you get past all that and recapture the joy of creative fabrication. The book also includes valuable tips for builders and those who want to modify the

  15. 2D/3D switchable displays

    Dekker, T.; de Zwart, S. T.; Willemsen, O. H.; Hiddink, M. G. H.; IJzerman, W. L.

    2006-02-01

    A prerequisite for a wide market acceptance of 3D displays is the ability to switch between 3D and full resolution 2D. In this paper we present a robust and cost effective concept for an auto-stereoscopic switchable 2D/3D display. The display is based on an LCD panel, equipped with switchable LC-filled lenticular lenses. We will discuss 3D image quality, with the focus on display uniformity. We show that slanting the lenticulars in combination with a good lens design can minimize non-uniformities in our 20" 2D/3D monitors. Furthermore, we introduce fractional viewing systems as a very robust concept to further improve uniformity in the case slanting the lenticulars and optimizing the lens design are not sufficient. We will discuss measurements and numerical simulations of the key optical characteristics of this display. Finally, we discuss 2D image quality, the switching characteristics and the residual lens effect.

  16. 6D Interpretation of 3D Gravity

    Herfray, Yannick; Krasnov, Kirill; Scarinci, Carlos

    2017-02-01

    We show that 3D gravity, in its pure connection formulation, admits a natural 6D interpretation. The 3D field equations for the connection are equivalent to 6D Hitchin equations for the Chern–Simons 3-form in the total space of the principal bundle over the 3-dimensional base. Turning this construction around one gets an explanation of why the pure connection formulation of 3D gravity exists. More generally, we interpret 3D gravity as the dimensional reduction of the 6D Hitchin theory. To this end, we show that any \\text{SU}(2) invariant closed 3-form in the total space of the principal \\text{SU}(2) bundle can be parametrised by a connection together with a 2-form field on the base. The dimensional reduction of the 6D Hitchin theory then gives rise to 3D gravity coupled to a topological 2-form field.

  17. Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index.

    Xu, Kun-Yuan; Zheng, Xiguang; Li, Cai-Lian; She, Wei-Long

    2005-06-01

    The band structures of one-dimensional photonic crystals containing a defect layer with a negative refractive index are studied, showing that the defect modes possess three types of dispersion: positive, zero, and negative types. Based on these three types of dispersion, practical designs for large incident angle filters without polarization effect and for narrow frequency and sharp angular filters are suggested. Moreover, the splitting of one degenerate defect mode into multiple defect modes is observed in the band gap when the parameters of the defect layer vary. This mode splitting phenomenon can be used to design multiple channeled filters or filters with a rectangular profile. The dispersion multiplicity of the defect modes can be understood by an approximate formula, and the critical condition for the defect mode splitting is also analyzed. Based on these analyses, practical optimization design of omnidirectional filter is also suggested.

  18. 3D Visualization Development of SIUE Campus

    Nellutla, Shravya

    Geographic Information Systems (GIS) has progressed from the traditional map-making to the modern technology where the information can be created, edited, managed and analyzed. Like any other models, maps are simplified representations of real world. Hence visualization plays an essential role in the applications of GIS. The use of sophisticated visualization tools and methods, especially three dimensional (3D) modeling, has been rising considerably due to the advancement of technology. There are currently many off-the-shelf technologies available in the market to build 3D GIS models. One of the objectives of this research was to examine the available ArcGIS and its extensions for 3D modeling and visualization and use them to depict a real world scenario. Furthermore, with the advent of the web, a platform for accessing and sharing spatial information on the Internet, it is possible to generate interactive online maps. Integrating Internet capacity with GIS functionality redefines the process of sharing and processing the spatial information. Enabling a 3D map online requires off-the-shelf GIS software, 3D model builders, web server, web applications and client server technologies. Such environments are either complicated or expensive because of the amount of hardware and software involved. Therefore, the second objective of this research was to investigate and develop simpler yet cost-effective 3D modeling approach that uses available ArcGIS suite products and the free 3D computer graphics software for designing 3D world scenes. Both ArcGIS Explorer and ArcGIS Online will be used to demonstrate the way of sharing and distributing 3D geographic information on the Internet. A case study of the development of 3D campus for the Southern Illinois University Edwardsville is demonstrated.

  19. The psychology of the 3D experience

    Janicke, Sophie H.; Ellis, Andrew

    2013-03-01

    With 3D televisions expected to reach 50% home saturation as early as 2016, understanding the psychological mechanisms underlying the user response to 3D technology is critical for content providers, educators and academics. Unfortunately, research examining the effects of 3D technology has not kept pace with the technology's rapid adoption, resulting in large-scale use of a technology about which very little is actually known. Recognizing this need for new research, we conducted a series of studies measuring and comparing many of the variables and processes underlying both 2D and 3D media experiences. In our first study, we found narratives within primetime dramas had the power to shift viewer attitudes in both 2D and 3D settings. However, we found no difference in persuasive power between 2D and 3D content. We contend this lack of effect was the result of poor conversion quality and the unique demands of 3D production. In our second study, we found 3D technology significantly increased enjoyment when viewing sports content, yet offered no added enjoyment when viewing a movie trailer. The enhanced enjoyment of the sports content was shown to be the result of heightened emotional arousal and attention in the 3D condition. We believe the lack of effect found for the movie trailer may be genre-related. In our final study, we found 3D technology significantly enhanced enjoyment of two video games from different genres. The added enjoyment was found to be the result of an increased sense of presence.

  20. Goos-Haenchen shifts of the reflected waves from the inhomogeneous slab with a positive and negative index transition layer

    Mao, Hongmin; Zang, Taocheng; Sun, Jian; Pan, Tao; Xu, Guoding [Department of Physics, Suzhou University of Science and Technology, Suzhou 215009 (China)

    2012-04-15

    Goos-Haenchen (GH) shifts of the reflected waves through a transition layer where both the dielectric permittivity {epsilon} and magnetic permeability {mu} change linearly from positive to negative values are investigated. Based on invariant imbedding approach and the stationary-phase method, the differential equations for the reflection and transmission coefficients are obtained. We demonstrate numerically the dependence of the shifts on the angle of incidence and the inhomogeneous slab's thickness. The results show that the GH shifts are sensitive to the angle of incidence in a specific thickness. Different thickness of media can result in the different dependences of the shifts on the angle of incidence. At the positions where {epsilon} or {mu} is zero, due to the resonant effect, the GH shifts can be greatly enhanced. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Data of evolutionary structure change: 3GD5D-3D7SA [Confc[Archive

    Full Text Available 3GD5D-3D7SA 3GD5 3D7S D A --TRFRPDLLSLDDLDEAQLHALLTLAHQLKRGERVANL...HGKVLGLVFLKASTRTRVSFTVAMYQLGGQVIDL------------EPVRDTARVLGRYVDGLAIRTFAQTELEEYAHYAG-IPVINALTD-HEHPCQVVADLLTIRENFGRLAGLKLAYVGD...ANPLYQKHIISINDLSRDDLNLVLATAAKLKANPQPELLKHKVIASCFFEASTRTRLSFETSMHRLGASVVGFSDSANTSLGKKGETLADTISVISTYVDAIVMRHPQEGAARLATEFSGNVPVLNAGD...GSNQHPTQTLLDLFTIQETQGRLDNLHVAMVGDLKYGRTVHSLTQALAKFDGNRFYFIAPDALAMPQYILDMLDEK----GIAWSLH.../index> 3GD5 D 3GD5D

  2. 3D imaging in forensic odontology.

    Evans, Sam; Jones, Carl; Plassmann, Peter

    2010-06-16

    This paper describes the investigation of a new 3D capture method for acquiring and subsequent forensic analysis of bite mark injuries on human skin. When documenting bite marks with standard 2D cameras errors in photographic technique can occur if best practice is not followed. Subsequent forensic analysis of the mark is problematic when a 3D structure is recorded into a 2D space. Although strict guidelines (BAFO) exist, these are time-consuming to follow and, due to their complexity, may produce errors. A 3D image capture and processing system might avoid the problems resulting from the 2D reduction process, simplifying the guidelines and reducing errors. Proposed Solution: a series of experiments are described in this paper to demonstrate that the potential of a 3D system might produce suitable results. The experiments tested precision and accuracy of the traditional 2D and 3D methods. A 3D image capture device minimises the amount of angular distortion, therefore such a system has the potential to create more robust forensic evidence for use in courts. A first set of experiments tested and demonstrated which method of forensic analysis creates the least amount of intra-operator error. A second set tested and demonstrated which method of image capture creates the least amount of inter-operator error and visual distortion. In a third set the effects of angular distortion on 2D and 3D methods of image capture were evaluated.

  3. Medical 3D Printing for the Radiologist.

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A; Cai, Tianrun; Kumamaru, Kanako K; George, Elizabeth; Wake, Nicole; Caterson, Edward J; Pomahac, Bohdan; Ho, Vincent B; Grant, Gerald T; Rybicki, Frank J

    2015-01-01

    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article.

  4. Digital relief generation from 3D models

    Wang, Meili; Sun, Yu; Zhang, Hongming; Qian, Kun; Chang, Jian; He, Dongjian

    2016-09-01

    It is difficult to extend image-based relief generation to high-relief generation, as the images contain insufficient height information. To generate reliefs from three-dimensional (3D) models, it is necessary to extract the height fields from the model, but this can only generate bas-reliefs. To overcome this problem, an efficient method is proposed to generate bas-reliefs and high-reliefs directly from 3D meshes. To produce relief features that are visually appropriate, the 3D meshes are first scaled. 3D unsharp masking is used to enhance the visual features in the 3D mesh, and average smoothing and Laplacian smoothing are implemented to achieve better smoothing results. A nonlinear variable scaling scheme is then employed to generate the final bas-reliefs and high-reliefs. Using the proposed method, relief models can be generated from arbitrary viewing positions with different gestures and combinations of multiple 3D models. The generated relief models can be printed by 3D printers. The proposed method provides a means of generating both high-reliefs and bas-reliefs in an efficient and effective way under the appropriate scaling factors.

  5. 3D Reconstruction Technique for Tomographic PIV

    姜楠; 包全; 杨绍琼

    2015-01-01

    Tomographic particle image velocimetry(Tomo-PIV) is a state-of-the-art experimental technique based on a method of optical tomography to achieve the three-dimensional(3D) reconstruction for three-dimensional three-component(3D-3C) flow velocity measurements. 3D reconstruction for Tomo-PIV is carried out herein. Meanwhile, a 3D simplified tomographic reconstruction model reduced from a 3D volume light inten-sity field with 2D projection images into a 2D Tomo-slice plane with 1D projecting lines, i.e., simplifying this 3D reconstruction into a problem of 2D Tomo-slice plane reconstruction, is applied thereafter. Two kinds of the most well-known algebraic reconstruction techniques, algebraic reconstruction technique(ART) and multiple algebraic reconstruction technique(MART), are compared as well. The principles of the two reconstruction algorithms are discussed in detail, which has been performed by a series of simulation images, yielding the corresponding recon-struction images that show different features between the ART and MART algorithm, and then their advantages and disadvantages are discussed. Further discussions are made for the standard particle image reconstruction when the background noise of the pre-initial particle image has been removed. Results show that the particle image recon-struction has been greatly improved. The MART algorithm is much better than the ART. Furthermore, the computa-tional analyses of two parameters(the particle density and the number of cameras), are performed to study their effects on the reconstruction. Lastly, the 3D volume particle field is reconstructed by using the improved algorithm based on the simplified 3D tomographic reconstruction model, which proves that the algorithm simplification is feasible and it can be applied to the reconstruction of 3D volume particle field in a Tomo-PIV system.

  6. 3D object-oriented image analysis in 3D geophysical modelling

    Fadel, I.; van der Meijde, M.; Kerle, N.

    2015-01-01

    Non-uniqueness of satellite gravity interpretation has traditionally been reduced by using a priori information from seismic tomography models. This reduction in the non-uniqueness has been based on velocity-density conversion formulas or user interpretation of the 3D subsurface structures (objects......) based on the seismic tomography models and then forward modelling these objects. However, this form of object-based approach has been done without a standardized methodology on how to extract the subsurface structures from the 3D models. In this research, a 3D object-oriented image analysis (3D OOA......) approach was implemented to extract the 3D subsurface structures from geophysical data. The approach was applied on a 3D shear wave seismic tomography model of the central part of the East African Rift System. Subsequently, the extracted 3D objects from the tomography model were reconstructed in the 3D...

  7. 3-D Human Modeling and Animation

    Ratner, Peter

    2012-01-01

    3-D Human Modeling and Animation Third Edition All the tools and techniques you need to bring human figures to 3-D life Thanks to today's remarkable technology, artists can create and animate realistic, three-dimensional human figures that were not possible just a few years ago. This easy-to-follow book guides you through all the necessary steps to adapt your own artistic skill in figure drawing, painting, and sculpture to this exciting digital canvas. 3-D Human Modeling and Animation, Third Edition starts you off with simple modeling, then prepares you for more advanced techniques for crea

  8. FIT3D: Fitting optical spectra

    Sánchez, S. F.; Pérez, E.; Sánchez-Blázquez, P.; González, J. J.; Rosales-Ortega, F. F.; Cano-Díaz, M.; López-Cobá, C.; Marino, R. A.; Gil de Paz, A.; Mollá, M.; López-Sánchez, A. R.; Ascasibar, Y.; Barrera-Ballesteros, J.

    2016-09-01

    FIT3D fits optical spectra to deblend the underlying stellar population and the ionized gas, and extract physical information from each component. FIT3D is focused on the analysis of Integral Field Spectroscopy data, but is not restricted to it, and is the basis of Pipe3D, a pipeline used in the analysis of datasets like CALIFA, MaNGA, and SAMI. It can run iteratively or in an automatic way to derive the parameters of a large set of spectra.

  9. 3D Immersive Visualization with Astrophysical Data

    Kent, Brian R.

    2017-01-01

    We present the refinement of a new 3D immersion technique for astrophysical data visualization.Methodology to create 360 degree spherical panoramas is reviewed. The 3D software package Blender coupled with Python and the Google Spatial Media module are used together to create the final data products. Data can be viewed interactively with a mobile phone or tablet or in a web browser. The technique can apply to different kinds of astronomical data including 3D stellar and galaxy catalogs, images, and planetary maps.

  10. 3D Printing the ATLAS' barrel toroid

    Goncalves, Tiago Barreiro

    2016-01-01

    The present report summarizes my work as part of the Summer Student Programme 2016 in the CERN IR-ECO-TSP department (International Relations – Education, Communication & Outreach – Teacher and Student Programmes). Particularly, I worked closely with the S’Cool LAB team on a science education project. This project included the 3D designing, 3D printing, and assembling of a model of the ATLAS’ barrel toroid. A detailed description of the project' development is presented and a short manual on how to use 3D printing software and hardware is attached.

  11. 3D face modeling, analysis and recognition

    Daoudi, Mohamed; Veltkamp, Remco

    2013-01-01

    3D Face Modeling, Analysis and Recognition presents methodologies for analyzing shapes of facial surfaces, develops computational tools for analyzing 3D face data, and illustrates them using state-of-the-art applications. The methodologies chosen are based on efficient representations, metrics, comparisons, and classifications of features that are especially relevant in the context of 3D measurements of human faces. These frameworks have a long-term utility in face analysis, taking into account the anticipated improvements in data collection, data storage, processing speeds, and application s

  12. A high capacity 3D steganography algorithm.

    Chao, Min-Wen; Lin, Chao-hung; Yu, Cheng-Wei; Lee, Tong-Yee

    2009-01-01

    In this paper, we present a very high-capacity and low-distortion 3D steganography scheme. Our steganography approach is based on a novel multilayered embedding scheme to hide secret messages in the vertices of 3D polygon models. Experimental results show that the cover model distortion is very small as the number of hiding layers ranges from 7 to 13 layers. To the best of our knowledge, this novel approach can provide much higher hiding capacity than other state-of-the-art approaches, while obeying the low distortion and security basic requirements for steganography on 3D models.

  13. RHOCUBE: 3D density distributions modeling code

    Nikutta, Robert; Agliozzo, Claudia

    2016-11-01

    RHOCUBE models 3D density distributions on a discrete Cartesian grid and their integrated 2D maps. It can be used for a range of applications, including modeling the electron number density in LBV shells and computing the emission measure. The RHOCUBE Python package provides several 3D density distributions, including a powerlaw shell, truncated Gaussian shell, constant-density torus, dual cones, and spiralling helical tubes, and can accept additional distributions. RHOCUBE provides convenient methods for shifts and rotations in 3D, and if necessary, an arbitrary number of density distributions can be combined into the same model cube and the integration ∫ dz performed through the joint density field.

  14. Computer Modelling of 3D Geological Surface

    Kodge, B G

    2011-01-01

    The geological surveying presently uses methods and tools for the computer modeling of 3D-structures of the geographical subsurface and geotechnical characterization as well as the application of geoinformation systems for management and analysis of spatial data, and their cartographic presentation. The objectives of this paper are to present a 3D geological surface model of Latur district in Maharashtra state of India. This study is undertaken through the several processes which are discussed in this paper to generate and visualize the automated 3D geological surface model of a projected area.

  15. FUN3D Manual: 12.8

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.8, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  16. FUN3D Manual: 12.6

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.6, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  17. FUN3D Manual: 12.5

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2014-01-01

    This manual describes the installation and execution of FUN3D version 12.5, including optional dependent packages. FUN3D is a suite of computational uid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables ecient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  18. FUN3D Manual: 13.1

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2017-01-01

    This manual describes the installation and execution of FUN3D version 13.1, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  19. FUN3D Manual: 12.4

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2014-01-01

    This manual describes the installation and execution of FUN3D version 12.4, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixedelement unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  20. FUN3D Manual: 12.7

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.7, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  1. Automatic balancing of 3D models

    Christiansen, Asger Nyman; Schmidt, Ryan; Bærentzen, Jakob Andreas

    2014-01-01

    3D printing technologies allow for more diverse shapes than are possible with molds and the cost of making just one single object is negligible compared to traditional production methods. However, not all shapes are suitable for 3D print. One of the remaining costs is therefore human time spent......, in these cases, we will apply a rotation of the object which only deforms the shape a little near the base. No user input is required but it is possible to specify manufacturing constraints related to specific 3D print technologies. Several models have successfully been balanced and printed using both polyjet...

  2. Participation and 3D Visualization Tools

    Mullins, Michael; Jensen, Mikkel Holm; Henriksen, Sune

    2004-01-01

    With a departure point in a workshop held at the VR Media Lab at Aalborg University , this paper deals with aspects of public participation and the use of 3D visualisation tools. The workshop grew from a desire to involve a broad collaboration between the many actors in the city through using new...... perceptions of architectural representation in urban design where 3D visualisation techniques are used. It is the authors? general finding that, while 3D visualisation media have the potential to increase understanding of virtual space for the lay public, as well as for professionals, the lay public require...

  3. The reactor dynamics code DYN3D

    Kliem, Soeren; Bilodid, Yuri; Fridman, Emil; Baier, Silvio; Grahn, Alexander; Gommlich, Andre; Nikitin, Evgeny; Rohde, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany)

    2016-05-15

    The article provides an overview on the code DYN3D which is a three-dimensional core model for steady-state, dynamic and depletion calculations in reactor cores with quadratic or hexagonal fuel assembly geometry being developed by the Helmholtz-Zentrum Dresden-Rossendorf for more than 20 years. The current paper gives an overview on the basic DYN3D models and the available code couplings. The verification and validation status is shortly outlined. The paper concludes with the current developments of the DYN3D code. For more detailed information the reader is referred to the publications cited in the corresponding chapters.

  4. Do-It-Yourself: 3D Models of Hydrogenic Orbitals through 3D Printing

    Griffith, Kaitlyn M.; de Cataldo, Riccardo; Fogarty, Keir H.

    2016-01-01

    Introductory chemistry students often have difficulty visualizing the 3-dimensional shapes of the hydrogenic electron orbitals without the aid of physical 3D models. Unfortunately, commercially available models can be quite expensive. 3D printing offers a solution for producing models of hydrogenic orbitals. 3D printing technology is widely…

  5. 3D presentatie van geluid in de cockpit [3D sound presentation in the cockpit

    Bronkhorst, A.W.

    2003-01-01

    A.W. Bronkhorst, 3D-presentatie van geluid in de cockpit 1 Using virtual acoustics, sound can be presented from virtual sources located in the 3D space around the listener. This 3D sound has interesting applications in the cockpit. Sounds can be used to convey directional information, and interferen

  6. Persistent Monitoring of Urban Infrasound Phenomenology. Report 1: Modeling an Urban Environment for Acoustical Analyses using the 3-D Finite-Difference Time-Domain Program PSTOP3D

    2015-08-01

    by PSTOP3D to save 3D output relative to topography without auxiliary structures. Finished reading indexed material properties from mctp_geo.dat.1...using the 3-D Finite-Difference Time-Domain Program PSTOP3D Michael E. Pace Information Technology Laboratory U.S. Army Engineer Research and... Read topography into Global Mapper ...................................................................... 15 3.2.2 Create clip region for topography

  7. Networked 3D Virtual Museum System

    2003-01-01

    Virtual heritage has become increasingly important in the conservation, preservation, and interpretation of our cultural and natural history. Moreover, rapid advances in digital technologies in recent years offer virtual heritage new direction. This paper introduces our approach toward a networked 3D virtual museum system, especially, how to model, manage, present virtual heritages and furthermore how to use computer network for the share of virtual heritage in the networked virtual environment. This paper first addresses a 3D acquisition and processing technique for virtual heritage modeling and shows some illustrative examples. Then, this paper describes a management of virtual heritage assets that are composed by various rich media. This paper introduces our schemes to present the virtual heritages, which include 3D virtual heritage browser system, CAVE system, and immersive VR theater. Finally, this paper presents the new direction of networked 3D virtual museum of which main idea is remote guide of the virtual heritage using the mixed reality technique.

  8. Two Accelerating Techniques for 3D Reconstruction

    刘世霞; 胡事民; 孙家广

    2002-01-01

    Automatic reconstruction of 3D objects from 2D orthographic views has been a major research issue in CAD/CAM. In this paper, two accelerating techniques to improve the efficiency of reconstruction are presented. First, some pseudo elements are removed by depth and topology information as soon as the wire-frame is constructed, which reduces the searching space. Second, the proposed algorithm does not establish all possible surfaces in the process of generating 3D faces. The surfaces and edge loops are generated by using the relationship between the boundaries of 3D faces and their projections. This avoids the growth in combinational complexity of previous methods that have to check all possible pairs of 3D candidate edges.

  9. 3D-FPA Hybridization Improvements Project

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc. (ASC) is a small business, which has developed a compact, eye-safe 3D Flash LIDARTM Camera (FLC) well suited for real-time...

  10. The 3-d view of planetary nebulae

    Hugo E. Schwarz

    2006-01-01

    Full Text Available Considerando las nebulosas planetarias (PNe de manera tridimensional (3-D, demonstramos que se pueden reducir las grandes incertidumbres asociadas con los m etodos cl asicos de modelar y observar PNe para obtener sus estructuras 3-D y distancias. Usando espectrofotometr a de ranura larga o empleando un Integral Field Unit para restringir los modelos de fotoionizaci on 3-D de PNe y as eliminar dicha incertidumbre de la densidad y de la fracci on del volumen que emite radiaci on ( lling factor, determinamos las detalladas estructuras 3-D, los par ametros de las estrellas centrales y las distancias con una precisi on de 10-20%. Los m etodos cl asicos t picamente daban estos par ametros con una incertidumbre de un factor 3 o m as.

  11. Nonlaser-based 3D surface imaging

    Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.

  12. Designing Biomaterials for 3D Printing.

    Guvendiren, Murat; Molde, Joseph; Soares, Rosane M D; Kohn, Joachim

    2016-10-10

    Three-dimensional (3D) printing is becoming an increasingly common technique to fabricate scaffolds and devices for tissue engineering applications. This is due to the potential of 3D printing to provide patient-specific designs, high structural complexity, rapid on-demand fabrication at a low-cost. One of the major bottlenecks that limits the widespread acceptance of 3D printing in biomanufacturing is the lack of diversity in "biomaterial inks". Printability of a biomaterial is determined by the printing technique. Although a wide range of biomaterial inks including polymers, ceramics, hydrogels and composites have been developed, the field is still struggling with processing of these materials into self-supporting devices with tunable mechanics, degradation, and bioactivity. This review aims to highlight the past and recent advances in biomaterial ink development and design considerations moving forward. A brief overview of 3D printing technologies focusing on ink design parameters is also included.

  13. DNA biosensing with 3D printing technology.

    Loo, Adeline Huiling; Chua, Chun Kiang; Pumera, Martin

    2017-01-16

    3D printing, an upcoming technology, has vast potential to transform conventional fabrication processes due to the numerous improvements it can offer to the current methods. To date, the employment of 3D printing technology has been examined for applications in the fields of engineering, manufacturing and biological sciences. In this study, we examined the potential of adopting 3D printing technology for a novel application, electrochemical DNA biosensing. Metal 3D printing was utilized to construct helical-shaped stainless steel electrodes which functioned as a transducing platform for the detection of DNA hybridization. The ability of electroactive methylene blue to intercalate into the double helix structure of double-stranded DNA was then exploited to monitor the DNA hybridization process, with its inherent reduction peak serving as an analytical signal. The designed biosensing approach was found to demonstrate superior selectivity against a non-complementary DNA target, with a detection range of 1-1000 nM.

  14. Cubical Cohomology Ring of 3D Photographs

    Gonzalez-Diaz, Rocio; Medrano, Belen; 10.1002/ima.20271

    2011-01-01

    Cohomology and cohomology ring of three-dimensional (3D) objects are topological invariants that characterize holes and their relations. Cohomology ring has been traditionally computed on simplicial complexes. Nevertheless, cubical complexes deal directly with the voxels in 3D images, no additional triangulation is necessary, facilitating efficient algorithms for the computation of topological invariants in the image context. In this paper, we present formulas to directly compute the cohomology ring of 3D cubical complexes without making use of any additional triangulation. Starting from a cubical complex $Q$ that represents a 3D binary-valued digital picture whose foreground has one connected component, we compute first the cohomological information on the boundary of the object, $\\partial Q$ by an incremental technique; then, using a face reduction algorithm, we compute it on the whole object; finally, applying the mentioned formulas, the cohomology ring is computed from such information.

  15. 3D scanning particle tracking velocimetry

    Hoyer, Klaus; Holzner, Markus; Lüthi, Beat; Guala, Michele; Liberzon, Alexander; Kinzelbach, Wolfgang

    2005-11-01

    In this article, we present an experimental setup and data processing schemes for 3D scanning particle tracking velocimetry (SPTV), which expands on the classical 3D particle tracking velocimetry (PTV) through changes in the illumination, image acquisition and analysis. 3D PTV is a flexible flow measurement technique based on the processing of stereoscopic images of flow tracer particles. The technique allows obtaining Lagrangian flow information directly from measured 3D trajectories of individual particles. While for a classical PTV the entire region of interest is simultaneously illuminated and recorded, in SPTV the flow field is recorded by sequential tomographic high-speed imaging of the region of interest. The advantage of the presented method is a considerable increase in maximum feasible seeding density. Results are shown for an experiment in homogenous turbulence and compared with PTV. SPTV yielded an average 3,500 tracked particles per time step, which implies a significant enhancement of the spatial resolution for Lagrangian flow measurements.

  16. Lightning fast animation in Element 3D

    Audronis, Ty

    2014-01-01

    An easy-to-follow and all-inclusive guide, in which the underlying principles of 3D animation as well as their importance are explained in detail. The lessons are designed to teach you how to think of 3D animation in such a way that you can troubleshoot any problem, or animate any scene that comes your way.If you are a Digital Artist, Animation Artist, or a Game Programmer and you want to become an expert in Element 3D, this is the book for you. Although there are a lot of basics for beginners in this book, it includes some advanced techniques for both animating in Element 3D, and overcoming i

  17. Advanced 3D Object Identification System Project

    National Aeronautics and Space Administration — Optra will build an Advanced 3D Object Identification System utilizing three or more high resolution imagers spaced around a launch platform. Data from each imager...

  18. 3D Biomaterial Microarrays for Regenerative Medicine

    Gaharwar, Akhilesh K.; Arpanaei, Ayyoob; Andresen, Thomas Lars;

    2015-01-01

    Three dimensional (3D) biomaterial microarrays hold enormous promise for regenerative medicine because of their ability to accelerate the design and fabrication of biomimetic materials. Such tissue-like biomaterials can provide an appropriate microenvironment for stimulating and controlling stem...

  19. 3D-printed bioanalytical devices

    Bishop, Gregory W.; Satterwhite-Warden, Jennifer E.; Kadimisetty, Karteek; Rusling, James F.

    2016-07-01

    While 3D printing technologies first appeared in the 1980s, prohibitive costs, limited materials, and the relatively small number of commercially available printers confined applications mainly to prototyping for manufacturing purposes. As technologies, printer cost, materials, and accessibility continue to improve, 3D printing has found widespread implementation in research and development in many disciplines due to ease-of-use and relatively fast design-to-object workflow. Several 3D printing techniques have been used to prepare devices such as milli- and microfluidic flow cells for analyses of cells and biomolecules as well as interfaces that enable bioanalytical measurements using cellphones. This review focuses on preparation and applications of 3D-printed bioanalytical devices.

  20. 3D VISUALIZATION FOR VIRTUAL MUSEUM DEVELOPMENT

    M. Skamantzari

    2016-06-01

    Full Text Available The interest in the development of virtual museums is nowadays rising rapidly. During the last decades there have been numerous efforts concerning the 3D digitization of cultural heritage and the development of virtual museums, digital libraries and serious games. The realistic result has always been the main concern and a real challenge when it comes to 3D modelling of monuments, artifacts and especially sculptures. This paper implements, investigates and evaluates the results of the photogrammetric methods and 3D surveys that were used for the development of a virtual museum. Moreover, the decisions, the actions, the methodology and the main elements that this kind of application should include and take into consideration are described and analysed. It is believed that the outcomes of this application will be useful to researchers who are planning to develop and further improve the attempts made on virtual museums and mass production of 3D models.

  1. Eyes on the Earth 3D

    Kulikov, anton I.; Doronila, Paul R.; Nguyen, Viet T.; Jackson, Randal K.; Greene, William M.; Hussey, Kevin J.; Garcia, Christopher M.; Lopez, Christian A.

    2013-01-01

    Eyes on the Earth 3D software gives scientists, and the general public, a realtime, 3D interactive means of accurately viewing the real-time locations, speed, and values of recently collected data from several of NASA's Earth Observing Satellites using a standard Web browser (climate.nasa.gov/eyes). Anyone with Web access can use this software to see where the NASA fleet of these satellites is now, or where they will be up to a year in the future. The software also displays several Earth Science Data sets that have been collected on a daily basis. This application uses a third-party, 3D, realtime, interactive game engine called Unity 3D to visualize the satellites and is accessible from a Web browser.

  2. 3D Flash LIDAR Space Laser Project

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc (ASC) is a small business, which has developed a compact, eye-safe 3D Flash LIDARTM Camera (FLC) well suited for real-time...

  3. Copper Electrodeposition for 3D Integration

    Beica, Rozalia; Ritzdorf, Tom

    2008-01-01

    Two dimensional (2D) integration has been the traditional approach for IC integration. Due to increasing demands for providing electronic devices with superior performance and functionality in more efficient and compact packages, has driven the semiconductor industry to develop more advanced packaging technologies. Three-dimensional (3D) approaches address both miniaturization and integration required for advanced and portable electronic products. Vertical integration proved to be essential in achieving a greater integration flexibility of disparate technologies, reason for which a general trend of transition from 2D to 3D integration is currently being observed in the industry. 3D chip integration using through silicon via (TSV) copper is considered one of the most advanced technologies among all different types of 3D packaging technologies. Copper electrodeposition is one of technologies that enable the formation of TSV structures. Because of its well-known application for copper damascene, it was believed ...

  4. Pentingnya Pengetahuan Anatomi untuk 3D Artist

    Anton Sugito Kurniawan

    2011-03-01

    Full Text Available No matter how far the current technological advances, anatomical knowledge will still be needed as a basis for making a good character design. Understanding anatomy will help us in the placement of the articulation of muscles and joints, thus more realistic modeling of 3d characters will be achieved in the form and movement. As a 3d character artist, anatomy should be able to inform in every aspect of our work. Each 3D/CG (Computer Graphics-artist needs to know how to use software applications, but what differentiates a 3d artist with a computer operator is an artistic vision and understanding of the basic shape of the human body. Artistic vision could not easily be taught, but a CG-artist may study it on their own from which so many reference sources may help understand and deepen their knowledge of anatomy.

  5. Measuring Visual Closeness of 3-D Models

    Morales, Jose A.

    2012-09-01

    Measuring visual closeness of 3-D models is an important issue for different problems and there is still no standardized metric or algorithm to do it. The normal of a surface plays a vital role in the shading of a 3-D object. Motivated by this, we developed two applications to measure visualcloseness, introducing normal difference as a parameter in a weighted metric in Metro’s sampling approach to obtain the maximum and mean distance between 3-D models using 3-D and 6-D correspondence search structures. A visual closeness metric should provide accurate information on what the human observers would perceive as visually close objects. We performed a validation study with a group of people to evaluate the correlation of our metrics with subjective perception. The results were positive since the metrics predicted the subjective rankings more accurately than the Hausdorff distance.

  6. 3DSEM: A 3D microscopy dataset

    Ahmad P. Tafti

    2016-03-01

    Full Text Available The Scanning Electron Microscope (SEM as a 2D imaging instrument has been widely used in many scientific disciplines including biological, mechanical, and materials sciences to determine the surface attributes of microscopic objects. However the SEM micrographs still remain 2D images. To effectively measure and visualize the surface properties, we need to truly restore the 3D shape model from 2D SEM images. Having 3D surfaces would provide anatomic shape of micro-samples which allows for quantitative measurements and informative visualization of the specimens being investigated. The 3DSEM is a dataset for 3D microscopy vision which is freely available at [1] for any academic, educational, and research purposes. The dataset includes both 2D images and 3D reconstructed surfaces of several real microscopic samples.

  7. Negative refraction in (bi)-isotropic periodic arrangements of chiral SRRs

    Jelinek, L; Mesa, F; Baena, J D

    2007-01-01

    Bi-isotropic and isotropic negative refractive index (NRI) 3D metamaterials made from periodic arrangements of chiral split ring resonators (SRRs) are proposed and demonstrated. An analytical theory for the characterization and design of these metamaterials is provided and validated by careful full-wave electromagnetic simulations. The reported results are expected to pave the way to the design of practical 3D bi-isotropic and isotropic NRI metamaterials made from a single kind of inclusions.

  8. Single-shot 3D sensing with improved data density

    Willomitzer, Florian; Faber, Christian; Häusler, Gerd

    2014-01-01

    We introduce a novel concept for motion robust optical 3D-sensing. The concept is based on multi-line triangulation. The aim is to evaluate a large number of projected lines (high data density) in a large measurement volume with high precision. Implementing all those three attributes at the same time allows for the "perfect" real-time 3D movie camera (our long term goal). The key problem towards this goal is ambiguous line indexing: we will demonstrate that the necessary information for unique line indexing can be acquired by two synchronized cameras and a back projection scheme. The introduced concept preserves high lateral resolution, since the lines are as narrow as the sampling theorem allows, no spatial bandwidth is consumed by encoding of the lines. In principle, the distance uncertainty is only limited by shot noise and coherent noise. The concept can be also advantageously implemented with a hand-guided sensor and real-time registration, for a complete and dense 3D-acquisition of complicated scenes.

  9. Signal and Noise in 3D Environments

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Signal and Noise in 3D Environments Michael B. Porter...complicated 3D environments . I have also been doing a great deal of work in modeling the noise field (the ocean soundscape) due to various sources...we have emphasized the propagation of ‘signals’. We have become increasingly interested in modeling ‘ noise ’ which can illuminate the ocean environment

  10. 3D GEO: AN ALTERNATIVE APPROACH

    2016-01-01

    The expression GEO is mostly used to denote relation to the earth. However it should not be confined to what is related to the earth's surface, as other objects also need three dimensional representation and documentation, like cultural heritage objects. They include both tangible and intangible ones. In this paper the 3D data acquisition and 3D modelling of cultural heritage assets are briefly described and their significance is also highlighted. Moreover the organization of such information...

  11. 3D Computer Graphics and Nautical Charts

    Porathe, Thomas

    2011-01-01

    This paper gives an overview of an ongoing project using real-time 3D visualization to display nautical charts in a way used by 3D computer games. By displaying the map in an egocentric perspective the need to make cognitively demanding mental rotations are suggested to be removed, leading to faster decision-making and less errors. Experimental results support this hypothesis. Practical tests with limited success have been performed this year.

  12. 3D Printing Electrically Small Spherical Antennas

    Kim, Oleksiy S.

    2013-01-01

    3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations.......3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations....

  13. 3D Reconstruction of NMR Images

    Peter Izak

    2007-01-01

    Full Text Available This paper introduces experiment of 3D reconstruction NMR images scanned from magnetic resonance device. There are described methods which can be used for 3D reconstruction magnetic resonance images in biomedical application. The main idea is based on marching cubes algorithm. For this task was chosen sophistication method by program Vision Assistant, which is a part of program LabVIEW.

  14. Mayavi: Making 3D Data Visualization Reusable

    Varoquaux, Gaël; Ramachandran, Prabhu

    2008-01-01

    International audience; Mayavi is a general-purpose 3D scientific visualization package. We believe 3D data visualization is a difficult task and different users can benefit from an easy-to-use tool for this purpose. In this article, we focus on how Mayavi addresses the needs of different users with a common code-base, rather than describing the data visualization functionalities of Mayavi, or the visualization model exposed to the user.

  15. Relationship between the Rorschach Perceptual Thinking Index (PTI) and the Positive and Negative Syndrome Scale (PANSS) in psychotic patients: a validity study.

    Biagiarelli, Mario; Roma, Paolo; Comparelli, Anna; Andraos, Maria Paola; Di Pomponio, Ileana; Corigliano, Valentina; Curto, Martina; Masters, Grace Allison; Ferracuti, Stefano

    2015-02-28

    The aim of this study is to demonstrate the validity of the Rorschach Perceptual Thinking Index (PTI) in the assessment of reality testing in patients with psychosis. We evaluated the relationship between the PTI criteria and the Positive and Negative Syndrome Scale (PANSS) scores in 98 psychotic disorder affected patients. Thirty four were evaluated during the acute episode (AP) and 64 were chronically treated and stable (CP). The PANSS positive score resulted significantly higher in AP than in CP group, but no significant difference was found in the PTI score. The PTI positively correlated with the PANSS total score. The PTI1 and PTI2 criteria significantly correlated with the PANSS negative score, the PTI4 and PTI5 with the positive. The Rorschach variable X-% significantly correlated with the negative symptoms; the WSum6 with thought disorders; and the M- with delusions. PTI score, X-% and WSum6 predicted impaired judgment and insight. These results suggest that PTI is a valid instrument to assess impairment in reality testing, regardless of the patient׳s current psychiatric presentation. The presence of conceptual disorganization, delusions, lack of judgment and insight don׳t have effects on the PTI, supporting its strength as an assessment tool for psychotic disorders.

  16. Auto convergence for stereoscopic 3D cameras

    Zhang, Buyue; Kothandaraman, Sreenivas; Batur, Aziz Umit

    2012-03-01

    Viewing comfort is an important concern for 3-D capable consumer electronics such as 3-D cameras and TVs. Consumer generated content is typically viewed at a close distance which makes the vergence-accommodation conflict particularly pronounced, causing discomfort and eye fatigue. In this paper, we present a Stereo Auto Convergence (SAC) algorithm for consumer 3-D cameras that reduces the vergence-accommodation conflict on the 3-D display by adjusting the depth of the scene automatically. Our algorithm processes stereo video in realtime and shifts each stereo frame horizontally by an appropriate amount to converge on the chosen object in that frame. The algorithm starts by estimating disparities between the left and right image pairs using correlations of the vertical projections of the image data. The estimated disparities are then analyzed by the algorithm to select a point of convergence. The current and target disparities of the chosen convergence point determines how much horizontal shift is needed. A disparity safety check is then performed to determine whether or not the maximum and minimum disparity limits would be exceeded after auto convergence. If the limits would be exceeded, further adjustments are made to satisfy the safety limits. Finally, desired convergence is achieved by shifting the left and the right frames accordingly. Our algorithm runs real-time at 30 fps on a TI OMAP4 processor. It is tested using an OMAP4 embedded prototype stereo 3-D camera. It significantly improves 3-D viewing comfort.

  17. 3D steerable wavelets in practice.

    Chenouard, Nicolas; Unser, Michael

    2012-11-01

    We introduce a systematic and practical design for steerable wavelet frames in 3D. Our steerable wavelets are obtained by applying a 3D version of the generalized Riesz transform to a primary isotropic wavelet frame. The novel transform is self-reversible (tight frame) and its elementary constituents (Riesz wavelets) can be efficiently rotated in any 3D direction by forming appropriate linear combinations. Moreover, the basis functions at a given location can be linearly combined to design custom (and adaptive) steerable wavelets. The features of the proposed method are illustrated with the processing and analysis of 3D biomedical data. In particular, we show how those wavelets can be used to characterize directional patterns and to detect edges by means of a 3D monogenic analysis. We also propose a new inverse-problem formalism along with an optimization algorithm for reconstructing 3D images from a sparse set of wavelet-domain edges. The scheme results in high-quality image reconstructions which demonstrate the feature-reduction ability of the steerable wavelets as well as their potential for solving inverse problems.

  18. ASSESSING 3D PHOTOGRAMMETRY TECHNIQUES IN CRANIOMETRICS

    M. C. Moshobane

    2016-06-01

    Full Text Available Morphometrics (the measurement of morphological features has been revolutionized by the creation of new techniques to study how organismal shape co-varies with several factors such as ecophenotypy. Ecophenotypy refers to the divergence of phenotypes due to developmental changes induced by local environmental conditions, producing distinct ecophenotypes. None of the techniques hitherto utilized could explicitly address organismal shape in a complete biological form, i.e. three-dimensionally. This study investigates the use of the commercial software, Photomodeler Scanner® (PMSc® three-dimensional (3D modelling software to produce accurate and high-resolution 3D models. Henceforth, the modelling of Subantarctic fur seal (Arctocephalus tropicalis and Antarctic fur seal (Arctocephalus gazella skulls which could allow for 3D measurements. Using this method, sixteen accurate 3D skull models were produced and five metrics were determined. The 3D linear measurements were compared to measurements taken manually with a digital caliper. In addition, repetitive measurements were recorded by varying researchers to determine repeatability. To allow for comparison straight line measurements were taken with the software, assuming that close accord with all manually measured features would illustrate the model’s accurate replication of reality. Measurements were not significantly different demonstrating that realistic 3D skull models can be successfully produced to provide a consistent basis for craniometrics, with the additional benefit of allowing non-linear measurements if required.

  19. Assessing 3d Photogrammetry Techniques in Craniometrics

    Moshobane, M. C.; de Bruyn, P. J. N.; Bester, M. N.

    2016-06-01

    Morphometrics (the measurement of morphological features) has been revolutionized by the creation of new techniques to study how organismal shape co-varies with several factors such as ecophenotypy. Ecophenotypy refers to the divergence of phenotypes due to developmental changes induced by local environmental conditions, producing distinct ecophenotypes. None of the techniques hitherto utilized could explicitly address organismal shape in a complete biological form, i.e. three-dimensionally. This study investigates the use of the commercial software, Photomodeler Scanner® (PMSc®) three-dimensional (3D) modelling software to produce accurate and high-resolution 3D models. Henceforth, the modelling of Subantarctic fur seal (Arctocephalus tropicalis) and Antarctic fur seal (Arctocephalus gazella) skulls which could allow for 3D measurements. Using this method, sixteen accurate 3D skull models were produced and five metrics were determined. The 3D linear measurements were compared to measurements taken manually with a digital caliper. In addition, repetitive measurements were recorded by varying researchers to determine repeatability. To allow for comparison straight line measurements were taken with the software, assuming that close accord with all manually measured features would illustrate the model's accurate replication of reality. Measurements were not significantly different demonstrating that realistic 3D skull models can be successfully produced to provide a consistent basis for craniometrics, with the additional benefit of allowing non-linear measurements if required.

  20. Computer Graphics Teaching Support using X3D: Extensible 3D Graphics for Web Authors

    Brutzman, Don

    2008-01-01

    X3D is the ISO-standard scene-graph language for interactive 3D graphics on the Web. A new course is available for teaching the fundamentals of 3D graphics using Extensible 3D (X3D). Resources include a detailed textbook, an authoring tool, hundreds of example scenes, and detailed slidesets covering each chapter. The published book is commercially available, while all other course-module resources are provided online free under open-source licenses. Numerous other commercial and o...

  1. Recording stereoscopic 3D neurosurgery with a head-mounted 3D camera system.

    Lee, Brian; Chen, Brian R; Chen, Beverly B; Lu, James Y; Giannotta, Steven L

    2015-06-01

    Stereoscopic three-dimensional (3D) imaging can present more information to the viewer and further enhance the learning experience over traditional two-dimensional (2D) video. Most 3D surgical videos are recorded from the operating microscope and only feature the crux, or the most important part of the surgery, leaving out other crucial parts of surgery including the opening, approach, and closing of the surgical site. In addition, many other surgeries including complex spine, trauma, and intensive care unit procedures are also rarely recorded. We describe and share our experience with a commercially available head-mounted stereoscopic 3D camera system to obtain stereoscopic 3D recordings of these seldom recorded aspects of neurosurgery. The strengths and limitations of using the GoPro(®) 3D system as a head-mounted stereoscopic 3D camera system in the operating room are reviewed in detail. Over the past several years, we have recorded in stereoscopic 3D over 50 cranial and spinal surgeries and created a library for education purposes. We have found the head-mounted stereoscopic 3D camera system to be a valuable asset to supplement 3D footage from a 3D microscope. We expect that these comprehensive 3D surgical videos will become an important facet of resident education and ultimately lead to improved patient care.

  2. 3D-mallien muokkaus 3D-tulostamista varten CAD-ohjelmilla

    Lehtimäki, Jarmo

    2013-01-01

    Insinöörityössäni käsitellään 3D-mallien tulostamista ja erityisesti 3D-mallien mallintamista niin, että kappaleiden valmistaminen 3D-tulostimella onnistuisi mahdollisimman hyvin. Työ tehtiin Prohoc Oy:lle, joka sijaitsee Vaasassa. 3D-tulostuspalveluun tuli jatkuvasti 3D-malleja, joiden tulostuksessa oli ongelmia. Työssäni tutkin näiden ongelmien syntyä ja tein ohjeita eri 3D-mallinnusohjelmille, joiden tarkoituksena on auttaa tekemään helpommin tulostettavia 3D-malleja. Työhön kuului myös et...

  3. 3D-PRINTING OF BUILD OBJECTS

    SAVYTSKYI M. V.

    2016-03-01

    Full Text Available Raising of problem. Today, in all spheres of our life we can constate the permanent search for new, modern methods and technologies that meet the principles of sustainable development. New approaches need to be, on the one hand more effective in terms of conservation of exhaustible resources of our planet, have minimal impact on the environment and on the other hand to ensure a higher quality of the final product. Construction is not exception. One of the new promising technology is the technology of 3D -printing of individual structures and buildings in general. 3Dprinting - is the process of real object recreating on the model of 3D. Unlike conventional printer which prints information on a sheet of paper, 3D-printer allows you to display three-dimensional information, i.e. creates certain physical objects. Currently, 3D-printer finds its application in many areas of production: machine building elements, a variety of layouts, interior elements, various items. But due to the fact that this technology is fairly new, it requires the creation of detailed and accurate technologies, efficient equipment and materials, and development of common vocabulary and regulatory framework in this field. Research Aim. The analysis of existing methods of creating physical objects using 3D-printing and the improvement of technology and equipment for the printing of buildings and structures. Conclusion. 3D-printers building is a new generation of equipment for the construction of buildings, structures, and structural elements. A variety of building printing technics opens up wide range of opportunities in the construction industry. At this stage, printers design allows to create low-rise buildings of different configurations with different mortars. The scientific novelty of this work is to develop proposals to improve the thermal insulation properties of constructed 3D-printing objects and technological equipment. The list of key terms and notions of construction

  4. Augmented Reality vs Virtual Reality for 3D Object Manipulation.

    Krichenbauer, Max; Yamamoto, Goshiro; Taketomi, Takafumi; Sandor, Christian; Kato, Hirokazu

    2017-01-25

    Virtual Reality (VR) Head-Mounted Displays (HMDs) are on the verge of becoming commodity hardware available to the average user and feasible to use as a tool for 3D work. Some HMDs include front-facing cameras, enabling Augmented Reality (AR) functionality. Apart from avoiding collisions with the environment, interaction with virtual objects may also be affected by seeing the real environment. However, whether these effects are positive or negative has not yet been studied extensively. For most tasks it is unknown whether AR has any advantage over VR. In this work we present the results of a user study in which we compared user performance measured in task completion time on a 9 degrees of freedom object selection and transformation task performed either in AR or VR, both with a 3D input device and a mouse. Our results show faster task completion time in AR over VR. When using a 3D input device, a purely VR environment increased task completion time by 22.5% on average compared to AR (p < 0:024). Surprisingly, a similar effect occurred when using a mouse: users were about 17.3% slower in VR than in AR (p < 0:04). Mouse and 3D input device produced similar task completion times in each condition (AR or VR) respectively. We further found no differences in reported comfort.

  5. Visual Fixation for 3D Video Stabilization

    Hans-Peter Seidel

    2011-03-01

    Full Text Available Visual fixation is employed by humans and some animals to keep a specific 3D location at the center of the visual gaze. Inspired by this phenomenon in nature, this paper explores the idea to transfer this mechanism to the context of video stabilization for a hand-held video camera. A novel approach is presented that stabilizes a video by fixating on automatically extracted 3D target points. This approach is different from existing automatic solutions that stabilize the video by smoothing. To determine the 3D target points, the recorded scene is analyzed with a state-of-the-art structure-from-motion algorithm, which estimates camera motion and reconstructs a 3D point cloud of the static scene objects. Special algorithms are presented that search either virtual or real 3D target points, which back-project close to the center of the image for as long a period of time as possible. The stabilization algorithm then transforms the original images of the sequence so that these 3D target points are kept exactly in the center of the image, which, in case of real 3D target points, produces a perfectly stable result at the image center. Furthermore, different methods of additional user interaction are investigated. It is shown that the stabilization process can easily be controlled and that it can be combined with state-of-the-art tracking techniques in order to obtain a powerful image stabilization tool. The approach is evaluated on a variety of videos taken with a hand-held camera in natural scenes.

  6. PLOT3D Export Tool for Tecplot

    Alter, Stephen

    2010-01-01

    The PLOT3D export tool for Tecplot solves the problem of modified data being impossible to output for use by another computational science solver. The PLOT3D Exporter add-on enables the use of the most commonly available visualization tools to engineers for output of a standard format. The exportation of PLOT3D data from Tecplot has far reaching effects because it allows for grid and solution manipulation within a graphical user interface (GUI) that is easily customized with macro language-based and user-developed GUIs. The add-on also enables the use of Tecplot as an interpolation tool for solution conversion between different grids of different types. This one add-on enhances the functionality of Tecplot so significantly, it offers the ability to incorporate Tecplot into a general suite of tools for computational science applications as a 3D graphics engine for visualization of all data. Within the PLOT3D Export Add-on are several functions that enhance the operations and effectiveness of the add-on. Unlike Tecplot output functions, the PLOT3D Export Add-on enables the use of the zone selection dialog in Tecplot to choose which zones are to be written by offering three distinct options - output of active, inactive, or all zones (grid blocks). As the user modifies the zones to output with the zone selection dialog, the zones to be written are similarly updated. This enables the use of Tecplot to create multiple configurations of a geometry being analyzed. For example, if an aircraft is loaded with multiple deflections of flaps, by activating and deactivating different zones for a specific flap setting, new specific configurations of that aircraft can be easily generated by only writing out specific zones. Thus, if ten flap settings are loaded into Tecplot, the PLOT3D Export software can output ten different configurations, one for each flap setting.

  7. A microfluidic device for 2D to 3D and 3D to 3D cell navigation

    Shamloo, Amir; Amirifar, Leyla

    2016-01-01

    Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be obtained by diffusion. The device was designed by a numerical simulation so that the uniformity of the concentration gradients throughout the cell culture chamber was obtained. Adult neural cells were cultured within this device and they showed different branching and axonal navigation phenotypes within varying nerve growth factor (NGF) concentration profiles. Neural stem cells were also cultured within varying collagen matrix densities while exposed to NGF concentrations and they experienced 3D to 3D collective migration. By generating vascular endothelial growth factor concentration gradients, adult human dermal microvascular endothelial cells also migrated in a 2D to 3D manner and formed a stable lumen within a specific collagen matrix density. It was observed that a minimum absolute concentration and concentration gradient were required to stimulate migration of all types of the cells. This device has the advantage of changing multiple parameters simultaneously and is expected to have wide applicability in cell studies.

  8. 3D joystick for robotic arm control by individuals with high level spinal cord injuries.

    Jiang, Hairong; Wachs, Juan P; Pendergast, Martin; Duerstock, Bradley S

    2013-06-01

    An innovative 3D joystick was developed to enable quadriplegics due to spinal cord injuries (SCIs) to more independently and efficiently operate a robotic arm as an assistive device. The 3D joystick was compared to two different manual input modalities, a keyboard control and a traditional joystick, in performing experimental robotic arm tasks by both subjects without disabilities and those with upper extremity mobility impairments. Fitts's Law targeting and practical pouring tests were conducted to compare the performance and accuracy of the proposed 3D joystick. The Fitts's law measurements showed that the 3D joystick had the best index of performance (IP), though it required an equivalent number of operations and errors as the standard robotic arm joystick. The pouring task demonstrated that the 3D joystick took significantly less task completion time and was more accurate than keyboard control. The 3D joystick also showed a decreased learning curve to the other modalities.

  9. Heat Equation to 3D Image Segmentation

    Nikolay Sirakov

    2006-04-01

    Full Text Available This paper presents a new approach, capable of 3D image segmentation and objects' surface reconstruction. The main advantages of the method are: large capture range; quick segmentation of a 3D scene/image to regions; multiple 3D objects reconstruction. The method uses centripetal force and penalty function to segment the entire 3D scene/image to regions containing a single 3D object. Each region is inscribed in a convex, smooth closed surface, which defines a centripetal force. Then the surface is evolved by the geometric heat differential equation toward the force's direction. The penalty function is defined to stop evolvement of those surface patches, whose normal vectors encountered object's surface. On the base of the theoretical model Forward Difference Algorithm was developed and coded by Mathematica. Stability convergence condition, truncation error and calculation complexity of the algorithm are determined. The obtained results, advantages and disadvantages of the method are discussed at the end of this paper.

  10. Recent Progress on 3D Silicon Detectors

    Lange, Jörn

    2015-01-01

    3D silicon detectors, in which the electrodes penetrate the sensor bulk perpendicular to the surface, have recently undergone a rapid development from R\\&D over industrialisation to their first installation in a real high-energy-physics experiment. Since June 2015, the ATLAS Insertable B-Layer is taking first collision data with 3D pixel detectors. At the same time, preparations are advancing to install 3D pixel detectors in forward trackers such as the ATLAS Forward Proton detector or the CMS-TOTEM Proton Precision Spectrometer. For those experiments, the main requirements are a slim edge and the ability to cope with non-uniform irradiation. Both have been shown to be fulfilled by 3D pixel detectors. For the High-Luminosity LHC pixel upgrades of the major experiments, 3D detectors are promising candidates for the innermost pixel layers to cope with harsh radiation environments up to fluences of $2\\times10^{16}$\\,n$_{eq}$/cm$^2$ thanks to their excellent radiation hardness at low operational voltages and ...

  11. Full-color holographic 3D printer

    Takano, Masami; Shigeta, Hiroaki; Nishihara, Takashi; Yamaguchi, Masahiro; Takahashi, Susumu; Ohyama, Nagaaki; Kobayashi, Akihiko; Iwata, Fujio

    2003-05-01

    A holographic 3D printer is a system that produces a direct hologram with full-parallax information using the 3-dimensional data of a subject from a computer. In this paper, we present a proposal for the reproduction of full-color images with the holographic 3D printer. In order to realize the 3-dimensional color image, we selected the 3 laser wavelength colors of red (λ=633nm), green (λ=533nm), and blue (λ=442nm), and we built a one-step optical system using a projection system and a liquid crystal display. The 3-dimensional color image is obtained by synthesizing in a 2D array the multiple exposure with these 3 wavelengths made on each 250mm elementary hologram, and moving recording medium on a x-y stage. For the natural color reproduction in the holographic 3D printer, we take the approach of the digital processing technique based on the color management technology. The matching between the input and output colors is performed by investigating first, the relation between the gray level transmittance of the LCD and the diffraction efficiency of the hologram and second, by measuring the color displayed by the hologram to establish a correlation. In our first experimental results a non-linear functional relation for single and multiple exposure of the three components were found. These results are the first step in the realization of a natural color 3D image produced by the holographic color 3D printer.

  12. Magnetic Properties of 3D Printed Toroids

    Bollig, Lindsey; Otto, Austin; Hilpisch, Peter; Mowry, Greg; Nelson-Cheeseman, Brittany; Renewable Energy; Alternatives Lab (REAL) Team

    Transformers are ubiquitous in electronics today. Although toroidal geometries perform most efficiently, transformers are traditionally made with rectangular cross-sections due to the lower manufacturing costs. Additive manufacturing techniques (3D printing) can easily achieve toroidal geometries by building up a part through a series of 2D layers. To get strong magnetic properties in a 3D printed transformer, a composite filament is used containing Fe dispersed in a polymer matrix. How the resulting 3D printed toroid responds to a magnetic field depends on two structural factors of the printed 2D layers: fill factor (planar density) and fill pattern. In this work, we investigate how the fill factor and fill pattern affect the magnetic properties of 3D printed toroids. The magnetic properties of the printed toroids are measured by a custom circuit that produces a hysteresis loop for each toroid. Toroids with various fill factors and fill patterns are compared to determine how these two factors can affect the magnetic field the toroid can produce. These 3D printed toroids can be used for numerous applications in order to increase the efficiency of transformers by making it possible for manufacturers to make a toroidal geometry.

  13. 3D culture for cardiac cells.

    Zuppinger, Christian

    2016-07-01

    This review discusses historical milestones, recent developments and challenges in the area of 3D culture models with cardiovascular cell types. Expectations in this area have been raised in recent years, but more relevant in vitro research, more accurate drug testing results, reliable disease models and insights leading to bioartificial organs are expected from the transition to 3D cell culture. However, the construction of organ-like cardiac 3D models currently remains a difficult challenge. The heart consists of highly differentiated cells in an intricate arrangement.Furthermore, electrical “wiring”, a vascular system and multiple cell types act in concert to respond to the rapidly changing demands of the body. Although cardiovascular 3D culture models have been predominantly developed for regenerative medicine in the past, their use in drug screening and for disease models has become more popular recently. Many sophisticated 3D culture models are currently being developed in this dynamic area of life science. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  14. BEAMS3D Neutral Beam Injection Model

    McMillan, Matthew; Lazerson, Samuel A.

    2014-09-01

    With the advent of applied 3D fields in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous slowing down, and pitch angle scattering are modeled with the ADAS atomic physics database. Elementary benchmark calculations are presented to verify the collisionless particle orbits, NBI model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields. Notice: this manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  15. 3D bioprinting for engineering complex tissues.

    Mandrycky, Christian; Wang, Zongjie; Kim, Keekyoung; Kim, Deok-Ho

    2016-01-01

    Bioprinting is a 3D fabrication technology used to precisely dispense cell-laden biomaterials for the construction of complex 3D functional living tissues or artificial organs. While still in its early stages, bioprinting strategies have demonstrated their potential use in regenerative medicine to generate a variety of transplantable tissues, including skin, cartilage, and bone. However, current bioprinting approaches still have technical challenges in terms of high-resolution cell deposition, controlled cell distributions, vascularization, and innervation within complex 3D tissues. While no one-size-fits-all approach to bioprinting has emerged, it remains an on-demand, versatile fabrication technique that may address the growing organ shortage as well as provide a high-throughput method for cell patterning at the micrometer scale for broad biomedical engineering applications. In this review, we introduce the basic principles, materials, integration strategies and applications of bioprinting. We also discuss the recent developments, current challenges and future prospects of 3D bioprinting for engineering complex tissues. Combined with recent advances in human pluripotent stem cell technologies, 3D-bioprinted tissue models could serve as an enabling platform for high-throughput predictive drug screening and more effective regenerative therapies.

  16. A Hybrid 3D Indoor Space Model

    Jamali, Ali; Rahman, Alias Abdul; Boguslawski, Pawel

    2016-10-01

    GIS integrates spatial information and spatial analysis. An important example of such integration is for emergency response which requires route planning inside and outside of a building. Route planning requires detailed information related to indoor and outdoor environment. Indoor navigation network models including Geometric Network Model (GNM), Navigable Space Model, sub-division model and regular-grid model lack indoor data sources and abstraction methods. In this paper, a hybrid indoor space model is proposed. In the proposed method, 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. This research proposes a method of indoor space modeling for the buildings which do not have proper 2D/3D geometrical models or they lack semantic or topological information. The proposed hybrid model consists of topological, geometrical and semantical space.

  17. 3D Printed Multimaterial Microfluidic Valve

    Patrick, William G.; Sharma, Sunanda; Kong, David S.; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics. PMID:27525809

  18. Resist loss in 3D compact modeling

    Zheng, Xin; Huang, Jensheng; Chin, Fook; Kazarian, Aram; Kuo, Chun-Chieh

    2012-03-01

    An enhancement to compact modeling capability to include photoresist (PR) loss at different heights is developed and discussed. A hypsometric map representing 3-D resist profile was built by applying a first principle approximation to estimate the "energy loss" from the resist top to any other plane of interest as a proportional corresponding change in model threshold, which is analogous to a change in exposure dose. The result is compared and validated with 3D rigorous modeling as well as SEM images. Without increase in computation time, this compact model can construct 3D resist profiles capturing resist profile degradation at any vertical plane. Sidewall angle and standing wave information can also be granted from the vertical profile reconstruction. Since this method does not change any form of compact modeling, it can be integrated to validation and correction without any additional work.

  19. 3D integral imaging with optical processing

    Martínez-Corral, Manuel; Martínez-Cuenca, Raúl; Saavedra, Genaro; Javidi, Bahram

    2008-04-01

    Integral imaging (InI) systems are imaging devices that provide auto-stereoscopic images of 3D intensity objects. Since the birth of this new technology, InI systems have faced satisfactorily many of their initial drawbacks. Basically, two kind of procedures have been used: digital and optical procedures. The "3D Imaging and Display Group" at the University of Valencia, with the essential collaboration of Prof. Javidi, has centered its efforts in the 3D InI with optical processing. Among other achievements, our Group has proposed the annular amplitude modulation for enlargement of the depth of field, dynamic focusing for reduction of the facet-braiding effect, or the TRES and MATRES devices to enlarge the viewing angle.

  20. Structured light field 3D imaging.

    Cai, Zewei; Liu, Xiaoli; Peng, Xiang; Yin, Yongkai; Li, Ameng; Wu, Jiachen; Gao, Bruce Z

    2016-09-05

    In this paper, we propose a method by means of light field imaging under structured illumination to deal with high dynamic range 3D imaging. Fringe patterns are projected onto a scene and modulated by the scene depth then a structured light field is detected using light field recording devices. The structured light field contains information about ray direction and phase-encoded depth, via which the scene depth can be estimated from different directions. The multidirectional depth estimation can achieve high dynamic 3D imaging effectively. We analyzed and derived the phase-depth mapping in the structured light field and then proposed a flexible ray-based calibration approach to determine the independent mapping coefficients for each ray. Experimental results demonstrated the validity of the proposed method to perform high-quality 3D imaging for highly and lowly reflective surfaces.

  1. Multiplane 3D superresolution optical fluctuation imaging

    Geissbuehler, Stefan; Godinat, Aurélien; Bocchio, Noelia L; Dubikovskaya, Elena A; Lasser, Theo; Leutenegger, Marcel

    2013-01-01

    By switching fluorophores on and off in either a deterministic or a stochastic manner, superresolution microscopy has enabled the imaging of biological structures at resolutions well beyond the diffraction limit. Superresolution optical fluctuation imaging (SOFI) provides an elegant way of overcoming the diffraction limit in all three spatial dimensions by computing higher-order cumulants of image sequences of blinking fluorophores acquired with a conventional widefield microscope. So far, three-dimensional (3D) SOFI has only been demonstrated by sequential imaging of multiple depth positions. Here we introduce a versatile imaging scheme which allows for the simultaneous acquisition of multiple focal planes. Using 3D cross-cumulants, we show that the depth sampling can be increased. Consequently, the simultaneous acquisition of multiple focal planes reduces the acquisition time and hence the photo-bleaching of fluorescent markers. We demonstrate multiplane 3D SOFI by imaging the mitochondria network in fixed ...

  2. Solving a 3D structural puzzle

    Hoeck, Casper

    to spatial structural information using NMR spectroscopy. Experimental distances from nuclear Overhauser effect (NOE) correlations, and dihedral angles from 3JHH-coupling constants, were used to obtain 3D structural information for several natural and synthetic compounds. The stereochemistry of novel natural...... samples, which allows for RDCs to be extracted. The number of internuclear vectors for the correlation of RDCs to 3D structures is often limited for small molecules. Homonuclear RDCs were extracted by use of the homonuclear S3 HMBC that correlated well to alignment tensors from 1DCH-coupling constants......-calculation of RDCs from 3D structures was developed and tested, which copes better with multiple conformers than the commonly used SVD methodology. The approach thus resulted in good conformer populations for several small molecules, including multiple cinchona alkaloids....

  3. A Hybrid 3D Indoor Space Model

    A. Jamali

    2016-10-01

    Full Text Available GIS integrates spatial information and spatial analysis. An important example of such integration is for emergency response which requires route planning inside and outside of a building. Route planning requires detailed information related to indoor and outdoor environment. Indoor navigation network models including Geometric Network Model (GNM, Navigable Space Model, sub-division model and regular-grid model lack indoor data sources and abstraction methods. In this paper, a hybrid indoor space model is proposed. In the proposed method, 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. This research proposes a method of indoor space modeling for the buildings which do not have proper 2D/3D geometrical models or they lack semantic or topological information. The proposed hybrid model consists of topological, geometrical and semantical space.

  4. 3D nanopillar optical antenna photodetectors.

    Senanayake, Pradeep; Hung, Chung-Hong; Shapiro, Joshua; Scofield, Adam; Lin, Andrew; Williams, Benjamin S; Huffaker, Diana L

    2012-11-05

    We demonstrate 3D surface plasmon photoresponse in nanopillar arrays resulting in enhanced responsivity due to both Localized Surface Plasmon Resonances (LSPRs) and Surface Plasmon Polariton Bloch Waves (SPP-BWs). The LSPRs are excited due to a partial gold shell coating the nanopillar which acts as a 3D Nanopillar Optical Antenna (NOA) in focusing light into the nanopillar. Angular photoresponse measurements show that SPP-BWs can be spectrally coincident with LSPRs to result in a x2 enhancement in responsivity at 1180 nm. Full-wave Finite Difference Time Domain (FDTD) simulations substantiate both the spatial and spectral coupling of the SPP-BW / LSPR for enhanced absorption and the nature of the LSPR. Geometrical control of the 3D NOA and the self-aligned metal hole lattice allows the hybridization of both localized and propagating surface plasmon modes for enhanced absorption. Hybridized plasmonic modes opens up new avenues in optical antenna design in nanoscale photodetectors.

  5. Atomic resolution 3D electron diffraction microscopy

    Miao, Jianwei; Ohsuna, Tetsu; Terasaki, Osamu; O' Keefe, Michael A.

    2002-03-01

    Electron lens aberration is the major barrier limiting the resolution of electron microscopy. Here we describe a novel form of electron microscopy to overcome electron lens aberration. By combining coherent electron diffraction with the oversampling phasing method, we show that the 3D structure of a 2 x 2 x 2 unit cell nano-crystal (framework of LTA [Al12Si12O48]8) can be ab initio determined at the resolution of 1 Angstrom from a series of simulated noisy diffraction pattern projections with rotation angles ranging from -70 degrees to +70 degrees in 5 degrees increments along a single rotation axis. This form of microscopy (which we call 3D electron diffraction microscopy) does not require any reference waves, and can image the 3D structure of nanocrystals, as well as non-crystalline biological and materials science samples, with the resolution limited only by the quality of sample diffraction.

  6. Spectroradiometric characterization of autostereoscopic 3D displays

    Rubiño, Manuel; Salas, Carlos; Pozo, Antonio M.; Castro, J. J.; Pérez-Ocón, Francisco

    2013-11-01

    Spectroradiometric measurements have been made for the experimental characterization of the RGB channels of autostereoscopic 3D displays, giving results for different measurement angles with respect to the normal direction of the plane of the display. In the study, 2 different models of autostereoscopic 3D displays of different sizes and resolutions were used, making measurements with a spectroradiometer (model PR-670 SpectraScan of PhotoResearch). From the measurements made, goniometric results were recorded for luminance contrast, and the fundamental hypotheses have been evaluated for the characterization of the displays: independence of the RGB channels and their constancy. The results show that the display with the lower angle variability in the contrast-ratio value and constancy of the chromaticity coordinates nevertheless presented the greatest additivity deviations with the measurement angle. For both displays, when the parameters evaluated were taken into account, lower angle variability consistently resulted in the 2D mode than in the 3D mode.

  7. 3D-printed microfluidic devices.

    Amin, Reza; Knowlton, Stephanie; Hart, Alexander; Yenilmez, Bekir; Ghaderinezhad, Fariba; Katebifar, Sara; Messina, Michael; Khademhosseini, Ali; Tasoglu, Savas

    2016-06-20

    Microfluidics is a flourishing field, enabling a wide range of biochemical and clinical applications such as cancer screening, micro-physiological system engineering, high-throughput drug testing, and point-of-care diagnostics. However, fabrication of microfluidic devices is often complicated, time consuming, and requires expensive equipment and sophisticated cleanroom facilities. Three-dimensional (3D) printing presents a promising alternative to traditional techniques such as lithography and PDMS-glass bonding, not only by enabling rapid design iterations in the development stage, but also by reducing the costs associated with institutional infrastructure, equipment installation, maintenance, and physical space. With the recent advancements in 3D printing technologies, highly complex microfluidic devices can be fabricated via single-step, rapid, and cost-effective protocols, making microfluidics more accessible to users. In this review, we discuss a broad range of approaches for the application of 3D printing technology to fabrication of micro-scale lab-on-a-chip devices.

  8. Novel proposals in widefield 3D microscopy

    Sanchez-Ortiga, E.; Doblas, A.; Saavedra, G.; Martinez-Corral, M.

    2010-04-01

    Patterned illumination is a successful set of techniques in high resolution 3D microscopy. In particular, structured illumination microscopy is based on the projection of 1D periodic patterns onto the 3D sample under study. In this research we propose the implementation of a very simple method for the flexible production of 1D structured illumination. Specifically, we propose the insertion of a Fresnel biprism after a monochromatic point source. The biprism produces a pair of twin, fully coherent, virtual point sources. After imaging the virtual sources onto the objective aperture stop, the expected 1D periodic pattern is produced into the 3D sample. The main advantage of using the Fresnel biprism is that by simply varying the distance between the biprism and the point source one can tune the period of the fringes while keeping their contrast.

  9. 3D face analysis for demographic biometrics

    Tokola, Ryan A [ORNL; Mikkilineni, Aravind K [ORNL; Boehnen, Chris Bensing [ORNL

    2015-01-01

    Despite being increasingly easy to acquire, 3D data is rarely used for face-based biometrics applications beyond identification. Recent work in image-based demographic biometrics has enjoyed much success, but these approaches suffer from the well-known limitations of 2D representations, particularly variations in illumination, texture, and pose, as well as a fundamental inability to describe 3D shape. This paper shows that simple 3D shape features in a face-based coordinate system are capable of representing many biometric attributes without problem-specific models or specialized domain knowledge. The same feature vector achieves impressive results for problems as diverse as age estimation, gender classification, and race classification.

  10. 3D-skannauksen hyödyntäminen 3D-tulostuksessa

    Seppälä, Mikko

    2016-01-01

    Opinnäytetyössä tutustuttiin 3D-skannaus- ja 3D-tulostusteknologioihin. Työssä käytiin läpi erilaiset 3D-tulostusmenetelmät ja esiteltiin erilaisia 3D-skannausmenetelmiä. Lisäksi käytiin läpi 3D-skannaus- ja 3D-tulostusprosessi. Tavoitteena opinnäytetyössä oli tutkia, kuinka nämä kaksi teknologiaa toimivat yhdessä. Tarkoituksena oli käydä läpi prosessi, jossa fyysinen kappale skannattiin digitaaliseen muotoon, jonka jälkeen se voidaan tulostaa uudeksi fyysiseksi kappaleeksi. Lisäksi tarko...

  11. 3D scene reconstruction based on 3D laser point cloud combining UAV images

    Liu, Huiyun; Yan, Yangyang; Zhang, Xitong; Wu, Zhenzhen

    2016-03-01

    It is a big challenge capturing and modeling 3D information of the built environment. A number of techniques and technologies are now in use. These include GPS, and photogrammetric application and also remote sensing applications. The experiment uses multi-source data fusion technology for 3D scene reconstruction based on the principle of 3D laser scanning technology, which uses the laser point cloud data as the basis and Digital Ortho-photo Map as an auxiliary, uses 3DsMAX software as a basic tool for building three-dimensional scene reconstruction. The article includes data acquisition, data preprocessing, 3D scene construction. The results show that the 3D scene has better truthfulness, and the accuracy of the scene meet the need of 3D scene construction.

  12. X3d2pov. Traductor of X3D to POV-Ray

    Andrea Castellanos Mendoza

    2011-01-01

    Full Text Available High-quality and low-quality interactive graphics represent two different approaches to computer graphics’ 3D object representation. The former is mainly used to produce high computational cost movie animation. The latter is used for producing interactive scenes as part of virtual reality environments. Many file format specifications have appeared to satisfy underlying model needs; POV-ray (persistence of vision is an open source specification for rendering photorealistic images with the ray tracer algorithm and X3D (extendable 3D as the VRML successor standard for producing web virtual-reality environments written in XML. X3D2POV has been introduced to render high-quality images from an X3D scene specification; it is a grammar translator tool from X3D code to POV-ray code.

  13. Design and Implementation of 3D Model Database for General-Purpose 3D GIS

    XU Weiping; ZHU Qing; DU Zhiqiang; ZHANG Yeting

    2010-01-01

    To improve the reusability of three-dimensional (3D) models and simplify the complexity of natural scene reconstruction, this paper presents a 3D model database for universal 3D GIS. After the introduction of its extensible function architecture,accompanied by the conclusion of implicit spatial-temporal hierarchy of models in any reconstructed scene of 3D GIS for general purpose, several key issues are discussed in detail, such as the storage and management of 3D models and related retrieval and load method, as well as the interfaces for further on-demand development. Finally, the validity and feasibility of this model database are proved through its application in the development of 3D visualization system of railway operation.

  14. The GB/3D Type Fossils Online Web Portal

    McCormick, T.; Howe, M. P.

    2013-12-01

    fossils which can be used in education and public outreach. The audience for the web portal includes both professional paleontologists and the general public. The professional paleontologist can use the portal to discover the whereabouts of the type material for a taxon they are studying, and can use the pictures and 3d models to assess the completeness and preservation quality of the material. This may reduce or negate the need to send specimens (which are often fragile and always irreplaceable) to researchers through the post, or for researchers to make possibly long, expensive and environmentally damaging journeys to visit far-off collections. We hope that the pictures and 3d models will help to stimulate public interest in paleontology and natural history. The ability to digitally image and scan specimens in 3d enables institutions to have an archive record in case specimens are lost or destroyed by accident or warfare. Recent events in Cairo and Baghdad remind us that museum collections are vulnerable to civil and military strife.

  15. Body Language Advanced 3D Character Rigging

    Allen, Eric; Fong, Jared; Sidwell, Adam G

    2011-01-01

    Whether you're a professional Character TD or just like to create 3D characters, this detailed guide reveals the techniques you need to create sophisticated 3D character rigs that range from basic to breathtaking. Packed with step-by-step instructions and full-color illustrations, Body Language walks you through rigging techniques for all the body parts to help you create realistic and believable movements in every character you design. You'll learn advanced rigging concepts that involve MEL scripting and advanced deformation techniques and even how to set up a character pipeline.

  16. 3D Membrane Imaging and Porosity Visualization

    Sundaramoorthi, Ganesh

    2016-03-03

    Ultrafiltration asymmetric porous membranes were imaged by two microscopy methods, which allow 3D reconstruction: Focused Ion Beam and Serial Block Face Scanning Electron Microscopy. A new algorithm was proposed to evaluate porosity and average pore size in different layers orthogonal and parallel to the membrane surface. The 3D-reconstruction enabled additionally the visualization of pore interconnectivity in different parts of the membrane. The method was demonstrated for a block copolymer porous membrane and can be extended to other membranes with application in ultrafiltration, supports for forward osmosis, etc, offering a complete view of the transport paths in the membrane.

  17. Immersive 3D geovisualisation in higher education

    Philips, Andrea; Walz, Ariane; Bergner, Andreas; Graeff, Thomas; Heistermann, Maik; Kienzler, Sarah; Korup, Oliver; Lipp, Torsten; Schwanghart, Wolfgang; Zeilinger, Gerold

    2014-05-01

    Through geovisualisation we explore spatial data, we analyse it towards a specific questions, we synthesise results, and we present and communicate them to a specific audience (MacEachren & Kraak 1997). After centuries of paper maps, the means to represent and visualise our physical environment and its abstract qualities have changed dramatically since the 1990s - and accordingly the methods how to use geovisualisation in teaching. Whereas some people might still consider the traditional classroom as ideal setting for teaching and learning geographic relationships and its mapping, we used a 3D CAVE (computer-animated virtual environment) as environment for a problem-oriented learning project called "GEOSimulator". Focussing on this project, we empirically investigated, if such a technological advance like the CAVE make 3D visualisation, including 3D geovisualisation, not only an important tool for businesses (Abulrub et al. 2012) and for the public (Wissen et al. 2008), but also for educational purposes, for which it had hardly been used yet. The 3D CAVE is a three-sided visualisation platform, that allows for immersive and stereoscopic visualisation of observed and simulated spatial data. We examined the benefits of immersive 3D visualisation for geographic research and education and synthesized three fundamental technology-based visual aspects: First, the conception and comprehension of space and location does not need to be generated, but is instantaneously and intuitively present through stereoscopy. Second, optical immersion into virtual reality strengthens this spatial perception which is in particular important for complex 3D geometries. And third, a significant benefit is interactivity, which is enhanced through immersion and allows for multi-discursive and dynamic data exploration and knowledge transfer. Based on our problem-oriented learning project, which concentrates on a case study on flood risk management at the Wilde Weisseritz in Germany, a river

  18. The Local Universe: Galaxies in 3D

    Koribalski, B S

    2016-01-01

    Here I present results from individual galaxy studies and galaxy surveys in the Local Universe with particular emphasis on the spatially resolved properties of neutral hydrogen gas. The 3D nature of the data allows detailed studies of the galaxy morphology and kinematics, their relation to local and global star formation as well as galaxy environments. I use new 3D visualisation tools to present multi-wavelength data, aided by tilted-ring models of the warped galaxy disks. Many of the algorithms and tools currently under development are essential for the exploration of upcoming large survey data, but are also highly beneficial for the analysis of current galaxy surveys.

  19. Tekstiilit 3d-mallinnuksessa ja -animaatiossa

    Lahti, Toni

    2007-01-01

    Opinnäytetyön tarkoituksena oli tutkia tekstiilien 3D-mallinnusta ja animaatiota. Hahmon vaatetus on työn pääroolissa ja esimerkit liittyvät useimmiten vaatekappaleisiin. Vaatteet ovat mielenkiintoisimpia ja vaikeimmin toteutettavia tekstiilejä.; Alkuun täytyi tutustua tekstiilien luonteeseen. Tekstiilien erilaiset rakenteet vaikuttavat siihen kuinka tekstiili käyttäytyy. Tämän takia työssä esitellään kudotun ja neulotun tekstiilin valmistus ja niiden perusrakenteet.; 3D-mallinnettujen tekst...

  20. SURVEY AND ANALYSIS OF 3D STEGANOGRAPHY

    K .LAKSHMI

    2011-01-01

    Full Text Available Steganography is the science that involves communicating secret data in an appropriate multimedia carrier, eg., images, audio, and video files. The remarkable growth in computational power, increase in current security approaches and techniques are often used together to ensures security of the secret message. Steganography’s ultimate objectives, which are capacity and invisibility, are the main factors that separate it from related techniques. In this paper we focus on 3D models of steganography and conclude with some review analysis of high capacity data hiding and low-distortion 3D models.