WorldWideScience

Sample records for 3d negative index

  1. Nested structures approach for bulk 3D negative index materials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei

    2009-01-01

    We propose a generic conceptual idea to obtain bulk 3D negative index metamaterials, which exhibit isotropic properties. The design is based on the nested structures approach, when one element providing magnetic response is inserted into another design with negative dielectric constant. Both...

  2. Soft 3D acoustic metamaterial with negative index.

    Science.gov (United States)

    Brunet, Thomas; Merlin, Aurore; Mascaro, Benoit; Zimny, Kevin; Leng, Jacques; Poncelet, Olivier; Aristégui, Christophe; Mondain-Monval, Olivier

    2015-04-01

    Many efforts have been devoted to the design and achievement of negative-refractive-index metamaterials since the 2000s. One of the challenges at present is to extend that field beyond electromagnetism by realizing three-dimensional (3D) media with negative acoustic indices. We report a new class of locally resonant ultrasonic metafluids consisting of a concentrated suspension of macroporous microbeads engineered using soft-matter techniques. The propagation of Gaussian pulses within these random distributions of 'ultra-slow' Mie resonators is investigated through in situ ultrasonic experiments. The real part of the acoustic index is shown to be negative (up to almost - 1) over broad frequency bandwidths, depending on the volume fraction of the microbeads as predicted by multiple-scattering calculations. These soft 3D acoustic metamaterials open the way for key applications such as sub-wavelength imaging and transformation acoustics, which require the production of acoustic devices with negative or zero-valued indices. PMID:25502100

  3. Design and fabrication activity towards 3D negative refraction index materials in the IR region

    DEFF Research Database (Denmark)

    Malureanu, Radu; Andryieuski, Andrei; Lavrinenko, Andrei

    2009-01-01

    In this paper we present a new 3D isotropic structure that allows obtaining negative refraction index in the telecom wavelength as well as first fabrication efforts towards obtaining such structures.......In this paper we present a new 3D isotropic structure that allows obtaining negative refraction index in the telecom wavelength as well as first fabrication efforts towards obtaining such structures....

  4. Metallo-dielectric core-shell nanospheres as building blocks for optical 3D isotropic negative-index metamaterials

    CERN Document Server

    Paniagua-Domínguez, R; Marqués, R

    2011-01-01

    We propose a fully 3D, isotropic metamaterial with strong electric and magnetic response in the optical regime, based on metal-dielectric core-shell nanospheres. The magnetic response stems from the lowest, magnetic-dipole resonance of the dielectric nanoshell with high refractive index. The magnetic resonance can be tuned to coincide with the plasmon resonance of the metal core, responsible for the electric response. Since the response does not stem from coupling between structures, no particular periodic arrangement needs to be imposed.

  5. Factorising the 3D Topologically Twisted Index

    CERN Document Server

    Cabo-Bizet, Alejandro

    2016-01-01

    In this work, path integral representations of the 3D topologically twisted index were studied. First, the index can be "factorised" into a couple of "blocks". The "blocks" being the partition functions of a type A semi-topological twisting of 3D N = 2 SYM placed on $\\mathbb{S}_2\\times (0, \\pi)$ and $\\mathbb{S}_2 \\times (\\pi, 2 \\pi)$ respectively. Second, as the path integral of the aforementioned theory over $\\mathbb{S}_2$ times $\\mathbb{S}_1$ with a point excluded. In this way we recover the sum over fluxes from integration over the real path and without sacrificing positive definiteness of the bosonic part of the localising action. We also reproduce the integration over the complex contour by using the localising term with positive definite bosonic part.

  6. Double Negativity in 3D Space Coiling Metamaterials

    Science.gov (United States)

    Maurya, Santosh K.; Pandey, Abhishek; Shukla, Shobha; Saxena, Sumit

    2016-09-01

    Metamaterials displaying negative refractive index has remarkable potential to facilitate the manipulation of incident waves for wide variety of applications such as cloaking, superlensing and the like. Space-coiling approach is a recently explored technique to achieve extreme properties. The space coiling phenomena cause less energy absorption as compared to local resonating phenomena for obtaining extreme parameters. Here we show extreme properties in doubly negative 3D space coiling acoustic metamaterials. Frequency dispersive spectrum of extreme constitutive parameters has been calculated for 2D maze and 3D space coiling labyrinthine structure. This is in good agreement to the calculated acoustic band dispersion.

  7. Double Negativity in 3D Space Coiling Metamaterials.

    Science.gov (United States)

    Maurya, Santosh K; Pandey, Abhishek; Shukla, Shobha; Saxena, Sumit

    2016-09-21

    Metamaterials displaying negative refractive index has remarkable potential to facilitate the manipulation of incident waves for wide variety of applications such as cloaking, superlensing and the like. Space-coiling approach is a recently explored technique to achieve extreme properties. The space coiling phenomena cause less energy absorption as compared to local resonating phenomena for obtaining extreme parameters. Here we show extreme properties in doubly negative 3D space coiling acoustic metamaterials. Frequency dispersive spectrum of extreme constitutive parameters has been calculated for 2D maze and 3D space coiling labyrinthine structure. This is in good agreement to the calculated acoustic band dispersion.

  8. The 3D-index and normal surfaces

    CERN Document Server

    Garoufalidis, Stavros; Hoffman, Neil; Rubinstein, Hyam

    2016-01-01

    Dimofte, Gaiotto and Gukov introduced a powerful invariant, the 3D-index, associated to a suitable ideal triangulation of a 3-manifold with torus boundary components. The 3D-index is a collection of formal power series in $q^{1/2}$ with integer coefficients. Our goal is to explain how the 3D-index is a generating series of normal surfaces associated to the ideal triangulation. This shows a connection of the 3D-index with classical normal surface theory, and fulfills a dream of constructing topological invariants of 3-manifolds using normal surfaces.

  9. 3D Model Retrieval Based on Semantic and Shape Indexes

    CERN Document Server

    Kassimi, My Abdellah

    2011-01-01

    The size of 3D models used on the web or stored in databases is becoming increasingly high. Then, an efficient method that allows users to find similar 3D objects for a given 3D model query has become necessary. Keywords and the geometry of a 3D model cannot meet the needs of users' retrieval because they do not include the semantic information. In this paper, a new method has been proposed to 3D models retrieval using semantic concepts combined with shape indexes. To obtain these concepts, we use the machine learning methods to label 3D models by k-means algorithm in measures and shape indexes space. Moreover, semantic concepts have been organized and represented by ontology language OWL and spatial relationships are used to disambiguate among models of similar appearance. The SPARQL query language has been used to question the information displayed in this language and to compute the similarity between two 3D models. We interpret our results using the Princeton Shape Benchmark Database and the results show ...

  10. Structural Indexing for 3D Solid Digital Library

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In a very large digital library that support computer-aidedcollabora t ive design, an indexing process is crucial whenever the retrieval process has to select among many possible designs. In this paper, we address the problem of re trieving important design and engineering information by structural indexing. A design is represented by a model dependency graph, therefor, the indexing proble m is to determine whether a graph is present or absent in a database of model de pendency graphs. we present a novel graph indexing method using polynomial chara cterization of a model dependency graph and on hashing. Such an approach is able to create an high efficient 3D solid digital library for retrieving and extract ing solid geometric model and engineering information.

  11. Negative refractive index metamaterials

    Directory of Open Access Journals (Sweden)

    Willie J. Padilla

    2006-07-01

    Full Text Available Engineered materials composed of designed inclusions can exhibit exotic and unique electromagnetic properties not inherent in the individual constituent components. These artificially structured composites, known as metamaterials, have the potential to fill critical voids in the electromagnetic spectrum where material response is limited and enable the construction of novel devices. Recently, metamaterials that display negative refractive index – a property not found in any known naturally occurring material – have drawn significant scientific interest, underscoring the remarkable potential of metamaterials to facilitate new developments in electromagnetism.

  12. 3D refractive index measurements of special optical fibers

    Science.gov (United States)

    Yan, Cheng; Huang, Su-Juan; Miao, Zhuang; Chang, Zheng; Zeng, Jun-Zhang; Wang, Ting-Yun

    2016-09-01

    A digital holographic microscopic chromatography-based approach with considerably improved accuracy, simplified configuration and performance stability is proposed to measure three dimensional refractive index of special optical fibers. Based on the approach, a measurement system is established incorporating a modified Mach-Zehnder interferometer and lab-developed supporting software for data processing. In the system, a phase projection distribution of an optical fiber is utilized to obtain an optimal digital hologram recorded by a CCD, and then an angular spectrum theory-based algorithm is adopted to extract the phase distribution information of an object wave. The rotation of the optic fiber enables the experimental measurements of multi-angle phase information. Based on the filtered back projection algorithm, a 3D refraction index of the optical fiber is thus obtained at high accuracy. To evaluate the proposed approach, both PANDA fibers and special elliptical optical fiber are considered in the system. The results measured in PANDA fibers agree well with those measured using S14 Refractive Index Profiler, which is, however, not suitable for measuring the property of a special elliptical fiber.

  13. Negative refractive index with negative absorption

    CERN Document Server

    Wuestner, Sebastian; Tsakmakidis, Kosmas L; Hamm, Joachim M; Hess, Ortwin

    2010-01-01

    On the basis of a full-vectorial three-dimensional Maxwell-Bloch approach we investigate the possibility of using gain to overcome losses in a negative refractive index fishnet metamaterial. We show that appropriate placing of optically pumped laser dyes (gain) into the metamaterial structure results in a frequency band where the non-bianisotropic metamaterial becomes amplifying. In that region both the real and the imaginary part of the effective refractive index become simultaneously negative and the figure-of-merit diverges at two distinct frequency points.

  14. 3D Shape Indexing and Retrieval Using Characteristics level images

    Directory of Open Access Journals (Sweden)

    Abdelghni Lakehal

    2012-05-01

    Full Text Available In this paper, we propose an improved version of the descriptor that we proposed before. The descriptor is based on a set of binary images extracted from the 3D model called level images noted LI. The set LI is often bulky, why we introduced the X-means technique to reduce its size instead of K-means used in the old version. A 2D binary image descriptor was introduced to extract the vectors descriptors of the 3D model. For a comparative study of two versions of the descriptor, we used the National Taiwan University (NTU database of 3D object.

  15. Contact printed masks for 3D microfabrication in negative resists

    DEFF Research Database (Denmark)

    Häfliger, Daniel; Boisen, Anja

    2005-01-01

    We present a process based on contact printed shadow masks for three dimensional microfabrication of soft and sensitive overhanging membranes in SU-8. A metal mask is transferred onto unexposed SU-8 from an elastomer stamp made of polydimethylsiloxane. This mask is subsequently embedded into the ......We present a process based on contact printed shadow masks for three dimensional microfabrication of soft and sensitive overhanging membranes in SU-8. A metal mask is transferred onto unexposed SU-8 from an elastomer stamp made of polydimethylsiloxane. This mask is subsequently embedded...... into the negative resist to protect buried material from UV-exposure. Unlike direct evaporation-deposition of a mask onto the SU-8, printing avoids high stress and radiation, thus preventing resist wrinkling and prepolymerization. We demonstrate effective monolithic fabrication of soft, 4-μm thick and 100-μm long...

  16. Tomographic active optical trapping of arbitrarily shaped objects by exploiting 3-D refractive index maps

    CERN Document Server

    Kim, Kyoohyun

    2016-01-01

    Optical trapping can be used to manipulate the three-dimensional (3-D) motion of spherical particles based on the simple prediction of optical forces and the responding motion of samples. However, controlling the 3-D behaviour of non-spherical particles with arbitrary orientations is extremely challenging, due to experimental difficulties and the extensive computations. Here, we achieved the real-time optical control of arbitrarily shaped particles by combining the wavefront shaping of a trapping beam and measurements of the 3-D refractive index (RI) distribution of samples. Engineering the 3-D light field distribution of a trapping beam based on the measured 3-D RI map of samples generates a light mould, which can be used to manipulate colloidal and biological samples which have arbitrary orientations and/or shapes. The present method provides stable control of the orientation and assembly of arbitrarily shaped particles without knowing a priori information about the sample geometry. The proposed method can ...

  17. Step-index optical fibre drawn from 3D printed preforms

    CERN Document Server

    CooK, Kevin; Canning, John; Chartier, Loic; Athanaze, Tristan; Hossain, Md Arafat; Han, Chunyang; Comatti, Jade-Edouard; Luo, Yanhua; Peng, Gang-Ding

    2016-01-01

    Optical fibre is drawn from a dual-head 3D printer fabricated preform made of two optically transparent plastics with a high index core (NA ~ 0.25, V > 60). The asymmetry observed in the fibre arises from asymmetry in the 3D printing process. The highly multi-mode optical fibre has losses measured by cut-back as low as {\\alpha} ~ 0.44 dB/cm in the near IR.

  18. Label-free characterization of white blood cells by measuring 3D refractive index maps

    CERN Document Server

    Yoon, Jonghee; Park, HyunJoo; Choi, Chulhee; Jang, Seongsoo; Park, YongKeun

    2015-01-01

    The characterization of white blood cells (WBCs) is crucial for blood analyses and disease diagnoses. However, current standard techniques rely on cell labeling, a process which imposes significant limitations. Here we present three-dimensional (3D) optical measurements and the label-free characterization of mouse WBCs using optical diffraction tomography. 3D refractive index (RI) tomograms of individual WBCs are constructed from multiple two-dimensional quantitative phase images of samples illuminated at various angles of incidence. Measurements of the 3D RI tomogram of WBCs enable the separation of heterogeneous populations of WBCs using quantitative morphological and biochemical information. Time-lapse tomographic measurements also provide the 3D trajectory of micrometer-sized beads ingested by WBCs. These results demonstrate that optical diffraction tomography can be a useful and versatile tool for the study of WBCs.

  19. Energy flow in negative index materials

    Institute of Scientific and Technical Information of China (English)

    Lorenzo Bolla; Michele Midrio; Carlo G. Someda

    2004-01-01

    From Maxwell's equations, we compute the speed and the direction of propagation of active power refractedfrom air into a negative index material. We prove, both analytically and numerically that the power mayrefract positively even if phase fronts refract negatively. Considerations on the usage of ray optics inproblems involving negative index materials are drawn.

  20. Rotation symmetry axes and the quality index in a 3D octahedral parallel robot manipulator system

    OpenAIRE

    Tanev, T. K.; Rooney, J.

    2002-01-01

    The geometry of a 3D octahedral parallel robot manipulator system is specified in terms of two rigid octahedral structures (the fixed and moving platforms) and six actuation legs. The symmetry of the system is exploited to determine the behaviour of (a new version of) the quality index for various motions. The main results are presented graphically.

  1. Rapid object indexing using locality sensitive hashing and joint 3D-signature space estimation.

    Science.gov (United States)

    Matei, Bogdan; Shan, Ying; Sawhney, Harpreet S; Tan, Yi; Kumar, Rakesh; Huber, Daniel; Hebert, Martial

    2006-07-01

    We propose a new method for rapid 3D object indexing that combines feature-based methods with coarse alignment-based matching techniques. Our approach achieves a sublinear complexity on the number of models, maintaining at the same time a high degree of performance for real 3D sensed data that is acquired in largely uncontrolled settings. The key component of our method is to first index surface descriptors computed at salient locations from the scene into the whole model database using the Locality Sensitive Hashing (LSH), a probabilistic approximate nearest neighbor method. Progressively complex geometric constraints are subsequently enforced to further prune the initial candidates and eliminate false correspondences due to inaccuracies in the surface descriptors and the errors of the LSH algorithm. The indexed models are selected based on the MAP rule using posterior probability of the models estimated in the joint 3D-signature space. Experiments with real 3D data employing a large database of vehicles, most of them very similar in shape, containing 1,000,000 features from more than 365 models demonstrate a high degree of performance in the presence of occlusion and obscuration, unmodeled vehicle interiors and part articulations, with an average processing time between 50 and 100 seconds per query.

  2. A NEW TECHNIQUE FOR THE EXTRACTION OF CHARACTERISTIC VIEWS FOR 2D/3D INDEXATION

    Directory of Open Access Journals (Sweden)

    Mohamed El far,

    2010-07-01

    Full Text Available The tridimensional models are increasingly used in applications that require visualizing realistic objects (CAD/CAO, medical simulations, games, virtual reality, etc.. Therefore, the management of collecting 3D data of big size is becoming a significant field.For example, the indexation of these data allows a designer to easily retrieve the data that are visually and semantically similar to a featured query object. To that effect, two main approaches exist: searching by using a 3D model directly and searching by using a 2D view of the 3D query object. In our case/study, we are interested by this last approach and we emphasize on the extraction of haracteristic views of 3D models using the Datamining Algorithms “Apriori and extraction of association rules” from a description ofcharacteristic views based on the moments of Zernike. Moreover, the featured system relies on a Bayesian probabilistic approach. We present the obtained results in a set of 120 3D models of the rinceton benchmark. Then we compare them to results obtained using classical methods

  3. Octree-based indexing for 3D pointclouds within an Oracle Spatial DBMS

    Science.gov (United States)

    Schön, Bianca; Mosa, Abu Saleh Mohammad; Laefer, Debra F.; Bertolotto, Michela

    2013-02-01

    A large proportion of today's digital datasets have a spatial component. The effective storage and management of which poses particular challenges, especially with light detection and ranging (LiDAR), where datasets of even small geographic areas may contain several hundred million points. While in the last decade 2.5-dimensional data were prevalent, true 3-dimensional data are increasingly commonplace via LiDAR. They have gained particular popularity for urban applications including generation of city-scale maps, baseline data disaster management, and utility planning. Additionally, LiDAR is commonly used for flood plane identification, coastal-erosion tracking, and forest biomass mapping. Despite growing data availability, current spatial information systems do not provide suitable full support for the data's true 3D nature. Consequently, one system is needed to store the data and another for its processing, thereby necessitating format transformations. The work presented herein aims at a more cost-effective way for managing 3D LiDAR data that allows for storage and manipulation within a single system by enabling a new index within existing spatial database management technology. Implementation of an octree index for 3D LiDAR data atop Oracle Spatial 11g is presented, along with an evaluation showing up to an eight-fold improvement compared to the native Oracle R-tree index.

  4. Matching-index-of-refraction of transparent 3D printing models for flow visualization

    International Nuclear Information System (INIS)

    Matching-index-of-refraction (MIR) has been used for obtaining high-quality flow visualization data for the fundamental nuclear thermal-hydraulic researches. By this method, distortions of the optical measurements such as PIV and LDV have been successfully minimized using various combinations of the model materials and the working fluids. This study investigated a novel 3D printing technology for manufacturing models and an oil-based working fluid for matching the refractive indices. Transparent test samples were fabricated by various rapid prototyping methods including selective layer sintering (SLS), stereolithography (SLA), and vacuum casting. As a result, the SLA direct 3D printing was evaluated to be the most suitable for flow visualization considering manufacturability, transparency, and refractive index. In order to match the refractive indices of the 3D printing models, a working fluid was developed based on the mixture of herb essential oils, which exhibit high refractive index, high transparency, high density, low viscosity, low toxicity, and low price. The refractive index and viscosity of the working fluid range 1.453–1.555 and 2.37–6.94 cP, respectively. In order to validate the MIR method, a simple test using a twisted prism made by the SLA technique and the oil mixture (anise and light mineral oil) was conducted. The experimental results show that the MIR can be successfully achieved at the refractive index of 1.51, and the proposed MIR method is expected to be widely used for flow visualization studies and CFD validation for the nuclear thermal-hydraulic researches

  5. Matching-index-of-refraction of transparent 3D printing models for flow visualization

    Energy Technology Data Exchange (ETDEWEB)

    Song, Min Seop; Choi, Hae Yoon; Seong, Jee Hyun; Kim, Eung Soo, E-mail: kes7741@snu.ac.kr

    2015-04-01

    Matching-index-of-refraction (MIR) has been used for obtaining high-quality flow visualization data for the fundamental nuclear thermal-hydraulic researches. By this method, distortions of the optical measurements such as PIV and LDV have been successfully minimized using various combinations of the model materials and the working fluids. This study investigated a novel 3D printing technology for manufacturing models and an oil-based working fluid for matching the refractive indices. Transparent test samples were fabricated by various rapid prototyping methods including selective layer sintering (SLS), stereolithography (SLA), and vacuum casting. As a result, the SLA direct 3D printing was evaluated to be the most suitable for flow visualization considering manufacturability, transparency, and refractive index. In order to match the refractive indices of the 3D printing models, a working fluid was developed based on the mixture of herb essential oils, which exhibit high refractive index, high transparency, high density, low viscosity, low toxicity, and low price. The refractive index and viscosity of the working fluid range 1.453–1.555 and 2.37–6.94 cP, respectively. In order to validate the MIR method, a simple test using a twisted prism made by the SLA technique and the oil mixture (anise and light mineral oil) was conducted. The experimental results show that the MIR can be successfully achieved at the refractive index of 1.51, and the proposed MIR method is expected to be widely used for flow visualization studies and CFD validation for the nuclear thermal-hydraulic researches.

  6. Study of negative hydrogen ion beam optics using the 3D3V PIC model

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K., E-mail: kmiyamot@naruto-u.ac.jp [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima, 772-8502 (Japan); Nishioka, S.; Goto, I.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522 (Japan); Hanada, M.; Kojima, A. [Japan Atomic Energy Agency, 801-1,Mukoyama, Naka, 319-0913 (Japan)

    2015-04-08

    The mechanism of negative ion extraction under real conditions with the complex magnetic field is studied by using the 3D PIC simulation code. The extraction region of the negative ion source for the negative ion based neutral beam injection system in fusion reactors is modelled. It is shown that the E x B drift of electrons is caused by the magnetic filter and the electron suppression magnetic field, and the resultant asymmetry of the plasma meniscus. Furthermore, it is indicated that that the asymmetry of the plasma meniscus results in the asymmetry of negative ion beam profile including the beam halo. It could be demonstrated theoretically that the E x B drift is not significantly weakened by the elastic collisions of the electrons with neutral particles.

  7. Negative Index of Refraction in Optical Metamaterials

    CERN Document Server

    Shalaev, V M; Chettiar, U; Yuan, H K; Sarychev, A K; Drachev, V P; Kildishev, A V; Shalaev, Vladimir M.; Cai, Wenshan; Chettiar, Uday; Yuan, Hsiao-Kuan; Sarychev, Andrey K.; Drachev, Vladimir P.; Kildishev, Alexander V.

    2005-01-01

    An array of pairs of parallel gold nanorods is shown to have a negative refractive index in the optical range, close to a wavelength of 1 micron. Such behavior results from the plasmon resonance in the pairs of nanorods for both the electric and magnetic components of light. The metal rods act as inductive elements whereas the dielectric gaps perform as capacitive elements, forming an optical LC-circuit. Our experiments and simulations demonstrate the resonant behavior for an index of refraction. Above the resonance, the refractive index becomes negative. Paired metal nanorods open new opportunities for developing negative-refraction materials in optics.

  8. Prediction of positive and negative elastic dilatancy in 2D and 3D liquid foams

    Science.gov (United States)

    Rognon, P.; Molino, F.; Gay, C.

    2010-05-01

    Liquid foams have been observed to behave like immersed granular materials in at least one respect: deformation tends to raise their liquid contents, a phenomenon called dilatancy. While experimental observations evidenced the effect of a continuous deformation rate (dynamic dilatancy), we present a geometrical interpretation of both main contributions to elastic dilatancy (during elastic deformation) in foams squeezed between two solid plates (2D GG foams), which contain pseudo Plateau borders along the plates, and in 3D foams. The positive contribution is related to the increase in total Plateau border length while the negative contribution reflects the increase in total surface area of the foam. In 2D, we show that the negative dilatancy predicted by Weaire and Hutzler (Philos. Mag., 83 (2003) 2747) at very low liquid fractions is specific to ideal 2D foams (with no glass plates). In 3D, we predict that dilatancy should be positive at low liquid fractions (below 1%) and negative at moderate liquid fractions (above 4%).

  9. Application of 3-D Urbanization Index to Assess Impact of Urbanization on Air Temperature.

    Science.gov (United States)

    Wu, Chih-Da; Lung, Shih-Chun Candice

    2016-01-01

    The lack of appropriate methodologies and indicators to quantify three-dimensional (3-D) building constructions poses challenges to authorities and urban planners when formulating polices to reduce health risks due to heat stress. This study evaluated the applicability of an innovative three-dimensional Urbanization Index (3DUI), based on remote sensing database, with a 5 m spatial resolution of 3-D man-made constructions to representing intra-urban variability of air temperature by assessing correlation of 3DUI with air temperature from a 3-D perspective. The results showed robust high correlation coefficients, ranging from 0.83 to 0.85, obtained within the 1,000 m circular buffer around weather stations regardless of season, year, or spatial location. Our findings demonstrated not only the strength of 3DUI in representing intra-urban air-temperature variability, but also its great potential for heat stress assessment within cities. In view of the maximum correlation between building volumes within the 1,000 m circular buffer and ambient air temperature, urban planning should consider setting ceilings for man-made construction volume in each 2 × 2 km(2) residential community for thermal environment regulation, especially in Asian metropolis with high population density in city centers. PMID:27079537

  10. Application of 3-D Urbanization Index to Assess Impact of Urbanization on Air Temperature

    Science.gov (United States)

    Wu, Chih-Da; Lung, Shih-Chun Candice

    2016-04-01

    The lack of appropriate methodologies and indicators to quantify three-dimensional (3-D) building constructions poses challenges to authorities and urban planners when formulating polices to reduce health risks due to heat stress. This study evaluated the applicability of an innovative three-dimensional Urbanization Index (3DUI), based on remote sensing database, with a 5 m spatial resolution of 3-D man-made constructions to representing intra-urban variability of air temperature by assessing correlation of 3DUI with air temperature from a 3-D perspective. The results showed robust high correlation coefficients, ranging from 0.83 to 0.85, obtained within the 1,000 m circular buffer around weather stations regardless of season, year, or spatial location. Our findings demonstrated not only the strength of 3DUI in representing intra-urban air-temperature variability, but also its great potential for heat stress assessment within cities. In view of the maximum correlation between building volumes within the 1,000 m circular buffer and ambient air temperature, urban planning should consider setting ceilings for man-made construction volume in each 2 × 2 km2 residential community for thermal environment regulation, especially in Asian metropolis with high population density in city centers.

  11. Visible calculation of mining index based on stope 3D surveying and block modeling

    Institute of Scientific and Technical Information of China (English)

    Liu Xiaoming; Luo Zhouquan; Yang Biao; Lu Guang; Cao Shengxiang; Jiang Xinjian

    2012-01-01

    Aimed at the CMS laser scanning theory and characteristic,a combined actual situation of stope N4-5 of Fankou Lead-Zinc Mine and complementary monitoring of the stope were carried out by carefully choosing two measuring points.The cavity 3D visible model was created by large-scale mining industry software Surpac after changing the measured data.The stope mine design model,bottom structural model and backfill model of the south and north sides of the stope N4-5 were established according to the stope design data.On this basis,the stope block model was established,and then block attribute was estimated.The amount the ore remains,mullock,backfill and total mined ore were calculated through the solid model restrains.Finally,the stope mining dilution rate and loss rate reached 8.2%and 1.47%,respectively.The practice indicates that the mining index visible calculation method based on cavity 3D monitoring and stope block modeling can make up the deficiency of adopting the solid model to directly carry out the Boolean operation.The stope mining indexes obtained by this method are accurate and reliable,and can be used to guide the actual production management and estimate the mining quality.

  12. Scalability of the muscular action in a parametric 3D model of the index finger.

    Science.gov (United States)

    Sancho-Bru, Joaquín L; Vergara, Margarita; Rodríguez-Cervantes, Pablo-Jesús; Giurintano, David J; Pérez-González, Antonio

    2008-01-01

    A method for scaling the muscle action is proposed and used to achieve a 3D inverse dynamic model of the human finger with all its components scalable. This method is based on scaling the physiological cross-sectional area (PCSA) in a Hill muscle model. Different anthropometric parameters and maximal grip force data have been measured and their correlations have been analyzed and used for scaling the PCSA of each muscle. A linear relationship between the normalized PCSA and the product of the length and breadth of the hand has been finally used for scaling, with a slope of 0.01315 cm(-2), with the length and breadth of the hand expressed in centimeters. The parametric muscle model has been included in a parametric finger model previously developed by the authors, and it has been validated reproducing the results of an experiment in which subjects from different population groups exerted maximal voluntary forces with their index finger in a controlled posture.

  13. CCTV Coverage Index Based on Surveillance Resolution and Its Evaluation Using 3D Spatial Analysis

    Directory of Open Access Journals (Sweden)

    Kyoungah Choi

    2015-09-01

    Full Text Available We propose a novel approach to evaluating how effectively a closed circuit television (CCTV system can monitor a targeted area. With 3D models of the target area and the camera parameters of the CCTV system, the approach produces surveillance coverage index, which is newly defined in this study as a quantitative measure for surveillance performance. This index indicates the proportion of the space being monitored with a sufficient resolution to the entire space of the target area. It is determined by computing surveillance resolution at every position and orientation, which indicates how closely a specific object can be monitored with a CCTV system. We present full mathematical derivation for the resolution, which depends on the location and orientation of the object as well as the geometric model of a camera. With the proposed approach, we quantitatively evaluated the surveillance coverage of a CCTV system in an underground parking area. Our evaluation process provided various quantitative-analysis results, compelling us to examine the design of the CCTV system prior to its installation and understand the surveillance capability of an existing CCTV system.

  14. Origin of extracted negative ions by 3D PIC-MCC modeling. Surface vs Volume comparison

    International Nuclear Information System (INIS)

    The development of a high performance negative ion (NI) source constitutes a crucial step in the construction of Neutral Beam Injector (NBI) of the future fusion reactor ITER. NI source should deliver 40 A of H-(or D-), which is a technical and scientific challenge, and requires a deeper understanding of the underlying physics of the source and its magnetic filter. The present knowledge of the ion extraction mechanism from the negative ion source is limited and concerns magnetized plasma sheaths used to avoid electrons being co-extracted from the plasma together with the NI. Moreover, due to the asymmetry induced by the ITER crossed magnetic configuration used to filter the electrons, any realistic study of this problem must consider the three spatial dimensions. To address this problem, a 3D Particles-in-Cell electrostatic collisional code was developed, specifically designed for this system. Binary collisions between the particles are introduced using Monte Carlo Collision scheme. The complex orthogonal magnetic field that is applied to deflect electrons is also taken into account. This code, called ONIX (Orsay Negative Ion eXtraction), was used to investigate the plasma properties and the transport of the charged particles close to a typical extraction aperture [1]. This contribution focuses on the limits for the extracted NI current from both, plasma volume and aperture wall. Results of production, destruction, and transport of H- in the extraction region are presented. The extraction efficiency of H- from the volume is compared to the one of H- coming from the wall.

  15. Structures with negative index of refraction

    Science.gov (United States)

    Soukoulis, Costas M.; Zhou, Jiangfeng; Koschny, Thomas; Zhang, Lei; Tuttle, Gary

    2011-11-08

    The invention provides simplified negative index materials (NIMs) using wire-pair structures, 4-gap single ring split-ring resonator (SRR), fishnet structures and overleaf capacitor SRR. In the wire-pair arrangement, a pair of short parallel wires and continuous wires are used. In the 4-gap single-ring SRR, the SRRs are centered on the faces of a cubic unit cell combined with a continuous wire type resonator. Combining both elements creates a frequency band where the metamaterial is transparent with simultaneously negative .di-elect cons. and .mu.. In the fishnet structure, a metallic mesh on both sides of the dielectric spacer is used. The overleaf capacitor SRR changes the gap capacities to small plate capacitors by making the sections of the SRR ring overlap at the gaps separated by a thin dielectric film. This technique is applicable to conventional SRR gaps but it best deploys for the 4-gap single-ring structures.

  16. Towards negative index self-assembled metamaterials

    CERN Document Server

    Fruhnert, Martin; Lederer, Falk; Rockstuhl, Carsten

    2016-01-01

    We investigate the magnetic response of meta-atoms that can be fabricated by a bottom-up technique. Usually such meta-atoms consist of a dielectric core surrounded by a large number of solid metallic nanoparticles. In contrast to those meta-atoms considered thus far, we study here for the first time hollow metallic nanoparticles (shells). In doing so we solve one of the most pertinent problems of current self-assembled metamaterials, namely implementing meta-atoms with sufficiently large resonance strength and small absorption. Both conditions have to be met for deep sub-wavelength meta-atoms to obtain effectively homogeneous metamaterials which may be meaningfully described by negative material parameters. Eventually we show that by using these findings self-assembled negative index materials come in reach.

  17. Comparing 3D Gyrification Index and area-independent curvature-based measures in quantifying neonatal brain folding

    Science.gov (United States)

    Rodriguez-Carranza, Claudia E.; Mukherjee, P.; Vigneron, Daniel; Barkovich, James; Studholme, Colin

    2007-03-01

    In this work we compare 3D Gyrification Index and our recently proposed area-independent curvature-based surface measures [26] for the in-vivo quantification of brain surface folding in clinically acquired neonatal MR image data. A meaningful comparison of gyrification across brains of different sizes and their subregions will only be possible through the quantification of folding with measures that are independent of the area of the region of analysis. This work uses a 3D implementation of the classical Gyrification Index, a 2D measure that quantifies folding based on the ratio of the inner and outer contours of the brain and which has been used to study gyral patterns in adults with schizophrenia, among other conditions. The new surface curvature-based measures and the 3D Gyrification Index were calculated on twelve premature infants (age 28-37 weeks) from which surfaces of cerebrospinal fluid/gray matter (CSF/GM) interface and gray matter/white matter (GM/WM) interface were extracted. Experimental results show that our measures better quantify folding on the CSF/GM interface than Gyrification Index, and perform similarly on the GM/WM interface.

  18. Matching Index-of-Refraction for 3D Printing Model Using Mixture of Herb Essential Oil and Light Mineral Oil

    Energy Technology Data Exchange (ETDEWEB)

    Song, Min Seop; Choi, Hae Yoon; Kim, Eung Soo [Seoul National Univ., Seoul (Korea, Republic of)

    2013-10-15

    This study has extensively investigated the emerging 3-D printing technologies for use of MIR-based flow field visualization methods such as PIV and LDV. As a result, mixture of Herb essential oil and light mineral oil has been evaluated to be great working fluid due to its adequate properties. Using this combination, the RIs between 1.45 and 1.55 can be accurately matched, and most of the transparent materials are found to be ranged in here. Conclusively, the proposed MIR method are expected to provide large flexibility of model materials and geometries for laser based optical measurements. Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV) are the two major optical technologies used for flow field visualization in the latest fundamental thermal-hydraulics researches. Those techniques seriously require minimizing optical distortions for enabling high quality data. Therefore, matching index of refraction (MIR) between model materials and working fluids are an essential part of minimizing measurement uncertainty. This paper proposes to use 3-D Printing technology for manufacturing models for the MIR-based optical measurements. Because of the large flexibility in geometries and materials of the 3-D Printing, its application is obviously expected to provide tremendous advantages over the traditional MIR-based optical measurements. This study focuses on the 3-D printing models and investigates their optical properties, transparent printing techniques, and index-matching fluids.

  19. Matching Index-of-Refraction for 3D Printing Model Using Mixture of Herb Essential Oil and Light Mineral Oil

    International Nuclear Information System (INIS)

    This study has extensively investigated the emerging 3-D printing technologies for use of MIR-based flow field visualization methods such as PIV and LDV. As a result, mixture of Herb essential oil and light mineral oil has been evaluated to be great working fluid due to its adequate properties. Using this combination, the RIs between 1.45 and 1.55 can be accurately matched, and most of the transparent materials are found to be ranged in here. Conclusively, the proposed MIR method are expected to provide large flexibility of model materials and geometries for laser based optical measurements. Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV) are the two major optical technologies used for flow field visualization in the latest fundamental thermal-hydraulics researches. Those techniques seriously require minimizing optical distortions for enabling high quality data. Therefore, matching index of refraction (MIR) between model materials and working fluids are an essential part of minimizing measurement uncertainty. This paper proposes to use 3-D Printing technology for manufacturing models for the MIR-based optical measurements. Because of the large flexibility in geometries and materials of the 3-D Printing, its application is obviously expected to provide tremendous advantages over the traditional MIR-based optical measurements. This study focuses on the 3-D printing models and investigates their optical properties, transparent printing techniques, and index-matching fluids

  20. Scalability of the Muscular Action in a Parametric 3D Model of the Index Finger

    OpenAIRE

    Sancho Brú, Joaquín Luís; Vergara Monedero, Margarita; Rodríguez Cervantes, Pablo Jesús; Giurintano, David J.; Pérez González, Antonio

    2008-01-01

    A method for scaling the muscle action is proposed and used to achieve a 3D inverse dynamic model of the human finger with all its components scalable. This method is based on scaling the PCSA (physiological cross-sectional area) in a Hill muscle model. Different anthropometric parameters and maximal grip force data have been measured and their correlations have been analysed and used for scaling the PCSA of each muscle. A linear relationship between the normalised PCSA and the pr...

  1. Negative Refractive Index Metasurfaces for Enhanced Biosensing

    Directory of Open Access Journals (Sweden)

    Dragan Tanasković

    2010-12-01

    Full Text Available In this paper we review some metasurfaces with negative values of effective refractive index, as scaffolds for a new generation of surface plasmon polariton-based biological or chemical sensors. The electromagnetic properties of a metasurface may be tuned by its full immersion into analyte, or by the adsorption of a thin layer on it, both of which change its properties as a plasmonic guide. We consider various simple forms of plasmonic crystals suitable for this purpose. We start with the basic case of a freestanding, electromagnetically symmetrical plasmonic slab and analyze different ultrathin, multilayer structures, to finally consider some two-dimensional “wallpaper” geometries like split ring resonator arrays and fishnet structures. A part of the text is dedicated to the possibility of multifunctionalization where a metasurface structure is simultaneously utilized both for sensing and for selectivity enhancement. Finally we give an overview of surface-bound intrinsic electromagnetic noise phenomena that limits the ultimate performance of a metasurfaces sensor.

  2. LEAF AREA INDEX ESTIMATION IN VINEYARDS FROM UAV HYPERSPECTRAL DATA, 2D IMAGE MOSAICS AND 3D CANOPY SURFACE MODELS

    OpenAIRE

    I. Kalisperakis; Stentoumis, Ch.; L. Grammatikopoulos; K. Karantzalos

    2015-01-01

    The indirect estimation of leaf area index (LAI) in large spatial scales is crucial for several environmental and agricultural applications. To this end, in this paper, we compare and evaluate LAI estimation in vineyards from different UAV imaging datasets. In particular, canopy levels were estimated from i.e., (i) hyperspectral data, (ii) 2D RGB orthophotomosaics and (iii) 3D crop surface models. The computed canopy levels have been used to establish relationships with the measured ...

  3. 3-D photo-patterning of refractive index structures in photosensitive thin film materials

    Science.gov (United States)

    Potter, Jr., Barrett George; Potter, Kelly Simmons

    2002-01-01

    A method of making a three-dimensional refractive index structure in a photosensitive material using photo-patterning. The wavelengths at which a photosensitive material exhibits a change in refractive index upon exposure to optical radiation is first determined and then a portion of the surface of the photosensitive material is optically irradiated at a wavelength at which the photosensitive material exhibits a change in refractive index using a designed illumination system to produce a three-dimensional refractive index structure. The illumination system can be a micro-lenslet array, a macroscopic refractive lens array, or a binary optic phase mask. The method is a single-step, direct-write procedure to produce a designed refractive index structure.

  4. 观看3D 电视中正负视差图片的脑电信号研究%Research on EEG Signals of Watching Positive and Negative Parallax Images in 3 D TV

    Institute of Scientific and Technical Information of China (English)

    杨杰; 钱志余; 金帅; 范海豪; 张庆召; 瞿诗华; 杜垚

    2014-01-01

    采集记录志愿者在观看正负视差图片时的脑电信号,探究3D产品的相关参数。用自行搭建的测试系统,对10名志愿者用正负视差图片刺激,记录其脑电信号数据,采用独立成分分析方法( ICA)来处理其脑电信号,并用统计学的相关方法分析脑电与图片刺激之间的关系。结果表明,志愿者在分别观看正负视差的3D图片后,其脑电信号变化表出现明显不同,经分析发现,观看负视差图片时所有导联的Pα/Pβ比值比观看正视差图片时要小,且导联T4、FCz、C3、Pz具有统计学意义。观看负视差图片比正视差图片更能引起人体兴奋;Pα/Pβ的比值可以作为检测3D影像作品的一个参考指标。%To collect and record volunteers′EEG when they watch positive and negative parallax images, to explore 3D product-related parameters.10 volunteers were selected to conduct experiments with self-built test system ,accepting positive and negative par-allax images stimuli respectively, their EEG data were recorded.The EEG were processed with the method of independent component a-nalysis( ICA) , and with the method of statistical analysis to analyse the relationship between EEG and picture stimuli.The results showed that after watching positive and negative parallax 3D images, EEG of all volunteers′changed obviously, it was found that com-pared with watching positive parallax images,Pα/Pβratio of all leads was smaller while watching positive parallax images, and the leads T4, FCz, C3, Pz had statistically signification.Watching negative parallax images is easier lead to excitement than the parallax images;Pα/Pβratio can work as a reference index to evaluate 3D product.

  5. GPU-based rapid reconstruction of cellular 3D refractive index maps from tomographic phase microscopy (Conference Presentation)

    Science.gov (United States)

    Dardikman, Gili; Shaked, Natan T.

    2016-03-01

    We present highly parallel and efficient algorithms for real-time reconstruction of the quantitative three-dimensional (3-D) refractive-index maps of biological cells without labeling, as obtained from the interferometric projections acquired by tomographic phase microscopy (TPM). The new algorithms are implemented on the graphic processing unit (GPU) of the computer using CUDA programming environment. The reconstruction process includes two main parts. First, we used parallel complex wave-front reconstruction of the TPM-based interferometric projections acquired at various angles. The complex wave front reconstructions are done on the GPU in parallel, while minimizing the calculation time of the Fourier transforms and phase unwrapping needed. Next, we implemented on the GPU in parallel the 3-D refractive index map retrieval using the TPM filtered-back projection algorithm. The incorporation of algorithms that are inherently parallel with a programming environment such as Nvidia's CUDA makes it possible to obtain real-time processing rate, and enables high-throughput platform for label-free, 3-D cell visualization and diagnosis.

  6. Optical-CT 3D Dosimetry Using Fresnel Lenses with Minimal Refractive-Index Matching Fluid.

    Directory of Open Access Journals (Sweden)

    Steven Bache

    Full Text Available Telecentric optical computed tomography (optical-CT is a state-of-the-art method for visualizing and quantifying 3-dimensional dose distributions in radiochromic dosimeters. In this work a prototype telecentric system (DFOS-Duke Fresnel Optical-CT Scanner is evaluated which incorporates two substantial design changes: the use of Fresnel lenses (reducing lens costs from $10-30K t0 $1-3K and the use of a 'solid tank' (which reduces noise, and the volume of refractively matched fluid from 1 ltr to 10 cc. The efficacy of DFOS was evaluated by direct comparison against commissioned scanners in our lab. Measured dose distributions from all systems were compared against the predicted dose distributions from a commissioned treatment planning system (TPS. Three treatment plans were investigated including a simple four-field box treatment, a multiple small field delivery, and a complex IMRT treatment. Dosimeters were imaged within 2 h post irradiation, using consistent scanning techniques (360 projections acquired at 1 degree intervals, reconstruction at 2mm. DFOS efficacy was evaluated through inspection of dose line-profiles, and 2D and 3D dose and gamma maps. DFOS/TPS gamma pass rates with 3%/3mm dose difference/distance-to-agreement criteria ranged from 89.3% to 92.2%, compared to from 95.6% to 99.0% obtained with the commissioned system. The 3D gamma pass rate between the commissioned system and DFOS was 98.2%. The typical noise rates in DFOS reconstructions were up to 3%, compared to under 2% for the commissioned system. In conclusion, while the introduction of a solid tank proved advantageous with regards to cost and convenience, further work is required to improve the image quality and dose reconstruction accuracy of the new DFOS optical-CT system.

  7. Study of plasma meniscus formation and beam halo in negative ion source using the 3D3VPIC model

    International Nuclear Information System (INIS)

    In this paper, the effect of the electron confinement time on the plasma meniscus and the fraction of the beam halo is investigated by 3D3V-PIC (three dimension in real space and three dimension in velocity space) (Particle in Cell) simulation in the extraction region of negative ion source. The electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of diffusion across the magnetic field. Our 3D3V-PIC results support the previous result by 2D3V-PIC results i.e., it is confirmed that the penetration of the plasma meniscus becomes deep into the source plasma region when the effective confinement time is short

  8. Study of plasma meniscus formation and beam halo in negative ion source using the 3D3VPIC model

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, S.; Goto, I.; Hatayama, A. [Graduate school of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Fukano, A. [Tokyo Metropolitan Collage of Industrial Technology, Higashioi, Shinagawa, Tokyo 140-0011 (Japan)

    2015-04-08

    In this paper, the effect of the electron confinement time on the plasma meniscus and the fraction of the beam halo is investigated by 3D3V-PIC (three dimension in real space and three dimension in velocity space) (Particle in Cell) simulation in the extraction region of negative ion source. The electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of diffusion across the magnetic field. Our 3D3V-PIC results support the previous result by 2D3V-PIC results i.e., it is confirmed that the penetration of the plasma meniscus becomes deep into the source plasma region when the effective confinement time is short.

  9. 3-D mapping with ellipsometrically determined physical thickness/refractive index of spin coated sol–gel silica layer

    Indian Academy of Sciences (India)

    S Das; P Pal; S Roy; S Chakraboarty; P K Biswas

    2002-11-01

    Precursor sol for sol–gel silica layer was prepared from the starting material, tetraethylorthosilicate (TEOS). The sol was deposited onto borosilicate crown (BSC) glass by the spinning technique (rpm 2500). The gel layer thus formed transformed to oxide layer on heating to 450°C for ∼ 30 min. The physical thicknessand the refractive index of the layer were measured ellipsometrically (Rudolph Auto EL II) at 632.8 nm. About 10 × 10 mm surface area of the silica layer was chosen for evaluation of thickness and refractive index values at different points (121 nos.) with 1 mm gap between two points. Those data were utilized in the Autolisp programme for 3-D mapping. Radial distribution of the evaluated values was also displayed.

  10. Radiation Pressure and Photon Momentum in Negative-Index Media

    CERN Document Server

    Mansuripur, Masud

    2013-01-01

    Radiation pressure and photon momentum in negative-index media are no different than their counterparts in ordinary (positive-index) materials. This is because the parameters responsible for these properties are the admittance, sqrt(epsilon/mu), and the group refractive index n_g of the material (both positive entities), and not the phase refractive index, n=sqrt(epsilon*mu), which is negative in negative-index media. One approach to investigating the exchange of momentum between electromagnetic waves and material media is via the Doppler shift phenomenon. In this paper we use the Doppler shift to arrive at an expression for the radiation pressure on a mirror submerged in a negative-index medium. In preparation for the analysis, we investigate the phenomenon of Doppler shift in various settings, and show the conditions under which a so-called "inverse" Doppler shift could occur. We also argue that a recent observation of the inverse Doppler shift upon reflection from a negative-index medium cannot be correct,...

  11. Direct observation of negative-index microwave surface waves.

    Science.gov (United States)

    Dockrey, J A; Horsley, S A R; Hooper, I R; Sambles, J R; Hibbins, A P

    2016-01-01

    Waves propagating in a negative-index material have wave-front propagation (wavevector, k) opposite in direction to that of energy flow (Poynting vector, S). Here we present an experimental realisation at microwave frequencies of an analogous surface wave phenomenon whereby a metasurface supports a surface mode that has two possible wavevector eigenstates within a narrow band of frequencies: one that supports surface waves with positive mode index, and another that supports surface waves with negative mode index. Phase sensitive measurements of the near-field of surface waves across the metasurface show the contrasting spatial evolution of the two eigenstates, providing a unique opportunity to directly observe the negative-index phenomenon. PMID:26903284

  12. Negative Refractive Index in a Four-Level Atomic System

    Institute of Scientific and Technical Information of China (English)

    ZhANG Hong-Jun; GONG Shang-Qing; NIU Yue-Ping; LI Ru Xin; XU Zhi-Zhan

    2006-01-01

    @@ We propose a scheme for realizing negative refractive index in a four-level atomic system. It is shown that such a system can simultaneously exhibit negative permittivity and negative permeability in an optical frequency range.Furthermore, by analysing the dispersion property of the left-handed material, we find that the probe beam can be controlled from superluminal to subluminal or vice versa via choosing appropriate parameters.

  13. Bulk isotropic negative-index material design for infrared

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei

    Responding to the strong call for isotropic bulk negative index material we propose a Split Cube in Car-cass design. It shows negative refractive index -1.5, figure-of-merit 2 and transmittivity 30% for one layer at the telecommunication wavelength 1.6 μm. Effective parameters converge fast with a...... number of layers. The effective parameters retrieval method based on the wave propagation simulation is proposed and compared with standard procedure. It is shown that standard restoration method while used for the S-parameters spectra calculations with pulse sources excitation can contain an error...

  14. Negative-index metamaterials: looking into the unit cell

    NARCIS (Netherlands)

    Burresi, M.; Diessel, D.; van Oosten, D.; Linden, Stefan; Wegener, M.; Kuipers, L.

    2010-01-01

    With their potential for spectacular applications, like superlensing and cloaking, metamaterials are a powerful class of nanostructured materials. All these applications rely on the metamaterials acting as a homogeneous material. We investigate a negative index metamaterial with a phase-sensitive ne

  15. On the Fourier coefficients of negative index meromorphic Jacobi forms

    CERN Document Server

    Bringmann, Kathrin; Zwegers, Sander

    2015-01-01

    In this paper, we consider the Fourier coefficients of meromorphic Jacobi forms of negative index. This extends recent work of Creutzig and the first two authors for the special case of Kac-Wakimoto characters which occur naturally in Lie theory, and yields, as easy corollaries, many important PDEs arising in combinatorics such as the famous rank-crank PDE of Atkin and Garvan. Moreover, we discuss the relation of our results to partial theta functions and quantum modular forms as introducted by Zagier, which together with previous work on positive index meromorphic Jacobi forms illuminates the general structure of the Fourier coefficients of meromorphic Jacobi forms.

  16. Optical Properties of Synthetic Cannabinoids with Negative Indexes

    CERN Document Server

    Shen, Yao

    2016-01-01

    Some kinds of psychoactive drugs have the structures which are called split-ring resonators (SRRs). SRRs might result in negative permittivity and permeability simultaneously in electromagnetic field. Simultaneous negative indexes can lead to the famous phenomenon of negative refraction. This optical property makes it possible to distinguish synthetic cannabinoids from other abusive psychoactive drugs in the UV-vis region. This optical method is non-damaged and superior in forensic science. In this paper, we use tight-binding model calculating the permittivity and permeability of the main ingredients of synthetic cannabinoids. At the same time, we give two more results of zolpidem and caffeine. Further we discuss the negative refraction of the category of zepam qualitatively.

  17. Numerical simulations of negative-index refraction in a lamellar composite with alternating single negative layers

    Institute of Scientific and Technical Information of China (English)

    Dong Zheng-Gao; Zhu Shi-Ning; Liu Hui

    2006-01-01

    Negative-index refraction is demonstrated in a lamellar composite with epsilon-negative (ENG) and mu-negative (MNG) materials stacked alternatively. Based on the effective medium approximation, simultaneously negative effective permittivity and permeability of such a lamellar composite are obtained theoretically and further proven by full-wave simulations. Consequently, the renowned left-handed metamaterial comprising split ring resonators and wires is interpreted as an analogy of such ENG-MNG layers. In addition, beyond the effective medium approximation, the propagating field squeezed near the ENG/MNG interface is demonstrated to be left-handed surface waves with backward phase velocity.

  18. KPG Index versus OPG Measurements: A Comparison between 3D and 2D Methods in Predicting Treatment Duration and Difficulty Level for Patients with Impacted Maxillary Canines

    Directory of Open Access Journals (Sweden)

    Domenico Dalessandri

    2014-01-01

    Full Text Available Aim. The aim of this study was to test the agreement between orthopantomography (OPG based 2D measurements and the KPG index, a new index based on 3D Cone Beam Computed Tomography (CBCT images, in predicting orthodontic treatment duration and difficulty level of impacted maxillary canines. Materials and Methods. OPG and CBCT images of 105 impacted canines were independently scored by three orthodontists at t0 and after 1 month (t1, using the KPG index and the following 2D methods: distance from cusp tip and occlusal plane, cusp tip position in relation to the lateral incisor, and canine inclination. Pearson’s coefficients were used to evaluate the degree of agreement and the χ2 with Yates correction test was used to assess the independence between them. Results. Inter- and intrarater reliability were higher with KPG compared to 2D methods. Pearson’s coefficients showed a statistically significant association between all the indexes, while the χ2 with Yates correction test resulted in a statistically significant rejection of independency only for one 2D index. Conclusions. 2D indexes for predicting impacted maxillary canines treatment duration and difficulty sometimes are discordant; a 3D index like the KPG index could be useful in solving these conflicts.

  19. Intensity modulated radiotherapy and 3D conformal radiotherapy for whole breast irradiation: a comparative dosimetric study and introduction of a novel qualitative index for plan evaluation, the normal tissue index

    OpenAIRE

    Yim, Jackie; Suttie, Clare; Bromley, Regina; Morgia, Marita; Lamoury, Gillian

    2015-01-01

    Introduction We report on a retrospective dosimetric study, comparing 3D conformal radiotherapy (3DCRT) and hybrid intensity modulated radiotherapy (hIMRT). We evaluated plans based on their planning target volume coverage, dose homogeneity, dose to organs at risk (OARs) and exposure of normal tissue to radiation. The Homogeneity Index (HI) was used to assess the dose homogeneity in the target region, and we describe a new index, the normal tissue index (NTI), to assess the dose in the normal...

  20. Numerical Study of Negative-Refractive Index Ferrite Waveguide

    Directory of Open Access Journals (Sweden)

    Mohammed O. Sid-Ahmed

    2012-03-01

    Full Text Available Consider a magnetized ferrite-wire waveguide structure situated between two half free spaces. Ferrites to provide negative permeability and wire array to provide negative permittivity. The structure form left-handed material (LHM with negative refractive index. The transmission of electromagnetic waves through the structure is investigated theoretically. Maxwell's equations are used to determine the electric and magnetic fields of the incident waves at each layer. Snell's law is applied and the boundary conditions are imposed at each layer interface to calculate the reflected and transmitted powers of the structure. Numerical results are illustrated to show the effect of frequency, applied magnetic fields, angle of incidence and LHM thickness on the mentioned powers. The analyzed results show that the transmission is very good when the permeability and permittivity of the structure are both simultaneously negative. The frequency band corresponding to this transmission can be tuned by changing the applied magnetic fields. The obtained results are in agreement with the law of conservation of energy. Consider a magnetized ferrite-wire waveguide structure situated between two half free spaces. Ferrites to provide negative permeability and wire array to provide negative permittivity. The structure form left-handed material (LHM with negative refractive index. The transmission of electromagnetic waves through the structure is investigated theoretically. Maxwell's equations are used to determine the electric and magnetic fields of the incident waves at each layer. Snell's law is applied and the boundary conditions are imposed at each layer interface to calculate the reflected and transmitted powers of the structure. Numerical results are illustrated to show the effect of frequency, applied magnetic fields, angle of incidence and LHM thickness on the mentioned powers. The analyzed results show that the transmission is very good when the permeability and

  1. Defect in photonic crystal with negative index material

    Institute of Scientific and Technical Information of China (English)

    TANG Kang-song; XIANG Yuan-jiang; WEN Shuang-chun

    2006-01-01

    The transmission property of the photonic crystal containing negative index material is analyzed by means of transfer matrix method.It is demonstrated that a defect mode appears in the conventional Bragg gap and the defect mode is sensitive to the position of the defect cell.For the first time to our knowledge we introduce two defects into such a structure and discuss the dependence of the transmission on the interval of the two defect cells.It is found that a wide degenerate defect mode appears in the Bragg gap,and this degenerate defect mode splits into two different defect modes when the two defect cells become closer.

  2. Negative refractive index induced by percolation in disordered metamaterials

    CERN Document Server

    Slovick, Brian A

    2016-01-01

    An effective medium model is developed for disordered metamaterials containing a spatially random distribution of dielectric spheres. Similar to effective medium models for ordered metamaterials, this model predicts resonances in the effective permeability and permittivity arising from electric- and magnetic-dipole Mie resonances in the spheres. In addition, the model predicts a redshift of the electric resonance with increasing particle loading. Interestingly, when the particle loading exceeds the percolation threshold of 33\\%, the model predicts that the electric resonance overlaps with the magnetic resonance, resulting in a negative refractive index.

  3. Science Letters: Lattice type transmission line of negative refractive index

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this letter, we introduce a novel passive transmission line of negative refractive index (i.e., left-handedness) based on identical symmetrical lattice type structures [thus called "lattice type transmission line" (LT-TL)]. The dispersion characteristic and the transmission response of the proposed LT-TL are analyzed. While all the other left-handed passive transmission lines are of high pass, the present passive left-handed transmission line is of low pass. Compared with a conventional transmission line, the LT-TL has a phase shift of 180° in the entire wide pass-band.

  4. Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials.

    Science.gov (United States)

    Kaina, Nadège; Lemoult, Fabrice; Fink, Mathias; Lerosey, Geoffroy

    2015-09-01

    Metamaterials, man-made composite media structured on a scale much smaller than a wavelength, offer surprising possibilities for engineering the propagation of waves. One of the most interesting of these is the ability to achieve superlensing--that is, to focus or image beyond the diffraction limit. This originates from the left-handed behavior--the property of refracting waves negatively--that is typical of negative index metamaterials. Yet reaching this goal requires the design of 'double negative' metamaterials, which act simultaneously on the permittivity and permeability in electromagnetics, or on the density and compressibility in acoustics; this generally implies the use of two different kinds of building blocks or specific particles presenting multiple overlapping resonances. Such a requirement limits the applicability of double negative metamaterials, and has, for example, hampered any demonstration of subwavelength focusing using left-handed acoustic metamaterials. Here we show that these strict conditions can be largely relaxed by relying on media that consist of only one type of single resonant unit cell. Specifically, we show with a simple yet general semi-analytical model that judiciously breaking the symmetry of a single negative metamaterial is sufficient to turn it into a double negative one. We then demonstrate that this occurs solely because of multiple scattering of waves off the metamaterial resonant elements, a phenomenon often disregarded in these media owing to their subwavelength patterning. We apply our approach to acoustics and verify through numerical simulations that it allows the realization of negative index acoustic metamaterials based on Helmholtz resonators only. Finally, we demonstrate the operation of a negative index acoustic superlens, achieving subwavelength focusing and imaging with spot width and resolution 7 and 3.5 times better than the diffraction limit, respectively. Our findings have profound implications for the

  5. Large $N$ matrix models for 3d ${\\cal N}=2$ theories: twisted index, free energy and black holes

    CERN Document Server

    Hosseini, Seyed Morteza

    2016-01-01

    We provide general formulae for the topologically twisted index of a general three-dimensional ${\\cal N}\\geq 2$ gauge theory with an M-theory or massive type IIA dual in the large $N$ limit. The index is defined as the supersymmetric path integral of the theory on $S^2\\times S^1$ in the presence of background magnetic fluxes for the R- and global symmetries and it is conjectured to reproduce the entropy of magnetically charged static BPS AdS$_4$ black holes. For a class of theories with an M-theory dual, we show that the logarithm of the index scales indeed as $N^{3/2}$ (and $N^{5/3}$ in the massive type IIA case). We find an intriguing relation with the (apparently unrelated) large $N$ limit of the partition function on $S^3$. We also provide a universal formula for extracting the index from the large $N$ partition function on $S^3$ and its derivatives and point out its analogy with the attractor mechanism for AdS black holes.

  6. Large N matrix models for 3d {N} = 2 theories: twisted index, free energy and black holes

    Science.gov (United States)

    Hosseini, Seyed Morteza; Zaffaroni, Alberto

    2016-08-01

    We provide general formulae for the topologically twisted index of a general three-dimensional {N} ≥ 2 gauge theory with an M-theory or massive type IIA dual in the large N limit. The index is defined as the supersymmetric path integral of the theory on S 2 × S 1 in the presence of background magnetic fluxes for the R- and global symmetries and it is conjectured to reproduce the entropy of magnetically charged static BPS AdS4 black holes. For a class of theories with an M-theory dual, we show that the logarithm of the index scales indeed as N 3/2 (and N 5/3 in the massive type IIA case). We find an intriguing relation with the (apparently unrelated) large N limit of the partition function on S 3. We also provide a universal formula for extracting the index from the large N partition function on S 3 and its derivatives and point out its analogy with the attractor mechanism for AdS black holes.

  7. Negative Index Materials and Plasmonic Antennas Based Nanocouplers

    DEFF Research Database (Denmark)

    Andryieuski, Andrei

    negative index material. The wave propagation retrieval method for metamaterials with linear and circular eigenpolarizations and the field averaging of the restored Bloch mode method are proposed for metamaterials effective properties characterization. The methods are based on observation of the wave...... are developed: dipole antennas outside symmetric and asymmetric waveguide, antennas gratings, antennas inside waveguide and battle axe nanocoupler. It is shown that the usage of the side and top reflectors generally increases the power captured by the nanocoupler from the incident wave. The optimized...... geometrical parameters of the nanoantenna couplers are found out. The best performance is shown by the battle axe nanocoupler that has an antenna figure of merit equal to 1.8 μm2 for five antenna periods. That is 90 times larger than antenna figure of merit for the waveguide without nanocoupler (0.02 μm2...

  8. Physics of Negative Refraction and Negative Index Materials Optical and Electronic Aspects and Diversified Approaches

    CERN Document Server

    Krowne, Clifford M

    2007-01-01

    This book deals with the subject of optical and electronic negative refraction (NR) and negative index materials NIM). Diverse approaches for achieving NR and NIM are covered, such as using photonic crystals, phononic crystals, split-ring resonators (SRRs) and continuous media, focusing of waves, guided-wave behavior, and nonlinear effects. Specific topics treated are polariton theory for LHMs (left handed materials), focusing of waves, guided-wave behavior, nonlinear optical effects, magnetic LHM composites, SRR-rod realizations, low-loss guided-wave bands using SRR-rods unit cells as LHMs, NR of electromagnetic and electronic waves in uniform media, field distributions in LHM guided-wave structures, dielectric and ferroelectric NR bicrystal heterostructures, LH metamaterial photonic-crystal lenses, subwavelength focusing of LHM/NR photonic crystals, focusing of sound with NR and NIMs, and LHM quasi-crystal materials for focusing.

  9. Sub-picosecond optical switching with a negative index metamaterial

    Energy Technology Data Exchange (ETDEWEB)

    Dani, Keshav M [Los Alamos National Laboratory; Upadhya, Prashant C [Los Alamos National Laboratory; Zahyum, Ku [CHTM-UNM

    2009-01-01

    Development of all-optical signal processing, eliminating the performance and cost penalties of optical-electrical-optical conversion, is important for continu,ing advances in Terabits/sec (Tb/s) communications.' Optical nonlinearities are generally weak, traditionally requiring long-path, large-area devicesl,2 or very high-Q, narrow-band resonator structures.3 Optical metamaterials offer unique capabilities for optical-optical interactions. Here we report 600 femtosecond (fs) all-optical modulation using a fIShnet (2D-perforated metallamorphous-Si (a-Si)/metal film stack) negative-index meta material with a structurally tunable broad-band response near 1.2 {micro}m. Over 20% modulation (experimentally limited) is achieved in a path length of only 116 nm by photo-excitation of carriers in the a-Si layer. This has the potential for Tb/s aU-optical communication and will lead to other novel, compact, tunable sub-picosecond (ps) photonic devices.

  10. Influence of the Aral Sea negative water balance on its seasonal circulation and ventilation patterns: use of a 3d hydrodynamic model.

    Science.gov (United States)

    Sirjacobs, D.; Grégoire, M.; Delhez, E.; Nihoul, J.

    2003-04-01

    Within the context of the EU INCO-COPERNICUS program "Desertification in the Aral Sea Region: A study of the Natural and Anthropogenic Impacts" (Contract IAC2-CT-2000-10023), a large-scale 3D hydrodynamic model was adapted to address specifically the macroscale processes affecting the Aral Sea water circulation and ventilation. The particular goal of this research is to simulate the effect of lasting negative water balance on the 3D seasonal circulation, temperature, salinity and water-mixing fields of the Aral Sea. The original Aral Sea seasonal hydrodynamism is simulated with the average seasonal forcings corresponding to the period from 1956 to 1960. This first investigation concerns a period of relative stability of the water balance, before the beginning of the drying process. The consequences of the drying process on the hydrodynamic of the Sea will be studied by comparing this first results with the simulation representing the average situation for the years 1981 to 1985, a very low river flow period. For both simulation periods, the forcing considered are the seasonal fluctuations of wind fields, precipitation, evaporation, river discharge and salinity, cloud cover, air temperature and humidity. The meteorological forcings were adapted to the common optimum one-month temporal resolution of the available data sets. Monthly mean kinetic energy flux and surface tensions were calculated from daily ECMWF wind data. Monthly in situ precipitation, surface air temperature and humidity fields were interpolated from data obtained from the Russian Hydrological and Meteorological Institute. Monthly water discharge and average salinity of the river water were considered for both Amu Darya and Syr Darya river over each simulation periods. The water mass conservation routines allowed the simulation of a changing coastline by taking into account local drying and flooding events of particular grid points. Preliminary barotropic runs were realised (for the 1951

  11. 3-D refractive index tomograms and deformability of individual human red blood cells from cord blood of newborn infants and maternal blood

    CERN Document Server

    Park, HyunJoo; Kim, Kyoohyun; Lee, Sangyun; Kook, Songyi; Lee, Dongheon; Suh, In Bum; Nab, Sunghun; Park, YongKeun

    2015-01-01

    Red blood cells (RBCs) from the cord blood of newborn infants have distinctive functions for fetal and infant development. To systematically investigate the biophysical characteristics of individual cord RBCs in newborn infants, a comparative study was performed of RBCs from cord blood of newborn infants, and of adult RBCs from mothers or non-pregnant women, employing optical holographic micro-tomography. Optical measurements of 3-D refractive index distributions, and of dynamic membrane fluctuations of individual RBCs, enabled retrieval of the morphological, biochemical, and mechanical properties of cord, maternal, and adult RBCs at the individual cell level. The volume and surface area of the cord RBCs were significant larger than those of RBCs from non-pregnant women, and cord RBCs have more flattened shapes than RBCs in adults. In addition, the Hb content in the cord RBCs of newborns was significantly greater. The Hb concentration in cord RBCs was higher than for non-pregnant women or maternal RBCs, but t...

  12. Relationship between the Kramers-Kronig relations and negative index of refraction

    CERN Document Server

    Hickey, Mark C; Kussow, Adil-Gerai

    2010-01-01

    The condition for a negative index of refraction with respect to the vacuum index is established in terms of permittivity and permeability susceptibilities. It is found that the imposition of analyticity to satisfy the Kramers-Kronig relations is a sufficiently general criterion for a physical negative index. The satisfaction of the Kramers-Kronig relations is a manifestation of the principle of causality and the predicted frequency region of negative index agrees with the Depine-Lakhtakia condition for the phase velocity being anti-directed to the Poynting vector, although the conditions presented here do not assume {\\it a priori} a negative solution branch for n.

  13. Development of a 3D finite element acoustic model to predict the sound reduction index of stud based double-leaf walls

    Science.gov (United States)

    Arjunan, A.; Wang, C. J.; Yahiaoui, K.; Mynors, D. J.; Morgan, T.; Nguyen, V. B.; English, M.

    2014-11-01

    Building standards incorporating quantitative acoustical criteria to ensure adequate sound insulation are now being implemented. Engineers are making great efforts to design acoustically efficient double-wall structures. Accordingly, efficient simulation models to predict the acoustic insulation of double-leaf wall structures are needed. This paper presents the development of a numerical tool that can predict the frequency dependent sound reduction index R of stud based double-leaf walls at one-third-octave band frequency range. A fully vibro-acoustic 3D model consisting of two rooms partitioned using a double-leaf wall, considering the structure and acoustic fluid coupling incorporating the existing fluid and structural solvers are presented. The validity of the finite element (FE) model is assessed by comparison with experimental test results carried out in a certified laboratory. Accurate representation of the structural damping matrix to effectively predict the R values are studied. The possibilities of minimising the simulation time using a frequency dependent mesh model was also investigated. The FEA model presented in this work is capable of predicting the weighted sound reduction index Rw along with A-weighted pink noise C and A-weighted urban noise Ctr within an error of 1 dB. The model developed can also be used to analyse the acoustically induced frequency dependent geometrical behaviour of the double-leaf wall components to optimise them for best acoustic performance. The FE modelling procedure reported in this paper can be extended to other building components undergoing fluid-structure interaction (FSI) to evaluate their acoustic insulation.

  14. Low-loss negative index metamaterials for X, Ku, and K microwave bands

    Directory of Open Access Journals (Sweden)

    David A. Lee

    2015-04-01

    Full Text Available Low-loss, negative-index of refraction metamaterials were designed and tested for X, Ku, and K microwave frequency bands. An S-shaped, split-ring resonator was used as a unit cell to design homogeneous slabs of negative-index metamaterials. Then, the slabs of metamaterials were cut unto prisms to measure experimentally the negative index of refraction of a plane electromagnetic wave. Theoretical simulations using High-Frequency Structural Simulator, a finite element equation solver, were in good agreement with experimental measurements. The negative index of refraction was retrieved from the angle- and frequency-dependence of the transmitted intensity of the microwave beam through the metamaterial prism and compared well to simulations; in addition, near-field electromagnetic intensity mapping was conducted with an infrared camera, and there was also a good match with the simulations for expected frequency ranges for the negative index of refraction.

  15. Visual inspection of 3-D surface and refractive-index profiles of microscopic lenses using a single-arm off-axis holographic interferometer.

    Science.gov (United States)

    Kim, Byung-Mok; Kim, Eun-Soo

    2016-05-16

    A single-arm off-axis holographic interferometer (SA-OHI) system for visual inspection of the three-dimensional (3-D) surfaces and refractive-index profiles of micrometer-scale optical lenses is proposed. In this system, a couple of pellicle beam splitters and optical mirrors are employed to generate two sheared off-axis beams from the single object beam by controlling the tilted angle of the optical mirror. Each sheared beam is divided into two areas with and without object data, which are called half-object and half-reference beams, respectively. These sub-divided object and reference beams then make interference patterns, just like the conventional two-arm holographic interferometer. This holographic interferometer system, called SA-OHI, can solve the DC bias, virtual and duplicated image problems occurred in most lateral shearing interferometers, which allow extraction of the hologram data only related to the target object. The operational principle of the proposed system is analyzed based on ray-optics. To confirm the feasibility of the proposed system in the practical application fields, experiments with test lenses are also carried out and the results are comparatively discussed with those of the conventional system. PMID:27409857

  16. Negative refractive index in a four-level atomic system

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhen-Qing; Liu Zheng-Dong; Zhao Shun-Cai; Zheng Jun; Ji Yan-Fang; Liu Nian

    2011-01-01

    A closed four-level system in atomic vapour is proposed,which is made to possess left handedness by using the technique of quantum coherence.The density matrix method is utilized in view of the rotating-wave approximation and the effect of a local field in dense gas.The numerical simulation result shows that the negative permittivity and the negative permeability of the medium can be achieved simultaneously (i.e.the left handedness) in a wider frequency band under appropriate parameter conditions.Furthermore,when analysing the dispersion property of the left-handed material,we can find that the probe beam propagation can be controlled from superluminal to subluminal,or vice versa via changing the detuning of the probe field.

  17. A novel approach to design microwave medium of negative refractive index and simulation verification

    Institute of Scientific and Technical Information of China (English)

    CAO YunJian; WEN GuangJun; WU KaiMin; XU XinHe

    2007-01-01

    In this paper, a novel approach is presented to synthesize microwave medium of negative refractive index by incorporating metallic wire array with negative effective permittivity into the host media such as ferrimagnet-YIG (yttrium iron garnet) applied by external magnetic field whose permeability is negative. We have designed the composite medium having negative refractive index in C/X band frequencies, analyzed and simulated its electromagnetic (EM) properties by use of EM EDA package based on time-domain finite integration method. The simulation results show that: ① the effective permittivity of the designed metallic wire array is negative in the frequency range from 7.02 GHz to 9.80 GHz; ② the permeability of YIG substrate immersed into an external magnetic field is negative in the frequency range from 5.22 GHz to 8.14 GHz; ③ EM wave can pass through the composite medium synthesized by the above designed metallic wire array and YIG substrate, and ④ the negative refraction behavior occurs on the interface between the composite medium and the normal material with positive refractive index in 7.51-8.13 GHz frequency range, in which the effective permittivity of the metallic wire array and the permeability of YIG substrate are negative simultaneously. The full wave simulation has demonstrated that the effective refractive index of the designed composite medium is indeed negative and ascertained that the proposed approach to design microwave medium with negative refractive index is viable.

  18. Plasmon-Enhanced Photonic Crystal Negative Index Materials for Superlensing Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Negative index materials (NIMs) offer tremendous potential for the formation of highly compact as well as large-area deployable thin-film optical components. Omega...

  19. Thermal radiation antennas made of multilayer structures containing negative index metamaterials

    NARCIS (Netherlands)

    Maksimovic, M.; Hammer, M.; Jaksic, Z.; Greiner, C.M.; Waechter, C.A.

    2008-01-01

    We investigate the thermal antenna behavior of emissive/absorptive substrates coated by passive optical multilayer systems that contain negative refractive index metamaterials (NIM). Spectral and angular distributions of the thermal radiation emittance for periodic defect-containing multilayer with

  20. Controlling the second-harmonic in a phase matched negative-index metamaterial

    OpenAIRE

    Rose, Alec; Huang, Da; Smith, David R.

    2011-01-01

    Nonlinear metamaterials (NLMMs) have been predicted to support new and exciting domains in the manipulation of light, including novel phase matching schemes for wave mixing. Most notable is the so-called nonlinear-optical mirror, in which a nonlinear negative-index medium emits the generated frequency towards the source of the pump. For the first time, we experimentally demonstrate the nonlinear-optical mirror effect in a bulk negative-index NLMM, along with two other novel phase matching con...

  1. Experimental characterization of negative refractive index material NRM at Ka band

    CERN Document Server

    Chatterjee, Sougata

    2016-01-01

    In this paper, we discuss the experimental characterization of a negative refractive material NRM at Ka band using LR labyrinth Ring and wire array WA. We describe in detail the the LR and wire array characterization separately, and after that the combined experimental results, for NRM are reported. The LRs analytical and simulation study is not new but design in Ka band and different experimental procedure for the characterization of the negative refractive index is the novelty of this paper. For performing a negative refractive index experiment we made prism of 150 Prism angle . We get enhanced transmittance of more than 20 dB from background, at a negative angle of refraction. The values of the negative refractive index in a band of about 1 G Hz around 31 GHz are retrieved from the experimental data.

  2. Intensity modulated radiotherapy and 3D conformal radiotherapy for whole breast irradiation: a comparative dosimetric study and introduction of a novel qualitative index for plan evaluation, the normal tissue index

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Jackie; Suttie, Clare; Bromley, Regina; Morgia, Marita; Lamoury, Gillian [Department of Radiation Oncology, Royal North Shore Hospital, St Leonards, New South Wales (Australia)

    2015-09-15

    We report on a retrospective dosimetric study, comparing 3D conformal radiotherapy (3DCRT) and hybrid intensity modulated radiotherapy (hIMRT). We evaluated plans based on their planning target volume coverage, dose homogeneity, dose to organs at risk (OARs) and exposure of normal tissue to radiation. The Homogeneity Index (HI) was used to assess the dose homogeneity in the target region, and we describe a new index, the normal tissue index (NTI), to assess the dose in the normal tissue inside the tangent treatment portal. Plans were generated for 25 early-stage breast cancer patients, using a hIMRT technique. These were compared with the 3DCRT plans of the treatment previously received by the patients. Plan quality was evaluated using the HI, NTI and dose to OARs. The hIMRT technique was significantly more homogenous than the 3DCRT technique, while maintaining target coverage. The hIMRT technique was also superior at minimising the amount of tissue receiving D{sub 105%} and above (P < 0.0001). The ipsilateral lung and contralateral breast maximum were significantly lower in the hIMRT plans (P < 0.05 and P < 0.005), but the 3DCRT technique achieved a lower mean heart dose in left-sided breast cancer patients (P < 0.05). Hybrid intensity modulated radiotherapy plans achieved improved dose homogeneity compared to the 3DCRT plans and superior outcome with regard to dose to normal tissues. We propose that the addition of both HI and NTI in evaluating the quality of intensity modulated radiotherapy (IMRT) breast plans provides clinically relevant comparators which more accurately reflect the new paradigm of treatment goals and outcomes in the era of breast IMRT.

  3. Intensity modulated radiotherapy and 3D conformal radiotherapy for whole breast irradiation: a comparative dosimetric study and introduction of a novel qualitative index for plan evaluation, the normal tissue index

    International Nuclear Information System (INIS)

    We report on a retrospective dosimetric study, comparing 3D conformal radiotherapy (3DCRT) and hybrid intensity modulated radiotherapy (hIMRT). We evaluated plans based on their planning target volume coverage, dose homogeneity, dose to organs at risk (OARs) and exposure of normal tissue to radiation. The Homogeneity Index (HI) was used to assess the dose homogeneity in the target region, and we describe a new index, the normal tissue index (NTI), to assess the dose in the normal tissue inside the tangent treatment portal. Plans were generated for 25 early-stage breast cancer patients, using a hIMRT technique. These were compared with the 3DCRT plans of the treatment previously received by the patients. Plan quality was evaluated using the HI, NTI and dose to OARs. The hIMRT technique was significantly more homogenous than the 3DCRT technique, while maintaining target coverage. The hIMRT technique was also superior at minimising the amount of tissue receiving D105% and above (P < 0.0001). The ipsilateral lung and contralateral breast maximum were significantly lower in the hIMRT plans (P < 0.05 and P < 0.005), but the 3DCRT technique achieved a lower mean heart dose in left-sided breast cancer patients (P < 0.05). Hybrid intensity modulated radiotherapy plans achieved improved dose homogeneity compared to the 3DCRT plans and superior outcome with regard to dose to normal tissues. We propose that the addition of both HI and NTI in evaluating the quality of intensity modulated radiotherapy (IMRT) breast plans provides clinically relevant comparators which more accurately reflect the new paradigm of treatment goals and outcomes in the era of breast IMRT

  4. Creating double negative index materials using the Babinet principle with one metasurface

    OpenAIRE

    Zhang, Lei; Koschny, Thomas; Soukoulis, Costas M.

    2013-01-01

    Metamaterials are patterned metallic structures which permit access to a novel electromagnetic response, negative index of refraction, impossible to achieve with naturally occurring materials. Using the Babinet principle, the complementary split ring resonator (SRR) is etched in a metallic plate to provide negative \\epsilon, with perpendicular direction. Here we propose a new design, etched in a metallic plate to provide negative magnetic permeability \\mu, with perpendicular direction. The co...

  5. 3D Animation Essentials

    CERN Document Server

    Beane, Andy

    2012-01-01

    The essential fundamentals of 3D animation for aspiring 3D artists 3D is everywhere--video games, movie and television special effects, mobile devices, etc. Many aspiring artists and animators have grown up with 3D and computers, and naturally gravitate to this field as their area of interest. Bringing a blend of studio and classroom experience to offer you thorough coverage of the 3D animation industry, this must-have book shows you what it takes to create compelling and realistic 3D imagery. Serves as the first step to understanding the language of 3D and computer graphics (CG)Covers 3D anim

  6. 3D video

    CERN Document Server

    Lucas, Laurent; Loscos, Céline

    2013-01-01

    While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century.The chapters in this book cover a large spectrum of areas connected to 3D video, which are presented both theoretically and technologically, while taking into account both physiological and perceptual aspects. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide th

  7. Focus modulation of cylindrical vector beams through negative-index grating lenses

    Science.gov (United States)

    Wang, Shengming; Xu, Ji; Zhong, Yi; Ren, Rong; Lu, Yunqing; Wan, Hongdan; Wang, Jin; Ding, Jianping

    2016-08-01

    A cylindrically symmetric negative-index grating lens composed of unitary material is proposed as an effective method to modulate the focusing of cylindrical vector beams (CVBs). The grating parameters are designed to obtain an appropriate negative index, and the lens profile is tailored to realize the constructive interference. The plano-concave lens is parameterized to achieve desired focal length and the plano-cone lens is proposed to obtain large depth of focus. An optical needle is generated with radially polarized incidence, and an optical tube is achieved with incidence of azimuthal polarization. Moreover, the presented modulation methods can be applied for any arbitrary polarized CVBs. This work offers a more flexible and effective approach to design negative-index lenses for subwavelength focusing of CVBs, which has potential application value in related areas, such as optical trapping, and other nano-optics fields.

  8. Influence of Filling Medium of Holes on the Negative-Index Response of Sandwiched Metamaterials

    Institute of Scientific and Technical Information of China (English)

    WANG Xu-Dong; YE Yong-Hong; MA Ji; JIANG Mei-Ping

    2010-01-01

    @@ We numerically study the negative index properties of sandwiched metamaterials,perforated with a square array of circle holes filled with different media.Transmission spectra indicate that the filling medium can effectively change the position of the localized resonant peak,while keeping the position of the other transmission peaks hardly changed.Reflection spectra and retrieved effective impedance verify that an appropriate choice of the filling medium can provide a perfect impedance match.Due to the perfect impedance match,the electromagnetic responses of the negative index band based on the internal surface plasmon polaritons change in many aspects,such as a stronger magnetic resonance,a higher figure of merit and a narrower negative refractive index band.

  9. Realization of absolute negative refraction index by a photonic crystal using anisotropic dielectric material

    Institute of Scientific and Technical Information of China (English)

    Yuntuan Fang; Zhengbiao Ouyang

    2008-01-01

    A method to realize absolute negative refraction index -1 with a two-dimensional (2D) photonic crystal is presented by introducing dielectric anisotropy in the photonic crystal material. The band structures of E-polarization mode and H-polarization mode can be adjusted by changing the parameters of materials. Thus the two modes with different polarizations have the same negative refraction index -1 for the same frequency. The results are demonstrated by numerical simulation based on the finite-difference time-domain (FDTD) method.

  10. Nanofabrication of planar split ring resonators for negative refractive index metamaterials in the infrared range

    OpenAIRE

    ZORAN JAKSIC; DANA VASILJEVIC-RADOVIC; MILAN MAKSIMOVIC; MILIJA SARAJLIC; ZORAN DJURIC

    2006-01-01

    Experimental nanofabrication of planar structures for one-dimensional metamaterials designed to achieve a negative effective refractive index in the mid-infrared range (5–10 micrometers) was performed. Double split ring and complementary double split ring resonators (SRR and CSRR) with square and circular geometries, were chosen to be fabricated since these are the basic building blocks to achieve a negative effective dielectric permittivity and magnetic permeability. Scanning probe nanolitho...

  11. Chiral metamaterials with negative refractive index based on four "U" split ring resonators

    OpenAIRE

    Li, Zhaofeng; Zhao, Rongkuo; Koschny, Thomas; Kafesaki, Maria; Alici, Kamil Boratay; Colak, Evrim; Caglayan, Humeyra; Soukoulis, Ekmel Ozbayand C. M.

    2010-01-01

    A uniaxial chiral metamaterial is constructed by double-layered four "U" split ring resonators mutually twisted by 90 degrees. It shows a giant optical activity and circular dichroism. The retrieval results reveal that a negative refractive index is realized for circularly polarized waves due to the large chirality. The experimental results are in good agreement with the numerical results.

  12. E3D R-Tree: An Index Structure for Indexing the Histories in Moving Object Database%E3D R-Tree:一种处理移动对象数据库历史查询的索引结构

    Institute of Scientific and Technical Information of China (English)

    张文杰; 李建中; 张炜

    2005-01-01

    历史查询是移动对象数据库管理的一个重要方面.为提高历史查询效率,在3D R-Tree基础上实现了优化的索引结构E3D R-Tree.在E3D R-Tree中,结合移动对象数据特征引入空白区域作为新的插入代价参数,同时,在插入算法中利用最小代价优先搜索算法确定全局最优插入路径,并给出算法正确性证明.实验结果表明,E3D R-Tree查询效率高于3D R-Tree.

  13. EUROPEANA AND 3D

    Directory of Open Access Journals (Sweden)

    D. Pletinckx

    2012-09-01

    Full Text Available The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  14. Visualisation of BioPAX Networks using BioLayout Express3D [v1; ref status: indexed, http://f1000r.es/4j1

    Directory of Open Access Journals (Sweden)

    Derek W. Wright

    2014-10-01

    Full Text Available BioLayout Express3D is a network analysis tool designed for the visualisation and analysis of graphs derived from biological data. It has proved to be powerful in the analysis of gene expression data, biological pathways and in a range of other applications. In version 3.2 of the tool we have introduced the ability to import, merge and display pathways and protein interaction networks available in the BioPAX Level 3 standard exchange format. A graphical interface allows users to search for pathways or interaction data stored in the Pathway Commons database. Queries using either gene/protein or pathway names are made via the cPath2 client and users can also define the source and/or species of information that they wish to examine. Data matching a query are listed and individual records may be viewed in isolation or merged using an ‘Advanced’ query tab. A visualisation scheme has been defined by mapping BioPAX entity types to a range of glyphs. Graphs of these data can be viewed and explored within BioLayout as 2D or 3D graph layouts, where they can be edited and/or exported for visualisation and editing within other tools.

  15. Solid works 3D

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Cheol Yeong

    2004-02-15

    This book explains modeling of solid works 3D and application of 3D CAD/CAM. The contents of this book are outline of modeling such as CAD and 2D and 3D, solid works composition, method of sketch, writing measurement fixing, selecting projection, choosing condition of restriction, practice of sketch, making parts, reforming parts, modeling 3D, revising 3D modeling, using pattern function, modeling necessaries, assembling, floor plan, 3D modeling method, practice floor plans for industrial engineer data aided manufacturing, processing of CAD/CAM interface.

  16. Solid works 3D

    International Nuclear Information System (INIS)

    This book explains modeling of solid works 3D and application of 3D CAD/CAM. The contents of this book are outline of modeling such as CAD and 2D and 3D, solid works composition, method of sketch, writing measurement fixing, selecting projection, choosing condition of restriction, practice of sketch, making parts, reforming parts, modeling 3D, revising 3D modeling, using pattern function, modeling necessaries, assembling, floor plan, 3D modeling method, practice floor plans for industrial engineer data aided manufacturing, processing of CAD/CAM interface.

  17. Unassisted 3D camera calibration

    Science.gov (United States)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  18. Implementation of 3D spatial indexing and compression in a large-scale molecular dynamics simulation database for rapid atomic contact detection

    Directory of Open Access Journals (Sweden)

    Toofanny Rudesh D

    2011-08-01

    Full Text Available Abstract Background Molecular dynamics (MD simulations offer the ability to observe the dynamics and interactions of both whole macromolecules and individual atoms as a function of time. Taken in context with experimental data, atomic interactions from simulation provide insight into the mechanics of protein folding, dynamics, and function. The calculation of atomic interactions or contacts from an MD trajectory is computationally demanding and the work required grows exponentially with the size of the simulation system. We describe the implementation of a spatial indexing algorithm in our multi-terabyte MD simulation database that significantly reduces the run-time required for discovery of contacts. The approach is applied to the Dynameomics project data. Spatial indexing, also known as spatial hashing, is a method that divides the simulation space into regular sized bins and attributes an index to each bin. Since, the calculation of contacts is widely employed in the simulation field, we also use this as the basis for testing compression of data tables. We investigate the effects of compression of the trajectory coordinate tables with different options of data and index compression within MS SQL SERVER 2008. Results Our implementation of spatial indexing speeds up the calculation of contacts over a 1 nanosecond (ns simulation window by between 14% and 90% (i.e., 1.2 and 10.3 times faster. For a 'full' simulation trajectory (51 ns spatial indexing reduces the calculation run-time between 31 and 81% (between 1.4 and 5.3 times faster. Compression resulted in reduced table sizes but resulted in no significant difference in the total execution time for neighbour discovery. The greatest compression (~36% was achieved using page level compression on both the data and indexes. Conclusions The spatial indexing scheme significantly decreases the time taken to calculate atomic contacts and could be applied to other multidimensional neighbor discovery

  19. 3d-3d correspondence revisited

    Science.gov (United States)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  20. 大规模点云数据的二维与三维混合索引方法%A Combined 2D and 3D Spatial Indexing of Very Large Point-cloud Data Sets

    Institute of Scientific and Technical Information of China (English)

    王晏民; 郭明

    2012-01-01

    为提高点云查询效率和按需提取数据,提出一种二维与三维混合索引的大规模点云数据管理方法。采用二维四叉树和三维最小外包盒结构管理原始点云,以3D-R树管理多站点云,利用对象关系数据库管理全部点云模型和相关属性数据。利用古建筑大规模点云数据在微机上实现了点云模型的数据存储与可视化。结果表明本方法能够管理超过10 GB级的点云模型数据和十亿级有效点,数据可视化效率较高。%A database management algorithm based on combined 2D and 3D indexing of very large point-cloud data is proposed,for extracting the point cloud in need and improving the query efficiency.Single-station point-cloud is managed with 2D quad tree and 3D MBB structure.Multi-station point-clouds are indexed with 3D-R tree.Finally the organized hierarchical model and other attribute data are stored in ralation-object database.The data storage,management and visualization of very large point-clouds are implimented on personal computer with massive point clouds from the ancient buildings such as Forbidden City.Result shows that the algorithm is able to manage more than 10 GB-level data and one billion effective points with satisfactory drawing efficiency.

  1. IZDELAVA TISKALNIKA 3D

    OpenAIRE

    Brdnik, Lovro

    2015-01-01

    Diplomsko delo analizira trenutno stanje 3D tiskalnikov na trgu. Prikazan je razvoj in principi delovanja 3D tiskalnikov. Predstavljeni so tipi 3D tiskalnikov, njihove prednosti in slabosti. Podrobneje je predstavljena zgradba in delovanje koračnih motorjev. Opravljene so meritve koračnih motorjev. Opisana je programska oprema za rokovanje s 3D tiskalniki in komponente, ki jih potrebujemo za izdelavo. Diploma se oklepa vprašanja, ali je izdelava 3D tiskalnika bolj ekonomična kot pa naložba v ...

  2. High symmetry versus optical isotropy of a negative-index metamaterial

    DEFF Research Database (Denmark)

    Menzel, Christoph; Rockstuhl, Carsten; Lliew, Rumen;

    2010-01-01

    Optically isotropic metamaterials MMs are required for the implementation of subwavelength imaging systems. At first glance one would expect that their design should be based on unit cells exhibiting a cubic symmetry being the highest crystal symmetry. It is anticipated that this is a sufficient...... in carcass negative index MM. We show that this MM is basically optically isotropic but not in the spectral domain where it exhibits negative refraction. The primary goal of this contribution is to introduce a tool that allows to probe a MM against optical isotropy....

  3. Specific absorption rate analysis of broadband mobile antenna with negative index metamaterial

    Science.gov (United States)

    Alam, Touhidul; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul

    2016-03-01

    This paper presents a negative index metamaterial-inspired printed mobile wireless antenna that can support most mobile applications such as GSM, UMTS, Bluetooth and WLAN frequency bands. The antenna consists of a semi-circular patch, a 50Ω microstrip feed line and metamaterial ground plane. The antenna occupies a very small space of 37 × 47 × 0.508 mm3, making it suitable for mobile wireless application. The perceptible novelty shown in this proposed antenna is that reduction of specific absorption rate using the negative index metamaterial ground plane. The proposed antenna reduced 72.11 and 75.53 % of specific absorption rate at 1.8 and 2.4 GHz, respectively.

  4. Symmetry relations in the generalized Lorenz-Mie theory for lossless negative refractive index media

    Science.gov (United States)

    André Ambrosio, Leonardo

    2016-09-01

    In this paper we present a theoretical analysis of the generalized Lorenz-Mie theory for negative refractive index (NRI) media and spherical scatterers, extending the well-known concepts and definitions found in the literature involving dielectric or positive refractive index (PRI) particles. The consequences of a negative phase velocity and an anti-parallelism of the wave vector with respect to the Poynting vector are investigated and interpreted in this framework and, together with the symmetries found for the beam-shape coefficients when compared to the conventional PRI case, it is shown that the description of plane waves, Gaussian beams and, more generally, on-axis azimuthally symmetric waves along a NRI medium, their fields and all physical properties can be conveniently correlated with that of dielectric media once the electromagnetic response functions are replaced by their corresponding dielectric counterparts.

  5. Supervised non-negative matrix factorization based latent semantic image indexing

    Institute of Scientific and Technical Information of China (English)

    Dong Liang; Jie Yang; Yuchou Chang

    2006-01-01

    @@ A novel latent semantic indexing (LSI) approach for content-based image retrieval is presented in this paper. Firstly, an extension of non-negative matrix factorization (NMF) to supervised initialization isdiscussed. Then, supervised NMF is used in LSI to find the relationships between low-level features and high-level semantics. The retrieved results are compared with other approaches and a good performance is obtained.

  6. 3D and Education

    Science.gov (United States)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  7. A quantitative index measured on 99mTc GSA SPECT/CT 3D fused images to evaluate severe fibrosis in patients with chronic liver disease

    International Nuclear Information System (INIS)

    We compared quantitative indices estimated by use of technetium-99m galactosyl human serum albumin (99mTc-GSA) single-photon emission computed tomography (SPECT)/computed tomography (CT) fused imaging and hepatic fibrosis in patients with chronic liver disease. On the basis of pathological findings we divided 161 patients into non-severe and severe fibrosis groups (n=81 and n=80, respectively). We measured 2 indices by 99mTc-GSA SPECT/CT fused imaging: liver uptake value (LUV) = [radioactivity (whole liver)/radioactivity (injected)] x 100/body surface area, and functional liver index (FLI)=[radioactivity (hepatocytes)/radioactivity (injected)] x 100/liver volume. We compared these indices with biochemical and histopathological results. Univariate and multivariate analyses showed that FLI, LUV, liver and heart ROIs at 15 min post-injection (LHL15), and prothrombin time were significant independent predictors of severe fibrosis. On the basis of receiver operating characteristics analysis, the areas under curve values of FLI, LUV, LHL15, and prothrombin time for predicting severe fibrosis were 0.83, 0.73, 0.69, and 0.68, respectively. Using an FLI value of 0.053, it was possible to predict severe fibrosis with 65% sensitivity, 88% specificity, and 76% accuracy. Assessment of functional hepatocytes by use of 99mTc-GSA SPECT/CT fused images is useful for identifying pathological liver fibrosis. (author)

  8. 3D strain measurement in soft tissue: demonstration of a novel inverse finite element model algorithm on MicroCT images of a tissue phantom exposed to negative pressure wound therapy.

    Science.gov (United States)

    Wilkes, R; Zhao, Y; Cunningham, K; Kieswetter, K; Haridas, B

    2009-07-01

    This study describes a novel system for acquiring the 3D strain field in soft tissue at sub-millimeter spatial resolution during negative pressure wound therapy (NPWT). Recent research in advanced wound treatment modalities theorizes that microdeformations induced by the application of sub-atmospheric (negative) pressure through V.A.C. GranuFoam Dressing, a reticulated open-cell polyurethane foam (ROCF), is instrumental in regulating the mechanobiology of granulation tissue formation [Saxena, V., Hwang, C.W., Huang, S., Eichbaum, Q., Ingber, D., Orgill, D.P., 2004. Vacuum-assisted closure: Microdeformations of wounds and cell proliferation. Plast. Reconstr. Surg. 114, 1086-1096]. While the clinical response is unequivocal, measurement of deformations at the wound-dressing interface has not been possible due to the inaccessibility of the wound tissue beneath the sealed dressing. Here we describe the development of a bench-test wound model for microcomputed tomography (microCT) imaging of deformation induced by NPWT and an algorithm set for quantifying the 3D strain field at sub-millimeter resolution. Microdeformations induced in the tissue phantom revealed average tensile strains of 18%-23% at sub-atmospheric pressures of -50 to -200 mmHg (-6.7 to -26.7 kPa). The compressive strains (22%-24%) and shear strains (20%-23%) correlate with 2D FEM studies of microdeformational wound therapy in the reference cited above. We anticipate that strain signals quantified using this system can then be used in future research aimed at correlating the effects of mechanical loading on the phenotypic expression of dermal fibroblasts in acute and chronic ulcer models. Furthermore, the method developed here can be applied to continuum deformation analysis in other contexts, such as 3D cell culture via confocal microscopy, full scale CT and MRI imaging, and in machine vision. PMID:19627832

  9. 3D virtuel udstilling

    DEFF Research Database (Denmark)

    Tournay, Bruno; Rüdiger, Bjarne

    2006-01-01

    3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s.......3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s....

  10. Aberration-free two-thin-lens systems based on negative-index materials

    Institute of Scientific and Technical Information of China (English)

    Lin Zhi-Li; Ding Jie-Chen; Zhang Pu

    2008-01-01

    Since the complete correction of all five monochromatic Seidel aberrations for a singlet lens with random shape or a two-thin-lens system is unprocurable merely by using the conventional positive-index materials both in theory and practice, this paper proposes that when one or both of the two lenses is/are made from negative-index materials, an imaging system composed of a pair of spherical thin lenses is possible to form a real image, in air, free from all five monochromatic Seidel aberrations. The calculated numerical solutions to the structural parameters of such lens systems possessing superior performance are provided and examples of them are illustrated for the given combinations of the two lenses' refractive indices, including an ultimately-remote imaging system.

  11. INGRID, 3-D Mesh Generator for Program DYNA3D and NIKE3D and FACET and TOPAZ3D

    International Nuclear Information System (INIS)

    1 - Description of program or function: INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D (NESC 9909), NIKE3D (NESC 9725), FACET, and TOPAZ3D. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surface equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The most important new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition. 2 - Method of solution: Geometries are described primarily using the index space notation of the INGEN program (NESC 975) with an additional type of notation, index progression. Index progressions provide a concise and simple method for describing complex structures; the concept was developed to facilitate defining multiple regions in index space. Rather than specifying the minimum and maximum indices for a region, one specifies the progression of indices along the I, J and K directions, respectively. The index progression method allows the analyst to describe most geometries including nodes and elements with roughly the same amount of input as a solids modeler

  12. Switchable zero-index metamaterials by loading positive-intrinsic-negative diodes

    Science.gov (United States)

    Xiang, Nan; Cheng, Qiang; Zhao, Jie; Jun Cui, Tie; Feng Ma, Hui; Xiang Jiang, Wei

    2014-02-01

    We propose switchable zero-index metamaterials (ZIMs) implemented by split ring resonators (SRRs) loaded with positive-intrinsic-negative (PIN) diode switching elements. We demonstrate that ZIMs can be achieved at around 10 GHz when the PIN diode is switched off. When the PIN diode is switched on, however, the designed metamaterials have impedance matching to the free space, which is useful to reduce the reflections at the interface of two media. The switchable ZIMs are suitable for a wide variety of applications like the beam forming and directive radiation. Experimental results validate the switching ability of the proposed ZIMs.

  13. Tunable omnidirectional multichannel filters based on dual-defective photonic crystals containing negative-index materials

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yihang, E-mail: kallenmail@sina.co [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)

    2009-04-07

    Multiple defect modes may generate in one-dimensional dual-defective photonic crystals containing negative-index materials. The interference between the two kinds of defect states of the proposed structure is avoided. Therefore, the frequency, frequency interval and number of the defect modes corresponding to different kinds of defects can be tuned independently as desired. These defect modes inside the zero n-bar gap are insensitive to the incident angle. It thus opens a promising way to fabricate omnidirectional multichannel filters with specific channels.

  14. Causality-based criteria for a negative refractive index must be used with care

    CERN Document Server

    Kinsler, P; 10.1103/PhysRevLett.101.167401

    2008-01-01

    Using the principle of causality as expressed in the Kramers-Kronig relations, we derive a generalized criterion for a negative refractive index that admits imperfect transparency at an observation frequency $\\omega$. It also allows us to relate the global properties of the loss (i.e. its frequency response) to its local behaviour at $\\omega$. However, causality-based criteria rely the on the group velocity, not the Poynting vector. Since the two are not equivalent, we provide some simple examples to compare the two criteria.

  15. Blender 3D cookbook

    CERN Document Server

    Valenza, Enrico

    2015-01-01

    This book is aimed at the professionals that already have good 3D CGI experience with commercial packages and have now decided to try the open source Blender and want to experiment with something more complex than the average tutorials on the web. However, it's also aimed at the intermediate Blender users who simply want to go some steps further.It's taken for granted that you already know how to move inside the Blender interface, that you already have 3D modeling knowledge, and also that of basic 3D modeling and rendering concepts, for example, edge-loops, n-gons, or samples. In any case, it'

  16. 3D Hilbert Space Filling Curves in 3D City Modeling for Faster Spatial Queries

    DEFF Research Database (Denmark)

    Ujang, Uznir; Antón Castro, Francesc/François; Azri, Suhaibah;

    2014-01-01

    objects. In this research, the authors propose an opponent data constellation technique of space-filling curves (3D Hilbert curves) for 3D city model data representation. Unlike previous methods, that try to project 3D or n-dimensional data down to 2D or 3D using Principal Component Analysis (PCA......) or Hilbert mappings, in this research, they extend the Hilbert space-filling curve to one higher dimension for 3D city model data implementations. The query performance was tested for single object, nearest neighbor and range search queries using a CityGML dataset of 1,000 building blocks and the results...... are presented in this paper. The advantages of implementing space-filling curves in 3D city modeling will improve data retrieval time by means of optimized 3D adjacency, nearest neighbor information and 3D indexing. The Hilbert mapping, which maps a sub-interval of the ([0,1]) interval to the corresponding...

  17. 多峰负氢离子源全三维数值模拟研究%3D numerical simulation of multi-peak negative hydrogen ion sources

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    The mechanism of the negative hydrogen ion volume production is analysed theoretically. The negative hydrogen ion source restrained by multi⁃peak megnetic field was numerically simulated with self⁃developed 3D simulation software PIC⁃MCC,in which the influence of leading⁃out megnetic field,primary energy and position of discharge on the collision efficiency excited by vibration are simulated. The optimization means for the multi⁃peak negative hydrogen ion source are explored. The re⁃sults show that the more the fast electrons move into the extraction region and the more severe the negative y⁃direction drift is, the more frequent the vibrational excitation collision happens and the higher the relative collision rate becomes,in other word, the higher the volume production efficiency of negative hydrogen ions appears.%  理论分析了负氢离子体积产生机制,采用自主开发的三维PIC⁃MCC模拟软件,对多峰磁场约束的负氢离子源进行数值模拟研究。模拟了引出磁场、放电初始能量、及放电位置对振动激发碰撞效率的影响,探索了多峰负氢离子源的优化手段。研究表明:如果进入引出区的快电子越多且-y方向漂移越剧烈,那么振动碰撞越频繁且相对碰撞率越高,即负氢离子体积产生效率越高。

  18. Effects of negative index medium defect layers on the trans mission properties of one-dimensional photonic crystal

    Institute of Scientific and Technical Information of China (English)

    XIANG Yuan-jiang; DAI Xiao-yu; WEN Shuang-chun

    2007-01-01

    School of Computer and Communication, Hunan University, Changsha 410082, ChinaThe photonic band gap structure of 1D photonic crystal with a negative index medium defect layer is studied by using the transfer matrix method. Investigations show that the introdution of negative index medium defect layer and the increase of the negative index value will result in an extension of the band gap. Moreover, by increasing the negative index, the width of defect layer and the numbers of period photonic crystal, the width of defect modes will be narrowed, which is advantaged to obtain optical filters with narrow band. Finally, the effects of absorption on the properties of band gap and on defect modes have been discussed.

  19. Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion

    Science.gov (United States)

    Handy Turner, Tara

    2010-02-01

    From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.

  20. Radiochromic 3D Detectors

    Science.gov (United States)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  1. 3D Projection Installations

    DEFF Research Database (Denmark)

    Halskov, Kim; Johansen, Stine Liv; Bach Mikkelsen, Michelle

    2014-01-01

    Three-dimensional projection installations are particular kinds of augmented spaces in which a digital 3-D model is projected onto a physical three-dimensional object, thereby fusing the digital content and the physical object. Based on interaction design research and media studies, this article...... contributes to the understanding of the distinctive characteristics of such a new medium, and identifies three strategies for designing 3-D projection installations: establishing space; interplay between the digital and the physical; and transformation of materiality. The principal empirical case, From...... Fingerplan to Loop City, is a 3-D projection installation presenting the history and future of city planning for the Copenhagen area in Denmark. The installation was presented as part of the 12th Architecture Biennale in Venice in 2010....

  2. Flexible chiral metamaterials with dynamically optical activity and high negative refractive index

    Science.gov (United States)

    Dincer, Furkan; Karaaslan, Muharrem; Unal, Emin; Akgol, Oguzhan; Sabah, Cumali

    2015-06-01

    We demonstrate numerically and experimentally chiral metamaterials (MTMs) based on gammadion-bilayer cross-wires that uniaxially create giant optical activity and tunable circular dichroism as a result of the dynamic design. In addition, the suggested structure gives high negative refractive index due to the large chirality in order to obtain an efficient polarization converter. We also present a numerical analysis in order to show the additional features of the proposed chiral MTM in detail. Therefore, a MTM sensor application of the proposed chiral MTM is introduced and discussed. The presented chiral designs offer a much simpler geometry and more efficient outlines. The experimental results are in a good agreement with the numerical simulation. It can be seen from the results that, the suggested chiral MTM can be used as a polarization converter, sensor, etc. for several frequency regimes.

  3. A novel coupled quantum well with large negative electrorefractive index change and low absorption loss

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In order to solve excessive insertion loss and low on/off ratio in quantum well reflection-type waveguide optical switches,a novel InGaAs/InAlAs coupled quantum well structure is proposed. In the case of low applied electric field (F=19 kV/cm)and low absorption loss (α≈ 61.2 cm-1), a large negative field-induced refractive index change ( △ n=-0.0134) is obtained in the novel coupled quantum well structure at the operating wavelength ( λ =1550 nm). The value is larger by over one to two order of magnitude compared to that in a rectangular quantum well (RQW) on the above same work conditions.

  4. Metamaterial lens made of fully printed resonant-type negative-refractive-index transmission lines

    Science.gov (United States)

    Xu, He-Xiu; Wang, Guang-Ming; Qing Qi, Mei; Lv, Yuan-Yuan; Gao, Xi

    2013-05-01

    We studied a well-resolved lens based on planar fully printed resonant-type negative-refractive-index transmission lines made of complementary split ring resonators. The lens goes beyond previous lens in terms of moderate loss and compactness. The focusing has been demonstrated by the circuit theory simulation and full-wave simulation and finally confirmed by the experiments, showing that that the lens is able to overcome the diffraction limit of 0.5 effective wavelengths and exhibits a super resolution as small as 0.348 effective wavelengths inside the lens. The superlens free of any lumped elements opens an easy and inexpensive avenue toward imaging devices with super performances.

  5. Minimization of losses in a structure having a negative index of refraction

    International Nuclear Information System (INIS)

    A structure consisting of an array of wires cladded with a nonmagnetic dielectric and embedded in a ferrimagnetic host has been calculated to have a negative index of refraction. The structure has moderate losses over a bandwidth of a few GHz. The calculation takes into account the skin effect within the wires and is valid provided the wavelength of electromagnetic waves in the structure is long compared to the radius of the cladded wires. The structure's electromagnetic response is accurately described by the ferrimagnet's permeability and a permittivity derived in the long wavelength limit. Losses can be minimized by choosing the pass band to be between 30 and 80% of the plasma frequency and by choosing wires to be of the highest possible conductivity and largest radius compatible with the required plasma frequency

  6. Herramientas SIG 3D

    Directory of Open Access Journals (Sweden)

    Francisco R. Feito Higueruela

    2010-04-01

    Full Text Available Applications of Geographical Information Systems on several Archeology fields have been increasing during the last years. Recent avances in these technologies make possible to work with more realistic 3D models. In this paper we introduce a new paradigm for this system, the GIS Thetrahedron, in which we define the fundamental elements of GIS, in order to provide a better understanding of their capabilities. At the same time the basic 3D characteristics of some comercial and open source software are described, as well as the application to some samples on archeological researchs

  7. TOWARDS: 3D INTERNET

    OpenAIRE

    Ms. Swapnali R. Ghadge

    2013-01-01

    In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot o...

  8. Bootstrapping 3D fermions

    Science.gov (United States)

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-01

    We study the conformal bootstrap for a 4-point function of fermions in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge C T . We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N . We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  9. Interaktiv 3D design

    DEFF Research Database (Denmark)

    Villaume, René Domine; Ørstrup, Finn Rude

    2002-01-01

    Projektet undersøger potentialet for interaktiv 3D design via Internettet. Arkitekt Jørn Utzons projekt til Espansiva blev udviklet som et byggesystem med det mål, at kunne skabe mangfoldige planmuligheder og mangfoldige facade- og rumudformninger. Systemets bygningskomponenter er digitaliseret som...... 3D elementer og gjort tilgængelige. Via Internettet er det nu muligt at sammenstille og afprøve en uendelig  række bygningstyper som  systemet blev tænkt og udviklet til....

  10. The Assessment of Positivity and Negativity in Social Networks: The Reliability and Validity of the Social Relationships Index

    Science.gov (United States)

    Campo, Rebecca A.; Uchino, Bert N.; Holt-Lunstad, Julianne; Vaughn, Allison; Reblin, Maija; Smith, Timothy W.

    2009-01-01

    The Social Relationships Index (SRI) was designed to examine positivity and negativity in social relationships. Unique features of this scale include its brevity and the ability to examine relationship positivity and negativity at the level of the specific individual and social network. The SRI's psychometric properties were examined in three…

  11. Tangible 3D Modelling

    DEFF Research Database (Denmark)

    Hejlesen, Aske K.; Ovesen, Nis

    2012-01-01

    This paper presents an experimental approach to teaching 3D modelling techniques in an Industrial Design programme. The approach includes the use of tangible free form models as tools for improving the overall learning. The paper is based on lecturer and student experiences obtained through facil...

  12. 3D Harmonic Echocardiography:

    NARCIS (Netherlands)

    M.M. Voormolen

    2007-01-01

    textabstractThree dimensional (3D) echocardiography has recently developed from an experimental technique in the ’90 towards an imaging modality for the daily clinical practice. This dissertation describes the considerations, implementation, validation and clinical application of a unique

  13. The mismatch negativity as an index of cognitive decline for the early detection of Alzheimer's disease.

    Science.gov (United States)

    Ruzzoli, Manuela; Pirulli, Cornelia; Mazza, Veronica; Miniussi, Carlo; Brignani, Debora

    2016-01-01

    Evidence suggests that Alzheimer's disease (AD) is part of a continuum, characterized by long preclinical phases before the onset of clinical symptoms. In several cases, this continuum starts with a syndrome, defined as mild cognitive impairment (MCI), in which daily activities are preserved despite the presence of cognitive decline. The possibility of having a reliable and sensitive neurophysiological marker that can be used for early detection of AD is extremely valuable because of the incidence of this type of dementia. In this study, we aimed to investigate the reliability of auditory mismatch negativity (aMMN) as a marker of cognitive decline from normal ageing progressing from MCI to AD. We compared aMMN elicited in the frontal and temporal locations by duration deviant sounds in short (400 ms) and long (4000 ms) inter-trial intervals (ITI) in three groups. We found that at a short ITI, MCI showed only the temporal component of aMMN and AD the frontal component compared to healthy elderly who presented both. At a longer ITI, aMMN was elicited only in normal ageing subjects at the temporal locations. Our study provides empirical evidence for the possibility to adopt aMMN as an index for assessing cognitive decline in pathological ageing. PMID:27616726

  14. Negative Index Refraction in the Complex Ginzburg—Landau Equation in Connection with the Experimental CIMA Reaction

    International Nuclear Information System (INIS)

    In comparison with the phenomenon of negative index refraction observed in artificial meta-materials, it is interesting to ask if this type of behavior also exists or not in reaction-diffusion systems that support nonlinear chemical waves. Previous studies indicate that the negative index refraction could occur on a interface between a medium of a normal wave and a medium that supports anti-waves. Here we investigate the phenomenon in the complex Ginzburg—Landau equation (CGLE) in a close relationship with the quantitative model for the chloriteiodide-malonic acid (CIMA) reaction. The amplitude equation CGLE is deduced from the CIMA reaction, and simulations with mapped parameters from the reaction-diffusion equation reveal that the competition between normal waves and anti-waves on the interface determines whether the negative index refraction occurs or not

  15. Negative Index Refraction in the Complex Ginzburg—Landau Equation in Connection with the Experimental CIMA Reaction

    Science.gov (United States)

    Yuan, Xu-Jin

    2012-09-01

    In comparison with the phenomenon of negative index refraction observed in artificial meta-materials, it is interesting to ask if this type of behavior also exists or not in reaction-diffusion systems that support nonlinear chemical waves. Previous studies indicate that the negative index refraction could occur on a interface between a medium of a normal wave and a medium that supports anti-waves. Here we investigate the phenomenon in the complex Ginzburg—Landau equation (CGLE) in a close relationship with the quantitative model for the chloriteiodide-malonic acid (CIMA) reaction. The amplitude equation CGLE is deduced from the CIMA reaction, and simulations with mapped parameters from the reaction-diffusion equation reveal that the competition between normal waves and anti-waves on the interface determines whether the negative index refraction occurs or not.

  16. Massive 3D Supergravity

    CERN Document Server

    Andringa, Roel; de Roo, Mees; Hohm, Olaf; Sezgin, Ergin; Townsend, Paul K

    2009-01-01

    We construct the N=1 three-dimensional supergravity theory with cosmological, Einstein-Hilbert, Lorentz Chern-Simons, and general curvature squared terms. We determine the general supersymmetric configuration, and find a family of supersymmetric adS vacua with the supersymmetric Minkowski vacuum as a limiting case. Linearizing about the Minkowski vacuum, we find three classes of unitary theories; one is the supersymmetric extension of the recently discovered `massive 3D gravity'. Another is a `new topologically massive supergravity' (with no Einstein-Hilbert term) that propagates a single (2,3/2) helicity supermultiplet.

  17. Massive 3D supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Andringa, Roel; Bergshoeff, Eric A; De Roo, Mees; Hohm, Olaf [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Sezgin, Ergin [George and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Townsend, Paul K, E-mail: E.A.Bergshoeff@rug.n, E-mail: O.Hohm@rug.n, E-mail: sezgin@tamu.ed, E-mail: P.K.Townsend@damtp.cam.ac.u [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2010-01-21

    We construct the N=1 three-dimensional supergravity theory with cosmological, Einstein-Hilbert, Lorentz Chern-Simons, and general curvature squared terms. We determine the general supersymmetric configuration, and find a family of supersymmetric adS vacua with the supersymmetric Minkowski vacuum as a limiting case. Linearizing about the Minkowski vacuum, we find three classes of unitary theories; one is the supersymmetric extension of the recently discovered 'massive 3D gravity'. Another is a 'new topologically massive supergravity' (with no Einstein-Hilbert term) that propagates a single (2,3/2) helicity supermultiplet.

  18. 3D Digital Modelling

    DEFF Research Database (Denmark)

    Hundebøl, Jesper

    ABSTRACT: Lack of productivity in construction is a well known issue. Despite the fact that causes hereof are multiple, the introduction of information technology is a frequently observed response to almost any challenge. ICT in construction is a thoroughly researched matter, however, the current...... important to appreciate the analysis. Before turning to the presentation of preliminary findings and a discussion of 3D digital modelling, it begins, however, with an outline of industry specific ICT strategic issues. Paper type. Multi-site field study...

  19. Modulational instability of coupled nonlinear field equations for pulse propagation in a negative index material embedded into a Kerr medium

    CERN Document Server

    Sarma, Amarendra K

    2010-01-01

    We have investigated the modulational instability (MI) in a negative index media (NIM) using a new generalized model describing the pulse propagation in a negative index material embedded into a Kerr medium. We have found that one could control the gain of MI in a NIM by tuning the initial electric and magnetic field amplitudes simultaneously. Our model successfully recovers previously proposed models to describe pulse propagation in NIMs exhibiting Kerr nonlinearity. Moreover it contains a few additional terms connecting both the electric and magnetic field envelopes in a NIM.

  20. TOWARDS: 3D INTERNET

    Directory of Open Access Journals (Sweden)

    Ms. Swapnali R. Ghadge

    2013-08-01

    Full Text Available In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot of discussions. Basically, one can look into this matter from a few different perspectives: visualization and representation of information, and creation and transportation of information, among others. All of them still constitute research challenges, as no products or services are yet available or foreseen for the near future. Nevertheless, one can try to envisage the directions that can be taken towards achieving this goal. People who take part in virtual worlds stay online longer with a heightened level of interest. To take advantage of that interest, diverse businesses and organizations have claimed an early stake in this fast-growing market. They include technology leaders such as IBM, Microsoft, and Cisco, companies such as BMW, Toyota, Circuit City, Coca Cola, and Calvin Klein, and scores of universities, including Harvard, Stanford and Penn State.

  1. Limited Feedback for 3D Massive MIMO under 3D-UMa and 3D-UMi Scenarios

    Directory of Open Access Journals (Sweden)

    Zheng Hu

    2015-01-01

    Full Text Available For three-dimensional (3D massive MIMO utilizing the uniform rectangular array (URA in the base station (BS, we propose a limited feedback transmission scheme in which the channel state information (CSI feedback operations for horizontal domain and vertical domain are separate. Compared to the traditional feedback scheme, the scheme can reduce the feedback overhead, code word index search complexity, and storage requirement. Also, based on the zenith of departure angle (ZoD distribution in 3D-Urban Macro Cell (3D-UMa and 3D-Urban Micro Cell (3D-UMi scenarios, we propose the angle quantization codebook for vertical domain, while the codebook of long term evolution-advanced (LTE-Advanced is still adopted in horizontal domain to preserve compatibility with the LTE-Advanced. Based on the angle quantization codebook, the subsampled 3-bit DFT codebook is designed for vertical domain. The system-level simulation results reveal that, to compromise the feedback overhead and system performance, 2-bit codebook for 3D-UMa scenario and 3-bit codebook for 3D-UMi scenario can meet requirements in vertical domain. The feedback period for vertical domain can also be extended appropriately to reduce the feedback overhead.

  2. Pleural fluid cell-free DNA integrity index to identify cytologically negative malignant pleural effusions including mesotheliomas

    International Nuclear Information System (INIS)

    The diagnosis of malignant pleural effusions (MPE) is often clinically challenging, especially if the cytology is negative for malignancy. DNA integrity index has been reported to be a marker of malignancy. The aim of this study was to evaluate the utility of pleural fluid DNA integrity index in the diagnosis of MPE. We studied 75 pleural fluid and matched serum samples from consecutive subjects. Pleural fluid and serum ALU DNA repeats [115bp, 247bp and 247bp/115bp ratio (DNA integrity index)] were assessed by real-time quantitative PCR. Pleural fluid and serum mesothelin levels were quantified using ELISA. Based on clinico-pathological evaluation, 52 subjects had MPE (including 16 mesotheliomas) and 23 had benign effusions. Pleural fluid DNA integrity index was higher in MPE compared with benign effusions (1.2 vs. 0.8; p<0.001). Cytology had a sensitivity of 55% in diagnosing MPE. If cytology and pleural fluid DNA integrity index were considered together, they exhibited 81% sensitivity and 87% specificity in distinguishing benign and malignant effusions. In cytology-negative pleural effusions (35 MPE and 28 benign effusions), elevated pleural fluid DNA integrity index had an 81% positive predictive value in detecting MPEs. In the detection of mesothelioma, at a specificity of 90%, pleural fluid DNA integrity index had similar sensitivity to pleural fluid and serum mesothelin (75% each respectively). Pleural fluid DNA integrity index is a promising diagnostic biomarker for identification of MPEs, including mesothelioma. This biomarker may be particularly useful in cases of MPE where pleural aspirate cytology is negative, and could guide the decision to undertake more invasive definitive testing. A prospective validation study is being undertaken to validate our findings and test the clinical utility of this biomarker for altering clinical practice

  3. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data......, making them different from typical, existing box shaping techniques. The basis of the proposed techniques is a new algorithm for constructing a full box from just three of its corners. The evaluation of the new techniques compares their precision and completion times in a 9 degree-of-freedom (Do......F) docking experiment against an existing technique, which requires the user to perform the rotation and scaling of the box explicitly. The precision of the users' box construction is evaluated by a novel error metric measuring the difference between two boxes. The results of the experiment strongly indicate...

  4. Zero absorption and a large negative refractive index in a left-handed four-level atomic medium

    International Nuclear Information System (INIS)

    In this paper, we have investigated three external fields interacting with the four-level atomic system described by the density-matrix approach. The atomic system exhibits left-handedness with zero absorption and large negative refractive index. Varying the parameters of the three external fields, the properties of zero absorption and large negative refractive index from the atomic system remain unvarying. Our scheme proposes an approach to obtain a negative refractive medium with zero absorption. The zero absorption property of the atomic system may be used to amplify the evanescent waves that have been lost in the imaging by traditional lenses, and a slab fabricated by the left-handed atomic system may be an ideal candidate for designing perfect lenses.

  5. 3D printing for dummies

    CERN Document Server

    Hausman, Kalani Kirk

    2014-01-01

    Get started printing out 3D objects quickly and inexpensively! 3D printing is no longer just a figment of your imagination. This remarkable technology is coming to the masses with the growing availability of 3D printers. 3D printers create 3-dimensional layered models and they allow users to create prototypes that use multiple materials and colors.  This friendly-but-straightforward guide examines each type of 3D printing technology available today and gives artists, entrepreneurs, engineers, and hobbyists insight into the amazing things 3D printing has to offer. You'll discover methods for

  6. Recent developments in DFD (depth-fused 3D) display and arc 3D display

    Science.gov (United States)

    Suyama, Shiro; Yamamoto, Hirotsugu

    2015-05-01

    We will report our recent developments in DFD (Depth-fused 3D) display and arc 3D display, both of which have smooth movement parallax. Firstly, fatigueless DFD display, composed of only two layered displays with a gap, has continuous perceived depth by changing luminance ratio between two images. Two new methods, called "Edge-based DFD display" and "Deep DFD display", have been proposed in order to solve two severe problems of viewing angle and perceived depth limitations. Edge-based DFD display, layered by original 2D image and its edge part with a gap, can expand the DFD viewing angle limitation both in 2D and 3D perception. Deep DFD display can enlarge the DFD image depth by modulating spatial frequencies of front and rear images. Secondly, Arc 3D display can provide floating 3D images behind or in front of the display by illuminating many arc-shaped directional scattering sources, for example, arcshaped scratches on a flat board. Curved Arc 3D display, composed of many directional scattering sources on a curved surface, can provide a peculiar 3D image, for example, a floating image in the cylindrical bottle. The new active device has been proposed for switching arc 3D images by using the tips of dual-frequency liquid-crystal prisms as directional scattering sources. Directional scattering can be switched on/off by changing liquid-crystal refractive index, resulting in switching of arc 3D image.

  7. Martian terrain - 3D

    Science.gov (United States)

    1997-01-01

    This area of terrain near the Sagan Memorial Station was taken on Sol 3 by the Imager for Mars Pathfinder (IMP). 3D glasses are necessary to identify surface detail.The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  8. 3D monitor

    OpenAIRE

    Szkandera, Jan

    2009-01-01

    Tato bakalářská práce se zabývá návrhem a realizací systému, který umožní obraz scény zobrazovaný na ploše vnímat prostorově. Prostorové vnímání 2D obrazové informace je umožněno jednak stereopromítáním a jednak tím, že se obraz mění v závislosti na poloze pozorovatele. Tato práce se zabývá hlavně druhým z těchto problémů. This Bachelor's thesis goal is to design and realize system, which allows user to perceive 2D visual information as three-dimensional. 3D visual preception of 2D image i...

  9. 3D game environments create professional 3D game worlds

    CERN Document Server

    Ahearn, Luke

    2008-01-01

    The ultimate resource to help you create triple-A quality art for a variety of game worlds; 3D Game Environments offers detailed tutorials on creating 3D models, applying 2D art to 3D models, and clear concise advice on issues of efficiency and optimization for a 3D game engine. Using Photoshop and 3ds Max as his primary tools, Luke Ahearn explains how to create realistic textures from photo source and uses a variety of techniques to portray dynamic and believable game worlds.From a modern city to a steamy jungle, learn about the planning and technological considerations for 3D modelin

  10. X3D: Extensible 3D Graphics Standard

    OpenAIRE

    Daly, Leonard; Brutzman, Don

    2007-01-01

    The article of record as published may be located at http://dx.doi.org/10.1109/MSP.2007.905889 Extensible 3D (X3D) is the open standard for Web-delivered three-dimensional (3D) graphics. It specifies a declarative geometry definition language, a run-time engine, and an application program interface (API) that provide an interactive, animated, real-time environment for 3D graphics. The X3D specification documents are freely available, the standard can be used without paying any royalties,...

  11. Pleural fluid cell-free DNA integrity index to identify cytologically negative malignant pleural effusions including mesotheliomas

    Directory of Open Access Journals (Sweden)

    Sriram Krishna B

    2012-09-01

    Full Text Available Abstract Background The diagnosis of malignant pleural effusions (MPE is often clinically challenging, especially if the cytology is negative for malignancy. DNA integrity index has been reported to be a marker of malignancy. The aim of this study was to evaluate the utility of pleural fluid DNA integrity index in the diagnosis of MPE. Methods We studied 75 pleural fluid and matched serum samples from consecutive subjects. Pleural fluid and serum ALU DNA repeats [115bp, 247bp and 247bp/115bp ratio (DNA integrity index] were assessed by real-time quantitative PCR. Pleural fluid and serum mesothelin levels were quantified using ELISA. Results Based on clinico-pathological evaluation, 52 subjects had MPE (including 16 mesotheliomas and 23 had benign effusions. Pleural fluid DNA integrity index was higher in MPE compared with benign effusions (1.2 vs. 0.8; p Conclusion Pleural fluid DNA integrity index is a promising diagnostic biomarker for identification of MPEs, including mesothelioma. This biomarker may be particularly useful in cases of MPE where pleural aspirate cytology is negative, and could guide the decision to undertake more invasive definitive testing. A prospective validation study is being undertaken to validate our findings and test the clinical utility of this biomarker for altering clinical practice.

  12. 3D Printing an Octohedron

    OpenAIRE

    Aboufadel, Edward F.

    2014-01-01

    The purpose of this short paper is to describe a project to manufacture a regular octohedron on a 3D printer. We assume that the reader is familiar with the basics of 3D printing. In the project, we use fundamental ideas to calculate the vertices and faces of an octohedron. Then, we utilize the OPENSCAD program to create a virtual 3D model and an STereoLithography (.stl) file that can be used by a 3D printer.

  13. Salient Local 3D Features for 3D Shape Retrieval

    CERN Document Server

    Godil, Afzal

    2011-01-01

    In this paper we describe a new formulation for the 3D salient local features based on the voxel grid inspired by the Scale Invariant Feature Transform (SIFT). We use it to identify the salient keypoints (invariant points) on a 3D voxelized model and calculate invariant 3D local feature descriptors at these keypoints. We then use the bag of words approach on the 3D local features to represent the 3D models for shape retrieval. The advantages of the method are that it can be applied to rigid as well as to articulated and deformable 3D models. Finally, this approach is applied for 3D Shape Retrieval on the McGill articulated shape benchmark and then the retrieval results are presented and compared to other methods.

  14. 3D modelling and recognition

    OpenAIRE

    Rodrigues, Marcos; Robinson, Alan; Alboul, Lyuba; Brink, Willie

    2006-01-01

    3D face recognition is an open field. In this paper we present a method for 3D facial recognition based on Principal Components Analysis. The method uses a relatively large number of facial measurements and ratios and yields reliable recognition. We also highlight our approach to sensor development for fast 3D model acquisition and automatic facial feature extraction.

  15. Dispersion, spatial growth rate, and start current of a Cherenkov free-electron laser with negative-index material

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuanyuan; Wei, Yanyu; Jiang, Xuebing; Tang, Xianfeng; Shi, Xianbao; Gong, Yubin [National Key Laboratory of Science and Technology on Vacuum Electronics, School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China); Li, Dazhi [Institute for Laser Technology, Suita, Osaka 565-0781 (Japan); Takano, Keisuke; Nakajima, Makoto [Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0781 (Japan); Feng, Jinjun [Beijing Vacuum Electronics Research Institute, Beijing 100016 (China); Miyamoto, Shuji [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, Ako, Hyogo 678-1205 (Japan)

    2015-08-15

    We present an analysis of a Cherenkov free-electron laser based on a single slab made from negative-index materials. In this system, a flat electron beam with finite thickness travelling close to the surface of the slab interacts with the copropagating electromagnetic surface mode. The dispersion equation for a finitely thick slab is worked out and solved numerically to study the dispersion relation of surface modes supported by negative-index materials, and the calculations are in good agreement with the simulation results from a finite difference time domain code. We find that under suitable conditions there is inherent feedback in such a scheme due to the characteristics of negative-index materials, which means that the system can oscillate without external reflectors when the beam current exceeds a threshold value, i.e., start current. Using the hydrodynamic approach, we setup coupled equations for this system, and solve these equations analytically in the small signal regime to obtain formulas for the spatial growth rate and start current.

  16. Optical Pulse Dynamics in Active Metamaterials with Positive and Negative Refractive Index

    CERN Document Server

    Korotkevich, Alexander O; Kovacic, Gregor; Roytburd, Victor; Maimistov, Andrei I; Gabitov, Ildar R; .,

    2013-01-01

    We study numerically the propagation of two-color light pulses through a metamaterial doped with active atoms such that the carrier frequencies of the pulses are in resonance with two atomic transitions in the $\\Lambda$ configuration and that one color propagates in the regime of positive refraction and the other in the regime of negative refraction. In such a metamaterial, one resonant color of light propagates with positive and the other with negative group velocity. We investigate nonlinear interaction of these forward- and backward-propagating waves, and find self-trapped waves, counter-propagating radiation waves, and hot spots of medium excitation.

  17. 3D-skannaukseen perehtyminen

    OpenAIRE

    Santaluoto, Olli

    2012-01-01

    Tässä insinöörityössä tarkastellaan erilaisia 3D-skannaustekniikoita ja menetelmiä. Työssä myös kerrotaan esimerkkien avulla eri 3D-skannaustekniikoiden käyttökohteista. 3D-skannaus on Suomessa vielä melko harvinaista, siksi eri tekniikat ja käyttömahdollisuudet ovat monille tuntemattomia. 3D-skanneri on laite, jolla tutkitaan reaalimaailman esineitä tai ympäristöä keräämällä dataa kohteen muodoista. 3D-skannerit ovat hyvin paljon vastaavia tavallisen kameran kanssa. Kuten kameroilla, 3D...

  18. 3D Printing Functional Nanocomposites

    OpenAIRE

    Leong, Yew Juan

    2016-01-01

    3D printing presents the ability of rapid prototyping and rapid manufacturing. Techniques such as stereolithography (SLA) and fused deposition molding (FDM) have been developed and utilized since the inception of 3D printing. In such techniques, polymers represent the most commonly used material for 3D printing due to material properties such as thermo plasticity as well as its ability to be polymerized from monomers. Polymer nanocomposites are polymers with nanomaterials composited into the ...

  19. 3D Elevation Program—Virtual USA in 3D

    Science.gov (United States)

    Lukas, Vicki; Stoker, J.M.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  20. 3D IBFV : Hardware-Accelerated 3D Flow Visualization

    NARCIS (Netherlands)

    Telea, Alexandru; Wijk, Jarke J. van

    2003-01-01

    We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique for 2D flow visualization in two main directions. First, we decompose the 3D flow visualization problem in a

  1. Interactive 3D multimedia content

    CERN Document Server

    Cellary, Wojciech

    2012-01-01

    The book describes recent research results in the areas of modelling, creation, management and presentation of interactive 3D multimedia content. The book describes the current state of the art in the field and identifies the most important research and design issues. Consecutive chapters address these issues. These are: database modelling of 3D content, security in 3D environments, describing interactivity of content, searching content, visualization of search results, modelling mixed reality content, and efficient creation of interactive 3D content. Each chapter is illustrated with example a

  2. 3D Bayesian contextual classifiers

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    2000-01-01

    We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours.......We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours....

  3. 3-D printers for libraries

    CERN Document Server

    Griffey, Jason

    2014-01-01

    As the maker movement continues to grow and 3-D printers become more affordable, an expanding group of hobbyists is keen to explore this new technology. In the time-honored tradition of introducing new technologies, many libraries are considering purchasing a 3-D printer. Jason Griffey, an early enthusiast of 3-D printing, has researched the marketplace and seen several systems first hand at the Consumer Electronics Show. In this report he introduces readers to the 3-D printing marketplace, covering such topics asHow fused deposition modeling (FDM) printing workBasic terminology such as build

  4. 3D for Graphic Designers

    CERN Document Server

    Connell, Ellery

    2011-01-01

    Helping graphic designers expand their 2D skills into the 3D space The trend in graphic design is towards 3D, with the demand for motion graphics, animation, photorealism, and interactivity rapidly increasing. And with the meteoric rise of iPads, smartphones, and other interactive devices, the design landscape is changing faster than ever.2D digital artists who need a quick and efficient way to join this brave new world will want 3D for Graphic Designers. Readers get hands-on basic training in working in the 3D space, including product design, industrial design and visualization, modeling, ani

  5. Using 3D in Visualization

    DEFF Research Database (Denmark)

    Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen;

    2005-01-01

    to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...... with abstracted representations embedded in a 3D space. The interactions between development of geovisualization, the technology used to implement it and the theory surrounding cartographic representation are explored. The dominance of computing technologies, driven particularly by the gaming industry...

  6. Multiple 3D medical data watermarking for healthcare data management.

    Science.gov (United States)

    Lee, Suk-Hwan; Kwon, Ki-Ryong

    2011-12-01

    The rapid development of healthcare information management for 3D digital medical libraries, 3D PACS, and 3D medical diagnosis has addressed the security issues pertaining to medical IT technology. This paper presents multiple watermarking schemes for a healthcare information management system for 3D medical image data for the protection, authentication, indexing, and hiding of diagnosis information. The proposed scheme, which is based on POCS watermarking, embeds a robust watermark for a doctor's digital signature and an information retrieval indexing key to the distribution of vertex curvedness; the scheme also embeds a fragile watermark for diagnosis information and an authentication reference message to the vertex distance difference. The multiple embedding process creates three convex sets for robustness, fragileness, and invisibility and projects the 3D medical image data onto these three convex sets alternately and iteratively. Experimental results confirmed that the proposed scheme has the robustness and fragileness to handle various 3D geometric and mesh modifiers simultaneously.

  7. Improvement of 3D Scanner

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The disadvantage remaining in 3D scanning system and its reasons are discussed. A new host-and-slave structure with high speed image acquisition and processing system is proposed to quicken the image processing and improve the performance of 3D scanning system.

  8. 3D Printing for Bricks

    OpenAIRE

    ECT Team, Purdue

    2015-01-01

    Building Bytes, by Brian Peters, is a project that uses desktop 3D printers to print bricks for architecture. Instead of using an expensive custom-made printer, it uses a normal standard 3D printer which is available for everyone and makes it more accessible and also easier for fabrication.

  9. Properties of the defect modes in 1D lossy photonic crystals containing two types of negative-index-material defects

    CERN Document Server

    Aghajamali, Alireza; Wu, Chien-Jang; Barati, Mahmood

    2013-01-01

    In this paper, the characteristic matrix method is employed to theoretically investigate the propagation of electromagnetic waves through one-dimensional defective lossy photonic crystals (PCs) composed of negative index materials (NIMs) and positive index materials (PIMs). We consider symmetric and asymmetric geometric structures with two different types of NIM defect layers at the center of the structure. The effects of the polarization and the angle of incidence on the defect modes in the transmission spectra of both structures are investigated. The results show that the number of the defect modes within the photonic band gap (PBG) depends on the type of the NIM defect layer and is independent of the geometrical structure. Moreover, it is shown that the defect mode frequency increases as the angle of incidence increases. This property is also independent of the geometry of the structure. The results can lead to designing new types of narrowband and multichannel transmission filters.

  10. 3D printing in dentistry.

    Science.gov (United States)

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery. PMID:26657435

  11. 3D printing in dentistry.

    Science.gov (United States)

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  12. PLOT3D user's manual

    Science.gov (United States)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  13. Indexed

    CERN Document Server

    Hagy, Jessica

    2008-01-01

    Jessica Hagy is a different kind of thinker. She has an astonishing talent for visualizing relationships, capturing in pictures what is difficult for most of us to express in words. At indexed.blogspot.com, she posts charts, graphs, and Venn diagrams drawn on index cards that reveal in a simple and intuitive way the large and small truths of modern life. Praised throughout the blogosphere as “brilliant,” “incredibly creative,” and “comic genius,” Jessica turns her incisive, deadpan sense of humor on everything from office politics to relationships to religion. With new material along with some of Jessica’s greatest hits, this utterly unique book will thrill readers who demand humor that makes them both laugh and think.

  14. 3-D Video Processing for 3-D TV

    Science.gov (United States)

    Sohn, Kwanghoon; Kim, Hansung; Kim, Yongtae

    One of the most desirable ways of realizing high quality information and telecommunication services has been called "The Sensation of Reality," which can be achieved by visual communication based on 3-D (Three-dimensional) images. These kinds of 3-D imaging systems have revealed potential applications in the fields of education, entertainment, medical surgery, video conferencing, etc. Especially, three-dimensional television (3-D TV) is believed to be the next generation of TV technology. Figure 13.1 shows how TV's display technologies have evolved , and Fig. 13.2 details the evolution of TV broadcasting as forecasted by the ETRI (Electronics and Telecommunications Research Institute). It is clear that 3-D TV broadcasting will be the next development in this field, and realistic broadcasting will soon follow.

  15. ADT-3D Tumor Detection Assistant in 3D

    Directory of Open Access Journals (Sweden)

    Jaime Lazcano Bello

    2008-12-01

    Full Text Available The present document describes ADT-3D (Three-Dimensional Tumor Detector Assistant, a prototype application developed to assist doctors diagnose, detect and locate tumors in the brain by using CT scan. The reader may find on this document an introduction to tumor detection; ADT-3D main goals; development details; description of the product; motivation for its development; result’s study; and areas of applicability.

  16. Handbook of 3D integration

    CERN Document Server

    Garrou , Philip; Ramm , Peter

    2014-01-01

    Edited by key figures in 3D integration and written by top authors from high-tech companies and renowned research institutions, this book covers the intricate details of 3D process technology.As such, the main focus is on silicon via formation, bonding and debonding, thinning, via reveal and backside processing, both from a technological and a materials science perspective. The last part of the book is concerned with assessing and enhancing the reliability of the 3D integrated devices, which is a prerequisite for the large-scale implementation of this emerging technology. Invaluable reading fo

  17. Tuotekehitysprojekti: 3D-tulostin

    OpenAIRE

    Pihlajamäki, Janne

    2011-01-01

    Opinnäytetyössä tutustuttiin 3D-tulostamisen teknologiaan. Työssä käytiin läpi 3D-tulostimesta tehty tuotekehitysprojekti. Sen lisäksi esiteltiin yleisellä tasolla tuotekehitysprosessi ja syntyneiden tulosten mahdollisia suojausmenetelmiä. Tavoitteena tässä työssä oli kehittää markkinoilta jo löytyvää kotitulostin-tasoista 3D-laiteteknologiaa lähemmäksi ammattilaistason ratkaisua. Tavoitteeseen pyrittiin keskittymällä parantamaan laitteella saavutettavaa tulostustarkkuutta ja -nopeutt...

  18. 3D on the internet

    OpenAIRE

    Puntar, Matej

    2012-01-01

    The purpose of this thesis is the presentation of already established and new technologies of displaying 3D content in a web browser. The thesis begins with a short presentation of the history of 3D content available on the internet and its development together with advantages and disadvantages of individual technologies. The latter two are described in detail as well is their use and the differences among them. Special emphasis has been given to WebGL, the newest technology of 3D conte...

  19. Color 3D Reverse Engineering

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper presents a principle and a method of col or 3D laser scanning measurement. Based on the fundamental monochrome 3D measureme nt study, color information capture, color texture mapping, coordinate computati on and other techniques are performed to achieve color 3D measurement. The syste m is designed and composed of a line laser light emitter, one color CCD camera, a motor-driven rotary filter, a circuit card and a computer. Two steps in captu ring object's images in the measurement process: Firs...

  20. Exploration of 3D Printing

    OpenAIRE

    Lin, Zeyu

    2014-01-01

    3D printing technology is introduced and defined in this Thesis. Some methods of 3D printing are illustrated and their principles are explained with pictures. Most of the essential parts are presented with pictures and their effects are explained within the whole system. Problems on Up! Plus 3D printer are solved and a DIY product is made with this machine. The processes of making product are recorded and the items which need to be noticed during the process are the highlight in this th...

  1. 嵌入式三维电子地图空间数据索引研究%RESEARCH ON SPATIAL DATA INDEX OF 3D DIGITAL MAP IN EMBEDDED SYSTEM

    Institute of Scientific and Technical Information of China (English)

    沈永增; 徐均; 刘东岳

    2012-01-01

    研究各种索引结构,如B树、四叉树、八叉树、网格、R树等,在此基础上提出一种网格索引和R树索引结合的索引方式.它适合作为嵌入式环境下的三维电子地图的外存索引.它比单纯的网格索引减少了数据冗余;比单纯的R树索引减少了区域重叠情况,降低了R树的高度,减少了检索的时间.并且其有效性在Android系统中得到了验证.%In this paper, we propose a new indexing way which combines the grid-based index with R-tree index on the basis of studying various index structures such as B-tree, Quad-tree, Octree, grid, R-tree and so on. It is suitable for the index of three-dimensional digital map in embedded external memory. It has less redundancy data than the simple grid-based index, and has less overlapped areas than the simple R-tree index and lowers the height of R-tree as well as lessens the search time. The effectiveness of the new way has been verified in android system.

  2. Planetary Torque in 3D Isentropic Disks

    CERN Document Server

    Fung, Jeffrey; Lega, Elena; Velasco, David

    2016-01-01

    Planet migration is inherently a three-dimensional (3D) problem, because Earth-size planetary cores are deeply embedded in protoplanetary disks. Simulations of these 3D disks remain challenging due to the steep requirement in resolution. Using two different hydrodynamics code, FARGO3D and PEnGUIn, we simulate disk-planet interaction for a 1 to 5 Earth-mass planet embedded in an isentropic disk. We measure the torque on the planet and ensure that the measurements are converged both in resolution and between the two codes. We find that the torque is independent of the smoothing length of the planet's potential ($r_{\\rm s}$), and that it has a weak dependence on the adiabatic index of the gaseous disk ($\\gamma$). The torque values correspond to an inward migration rate qualitatively similar to previous linear calculations. We perform additional simulations with explicit radiative transfer using FARGOCA, and again find agreement between 3D simulations and existing torque formulae. We also present the flow pattern...

  3. Task difficulty affects the predictive process indexed by visual mismatch negativity

    Directory of Open Access Journals (Sweden)

    Motohiro eKimura

    2013-06-01

    Full Text Available Visual mismatch negativity (MMN is an event-related brain potential (ERP component that is elicited by prediction-incongruent events in successive visual stimulation. Previous oddball studies have shown that visual MMN in response to task-irrelevant deviant stimuli is insensitive to the manipulation of task difficulty, which supports the notion that visual MMN reflects attention-independent predictive processes. In these studies, however, visual MMN was evaluated in deviant-minus-standard difference waves, which may lead to an underestimation of the effects of task difficulty due to the possible superposition of N1-difference reflecting refractory effects. In the present study, we investigated the effects of task difficulty on visual MMN, less contaminated by N1-difference. While the participant performed a size-change detection task regarding a continuously-presented central fixation circle, we presented oddball sequences consisting of deviant and standard bar stimuli with different orientations (9.1% and 90.9% and equiprobable sequences consisting of 11 types of control bar stimuli with different orientations (9.1% each at the surrounding visual fields. Task difficulty was manipulated by varying the magnitude of the size-change. We found that the peak latencies of visual MMN evaluated in the deviant-minus-control difference waves were delayed as a function of task difficulty. Therefore, in contrast to the previous understanding, the present findings support the notion that visual MMN is associated with attention-demanding predictive processes.

  4. Materialedreven 3d digital formgivning

    DEFF Research Database (Denmark)

    Hansen, Flemming Tvede

    2010-01-01

    traditionel keramisk produktionssammenhæng. Problemstillingen opmuntrede endvidere til i et samarbejde med en programmør at udvikle et 3d digitalt redskab, der er blevet kaldt et digitalt interaktivt formgivningsredskab (DIF). Eksperimentet undersøger interaktive 3d digitale dynamiske systemer, der...... samarbejder med designere fra fagområder som interaktionsdesign og programmering. Afhandlingen peger på et fremtidigt forskningsfelt indenfor generative og responderende digitale systemer til 3d formgivning, der ligeledes inkluderer følesansen. Endvidere er det relevant at forske i, hvordan de RP teknikker...... formgivning og Rapid Prototyping (RP). RP er en fællesbetegnelse for en række af de teknikker, der muliggør at overføre den digitale form til 3d fysisk form. Forskningsprojektet koncentrerer sig om to overordnede forskningsspørgsmål. Det første handler om, hvordan viden og erfaring indenfor det keramiske...

  5. 3D Face Apperance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Astrom, K

    2006-01-01

    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations......We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations...

  6. Main: TATCCAYMOTIFOSRAMY3D [PLACE

    Lifescience Database Archive (English)

    Full Text Available TATCCAYMOTIFOSRAMY3D S000256 01-August-2006 (last modified) kehi TATCCAY motif foun...d in rice (O.s.) RAmy3D alpha-amylase gene promoter; Y=T/C; a GATA motif as its antisense sequence; TATCCAY ...motif and G motif (see S000130) are responsible for sugar repression (Toyofuku et al. 1998); GATA; amylase; sugar; repression; rice (Oryza sativa) TATCCAY ...

  7. Combinatorial 3D Mechanical Metamaterials

    Science.gov (United States)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  8. AI 3D Cybug Gaming

    CERN Document Server

    Ahmed, Zeeshan

    2010-01-01

    In this short paper I briefly discuss 3D war Game based on artificial intelligence concepts called AI WAR. Going in to the details, I present the importance of CAICL language and how this language is used in AI WAR. Moreover I also present a designed and implemented 3D War Cybug for AI WAR using CAICL and discus the implemented strategy to defeat its enemies during the game life.

  9. 3D Face Appearance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Åström, Kalle

    2006-01-01

    We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}......We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}...

  10. MPML3D: Scripting Agents for the 3D Internet.

    Science.gov (United States)

    Prendinger, Helmut; Ullrich, Sebastian; Nakasone, Arturo; Ishizuka, Mitsuru

    2011-05-01

    The aim of this paper is two-fold. First, it describes a scripting language for specifying communicative behavior and interaction of computer-controlled agents ("bots") in the popular three-dimensional (3D) multiuser online world of "Second Life" and the emerging "OpenSimulator" project. While tools for designing avatars and in-world objects in Second Life exist, technology for nonprogrammer content creators of scenarios involving scripted agents is currently missing. Therefore, we have implemented new client software that controls bots based on the Multimodal Presentation Markup Language 3D (MPML3D), a highly expressive XML-based scripting language for controlling the verbal and nonverbal behavior of interacting animated agents. Second, the paper compares Second Life and OpenSimulator platforms and discusses the merits and limitations of each from the perspective of agent control. Here, we also conducted a small study that compares the network performance of both platforms.

  11. From 3D view to 3D print

    Science.gov (United States)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  12. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    Science.gov (United States)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  13. Remote 3D Medical Consultation

    Science.gov (United States)

    Welch, Greg; Sonnenwald, Diane H.; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Krishnan, Srinivas; Söderholm, Hanna M.

    Two-dimensional (2D) video-based telemedical consultation has been explored widely in the past 15-20 years. Two issues that seem to arise in most relevant case studies are the difficulty associated with obtaining the desired 2D camera views, and poor depth perception. To address these problems we are exploring the use of a small array of cameras to synthesize a spatially continuous range of dynamic three-dimensional (3D) views of a remote environment and events. The 3D views can be sent across wired or wireless networks to remote viewers with fixed displays or mobile devices such as a personal digital assistant (PDA). The viewpoints could be specified manually or automatically via user head or PDA tracking, giving the remote viewer virtual head- or hand-slaved (PDA-based) remote cameras for mono or stereo viewing. We call this idea remote 3D medical consultation (3DMC). In this article we motivate and explain the vision for 3D medical consultation; we describe the relevant computer vision/graphics, display, and networking research; we present a proof-of-concept prototype system; and we present some early experimental results supporting the general hypothesis that 3D remote medical consultation could offer benefits over conventional 2D televideo.

  14. Novel 3D media technologies

    CERN Document Server

    Dagiuklas, Tasos

    2015-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The contributions are based on the results of the FP7 European Project ROMEO, which focuses on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the future Internet. The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of consistent video quality to fixed and mobile users. ROMEO will present hybrid networking solutions that combine the DVB-T2 and DVB-NGH broadcas...

  15. 3D future internet media

    CERN Document Server

    Dagiuklas, Tasos

    2014-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The main contributions are based on the results of the FP7 European Projects ROMEO, which focus on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the Future Internet (www.ict-romeo.eu). The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of constant video quality to both fixed and mobile users. ROMEO will design and develop hybrid-networking solutions that co...

  16. Significant negative impact of adjuvant chemotherapy on Health-Related Ouality of Life (HR-OoL) in women with breast cancer treated by conserving surgery and postoperative 3-D radiotherapy. A prospective measurement

    Energy Technology Data Exchange (ETDEWEB)

    Galalae, R.M.; Michel, J.; Kimmig, B. [Clinic for Radiation Therapy (Radiooncology), Univ. Hospital Schleswig-Holstein, Campus Kiel (Germany); Siebmann, J.U.; Kuechler, T.; Eilf, K. [Dept. of General and Thoracic Surgery/Reference Center on Quality of Life in Oncology, Univ. Hospital Schleswig-Holstein, Campus Kiel (Germany)

    2005-10-01

    Purpose: to prospectively assess health-related quality of life (HR-QoL) in women after conserving surgery for breast cancer during/after postoperative 3-D radiotherapy. Patients and methods: 109 consecutively treated patients were analyzed. HR-QoL was assessed at initiation (t1), end (t2), and 6 weeks after radiotherapy (t3) using the EORTC modules QLQ-C30/BR23. Patients were divided into three therapy groups. Group I comprised 41 patients (radiotherapy and adjuvant chemotherapy), group II 45 patients (radiotherapy and adjuvant hormonal therapy), and group III 23 patients (radiotherapy alone). Reliability was tested. Scale means were calculated. Univariate (ANOVA) and multivariate (MANCOVA) analyses were performed. Results: reliability testing revealed mean Cronbach's {alpha} > 0.70 at all measurement points. ANOVA/MANCOVA statistics revealed significantly better HR-QoL for patients in group II versus I. Patients receiving radiotherapy alone (group III) showed the best results in HR-QoL. However, scale mean differences between groups II and III were not significant. Conclusion: HR-QoL measurement using EORTC instruments during/after radiotherapy is reliable. Adjuvant chemotherapy significantly lowered HR-QoL versus hormones or radiotherapy alone. Chemotherapy patients did not recover longitudinally (from t1 to t3). (orig.)

  17. Plasmon response of a metal-semiconductor multilayer 4π-spiral as a negative-index metamaterial

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadivand, Arash, E-mail: aahma011@fiu.edu; Pala, Nezih [Florida International University, Department of Electrical and Computer Engineering (United States)

    2014-12-15

    In this study, we investigate the optical response and plasmonic features of a multilayer 4π-spiral composed of metal-semiconductor arms, numerically, by employing a finite-difference time-domain method. We verified that the proposed structure is able to support strong plasmon and Fano resonances in the circular arms. We showed that the negative polarizability of the spiral provides an opportunity to consider the examined 4π-spiral structure as a meta-atom. Quantifying the effective refractive index of the structure for the presence of various semiconductor substances such as Si, GaP, and InP, we obtained the highest possible value for the associated figure of merit (FOM). Ultimately, for a finite spiral structure with a compositional and multilayer arrangement of Au and GaP arms, the FOM is determined as approximately ∼62.3.

  18. 3D Imager and Method for 3D imaging

    NARCIS (Netherlands)

    Kumar, P.; Staszewski, R.; Charbon, E.

    2013-01-01

    3D imager comprising at least one pixel, each pixel comprising a photodetectorfor detecting photon incidence and a time-to-digital converter system configured for referencing said photon incidence to a reference clock, and further comprising a reference clock generator provided for generating the re

  19. Modification of 3D milling machine to 3D printer

    OpenAIRE

    Halamíček, Lukáš

    2015-01-01

    Tato práce se zabývá přestavbou gravírovací frézky na 3D tiskárnu. V první části se práce zabývá možnými technologiemi 3D tisku a možností jejich využití u přestavby. Dále jsou popsány a vybrány vhodné součásti pro přestavbu. V další části je realizováno řízení ohřevu podložky, trysky a řízení posuvu drátu pomocí softwaru TwinCat od společnosti Beckhoff na průmyslovém počítači. Výsledkem práce by měla být oživená 3D tiskárna. This thesis deals with rebuilding of engraving machine to 3D pri...

  20. Markerless 3D Face Tracking

    DEFF Research Database (Denmark)

    Walder, Christian; Breidt, Martin; Bulthoff, Heinrich;

    2009-01-01

    We present a novel algorithm for the markerless tracking of deforming surfaces such as faces. We acquire a sequence of 3D scans along with color images at 40Hz. The data is then represented by implicit surface and color functions, using a novel partition-of-unity type method of efficiently...... combining local regressors using nearest neighbor searches. Both these functions act on the 4D space of 3D plus time, and use temporal information to handle the noise in individual scans. After interactive registration of a template mesh to the first frame, it is then automatically deformed to track...... the scanned surface, using the variation of both shape and color as features in a dynamic energy minimization problem. Our prototype system yields high-quality animated 3D models in correspondence, at a rate of approximately twenty seconds per timestep. Tracking results for faces and other objects...

  1. Crowded Field 3D Spectroscopy

    CERN Document Server

    Becker, T; Roth, M M; Becker, Thomas; Fabrika, Sergei; Roth, Martin M.

    2003-01-01

    The quantitative spectroscopy of stellar objects in complex environments is mainly limited by the ability of separating the object from the background. Standard slit spectroscopy, restricting the field of view to one dimension, is obviously not the proper technique in general. The emerging Integral Field (3D) technique with spatially resolved spectra of a two-dimensional field of view provides a great potential for applying advanced subtraction methods. In this paper an image reconstruction algorithm to separate point sources and a smooth background is applied to 3D data. Several performance tests demonstrate the photometric quality of the method. The algorithm is applied to real 3D observations of a sample Planetary Nebula in M31, whose spectrum is contaminated by the bright and complex galaxy background. The ability of separating sources is also studied in a crowded stellar field in M33.

  2. 3D-grafiikkamoottori mobiililaitteille

    OpenAIRE

    Vahlman, Lauri

    2014-01-01

    Tässä insinöörityössä käydään läpi mobiililaitteille suunnatun yksinkertaisen 3D-grafiikkamoottorin suunnittelu ja toteutus käyttäen OpenGL ES -rajapintaa. Työssä esitellään grafiikkamoottorin toteutuksessa käytettyjä tekniikoita sekä tutustutaan moottorin rakenteeseen ja toteutuksellisiin yksityiskohtiin. Työn alkupuolella tutustutaan myös modernin 3D-grafiikan yleisiin periaatteisiin ja toimintaan sekä käydään läpi 3D-grafiikkaan liittyviä suorituskykyongelmia. Työn loppupuolella esitel...

  3. 3D vector flow imaging

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes

    The main purpose of this PhD project is to develop an ultrasonic method for 3D vector flow imaging. The motivation is to advance the field of velocity estimation in ultrasound, which plays an important role in the clinic. The velocity of blood has components in all three spatial dimensions, yet...... conventional methods can estimate only the axial component. Several approaches for 3D vector velocity estimation have been suggested, but none of these methods have so far produced convincing in vivo results nor have they been adopted by commercial manufacturers. The basis for this project is the Transverse...... on the TO fields are suggested. They can be used to optimize the TO method. In the third part, a TO method for 3D vector velocity estimation is proposed. It employs a 2D phased array transducer and decouples the velocity estimation into three velocity components, which are estimated simultaneously based on 5...

  4. Pyrolytic 3D Carbon Microelectrodes for Electrochemistry

    DEFF Research Database (Denmark)

    Hemanth, Suhith; Caviglia, Claudia; Amato, Letizia;

    2016-01-01

    electrochemical activity, chemical stability, and ease in surface functionalization [1]. The most common carbon microfabrication techniques (i.e. screen printing) produce two-dimensional (2D) electrodes, which limit the detection sensitivity. Hence several 3D microfabrication techniques have been explored......This work presents the fabrication and characterization of multi-layered three-dimensional (3D) pyrolysed carbon microelectrodes for electrochemical applications. For this purpose, an optimized UV photolithography and pyrolysis process with the negative tone photoresist SU-8 has been developed....... The fabricated three electrode electrochemical cell is characterized with cyclic voltammetry (CV) using the standard potassium ferri-ferrocyanide redox probe. Carbon materials have several attractive characteristics as microelectrodes for electrochemical applications, such as wide potential window, good...

  5. Microfluidic 3D Helix Mixers

    Directory of Open Access Journals (Sweden)

    Georgette B. Salieb-Beugelaar

    2016-10-01

    Full Text Available Polymeric microfluidic systems are well suited for miniaturized devices with complex functionality, and rapid prototyping methods for 3D microfluidic structures are increasingly used. Mixing at the microscale and performing chemical reactions at the microscale are important applications of such systems and we therefore explored feasibility, mixing characteristics and the ability to control a chemical reaction in helical 3D channels produced by the emerging thread template method. Mixing at the microscale is challenging because channel size reduction for improving solute diffusion comes at the price of a reduced Reynolds number that induces a strictly laminar flow regime and abolishes turbulence that would be desired for improved mixing. Microfluidic 3D helix mixers were rapidly prototyped in polydimethylsiloxane (PDMS using low-surface energy polymeric threads, twisted to form 2-channel and 3-channel helices. Structure and flow characteristics were assessed experimentally by microscopy, hydraulic measurements and chromogenic reaction, and were modeled by computational fluid dynamics. We found that helical 3D microfluidic systems produced by thread templating allow rapid prototyping, can be used for mixing and for controlled chemical reaction with two or three reaction partners at the microscale. Compared to the conventional T-shaped microfluidic system used as a control device, enhanced mixing and faster chemical reaction was found to occur due to the combination of diffusive mixing in small channels and flow folding due to the 3D helix shape. Thus, microfluidic 3D helix mixers can be rapidly prototyped using the thread template method and are an attractive and competitive method for fluid mixing and chemical reactions at the microscale.

  6. Ideal 3D asymmetric concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Botella, Angel [Departamento Fisica Aplicada a los Recursos Naturales, Universidad Politecnica de Madrid, E.T.S.I. de Montes, Ciudad Universitaria s/n, 28040 Madrid (Spain); Fernandez-Balbuena, Antonio Alvarez; Vazquez, Daniel; Bernabeu, Eusebio [Departamento de Optica, Universidad Complutense de Madrid, Fac. CC. Fisicas, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2009-01-15

    Nonimaging optics is a field devoted to the design of optical components for applications such as solar concentration or illumination. In this field, many different techniques have been used for producing reflective and refractive optical devices, including reverse engineering techniques. In this paper we apply photometric field theory and elliptic ray bundles method to study 3D asymmetric - without rotational or translational symmetry - concentrators, which can be useful components for nontracking solar applications. We study the one-sheet hyperbolic concentrator and we demonstrate its behaviour as ideal 3D asymmetric concentrator. (author)

  7. Advanced 3-D Ultrasound Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer

    The main purpose of the PhD project was to develop methods that increase the 3-D ultrasound imaging quality available for the medical personnel in the clinic. Acquiring a 3-D volume gives the medical doctor the freedom to investigate the measured anatomy in any slice desirable after the scan has...... beamforming. This is achieved partly because synthetic aperture imaging removes the limitation of a fixed transmit focal depth and instead enables dynamic transmit focusing. Lately, the major ultrasound companies have produced ultrasound scanners using 2-D transducer arrays with enough transducer elements...

  8. PubChem3D: Biologically relevant 3-D similarity

    Directory of Open Access Journals (Sweden)

    Kim Sunghwan

    2011-07-01

    Full Text Available Abstract Background The use of 3-D similarity techniques in the analysis of biological data and virtual screening is pervasive, but what is a biologically meaningful 3-D similarity value? Can one find statistically significant separation between "active/active" and "active/inactive" spaces? These questions are explored using 734,486 biologically tested chemical structures, 1,389 biological assay data sets, and six different 3-D similarity types utilized by PubChem analysis tools. Results The similarity value distributions of 269.7 billion unique conformer pairs from 734,486 biologically tested compounds (all-against-all from PubChem were utilized to help work towards an answer to the question: what is a biologically meaningful 3-D similarity score? The average and standard deviation for the six similarity measures STST-opt, CTST-opt, ComboTST-opt, STCT-opt, CTCT-opt, and ComboTCT-opt were 0.54 ± 0.10, 0.07 ± 0.05, 0.62 ± 0.13, 0.41 ± 0.11, 0.18 ± 0.06, and 0.59 ± 0.14, respectively. Considering that this random distribution of biologically tested compounds was constructed using a single theoretical conformer per compound (the "default" conformer provided by PubChem, further study may be necessary using multiple diverse conformers per compound; however, given the breadth of the compound set, the single conformer per compound results may still apply to the case of multi-conformer per compound 3-D similarity value distributions. As such, this work is a critical step, covering a very wide corpus of chemical structures and biological assays, creating a statistical framework to build upon. The second part of this study explored the question of whether it was possible to realize a statistically meaningful 3-D similarity value separation between reputed biological assay "inactives" and "actives". Using the terminology of noninactive-noninactive (NN pairs and the noninactive-inactive (NI pairs to represent comparison of the "active/active" and

  9. 3D Face Apperance Model

    OpenAIRE

    Lading, Brian; Larsen, Rasmus; Astrom, K

    2006-01-01

    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations

  10. 3D Face Appearance Model

    OpenAIRE

    Lading, Brian; Larsen, Rasmus; Åström, Kalle

    2006-01-01

    We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}

  11. Making Inexpensive 3-D Models

    Science.gov (United States)

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  12. When Art Meets 3D

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The presentation of the vanguard work,My Dream3D,the innovative production by the China Disabled People’s Performing Art Troupe(CDPPAT),directed by Joy Joosang Park,provided the film’s domestic premiere at Beijing’s Olympic Park onApril7.The show provided an intriguing insight not

  13. 3D terahertz beam profiling

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Strikwerda, Andrew; Wang, Tianwu;

    2013-01-01

    We present a characterization of THz beams generated in both a two-color air plasma and in a LiNbO3 crystal. Using a commercial THz camera, we record intensity images as a function of distance through the beam waist, from which we extract 2D beam profiles and visualize our measurements into 3D beam...

  14. 3D Printing: Exploring Capabilities

    Science.gov (United States)

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  15. Viewing galaxies in 3D

    CERN Document Server

    Krajnović, Davor

    2016-01-01

    Thanks to a technique that reveals galaxies in 3D, astronomers can now show that many galaxies have been wrongly classified. Davor Krajnovi\\'c argues that the classification scheme proposed 85 years ago by Edwin Hubble now needs to be revised.

  16. Priprava 3D modelov za 3D tisk

    OpenAIRE

    Pikovnik, Tomaž

    2015-01-01

    Po mnenju nekaterih strokovnjakov bo aditivna proizvodnja (ali 3D tiskanje) spremenila proizvodnjo industrijo, saj si bo vsak posameznik lahko natisnil svoj objekt po želji. V diplomski nalogi so predstavljene nekatere tehnologije aditivne proizvodnje. V nadaljevanju diplomske naloge je predstavljena izdelava makete hiše v merilu 1:100, vse od modeliranja do tiskanja. Poseben poudarek je posvečen predelavi modela, da je primeren za tiskanje, kjer je razvit pristop za hitrejše i...

  17. Post processing of 3D models for 3D printing

    OpenAIRE

    Pikovnik, Tomaž

    2015-01-01

    According to the opinion of some experts the additive manufacturing or 3D printing will change manufacturing industry, because any individual could print their own model according to his or her wishes. In this graduation thesis some of the additive manufacturing technologies are presented. Furthermore in the production of house scale model in 1:100 is presented, starting from modeling to printing. Special attention is given to postprocessing of the building model elements us...

  18. 3D Cameras: 3D Computer Vision of Wide Scope

    OpenAIRE

    May, Stefan; Pervoelz, Kai; Surmann, Hartmut

    2007-01-01

    First of all, a short comparison of range sensors and their underlying principles was given. The chapter further focused on 3D cameras. The latest innovations have given a significant improvement for the measurement accuracy, wherefore this technology has attracted attention in the robotics community. This was also the motivation for the examination in this chapter. On this account, several applications were presented, which represents common problems in the domain of autonomous robotics. For...

  19. DYNA3D2000*, Explicit 3-D Hydrodynamic FEM Program

    International Nuclear Information System (INIS)

    1 - Description of program or function: DYNA3D2000 is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding, single surface contact and automatic contact generation. 2 - Method of solution: Discretization of a continuous model transforms partial differential equations into algebraic equations. A numerical solution is then obtained by solving these algebraic equations through a direct time marching scheme. 3 - Restrictions on the complexity of the problem: Recent software improvements have eliminated most of the user identified limitations with dynamic memory allocation and a very large format description that has pushed potential problem sizes beyond the reach of most users. The dominant restrictions remain in code execution speed and robustness, which the developers constantly strive to improve

  20. 3D Model of Surfactant Replacement Therapy

    Science.gov (United States)

    Grotberg, James; Tai, Cheng-Feng; Filoche, Marcel

    2015-11-01

    Surfactant Replacement Therapy (SRT) involves instillation of a liquid-surfactant mixture directly into the lung airway tree. Though successful in neonatal applications, its use in adults had early success followed by failure. We present the first mathematical model of 3D SRT where a liquid plug propagates through the tree from forced inspiration. In two separate modeling steps, the plug first deposits a coating film on the airway wall which subtracts from its volume, a ``coating cost''. Then the plug splits unevenly at the airway bifurcation due to gravity. The steps are repeated until a plug ruptures or reaches the tree endpoint alveoli/acinus. The model generates 3D images of the resulting acinar distribution and calculates two global indexes, efficiency and homogeneity. Simulating published literature, the earlier successful adult SRT studies show comparatively good index values, while the later failed studies do not. Those unsuccessful studies used smaller dose volumes with higher concentration mixtures, apparently assuming a well mixed compartment. The model shows that adult lungs are not well mixed in SRT due to the coating cost and gravity effects. Returning to the higher dose volume protocols could save many thousands of lives annually in the US. Supported by NIH Grants HL85156, HL84370 and Agence Nationale de la Recherche, ANR no. 2010-BLAN-1119-05.

  1. 3D Printable Graphene Composite.

    Science.gov (United States)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-08

    In human being's history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today's personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite's linear thermal coefficient is below 75 ppm·°C(-1) from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  2. 3-D Relativistic MHD Simulations

    Science.gov (United States)

    Nishikawa, K.-I.; Frank, J.; Koide, S.; Sakai, J.-I.; Christodoulou, D. M.; Sol, H.; Mutel, R. L.

    1998-12-01

    We present 3-D numerical simulations of moderately hot, supersonic jets propagating initially along or obliquely to the field lines of a denser magnetized background medium with Lorentz factors of W = 4.56 and evolving in a four-dimensional spacetime. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently in the simulations. This effect is analogous to pushing Japanese ``noren'' or vertical Venetian blinds out of the way while the slats are allowed to bend in 3-D space rather than as a 2-D slab structure.

  3. 3D Printed Robotic Hand

    Science.gov (United States)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  4. Forensic 3D Scene Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.

    1999-10-12

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  5. User experience while viewing stereoscopic 3D television.

    Science.gov (United States)

    Read, Jenny C A; Bohr, Iwo

    2014-01-01

    3D display technologies have been linked to visual discomfort and fatigue. In a lab-based study with a between-subjects design, 433 viewers aged from 4 to 82 years watched the same movie in either 2D or stereo 3D (S3D), and subjectively reported on a range of aspects of their viewing experience. Our results suggest that a minority of viewers, around 14%, experience adverse effects due to viewing S3D, mainly headache and eyestrain. A control experiment where participants viewed 2D content through 3D glasses suggests that around 8% may report adverse effects which are not due directly to viewing S3D, but instead are due to the glasses or to negative preconceptions about S3D (the 'nocebo effect'). Women were slightly more likely than men to report adverse effects with S3D. We could not detect any link between pre-existing eye conditions or low stereoacuity and the likelihood of experiencing adverse effects with S3D.

  6. [Real time 3D echocardiography

    Science.gov (United States)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  7. Fully 3D refraction correction dosimetry system

    Science.gov (United States)

    Manjappa, Rakesh; Sharath Makki, S.; Kumar, Rajesh; Mohan Vasu, Ram; Kanhirodan, Rajan

    2016-02-01

    The irradiation of selective regions in a polymer gel dosimeter results in an increase in optical density and refractive index (RI) at those regions. An optical tomography-based dosimeter depends on rayline path through the dosimeter to estimate and reconstruct the dose distribution. The refraction of light passing through a dose region results in artefacts in the reconstructed images. These refraction errors are dependant on the scanning geometry and collection optics. We developed a fully 3D image reconstruction algorithm, algebraic reconstruction technique-refraction correction (ART-rc) that corrects for the refractive index mismatches present in a gel dosimeter scanner not only at the boundary, but also for any rayline refraction due to multiple dose regions inside the dosimeter. In this study, simulation and experimental studies have been carried out to reconstruct a 3D dose volume using 2D CCD measurements taken for various views. The study also focuses on the effectiveness of using different refractive-index matching media surrounding the gel dosimeter. Since the optical density is assumed to be low for a dosimeter, the filtered backprojection is routinely used for reconstruction. We carry out the reconstructions using conventional algebraic reconstruction (ART) and refractive index corrected ART (ART-rc) algorithms. The reconstructions based on FDK algorithm for cone-beam tomography has also been carried out for comparison. Line scanners and point detectors, are used to obtain reconstructions plane by plane. The rays passing through dose region with a RI mismatch does not reach the detector in the same plane depending on the angle of incidence and RI. In the fully 3D scanning setup using 2D array detectors, light rays that undergo refraction are still collected and hence can still be accounted for in the reconstruction algorithm. It is found that, for the central region of the dosimeter, the usable radius using ART-rc algorithm with water as RI matched

  8. An integrable 3D lattice model with positive Boltzmann weights

    CERN Document Server

    Mangazeev, Vladimir V; Sergeev, Sergey M

    2013-01-01

    In this paper we construct a three-dimensional (3D) solvable lattice model with non-negative Boltzmann weights. The spin variables in the model are assigned to edges of the 3D cubic lattice and run over an infinite number of discrete states. The Boltzmann weights satisfy the tetrahedron equation, which is a 3D generalisation of the Yang-Baxter equation. The weights depend on a free parameter 03D lattice model with non-negative Boltzmann weights.

  9. Wireless 3D Chocolate Printer

    Directory of Open Access Journals (Sweden)

    FROILAN G. DESTREZA

    2014-02-01

    Full Text Available This study is for the BSHRM Students of Batangas State University (BatStateU ARASOF for the researchers believe that the Wireless 3D Chocolate Printer would be helpful in their degree program especially on making creative, artistic, personalized and decorative chocolate designs. The researchers used the Prototyping model as procedural method for the successful development and implementation of the hardware and software. This method has five phases which are the following: quick plan, quick design, prototype construction, delivery and feedback and communication. This study was evaluated by the BSHRM Students and the assessment of the respondents regarding the software and hardware application are all excellent in terms of Accuracy, Effecitveness, Efficiency, Maintainability, Reliability and User-friendliness. Also, the overall level of acceptability of the design project as evaluated by the respondents is excellent. With regard to the observation about the best raw material to use in 3D printing, the chocolate is good to use as the printed material is slightly distorted,durable and very easy to prepare; the icing is also good to use as the printed material is not distorted and is very durable but consumes time to prepare; the flour is not good as the printed material is distorted, not durable but it is easy to prepare. The computation of the economic viability level of 3d printer with reference to ROI is 37.14%. The recommendation of the researchers in the design project are as follows: adding a cooling system so that the raw material will be more durable, development of a more simplified version and improving the extrusion process wherein the user do not need to stop the printing process just to replace the empty syringe with a new one.

  10. A Negative Index Metamaterial-Inspired UWB Antenna with an Integration of Complementary SRR and CLS Unit Cells for Microwave Imaging Sensor Applications.

    Science.gov (United States)

    Islam, Mohammad Tariqul; Islam, Md Moinul; Samsuzzaman, Md; Faruque, Mohammad Rashed Iqbal; Misran, Norbahiah

    2015-01-01

    This paper presents a negative index metamaterial incorporated UWB antenna with an integration of complementary SRR (split-ring resonator) and CLS (capacitive loaded strip) unit cells for microwave imaging sensor applications. This metamaterial UWB antenna sensor consists of four unit cells along one axis, where each unit cell incorporates a complementary SRR and CLS pair. This integration enables a design layout that allows both a negative value of permittivity and a negative value of permeability simultaneous, resulting in a durable negative index to enhance the antenna sensor performance for microwave imaging sensor applications. The proposed MTM antenna sensor was designed and fabricated on an FR4 substrate having a thickness of 1.6 mm and a dielectric constant of 4.6. The electrical dimensions of this antenna sensor are 0.20 λ × 0.29 λ at a lower frequency of 3.1 GHz. This antenna sensor achieves a 131.5% bandwidth (VSWR sensors. PMID:26007721

  11. Tehokas 3D-animaatiotuotanto

    OpenAIRE

    Järvinen, Manu

    2009-01-01

    Opinnäytetyössä tutkittiin tehokasta tapaa toteuttaa minuutin mittainen animaatio Scene.org Awards -tapahtuman avajaisseremoniaan. Kyseinen video toteutettiin osana opinnäytetyötä. Työhön osallistui tekijän lisäksi 3D-mallintaja sekä muusikko. Työkaluina käytettiin pääasiassa Autodesk 3ds Max-, sekä Adobe After Effects- ja Adobe Photoshop -ohjelmia. Opinnäytetyö koostuu animaatioprojektin tuotantoputken ja tiedostonhallintamallin perinpohjaisesta läpikäymisestä sekä sen asian tutkimisesta...

  12. Virtual 3-D Facial Reconstruction

    Directory of Open Access Journals (Sweden)

    Martin Paul Evison

    2000-06-01

    Full Text Available Facial reconstructions in archaeology allow empathy with people who lived in the past and enjoy considerable popularity with the public. It is a common misconception that facial reconstruction will produce an exact likeness; a resemblance is the best that can be hoped for. Research at Sheffield University is aimed at the development of a computer system for facial reconstruction that will be accurate, rapid, repeatable, accessible and flexible. This research is described and prototypical 3-D facial reconstructions are presented. Interpolation models simulating obesity, ageing and ethnic affiliation are also described. Some strengths and weaknesses in the models, and their potential for application in archaeology are discussed.

  13. Making Inexpensive 3-D Models

    Science.gov (United States)

    Manos, Harry

    2016-03-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the TPT theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity well tailored to specific class lessons. Most of the supplies are readily available in the home or at school: rubbing alcohol, a rag, two colors of spray paint, art brushes, and masking tape. The cost of these supplies, if you don't have them, is less than 20.

  14. How 3-D Movies Work

    Institute of Scientific and Technical Information of China (English)

    吕铁雄

    2011-01-01

    难度:★★★★☆词数:450 建议阅读时间:8分钟 Most people see out of two eyes. This is a basic fact of humanity,but it’s what makes possible the illusion of depth(纵深幻觉) that 3-D movies create. Human eyes are spaced about two inches apart, meaning that each eye gives the brain a slightly different perspective(透视感)on the same object. The brain then uses this variance to quickly determine an object’s distance.

  15. Positional Awareness Map 3D (PAM3D)

    Science.gov (United States)

    Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise

    2012-01-01

    The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.

  16. 3D Printable Graphene Composite

    Science.gov (United States)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  17. 3D printed bionic ears.

    Science.gov (United States)

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  18. 3D printed bionic ears.

    Science.gov (United States)

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.

  19. LOTT RANCH 3D PROJECT

    International Nuclear Information System (INIS)

    The Lott Ranch 3D seismic prospect located in Garza County, Texas is a project initiated in September of 1991 by the J.M. Huber Corp., a petroleum exploration and production company. By today's standards the 126 square mile project does not seem monumental, however at the time it was conceived it was the most intensive land 3D project ever attempted. Acquisition began in September of 1991 utilizing GEO-SEISMIC, INC., a seismic data contractor. The field parameters were selected by J.M. Huber, and were of a radical design. The recording instruments used were GeoCor IV amplifiers designed by Geosystems Inc., which record the data in signed bit format. It would not have been practical, if not impossible, to have processed the entire raw volume with the tools available at that time. The end result was a dataset that was thought to have little utility due to difficulties in processing the field data. In 1997, Yates Energy Corp. located in Roswell, New Mexico, formed a partnership to further develop the project. Through discussions and meetings with Pinnacle Seismic, it was determined that the original Lott Ranch 3D volume could be vastly improved upon reprocessing. Pinnacle Seismic had shown the viability of improving field-summed signed bit data on smaller 2D and 3D projects. Yates contracted Pinnacle Seismic Ltd. to perform the reprocessing. This project was initiated with high resolution being a priority. Much of the potential resolution was lost through the initial summing of the field data. Modern computers that are now being utilized have tremendous speed and storage capacities that were cost prohibitive when this data was initially processed. Software updates and capabilities offer a variety of quality control and statics resolution, which are pertinent to the Lott Ranch project. The reprocessing effort was very successful. The resulting processed data-set was then interpreted using modern PC-based interpretation and mapping software. Production data, log data

  20. 3D Printing of Graphene Aerogels.

    Science.gov (United States)

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-01

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (aerogel presents superelastic and high electrical conduction. PMID:26861680

  1. 3D biometrics systems and applications

    CERN Document Server

    Zhang, David

    2013-01-01

    Includes discussions on popular 3D imaging technologies, combines them with biometric applications, and then presents real 3D biometric systems Introduces many efficient 3D feature extraction, matching, and fusion algorithms Techniques presented have been supported by experimental results using various 3D biometric classifications

  2. 3D Printing of Graphene Aerogels.

    Science.gov (United States)

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-01

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction.

  3. Photopolymers in 3D printing applications

    OpenAIRE

    Pandey, Ramji

    2014-01-01

    3D printing is an emerging technology with applications in several areas. The flexibility of the 3D printing system to use variety of materials and create any object makes it an attractive technology. Photopolymers are one of the materials used in 3D printing with potential to make products with better properties. Due to numerous applications of photopolymers and 3D printing technologies, this thesis is written to provide information about the various 3D printing technologies with particul...

  4. Natural fibre composites for 3D Printing

    OpenAIRE

    Pandey, Kapil

    2015-01-01

    3D printing has been common option for prototyping. Not all the materials are suitable for 3D printing. Various studies have been done and still many are ongoing regarding the suitability of the materials for 3D printing. This thesis work discloses the possibility of 3D printing of certain polymer composite materials. The main objective of this thesis work was to study the possibility for 3D printing the polymer composite material composed of natural fibre composite and various different ...

  5. Conducting polymer 3D microelectrodes

    DEFF Research Database (Denmark)

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi;

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...... showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared...... with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described...

  6. 3D Energy Harvester Evaluation

    Directory of Open Access Journals (Sweden)

    V. Janicek

    2013-04-01

    Full Text Available This paper discusses the characterization and evaluation of an MEMS based electrostatic generator, a part of the power supply unit of the self-powered microsystem[1,2,3]. The designed generator is based on electrostatic converter and uses the principle of conversion of non-electric energy into electrical energy by periodical modification of gap between electrodes of a capacitor [4]. The structure is designed and modeled as three-dimensional silicon based MEMS. Innovative approach involving the achievement of very low resonant frequency of the structure (about 100Hz by usage of modified long cantilever spring design, minimum area of the chip, 3D work mode, the ability to be tuned to reach desired parameters, proves promising directions of possible further development.

  7. Conducting Polymer 3D Microelectrodes

    Directory of Open Access Journals (Sweden)

    Jenny Emnéus

    2010-12-01

    Full Text Available Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements.

  8. Supernova Remnant in 3-D

    Science.gov (United States)

    2009-01-01

    of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through. The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave. This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron. High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these structures, but their orientation and

  9. Face recognition using SIFT features under 3D meshes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Cheng; GU Yu-zhang; HU Ke-li; WANG Ying-guan

    2015-01-01

    Expression, occlusion, and pose variations are three main challenges for 3D face recognition. A novel method is presented to address 3D face recognition using scale-invariant feature transform (SIFT) features on 3D meshes. After preprocessing, shape index extrema on the 3D facial surface are selected as keypoints in the difference scale space and the unstable keypoints are removed after two screening steps. Then, a local coordinate system for each keypoint is established by principal component analysis (PCA). Next, two local geometric features are extracted around each keypoint through the local coordinate system. Additionally, the features are augmented by the symmetrization according to the approximate left-right symmetry in human face. The proposed method is evaluated on the Bosphorus, BU-3DFE, and Gavab databases, respectively. Good results are achieved on these three datasets. As a result, the proposed method proves robust to facial expression variations, partial external occlusions and large pose changes.

  10. Photonic band structure and effective medium properties of doubly-resonant core-shell metallo-dielectric nanowire arrays: low-loss, isotropic optical negative-index behavior

    International Nuclear Information System (INIS)

    We investigate theoretically and numerically the photonic band structure in the optical domain of an array of core–shell metal-semiconductor nanowires. Corresponding negative-index photonic bands are calculated, showing isotropic equifrequency surfaces. The effective (negative) electric permittivity and magnetic permeability, retrieved from S-parameters, are used to compare the performance of such nanowire arrays with homogeneous media in canonical examples, such as refraction through a prism and flat-lens focusing. Very good agreement is found, confirming the effective medium behavior of the nanowire array as a low-loss, isotropic (2D) and bulk, optical negative index metamaterial. Indeed, disorder is introduced to further stress its robustness. (paper)

  11. 3D multiplexed immunoplasmonics microscopy

    Science.gov (United States)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  12. ORMGEN3D, 3-D Crack Geometry FEM Mesh Generator

    International Nuclear Information System (INIS)

    1 - Description of program or function: ORMGEN3D is a finite element mesh generator for computational fracture mechanics analysis. The program automatically generates a three-dimensional finite element model for six different crack geometries. These geometries include flat plates with straight or curved surface cracks and cylinders with part-through cracks on the outer or inner surface. Mathematical or user-defined crack shapes may be considered. The curved cracks may be semicircular, semi-elliptical, or user-defined. A cladding option is available that allows for either an embedded or penetrating crack in the clad material. 2 - Method of solution: In general, one eighth or one-quarter of the structure is modelled depending on the configuration or option selected. The program generates a core of special wedge or collapsed prism elements at the crack front to introduce the appropriate stress singularity at the crack tip. The remainder of the structure is modelled with conventional 20-node iso-parametric brick elements. Element group I of the finite element model consists of an inner core of special crack tip elements surrounding the crack front enclosed by a single layer of conventional brick elements. Eight element divisions are used in a plane orthogonal to the crack front, while the number of element divisions along the arc length of the crack front is user-specified. The remaining conventional brick elements of the model constitute element group II. 3 - Restrictions on the complexity of the problem: Maxima of 5,500 nodes, 4 layers of clad elements

  13. 3D multiplexed immunoplasmonics microscopy.

    Science.gov (United States)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-21

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K(+) channel subunit KV1.1) on human cancer CD44(+) EGFR(+) KV1.1(+) MDA-MB-231 cells and reference CD44(-) EGFR(-) KV1.1(+) 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third

  14. Spatial access method for urban geospatial database management: An efficient approach of 3D vector data clustering technique

    DEFF Research Database (Denmark)

    Azri, Suhaibah; Ujang, Uznir; Rahman, Alias Abdul;

    2014-01-01

    datasets. As a solution, 3D spatial index structure is used as a booster to increase the performance of data retrieval. In commercial database, commonly and widely used index structure for 3D spatial database is 3D R-Tree. This is due to its simplicity and promising method in handling spatial data. However...

  15. Kuvaus 3D-tulostamisesta hammastekniikassa

    OpenAIRE

    Munne, Mauri; Mustonen, Tuomas; Vähäjylkkä, Jaakko

    2013-01-01

    3D-tulostaminen kehittyy nopeasti ja yleistyy koko ajan. Tulostimien tarkkuuksien kehittyessä 3D-tulostus on ottamassa myös jalansijaa hammastekniikan alalta. Tämän opinnäytetyön tarkoituksena on kuvata 3D-tulostamisen tilaa hammastekniikassa. 3D-tulostaminen on Suomessa vielä melko harvinaista, joten opinnäytetyön tavoitteena on koota yhteen kaikki mahdollinen tieto liittyen 3D-tulostamiseen hammastekniikassa. Tavoitteena on myös 3D-tulostimen testaaminen käytännössä aina suun skannaami...

  16. NIF Ignition Target 3D Point Design

    Energy Technology Data Exchange (ETDEWEB)

    Jones, O; Marinak, M; Milovich, J; Callahan, D

    2008-11-05

    We have developed an input file for running 3D NIF hohlraums that is optimized such that it can be run in 1-2 days on parallel computers. We have incorporated increasing levels of automation into the 3D input file: (1) Configuration controlled input files; (2) Common file for 2D and 3D, different types of capsules (symcap, etc.); and (3) Can obtain target dimensions, laser pulse, and diagnostics settings automatically from NIF Campaign Management Tool. Using 3D Hydra calculations to investigate different problems: (1) Intrinsic 3D asymmetry; (2) Tolerance to nonideal 3D effects (e.g. laser power balance, pointing errors); and (3) Synthetic diagnostics.

  17. Stereoscopic 3D video games and their effects on engagement

    Science.gov (United States)

    Hogue, Andrew; Kapralos, Bill; Zerebecki, Chris; Tawadrous, Mina; Stanfield, Brodie; Hogue, Urszula

    2012-03-01

    With television manufacturers developing low-cost stereoscopic 3D displays, a large number of consumers will undoubtedly have access to 3D-capable televisions at home. The availability of 3D technology places the onus on content creators to develop interesting and engaging content. While the technology of stereoscopic displays and content generation are well understood, there are many questions yet to be answered surrounding its effects on the viewer. Effects of stereoscopic display on passive viewers for film are known, however video games are fundamentally different since the viewer/player is actively (rather than passively) engaged in the content. Questions of how stereoscopic viewing affects interaction mechanics have previously been studied in the context of player performance but very few have attempted to quantify the player experience to determine whether stereoscopic 3D has a positive or negative influence on their overall engagement. In this paper we present a preliminary study of the effects stereoscopic 3D have on player engagement in video games. Participants played a video game in two conditions, traditional 2D and stereoscopic 3D and their engagement was quantified using a previously validated self-reporting tool. The results suggest that S3D has a positive effect on immersion, presence, flow, and absorption.

  18. 3D multiplexed immunoplasmonics microscopy

    Science.gov (United States)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  19. Crowdsourcing Based 3d Modeling

    Science.gov (United States)

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  20. Eesti 3D jaoks kitsas / Virge Haavasalu

    Index Scriptorium Estoniae

    Haavasalu, Virge

    2009-01-01

    Produktsioonifirma Digitaalne Sputnik: Kaur ja Kaspar Kallas tegelevad filmide produtseerimise ning 3D digitaalkaamerate tootearendusega (Silicon Imaging LLC). Vendade Kallaste 3D-kaamerast. Kommenteerib Eesti Filmi Sihtasutuse direktor Marge Liiske

  1. Will 3D printers manufacture your meals?

    NARCIS (Netherlands)

    Bommel, K.J.C. van

    2013-01-01

    These days, 3D printers are laying down plastics, metals, resins, and other materials in whatever configurations creative people can dream up. But when the next 3D printing revolution comes, you'll be able to eat it.

  2. 3D Flash LIDAR Space Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc. (ASC) is a small business that has developed 3D Flash LIDAR systems for space and terrestrial applications. 3D Flash LIDAR is...

  3. Face Detection with a 3D Model

    OpenAIRE

    Barbu, Adrian; Lay, Nathan; Gramajo, Gary

    2014-01-01

    This paper presents a part-based face detection approach where the spatial relationship between the face parts is represented by a hidden 3D model with six parameters. The computational complexity of the search in the six dimensional pose space is addressed by proposing meaningful 3D pose candidates by image-based regression from detected face keypoint locations. The 3D pose candidates are evaluated using a parameter sensitive classifier based on difference features relative to the 3D pose. A...

  4. 3D Additive Manufacturing Symposium & Workshop

    OpenAIRE

    Unver, Ertu; Taylor, Andrew

    2015-01-01

    The IMI /3M BIC 3D Additive Manufacturing Symposium and Workshop was hosted by 3M Buckley Innovation Centre on March 17th 2015. The event was attended by the major players in precision engineering, 3D additive design and manufacturing: Representatives from EOS, Renishaw, HK 3D Printing IMI Plc Senior Management team, design engineers, programmers and academics from the University of Huddersfield School of Art Design & Architecture, 3M Buckley centre 3D printing management and designers shared...

  5. Forward ramp in 3D

    Science.gov (United States)

    1997-01-01

    Mars Pathfinder's forward rover ramp can be seen successfully unfurled in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This ramp was not used for the deployment of the microrover Sojourner, which occurred at the end of Sol 2. When this image was taken, Sojourner was still latched to one of the lander's petals, waiting for the command sequence that would execute its descent off of the lander's petal.The image helped Pathfinder scientists determine whether to deploy the rover using the forward or backward ramps and the nature of the first rover traverse. The metallic object at the lower left of the image is the lander's low-gain antenna. The square at the end of the ramp is one of the spacecraft's magnetic targets. Dust that accumulates on the magnetic targets will later be examined by Sojourner's Alpha Proton X-Ray Spectrometer instrument for chemical analysis. At right, a lander petal is visible.The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  6. 3D modelling for multipurpose cadastre

    NARCIS (Netherlands)

    Abduhl Rahman, A.; Van Oosterom, P.J.M.; Hua, T.C.; Sharkawi, K.H.; Duncan, E.E.; Azri, N.; Hassan, M.I.

    2012-01-01

    Three-dimensional (3D) modelling of cadastral objects (such as legal spaces around buildings, around utility networks and other spaces) is one of the important aspects for a multipurpose cadastre (MPC). This paper describes the 3D modelling of the objects for MPC and its usage to the knowledge of 3D

  7. Beowulf 3D: a case study

    Science.gov (United States)

    Engle, Rob

    2008-02-01

    This paper discusses the creative and technical challenges encountered during the production of "Beowulf 3D," director Robert Zemeckis' adaptation of the Old English epic poem and the first film to be simultaneously released in IMAX 3D and digital 3D formats.

  8. 3D Printing and Its Urologic Applications.

    Science.gov (United States)

    Soliman, Youssef; Feibus, Allison H; Baum, Neil

    2015-01-01

    3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology.

  9. Expanding Geometry Understanding with 3D Printing

    Science.gov (United States)

    Cochran, Jill A.; Cochran, Zane; Laney, Kendra; Dean, Mandi

    2016-01-01

    With the rise of personal desktop 3D printing, a wide spectrum of educational opportunities has become available for educators to leverage this technology in their classrooms. Until recently, the ability to create physical 3D models was well beyond the scope, skill, and budget of many schools. However, since desktop 3D printers have become readily…

  10. 中红外波长负折射率液晶材料%Negative Refractive Index Liquid Crystal at Mid-Infrared Wavelength

    Institute of Scientific and Technical Information of China (English)

    李晓平; 贾丹; 杨程亮; 彭增辉; 宣丽

    2013-01-01

    The negative refractive index has been demonstrated theoretically in nematic liquid crystal consisting of randomly dispersive silicon carbide (SiC) core-shell microspheres in 13~13. 2 μm mid-infrared wavelength range. Due to large permittivity of SiC induced by phonon polaritonic resonance,the collections of SiC microspheres produce negative permeability near 13. 1 μm. By adjusting reasonable shell parameters,negative index liquid crystal is formed. Electromagnetic simulations show the mechanism for the negative permittivity and negative permeability.%在包含碳化硅核壳微球的向列相液晶中,理论计算发现在13~13.2μm中红外波段范围出现了负折射率.由于强烈声子激化共振产生大的介电常数,碳化硅微球在13.1μm附近产生负磁导率.通过确定壳层材料的等离子参数,获得了负折射率.电磁模拟解释了负介电常数和负磁导率产生的机理.

  11. Estrogen receptor-negative breast ductal carcinoma: clinicopathological features and MIB-1 (Ki-67 proliferative index association.

    Directory of Open Access Journals (Sweden)

    Noorasmaliza Mdpaiman

    Full Text Available Breast cancer estrogen receptor (ER status is one of the strong additional factors in predicting response of patients towards hormonal treatment. The main aim of this study was to assess the morphological characteristics and proliferative activity using MIB-1(Ki-67 of estrogen receptor negative invasive breast ductal carcinoma (NOS type as well as to correlate these features with clinicopathological data. We also aim to study the expression of c-erbB2 in ER negative breast tumors. High proliferative rate (MIB-1 above 20% was observed in 63 (63.6% of 99 ER negative tumors and that these tumors were associated with high expression of c-erbB2 (57.6%. We observed that MIB-1 is a reliable independent prognostic indicator for ER negative infiltrating ductal carcinoma in this study.

  12. Investigating Mobile Stereoscopic 3D Touchscreen Interaction

    OpenAIRE

    Colley, Ashley; Hakkila, Jonna; SCHOENING, Johannes; Posti, Maaret

    2013-01-01

    3D output is no longer limited to large screens in cinemas or living rooms. Nowadays more and more mobile devices are equipped with autostereoscopic 3D (S3D) touchscreens. As a consequence interaction with 3D content now also happens whilst users are on the move. In this paper we carried out a user study with 27 participants to assess how mobile interaction, i.e. whilst walking, with mobile S3D devices, differs from interaction with 2D mobile touchscreens. We investigate the difference in tou...

  13. User-centered 3D geovisualisation

    DEFF Research Database (Denmark)

    Nielsen, Anette Hougaard

    2004-01-01

    . In a broader perspective, the overall aim is to develop a language in 3D Geovisualisation gained through usability projects and the development of a theoretical background. A conceptual level of user-centered 3D Geovisualisation is introduced by applying a categorisation originating from Virtual Reality......3D Geovisualisation is a multidisciplinary science mainly utilizing geographically related data, developing software systems for 3D visualisation and producing relevant models. In this paper the connection between geoinformation stored as 3D objects and the end user is of special interest...

  14. Wafer level 3-D ICs process technology

    CERN Document Server

    Tan, Chuan Seng; Reif, L Rafael

    2009-01-01

    This book focuses on foundry-based process technology that enables the fabrication of 3-D ICs. The core of the book discusses the technology platform for pre-packaging wafer lever 3-D ICs. However, this book does not include a detailed discussion of 3-D ICs design and 3-D packaging. This is an edited book based on chapters contributed by various experts in the field of wafer-level 3-D ICs process technology. They are from academia, research labs and industry.

  15. View-based 3-D object retrieval

    CERN Document Server

    Gao, Yue

    2014-01-01

    Content-based 3-D object retrieval has attracted extensive attention recently and has applications in a variety of fields, such as, computer-aided design, tele-medicine,mobile multimedia, virtual reality, and entertainment. The development of efficient and effective content-based 3-D object retrieval techniques has enabled the use of fast 3-D reconstruction and model design. Recent technical progress, such as the development of camera technologies, has made it possible to capture the views of 3-D objects. As a result, view-based 3-D object retrieval has become an essential but challenging res

  16. Esiselvitys elintarvikkeiden 3D-tulostamisesta

    OpenAIRE

    Teva, Arno

    2015-01-01

    Opinnäytetyön tavoitteena oli laatia esiselvitys 3D-tulostamisesta elintarvikealalla. 3D-tulostaminen on uusi ja jatkuvasti kehittyvä ala, joka tulee vaikuttamaan myös elintarvikealan kehittymiseen. Työn tarkoituksena oli selvittää elintarvikenäkökulmasta 3D-tulostamiseen liittyviä tekijöitä. Aiheen toimeksiantajana oli Hämeen ammattikorkeakoulu ja kohderyhmänä elintarvikealan Pk-yritykset. Opinnäytetyössä esitellään yleisimpiä 3D-tulostusmenetelmiä ja selvitetään 3D-tulostamista tietokone...

  17. PRIPRAVA MODELOV ZA 3D - TISK

    OpenAIRE

    Črešnik, Igor

    2015-01-01

    V diplomskem delu predstavljamo pripravo modela na 3D-tisk. V prvem delu smo preleteli zgodovino tiska. Predstavili smo tehnologijo 3D-tiska ter različne tehnike tiskanja, ki jih uporabljajo določeni tiskalniki. V nadaljevanju smo pregledali različne tipe 3D-tiskalnikov, ki se uporabljajo za domačo ali komercialno uporabo ter izpostavili njihove prednosti in slabosti. V zadnjem delu diplomskega dela smo na praktičnem primeru 3D-modela hiše prikazali proces priprave modela za 3D-tisk. Pri delu...

  18. 3D-tulostimien tutkiminen painotalolle

    OpenAIRE

    Toivonen, Aleksi

    2014-01-01

    Opinnäytetyön tavoitteena oli perehtyä 3D-tulostamiseen ja tutkia painotaloon sopivia 3D-tulostimia ja 3D-tulostamiseen liittyviä tekniikoita. Opinnäytetyön tavoitteena oli myös pohtia painotalolle mahdollisia 3D-tulostamiseen liittyviä tuotekonsepteja yrityksille ja yksityisille kuluttajille. Painoalan yrityksen tarkoituksena on sijoittaa lähitulevaisuudessa 3D-tulostimeen, joten opinnäytetyö oli ajankohtainen tutkimustyö yritykselle. Opinnäytetyön toimeksiantajana toimi painoalan yritys. ...

  19. BUILDING A HOMEMADE 3D PRINTER

    OpenAIRE

    Tunc, Baran

    2015-01-01

    3D printing has been attracted much attention around the world due to its high potential of new application fields. In this respect, developing and inventing new filament materials for 3D printers or new techniques of 3D printing are the main interest of the many materials scientists. This paper reports a comprehensive overview of 3D printing followed by a summary of my ongoing study of building a composite homemade 3D printer. At this stage of this study, a CNC router was successfully conver...

  20. 3D Printing our future: Now

    OpenAIRE

    Taylor, Andrew; Unver, Ertu

    2015-01-01

    This 3D Printing our Future:Now talk and visual presentation was given to delegates at the IMI 3D Workshop held at 3M Buckley Innovation Centre on 17th March 2015. The event was hosted by 3Mbuckley Innovation Centre for IMI plc a global engineering company, 3M, and leading 3D additive manufacturing technology providers: EOS, Renishaw and HK 3D printing to disseminate and share their experience on the latest 3D additive design and manufacturing technologies available to the engineering an...

  1. Estrogen Receptor-Negative Breast Ductal Carcinoma: Clinicopathological Features and Mib-1 (Ki-67) Proliferative Index Association

    OpenAIRE

    Noorasmaliza Mdpaiman; Siti Aishah Md Ali; Reena Mdzin; Meor Zamari Meor Kamal; Wan Anna Md Amin; Mohan Nallusamy; Pavitratha Puspanathan; Rohaizak Muhammad; Sharifa Ezat Wan Puteh; Srijit Das

    2014-01-01

    Breast cancer estrogen receptor (ER) status is one of the strong additional factors in predicting response of patients towards hormonal treatment. The main aim of this study was to assess the morphological characteristics and proliferative activity using MIB-1(Ki-67) of estrogen receptor negative invasive breast ductal carcinoma (NOS type) as well as to correlate these features with clinicopathological data. We also aim to study the expression of c-erbB2 in ER negative breast tumors. High pro...

  2. Web-based interactive visualization of 3D video mosaics using X3D standard

    Institute of Scientific and Technical Information of China (English)

    CHON Jaechoon; LEE Yang-Won; SHIBASAKI Ryosuke

    2006-01-01

    We present a method of 3D image mosaicing for real 3D representation of roadside buildings, and implement a Web-based interactive visualization environment for the 3D video mosaics created by 3D image mosaicing. The 3D image mosaicing technique developed in our previous work is a very powerful method for creating textured 3D-GIS data without excessive data processing like the laser or stereo system. For the Web-based open access to the 3D video mosaics, we build an interactive visualization environment using X3D, the emerging standard of Web 3D. We conduct the data preprocessing for 3D video mosaics and the X3D modeling for textured 3D data. The data preprocessing includes the conversion of each frame of 3D video mosaics into concatenated image files that can be hyperlinked on the Web. The X3D modeling handles the representation of concatenated images using necessary X3D nodes. By employing X3D as the data format for 3D image mosaics, the real 3D representation of roadside buildings is extended to the Web and mobile service systems.

  3. RELAP5-3D User Problems

    Energy Technology Data Exchange (ETDEWEB)

    Riemke, Richard Allan

    2002-09-01

    The Reactor Excursion and Leak Analysis Program with 3D capability1 (RELAP5-3D) is a reactor system analysis code that has been developed at the Idaho National Engineering and Environmental Laboratory (INEEL) for the U. S. Department of Energy (DOE). The 3D capability in RELAP5-3D includes 3D hydrodynamics2 and 3D neutron kinetics3,4. Assessment, verification, and validation of the 3D capability in RELAP5-3D is discussed in the literature5,6,7,8,9,10. Additional assessment, verification, and validation of the 3D capability of RELAP5-3D will be presented in other papers in this users seminar. As with any software, user problems occur. User problems usually fall into the categories of input processing failure, code execution failure, restart/renodalization failure, unphysical result, and installation. This presentation will discuss some of the more generic user problems that have been reported on RELAP5-3D as well as their resolution.

  4. 3D laptop for defense applications

    Science.gov (United States)

    Edmondson, Richard; Chenault, David

    2012-06-01

    Polaris Sensor Technologies has developed numerous 3D display systems using a US Army patented approach. These displays have been developed as prototypes for handheld controllers for robotic systems and closed hatch driving, and as part of a TALON robot upgrade for 3D vision, providing depth perception for the operator for improved manipulation and hazard avoidance. In this paper we discuss the prototype rugged 3D laptop computer and its applications to defense missions. The prototype 3D laptop combines full temporal and spatial resolution display with the rugged Amrel laptop computer. The display is viewed through protective passive polarized eyewear, and allows combined 2D and 3D content. Uses include robot tele-operation with live 3D video or synthetically rendered scenery, mission planning and rehearsal, enhanced 3D data interpretation, and simulation.

  5. 3D Chaotic Functions for Image Encryption

    Directory of Open Access Journals (Sweden)

    Pawan N. Khade

    2012-05-01

    Full Text Available This paper proposes the chaotic encryption algorithm based on 3D logistic map, 3D Chebyshev map, and 3D, 2D Arnolds cat map for color image encryption. Here the 2D Arnolds cat map is used for image pixel scrambling and 3D Arnolds cat map is used for R, G, and B component substitution. 3D Chebyshev map is used for key generation and 3D logistic map is used for image scrambling. The use of 3D chaotic functions in the encryption algorithm provide more security by using the, shuffling and substitution to the encrypted image. The Chebyshev map is used for public key encryption and distribution of generated private keys.

  6. 3-D Technology Approaches for Biological Ecologies

    Science.gov (United States)

    Liu, Liyu; Austin, Robert; U. S-China Physical-Oncology Sciences Alliance (PS-OA) Team

    Constructing three dimensional (3-D) landscapes is an inevitable issue in deep study of biological ecologies, because in whatever scales in nature, all of the ecosystems are composed by complex 3-D environments and biological behaviors. Just imagine if a 3-D technology could help complex ecosystems be built easily and mimic in vivo microenvironment realistically with flexible environmental controls, it will be a fantastic and powerful thrust to assist researchers for explorations. For years, we have been utilizing and developing different technologies for constructing 3-D micro landscapes for biophysics studies in in vitro. Here, I will review our past efforts, including probing cancer cell invasiveness with 3-D silicon based Tepuis, constructing 3-D microenvironment for cell invasion and metastasis through polydimethylsiloxane (PDMS) soft lithography, as well as explorations of optimized stenting positions for coronary bifurcation disease with 3-D wax printing and the latest home designed 3-D bio-printer. Although 3-D technologies is currently considered not mature enough for arbitrary 3-D micro-ecological models with easy design and fabrication, I hope through my talk, the audiences will be able to sense its significance and predictable breakthroughs in the near future. This work was supported by the State Key Development Program for Basic Research of China (Grant No. 2013CB837200), the National Natural Science Foundation of China (Grant No. 11474345) and the Beijing Natural Science Foundation (Grant No. 7154221).

  7. FROM 3D MODEL DATA TO SEMANTICS

    Directory of Open Access Journals (Sweden)

    My Abdellah Kassimi

    2012-01-01

    Full Text Available The semantic-based 3D models retrieval systems have become necessary since the increase of 3D modelsdatabases. In this paper, we propose a new method for the mapping problem between 3D model data andsemantic data involved in semantic based retrieval for 3D models given by polygonal meshes. First, wefocused on extracting invariant descriptors from the 3D models and analyzing them to efficient semanticannotation and to improve the retrieval accuracy. Selected shape descriptors provide a set of termscommonly used to describe visually a set of objects using linguistic terms and are used as semanticconcept to label 3D model. Second, spatial relationship representing directional, topological anddistance relationships are used to derive other high-level semantic features and to avoid the problem ofautomatic 3D model annotation. Based on the resulting semantic annotation and spatial concepts, anontology for 3D model retrieval is constructed and other concepts can be inferred. This ontology is usedto find similar 3D models for a given query model. We adopted the query by semantic example approach,in which the annotation is performed mostly automatically. The proposed method is implemented in our3D search engine (SB3DMR, tested using the Princeton Shape Benchmark Database.

  8. Automatic 3D video format detection

    Science.gov (United States)

    Zhang, Tao; Wang, Zhe; Zhai, Jiefu; Doyen, Didier

    2011-03-01

    Many 3D formats exist and will probably co-exist for a long time even if 3D standards are today under definition. The support for multiple 3D formats will be important for bringing 3D into home. In this paper, we propose a novel and effective method to detect whether a video is a 3D video or not, and to further identify the exact 3D format. First, we present how to detect those 3D formats that encode a pair of stereo images into a single image. The proposed method detects features and establishes correspondences between features in the left and right view images, and applies the statistics from the distribution of the positional differences between corresponding features to detect the existence of a 3D format and to identify the format. Second, we present how to detect the frame sequential 3D format. In the frame sequential 3D format, the feature points are oscillating from frame to frame. Similarly, the proposed method tracks feature points over consecutive frames, computes the positional differences between features, and makes a detection decision based on whether the features are oscillating. Experiments show the effectiveness of our method.

  9. 3D Medical Image Segmentation Based on Rough Set Theory

    Institute of Scientific and Technical Information of China (English)

    CHEN Shi-hao; TIAN Yun; WANG Yi; HAO Chong-yang

    2007-01-01

    This paper presents a method which uses multiple types of expert knowledge together in 3D medical image segmentation based on rough set theory. The focus of this paper is how to approximate a ROI (region of interest) when there are multiple types of expert knowledge. Based on rough set theory, the image can be split into three regions:positive regions; negative regions; boundary regions. With multiple knowledge we refine ROI as an intersection of all of the expected shapes with single knowledge. At last we show the results of implementing a rough 3D image segmentation and visualization system.

  10. 3D Systems” ‘Stuck in the Middle’ of the 3D Printer Boom?

    NARCIS (Netherlands)

    A. Hoffmann (Alan)

    2014-01-01

    textabstract3D Systems, the pioneer of 3D printing, predicted a future where "kids from 8 to 80" could design and print their ideas at home. By 2013, 9 years after the creation of the first working 3D printer, there were more than 30 major 3D printing companies competing for market share. 3DS and it

  11. 3D-tulostus : case Printrbot

    OpenAIRE

    Arvekari, Lassi

    2013-01-01

    Opinnäytetyön tavoitteena on selvittää 3D-tulostustekniikan perusteita ja 3D-tulostuksen nykytilannetta. 3D-tulostukseen sopivien mallien luomista tutkitaan ja mallin tekemiseen on etsitty toimivia ohjesääntöjä. Tärkeä osa työtä on tutkia mitä vaiheita 3D-tulostimen hankinnassa kotikäyttöön tulee vastaan. Käytännön kokeita varten opinnäytetyössä on case Printrbot, jossa on tutustuttu edulliseen 3D-tulostuslaitteeseen kokoonpanosta lähtien. Työn kuluessa selvisi että edulliset 3D-tulos...

  12. Spatial data modelling for 3D GIS

    CERN Document Server

    Abdul-Rahman, Alias

    2007-01-01

    This book covers fundamental aspects of spatial data modelling specifically on the aspect of three-dimensional (3D) modelling and structuring. Realisation of ""true"" 3D GIS spatial system needs a lot of effort, and the process is taking place in various research centres and universities in some countries. The development of spatial data modelling for 3D objects is the focus of this book.

  13. Compression of 3D models with NURBS

    OpenAIRE

    Santa Cruz Ducci, Diego; Ebrahimi, Touradj

    2005-01-01

    With recent progress in computing, algorithmics and telecommunications, 3D models are increasingly used in various multimedia applications. Examples include visualization, gaming, entertainment and virtual reality. In the multimedia domain 3D models have been traditionally represented as polygonal meshes. This piecewise planar representation can be thought of as the analogy of bitmap images for 3D surfaces. As bitmap images, they enjoy great flexibility and are particularly well suited to des...

  14. Extraordinary 3D Surface Materials: A practice based exhibition of 3D learning artefacts and prototypes.

    OpenAIRE

    Taylor, Andrew; Harris, Joanne; Unver, Ertu; Lewis, Linda

    2011-01-01

    A collection of 3D prototyped research learning artefacts were exhibited at Surface Design Show 2011. The artefacts on display provided tacit evidence of the 3D concept modelling and reflective learning experiences of a final year BA (Hons) Surface Design for Fashion & Interiors student group using 3D polygon modelling software and additive prototyping technologies (3D Printing) for the first time. The student authored project blog http://extraordinary-3d-materials.blogspot.co.uk/ documen...

  15. 3D modelling for multipurpose cadastre

    OpenAIRE

    Abduhl Rahman, A.; P. J. M. Van Oosterom; T. C. Hua; Sharkawi, K.H.; E. E. Duncan; Azri, N.; Hassan, M. I.

    2012-01-01

    Three-dimensional (3D) modelling of cadastral objects (such as legal spaces around buildings, around utility networks and other spaces) is one of the important aspects for a multipurpose cadastre (MPC). This paper describes the 3D modelling of the objects for MPC and its usage to the knowledge of 3D cadastre since more and more related agencies attempt to develop or embed 3D components into the MPC. We also intend to describe the initiative by Malaysian national mapping and cadastral agency (...

  16. Getting started in 3D with Maya

    CERN Document Server

    Watkins, Adam

    2012-01-01

    Deliver professional-level 3D content in no time with this comprehensive guide to 3D animation with Maya. With over 12 years of training experience, plus several award winning students under his belt, author Adam Watkins is the ideal mentor to get you up to speed with 3D in Maya. Using a structured and pragmatic approach Getting Started in 3D with Maya begins with basic theory of fundamental techniques, then builds on this knowledge using practical examples and projects to put your new skills to the test. Prepared so that you can learn in an organic fashion, each chapter builds on the know

  17. Can 3D Printing change your business?

    OpenAIRE

    Unver, Ertu

    2013-01-01

    This presentation is given to businesses / companies with an interest in 3D Printing and Additive Manufacturing in West Yorkshire, UK Organised by the Calderdale and Kirklees Manufacturing Alliance. http://www.ckma.co.uk/ by Dr Ertu Unver Senior Lecturer / Product Design / MA 3D Digital Design / University of Huddersfield Location : 3M BIC, Date : 11th April, Time : 5.30 – 8pm Additive manufacturing or 3D printing is a process of making a three-dimensional (3D) objects from...

  18. A 3d game in python

    OpenAIRE

    Xu, Minghui

    2014-01-01

    3D game has widely been accepted and loved by many game players. More and more different kinds of 3D games were developed to feed people’s needs. The most common programming language for development of 3D game is C++ nowadays. Python is a high-level scripting language. It is simple and clear. The concise syntax could speed up the development cycle. This project was to develop a 3D game using only Python. The game is about how a cat lives in the street. In order to live, the player need...

  19. Virtual Realization using 3D Password

    Directory of Open Access Journals (Sweden)

    A.B.Gadicha

    2012-03-01

    Full Text Available Current authentication systems suffer from many weaknesses. Textual passwords are commonly used; however, users do not follow their requirements. Users tend to choose meaningful words from dictionaries, which make textual passwords easy to break and vulnerable to dictionary or brute force attacks. Many available graphical passwords have a password space that is less than or equal to the textual password space. Smart cards or tokens can be stolen. Many biometric authentications have been proposed; however, users tend to resist using biometrics because of their intrusiveness and the effect on their privacy. Moreover, biometrics cannot be revoked. In this paper, we present and evaluate our contribution, i.e., the 3D password. The 3D password is a multifactor authentication scheme. To be authenticated, we present a 3D virtual environment where the user navigates and interacts with various objects. The sequence of actions and interactions toward the objects inside the 3D environment constructs the user’s 3D password. The 3D password can combine most existing authentication schemes such as textual passwords, graphical passwords, and various types of biometrics into a 3D virtual environment. The design of the 3D virtual environment and the type of objects selected determine the 3D password key space.

  20. Calibration for 3D Structured Light Measurement

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A calibration procedure was developed for three-dimensional(3D) binocular structured light measurement systems. In virtue of a specially designed pattern, matching points in stereo images are extracted. And then sufficient 3D space points are obtained through pairs of images with the intrinsic and extrinsic parameters of each camera estimated prior and consequently some lights are calibrated by means of multi point fitting. Finally, a mathematical model is applied to interpolate and approximate all dynamic scanning lights based on geometry. The process of calibration method is successfully used in the binocular 3D measurement system based on structured lights and the 3D reconstruction results are satisfying.

  1. Dimensional accuracy of 3D printed vertebra

    Science.gov (United States)

    Ogden, Kent; Ordway, Nathaniel; Diallo, Dalanda; Tillapaugh-Fay, Gwen; Aslan, Can

    2014-03-01

    3D printer applications in the biomedical sciences and medical imaging are expanding and will have an increasing impact on the practice of medicine. Orthopedic and reconstructive surgery has been an obvious area for development of 3D printer applications as the segmentation of bony anatomy to generate printable models is relatively straightforward. There are important issues that should be addressed when using 3D printed models for applications that may affect patient care; in particular the dimensional accuracy of the printed parts needs to be high to avoid poor decisions being made prior to surgery or therapeutic procedures. In this work, the dimensional accuracy of 3D printed vertebral bodies derived from CT data for a cadaver spine is compared with direct measurements on the ex-vivo vertebra and with measurements made on the 3D rendered vertebra using commercial 3D image processing software. The vertebra was printed on a consumer grade 3D printer using an additive print process using PLA (polylactic acid) filament. Measurements were made for 15 different anatomic features of the vertebral body, including vertebral body height, endplate width and depth, pedicle height and width, and spinal canal width and depth, among others. It is shown that for the segmentation and printing process used, the results of measurements made on the 3D printed vertebral body are substantially the same as those produced by direct measurement on the vertebra and measurements made on the 3D rendered vertebra.

  2. 3D Printing Making the Digital Real .

    OpenAIRE

    Miss Prachi More

    2013-01-01

    3D printing is quickly expanding field, with the popularity and uses for 3D printers growing every day. 3D printing can be used to prototype, create replacement parts, and is even versatile enough to print prostheses and medical implants. It will have a growing impact on our world, as more and more people gain access to these amazing machines.[1] In this article, we would like to attempt to give an introduction of the technology. 3Dimensions printing is a method of converting a virtual 3D mod...

  3. 3D-tulostuksen viipalointiohjelmien vertailu

    OpenAIRE

    Virolainen, Ville

    2015-01-01

    Opinnäytetyön tavoitteena on selventää 3D-tulostamisen prosessia yksityisen käyttäjän näkökulmasta sekä luoda testitulostuksia, joiden perusteella pystytään vertailemaan prosessissa käytettävien viipalointiohjelmien toimintaa keskenään. Työssä perehdytään aluksi 3D-tulostuksen teoriataustaan, jonka jälkeen suoritetaan 3D-tulostimella testitulostukset käyttäen kolmea eri viipalointiohjelmaa. 3D-tulostamisella tarkoitetaan prosessia, jonka tarkoituksena on luoda kolmiulotteinen objekti käyt...

  4. Illustrating Mathematics using 3D Printers

    OpenAIRE

    Knill, Oliver; Slavkovsky, Elizabeth

    2013-01-01

    3D printing technology can help to visualize proofs in mathematics. In this document we aim to illustrate how 3D printing can help to visualize concepts and mathematical proofs. As already known to educators in ancient Greece, models allow to bring mathematics closer to the public. The new 3D printing technology makes the realization of such tools more accessible than ever. This is an updated version of a paper included in book Low-Cost 3D Printing for science, education and Sustainable Devel...

  5. BIM tietomalli ja 3D-tulostus

    OpenAIRE

    Myllykoski, Joonas; Palonen, Teemu

    2015-01-01

    Tämän opinnäytetyön tavoitteena oli selvittää miten Tekla Structures ohjelmalla luotu 3D-malli saadaan tulostettua koulun 3D-tulostimella sekä tutkittiin voidaanko Tekla Structuresin ominaisuuksia hyödyntää 3D-tulostamisessa ja miten tulostus onnistuu autocadilla. Selvitimme myös mahdollisia 3D-tulostusteknologian sovelluksia tulevaisuuden rakennustuotannossa ja sen näkymiä rakennusteollisuudessa sekä erilaisia tulostus menetelmiä joita voitaisiin mahdollisesti hyödyntää rakennusteollisuudess...

  6. FastScript3D - A Companion to Java 3D

    Science.gov (United States)

    Koenig, Patti

    2005-01-01

    FastScript3D is a computer program, written in the Java 3D(TM) programming language, that establishes an alternative language that helps users who lack expertise in Java 3D to use Java 3D for constructing three-dimensional (3D)-appearing graphics. The FastScript3D language provides a set of simple, intuitive, one-line text-string commands for creating, controlling, and animating 3D models. The first word in a string is the name of a command; the rest of the string contains the data arguments for the command. The commands can also be used as an aid to learning Java 3D. Developers can extend the language by adding custom text-string commands. The commands can define new 3D objects or load representations of 3D objects from files in formats compatible with such other software systems as X3D. The text strings can be easily integrated into other languages. FastScript3D facilitates communication between scripting languages [which enable programming of hyper-text markup language (HTML) documents to interact with users] and Java 3D. The FastScript3D language can be extended and customized on both the scripting side and the Java 3D side.

  7. 3D PDF - a means of public access to geological 3D - objects, using the example of GTA3D

    Science.gov (United States)

    Slaby, Mark-Fabian; Reimann, Rüdiger

    2013-04-01

    In geology, 3D modeling has become very important. In the past, two-dimensional data such as isolines, drilling profiles, or cross-sections based on those, were used to illustrate the subsurface geology, whereas now, we can create complex digital 3D models. These models are produced with special software, such as GOCAD ®. The models can be viewed, only through the software used to create them, or through viewers available for free. The platform-independent PDF (Portable Document Format), enforced by Adobe, has found a wide distribution. This format has constantly evolved over time. Meanwhile, it is possible to display CAD data in an Adobe 3D PDF file with the free Adobe Reader (version 7). In a 3D PDF, a 3D model is freely rotatable and can be assembled from a plurality of objects, which can thus be viewed from all directions on their own. In addition, it is possible to create moveable cross-sections (profiles), and to assign transparency to the objects. Based on industry-standard CAD software, 3D PDFs can be generated from a large number of formats, or even be exported directly from this software. In geoinformatics, different approaches to creating 3D PDFs exist. The intent of the Authority for Mining, Energy and Geology to allow free access to the models of the Geotectonic Atlas (GTA3D), could not be realized with standard software solutions. A specially designed code converts the 3D objects to VRML (Virtual Reality Modeling Language). VRML is one of the few formats that allow using image files (maps) as textures, and to represent colors and shapes correctly. The files were merged in Acrobat X Pro, and a 3D PDF was generated subsequently. A topographic map, a display of geographic directions and horizontal and vertical scales help to facilitate the use.

  8. An aerial 3D printing test mission

    Science.gov (United States)

    Hirsch, Michael; McGuire, Thomas; Parsons, Michael; Leake, Skye; Straub, Jeremy

    2016-05-01

    This paper provides an overview of an aerial 3D printing technology, its development and its testing. This technology is potentially useful in its own right. In addition, this work advances the development of a related in-space 3D printing technology. A series of aerial 3D printing test missions, used to test the aerial printing technology, are discussed. Through completing these test missions, the design for an in-space 3D printer may be advanced. The current design for the in-space 3D printer involves focusing thermal energy to heat an extrusion head and allow for the extrusion of molten print material. Plastics can be used as well as composites including metal, allowing for the extrusion of conductive material. A variety of experiments will be used to test this initial 3D printer design. High altitude balloons will be used to test the effects of microgravity on 3D printing, as well as parabolic flight tests. Zero pressure balloons can be used to test the effect of long 3D printing missions subjected to low temperatures. Vacuum chambers will be used to test 3D printing in a vacuum environment. The results will be used to adapt a current prototype of an in-space 3D printer. Then, a small scale prototype can be sent into low-Earth orbit as a 3-U cube satellite. With the ability to 3D print in space demonstrated, future missions can launch production hardware through which the sustainability and durability of structures in space will be greatly improved.

  9. 3D ultrafast ultrasound imaging in vivo

    International Nuclear Information System (INIS)

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra—and inter-observer variability. (fast track communication)

  10. Integral identities for 3d dualities with SP(2N) gauge groups

    CERN Document Server

    Amariti, Antonio

    2015-01-01

    In this note we study the reduction of 4d Seiberg duality to 3d for SP(2N) SQCD with an adjoint field. We follow a general prescription that consists in compactifying the dual 4d theories on the circle. This generates an effective 3d duality. The pure 3d duality is obtained by combining the zero radius limit with a real mass flow. Here we perform this limit by a double scaling procedure: we turn on real masses proportional to the radius before shrinking the circle. We apply this mechanism to the reduction of the 4d superconformal index to the three sphere partition function. While the reduction of the 4d index on the circle is straightforward, the 3d limit necessitates the double scaling. We describe this limit on the index, finding the integral identity for the partition functions of the 3d dual theories.

  11. Highly-stretchable 3D-architected Mechanical Metamaterials

    Science.gov (United States)

    Jiang, Yanhui; Wang, Qiming

    2016-09-01

    Soft materials featuring both 3D free-form architectures and high stretchability are highly desirable for a number of engineering applications ranging from cushion modulators, soft robots to stretchable electronics; however, both the manufacturing and fundamental mechanics are largely elusive. Here, we overcome the manufacturing difficulties and report a class of mechanical metamaterials that not only features 3D free-form lattice architectures but also poses ultrahigh reversible stretchability (strain > 414%), 4 times higher than that of the existing counterparts with the similar complexity of 3D architectures. The microarchitected metamaterials, made of highly stretchable elastomers, are realized through an additive manufacturing technique, projection microstereolithography, and its postprocessing. With the fabricated metamaterials, we reveal their exotic mechanical behaviors: Under large-strain tension, their moduli follow a linear scaling relationship with their densities regardless of architecture types, in sharp contrast to the architecture-dependent modulus power-law of the existing engineering materials; under large-strain compression, they present tunable negative-stiffness that enables ultrahigh energy absorption efficiencies. To harness their extraordinary stretchability and microstructures, we demonstrate that the metamaterials open a number of application avenues in lightweight and flexible structure connectors, ultraefficient dampers, 3D meshed rehabilitation structures and stretchable electronics with designed 3D anisotropic conductivity.

  12. Immersive 3D Geovisualization in Higher Education

    Science.gov (United States)

    Philips, Andrea; Walz, Ariane; Bergner, Andreas; Graeff, Thomas; Heistermann, Maik; Kienzler, Sarah; Korup, Oliver; Lipp, Torsten; Schwanghart, Wolfgang; Zeilinger, Gerold

    2015-01-01

    In this study, we investigate how immersive 3D geovisualization can be used in higher education. Based on MacEachren and Kraak's geovisualization cube, we examine the usage of immersive 3D geovisualization and its usefulness in a research-based learning module on flood risk, called GEOSimulator. Results of a survey among participating students…

  13. Perception of detail in 3D images

    NARCIS (Netherlands)

    Heyndrickx, I.; Kaptein, R.

    2009-01-01

    A lot of current 3D displays suffer from the fact that their spatial resolution is lower compared to their 2D counterparts. One reason for this is that the multiple views needed to generate 3D are often spatially multiplexed. Besides this, imperfect separation of the left- and right-eye view leads t

  14. 3D printing of functional structures

    NARCIS (Netherlands)

    Krijnen, G.J.M.

    2016-01-01

    The technology colloquial known as ‘3D printing’ has developed in such diversity in printing technologies and application fields that meanwhile it seems anything is possible. However, clearly the ideal 3D Printer, with high resolution, multi-material capability, fast printing, etc. is yet to be deve

  15. Parametrizable cameras for 3D computational steering

    NARCIS (Netherlands)

    Mulder, J.D.; Wijk, J.J. van

    1997-01-01

    We present a method for the definition of multiple views in 3D interfaces for computational steering. The method uses the concept of a point-based parametrizable camera object. This concept enables a user to create and configure multiple views on his custom 3D interface in an intuitive graphical man

  16. 3D Cadastre modelling in Russia

    NARCIS (Netherlands)

    Vandysheva, N.; Tikhonov, V.; Van Oosterom, P.J.M.; Stoter, J.E.; Ploeger, H.D.; Wouters, R.; Penkov, V.

    2011-01-01

    The paper presents the on-going project on 3D cadastre modelling in Russia. The aim of this project is to provide guidance in the development of a prototype and to create favourable legal and institutional conditions for the introduction of 3D cadastre modelling in Russia based on experience of the

  17. Recognition of 3D facial expression dynamics

    NARCIS (Netherlands)

    Sandbach, G.; Zafeiriou, S.; Pantic, Maja; Rueckert, D.

    2012-01-01

    In this paper we propose a method that exploits 3D motion-based features between frames of 3D facial geometry sequences for dynamic facial expression recognition. An expressive sequence is modelled to contain an onset followed by an apex and an offset. Feature selection methods are applied in order

  18. 3-D structures of planetary nebulae

    CERN Document Server

    Steffen, Wolfgang

    2016-01-01

    Recent advances in the 3-D reconstruction of planetary nebulae are reviewed. We include not only results for 3-D reconstructions, but also the current techniques in terms of general methods and software. In order to obtain more accurate reconstructions, we suggest to extend the widely used assumption of homologous nebula expansion to map spectroscopically measured velocity to position along the line of sight.

  19. 3D, or Not to Be?

    Science.gov (United States)

    Norbury, Keith

    2012-01-01

    It may be too soon for students to be showing up for class with popcorn and gummy bears, but technology similar to that behind the 3D blockbuster movie "Avatar" is slowly finding its way into college classrooms. 3D classroom projectors are taking students on fantastic voyages inside the human body, to the ruins of ancient Greece--even to faraway…

  20. 3D Printed Block Copolymer Nanostructures

    Science.gov (United States)

    Scalfani, Vincent F.; Turner, C. Heath; Rupar, Paul A.; Jenkins, Alexander H.; Bara, Jason E.

    2015-01-01

    The emergence of 3D printing has dramatically advanced the availability of tangible molecular and extended solid models. Interestingly, there are few nanostructure models available both commercially and through other do-it-yourself approaches such as 3D printing. This is unfortunate given the importance of nanotechnology in science today. In this…

  1. 3D Printing of Molecular Models

    Science.gov (United States)

    Gardner, Adam; Olson, Arthur

    2016-01-01

    Physical molecular models have played a valuable role in our understanding of the invisible nano-scale world. We discuss 3D printing and its use in producing models of the molecules of life. Complex biomolecular models, produced from 3D printed parts, can demonstrate characteristics of molecular structure and function, such as viral self-assembly,…

  2. 3D Printing. What's the Harm?

    Science.gov (United States)

    Love, Tyler S.; Roy, Ken

    2016-01-01

    Health concerns from 3D printing were first documented by Stephens, Azimi, Orch, and Ramos (2013), who found that commercially available 3D printers were producing hazardous levels of ultrafine particles (UFPs) and volatile organic compounds (VOCs) when plastic materials were melted through the extruder. UFPs are particles less than 100 nanometers…

  3. Multiway calibration in 3D QSAR

    NARCIS (Netherlands)

    Nilsson, J; de Jong, Sietse; Smilde, A

    1997-01-01

    We have introduced multilinear PLS in 3D QSAR and applied it to GRID descriptors from a set of benzamides with affinity to the dopamine D-3 receptor subtype, synthesized as potential drugs against schizophrenia. The key issue in 3D QSAR modelling is to obtain a predictive model that is easy to inter

  4. Density-Based 3D Shape Descriptors

    Directory of Open Access Journals (Sweden)

    Schmitt Francis

    2007-01-01

    Full Text Available We propose a novel probabilistic framework for the extraction of density-based 3D shape descriptors using kernel density estimation. Our descriptors are derived from the probability density functions (pdf of local surface features characterizing the 3D object geometry. Assuming that the shape of the 3D object is represented as a mesh consisting of triangles with arbitrary size and shape, we provide efficient means to approximate the moments of geometric features on a triangle basis. Our framework produces a number of 3D shape descriptors that prove to be quite discriminative in retrieval applications. We test our descriptors and compare them with several other histogram-based methods on two 3D model databases, Princeton Shape Benchmark and Sculpteur, which are fundamentally different in semantic content and mesh quality. Experimental results show that our methodology not only improves the performance of existing descriptors, but also provides a rigorous framework to advance and to test new ones.

  5. Fabrication of 3D Silicon Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; /SINTEF, Oslo; Kenney, C.; Hasi, J.; /SLAC; Da Via, C.; /Manchester U.; Parker, S.I.; /Hawaii U.

    2012-06-06

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  6. Maintaining and troubleshooting your 3D printer

    CERN Document Server

    Bell, Charles

    2014-01-01

    Maintaining and Troubleshooting Your 3D Printer by Charles Bell is your guide to keeping your 3D printer running through preventive maintenance, repair, and diagnosing and solving problems in 3D printing. If you've bought or built a 3D printer such as a MakerBot only to be confounded by jagged edges, corner lift, top layers that aren't solid, or any of a myriad of other problems that plague 3D printer enthusiasts, then here is the book to help you get past all that and recapture the joy of creative fabrication. The book also includes valuable tips for builders and those who want to modify the

  7. 3D-grafiikka ja pelimoottorit

    OpenAIRE

    Sillanpää, Otto

    2014-01-01

    Tässä opinnäytetyössä tutkitaan miten 3D-mallit saadaan sellaiseen muotoon, että ne olisivat käytettävissä eri pelimoottoreissa. Tutkimuksen tarkoituksena on selvittää, miten luodaan 3D-malleja pelimoottoreihin, sekä miten 3D-mallinnusohjelmat ja pelimoottorit eroavat toisistaan, kun käsitellään 3D-malleja. Tässä työssä pelimoottoreina toimivat Valven Source sekä Epic Gamesin Unreal Engine 3. 3D-mallinnusohjelmista käytössä olivat Autodeskin 3ds Max 2014 ja Blender Foundationin Blender 2.7...

  8. 6D Interpretation of 3D Gravity

    CERN Document Server

    Herfray, Yannick; Scarinci, Carlos

    2016-01-01

    We show that 3D gravity, in its pure connection formulation, admits a natural 6D interpretation. The 3D field equations for the connection are equivalent to 6D Hitchin equations for the Chern-Simons 3-form in the total space of the principal bundle over the 3-dimensional base. Turning this construction around one gets an explanation of why the pure connection formulation of 3D gravity exists. More generally, we interpret 3D gravity as the dimensional reduction of the 6D Hitchin theory. To this end, we show that any SU(2) invariant closed 3-form in the total space of the principal SU(2) bundle can be parametrised by a connection together with a 2-form field on the base. The dimensional reduction of the 6D Hitchin theory then gives rise to 3D gravity coupled to a topological 2-form field.

  9. 3D rotational angiography after non-traumatic SAH; 3D-Rotationskatheterangiografie nach nicht traumatischer SAB

    Energy Technology Data Exchange (ETDEWEB)

    Ringelstein, A.; Moenninghoff, C.; Hahnemann, M.L.; Forsting, M.; Schlamann, M. [Univ. Duisburg-Essen, Essen (Germany). Dept. of Diagnostic nd Interventional Radiology and Neuroradiology; Mueller, O.; Sure, U. [Univ. Hopsital, Essen (Germany). Hospital of Neurosurgery

    2014-07-15

    In about 15 % of patients with SAH no causative vascular lesions can be found in acute imaging with CTA and DSA. Usually, repeat DSA is mandatory and bears the usual risk of invasive angiography. The present study attempts to assess the diagnostic impact of 3 D rotational angiography in order to avoid repeat DSA. From January 2004 to December 2012, 649 patients with an acute non-traumatic SAH were examined. 91 patients with negative initial imaging diagnostics concerning the bleeding source were included in this study. These patients underwent a second angiography scan: 61 in 4-plane technique, and 30 with 2-plane technique and additional 3 D DSA. Two cohorts were compared: patients with repeat angiography in conventional 4-plane technique from 2004 to July 2008 and 2-plane technique with additional 3 D rotational DSA from 2008 to 2012. Statistical significance was verified by means of Fisher's exact test. In the second DSA scan, 4 aneurysms in 4 patients (4/91; 4.4 %) were found and treated subsequently. Within the first 4.5 years of this study, 401 patients with SAH were treated and 61 of them underwent repeat angiography (15.2 %) compared to 30 of 248 patients (12.1 %) in the last 4.5 years of this study. In the first group we found 3 aneurysms during repeat angiography, and in the second group we found 1. No significance was reached (p = 0.29) but there was a tendency towards higher diagnostic security using 3D-DSA. Using 3 D rotational DSA in initial imaging workup might help to reduce false-negative results concerning the bleeding source of acute SAH. At least because of this fact, 3 D rotational DSA should be part of the diagnostic workup after acute SAH.

  10. The psychology of the 3D experience

    Science.gov (United States)

    Janicke, Sophie H.; Ellis, Andrew

    2013-03-01

    With 3D televisions expected to reach 50% home saturation as early as 2016, understanding the psychological mechanisms underlying the user response to 3D technology is critical for content providers, educators and academics. Unfortunately, research examining the effects of 3D technology has not kept pace with the technology's rapid adoption, resulting in large-scale use of a technology about which very little is actually known. Recognizing this need for new research, we conducted a series of studies measuring and comparing many of the variables and processes underlying both 2D and 3D media experiences. In our first study, we found narratives within primetime dramas had the power to shift viewer attitudes in both 2D and 3D settings. However, we found no difference in persuasive power between 2D and 3D content. We contend this lack of effect was the result of poor conversion quality and the unique demands of 3D production. In our second study, we found 3D technology significantly increased enjoyment when viewing sports content, yet offered no added enjoyment when viewing a movie trailer. The enhanced enjoyment of the sports content was shown to be the result of heightened emotional arousal and attention in the 3D condition. We believe the lack of effect found for the movie trailer may be genre-related. In our final study, we found 3D technology significantly enhanced enjoyment of two video games from different genres. The added enjoyment was found to be the result of an increased sense of presence.

  11. 3D Visualization Development of SIUE Campus

    Science.gov (United States)

    Nellutla, Shravya

    Geographic Information Systems (GIS) has progressed from the traditional map-making to the modern technology where the information can be created, edited, managed and analyzed. Like any other models, maps are simplified representations of real world. Hence visualization plays an essential role in the applications of GIS. The use of sophisticated visualization tools and methods, especially three dimensional (3D) modeling, has been rising considerably due to the advancement of technology. There are currently many off-the-shelf technologies available in the market to build 3D GIS models. One of the objectives of this research was to examine the available ArcGIS and its extensions for 3D modeling and visualization and use them to depict a real world scenario. Furthermore, with the advent of the web, a platform for accessing and sharing spatial information on the Internet, it is possible to generate interactive online maps. Integrating Internet capacity with GIS functionality redefines the process of sharing and processing the spatial information. Enabling a 3D map online requires off-the-shelf GIS software, 3D model builders, web server, web applications and client server technologies. Such environments are either complicated or expensive because of the amount of hardware and software involved. Therefore, the second objective of this research was to investigate and develop simpler yet cost-effective 3D modeling approach that uses available ArcGIS suite products and the free 3D computer graphics software for designing 3D world scenes. Both ArcGIS Explorer and ArcGIS Online will be used to demonstrate the way of sharing and distributing 3D geographic information on the Internet. A case study of the development of 3D campus for the Southern Illinois University Edwardsville is demonstrated.

  12. Data of evolutionary structure change: 3GD5D-3D7SA [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 3GD5D-3D7SA 3GD5 3D7S D A --TRFRPDLLSLDDLDEAQLHALLTLAHQLKRGERVANL...HGKVLGLVFLKASTRTRVSFTVAMYQLGGQVIDL------------EPVRDTARVLGRYVDGLAIRTFAQTELEEYAHYAG-IPVINALTD-HEHPCQVVADLLTIRENFGRLAGLKLAYVGD...ANPLYQKHIISINDLSRDDLNLVLATAAKLKANPQPELLKHKVIASCFFEASTRTRLSFETSMHRLGASVVGFSDSANTSLGKKGETLADTISVISTYVDAIVMRHPQEGAARLATEFSGNVPVLNAGD...GSNQHPTQTLLDLFTIQETQGRLDNLHVAMVGDLKYGRTVHSLTQALAKFDGNRFYFIAPDALAMPQYILDMLDEK----GIAWSLH.../index> 3GD5 D 3GD5D

  13. Semi- and virtual 3D dosimetry in clinical practice

    DEFF Research Database (Denmark)

    Korreman, S. S.

    2013-01-01

    In this review, 3D dosimetry is divided in three categories; "true" 3D, semi-3D and virtual 3D. Virtual 3D involves the use of measurement arrays either before or after beam entry in the patient/phantom, whereas semi-3D involves use of measurement arrays in phantoms mimicking the patient. True 3D...

  14. 3D facial expression modeling for recognition

    Science.gov (United States)

    Lu, Xiaoguang; Jain, Anil K.; Dass, Sarat C.

    2005-03-01

    Current two-dimensional image based face recognition systems encounter difficulties with large variations in facial appearance due to the pose, illumination and expression changes. Utilizing 3D information of human faces is promising for handling the pose and lighting variations. While the 3D shape of a face does not change due to head pose (rigid) and lighting changes, it is not invariant to the non-rigid facial movement and evolution, such as expressions and aging effect. We propose a facial surface matching framework to match multiview facial scans to a 3D face model, where the (non-rigid) expression deformation is explicitly modeled for each subject, resulting in a person-specific deformation model. The thin plate spline (TPS) is applied to model the deformation based on the facial landmarks. The deformation is applied to the 3D neutral expression face model to synthesize the corresponding expression. Both the neutral and the synthesized 3D surface models are used to match a test scan. The surface registration and matching between a test scan and a 3D model are achieved by a modified Iterative Closest Point (ICP) algorithm. Preliminary experimental results demonstrate that the proposed expression modeling and recognition-by-synthesis schemes improve the 3D matching accuracy.

  15. Medical 3D Printing for the Radiologist.

    Science.gov (United States)

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A; Cai, Tianrun; Kumamaru, Kanako K; George, Elizabeth; Wake, Nicole; Caterson, Edward J; Pomahac, Bohdan; Ho, Vincent B; Grant, Gerald T; Rybicki, Frank J

    2015-01-01

    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article.

  16. Digital relief generation from 3D models

    Science.gov (United States)

    Wang, Meili; Sun, Yu; Zhang, Hongming; Qian, Kun; Chang, Jian; He, Dongjian

    2016-09-01

    It is difficult to extend image-based relief generation to high-relief generation, as the images contain insufficient height information. To generate reliefs from three-dimensional (3D) models, it is necessary to extract the height fields from the model, but this can only generate bas-reliefs. To overcome this problem, an efficient method is proposed to generate bas-reliefs and high-reliefs directly from 3D meshes. To produce relief features that are visually appropriate, the 3D meshes are first scaled. 3D unsharp masking is used to enhance the visual features in the 3D mesh, and average smoothing and Laplacian smoothing are implemented to achieve better smoothing results. A nonlinear variable scaling scheme is then employed to generate the final bas-reliefs and high-reliefs. Using the proposed method, relief models can be generated from arbitrary viewing positions with different gestures and combinations of multiple 3D models. The generated relief models can be printed by 3D printers. The proposed method provides a means of generating both high-reliefs and bas-reliefs in an efficient and effective way under the appropriate scaling factors.

  17. 3D Reconstruction Technique for Tomographic PIV

    Institute of Scientific and Technical Information of China (English)

    姜楠; 包全; 杨绍琼

    2015-01-01

    Tomographic particle image velocimetry(Tomo-PIV) is a state-of-the-art experimental technique based on a method of optical tomography to achieve the three-dimensional(3D) reconstruction for three-dimensional three-component(3D-3C) flow velocity measurements. 3D reconstruction for Tomo-PIV is carried out herein. Meanwhile, a 3D simplified tomographic reconstruction model reduced from a 3D volume light inten-sity field with 2D projection images into a 2D Tomo-slice plane with 1D projecting lines, i.e., simplifying this 3D reconstruction into a problem of 2D Tomo-slice plane reconstruction, is applied thereafter. Two kinds of the most well-known algebraic reconstruction techniques, algebraic reconstruction technique(ART) and multiple algebraic reconstruction technique(MART), are compared as well. The principles of the two reconstruction algorithms are discussed in detail, which has been performed by a series of simulation images, yielding the corresponding recon-struction images that show different features between the ART and MART algorithm, and then their advantages and disadvantages are discussed. Further discussions are made for the standard particle image reconstruction when the background noise of the pre-initial particle image has been removed. Results show that the particle image recon-struction has been greatly improved. The MART algorithm is much better than the ART. Furthermore, the computa-tional analyses of two parameters(the particle density and the number of cameras), are performed to study their effects on the reconstruction. Lastly, the 3D volume particle field is reconstructed by using the improved algorithm based on the simplified 3D tomographic reconstruction model, which proves that the algorithm simplification is feasible and it can be applied to the reconstruction of 3D volume particle field in a Tomo-PIV system.

  18. Extra Dimensions: 3D in PDF Documentation

    International Nuclear Information System (INIS)

    Experimental science is replete with multi-dimensional information which is often poorly represented by the two dimensions of presentation slides and print media. Past efforts to disseminate such information to a wider audience have failed for a number of reasons, including a lack of standards which are easy to implement and have broad support. Adobe's Portable Document Format (PDF) has in recent years become the de facto standard for secure, dependable electronic information exchange. It has done so by creating an open format, providing support for multiple platforms and being reliable and extensible. By providing support for the ECMA standard Universal 3D (U3D) and the ISO PRC file format in its free Adobe Reader software, Adobe has made it easy to distribute and interact with 3D content. Until recently, Adobe's Acrobat software was also capable of incorporating 3D content into PDF files from a variety of 3D file formats, including proprietary CAD formats. However, this functionality is no longer available in Acrobat X, having been spun off to a separate company. Incorporating 3D content now requires the additional purchase of a separate plug-in. In this talk we present alternatives based on open source libraries which allow the programmatic creation of 3D content in PDF format. While not providing the same level of access to CAD files as the commercial software, it does provide physicists with an alternative path to incorporate 3D content into PDF files from such disparate applications as detector geometries from Geant4, 3D data sets, mathematical surfaces or tesselated volumes.

  19. An Improved Version of TOPAZ 3D

    CERN Document Server

    Krasnykh, Anatoly K

    2003-01-01

    An improved version of the TOPAZ 3D gun code is presented as a powerful tool for beam optics simulation. In contrast to the previous version of TOPAZ 3D, the geometry of the device under test is introduced into TOPAZ 3D directly from a CAD program, such as Solid Edge or AutoCAD. In order to have this new feature, an interface was developed, using the GiD software package as a meshing code. The article describes this method with two models to illustrate the results.

  20. A high capacity 3D steganography algorithm.

    Science.gov (United States)

    Chao, Min-Wen; Lin, Chao-hung; Yu, Cheng-Wei; Lee, Tong-Yee

    2009-01-01

    In this paper, we present a very high-capacity and low-distortion 3D steganography scheme. Our steganography approach is based on a novel multilayered embedding scheme to hide secret messages in the vertices of 3D polygon models. Experimental results show that the cover model distortion is very small as the number of hiding layers ranges from 7 to 13 layers. To the best of our knowledge, this novel approach can provide much higher hiding capacity than other state-of-the-art approaches, while obeying the low distortion and security basic requirements for steganography on 3D models.

  1. 3D Printing the ATLAS' barrel toroid

    CERN Document Server

    Goncalves, Tiago Barreiro

    2016-01-01

    The present report summarizes my work as part of the Summer Student Programme 2016 in the CERN IR-ECO-TSP department (International Relations – Education, Communication & Outreach – Teacher and Student Programmes). Particularly, I worked closely with the S’Cool LAB team on a science education project. This project included the 3D designing, 3D printing, and assembling of a model of the ATLAS’ barrel toroid. A detailed description of the project' development is presented and a short manual on how to use 3D printing software and hardware is attached.

  2. Matching Feature Points in 3D World

    OpenAIRE

    Avdiu, Blerta

    2012-01-01

    This thesis work deals with the most actual topic in Computer Vision field which is scene understanding and this using matching of 3D feature point images. The objective is to make use of Saab’s latest breakthrough in extraction of 3D feature points, to identify the best alignment of at least two 3D feature point images. The thesis gives a theoretical overview of the latest algorithms used for feature detection, description and matching. The work continues with a brief description of the simu...

  3. Computer Modelling of 3D Geological Surface

    CERN Document Server

    Kodge, B G

    2011-01-01

    The geological surveying presently uses methods and tools for the computer modeling of 3D-structures of the geographical subsurface and geotechnical characterization as well as the application of geoinformation systems for management and analysis of spatial data, and their cartographic presentation. The objectives of this paper are to present a 3D geological surface model of Latur district in Maharashtra state of India. This study is undertaken through the several processes which are discussed in this paper to generate and visualize the automated 3D geological surface model of a projected area.

  4. General Concept of 3D SLAM

    OpenAIRE

    Zhang, Peter; Millos, Evangelous; Gu, Jason

    2009-01-01

    This chapter established an approach to solve the full 3D SLAM problem, applied to an underwater environment. First, a general approach to the 3D SLAM problem was presented, which included the models in 3D case, data association and estimation algorithm. For an underwater mobile robot, a new measurement system was designed for large area's globally-consistent SLAM: buoys for long-range estimation, and camera for short-range estimation and map building. Globally-consistent results could be obt...

  5. The reactor dynamics code DYN3D

    Energy Technology Data Exchange (ETDEWEB)

    Kliem, Soeren; Bilodid, Yuri; Fridman, Emil; Baier, Silvio; Grahn, Alexander; Gommlich, Andre; Nikitin, Evgeny; Rohde, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany)

    2016-05-15

    The article provides an overview on the code DYN3D which is a three-dimensional core model for steady-state, dynamic and depletion calculations in reactor cores with quadratic or hexagonal fuel assembly geometry being developed by the Helmholtz-Zentrum Dresden-Rossendorf for more than 20 years. The current paper gives an overview on the basic DYN3D models and the available code couplings. The verification and validation status is shortly outlined. The paper concludes with the current developments of the DYN3D code. For more detailed information the reader is referred to the publications cited in the corresponding chapters.

  6. 3D background aerodynamics using CFD

    DEFF Research Database (Denmark)

    Sørensen, Niels N.

    2002-01-01

    3D rotor computations for the Greek Geovilogiki (GEO) 44 meter rotor equipped with 19 meters blades are performed. The lift and drag polars are extracted at five spanvise locations r/R= (.37, .55, .71, .82, .93) based on identification of stagnationpoints between 2D and 3D computations. The inner...... most sections shows clear evidence of 3D radial pumping, with increased lift compared to 2D values. In contrast to earlier investigated airfoils a very limited impact on the drag values are observed....

  7. 3D tulostus - digitaalisesta mallista esineeksi

    OpenAIRE

    Muurinen, Kimmo

    2013-01-01

    Tässä opinnäytetyössä esitellään 3D tulostuksen tekniikka ja materiaaleja, suunnitellaan ja tuotetaan esimerkkikappaleen digitaalinen malli, sekä tulostetaan muovinen esine digi-taalisen mallin pohjalta. Työn tavoitteena on perehdyttää lukija prosessiin, jossa itse tuotettu digitaalinen malli tulostetaan käyttäen harrastajakäyttöön tarkoitettua edullista 3D tulostinta. Esimerkkikappaleen eri osien mallinnusprosessi näytetään kokonaisuudessaan ja kerro-taan perusteita 3D mallinnuksesta...

  8. Automatic balancing of 3D models

    DEFF Research Database (Denmark)

    Christiansen, Asger Nyman; Schmidt, Ryan; Bærentzen, Jakob Andreas

    2014-01-01

    3D printing technologies allow for more diverse shapes than are possible with molds and the cost of making just one single object is negligible compared to traditional production methods. However, not all shapes are suitable for 3D print. One of the remaining costs is therefore human time spent......, in these cases, we will apply a rotation of the object which only deforms the shape a little near the base. No user input is required but it is possible to specify manufacturing constraints related to specific 3D print technologies. Several models have successfully been balanced and printed using both polyjet...

  9. An Improved Version of TOPAZ 3D

    International Nuclear Information System (INIS)

    An improved version of the TOPAZ 3D gun code is presented as a powerful tool for beam optics simulation. In contrast to the previous version of TOPAZ 3D, the geometry of the device under test is introduced into TOPAZ 3D directly from a CAD program, such as Solid Edge or AutoCAD. In order to have this new feature, an interface was developed, using the GiD software package as a meshing code. The article describes this method with two models to illustrate the results

  10. FIT3D: Fitting optical spectra

    Science.gov (United States)

    Sánchez, S. F.; Pérez, E.; Sánchez-Blázquez, P.; González, J. J.; Rosales-Ortega, F. F.; Cano-Díaz, M.; López-Cobá, C.; Marino, R. A.; Gil de Paz, A.; Mollá, M.; López-Sánchez, A. R.; Ascasibar, Y.; Barrera-Ballesteros, J.

    2016-09-01

    FIT3D fits optical spectra to deblend the underlying stellar population and the ionized gas, and extract physical information from each component. FIT3D is focused on the analysis of Integral Field Spectroscopy data, but is not restricted to it, and is the basis of Pipe3D, a pipeline used in the analysis of datasets like CALIFA, MaNGA, and SAMI. It can run iteratively or in an automatic way to derive the parameters of a large set of spectra.

  11. FUN3D Manual: 12.5

    Science.gov (United States)

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2014-01-01

    This manual describes the installation and execution of FUN3D version 12.5, including optional dependent packages. FUN3D is a suite of computational uid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables ecient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  12. FUN3D Manual: 13.0

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bill; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2016-01-01

    This manual describes the installation and execution of FUN3D version 13.0, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  13. FUN3D Manual: 12.9

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2016-01-01

    This manual describes the installation and execution of FUN3D version 12.9, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  14. FUN3D Manual: 12.4

    Science.gov (United States)

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2014-01-01

    This manual describes the installation and execution of FUN3D version 12.4, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixedelement unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  15. 3D grafika a hry

    OpenAIRE

    Vataščinová, Lenka

    2016-01-01

    In my bachelor thesis, I am going to introduce the topic of 3D graphics in the game environment. Firstly, I will provide a brief introduction of history of 3D graphics in general, but with the emphasis on history of game industry in particular. Next, I will present 3D graphics of RPG games in particular, and I will analyse the graphical side of digital work production. The main contribution of this thesis is provided in the practical part, which deals with creation of an environment for an an...

  16. 3-D Human Modeling and Animation

    CERN Document Server

    Ratner, Peter

    2012-01-01

    3-D Human Modeling and Animation Third Edition All the tools and techniques you need to bring human figures to 3-D life Thanks to today's remarkable technology, artists can create and animate realistic, three-dimensional human figures that were not possible just a few years ago. This easy-to-follow book guides you through all the necessary steps to adapt your own artistic skill in figure drawing, painting, and sculpture to this exciting digital canvas. 3-D Human Modeling and Animation, Third Edition starts you off with simple modeling, then prepares you for more advanced techniques for crea

  17. 3D face modeling, analysis and recognition

    CERN Document Server

    Daoudi, Mohamed; Veltkamp, Remco

    2013-01-01

    3D Face Modeling, Analysis and Recognition presents methodologies for analyzing shapes of facial surfaces, develops computational tools for analyzing 3D face data, and illustrates them using state-of-the-art applications. The methodologies chosen are based on efficient representations, metrics, comparisons, and classifications of features that are especially relevant in the context of 3D measurements of human faces. These frameworks have a long-term utility in face analysis, taking into account the anticipated improvements in data collection, data storage, processing speeds, and application s

  18. The reactor dynamics code DYN3D

    International Nuclear Information System (INIS)

    The article provides an overview on the code DYN3D which is a three-dimensional core model for steady-state, dynamic and depletion calculations in reactor cores with quadratic or hexagonal fuel assembly geometry being developed by the Helmholtz-Zentrum Dresden-Rossendorf for more than 20 years. The current paper gives an overview on the basic DYN3D models and the available code couplings. The verification and validation status is shortly outlined. The paper concludes with the current developments of the DYN3D code. For more detailed information the reader is referred to the publications cited in the corresponding chapters.

  19. 3D-hahmojen toteutus mobiilipeliin

    OpenAIRE

    Kemppainen, Matti

    2012-01-01

    Mobiilipelien suosio on kasvanut räjähdysmäisesti viime vuosina älypuhelinten kehittymisen myötä. Tässä opinnäytetyössä selvitetään kolmiulotteisen pelihahmon toteutusprosessi mobiilipeliin. Lisäksi pohditaan maksullisten ja ilmaisten ohjelmien eroja toteutuksessa. Pelihahmojen toteutus perustuu mobiilipeliprojektiin peliyrityksessä, jossa työskentelin graafikkona. Ohjelmien vertailussa on mukana 3D Studio Max, Blender 3D, Photoshop ja GIMP. Käytännön osuudessa käydään läpi 3D-pelihahmon...

  20. 3D-MR cholangio-angiography

    Energy Technology Data Exchange (ETDEWEB)

    Ohkawa, Shinichi [Isehara Kyohdoh Hospital, Kanagawa (Japan); Hiramatsu, Kyoichi

    1995-04-01

    This report introduces a new 3D-MR cholangio-angiography technique using 3D Fast SE MR cholangiography and 3D phase contrast MR angiography for obstructive jaundice. In all eight cases, dilated biliary tracts as well as portal veins were clearly visualized in the same image. This new technique helped to determine the operability and surgical strategy for cases with obstructive jaundice. It also provided anatomical guidance for surgical procedures. This study suggests that this technique may replace the currently used modalities for obstructive jaundice. (author).

  1. The 3D Object Mediator : Handling 3D Models on Internet

    NARCIS (Netherlands)

    Kok, A.J.F.; Lawick van Pabst, J. van; Afsarmanesh, H.

    1997-01-01

    The 3D Object MEdiator (3DOME 3) offers two services for handling 3D models: a modelshop and a renderfarm. These services can be consulted through the Internet. The modelshop meets the demands for brokerage of geometric descriptions of 3D models. People who create geometric models of objects can sup

  2. XML3D and Xflow: combining declarative 3D for the Web with generic data flows.

    Science.gov (United States)

    Klein, Felix; Sons, Kristian; Rubinstein, Dmitri; Slusallek, Philipp

    2013-01-01

    Researchers have combined XML3D, which provides declarative, interactive 3D scene descriptions based on HTML5, with Xflow, a language for declarative, high-performance data processing. The result lets Web developers combine a 3D scene graph with data flows for dynamic meshes, animations, image processing, and postprocessing. PMID:24808080

  3. 3D presentatie van geluid in de cockpit [3D sound presentation in the cockpit

    NARCIS (Netherlands)

    Bronkhorst, A.W.

    2003-01-01

    A.W. Bronkhorst, 3D-presentatie van geluid in de cockpit 1 Using virtual acoustics, sound can be presented from virtual sources located in the 3D space around the listener. This 3D sound has interesting applications in the cockpit. Sounds can be used to convey directional information, and interferen

  4. Do-It-Yourself: 3D Models of Hydrogenic Orbitals through 3D Printing

    Science.gov (United States)

    Griffith, Kaitlyn M.; de Cataldo, Riccardo; Fogarty, Keir H.

    2016-01-01

    Introductory chemistry students often have difficulty visualizing the 3-dimensional shapes of the hydrogenic electron orbitals without the aid of physical 3D models. Unfortunately, commercially available models can be quite expensive. 3D printing offers a solution for producing models of hydrogenic orbitals. 3D printing technology is widely…

  5. Negative refraction in (bi)-isotropic periodic arrangements of chiral SRRs

    CERN Document Server

    Jelinek, L; Mesa, F; Baena, J D

    2007-01-01

    Bi-isotropic and isotropic negative refractive index (NRI) 3D metamaterials made from periodic arrangements of chiral split ring resonators (SRRs) are proposed and demonstrated. An analytical theory for the characterization and design of these metamaterials is provided and validated by careful full-wave electromagnetic simulations. The reported results are expected to pave the way to the design of practical 3D bi-isotropic and isotropic NRI metamaterials made from a single kind of inclusions.

  6. Lightning fast animation in Element 3D

    CERN Document Server

    Audronis, Ty

    2014-01-01

    An easy-to-follow and all-inclusive guide, in which the underlying principles of 3D animation as well as their importance are explained in detail. The lessons are designed to teach you how to think of 3D animation in such a way that you can troubleshoot any problem, or animate any scene that comes your way.If you are a Digital Artist, Animation Artist, or a Game Programmer and you want to become an expert in Element 3D, this is the book for you. Although there are a lot of basics for beginners in this book, it includes some advanced techniques for both animating in Element 3D, and overcoming i

  7. Eyes on the Earth 3D

    Science.gov (United States)

    Kulikov, anton I.; Doronila, Paul R.; Nguyen, Viet T.; Jackson, Randal K.; Greene, William M.; Hussey, Kevin J.; Garcia, Christopher M.; Lopez, Christian A.

    2013-01-01

    Eyes on the Earth 3D software gives scientists, and the general public, a realtime, 3D interactive means of accurately viewing the real-time locations, speed, and values of recently collected data from several of NASA's Earth Observing Satellites using a standard Web browser (climate.nasa.gov/eyes). Anyone with Web access can use this software to see where the NASA fleet of these satellites is now, or where they will be up to a year in the future. The software also displays several Earth Science Data sets that have been collected on a daily basis. This application uses a third-party, 3D, realtime, interactive game engine called Unity 3D to visualize the satellites and is accessible from a Web browser.

  8. 3D Flash LIDAR Space Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc (ASC) is a small business, which has developed a compact, eye-safe 3D Flash LIDARTM Camera (FLC) well suited for real-time...

  9. 3D-FPA Hybridization Improvements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc. (ASC) is a small business, which has developed a compact, eye-safe 3D Flash LIDARTM Camera (FLC) well suited for real-time...

  10. Copper Electrodeposition for 3D Integration

    CERN Document Server

    Beica, Rozalia; Ritzdorf, Tom

    2008-01-01

    Two dimensional (2D) integration has been the traditional approach for IC integration. Due to increasing demands for providing electronic devices with superior performance and functionality in more efficient and compact packages, has driven the semiconductor industry to develop more advanced packaging technologies. Three-dimensional (3D) approaches address both miniaturization and integration required for advanced and portable electronic products. Vertical integration proved to be essential in achieving a greater integration flexibility of disparate technologies, reason for which a general trend of transition from 2D to 3D integration is currently being observed in the industry. 3D chip integration using through silicon via (TSV) copper is considered one of the most advanced technologies among all different types of 3D packaging technologies. Copper electrodeposition is one of technologies that enable the formation of TSV structures. Because of its well-known application for copper damascene, it was believed ...

  11. 3D Biomaterial Microarrays for Regenerative Medicine

    DEFF Research Database (Denmark)

    Gaharwar, Akhilesh K.; Arpanaei, Ayyoob; Andresen, Thomas Lars;

    2015-01-01

    Three dimensional (3D) biomaterial microarrays hold enormous promise for regenerative medicine because of their ability to accelerate the design and fabrication of biomimetic materials. Such tissue-like biomaterials can provide an appropriate microenvironment for stimulating and controlling stem...

  12. 3DSEM: A 3D microscopy dataset.

    Science.gov (United States)

    Tafti, Ahmad P; Kirkpatrick, Andrew B; Holz, Jessica D; Owen, Heather A; Yu, Zeyun

    2016-03-01

    The Scanning Electron Microscope (SEM) as a 2D imaging instrument has been widely used in many scientific disciplines including biological, mechanical, and materials sciences to determine the surface attributes of microscopic objects. However the SEM micrographs still remain 2D images. To effectively measure and visualize the surface properties, we need to truly restore the 3D shape model from 2D SEM images. Having 3D surfaces would provide anatomic shape of micro-samples which allows for quantitative measurements and informative visualization of the specimens being investigated. The 3DSEM is a dataset for 3D microscopy vision which is freely available at [1] for any academic, educational, and research purposes. The dataset includes both 2D images and 3D reconstructed surfaces of several real microscopic samples. PMID:26779561

  13. 3DSEM: A 3D microscopy dataset

    Directory of Open Access Journals (Sweden)

    Ahmad P. Tafti

    2016-03-01

    Full Text Available The Scanning Electron Microscope (SEM as a 2D imaging instrument has been widely used in many scientific disciplines including biological, mechanical, and materials sciences to determine the surface attributes of microscopic objects. However the SEM micrographs still remain 2D images. To effectively measure and visualize the surface properties, we need to truly restore the 3D shape model from 2D SEM images. Having 3D surfaces would provide anatomic shape of micro-samples which allows for quantitative measurements and informative visualization of the specimens being investigated. The 3DSEM is a dataset for 3D microscopy vision which is freely available at [1] for any academic, educational, and research purposes. The dataset includes both 2D images and 3D reconstructed surfaces of several real microscopic samples.

  14. 3D Visualization of Recent Sumatra Earthquake

    Science.gov (United States)

    Nayak, Atul; Kilb, Debi

    2005-04-01

    Scientists and visualization experts at the Scripps Institution of Oceanography have created an interactive three-dimensional visualization of the 28 March 2005 magnitude 8.7 earthquake in Sumatra. The visualization shows the earthquake's hypocenter and aftershocks recorded until 29 March 2005, and compares it with the location of the 26 December 2004 magnitude 9 event and the consequent seismicity in that region. The 3D visualization was created using the Fledermaus software developed by Interactive Visualization Systems (http://www.ivs.unb.ca/) and stored as a ``scene'' file. To view this visualization, viewers need to download and install the free viewer program iView3D (http://www.ivs3d.com/products/iview3d).

  15. 3D VISUALIZATION FOR VIRTUAL MUSEUM DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    M. Skamantzari

    2016-06-01

    Full Text Available The interest in the development of virtual museums is nowadays rising rapidly. During the last decades there have been numerous efforts concerning the 3D digitization of cultural heritage and the development of virtual museums, digital libraries and serious games. The realistic result has always been the main concern and a real challenge when it comes to 3D modelling of monuments, artifacts and especially sculptures. This paper implements, investigates and evaluates the results of the photogrammetric methods and 3D surveys that were used for the development of a virtual museum. Moreover, the decisions, the actions, the methodology and the main elements that this kind of application should include and take into consideration are described and analysed. It is believed that the outcomes of this application will be useful to researchers who are planning to develop and further improve the attempts made on virtual museums and mass production of 3D models.

  16. Cubical Cohomology Ring of 3D Photographs

    CERN Document Server

    Gonzalez-Diaz, Rocio; Medrano, Belen; 10.1002/ima.20271

    2011-01-01

    Cohomology and cohomology ring of three-dimensional (3D) objects are topological invariants that characterize holes and their relations. Cohomology ring has been traditionally computed on simplicial complexes. Nevertheless, cubical complexes deal directly with the voxels in 3D images, no additional triangulation is necessary, facilitating efficient algorithms for the computation of topological invariants in the image context. In this paper, we present formulas to directly compute the cohomology ring of 3D cubical complexes without making use of any additional triangulation. Starting from a cubical complex $Q$ that represents a 3D binary-valued digital picture whose foreground has one connected component, we compute first the cohomological information on the boundary of the object, $\\partial Q$ by an incremental technique; then, using a face reduction algorithm, we compute it on the whole object; finally, applying the mentioned formulas, the cohomology ring is computed from such information.

  17. Networked 3D Virtual Museum System

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Virtual heritage has become increasingly important in the conservation, preservation, and interpretation of our cultural and natural history. Moreover, rapid advances in digital technologies in recent years offer virtual heritage new direction. This paper introduces our approach toward a networked 3D virtual museum system, especially, how to model, manage, present virtual heritages and furthermore how to use computer network for the share of virtual heritage in the networked virtual environment. This paper first addresses a 3D acquisition and processing technique for virtual heritage modeling and shows some illustrative examples. Then, this paper describes a management of virtual heritage assets that are composed by various rich media. This paper introduces our schemes to present the virtual heritages, which include 3D virtual heritage browser system, CAVE system, and immersive VR theater. Finally, this paper presents the new direction of networked 3D virtual museum of which main idea is remote guide of the virtual heritage using the mixed reality technique.

  18. High accuracy 3-D laser radar

    DEFF Research Database (Denmark)

    Busck, Jens; Heiselberg, Henning

    2004-01-01

    We have developed a mono-static staring 3-D laser radar based on gated viewing with range accuracy below 1 m at 10 m and 1 cm at 100. We use a high sensitivity, fast, intensified CCD camera, and a Nd:Yag passively Q-switched 32.4 kHz pulsed green laser at 532 nm. The CCD has 752x582 pixels. Camera...... shutter is controlled in steps of 100 ps. Camera delay is controlled in steps of 100 ps. Each laser pulse triggers the camera delay and shutter. A 3-D image is constructed from a sequence of 50-100 2-D reflectivity images, where each frame integrates about 700 laser pulses on the CCD. In 50 Hz video mode...... we record a 2-D sequence in a second and process a 3-D image in few seconds. We compare 3-D images with a system performance model....

  19. Nonlaser-based 3D surface imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.

  20. Tvorba 3D modelů

    OpenAIRE

    Musálek, Martin

    2014-01-01

    Práce řeší 3D rekonstrukci objektu pomocí metody nasvícení vzorem. Projektor nasvěcuje měřený objekt definovaným vzorem a dvojice kamer z něj snímá body. Podstavec s objektem se otáčí, a během více měření je objekt sejmut z více úhlů. Body jsou identifikovány z naměřených snímků, transformovány na 3D pomocí stereovidění, spojeny do 3D modelu a zobrazeny. Thesis solves 3D reconstruction of an object by method of lighting by pattern. A projector lights the measured object by defined pattern ...

  1. 3D Maps Representation Using GNG

    Directory of Open Access Journals (Sweden)

    Vicente Morell

    2014-01-01

    Full Text Available Current RGB-D sensors provide a big amount of valuable information for mobile robotics tasks like 3D map reconstruction, but the storage and processing of the incremental data provided by the different sensors through time quickly become unmanageable. In this work, we focus on 3D maps representation and propose the use of the Growing Neural Gas (GNG network as a model to represent 3D input data. GNG method is able to represent the input data with a desired amount of neurons or resolution while preserving the topology of the input space. Experiments show how GNG method yields a better input space adaptation than other state-of-the-art 3D map representation methods.

  2. 3D-printed bioanalytical devices

    Science.gov (United States)

    Bishop, Gregory W.; Satterwhite-Warden, Jennifer E.; Kadimisetty, Karteek; Rusling, James F.

    2016-07-01

    While 3D printing technologies first appeared in the 1980s, prohibitive costs, limited materials, and the relatively small number of commercially available printers confined applications mainly to prototyping for manufacturing purposes. As technologies, printer cost, materials, and accessibility continue to improve, 3D printing has found widespread implementation in research and development in many disciplines due to ease-of-use and relatively fast design-to-object workflow. Several 3D printing techniques have been used to prepare devices such as milli- and microfluidic flow cells for analyses of cells and biomolecules as well as interfaces that enable bioanalytical measurements using cellphones. This review focuses on preparation and applications of 3D-printed bioanalytical devices.

  3. Advanced 3D Object Identification System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Optra will build an Advanced 3D Object Identification System utilizing three or more high resolution imagers spaced around a launch platform. Data from each imager...

  4. Measuring Visual Closeness of 3-D Models

    KAUST Repository

    Morales, Jose A.

    2012-09-01

    Measuring visual closeness of 3-D models is an important issue for different problems and there is still no standardized metric or algorithm to do it. The normal of a surface plays a vital role in the shading of a 3-D object. Motivated by this, we developed two applications to measure visualcloseness, introducing normal difference as a parameter in a weighted metric in Metro’s sampling approach to obtain the maximum and mean distance between 3-D models using 3-D and 6-D correspondence search structures. A visual closeness metric should provide accurate information on what the human observers would perceive as visually close objects. We performed a validation study with a group of people to evaluate the correlation of our metrics with subjective perception. The results were positive since the metrics predicted the subjective rankings more accurately than the Hausdorff distance.

  5. Transportstromen verschuiven door toepassing 3-D

    NARCIS (Netherlands)

    Janssen, G.R.

    2014-01-01

    3-D printing is aan een gestage opmars bezig.ln een paar jaar tijd is er een miljardenmarkt ontstaan die exponentieel groeit. TNO deed onderzoek naar de impact van deze ontwikkelingen op supply chains.

  6. Pentingnya Pengetahuan Anatomi untuk 3D Artist

    Directory of Open Access Journals (Sweden)

    Anton Sugito Kurniawan

    2011-03-01

    Full Text Available No matter how far the current technological advances, anatomical knowledge will still be needed as a basis for making a good character design. Understanding anatomy will help us in the placement of the articulation of muscles and joints, thus more realistic modeling of 3d characters will be achieved in the form and movement. As a 3d character artist, anatomy should be able to inform in every aspect of our work. Each 3D/CG (Computer Graphics-artist needs to know how to use software applications, but what differentiates a 3d artist with a computer operator is an artistic vision and understanding of the basic shape of the human body. Artistic vision could not easily be taught, but a CG-artist may study it on their own from which so many reference sources may help understand and deepen their knowledge of anatomy.

  7. Single-shot 3D sensing with improved data density

    CERN Document Server

    Willomitzer, Florian; Faber, Christian; Häusler, Gerd

    2014-01-01

    We introduce a novel concept for motion robust optical 3D-sensing. The concept is based on multi-line triangulation. The aim is to evaluate a large number of projected lines (high data density) in a large measurement volume with high precision. Implementing all those three attributes at the same time allows for the "perfect" real-time 3D movie camera (our long term goal). The key problem towards this goal is ambiguous line indexing: we will demonstrate that the necessary information for unique line indexing can be acquired by two synchronized cameras and a back projection scheme. The introduced concept preserves high lateral resolution, since the lines are as narrow as the sampling theorem allows, no spatial bandwidth is consumed by encoding of the lines. In principle, the distance uncertainty is only limited by shot noise and coherent noise. The concept can be also advantageously implemented with a hand-guided sensor and real-time registration, for a complete and dense 3D-acquisition of complicated scenes.

  8. Embedding 3D into multipurpose cadastre

    OpenAIRE

    A. A. Rahman; T. C. Hua; P. J. M. Van Oosterom

    2011-01-01

    There is no doubt that the cadastral map provides a useful entrance to information in a land parcel based information system. However, such information system could be made more meaningful and useful if it can be extended for multiple usages with multi data layers, and in three-dimensions (3D). Currently, many national mapping and cadastral agencies (NMCAs) and users deal with complex situations, and we believe that 3D could enhance the understanding of the situations better. This paper descr...

  9. Luovasta konseptisuunnittelusta 3D-mainoselokuvaan

    OpenAIRE

    Salo, Suvi

    2015-01-01

    Insinöörityön tavoite oli luoda 3D-mainoselokuva myynnin tueksi ja nostaa esiin IT-alan yrityksen ja sen yksikön tuottamien palveluiden laajuutta ja yrityksen tapaa tuottaa tulostuspalvelua. Toteutettu mainoselokuva on tarkoitettu julkaistavaksi verkossa yrityksen omalla Youtube-kanavalla ja verkkosivuilla. 3D-mainoselokuvan suunnittelussa käytettiin luovan konseptisuunnittelun keinoja jalostaa tarina kohderyhmälähtöiseksi. Aluksi selvitettiin asiakasrajapinnan haastattelujen avulla kohde...

  10. 3D printing: technology and processing

    OpenAIRE

    Kurinov, Ilya

    2016-01-01

    The objective of the research was to improve the process of 3D printing on the laboratory machine. In the study processes of designing, printing and post-print-ing treatment were improved. The study was commissioned by Mikko Ruotsalainen, head of the laboratory. The data was collected during the test work. All the basic information about 3D printing was taken from the Internet or library. As the results of the project higher model accuracy, solutions for post-printing treatment, printin...

  11. The Idaho Virtualization Laboratory 3D Pipeline

    Directory of Open Access Journals (Sweden)

    Nicholas A. Holmer

    2014-05-01

    Full Text Available Three dimensional (3D virtualization and visualization is an important component of industry, art, museum curation and cultural heritage, yet the step by step process of 3D virtualization has been little discussed. Here we review the Idaho Virtualization Laboratory’s (IVL process of virtualizing a cultural heritage item (artifact from start to finish. Each step is thoroughly explained and illustrated including how the object and its metadata are digitally preserved and ultimately distributed to the world.

  12. 3D Printing for Tissue Engineering

    OpenAIRE

    Richards, Dylan Jack; Tan, Yu; Jia, Jia; Yao, Hai; Mei, Ying

    2013-01-01

    Tissue engineering aims to fabricate functional tissue for applications in regenerative medicine and drug testing. More recently, 3D printing has shown great promise in tissue fabrication with a structural control from micro- to macro-scale by using a layer-by-layer approach. Whether through scaffold-based or scaffold-free approaches, the standard for 3D printed tissue engineering constructs is to provide a biomimetic structural environment that facilitates tissue formation and promotes host ...

  13. 3D Printing Electrically Small Spherical Antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2013-01-01

    3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations.......3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations....

  14. Relationship between the Rorschach Perceptual Thinking Index (PTI) and the Positive and Negative Syndrome Scale (PANSS) in psychotic patients: a validity study.

    Science.gov (United States)

    Biagiarelli, Mario; Roma, Paolo; Comparelli, Anna; Andraos, Maria Paola; Di Pomponio, Ileana; Corigliano, Valentina; Curto, Martina; Masters, Grace Allison; Ferracuti, Stefano

    2015-02-28

    The aim of this study is to demonstrate the validity of the Rorschach Perceptual Thinking Index (PTI) in the assessment of reality testing in patients with psychosis. We evaluated the relationship between the PTI criteria and the Positive and Negative Syndrome Scale (PANSS) scores in 98 psychotic disorder affected patients. Thirty four were evaluated during the acute episode (AP) and 64 were chronically treated and stable (CP). The PANSS positive score resulted significantly higher in AP than in CP group, but no significant difference was found in the PTI score. The PTI positively correlated with the PANSS total score. The PTI1 and PTI2 criteria significantly correlated with the PANSS negative score, the PTI4 and PTI5 with the positive. The Rorschach variable X-% significantly correlated with the negative symptoms; the WSum6 with thought disorders; and the M- with delusions. PTI score, X-% and WSum6 predicted impaired judgment and insight. These results suggest that PTI is a valid instrument to assess impairment in reality testing, regardless of the patient׳s current psychiatric presentation. The presence of conceptual disorganization, delusions, lack of judgment and insight don׳t have effects on the PTI, supporting its strength as an assessment tool for psychotic disorders. PMID:25560479

  15. LandSIM3D: modellazione in real time 3D di dati geografici

    OpenAIRE

    Lambo Srl Lambo Srl

    2009-01-01

    LandSIM3D: realtime 3D modelling of geographic dataLandSIM3D allows to model in 3D an existing landscape in a few hours only and geo-referenced offering great landscape analysis and understanding tools. 3D projects can then be inserted into the existing landscape with ease and precision. The project alternatives and impact can then be visualized and studied into their immediate environmental. The complex evolution of the landscape in the future can also be simulated and the landscape model ca...

  16. ASSESSING 3D PHOTOGRAMMETRY TECHNIQUES IN CRANIOMETRICS

    Directory of Open Access Journals (Sweden)

    M. C. Moshobane

    2016-06-01

    Full Text Available Morphometrics (the measurement of morphological features has been revolutionized by the creation of new techniques to study how organismal shape co-varies with several factors such as ecophenotypy. Ecophenotypy refers to the divergence of phenotypes due to developmental changes induced by local environmental conditions, producing distinct ecophenotypes. None of the techniques hitherto utilized could explicitly address organismal shape in a complete biological form, i.e. three-dimensionally. This study investigates the use of the commercial software, Photomodeler Scanner® (PMSc® three-dimensional (3D modelling software to produce accurate and high-resolution 3D models. Henceforth, the modelling of Subantarctic fur seal (Arctocephalus tropicalis and Antarctic fur seal (Arctocephalus gazella skulls which could allow for 3D measurements. Using this method, sixteen accurate 3D skull models were produced and five metrics were determined. The 3D linear measurements were compared to measurements taken manually with a digital caliper. In addition, repetitive measurements were recorded by varying researchers to determine repeatability. To allow for comparison straight line measurements were taken with the software, assuming that close accord with all manually measured features would illustrate the model’s accurate replication of reality. Measurements were not significantly different demonstrating that realistic 3D skull models can be successfully produced to provide a consistent basis for craniometrics, with the additional benefit of allowing non-linear measurements if required.

  17. Assessing 3d Photogrammetry Techniques in Craniometrics

    Science.gov (United States)

    Moshobane, M. C.; de Bruyn, P. J. N.; Bester, M. N.

    2016-06-01

    Morphometrics (the measurement of morphological features) has been revolutionized by the creation of new techniques to study how organismal shape co-varies with several factors such as ecophenotypy. Ecophenotypy refers to the divergence of phenotypes due to developmental changes induced by local environmental conditions, producing distinct ecophenotypes. None of the techniques hitherto utilized could explicitly address organismal shape in a complete biological form, i.e. three-dimensionally. This study investigates the use of the commercial software, Photomodeler Scanner® (PMSc®) three-dimensional (3D) modelling software to produce accurate and high-resolution 3D models. Henceforth, the modelling of Subantarctic fur seal (Arctocephalus tropicalis) and Antarctic fur seal (Arctocephalus gazella) skulls which could allow for 3D measurements. Using this method, sixteen accurate 3D skull models were produced and five metrics were determined. The 3D linear measurements were compared to measurements taken manually with a digital caliper. In addition, repetitive measurements were recorded by varying researchers to determine repeatability. To allow for comparison straight line measurements were taken with the software, assuming that close accord with all manually measured features would illustrate the model's accurate replication of reality. Measurements were not significantly different demonstrating that realistic 3D skull models can be successfully produced to provide a consistent basis for craniometrics, with the additional benefit of allowing non-linear measurements if required.

  18. Recording stereoscopic 3D neurosurgery with a head-mounted 3D camera system.

    Science.gov (United States)

    Lee, Brian; Chen, Brian R; Chen, Beverly B; Lu, James Y; Giannotta, Steven L

    2015-06-01

    Stereoscopic three-dimensional (3D) imaging can present more information to the viewer and further enhance the learning experience over traditional two-dimensional (2D) video. Most 3D surgical videos are recorded from the operating microscope and only feature the crux, or the most important part of the surgery, leaving out other crucial parts of surgery including the opening, approach, and closing of the surgical site. In addition, many other surgeries including complex spine, trauma, and intensive care unit procedures are also rarely recorded. We describe and share our experience with a commercially available head-mounted stereoscopic 3D camera system to obtain stereoscopic 3D recordings of these seldom recorded aspects of neurosurgery. The strengths and limitations of using the GoPro(®) 3D system as a head-mounted stereoscopic 3D camera system in the operating room are reviewed in detail. Over the past several years, we have recorded in stereoscopic 3D over 50 cranial and spinal surgeries and created a library for education purposes. We have found the head-mounted stereoscopic 3D camera system to be a valuable asset to supplement 3D footage from a 3D microscope. We expect that these comprehensive 3D surgical videos will become an important facet of resident education and ultimately lead to improved patient care.

  19. RAG-3D: a search tool for RNA 3D substructures.

    Science.gov (United States)

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; Schlick, Tamar

    2015-10-30

    To address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D-a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool-designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally described in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding. PMID:26304547

  20. 3D-mallien muokkaus 3D-tulostamista varten CAD-ohjelmilla

    OpenAIRE

    Lehtimäki, Jarmo

    2013-01-01

    Insinöörityössäni käsitellään 3D-mallien tulostamista ja erityisesti 3D-mallien mallintamista niin, että kappaleiden valmistaminen 3D-tulostimella onnistuisi mahdollisimman hyvin. Työ tehtiin Prohoc Oy:lle, joka sijaitsee Vaasassa. 3D-tulostuspalveluun tuli jatkuvasti 3D-malleja, joiden tulostuksessa oli ongelmia. Työssäni tutkin näiden ongelmien syntyä ja tein ohjeita eri 3D-mallinnusohjelmille, joiden tarkoituksena on auttaa tekemään helpommin tulostettavia 3D-malleja. Työhön kuului myös et...

  1. Thin slice three dimentional (3D reconstruction versus CT 3D reconstruction of human breast cancer

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2013-01-01

    Full Text Available Background & objectives: With improvement in the early diagnosis of breast cancer, breast conserving therapy (BCT is being increasingly used. Precise preoperative evaluation of the incision margin is, therefore, very important. Utilizing three dimentional (3D images in a preoperative evaluation for breast conserving surgery has considerable significance, but the currently 3D CT scan reconstruction commonly used has problems in accurately displaying breast cancer. Thin slice 3D reconstruction is also widely used now to delineate organs and tissues of breast cancers. This study was aimed to compare 3D CT with thin slice 3D reconstruction in breast cancer patients to find a better technique for accurate evaluation of breast cancer. Methods: A total of 16-slice spiral CT scans and 3D reconstructions were performed on 15 breast cancer patients. All patients had been treated with modified radical mastectomy; 2D and 3D images of breast and tumours were obtained. The specimens were fixed and sliced at 2 mm thickness to obtain serial thin slice images, and reconstructed using 3D DOCTOR software to gain 3D images. Results: Compared with 2D CT images, thin slice images showed more clearly the morphological characteristics of tumour, breast tissues and the margins of different tissues in each slice. After 3D reconstruction, the tumour shapes obtained by the two reconstruction methods were basically the same, but the thin slice 3D reconstruction showed the tumour margins more clearly. Interpretation & conclusions: Compared with 3D CT reconstruction, thin slice 3D reconstruction of breast tumour gave clearer images, which could provide guidance for the observation and application of CT 3D reconstructed images and contribute to the accurate evaluation of tumours using CT imaging technology.

  2. 3D-PRINTING OF BUILD OBJECTS

    Directory of Open Access Journals (Sweden)

    SAVYTSKYI M. V.

    2016-03-01

    Full Text Available Raising of problem. Today, in all spheres of our life we can constate the permanent search for new, modern methods and technologies that meet the principles of sustainable development. New approaches need to be, on the one hand more effective in terms of conservation of exhaustible resources of our planet, have minimal impact on the environment and on the other hand to ensure a higher quality of the final product. Construction is not exception. One of the new promising technology is the technology of 3D -printing of individual structures and buildings in general. 3Dprinting - is the process of real object recreating on the model of 3D. Unlike conventional printer which prints information on a sheet of paper, 3D-printer allows you to display three-dimensional information, i.e. creates certain physical objects. Currently, 3D-printer finds its application in many areas of production: machine building elements, a variety of layouts, interior elements, various items. But due to the fact that this technology is fairly new, it requires the creation of detailed and accurate technologies, efficient equipment and materials, and development of common vocabulary and regulatory framework in this field. Research Aim. The analysis of existing methods of creating physical objects using 3D-printing and the improvement of technology and equipment for the printing of buildings and structures. Conclusion. 3D-printers building is a new generation of equipment for the construction of buildings, structures, and structural elements. A variety of building printing technics opens up wide range of opportunities in the construction industry. At this stage, printers design allows to create low-rise buildings of different configurations with different mortars. The scientific novelty of this work is to develop proposals to improve the thermal insulation properties of constructed 3D-printing objects and technological equipment. The list of key terms and notions of construction

  3. PLOT3D Export Tool for Tecplot

    Science.gov (United States)

    Alter, Stephen

    2010-01-01

    The PLOT3D export tool for Tecplot solves the problem of modified data being impossible to output for use by another computational science solver. The PLOT3D Exporter add-on enables the use of the most commonly available visualization tools to engineers for output of a standard format. The exportation of PLOT3D data from Tecplot has far reaching effects because it allows for grid and solution manipulation within a graphical user interface (GUI) that is easily customized with macro language-based and user-developed GUIs. The add-on also enables the use of Tecplot as an interpolation tool for solution conversion between different grids of different types. This one add-on enhances the functionality of Tecplot so significantly, it offers the ability to incorporate Tecplot into a general suite of tools for computational science applications as a 3D graphics engine for visualization of all data. Within the PLOT3D Export Add-on are several functions that enhance the operations and effectiveness of the add-on. Unlike Tecplot output functions, the PLOT3D Export Add-on enables the use of the zone selection dialog in Tecplot to choose which zones are to be written by offering three distinct options - output of active, inactive, or all zones (grid blocks). As the user modifies the zones to output with the zone selection dialog, the zones to be written are similarly updated. This enables the use of Tecplot to create multiple configurations of a geometry being analyzed. For example, if an aircraft is loaded with multiple deflections of flaps, by activating and deactivating different zones for a specific flap setting, new specific configurations of that aircraft can be easily generated by only writing out specific zones. Thus, if ten flap settings are loaded into Tecplot, the PLOT3D Export software can output ten different configurations, one for each flap setting.

  4. A microfluidic device for 2D to 3D and 3D to 3D cell navigation

    International Nuclear Information System (INIS)

    Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be obtained by diffusion. The device was designed by a numerical simulation so that the uniformity of the concentration gradients throughout the cell culture chamber was obtained. Adult neural cells were cultured within this device and they showed different branching and axonal navigation phenotypes within varying nerve growth factor (NGF) concentration profiles. Neural stem cells were also cultured within varying collagen matrix densities while exposed to NGF concentrations and they experienced 3D to 3D collective migration. By generating vascular endothelial growth factor concentration gradients, adult human dermal microvascular endothelial cells also migrated in a 2D to 3D manner and formed a stable lumen within a specific collagen matrix density. It was observed that a minimum absolute concentration and concentration gradient were required to stimulate migration of all types of the cells. This device has the advantage of changing multiple parameters simultaneously and is expected to have wide applicability in cell studies. (paper)

  5. A microfluidic device for 2D to 3D and 3D to 3D cell navigation

    Science.gov (United States)

    Shamloo, Amir; Amirifar, Leyla

    2016-01-01

    Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be obtained by diffusion. The device was designed by a numerical simulation so that the uniformity of the concentration gradients throughout the cell culture chamber was obtained. Adult neural cells were cultured within this device and they showed different branching and axonal navigation phenotypes within varying nerve growth factor (NGF) concentration profiles. Neural stem cells were also cultured within varying collagen matrix densities while exposed to NGF concentrations and they experienced 3D to 3D collective migration. By generating vascular endothelial growth factor concentration gradients, adult human dermal microvascular endothelial cells also migrated in a 2D to 3D manner and formed a stable lumen within a specific collagen matrix density. It was observed that a minimum absolute concentration and concentration gradient were required to stimulate migration of all types of the cells. This device has the advantage of changing multiple parameters simultaneously and is expected to have wide applicability in cell studies.

  6. The importance of 3D dosimetry

    International Nuclear Information System (INIS)

    Radiation therapy has been getting progressively more complex for the past 20 years. Early radiation therapy techniques needed only basic dosimetry equipment; motorized water phantoms, ionization chambers, and basic radiographic film techniques. As intensity modulated radiation therapy and image guided therapy came into widespread practice, medical physicists were challenged with developing effective and efficient dose measurement techniques. The complex 3-dimensional (3D) nature of the dose distributions that were being delivered demanded the development of more quantitative and more thorough methods for dose measurement. The quality assurance vendors developed a wide array of multidetector arrays that have been enormously useful for measuring and characterizing dose distributions, and these have been made especially useful with the advent of 3D dose calculation systems based on the array measurements, as well as measurements made using film and portal imagers. Other vendors have been providing 3D calculations based on data from the linear accelerator or the record and verify system, providing thorough evaluation of the dose but lacking quality assurance (QA) of the dose delivery process, including machine calibration. The current state of 3D dosimetry is one of a state of flux. The vendors and professional associations are trying to determine the optimal balance between thorough QA, labor efficiency, and quantitation. This balance will take some time to reach, but a necessary component will be the 3D measurement and independent calculation of delivered radiation therapy dose distributions

  7. Magnetic Properties of 3D Printed Toroids

    Science.gov (United States)

    Bollig, Lindsey; Otto, Austin; Hilpisch, Peter; Mowry, Greg; Nelson-Cheeseman, Brittany; Renewable Energy; Alternatives Lab (REAL) Team

    Transformers are ubiquitous in electronics today. Although toroidal geometries perform most efficiently, transformers are traditionally made with rectangular cross-sections due to the lower manufacturing costs. Additive manufacturing techniques (3D printing) can easily achieve toroidal geometries by building up a part through a series of 2D layers. To get strong magnetic properties in a 3D printed transformer, a composite filament is used containing Fe dispersed in a polymer matrix. How the resulting 3D printed toroid responds to a magnetic field depends on two structural factors of the printed 2D layers: fill factor (planar density) and fill pattern. In this work, we investigate how the fill factor and fill pattern affect the magnetic properties of 3D printed toroids. The magnetic properties of the printed toroids are measured by a custom circuit that produces a hysteresis loop for each toroid. Toroids with various fill factors and fill patterns are compared to determine how these two factors can affect the magnetic field the toroid can produce. These 3D printed toroids can be used for numerous applications in order to increase the efficiency of transformers by making it possible for manufacturers to make a toroidal geometry.

  8. 3D analysis methods - Study and seminar

    International Nuclear Information System (INIS)

    The first part of the report results from a study that was performed as a Nordic co-operation activity with active participation from Studsvik Scandpower and Westinghouse Atom in Sweden, and VTT in Finland. The purpose of the study was to identify and investigate the effects rising from using the 3D transient com-puter codes in BWR safety analysis, and their influence on the transient analysis methodology. One of the main questions involves the critical power ratio (CPR) calculation methodology. The present way, where the CPR calculation is per-formed with a separate hot channel calculation, can be artificially conservative. In the investigated cases, no dramatic minimum CPR effect coming from the 3D calculation is apparent. Some cases show some decrease in the transient change of minimum CPR with the 3D calculation, which confirms the general thinking that the 1D calculation is conservative. On the other hand, the observed effect on neutron flux behaviour is quite large. In a slower transient the 3D effect might be stronger. The second part of the report is a summary of a related seminar that was held on the 3D analysis methods. The seminar was sponsored by the Reactor Safety part (NKS-R) of the Nordic Nuclear Safety Research Programme (NKS). (au)

  9. Recent Progress on 3D Silicon Detectors

    CERN Document Server

    Lange, Jörn

    2015-01-01

    3D silicon detectors, in which the electrodes penetrate the sensor bulk perpendicular to the surface, have recently undergone a rapid development from R\\&D over industrialisation to their first installation in a real high-energy-physics experiment. Since June 2015, the ATLAS Insertable B-Layer is taking first collision data with 3D pixel detectors. At the same time, preparations are advancing to install 3D pixel detectors in forward trackers such as the ATLAS Forward Proton detector or the CMS-TOTEM Proton Precision Spectrometer. For those experiments, the main requirements are a slim edge and the ability to cope with non-uniform irradiation. Both have been shown to be fulfilled by 3D pixel detectors. For the High-Luminosity LHC pixel upgrades of the major experiments, 3D detectors are promising candidates for the innermost pixel layers to cope with harsh radiation environments up to fluences of $2\\times10^{16}$\\,n$_{eq}$/cm$^2$ thanks to their excellent radiation hardness at low operational voltages and ...

  10. Lifting Object Detection Datasets into 3D.

    Science.gov (United States)

    Carreira, Joao; Vicente, Sara; Agapito, Lourdes; Batista, Jorge

    2016-07-01

    While data has certainly taken the center stage in computer vision in recent years, it can still be difficult to obtain in certain scenarios. In particular, acquiring ground truth 3D shapes of objects pictured in 2D images remains a challenging feat and this has hampered progress in recognition-based object reconstruction from a single image. Here we propose to bypass previous solutions such as 3D scanning or manual design, that scale poorly, and instead populate object category detection datasets semi-automatically with dense, per-object 3D reconstructions, bootstrapped from:(i) class labels, (ii) ground truth figure-ground segmentations and (iii) a small set of keypoint annotations. Our proposed algorithm first estimates camera viewpoint using rigid structure-from-motion and then reconstructs object shapes by optimizing over visual hull proposals guided by loose within-class shape similarity assumptions. The visual hull sampling process attempts to intersect an object's projection cone with the cones of minimal subsets of other similar objects among those pictured from certain vantage points. We show that our method is able to produce convincing per-object 3D reconstructions and to accurately estimate cameras viewpoints on one of the most challenging existing object-category detection datasets, PASCAL VOC. We hope that our results will re-stimulate interest on joint object recognition and 3D reconstruction from a single image. PMID:27295458

  11. Biocompatible 3D Matrix with Antimicrobial Properties

    Directory of Open Access Journals (Sweden)

    Alberto Ion

    2016-01-01

    Full Text Available The aim of this study was to develop, characterize and assess the biological activity of a new regenerative 3D matrix with antimicrobial properties, based on collagen (COLL, hydroxyapatite (HAp, β-cyclodextrin (β-CD and usnic acid (UA. The prepared 3D matrix was characterized by Scanning Electron Microscopy (SEM, Fourier Transform Infrared Microscopy (FT-IRM, Transmission Electron Microscopy (TEM, and X-ray Diffraction (XRD. In vitro qualitative and quantitative analyses performed on cultured diploid cells demonstrated that the 3D matrix is biocompatible, allowing the normal development and growth of MG-63 osteoblast-like cells and exhibited an antimicrobial effect, especially on the Staphylococcus aureus strain, explained by the particular higher inhibitory activity of usnic acid (UA against Gram positive bacterial strains. Our data strongly recommend the obtained 3D matrix to be used as a successful alternative for the fabrication of three dimensional (3D anti-infective regeneration matrix for bone tissue engineering.

  12. 3D bioprinting for engineering complex tissues.

    Science.gov (United States)

    Mandrycky, Christian; Wang, Zongjie; Kim, Keekyoung; Kim, Deok-Ho

    2016-01-01

    Bioprinting is a 3D fabrication technology used to precisely dispense cell-laden biomaterials for the construction of complex 3D functional living tissues or artificial organs. While still in its early stages, bioprinting strategies have demonstrated their potential use in regenerative medicine to generate a variety of transplantable tissues, including skin, cartilage, and bone. However, current bioprinting approaches still have technical challenges in terms of high-resolution cell deposition, controlled cell distributions, vascularization, and innervation within complex 3D tissues. While no one-size-fits-all approach to bioprinting has emerged, it remains an on-demand, versatile fabrication technique that may address the growing organ shortage as well as provide a high-throughput method for cell patterning at the micrometer scale for broad biomedical engineering applications. In this review, we introduce the basic principles, materials, integration strategies and applications of bioprinting. We also discuss the recent developments, current challenges and future prospects of 3D bioprinting for engineering complex tissues. Combined with recent advances in human pluripotent stem cell technologies, 3D-bioprinted tissue models could serve as an enabling platform for high-throughput predictive drug screening and more effective regenerative therapies.

  13. 3D culture for cardiac cells.

    Science.gov (United States)

    Zuppinger, Christian

    2016-07-01

    This review discusses historical milestones, recent developments and challenges in the area of 3D culture models with cardiovascular cell types. Expectations in this area have been raised in recent years, but more relevant in vitro research, more accurate drug testing results, reliable disease models and insights leading to bioartificial organs are expected from the transition to 3D cell culture. However, the construction of organ-like cardiac 3D models currently remains a difficult challenge. The heart consists of highly differentiated cells in an intricate arrangement.Furthermore, electrical “wiring”, a vascular system and multiple cell types act in concert to respond to the rapidly changing demands of the body. Although cardiovascular 3D culture models have been predominantly developed for regenerative medicine in the past, their use in drug screening and for disease models has become more popular recently. Many sophisticated 3D culture models are currently being developed in this dynamic area of life science. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  14. Particle Acceleration in 3D Magnetic Reconnection

    Science.gov (United States)

    Dahlin, J.; Drake, J. F.; Swisdak, M.

    2015-12-01

    Magnetic reconnection is an important driver of energetic particles in phenomena such as magnetospheric storms and solar flares. Using kinetic particle-in-cell (PIC) simulations, we show that the stochastic magnetic field structure which develops during 3D reconnection plays a vital role in particle acceleration and transport. In a 2D system, electrons are trapped in magnetic islands which limits their energy gain. In a 3D system, however, the stochastic magnetic field enables the energetic electrons to access volume-filling acceleration regions and therefore gain energy much more efficiently than in the 2D system. We also examine the relative roles of two important acceleration drivers: parallel electric fields and a Fermi mechanism associated with reflection of charged particles from contracting field lines. We find that parallel electric fields are most important for accelerating low energy particles, whereas Fermi reflection dominates energetic particle production. We also find that proton energization is reduced in the 3D system.

  15. Participation and 3D Visualization Tools

    DEFF Research Database (Denmark)

    Mullins, Michael; Jensen, Mikkel Holm; Henriksen, Sune;

    2004-01-01

    With a departure point in a workshop held at the VR Media Lab at Aalborg University , this paper deals with aspects of public participation and the use of 3D visualisation tools. The workshop grew from a desire to involve a broad collaboration between the many actors in the city through using new...... perceptions of architectural representation in urban design where 3D visualisation techniques are used. It is the authors? general finding that, while 3D visualisation media have the potential to increase understanding of virtual space for the lay public, as well as for professionals, the lay public require...... communication and visualisation media. It is largely experimental in nature and has a qualitative approach in analysing some of the actions and arguments which took place. These experiences and preliminary results form the basis for a discussion towards an understanding of virtual space and the varying...

  16. 3D Printed Multimaterial Microfluidic Valve

    Science.gov (United States)

    Patrick, William G.; Sharma, Sunanda; Kong, David S.; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics. PMID:27525809

  17. 3D face analysis for demographic biometrics

    Energy Technology Data Exchange (ETDEWEB)

    Tokola, Ryan A [ORNL; Mikkilineni, Aravind K [ORNL; Boehnen, Chris Bensing [ORNL

    2015-01-01

    Despite being increasingly easy to acquire, 3D data is rarely used for face-based biometrics applications beyond identification. Recent work in image-based demographic biometrics has enjoyed much success, but these approaches suffer from the well-known limitations of 2D representations, particularly variations in illumination, texture, and pose, as well as a fundamental inability to describe 3D shape. This paper shows that simple 3D shape features in a face-based coordinate system are capable of representing many biometric attributes without problem-specific models or specialized domain knowledge. The same feature vector achieves impressive results for problems as diverse as age estimation, gender classification, and race classification.

  18. Spectroradiometric characterization of autostereoscopic 3D displays

    Science.gov (United States)

    Rubiño, Manuel; Salas, Carlos; Pozo, Antonio M.; Castro, J. J.; Pérez-Ocón, Francisco

    2013-11-01

    Spectroradiometric measurements have been made for the experimental characterization of the RGB channels of autostereoscopic 3D displays, giving results for different measurement angles with respect to the normal direction of the plane of the display. In the study, 2 different models of autostereoscopic 3D displays of different sizes and resolutions were used, making measurements with a spectroradiometer (model PR-670 SpectraScan of PhotoResearch). From the measurements made, goniometric results were recorded for luminance contrast, and the fundamental hypotheses have been evaluated for the characterization of the displays: independence of the RGB channels and their constancy. The results show that the display with the lower angle variability in the contrast-ratio value and constancy of the chromaticity coordinates nevertheless presented the greatest additivity deviations with the measurement angle. For both displays, when the parameters evaluated were taken into account, lower angle variability consistently resulted in the 2D mode than in the 3D mode.

  19. DNA origami design of 3D nanostructures

    DEFF Research Database (Denmark)

    Andersen, Ebbe Sloth; Nielsen, Morten Muhlig

    2009-01-01

    [8]. We have recently developed a semi-automated DNA origami software package [9] that uses a 2D sequence editor in conjunction with several automated tools to facilitate the design process. Here we extend the use of the program for designing DNA origami structures in 3D and show the application......Structural DNA nanotechnology has been heavily dependent on the development of dedicated software tools for the design of unique helical junctions, to define unique sticky-ends for tile assembly, and for predicting the products of the self-assembly reaction of multiple DNA strands [1-3]. Recently......, several dedicated 3D editors for computer-aided design of DNA structures have been developed [4-7]. However, many of these tools are not efficient for designing DNA origami structures that requires the design of more than 200 unique DNA strands to be folded along a scaffold strand into a defined 3D shape...

  20. The CIFIST 3D model atmosphere grid

    CERN Document Server

    Ludwig, H -G; Steffen, M; Freytag, B; Bonifacio, P

    2009-01-01

    Grids of stellar atmosphere models and associated synthetic spectra are numerical products which have a large impact in astronomy due to their ubiquitous application in the interpretation of radiation from individual stars and stellar populations. 3D model atmospheres are now on the verge of becoming generally available for a wide range of stellar atmospheric parameters. We report on efforts to develop a grid of 3D model atmospheres for late-type stars within the CIFIST Team at Paris Observatory. The substantial demands in computational and human labor for the model production and post-processing render this apparently mundane task a challenging logistic exercise. At the moment the CIFIST grid comprises 77 3D model atmospheres with emphasis on dwarfs of solar and sub-solar metallicities. While the model production is still ongoing, first applications are already worked upon by the CIFIST Team and collaborators.

  1. 3D Gravity Inversion using Tikhonov Regularization

    Directory of Open Access Journals (Sweden)

    Toushmalani Reza

    2015-08-01

    Full Text Available Subsalt exploration for oil and gas is attractive in regions where 3D seismic depth-migration to recover the geometry of a salt base is difficult. Additional information to reduce the ambiguity in seismic images would be beneficial. Gravity data often serve these purposes in the petroleum industry. In this paper, the authors present an algorithm for a gravity inversion based on Tikhonov regularization and an automatically regularized solution process. They examined the 3D Euler deconvolution to extract the best anomaly source depth as a priori information to invert the gravity data and provided a synthetic example. Finally, they applied the gravity inversion to recently obtained gravity data from the Bandar Charak (Hormozgan, Iran to identify its subsurface density structure. Their model showed the 3D shape of salt dome in this region

  2. 3D Printed Multimaterial Microfluidic Valve.

    Science.gov (United States)

    Keating, Steven J; Gariboldi, Maria Isabella; Patrick, William G; Sharma, Sunanda; Kong, David S; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics. PMID:27525809

  3. Multiplane 3D superresolution optical fluctuation imaging

    CERN Document Server

    Geissbuehler, Stefan; Godinat, Aurélien; Bocchio, Noelia L; Dubikovskaya, Elena A; Lasser, Theo; Leutenegger, Marcel

    2013-01-01

    By switching fluorophores on and off in either a deterministic or a stochastic manner, superresolution microscopy has enabled the imaging of biological structures at resolutions well beyond the diffraction limit. Superresolution optical fluctuation imaging (SOFI) provides an elegant way of overcoming the diffraction limit in all three spatial dimensions by computing higher-order cumulants of image sequences of blinking fluorophores acquired with a conventional widefield microscope. So far, three-dimensional (3D) SOFI has only been demonstrated by sequential imaging of multiple depth positions. Here we introduce a versatile imaging scheme which allows for the simultaneous acquisition of multiple focal planes. Using 3D cross-cumulants, we show that the depth sampling can be increased. Consequently, the simultaneous acquisition of multiple focal planes reduces the acquisition time and hence the photo-bleaching of fluorescent markers. We demonstrate multiplane 3D SOFI by imaging the mitochondria network in fixed ...

  4. 3D-printed microfluidic devices.

    Science.gov (United States)

    Amin, Reza; Knowlton, Stephanie; Hart, Alexander; Yenilmez, Bekir; Ghaderinezhad, Fariba; Katebifar, Sara; Messina, Michael; Khademhosseini, Ali; Tasoglu, Savas

    2016-06-20

    Microfluidics is a flourishing field, enabling a wide range of biochemical and clinical applications such as cancer screening, micro-physiological system engineering, high-throughput drug testing, and point-of-care diagnostics. However, fabrication of microfluidic devices is often complicated, time consuming, and requires expensive equipment and sophisticated cleanroom facilities. Three-dimensional (3D) printing presents a promising alternative to traditional techniques such as lithography and PDMS-glass bonding, not only by enabling rapid design iterations in the development stage, but also by reducing the costs associated with institutional infrastructure, equipment installation, maintenance, and physical space. With the recent advancements in 3D printing technologies, highly complex microfluidic devices can be fabricated via single-step, rapid, and cost-effective protocols, making microfluidics more accessible to users. In this review, we discuss a broad range of approaches for the application of 3D printing technology to fabrication of micro-scale lab-on-a-chip devices.

  5. Design and Implementation of 3D Model Database for General-Purpose 3D GIS

    Institute of Scientific and Technical Information of China (English)

    XU Weiping; ZHU Qing; DU Zhiqiang; ZHANG Yeting

    2010-01-01

    To improve the reusability of three-dimensional (3D) models and simplify the complexity of natural scene reconstruction, this paper presents a 3D model database for universal 3D GIS. After the introduction of its extensible function architecture,accompanied by the conclusion of implicit spatial-temporal hierarchy of models in any reconstructed scene of 3D GIS for general purpose, several key issues are discussed in detail, such as the storage and management of 3D models and related retrieval and load method, as well as the interfaces for further on-demand development. Finally, the validity and feasibility of this model database are proved through its application in the development of 3D visualization system of railway operation.

  6. X3d2pov. Traductor of X3D to POV-Ray

    Directory of Open Access Journals (Sweden)

    Andrea Castellanos Mendoza

    2011-01-01

    Full Text Available High-quality and low-quality interactive graphics represent two different approaches to computer graphics’ 3D object representation. The former is mainly used to produce high computational cost movie animation. The latter is used for producing interactive scenes as part of virtual reality environments. Many file format specifications have appeared to satisfy underlying model needs; POV-ray (persistence of vision is an open source specification for rendering photorealistic images with the ray tracer algorithm and X3D (extendable 3D as the VRML successor standard for producing web virtual-reality environments written in XML. X3D2POV has been introduced to render high-quality images from an X3D scene specification; it is a grammar translator tool from X3D code to POV-ray code.

  7. 3D scene reconstruction based on 3D laser point cloud combining UAV images

    Science.gov (United States)

    Liu, Huiyun; Yan, Yangyang; Zhang, Xitong; Wu, Zhenzhen

    2016-03-01

    It is a big challenge capturing and modeling 3D information of the built environment. A number of techniques and technologies are now in use. These include GPS, and photogrammetric application and also remote sensing applications. The experiment uses multi-source data fusion technology for 3D scene reconstruction based on the principle of 3D laser scanning technology, which uses the laser point cloud data as the basis and Digital Ortho-photo Map as an auxiliary, uses 3DsMAX software as a basic tool for building three-dimensional scene reconstruction. The article includes data acquisition, data preprocessing, 3D scene construction. The results show that the 3D scene has better truthfulness, and the accuracy of the scene meet the need of 3D scene construction.

  8. 3D-skannauksen hyödyntäminen 3D-tulostuksessa

    OpenAIRE

    Seppälä, Mikko

    2016-01-01

    Opinnäytetyössä tutustuttiin 3D-skannaus- ja 3D-tulostusteknologioihin. Työssä käytiin läpi erilaiset 3D-tulostusmenetelmät ja esiteltiin erilaisia 3D-skannausmenetelmiä. Lisäksi käytiin läpi 3D-skannaus- ja 3D-tulostusprosessi. Tavoitteena opinnäytetyössä oli tutkia, kuinka nämä kaksi teknologiaa toimivat yhdessä. Tarkoituksena oli käydä läpi prosessi, jossa fyysinen kappale skannattiin digitaaliseen muotoon, jonka jälkeen se voidaan tulostaa uudeksi fyysiseksi kappaleeksi. Lisäksi tarko...

  9. The GB/3D Type Fossils Online Web Portal

    Science.gov (United States)

    McCormick, T.; Howe, M. P.

    2013-12-01

    fossils which can be used in education and public outreach. The audience for the web portal includes both professional paleontologists and the general public. The professional paleontologist can use the portal to discover the whereabouts of the type material for a taxon they are studying, and can use the pictures and 3d models to assess the completeness and preservation quality of the material. This may reduce or negate the need to send specimens (which are often fragile and always irreplaceable) to researchers through the post, or for researchers to make possibly long, expensive and environmentally damaging journeys to visit far-off collections. We hope that the pictures and 3d models will help to stimulate public interest in paleontology and natural history. The ability to digitally image and scan specimens in 3d enables institutions to have an archive record in case specimens are lost or destroyed by accident or warfare. Recent events in Cairo and Baghdad remind us that museum collections are vulnerable to civil and military strife.

  10. Body Language Advanced 3D Character Rigging

    CERN Document Server

    Allen, Eric; Fong, Jared; Sidwell, Adam G

    2011-01-01

    Whether you're a professional Character TD or just like to create 3D characters, this detailed guide reveals the techniques you need to create sophisticated 3D character rigs that range from basic to breathtaking. Packed with step-by-step instructions and full-color illustrations, Body Language walks you through rigging techniques for all the body parts to help you create realistic and believable movements in every character you design. You'll learn advanced rigging concepts that involve MEL scripting and advanced deformation techniques and even how to set up a character pipeline.

  11. Immersive 3D geovisualisation in higher education

    Science.gov (United States)

    Philips, Andrea; Walz, Ariane; Bergner, Andreas; Graeff, Thomas; Heistermann, Maik; Kienzler, Sarah; Korup, Oliver; Lipp, Torsten; Schwanghart, Wolfgang; Zeilinger, Gerold

    2014-05-01

    Through geovisualisation we explore spatial data, we analyse it towards a specific questions, we synthesise results, and we present and communicate them to a specific audience (MacEachren & Kraak 1997). After centuries of paper maps, the means to represent and visualise our physical environment and its abstract qualities have changed dramatically since the 1990s - and accordingly the methods how to use geovisualisation in teaching. Whereas some people might still consider the traditional classroom as ideal setting for teaching and learning geographic relationships and its mapping, we used a 3D CAVE (computer-animated virtual environment) as environment for a problem-oriented learning project called "GEOSimulator". Focussing on this project, we empirically investigated, if such a technological advance like the CAVE make 3D visualisation, including 3D geovisualisation, not only an important tool for businesses (Abulrub et al. 2012) and for the public (Wissen et al. 2008), but also for educational purposes, for which it had hardly been used yet. The 3D CAVE is a three-sided visualisation platform, that allows for immersive and stereoscopic visualisation of observed and simulated spatial data. We examined the benefits of immersive 3D visualisation for geographic research and education and synthesized three fundamental technology-based visual aspects: First, the conception and comprehension of space and location does not need to be generated, but is instantaneously and intuitively present through stereoscopy. Second, optical immersion into virtual reality strengthens this spatial perception which is in particular important for complex 3D geometries. And third, a significant benefit is interactivity, which is enhanced through immersion and allows for multi-discursive and dynamic data exploration and knowledge transfer. Based on our problem-oriented learning project, which concentrates on a case study on flood risk management at the Wilde Weisseritz in Germany, a river

  12. The 3D-city model

    DEFF Research Database (Denmark)

    Holmgren, Steen; Rüdiger, Bjarne; Tournay, Bruno

    2001-01-01

    We have worked with the construction and use of 3D city models for about ten years. This work has given us valuable experience concerning model methodology. In addition to this collection of knowledge, our perception of the concept of city models has changed radically. In order to explain...... this shift in paradigms we begin by describing some of the concrete models we have made, showing the relationship between model structure (methodology and content) and model use. We also describe the projects we are working on at present in order to illustrate new ideas concerning the potential development...... of 3D city models....

  13. 3D Modeling Engine Representation Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Steven Prescott; Ramprasad Sampath; Curtis Smith; Timothy Yang

    2014-09-01

    Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This summary report addressed the methods, techniques, and resources used to develop a 3D modeling engine to represent risk analysis simulation for advanced small modular reactor structures and components. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

  14. Visualization of liver in 3-D

    Science.gov (United States)

    Chen, Chin-Tu; Chou, Jin-Shin; Giger, Maryellen L.; Kahn, Charles E., Jr.; Bae, Kyongtae T.; Lin, Wei-Chung

    1991-05-01

    Visualization of the liver in three dimensions (3-D) can improve the accuracy of volumetric estimation and also aid in surgical planning. We have developed a method for 3-D visualization of the liver using x-ray computed tomography (CT) or magnetic resonance (MR) images. This method includes four major components: (1) segmentation algorithms for extracting liver data from tomographic images; (2) interpolation techniques for both shape and intensity; (3) schemes for volume rendering and display, and (4) routines for electronic surgery and image analysis. This method has been applied to cases from a living-donor liver transplant project and appears to be useful for surgical planning.

  15. Creating a 3D Game Character Model

    OpenAIRE

    Paasikivi, Joni

    2014-01-01

    This thesis goes through the process of modeling a low poly 3D model for a video game project from the perspective of a novice 3D artist. The goal was to prepare a stylized low polygon model of less than 6000 triangles, based on pre-made design and a living person. The program used in this project was 3Ds Max. The process starts with the creation of the reference images for the 3Ds Max and goes through the process of modeling the wireframe model, unwrapping the model for texturizing, and crea...

  16. EAFIT 3D móvil

    OpenAIRE

    Hincapié Casas, Miguel Antonio

    2010-01-01

    Se desarrollo una aplicación para celulares que permite visualizar un mundo virtual en 3D del campus universitario -- El objetivo de este desarrollo fue tener a disposición una herramienta que prestara el mismo servicio prestado por un mapa impreso del campus universitario -- Adicionalmente la aplicación permite hacer uso del GPS integrado en algunos celulares -- La escena 3D fue creada en 3DS Max y enfocada a tener la menor cantidad de polígonos posibles dada las limitaciones de ...

  17. 3D printed diffractive terahertz lenses.

    Science.gov (United States)

    Furlan, Walter D; Ferrando, Vicente; Monsoriu, Juan A; Zagrajek, Przemysław; Czerwińska, Elżbieta; Szustakowski, Mieczysław

    2016-04-15

    A 3D printer was used to realize custom-made diffractive THz lenses. After testing several materials, phase binary lenses with periodic and aperiodic radial profiles were designed and constructed in polyamide material to work at 0.625 THz. The nonconventional focusing properties of such lenses were assessed by computing and measuring their axial point spread function (PSF). Our results demonstrate that inexpensive 3D printed THz diffractive lenses can be reliably used in focusing and imaging THz systems. Diffractive THz lenses with unprecedented features, such as extended depth of focus or bifocalization, have been demonstrated. PMID:27082335

  18. SURVEY AND ANALYSIS OF 3D STEGANOGRAPHY

    Directory of Open Access Journals (Sweden)

    K .LAKSHMI

    2011-01-01

    Full Text Available Steganography is the science that involves communicating secret data in an appropriate multimedia carrier, eg., images, audio, and video files. The remarkable growth in computational power, increase in current security approaches and techniques are often used together to ensures security of the secret message. Steganography’s ultimate objectives, which are capacity and invisibility, are the main factors that separate it from related techniques. In this paper we focus on 3D models of steganography and conclude with some review analysis of high capacity data hiding and low-distortion 3D models.

  19. The Local Universe: Galaxies in 3D

    CERN Document Server

    Koribalski, B S

    2016-01-01

    Here I present results from individual galaxy studies and galaxy surveys in the Local Universe with particular emphasis on the spatially resolved properties of neutral hydrogen gas. The 3D nature of the data allows detailed studies of the galaxy morphology and kinematics, their relation to local and global star formation as well as galaxy environments. I use new 3D visualisation tools to present multi-wavelength data, aided by tilted-ring models of the warped galaxy disks. Many of the algorithms and tools currently under development are essential for the exploration of upcoming large survey data, but are also highly beneficial for the analysis of current galaxy surveys.

  20. Multifractal modelling and 3D lacunarity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hanen, Akkari, E-mail: bettaieb.hanen@topnet.t [Laboratoire de biophysique, TIM, Faculte de Medecine (Tunisia); Imen, Bhouri, E-mail: bhouri_imen@yahoo.f [Unite de recherche ondelettes et multifractals, Faculte des sciences (Tunisia); Asma, Ben Abdallah, E-mail: asma.babdallah@cristal.rnu.t [Laboratoire de biophysique, TIM, Faculte de Medecine (Tunisia); Patrick, Dubois, E-mail: pdubois@chru-lille.f [INSERM, U 703, Lille (France); Hedi, Bedoui Mohamed, E-mail: medhedi.bedoui@fmm.rnu.t [Laboratoire de biophysique, TIM, Faculte de Medecine (Tunisia)

    2009-09-28

    This study presents a comparative evaluation of lacunarity of 3D grey level models with different types of inhomogeneity. A new method based on the 'Relative Differential Box Counting' was developed to estimate the lacunarity features of grey level volumes. To validate our method, we generated a set of 3D grey level multifractal models with random, anisotropic and hierarchical properties. Our method gives a lacunarity measurement correlated with the theoretical one and allows a better model classification compared with a classical approach.

  1. The Galicia 3D experiment: an Introduction.

    Science.gov (United States)

    Reston, Timothy; Martinez Loriente, Sara; Holroyd, Luke; Merry, Tobias; Sawyer, Dale; Morgan, Julia; Jordan, Brian; Tesi Sanjurjo, Mari; Alexanian, Ara; Shillington, Donna; Gibson, James; Minshull, Tim; Karplus, Marianne; Bayracki, Gaye; Davy, Richard; Klaeschen, Dirk; Papenberg, Cord; Ranero, Cesar; Perez-Gussinye, Marta; Martinez, Miguel

    2014-05-01

    In June and July 2013, scientists from 8 institutions took part in the Galicia 3D seismic experiment, the first ever crustal -scale academic 3D MCS survey over a rifted margin. The aim was to determine the 3D structure of a critical portion of the west Galicia rifted margin. At this margin, well-defined tilted fault blocks, bound by west-dipping faults and capped by synrift sediments are underlain by a bright reflection, undulating on time sections, termed the S reflector and thought to represent a major detachment fault of some kind. Moving west, the crust thins to zero thickness and mantle is unroofed, as evidence by the "Peridotite Ridge" first reported at this margin, but since observed at many other magma-poor margins. By imaging such a margin in detail, the experiment aimed to resolve the processes controlling crustal thinning and mantle unroofing at a type example magma poor margin. The experiment set out to collect several key datasets: a 3D seismic reflection volume measuring ~20x64km and extending down to ~14s TWT, a 3D ocean bottom seismometer dataset suitable for full wavefield inversion (the recording of the complete 3D seismic shots by 70 ocean bottom instruments), the "mirror imaging" of the crust using the same grid of OBS, a single 2D combined reflection/refraction profile extending to the west to determine the transition from unroofed mantle to true oceanic crust, and the seismic imaging of the water column, calibrated by regular deployment of XBTs to measure the temperature structure of the water column. We collected 1280 km2 of seismic reflection data, consisting of 136533 shots recorded on 1920 channels, producing 260 million seismic traces, each ~ 14s long. This adds up to ~ 8 terabytes of data, representing, we believe, the largest ever academic 3D MCS survey in terms of both the area covered and the volume of data. The OBS deployment was the largest ever within an academic 3D survey.

  2. AutoCAD Civil 3D - Survey

    OpenAIRE

    Luketić, Antonio; Padovan, Ivan

    2011-01-01

    AutoCAD Civil 3D je vrlo kompleksan i napredan program za geodeziju i građevinarstvo. Survey izbornik predstavlja mali dio tog softvera. U programu je sadržana mogućnost kreiranja vlastitih kodova kao i naredbi kojima možemo ubrzati vizualizaciju izmjerenih objekata. Njegovim korištenjem se znatno skraćuje vrijeme obrade podataka. Članak je napisan na temelju jednostavnog, ali korisnog primjera kojime smo željeli upoznati čitatelje s prilično nepoznatom aplikacijom koju nudi AutoCAD Civil 3D....

  3. 3D Membrane Imaging and Porosity Visualization

    KAUST Repository

    Sundaramoorthi, Ganesh

    2016-03-03

    Ultrafiltration asymmetric porous membranes were imaged by two microscopy methods, which allow 3D reconstruction: Focused Ion Beam and Serial Block Face Scanning Electron Microscopy. A new algorithm was proposed to evaluate porosity and average pore size in different layers orthogonal and parallel to the membrane surface. The 3D-reconstruction enabled additionally the visualization of pore interconnectivity in different parts of the membrane. The method was demonstrated for a block copolymer porous membrane and can be extended to other membranes with application in ultrafiltration, supports for forward osmosis, etc, offering a complete view of the transport paths in the membrane.

  4. Building 3D models with modo 701

    CERN Document Server

    García, Juan Jiménez

    2013-01-01

    The book will focus on creating a sample application throughout the book, building gradually from chapter to chapter.If you are new to the 3D world, this is the key to getting started with a modern software in the modern visualization industry. Only minimal previous knowledge is needed.If you have some previous knowledge about 3D content creation, you will find useful tricks that will differentiate the learning experience from a typical user manual from this, a practical guide concerning the most common problems and situations and how to solve them.

  5. Minimal Massive 3D Gravity Unitarity Redux

    OpenAIRE

    Arvanitakis, Alex S.; Townsend, Paul K

    2015-01-01

    A geometrical analysis of the bulk and anti-de Sitter boundary unitarity conditions of 3D "Minimal Massive Gravity" (MMG) (which evades the "bulk/boundary clash" of Topologically Massive Gravity) is used to extend and simplify previous results, showing that unitarity selects, up to equivalence, a connected region in parameter space. We also initiate the study of flat-space holography for MMG. Its relevant flat space limit is a deformation of 3D conformal gravity; the deformation is both non-l...

  6. Delft3D turbine turbulence module

    Energy Technology Data Exchange (ETDEWEB)

    2016-04-18

    The DOE has funded Sandia National Labs (SNL) to develop an open-source modeling tool to guide the design and layout of marine hydrokinetic (MHK) arrays to maximize power production while minimizing environmental effects. This modeling framework simulates flows through and around a MHK arrays while quantifying environmental responses. As an augmented version of the Dutch company, Deltares’s, environmental hydrodynamics code, Delft3D, SNL-Delft3D includes a new module that simulates energy conversion (momentum withdrawal) by MHK devices with commensurate changes in the turbulent kinetic energy and its dissipation rate.

  7. Vector quantization of 3-D point clouds

    Science.gov (United States)

    Sim, Jae-Young; Kim, Chang-Su; Lee, Sang-Uk

    2005-10-01

    A geometry compression algorithm for 3-D QSplat data using vector quantization (VQ) is proposed in this work. The positions of child spheres are transformed to the local coordinate system, which is determined by the parent children relationship. The coordinate transform makes child positions more compactly distributed in 3-D space, facilitating effective quantization. Moreover, we develop a constrained encoding method for sphere radii, which guarantees hole-free surface rendering at the decoder side. Simulation results show that the proposed algorithm provides a faithful rendering quality even at low bitrates.

  8. 3D-visualisering i arkitektkonkurrencer

    DEFF Research Database (Denmark)

    Bertelsen, N.H.

    Statens Forsknings- og Uddannelsesbygninger har på forskellige nybyggerier eksperimenteret med anvendelse af 3D-visualisering i tilknytning til bedømmelsen af arkitektkonkurrencer. Interview af dommerkomitéen på konkurrencerne på Muskikkens Hus i Nordjylland og nye bygninger til Roskilde...... Universitetscenter har givet input til forslag om den fremtidige udvikling. Forslagene retter sig både mod arkitekternes kompetence og udvalgte forretningsstrategier og mod den professionelle bygherres fremtidige krav til 3D-visualisering i arkitektkonkurrencer. Et indbudt seminar om rapportens anbefalinger samler...

  9. 3D FDTD simulations of photonic devices

    International Nuclear Information System (INIS)

    Full text: In our contribution we will present the recent results on 3D simulations of photonic devices. Particularly, quantum well infrared photodetectors with embedded photonic crystal are optimized to achieve optimal light coupling and quantum efficiency. Furthermore, we study schemes of light coupling into SOI waveguides. Both optical fibre-SOI waveguide and laser-SOI waveguide coupling schemes are investigated. The results of investigations regarding the influence of disorder on the reflection peak in opal 3D photonic crystal will be also presented. This work was supported by the Austrian Nanoinitiative RPC PLATON. (author)

  10. Optical isotropic negative index metamaterials

    DEFF Research Database (Denmark)

    Menzel, Christoph; Paul, Thomas; Rockstuhl, Carsten;

    2010-01-01

    Towards isotropic metamaterials, we analyze isofrequency surfaces of the dispersion relation of high symmetry metamaterials and show that they are optically not isotropic. We achieve instead isotropic metamaterials that consist of carefully designed multiple layers.......Towards isotropic metamaterials, we analyze isofrequency surfaces of the dispersion relation of high symmetry metamaterials and show that they are optically not isotropic. We achieve instead isotropic metamaterials that consist of carefully designed multiple layers....

  11. Molecular predictors of 3D morphogenesis by breast cancer cell lines in 3D culture.

    Directory of Open Access Journals (Sweden)

    Ju Han

    2010-02-01

    Full Text Available Correlative analysis of molecular markers with phenotypic signatures is the simplest model for hypothesis generation. In this paper, a panel of 24 breast cell lines was grown in 3D culture, their morphology was imaged through phase contrast microscopy, and computational methods were developed to segment and represent each colony at multiple dimensions. Subsequently, subpopulations from these morphological responses were identified through consensus clustering to reveal three clusters of round, grape-like, and stellate phenotypes. In some cases, cell lines with particular pathobiological phenotypes clustered together (e.g., ERBB2 amplified cell lines sharing the same morphometric properties as the grape-like phenotype. Next, associations with molecular features were realized through (i differential analysis within each morphological cluster, and (ii regression analysis across the entire panel of cell lines. In both cases, the dominant genes that are predictive of the morphological signatures were identified. Specifically, PPARgamma has been associated with the invasive stellate morphological phenotype, which corresponds to triple-negative pathobiology. PPARgamma has been validated through two supporting biological assays.

  12. Molecular Predictors of 3D Morphogenesis by Breast Cancer Cell Lines in 3D Culture

    Energy Technology Data Exchange (ETDEWEB)

    Han, Ju; Chang, Hang; Giricz, Orsi; Lee, Genee; Baehner, Frederick; Gray, Joe; Bissell, Mina; Kenny, Paraic; Parvin, Bahram

    2010-02-01

    Correlative analysis of molecular markers with phenotypic signatures is the simplest model for hypothesis generation. In this paper, a panel of 24 breast cell lines was grown in 3D culture, their morphology was imaged through phase contrast microscopy, and computational methods were developed to segment and represent each colony at multiple dimensions. Subsequently, subpopulations from these morphological responses were identified through consensus clustering to reveal three clusters of round, grape-like, and stellate phenotypes. In some cases, cell lines with particular pathobiological phenotypes clustered together (e.g., ERBB2 amplified cell lines sharing the same morphometric properties as the grape-like phenotype). Next, associations with molecular features were realized through (i) differential analysis within each morphological cluster, and (ii) regression analysis across the entire panel of cell lines. In both cases, the dominant genes that are predictive of the morphological signatures were identified. Specifically, PPAR? has been associated with the invasive stellate morphological phenotype, which corresponds to triple-negative pathobiology. PPAR? has been validated through two supporting biological assays.

  13. Using 3D Scanning in 3D Character Modeling and Game Figure Production

    OpenAIRE

    guo, Jun

    2008-01-01

    The theme of this thesis was to discuss the theory of 3D scanning, focus on the flowchart of using 3D NextEngine Desktop Scanner hardware and software as well as the 3D game character exporting and importing in both 3ds Max and CryENGINE2 Sandbox2. The purpose of this final-year project was to scan models made of modeling paste using the 3D NextEngine ScanStudio. The models were developed and imported as raw files into 3dsMax. At the same step, the skeletons were adjusted an...

  14. 3D Systems” ‘Stuck in the Middle’ of the 3D Printer Boom?

    OpenAIRE

    Hoffmann, Alan

    2014-01-01

    textabstract3D Systems, the pioneer of 3D printing, predicted a future where "kids from 8 to 80" could design and print their ideas at home. By 2013, 9 years after the creation of the first working 3D printer, there were more than 30 major 3D printing companies competing for market share. 3DS and its main competitor, the Israeli company Stratasys, held a combined market share of 37% split almost evenly and marketed products in all the same areas. However, a greater threat came from large mult...

  15. Innovations in 3D printing: a 3D overview from optics to organs.

    Science.gov (United States)

    Schubert, Carl; van Langeveld, Mark C; Donoso, Larry A

    2014-02-01

    3D printing is a method of manufacturing in which materials, such as plastic or metal, are deposited onto one another in layers to produce a three dimensional object, such as a pair of eye glasses or other 3D objects. This process contrasts with traditional ink-based printers which produce a two dimensional object (ink on paper). To date, 3D printing has primarily been used in engineering to create engineering prototypes. However, recent advances in printing materials have now enabled 3D printers to make objects that are comparable with traditionally manufactured items. In contrast with conventional printers, 3D printing has the potential to enable mass customisation of goods on a large scale and has relevance in medicine including ophthalmology. 3D printing has already been proved viable in several medical applications including the manufacture of eyeglasses, custom prosthetic devices and dental implants. In this review, we discuss the potential for 3D printing to revolutionise manufacturing in the same way as the printing press revolutionised conventional printing. The applications and limitations of 3D printing are discussed; the production process is demonstrated by producing a set of eyeglass frames from 3D blueprints.

  16. Echocardiography detection of Tei index in evaluation of myocardial function after thoracoscopy and thoracotomy pulmonary lobectomy

    Institute of Scientific and Technical Information of China (English)

    Yong-Mei Jia; Yi-Min Fu; Hua Zhao

    2016-01-01

    Objective:To study the clinical value of echocardiography detection of Tei index for evaluation of myocardial function after thoracoscopy and thoracotomy pulmonary lobectomy. Methods:A total of 48 cases who received thoracotomy pulmonary lobectomy and 42 cases of patients who received thoracoscopy pulmonary lobectomy were selected for study and enrolled in thoracotomy group and thoracoscopy group respectively. Before and after operation, echocardiography was conducted to obtain Tei index, mean pulmonary artery pressure and systolic pressure as well as right ventricle stroke volume, right ventricle ejection fraction, right ventricle end-diastolic volume index and right ventricle end-systolic volume index; serum was collected to detect BNP, NE, E and CRP contents.Results:One week, 1 month, 2 months and 3 months after operation, Tei indexes of thoracoscopy group were lower than those of thoracotomy group; 1 week after operation, pulmonary artery systolic pressure, mean pulmonary artery pressure, RVEDVI-3D and RVESVI-3D of thoracoscopy group were lower than those of thoracotomy group, and RVEF-3D and RVSV-3D were higher than those of thoracotomy group; serum BNP, NE, E and CRP contents of thoracoscopy group were lower than those of thoracotomy group; Tei index was positively correlated with pulmonary artery systolic pressure, mean pulmonary artery pressure, RVEDVI-3D and RVESVI-3D and negatively correlated with RVEF-3D and RVSV-3D as well as serum BNP, NE, E and CRP contents.Conclusions: Right heart function has better recovery after thoracoscopy pulmonary lobectomy, and echocardiography detection of Tei index can accurately assess right heart function.

  17. The EISCAT_3D Science Case

    Science.gov (United States)

    Tjulin, A.; Mann, I.; McCrea, I.; Aikio, A. T.

    2013-05-01

    EISCAT_3D will be a world-leading international research infrastructure using the incoherent scatter technique to study the atmosphere in the Fenno-Scandinavian Arctic and to investigate how the Earth's atmosphere is coupled to space. The EISCAT_3D phased-array multistatic radar system will be operated by EISCAT Scientific Association and thus be an integral part of an organisation that has successfully been running incoherent scatter radars for more than thirty years. The baseline design of the radar system contains a core site with transmitting and receiving capabilities located close to the intersection of the Swedish, Norwegian and Finnish borders and five receiving sites located within 50 to 250 km from the core. The EISCAT_3D project is currently in its Preparatory Phase and can smoothly transit into implementation in 2014, provided sufficient funding. Construction can start 2016 and first operations in 2018. The EISCAT_3D Science Case is prepared as part of the Preparatory Phase. It is regularly updated with annual new releases, and it aims at being a common document for the whole future EISCAT_3D user community. The areas covered by the Science Case are atmospheric physics and global change; space and plasma physics; solar system research; space weather and service applications; and radar techniques, new methods for coding and analysis. Two of the aims for EISCAT_3D are to understand the ways natural variability in the upper atmosphere, imposed by the Sun-Earth system, can influence the middle and lower atmosphere, and to improve the predictivity of atmospheric models by providing higher resolution observations to replace the current parametrised input. Observations by EISCAT_3D will also be used to monitor the direct effects from the Sun on the ionosphere-atmosphere system and those caused by solar wind magnetosphere-ionosphere interaction. In addition, EISCAT_3D will be used for remote sensing the large-scale behaviour of the magnetosphere from its

  18. Defect states in one-dimensional photonic crystal with dispersive negative refractive index metamaterial%色散负折射特异介质的1维光子晶体缺陷态

    Institute of Scientific and Technical Information of China (English)

    席锋; 胡莉

    2012-01-01

    The dispersive negative index metamaterial possesses a negative refractive index in the microwave region(1 to 10 GHz), whose effective permittivity and permeability determine different refractive indexes in different frequency regions. The dispersive negative index metamaterial is introduced into one-dimensional photonic crystal to form two structures: positive index media photonic crystal with negative index metamaterial defect, and positive and negative index media photonic crystal with positive index medium defect. By numerical simulation, transmission spectra are shown for the two structures under homogeneous plane electromagnetic wave (TE wave) normal incidence and oblique incidence, in which single- and dual-defect modes appear in different forbidden bands when both effective permittivity and permeability are negative. These defect modes can be used to realize single- and dual-channel filtering, respectively.%在1维光子晶体中引入色散负折射特异介质,分析了其介电常数和磁导率在微波区(1~10GHz)与频率的关系.分别对以色散负折射介质为缺陷的正折射率介质光子晶体及以正折射率介质为缺陷的正负折射率介质光子晶体进行了数值仿真,得出了均匀平面电磁波在正入射和斜入射时的透射谱.结果表明:在介电常数和磁导率均为负值的不同禁带中,分别出现了单、双缺陷模.利用透射谱的这一特点,可实现单、双通道滤波.

  19. Registration of 3-D holograms of diamond crystals (Abstract Only)

    Science.gov (United States)

    Marchenko, S. N.; Smirnova, S. N.

    1991-02-01

    Registration of 3D ho1orarns broadens the possibility of using single-crystal tool for imagining and investigating inner inhomogeneities and dynamic stresses in top area of gem diamond, study of which by other techniques,e.g. polarization optics, is difficult or impossible. The difficulty is that the diamond with significant refractive index of 2.42 has comparatively small angle of total internal reflection of 24°50. As a result, with random illumination of the tops of octahedron diamond crystals, both smooth- faceted and with polycentric facets, illuminating light is successively reflected from different farets and absorbed in the crystal or comes out of it in a spot and direction that are difficult to calculate. Optimal schemes of illuminating crystals for recording 3D holograms of smooth faceted octahedron diamonds are given. Analysis of illumination of the crystal with polycentric facets shows that correction of light in the diamond is determined by directivity diagram the width of which depends in inhomogeneity size of the diamond. 3D holograms of diamonds with different reflectivity were produced. For the first time the possibility is shown for registration of holograms for studying stresses in diamond top using single-crystal tool.

  20. Scoops3D: software to analyze 3D slope stability throughout a digital landscape

    Science.gov (United States)

    Reid, Mark E.; Christian, Sarah B.; Brien, Dianne L.; Henderson, Scott T.

    2015-01-01

    The computer program, Scoops3D, evaluates slope stability throughout a digital landscape represented by a digital elevation model (DEM). The program uses a three-dimensional (3D) method of columns approach to assess the stability of many (typically millions) potential landslides within a user-defined size range. For each potential landslide (or failure), Scoops3D assesses the stability of a rotational, spherical slip surface encompassing many DEM cells using a 3D version of either Bishop’s simplified method or the Ordinary (Fellenius) method of limit-equilibrium analysis. Scoops3D has several options for the user to systematically and efficiently search throughout an entire DEM, thereby incorporating the effects of complex surface topography. In a thorough search, each DEM cell is included in multiple potential failures, and Scoops3D records the lowest stability (factor of safety) for each DEM cell, as well as the size (volume or area) associated with each of these potential landslides. It also determines the least-stable potential failure for the entire DEM. The user has a variety of options for building a 3D domain, including layers or full 3D distributions of strength and pore-water pressures, simplistic earthquake loading, and unsaturated suction conditions. Results from Scoops3D can be readily incorporated into a geographic information system (GIS) or other visualization software. This manual includes information on the theoretical basis for the slope-stability analysis, requirements for constructing and searching a 3D domain, a detailed operational guide (including step-by-step instructions for using the graphical user interface [GUI] software, Scoops3D-i) and input/output file specifications, practical considerations for conducting an analysis, results of verification tests, and multiple examples illustrating the capabilities of Scoops3D. Easy-to-use software installation packages are available for the Windows or Macintosh operating systems; these packages

  1. Effect of viewing distance on 3D fatigue caused by viewing mobile 3D content

    Science.gov (United States)

    Mun, Sungchul; Lee, Dong-Su; Park, Min-Chul; Yano, Sumio

    2013-05-01

    With an advent of autostereoscopic display technique and increased needs for smart phones, there has been a significant growth in mobile TV markets. The rapid growth in technical, economical, and social aspects has encouraged 3D TV manufacturers to apply 3D rendering technology to mobile devices so that people have more opportunities to come into contact with many 3D content anytime and anywhere. Even if the mobile 3D technology leads to the current market growth, there is an important thing to consider for consistent development and growth in the display market. To put it briefly, human factors linked to mobile 3D viewing should be taken into consideration before developing mobile 3D technology. Many studies have investigated whether mobile 3D viewing causes undesirable biomedical effects such as motion sickness and visual fatigue, but few have examined main factors adversely affecting human health. Viewing distance is considered one of the main factors to establish optimized viewing environments from a viewer's point of view. Thus, in an effort to determine human-friendly viewing environments, this study aims to investigate the effect of viewing distance on human visual system when exposing to mobile 3D environments. Recording and analyzing brainwaves before and after watching mobile 3D content, we explore how viewing distance affects viewing experience from physiological and psychological perspectives. Results obtained in this study are expected to provide viewing guidelines for viewers, help ensure viewers against undesirable 3D effects, and lead to make gradual progress towards a human-friendly mobile 3D viewing.

  2. 3D MHD Flux emergence experiments

    DEFF Research Database (Denmark)

    Hood, A.W.; Archontis, V.; Mactaggart, David

    2012-01-01

    This paper reviews some of the many 3D numerical experiments of the emergence of magnetic fields from the solar interior and the subsequent interaction with the pre-existing coronal magnetic field. The models described here are idealised, in the sense that the internal energy equation only involv...

  3. On maximal massive 3D supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Bergshoeff, Eric A; Rosseel, Jan [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Hohm, Olaf [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Townsend, Paul K, E-mail: E.A.Bergshoeff@rug.n, E-mail: ohohm@mit.ed, E-mail: j.rosseel@rug.n, E-mail: P.K.Townsend@damtp.cam.ac.u [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2010-12-07

    We construct, at the linearized level, the three-dimensional (3D) N=4 supersymmetric 'general massive supergravity' and the maximally supersymmetric N=8 'new massive supergravity'. We also construct the maximally supersymmetric linearized N=7 topologically massive supergravity, although we expect N=6 to be maximal at the nonlinear level.

  4. On Maximal Massive 3D Supergravity

    CERN Document Server

    Bergshoeff, Eric A; Rosseel, Jan; Townsend, Paul K

    2010-01-01

    We construct, at the linearized level, the three-dimensional (3D) N = 4 supersymmetric "general massive supergravity" and the maximally supersymmetric N = 8 "new massive supergravity". We also construct the maximally supersymmetric linearized N = 7 topologically massive supergravity, although we expect N = 6 to be maximal at the non-linear level.

  5. More on Massive 3D Supergravity

    CERN Document Server

    Bergshoeff, Eric A; Rosseel, Jan; Sezgin, Ergin; Townsend, Paul K

    2010-01-01

    Completing earlier work on three dimensional (3D) N=1 supergravity with curvature-squared terms, we construct the general supergravity extension of cosmological massive gravity theories. We expand about supersymmetric anti-de Sitter vacua, finding the conditions for bulk unitarity and the critical points in parameter space at which the spectrum changes. We discuss implications for the dual conformal field theory.

  6. Introduction to 3D Graphics through Excel

    Science.gov (United States)

    Benacka, Jan

    2013-01-01

    The article presents a method of explaining the principles of 3D graphics through making a revolvable and sizable orthographic parallel projection of cuboid in Excel. No programming is used. The method was tried in fourteen 90 minute lessons with 181 participants, which were Informatics teachers, undergraduates of Applied Informatics and gymnasium…

  7. Local orientation measurements in 3D

    DEFF Research Database (Denmark)

    Juul Jensen, D.

    2005-01-01

    The 3 Dimensional X-Ray Diffraction (3DXRD) method is presented and its potentials illustrated by examples. The 3DXRD method is based on diffraction of high energy X-rays and allows fast and nondestructive 3D characterization of the local distribution of crystallographic orientations in the bulk....

  8. Automated analysis of 3D echocardiography

    NARCIS (Netherlands)

    Stralen, Marijn van

    2009-01-01

    In this thesis we aim at automating the analysis of 3D echocardiography, mainly targeting the functional analysis of the left ventricle. Manual analysis of these data is cumbersome, time-consuming and is associated with inter-observer and inter-institutional variability. Methods for reconstruction o

  9. Micromachined Ultrasonic Transducers for 3-D Imaging

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lehrmann

    Real-time ultrasound imaging is a widely used technique in medical diagnostics. Recently, ultrasound systems offering real-time imaging in 3-D has emerged. However, the high complexity of the transducer probes and the considerable increase in data to be processed compared to conventional 2-D ultr...

  10. Developing 3D microstructures for tissue engineering

    DEFF Research Database (Denmark)

    Mohanty, Soumyaranjan

    casting process to generate various large scale tissue engineering constructs with single pore geometry with the desired mechanical stiffness and porosity. In addition, a new technique was developed to fa bricate dual-pore scaffolds for various tissue-engineering applications where 3D printing...

  11. MIM in 3D: dream or reality?

    NARCIS (Netherlands)

    Klootwijk, J.H.; Jinesh, K.B.; Roozeboom, F.

    2011-01-01

    Last decades great effort has been put in the development of 3D capacitors. These capacitors are used for RF decoupling and should therefore have a high capacitance density associated with a sufficient breakdown voltage. Increased capacitance densities have been achieved by exploring the use of the

  12. 3D Virtual Reality for Teaching Astronomy

    Science.gov (United States)

    Speck, Angela; Ruzhitskaya, L.; Laffey, J.; Ding, N.

    2012-01-01

    We are developing 3D virtual learning environments (VLEs) as learning materials for an undergraduate astronomy course, in which will utilize advances both in technologies available and in our understanding of the social nature of learning. These learning materials will be used to test whether such VLEs can indeed augment science learning so that it is more engaging, active, visual and effective. Our project focuses on the challenges and requirements of introductory college astronomy classes. Here we present our virtual world of the Jupiter system and how we plan to implement it to allow students to learn course material - physical laws and concepts in astronomy - while engaging them into exploration of the Jupiter's system, encouraging their imagination, curiosity, and motivation. The VLE can allow students to work individually or collaboratively. The 3D world also provides an opportunity for research in astronomy education to investigate impact of social interaction, gaming features, and use of manipulatives offered by a learning tool on students’ motivation and learning outcomes. Use of this VLE is also a valuable source for exploration of how the learners’ spatial awareness can be enhanced by working in 3D environment. We will present the Jupiter-system environment along with a preliminary study of the efficacy and usability of our Jupiter 3D VLE.

  13. 3D gender recognition using cognitive modeling

    DEFF Research Database (Denmark)

    Fagertun, Jens; Andersen, Tobias; Hansen, Thomas;

    2013-01-01

    We use 3D scans of human faces and cognitive modeling to estimate the “gender strength”. The “gender strength” is a continuous class variable of the gender, superseding the traditional binary class labeling. To visualize some of the visual trends humans use when performing gender classification, ...

  14. Invertible authentication for 3D meshes

    Science.gov (United States)

    Dittmann, Jana; Benedens, Oliver

    2003-06-01

    Digital watermarking has become an accepted technology for enabling multimedia protection schemes. Based on the introduced media independent protocol schemes for invertible data authentication in references 2, 4 and 5 we discuss the design of a new 3D invertible labeling technique to ensure and require high data integrity. We combine digital signature schemes and digital watermarking to provide a public verifiable integrity. Furthermore the protocol steps in the other papers to ensure that the original data can only be reproduced with a secret key is adopted for 3D meshes. The goal is to show how the existing protocol can be used for 3D meshes to provide solutions for authentication watermarking. In our design concept and evaluation we see that due to the nature of 3D meshes the invertible function are different from the image and audio concepts to achieve invertibility to guaranty reversibility of the original. Therefore we introduce a concept for distortion free invertibility and a concept for adjustable minimum distortion invertibility.

  15. Infra Red 3D Computer Mouse

    DEFF Research Database (Denmark)

    Harbo, Anders La-Cour; Stoustrup, Jakob

    2000-01-01

    The infra red 3D mouse is a three dimensional input device to a computer. It works by determining the position of an arbitrary object (like a hand) by emitting infra red signals from a number of locations and measuring the reflected intensities. To maximize stability, robustness, and use...

  16. 3D virtual table in anatomy education

    DEFF Research Database (Denmark)

    Dahl, Mads Ronald; Simonsen, Eivind Ortind

    The ‘Anatomage’ is a 3D virtual human anatomy table, with touchscreen functionality, where it is possible to upload CT-scans and digital. Learning the human anatomy terminology requires time, a very good memory, anatomy atlas, books and lectures. Learning the 3 dimensional structure, connections...

  17. Virtual Representations in 3D Learning Environments

    Science.gov (United States)

    Shonfeld, Miri; Kritz, Miki

    2013-01-01

    This research explores the extent to which virtual worlds can serve as online collaborative learning environments for students by increasing social presence and engagement. 3D environments enable learning, which simulates face-to-face encounters while retaining the advantages of online learning. Students in Education departments created avatars…

  18. Spacecraft 3D Augmented Reality Mobile App

    Science.gov (United States)

    Hussey, Kevin J.; Doronila, Paul R.; Kumanchik, Brian E.; Chan, Evan G.; Ellison, Douglas J.; Boeck, Andrea; Moore, Justin M.

    2013-01-01

    The Spacecraft 3D application allows users to learn about and interact with iconic NASA missions in a new and immersive way using common mobile devices. Using Augmented Reality (AR) techniques to project 3D renditions of the mission spacecraft into real-world surroundings, users can interact with and learn about Curiosity, GRAIL, Cassini, and Voyager. Additional updates on future missions, animations, and information will be ongoing. Using a printed AR Target and camera on a mobile device, users can get up close with these robotic explorers, see how some move, and learn about these engineering feats, which are used to expand knowledge and understanding about space. The software receives input from the mobile device's camera to recognize the presence of an AR marker in the camera's field of view. It then displays a 3D rendition of the selected spacecraft in the user's physical surroundings, on the mobile device's screen, while it tracks the device's movement in relation to the physical position of the spacecraft's 3D image on the AR marker.

  19. Collaborative annotation of 3D crystallographic models.

    Science.gov (United States)

    Hunter, J; Henderson, M; Khan, I

    2007-01-01

    This paper describes the AnnoCryst system-a tool that was designed to enable authenticated collaborators to share online discussions about 3D crystallographic structures through the asynchronous attachment, storage, and retrieval of annotations. Annotations are personal comments, interpretations, questions, assessments, or references that can be attached to files, data, digital objects, or Web pages. The AnnoCryst system enables annotations to be attached to 3D crystallographic models retrieved from either private local repositories (e.g., Fedora) or public online databases (e.g., Protein Data Bank or Inorganic Crystal Structure Database) via a Web browser. The system uses the Jmol plugin for viewing and manipulating the 3D crystal structures but extends Jmol by providing an additional interface through which annotations can be created, attached, stored, searched, browsed, and retrieved. The annotations are stored on a standardized Web annotation server (Annotea), which has been extended to support 3D macromolecular structures. Finally, the system is embedded within a security framework that is capable of authenticating users and restricting access only to trusted colleagues.

  20. 3D Wire 2015 Gamification Report

    DEFF Research Database (Denmark)

    Jordi, Moréton; F, Escribano; J. L., Farias;

    This document is a general report on the implementation of gamification in 3D Wire 2015 event. As the second gamification experience in this event, we have delved deeply in the previous objectives (attracting public areas less frequented exhibition in previous years and enhance networking) and ha...

  1. 3D microstructuring of biodegradable polymers

    DEFF Research Database (Denmark)

    Nagstrup, Johan; Keller, Stephan Sylvest; Almdal, Kristoffer;

    2011-01-01

    Biopolymer films with a thickness of 100μm are prepared using spin coating technique with solutions consisting of 25wt.% polycaprolactone or poly-l-lactide in dichloromethane. SU-8 stamps are fabricated using three photolithography steps. The stamps are used to emboss 3D microstructures in the bi...

  2. 3D Video Compression and Transmission

    DEFF Research Database (Denmark)

    Zamarin, Marco; Forchhammer, Søren

    In this short paper we provide a brief introduction to 3D and multi-view video technologies - like three-dimensional television and free-viewpoint video - focusing on the aspects related to data compression and transmission. Geometric information represented by depth maps is introduced as well...

  3. Embedding 3D into multipurpose cadastre

    NARCIS (Netherlands)

    Rahman, A.A.; Hua, T.C.; Van Oosterom, P.J.M.

    2011-01-01

    There is no doubt that the cadastral map provides a useful entrance to information in a land parcel based information system. However, such information system could be made more meaningful and useful if it can be extended for multiple usages with multi data layers, and in three-dimensions (3D). Curr

  4. The New Realm of 3-D Vision

    Science.gov (United States)

    2002-01-01

    Dimension Technologies Inc., developed a line of 2-D/3-D Liquid Crystal Display (LCD) screens, including a 15-inch model priced at consumer levels. DTI's family of flat panel LCD displays, called the Virtual Window(TM), provide real-time 3-D images without the use of glasses, head trackers, helmets, or other viewing aids. Most of the company initial 3-D display research was funded through NASA's Small Business Innovation Research (SBIR) program. The images on DTI's displays appear to leap off the screen and hang in space. The display accepts input from computers or stereo video sources, and can be switched from 3-D to full-resolution 2-D viewing with the push of a button. The Virtual Window displays have applications in data visualization, medicine, architecture, business, real estate, entertainment, and other research, design, military, and consumer applications. Displays are currently used for computer games, protein analysis, and surgical imaging. The technology greatly benefits the medical field, as surgical simulators are helping to increase the skills of surgical residents. Virtual Window(TM) is a trademark of Dimension Technologies Inc.

  5. Feasibility of 3D harmonic contrast imaging

    NARCIS (Netherlands)

    Voormolen, M.M.; Bouakaz, A.; Krenning, B.J.; Lancée, C.; Cate, ten F.; Jong, de N.

    2004-01-01

    Improved endocardial border delineation with the application of contrast agents should allow for less complex and faster tracing algorithms for left ventricular volume analysis. We developed a fast rotating phased array transducer for 3D imaging of the heart with harmonic capabilities making it suit

  6. How to See Shadows in 3D

    Science.gov (United States)

    Parikesit, Gea O. F.

    2014-01-01

    Shadows can be found easily everywhere around us, so that we rarely find it interesting to reflect on how they work. In order to raise curiosity among students on the optics of shadows, we can display the shadows in 3D, particularly using a stereoscopic set-up. In this paper we describe the optics of stereoscopic shadows using simple schematic…

  7. Holographic 3D tracking of microscopic tools

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Villangca, Mark Jayson; Bañas, Andrew Rafael;

    2015-01-01

    We originally proposed and experimentally demonstrated the targeted-light delivery capability of so-called Wave-guided Optical Waveguides (WOWs) three years ago. As these WOWs are maneuvered in 3D space, it is important to maintain efficient light coupling through their integrated waveguide...

  8. Techniques and architectures for 3D interaction

    NARCIS (Netherlands)

    De Haan, G.

    2009-01-01

    Spatial scientific datasets are all around us, and 3D visualization is a powerful tool to explore details and structures within them. When dealing with complex spatial structures, interactive Virtual Reality (VR) systems can potentially improve exploration over desktop-based systems. However, from p

  9. [3D virtual endoscopy of heart].

    Science.gov (United States)

    Du, Aan; Yang, Xin; Xue, Haihong; Yao, Liping; Sun, Kun

    2012-10-01

    In this paper, we present a virtual endoscopy (VE) for diagnosis of heart diseases, which is proved efficient and affordable, easy to popularize for viewing the interior of the heart. The dual source CT (DSCT) data were used as primary data in our system. The 3D structure of virtual heart was reconstructed with 3D texture mapping technology based on graphics processing unit (GPU), and could be displayed dynamically in real time. When we displayed it in real time, we could not only observe the inside of the chambers of heart but also examine from the new angle of view by the 3D data which were already clipped according to doctor's desire. In the pattern of observation, we used both mutual interactive mode and auto mode. In the auto mode, we used Dijkstra Algorithm which treated the 3D Euler distance as weighting factor to find out the view path quickly, and, used view path to calculate the four chamber plane. PMID:23198444

  10. 3D Urban Visualization with LOD Techniques

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In 3D urban visualization, large data volumes related to buildings are a major factor that limits the delivery and browsing speed in a web-based computer system. This paper proposes a new approach based on the level of detail (LOD) technique advanced in 3D visualization in computer graphics. The key idea of LOD technique is to generalize details of object surfaces without losing details for delivery and displaying objects. This technique has been successfully used in visualizing one or a few multiple objects in films and other industries. However, applying the technique to 3D urban visualization requires an effective generalization method for urban buildings. Conventional two-dimensional (2D) generalization method at different scales provides a good generalization reference for 3D urban visualization. Yet, it is difficult to determine when and where to retrieve data for displaying buildings. To solve this problem, this paper defines an imaging scale point and image scale region for judging when and where to get the right data for visualization. The results show that the average response time of view transformations is much decreased.

  11. 3-D Force-balanced Magnetospheric Configurations

    International Nuclear Information System (INIS)

    The knowledge of plasma pressure is essential for many physics applications in the magnetosphere, such as computing magnetospheric currents and deriving magnetosphere-ionosphere coupling. A thorough knowledge of the 3-D pressure distribution has however eluded the community, as most in-situ pressure observations are either in the ionosphere or the equatorial region of the magnetosphere. With the assumption of pressure isotropy there have been attempts to obtain the pressure at different locations by either (a) mapping observed data (e.g., in the ionosphere) along the field lines of an empirical magnetospheric field model or (b) computing a pressure profile in the equatorial plane (in 2-D) or along the Sun-Earth axis (in 1-D) that is in force balance with the magnetic stresses of an empirical model. However, the pressure distributions obtained through these methods are not in force balance with the empirical magnetic field at all locations. In order to find a global 3-D plasma pressure distribution in force balance with the magnetospheric magnetic field, we have developed the MAG-3D code, that solves the 3-D force balance equation J x B = (upside-down delta) P computationally. Our calculation is performed in a flux coordinate system in which the magnetic field is expressed in terms of Euler potentials as B = (upside-down delta) psi x (upside-down delta) alpha. The pressure distribution, P = P(psi,alpha), is prescribed in the equatorial plane and is based on satellite measurements. In addition, computational boundary conditions for y surfaces are imposed using empirical field models. Our results provide 3-D distributions of magnetic field and plasma pressure as well as parallel and transverse currents for both quiet-time and disturbed magnetospheric conditions

  12. Laser printing of 3D metallic interconnects

    Science.gov (United States)

    Beniam, Iyoel; Mathews, Scott A.; Charipar, Nicholas A.; Auyeung, Raymond C. Y.; Piqué, Alberto

    2016-04-01

    The use of laser-induced forward transfer (LIFT) techniques for the printing of functional materials has been demonstrated for numerous applications. The printing gives rise to patterns, which can be used to fabricate planar interconnects. More recently, various groups have demonstrated electrical interconnects from laser-printed 3D structures. The laser printing of these interconnects takes place through aggregation of voxels of either molten metal or of pastes containing dispersed metallic particles. However, the generated 3D structures do not posses the same metallic conductivity as a bulk metal interconnect of the same cross-section and length as those formed by wire bonding or tab welding. An alternative is to laser transfer entire 3D structures using a technique known as lase-and-place. Lase-and-place is a LIFT process whereby whole components and parts can be transferred from a donor substrate onto a desired location with one single laser pulse. This paper will describe the use of LIFT to laser print freestanding, solid metal foils or beams precisely over the contact pads of discrete devices to interconnect them into fully functional circuits. Furthermore, this paper will also show how the same laser can be used to bend or fold the bulk metal foils prior to transfer, thus forming compliant 3D structures able to provide strain relief for the circuits under flexing or during motion from thermal mismatch. These interconnect "ridges" can span wide gaps (on the order of a millimeter) and accommodate height differences of tens of microns between adjacent devices. Examples of these laser printed 3D metallic bridges and their role in the development of next generation electronics by additive manufacturing will be presented.

  13. 3D Printed Programmable Release Capsules.

    Science.gov (United States)

    Gupta, Maneesh K; Meng, Fanben; Johnson, Blake N; Kong, Yong Lin; Tian, Limei; Yeh, Yao-Wen; Masters, Nina; Singamaneni, Srikanth; McAlpine, Michael C

    2015-08-12

    The development of methods for achieving precise spatiotemporal control over chemical and biomolecular gradients could enable significant advances in areas such as synthetic tissue engineering, biotic-abiotic interfaces, and bionanotechnology. Living organisms guide tissue development through highly orchestrated gradients of biomolecules that direct cell growth, migration, and differentiation. While numerous methods have been developed to manipulate and implement biomolecular gradients, integrating gradients into multiplexed, three-dimensional (3D) matrices remains a critical challenge. Here we present a method to 3D print stimuli-responsive core/shell capsules for programmable release of multiplexed gradients within hydrogel matrices. These capsules are composed of an aqueous core, which can be formulated to maintain the activity of payload biomolecules, and a poly(lactic-co-glycolic) acid (PLGA, an FDA approved polymer) shell. Importantly, the shell can be loaded with plasmonic gold nanorods (AuNRs), which permits selective rupturing of the capsule when irradiated with a laser wavelength specifically determined by the lengths of the nanorods. This precise control over space, time, and selectivity allows for the ability to pattern 2D and 3D multiplexed arrays of enzyme-loaded capsules along with tunable laser-triggered rupture and release of active enzymes into a hydrogel ambient. The advantages of this 3D printing-based method include (1) highly monodisperse capsules, (2) efficient encapsulation of biomolecular payloads, (3) precise spatial patterning of capsule arrays, (4) "on the fly" programmable reconfiguration of gradients, and (5) versatility for incorporation in hierarchical architectures. Indeed, 3D printing of programmable release capsules may represent a powerful new tool to enable spatiotemporal control over biomolecular gradients. PMID:26042472

  14. FIT3D Toolbox : multiple view geometry and 3D reconstruction for MATLAB

    NARCIS (Netherlands)

    Esteban, I.; Dijk, J.; Groen, F.

    2010-01-01

    FIT3D is a Toolbox built for Matlab that aims at unifying and distributing a set of tools that will allow the researcher to obtain a complete 3D model from a set of calibrated images. In this paper we motivate and present the structure of the toolbox in a tutorial and example based approach. Given i

  15. 3D conformal planning using low segment multi-criteria IMRT optimization

    CERN Document Server

    Khan, Fazal

    2014-01-01

    Purpose: To evaluate automated multicriteria optimization (MCO)-- designed for intensity modulated radiation therapy (IMRT), but invoked with limited segmentation -- to efficiently produce high quality 3D conformal treatment (3D-CRT) plans. Methods: Ten patients previously planned with 3D-CRT were replanned with a low-segment inverse multicriteria optimized technique. The MCO-3D plans used the same number of beams, beam geometry and machine parameters of the corresponding 3D plans, but were limited to an energy of 6 MV. The MCO-3D plans were optimized using a fluence-based MCO IMRT algorithm and then, after MCO navigation, segmented with a low number of segments. The 3D and MCO-3D plans were compared by evaluating mean doses to individual organs at risk (OARs), mean doses to combined OARs, homogeneity indexes (HI), monitor units (MUs), physician preference, and qualitative assessments of planning time and plan customizability. Results: The MCO-3D plans significantly reduced the OAR mean doses and monitor unit...

  16. 3D object-oriented image analysis in 3D geophysical modelling

    DEFF Research Database (Denmark)

    Fadel, I.; van der Meijde, M.; Kerle, N.;

    2015-01-01

    Non-uniqueness of satellite gravity interpretation has traditionally been reduced by using a priori information from seismic tomography models. This reduction in the non-uniqueness has been based on velocity-density conversion formulas or user interpretation of the 3D subsurface structures (objects......) approach was implemented to extract the 3D subsurface structures from geophysical data. The approach was applied on a 3D shear wave seismic tomography model of the central part of the East African Rift System. Subsequently, the extracted 3D objects from the tomography model were reconstructed in the 3D...... interactive modelling environment IGMAS+, and their density contrast values were calculated using an object-based inversion technique to calculate the forward signal of the objects and compare it with the measured satellite gravity. Thus, a new object-based approach was implemented to interpret and extract...

  17. The dimension added by 3D scanning and 3D printing of meteorites

    Science.gov (United States)

    de Vet, S. J.

    2016-01-01

    An overview for the 3D photodocumentation of meteorites is presented, focussing on two 3D scanning methods in relation to 3D printing. The 3D photodocumention of meteorites provides new ways for the digital preservation of culturally, historically or scientifically unique meteorites. It has the potential for becoming a new documentation standard of meteorites that can exist complementary to traditional photographic documentation. Notable applications include (i.) use of physical properties in dark flight-, strewn field-, or aerodynamic modelling; (ii.) collection research of meteorites curated by different museum collections, and (iii.) public dissemination of meteorite models as a resource for educational users. The possible applications provided by the additional dimension of 3D illustrate the benefits for the meteoritics community.

  18. 3D Turtle Graphics” by using a 3D Printer

    Directory of Open Access Journals (Sweden)

    Yasusi Kanada

    2015-04-01

    Full Text Available When creating shapes by using a 3D printer, usually, a static (declarative model designed by using a 3D CAD system is translated to a CAM program and it is sent to the printer. However, widely-used FDM-type 3D printers input a dynamical (procedural program that describes control of motions of the print head and extrusion of the filament. If the program is expressed by using a programming language or a library in a straight manner, solids can be created by a method similar to turtle graphics. An open-source library that enables “turtle 3D printing” method was described by Python and tested. Although this method currently has a problem that it cannot print in the air; however, if this problem is solved by an appropriate method, shapes drawn by 3D turtle graphics freely can be embodied by this method.

  19. 3D spatial resolution and spectral resolution of interferometric 3D imaging spectrometry.

    Science.gov (United States)

    Obara, Masaki; Yoshimori, Kyu

    2016-04-01

    Recently developed interferometric 3D imaging spectrometry (J. Opt. Soc. Am A18, 765 [2001]1084-7529JOAOD610.1364/JOSAA.18.000765) enables obtainment of the spectral information and 3D spatial information for incoherently illuminated or self-luminous object simultaneously. Using this method, we can obtain multispectral components of complex holograms, which correspond directly to the phase distribution of the wavefronts propagated from the polychromatic object. This paper focuses on the analysis of spectral resolution and 3D spatial resolution in interferometric 3D imaging spectrometry. Our analysis is based on a novel analytical impulse response function defined over four-dimensional space. We found that the experimental results agree well with the theoretical prediction. This work also suggests a new criterion and estimate method regarding 3D spatial resolution of digital holography. PMID:27139648

  20. Comments on twisted indices in 3d supersymmetric gauge theories

    CERN Document Server

    Closset, Cyril

    2016-01-01

    We study three-dimensional ${\\mathcal N}=2$ supersymmetric gauge theories on ${\\Sigma_g \\times S^1}$ with a topological twist along $\\Sigma_g$, a genus-$g$ Riemann surface. The twisted supersymmetric index at genus $g$ and the correlation functions of half-BPS loop operators on $S^1$ can be computed exactly by supersymmetric localization. For $g=1$, this gives a simple UV computation of the 3d Witten index. Twisted indices provide us with a clean derivation of the quantum algebra of supersymmetric Wilson loops, for any Yang-Mills-Chern-Simons-matter theory, in terms of the associated Bethe equations for the theory on ${\\mathbb R}^2 \\times S^1$. This also provides a powerful and simple tool to study 3d ${\\mathcal N}=2$ Seiberg dualities. Finally, we study A- and B-twisted indices for${\\mathcal N}=2$ supersymmetric gauge theories, which turns out to be very useful for quantitative studies of three-dimensional mirror symmetry. We also briefly comment on a relation between the $S^2 \\times S^1$ twisted indices and...