WorldWideScience

Sample records for 3d micromechanical modeling

  1. 3D multiscale micromechanical model of wood: From annual rings to microfibrils

    DEFF Research Database (Denmark)

    Qing, Hai; Mishnaevsky, Leon

    2010-01-01

    A 3D micromechanical analytical-computational model of softwood, which takes into account the wood microstructures at four scale levels, from microfibrils to annual rings, is developed. For the analysis of the effect of the annual rings structure on the properties of softwood, an improved rule......-of-mixture model, based on 3D orthotropic stress–strain relations and taking into account the compatibility of deformations at the interface of two phases and equilibrium of tractions at phase boundaries, is proposed. The improved rule of mixture model (IRoM) was compared with the classical rule-of-mixture (Ro......M) and finite element method (FEM) simulations. It was shown that IRoM gives almost as good results as FEM. The analytical model of annual rings is combined with the 3D finite element model of softwood as cellular material with multilayered, microfibril reinforced cell walls, developed by (Qing and Mishnaevsky...

  2. Micro-mechanics based damage mechanics for 3D Orthogonal Woven Composites: Experiment and Numerical Modelling

    KAUST Repository

    Saleh, Mohamed Nasr

    2016-01-08

    Damage initiation and evolution of three-dimensional (3D) orthogonal woven carbon fibre composite (3DOWC) is investigated experimentally and numerically. Meso-scale homogenisation of the representative volume element (RVE) is utilised to predict the elastic properties, simulate damage initiation and evolution when loaded in tension. The effect of intra-yarns transverse cracking and shear diffused damage on the in-plane transverse modulus and shear modulus is investigated while one failure criterion is introduced to simulate the matrix damage. The proposed model is based on two major assumptions. First, the effect of the binder yarns, on the in-plane properties, is neglected, so the 3DOWC unit cell can be approximated as a (0o/90o) cross-ply laminate. Second, a micro-mechanics based damage approach is used at the meso-scale, so damage indicators can be correlated, explicitly, to the density of cracks within the material. Results from the simulated RVE are validated against experimental results along the warp (0o direction) and weft (90o direction). This approach paves the road for more predictive models as damage evolution laws are obtained from micro mechanical considerations and rely on few well-defined material parameters. This largely differs from classical damage mechanics approaches in which the evolution law is obtained by retrofitting experimental observations.

  3. Moisture-related mechanical properties of softwood: 3D micromechanical modeling

    DEFF Research Database (Denmark)

    Qing, Hai; Mishnaevsky, Leon

    2009-01-01

    Computational micromechanical analysis of the influence of moisture, density and microstructure of latewood on its hydroelastic and shrinkage properties is carried out. The elastic properties of cell sublayers have been determined using the unit cell models as for fiber reinforced composites (two...... increase with increasing MFAs in layer S2, while the reverse is true in the transverse plane. The shrinkage coefficients of wood depend strongly on the shape of the hexagon-shaped cells. Wood density has a strong effect on both the Young’s modulus and the transverse Young’s modulus....

  4. Micromechanical analysis of nanocomposites using 3D voxel based material model

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon

    2012-01-01

    A computational study on the effect of nanocomposite structures on the elastic properties is carried out with the use of the 3D voxel based model of materials and the combined Voigt–Reuss method. A hierarchical voxel based model of a material reinforced by an array of exfoliated and intercalated...... nanoclay platelets surrounded by interphase layers is developed. With this model, the elastic properties of the interphase layer are estimated using the inverse analysis. The effects of aspect ratio, intercalation and orientation of nanoparticles on the elastic properties of the nanocomposites are analyzed....... For modeling the damage in nanocomposites with intercalated structures, “four phase” model is suggested, in which the strength of “intrastack interphase” is lower than that of “outer” interphase around the nanoplatelets. Analyzing the effect of nanoreinforcement in the matrix on the failure probability...

  5. Calibrating the Micromechanical Parameters of the PFC2D(3D Models Using the Improved Simulated Annealing Algorithm

    Directory of Open Access Journals (Sweden)

    Min Wang

    2017-01-01

    Full Text Available PFC2D(3D is commercial software, which is commonly used to model the crack initiation of rock and rock-like materials. For the PFC2D(3D numerical simulation, a proper set of microparameters need to be determined before the numerical simulation. To obtain a proper set of microparameters for PFC2D(3D model based on the macroparameters obtained from physical experiments, a novel technique has been carried out in this paper. The improved simulated annealing algorithm was employed to calibrate the microparameters of the numerical simulation model of PFC2D(3D. A Python script completely controls the calibration process, which can terminate automatically based on a termination criterion. The microparameter calibration process is not based on establishing the relationship between microparameters and macroparameters; instead, the microparameters are calibrated according to the improved simulated annealing algorithm. By using the proposed approach, the microparameters of both the contact-bond model and parallel-bond model in PFC2D(3D can be determined. To verify the validity of calibrating the microparameters of PFC2D(3D via the improved simulated annealing algorithm, some examples were selected from the literature. The corresponding numerical simulations were performed, and the numerical simulation results indicated that the proposed method is reliable for calibrating the microparameters of PFC2D(3D model.

  6. 3D Digital Modelling

    DEFF Research Database (Denmark)

    Hundebøl, Jesper

    wave of new building information modelling tools demands further investigation, not least because of industry representatives' somewhat coarse parlance: Now the word is spreading -3D digital modelling is nothing less than a revolution, a shift of paradigm, a new alphabet... Research qeustions. Based...... on empirical probes (interviews, observations, written inscriptions) within the Danish construction industry this paper explores the organizational and managerial dynamics of 3D Digital Modelling. The paper intends to - Illustrate how the network of (non-)human actors engaged in the promotion (and arrest) of 3......D Modelling (in Denmark) stabilizes - Examine how 3D Modelling manifests itself in the early design phases of a construction project with a view to discuss the effects hereof for i.a. the management of the building process. Structure. The paper introduces a few, basic methodological concepts...

  7. Tangible 3D Modelling

    DEFF Research Database (Denmark)

    Hejlesen, Aske K.; Ovesen, Nis

    2012-01-01

    This paper presents an experimental approach to teaching 3D modelling techniques in an Industrial Design programme. The approach includes the use of tangible free form models as tools for improving the overall learning. The paper is based on lecturer and student experiences obtained through facil...

  8. Micromechanical modeling of strength and damage of fiber reinforced composites

    Energy Technology Data Exchange (ETDEWEB)

    Mishnaevsky, L. Jr.; Broendsted, P.

    2007-03-15

    The report for the first year of the EU UpWind project includes three parts: overview of concepts and methods of modelling of mechanical behavior, deformation and damage of unidirectional fiber reinforced composites, development of computational tools for the automatic generation of 3D micromechanical models of fiber reinforced composites, and micromechanical modelling of damage in FRC, and phenomenological analysis of the effect of frequency of cyclic loading on the lifetime and damage evolution in materials. (au)

  9. 3D Simulation of micromechanical behavior of cement paste

    NARCIS (Netherlands)

    Qian, Z.; Ye, G.; Schlangen, H.E.J.G.; Van Breugel, K.

    2010-01-01

    Numerical modeling of fracture processes of brittle materials, such as cement paste, mortar, concrete and rocks, started in the late 1960s when the discrete and smeared cracking models were introduced. In the 1990s, Schlangen and van Mier proposed another numerical model to compensate the drawbacks

  10. 3D Simulation of micromechanical behavior of cement paste

    NARCIS (Netherlands)

    Qian, Z.; Ye, G.; Schlangen, H.E.J.G.; Van Breugel, K.

    2010-01-01

    Numerical modeling of fracture processes of brittle materials, such as cement paste, mortar, concrete and rocks, started in the late 1960s when the discrete and smeared cracking models were introduced. In the 1990s, Schlangen and van Mier proposed another numerical model to compensate the drawbacks

  11. Corrigendum to JMPS-D-14-00180: Micromechanical investigation of ductile failure in Al 5083-H116 via 3D unit cell modeling

    Science.gov (United States)

    Bomarito, G. F.; Warner, D. H.

    2016-03-01

    While revisiting our recently published work (JMPS-D-14-00180) a computer coding error was found in the homogenized material model. Specifically, the error was present in the code responsible for parsing the input files of the model; consequently, a section of the functional parameters q1(T , ξ), q2(T , ξ), fc(T , ξ) were disordered. The error leads to erroneous responses of the homogenized material model.

  12. Time And Temperature Dependent Micromechanical Properties Of Solder Joints For 3D-Package Integration

    Science.gov (United States)

    Roellig, Mike; Meier, Karsten; Metasch, Rene

    2010-11-01

    The recent development of 3D-integrated electronic packages is characterized by the need to increase the diversity of functions and to miniaturize. Currently many 3D-integration concepts are being developed and all of them demand new materials, new designs and new processing technologies. The combination of simulation and experimental investigation becomes increasingly accepted since simulations help to shorten the R&D cycle time and reduce costs. Numerical calculations like the Finite-Element-Method are strong tools to calculate stress conditions in electronic packages resulting from thermal strains due to the manufacturing process and environmental loads. It is essential for the application of numerical calculations that the material data is accurate and describes sufficiently the physical behaviour. The developed machine allows the measurement of time and temperature dependent micromechanical properties of solder joints. Solder joints, which are used to mechanically and electrically connect different packages, are physically measured as they leave the process. This allows accounting for process influences, which may change material properties. Additionally, joint sizes and metallurgical interactions between solder and under bump metallization can be respected by this particular measurement. The measurement allows the determination of material properties within a temperature range of 20° C-200° C. Further, the time dependent creep deformation can be measured within a strain-rate range of 10-31/s-10-81/s. Solder alloys based on Sn-Ag/Sn-Ag-Cu with additionally impurities and joint sizes down to O/ 200 μm were investigated. To finish the material characterization process the material model coefficient were extracted by FEM-Simulation to increase the accuracy of data.

  13. Oscillating optical tweezer-based 3-D confocal microrheometer for investigating the intracellular micromechanics and structures

    Science.gov (United States)

    Ou-Yang, H. D.; Rickter, E. A.; Pu, C.; Latinovic, O.; Kumar, A.; Mengistu, M.; Lowe-Krentz, L.; Chien, S.

    2005-08-01

    Mechanical properties of living biological cells are important for cells to maintain their shapes, support mechanical stresses and move through tissue matrix. The use of optical tweezers to measure micromechanical properties of cells has recently made significant progresses. This paper presents a new approach, the oscillating optical tweezer cytorheometer (OOTC), which takes advantage of the coherent detection of harmonically modulated particle motions by a lock-in amplifier to increase sensitivity, temporal resolution and simplicity. We demonstrate that OOTC can measure the dynamic mechanical modulus in the frequency range of 0.1-6,000 Hz at a rate as fast as 1 data point per second with submicron spatial resolution. More importantly, OOTC is capable of distinguishing the intrinsic non-random temporal variations from random fluctuations due to Brownian motion; this capability, not achievable by conventional approaches, is particular useful because living systems are highly dynamic and often exhibit non-thermal, rhythmic behavior in a broad time scale from a fraction of a second to hours or days. Although OOTC is effective in measuring the intracellular micromechanical properties, unless we can visualize the cytoskeleton in situ, the mechanical property data would only be as informative as that of "Blind men and the Elephant". To solve this problem, we take two steps, the first, to use of fluorescent imaging to identify the granular structures trapped by optical tweezers, and second, to integrate OOTC with 3-D confocal microscopy so we can take simultaneous, in situ measurements of the micromechanics and intracellular structure in living cells. In this paper, we discuss examples of applying the oscillating tweezer-based cytorheometer for investigating cultured bovine endothelial cells, the identification of caveolae as some of the granular structures in the cell as well as our approach to integrate optical tweezers with a spinning disk confocal microscope.

  14. 3D Face Apperance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Astrom, K

    2006-01-01

    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations......We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations...

  15. 3D Face Appearance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Åström, Kalle

    2006-01-01

    We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}......We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}...

  16. Making Inexpensive 3-D Models

    Science.gov (United States)

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  17. Optical Measurement of Micromechanics and Structure in a 3D Fibrin Extracellular Matrix

    Science.gov (United States)

    Kotlarchyk, Maxwell Aaron

    2011-07-01

    In recent years, a significant number of studies have focused on linking substrate mechanics to cell function using standard methodologies to characterize the bulk properties of the hydrogel substrates. However, current understanding of the correlations between the microstructural mechanical properties of hydrogels and cell function in 3D is poor, in part because of a lack of appropriate techniques. Methods for tuning extracellular matrix (ECM) mechanics in 3D cell culture that rely on increasing the concentration of either protein or cross-linking molecules fail to control important parameters such as pore size, ligand density, and molecular diffusivity. Alternatively, ECM stiffness can be modulated independently from protein concentration by mechanically loading the ECM. We have developed an optical tweezers-based microrheology system to investigate the fundamental role of ECM mechanical properties in determining cellular behavior. Further, this thesis outlines the development of a novel device for generating stiffness gradients in naturally derived ECMs, where stiffness is tuned by inducing strain, while local structure and mechanical properties are directly determined by laser tweezers-based passive and active microrheology respectively. Hydrogel substrates polymerized within 35 mm diameter Petri dishes are strained non-uniformly by the precise rotation of an embedded cylindrical post, and exhibit a position-dependent stiffness with little to no modulation of local mesh geometry. Here we present microrheological studies in the context of fibrin hydrogels. Microrheology and confocal imaging were used to directly measure local changes in micromechanics and structure respectively in unstrained hydrogels of increasing fibrinogen concentration, as well as in our strain gradient device, in which the concentration of fibrinogen is held constant. Orbital particle tracking, and raster image correlation analysis are used to quantify changes in fibrin mechanics on the

  18. Post processing of 3D models for 3D printing

    OpenAIRE

    2015-01-01

    According to the opinion of some experts the additive manufacturing or 3D printing will change manufacturing industry, because any individual could print their own model according to his or her wishes. In this graduation thesis some of the additive manufacturing technologies are presented. Furthermore in the production of house scale model in 1:100 is presented, starting from modeling to printing. Special attention is given to postprocessing of the building model elements us...

  19. Crowdsourcing Based 3d Modeling

    Science.gov (United States)

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  20. Micromechanical Behavior and Modelling of Granular Soil

    Science.gov (United States)

    1989-07-01

    elasticity, hypoelasticity , plasticity and viscoplasticity. Despite the large number of models , there is no consensus yet within the research community on...Classification) (U) Micromechanical Behavior and Modelling of Granular MOWo I... 12. PERSONAL AUTHOR(S) Emmanuel Petrakis and Ricardo Dobry 13a. TYPE OF...Institute (RPI) on the behavior and modelling of granular media is summarized. The final objective is to develol a constitutive law for granular soil

  1. FROM 3D MODEL DATA TO SEMANTICS

    Directory of Open Access Journals (Sweden)

    My Abdellah Kassimi

    2012-01-01

    Full Text Available The semantic-based 3D models retrieval systems have become necessary since the increase of 3D modelsdatabases. In this paper, we propose a new method for the mapping problem between 3D model data andsemantic data involved in semantic based retrieval for 3D models given by polygonal meshes. First, wefocused on extracting invariant descriptors from the 3D models and analyzing them to efficient semanticannotation and to improve the retrieval accuracy. Selected shape descriptors provide a set of termscommonly used to describe visually a set of objects using linguistic terms and are used as semanticconcept to label 3D model. Second, spatial relationship representing directional, topological anddistance relationships are used to derive other high-level semantic features and to avoid the problem ofautomatic 3D model annotation. Based on the resulting semantic annotation and spatial concepts, anontology for 3D model retrieval is constructed and other concepts can be inferred. This ontology is usedto find similar 3D models for a given query model. We adopted the query by semantic example approach,in which the annotation is performed mostly automatically. The proposed method is implemented in our3D search engine (SB3DMR, tested using the Princeton Shape Benchmark Database.

  2. Unidirectional high fiber content composites: Automatic 3D FE model generation and damage simulation

    DEFF Research Database (Denmark)

    Qing, Hai; Mishnaevsky, Leon

    2009-01-01

    A new method and a software code for the automatic generation of 3D micromechanical FE models of unidirectional long-fiber-reinforced composite (LFRC) with high fiber volume fraction with random fiber arrangement are presented. The fiber arrangement in the cross-section is generated through random...

  3. The 3D-city model

    DEFF Research Database (Denmark)

    Holmgren, Steen; Rüdiger, Bjarne; Tournay, Bruno

    2001-01-01

    We have worked with the construction and use of 3D city models for about ten years. This work has given us valuable experience concerning model methodology. In addition to this collection of knowledge, our perception of the concept of city models has changed radically. In order to explain...... of 3D city models....

  4. 3D Printing of Molecular Models

    Science.gov (United States)

    Gardner, Adam; Olson, Arthur

    2016-01-01

    Physical molecular models have played a valuable role in our understanding of the invisible nano-scale world. We discuss 3D printing and its use in producing models of the molecules of life. Complex biomolecular models, produced from 3D printed parts, can demonstrate characteristics of molecular structure and function, such as viral self-assembly,…

  5. 3D Printing of Molecular Models

    Science.gov (United States)

    Gardner, Adam; Olson, Arthur

    2016-01-01

    Physical molecular models have played a valuable role in our understanding of the invisible nano-scale world. We discuss 3D printing and its use in producing models of the molecules of life. Complex biomolecular models, produced from 3D printed parts, can demonstrate characteristics of molecular structure and function, such as viral self-assembly,…

  6. Micromechanical modelling of mechanical behaviour and strength of wood

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Qing, Hai

    2008-01-01

    An overview of the micromechanical theoretical and numerical models of wood is presented. Different methods of analysis of the effects of wood microstructures at different scale levels on the mechanical behaviour, deformation and strength of wood are discussed and compared. Micromechanical models...

  7. Computer Modelling of 3D Geological Surface

    CERN Document Server

    Kodge, B G

    2011-01-01

    The geological surveying presently uses methods and tools for the computer modeling of 3D-structures of the geographical subsurface and geotechnical characterization as well as the application of geoinformation systems for management and analysis of spatial data, and their cartographic presentation. The objectives of this paper are to present a 3D geological surface model of Latur district in Maharashtra state of India. This study is undertaken through the several processes which are discussed in this paper to generate and visualize the automated 3D geological surface model of a projected area.

  8. RHOCUBE: 3D density distributions modeling code

    Science.gov (United States)

    Nikutta, Robert; Agliozzo, Claudia

    2016-11-01

    RHOCUBE models 3D density distributions on a discrete Cartesian grid and their integrated 2D maps. It can be used for a range of applications, including modeling the electron number density in LBV shells and computing the emission measure. The RHOCUBE Python package provides several 3D density distributions, including a powerlaw shell, truncated Gaussian shell, constant-density torus, dual cones, and spiralling helical tubes, and can accept additional distributions. RHOCUBE provides convenient methods for shifts and rotations in 3D, and if necessary, an arbitrary number of density distributions can be combined into the same model cube and the integration ∫ dz performed through the joint density field.

  9. 3-D Human Modeling and Animation

    CERN Document Server

    Ratner, Peter

    2012-01-01

    3-D Human Modeling and Animation Third Edition All the tools and techniques you need to bring human figures to 3-D life Thanks to today's remarkable technology, artists can create and animate realistic, three-dimensional human figures that were not possible just a few years ago. This easy-to-follow book guides you through all the necessary steps to adapt your own artistic skill in figure drawing, painting, and sculpture to this exciting digital canvas. 3-D Human Modeling and Animation, Third Edition starts you off with simple modeling, then prepares you for more advanced techniques for crea

  10. Digital relief generation from 3D models

    Science.gov (United States)

    Wang, Meili; Sun, Yu; Zhang, Hongming; Qian, Kun; Chang, Jian; He, Dongjian

    2016-09-01

    It is difficult to extend image-based relief generation to high-relief generation, as the images contain insufficient height information. To generate reliefs from three-dimensional (3D) models, it is necessary to extract the height fields from the model, but this can only generate bas-reliefs. To overcome this problem, an efficient method is proposed to generate bas-reliefs and high-reliefs directly from 3D meshes. To produce relief features that are visually appropriate, the 3D meshes are first scaled. 3D unsharp masking is used to enhance the visual features in the 3D mesh, and average smoothing and Laplacian smoothing are implemented to achieve better smoothing results. A nonlinear variable scaling scheme is then employed to generate the final bas-reliefs and high-reliefs. Using the proposed method, relief models can be generated from arbitrary viewing positions with different gestures and combinations of multiple 3D models. The generated relief models can be printed by 3D printers. The proposed method provides a means of generating both high-reliefs and bas-reliefs in an efficient and effective way under the appropriate scaling factors.

  11. A Hybrid 3D Indoor Space Model

    Science.gov (United States)

    Jamali, Ali; Rahman, Alias Abdul; Boguslawski, Pawel

    2016-10-01

    GIS integrates spatial information and spatial analysis. An important example of such integration is for emergency response which requires route planning inside and outside of a building. Route planning requires detailed information related to indoor and outdoor environment. Indoor navigation network models including Geometric Network Model (GNM), Navigable Space Model, sub-division model and regular-grid model lack indoor data sources and abstraction methods. In this paper, a hybrid indoor space model is proposed. In the proposed method, 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. This research proposes a method of indoor space modeling for the buildings which do not have proper 2D/3D geometrical models or they lack semantic or topological information. The proposed hybrid model consists of topological, geometrical and semantical space.

  12. A Hybrid 3D Indoor Space Model

    Directory of Open Access Journals (Sweden)

    A. Jamali

    2016-10-01

    Full Text Available GIS integrates spatial information and spatial analysis. An important example of such integration is for emergency response which requires route planning inside and outside of a building. Route planning requires detailed information related to indoor and outdoor environment. Indoor navigation network models including Geometric Network Model (GNM, Navigable Space Model, sub-division model and regular-grid model lack indoor data sources and abstraction methods. In this paper, a hybrid indoor space model is proposed. In the proposed method, 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. This research proposes a method of indoor space modeling for the buildings which do not have proper 2D/3D geometrical models or they lack semantic or topological information. The proposed hybrid model consists of topological, geometrical and semantical space.

  13. Micromechanics Modeling of Fracture in Nanocrystalline Metals

    Science.gov (United States)

    Glaessgen, E. H.; Piascik, R. S.; Raju, I. S.; Harris, C. E.

    2002-01-01

    Nanocrystalline metals have very high theoretical strength, but suffer from a lack of ductility and toughness. Therefore, it is critical to understand the mechanisms of deformation and fracture of these materials before their full potential can be achieved. Because classical fracture mechanics is based on the comparison of computed fracture parameters, such as stress intlmsity factors, to their empirically determined critical values, it does not adequately describe the fundamental physics of fracture required to predict the behavior of nanocrystalline metals. Thus, micromechanics-based techniques must be considered to quanti@ the physical processes of deformation and fracture within nanocrystalline metals. This paper discusses hndamental physicsbased modeling strategies that may be useful for the prediction Iof deformation, crack formation and crack growth within nanocrystalline metals.

  14. Automatic balancing of 3D models

    DEFF Research Database (Denmark)

    Christiansen, Asger Nyman; Schmidt, Ryan; Bærentzen, Jakob Andreas

    2014-01-01

    3D printing technologies allow for more diverse shapes than are possible with molds and the cost of making just one single object is negligible compared to traditional production methods. However, not all shapes are suitable for 3D print. One of the remaining costs is therefore human time spent......, in these cases, we will apply a rotation of the object which only deforms the shape a little near the base. No user input is required but it is possible to specify manufacturing constraints related to specific 3D print technologies. Several models have successfully been balanced and printed using both polyjet...

  15. 3D face modeling, analysis and recognition

    CERN Document Server

    Daoudi, Mohamed; Veltkamp, Remco

    2013-01-01

    3D Face Modeling, Analysis and Recognition presents methodologies for analyzing shapes of facial surfaces, develops computational tools for analyzing 3D face data, and illustrates them using state-of-the-art applications. The methodologies chosen are based on efficient representations, metrics, comparisons, and classifications of features that are especially relevant in the context of 3D measurements of human faces. These frameworks have a long-term utility in face analysis, taking into account the anticipated improvements in data collection, data storage, processing speeds, and application s

  16. Measuring Visual Closeness of 3-D Models

    KAUST Repository

    Gollaz Morales, Jose Alejandro

    2012-09-01

    Measuring visual closeness of 3-D models is an important issue for different problems and there is still no standardized metric or algorithm to do it. The normal of a surface plays a vital role in the shading of a 3-D object. Motivated by this, we developed two applications to measure visualcloseness, introducing normal difference as a parameter in a weighted metric in Metro’s sampling approach to obtain the maximum and mean distance between 3-D models using 3-D and 6-D correspondence search structures. A visual closeness metric should provide accurate information on what the human observers would perceive as visually close objects. We performed a validation study with a group of people to evaluate the correlation of our metrics with subjective perception. The results were positive since the metrics predicted the subjective rankings more accurately than the Hausdorff distance.

  17. Resist loss in 3D compact modeling

    Science.gov (United States)

    Zheng, Xin; Huang, Jensheng; Chin, Fook; Kazarian, Aram; Kuo, Chun-Chieh

    2012-03-01

    An enhancement to compact modeling capability to include photoresist (PR) loss at different heights is developed and discussed. A hypsometric map representing 3-D resist profile was built by applying a first principle approximation to estimate the "energy loss" from the resist top to any other plane of interest as a proportional corresponding change in model threshold, which is analogous to a change in exposure dose. The result is compared and validated with 3D rigorous modeling as well as SEM images. Without increase in computation time, this compact model can construct 3D resist profiles capturing resist profile degradation at any vertical plane. Sidewall angle and standing wave information can also be granted from the vertical profile reconstruction. Since this method does not change any form of compact modeling, it can be integrated to validation and correction without any additional work.

  18. 3D Modeling Engine Representation Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Steven Prescott; Ramprasad Sampath; Curtis Smith; Timothy Yang

    2014-09-01

    Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This summary report addressed the methods, techniques, and resources used to develop a 3D modeling engine to represent risk analysis simulation for advanced small modular reactor structures and components. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

  19. Multifractal modelling and 3D lacunarity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hanen, Akkari, E-mail: bettaieb.hanen@topnet.t [Laboratoire de biophysique, TIM, Faculte de Medecine (Tunisia); Imen, Bhouri, E-mail: bhouri_imen@yahoo.f [Unite de recherche ondelettes et multifractals, Faculte des sciences (Tunisia); Asma, Ben Abdallah, E-mail: asma.babdallah@cristal.rnu.t [Laboratoire de biophysique, TIM, Faculte de Medecine (Tunisia); Patrick, Dubois, E-mail: pdubois@chru-lille.f [INSERM, U 703, Lille (France); Hedi, Bedoui Mohamed, E-mail: medhedi.bedoui@fmm.rnu.t [Laboratoire de biophysique, TIM, Faculte de Medecine (Tunisia)

    2009-09-28

    This study presents a comparative evaluation of lacunarity of 3D grey level models with different types of inhomogeneity. A new method based on the 'Relative Differential Box Counting' was developed to estimate the lacunarity features of grey level volumes. To validate our method, we generated a set of 3D grey level multifractal models with random, anisotropic and hierarchical properties. Our method gives a lacunarity measurement correlated with the theoretical one and allows a better model classification compared with a classical approach.

  20. Multifractal modelling and 3D lacunarity analysis

    Science.gov (United States)

    Hanen, Akkari; Imen, Bhouri; Asma, Ben Abdallah; Patrick, Dubois; Hédi, Bedoui Mohamed

    2009-09-01

    This study presents a comparative evaluation of lacunarity of 3D grey level models with different types of inhomogeneity. A new method based on the “Relative Differential Box Counting” was developed to estimate the lacunarity features of grey level volumes. To validate our method, we generated a set of 3D grey level multifractal models with random, anisotropic and hierarchical properties. Our method gives a lacunarity measurement correlated with the theoretical one and allows a better model classification compared with a classical approach.

  1. BEAMS3D Neutral Beam Injection Model

    Science.gov (United States)

    McMillan, Matthew; Lazerson, Samuel A.

    2014-09-01

    With the advent of applied 3D fields in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous slowing down, and pitch angle scattering are modeled with the ADAS atomic physics database. Elementary benchmark calculations are presented to verify the collisionless particle orbits, NBI model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields. Notice: this manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  2. Micromechanical Modeling of Concrete at Early Age

    Science.gov (United States)

    Tuleubekov, Kairat

    The focus of this research is a micromechanical characterization of Portland cement concrete at early age (less than 28 days). Concrete's viscoelastic properties change significantly at early age due to solidification of its matrix component. Bazant's solidification theory models concrete as a material solidifying in time. This approach is generalized to a three-dimensional characterization of a composite material with a solidifying matrix and elastic inclusions. An integral constitutive relationship was obtained using a generalized correspondence principle and homogenization techniques for elastic composite materials. In light of this approach, effective creep properties of composite spherical assemblage with an aging matrix are obtained. In addition, the elastic Hashin-Monteiro model is generalized to account for the effect of the interfacial transition zone properties on concrete creep. An effective computational platform was developed to evaluate operator expressions in order to obtain relaxation and creep functions numerically. Through numerical examples, it is shown that triaxial generalization of Bazant's solidification model enables robust and computationally efficient prediction of creep deformations in Portland cement concrete.

  3. 3D gender recognition using cognitive modeling

    DEFF Research Database (Denmark)

    Fagertun, Jens; Andersen, Tobias; Hansen, Thomas

    2013-01-01

    We use 3D scans of human faces and cognitive modeling to estimate the “gender strength”. The “gender strength” is a continuous class variable of the gender, superseding the traditional binary class labeling. To visualize some of the visual trends humans use when performing gender classification, ...

  4. Constructing Arguments with 3-D Printed Models

    Science.gov (United States)

    McConnell, William; Dickerson, Daniel

    2017-01-01

    In this article, the authors describe a fourth-grade lesson where 3-D printing technologies were not only a stimulus for engagement but also served as a modeling tool providing meaningful learning opportunities. Specifically, fourth-grade students construct an argument that animals' external structures function to support survival in a particular…

  5. Do-It-Yourself: 3D Models of Hydrogenic Orbitals through 3D Printing

    Science.gov (United States)

    Griffith, Kaitlyn M.; de Cataldo, Riccardo; Fogarty, Keir H.

    2016-01-01

    Introductory chemistry students often have difficulty visualizing the 3-dimensional shapes of the hydrogenic electron orbitals without the aid of physical 3D models. Unfortunately, commercially available models can be quite expensive. 3D printing offers a solution for producing models of hydrogenic orbitals. 3D printing technology is widely…

  6. 3D object-oriented image analysis in 3D geophysical modelling

    DEFF Research Database (Denmark)

    Fadel, I.; van der Meijde, M.; Kerle, N.

    2015-01-01

    Non-uniqueness of satellite gravity interpretation has traditionally been reduced by using a priori information from seismic tomography models. This reduction in the non-uniqueness has been based on velocity-density conversion formulas or user interpretation of the 3D subsurface structures (objects......) based on the seismic tomography models and then forward modelling these objects. However, this form of object-based approach has been done without a standardized methodology on how to extract the subsurface structures from the 3D models. In this research, a 3D object-oriented image analysis (3D OOA......) approach was implemented to extract the 3D subsurface structures from geophysical data. The approach was applied on a 3D shear wave seismic tomography model of the central part of the East African Rift System. Subsequently, the extracted 3D objects from the tomography model were reconstructed in the 3D...

  7. Illustrating the disassembly of 3D models

    KAUST Repository

    Guo, Jianwei

    2013-10-01

    We present a framework for the automatic disassembly of 3D man-made models and the illustration of the disassembly process. Given an assembled 3D model, we first analyze the individual parts using sharp edge loops and extract the contact faces between each pair of neighboring parts. The contact faces are then used to compute the possible moving directions of each part. We then present a simple algorithm for clustering the sets of the individual parts into meaningful sub-assemblies, which can be used for a hierarchical decomposition. We take the stability of sub-assemblies into account during the decomposition process by considering the upright orientation of the input models. Our framework also provides a user-friendly interface to enable the superimposition of the constraints for the decomposition. Finally, we visualize the disassembly process by generating an animated sequence. The experiments demonstrate that our framework works well for a variety of complex models. © 2013 Elsevier Ltd.

  8. Debris Dispersion Model Using Java 3D

    Science.gov (United States)

    Thirumalainambi, Rajkumar; Bardina, Jorge

    2004-01-01

    This paper describes web based simulation of Shuttle launch operations and debris dispersion. Java 3D graphics provides geometric and visual content with suitable mathematical model and behaviors of Shuttle launch. Because the model is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models provides mechanisms to understand the complexity of launch and range operations. The main focus in the modeling and simulation covers orbital dynamics and range safety. Range safety areas include destruct limit lines, telemetry and tracking and population risk near range. If there is an explosion of Shuttle during launch, debris dispersion is explained. The shuttle launch and range operations in this paper are discussed based on the operations from Kennedy Space Center, Florida, USA.

  9. Collaborative annotation of 3D crystallographic models.

    Science.gov (United States)

    Hunter, J; Henderson, M; Khan, I

    2007-01-01

    This paper describes the AnnoCryst system-a tool that was designed to enable authenticated collaborators to share online discussions about 3D crystallographic structures through the asynchronous attachment, storage, and retrieval of annotations. Annotations are personal comments, interpretations, questions, assessments, or references that can be attached to files, data, digital objects, or Web pages. The AnnoCryst system enables annotations to be attached to 3D crystallographic models retrieved from either private local repositories (e.g., Fedora) or public online databases (e.g., Protein Data Bank or Inorganic Crystal Structure Database) via a Web browser. The system uses the Jmol plugin for viewing and manipulating the 3D crystal structures but extends Jmol by providing an additional interface through which annotations can be created, attached, stored, searched, browsed, and retrieved. The annotations are stored on a standardized Web annotation server (Annotea), which has been extended to support 3D macromolecular structures. Finally, the system is embedded within a security framework that is capable of authenticating users and restricting access only to trusted colleagues.

  10. Sensing and compressing 3-D models

    Energy Technology Data Exchange (ETDEWEB)

    Krumm, J. [Sandia National Labs., Albuquerque, NM (United States). Intelligent System Sensors and Controls Dept.

    1998-02-01

    The goal of this research project was to create a passive and robust computer vision system for producing 3-D computer models of arbitrary scenes. Although the authors were unsuccessful in achieving the overall goal, several components of this research have shown significant potential. Of particular interest is the application of parametric eigenspace methods for planar pose measurement of partially occluded objects in gray-level images. The techniques presented provide a simple, accurate, and robust solution to the planar pose measurement problem. In addition, the representational efficiency of eigenspace methods used with gray-level features were successfully extended to binary features, which are less sensitive to illumination changes. The results of this research are presented in two papers that were written during the course of this project. The papers are included in sections 2 and 3. The first section of this report summarizes the 3-D modeling efforts.

  11. Vision models for 3D surfaces

    Science.gov (United States)

    Mitra, Sunanda

    1992-11-01

    Different approaches to computational stereo to represent human stereo vision have been developed over the past two decades. The Marr-Poggio theory of human stereo vision is probably the most widely accepted model of the human stereo vision. However, recently developed motion stereo models which use a sequence of images taken by either a moving camera or a moving object provide an alternative method of achieving multi-resolution matching without the use of Laplacian of Gaussian operators. While using image sequences, the baseline between two camera positions for a image pair is changed for the subsequent image pair so as to achieve different resolution for each image pair. Having different baselines also avoids the inherent occlusion problem in stereo vision models. The advantage of using multi-resolution images acquired by camera positioned at different baselines over those acquired by LOG operators is that one does not have to encounter spurious edges often created by zero-crossings in the LOG operated images. Therefore in designing a computer vision system, a motion stereo model is more appropriate than a stereo vision model. However, in some applications where only a stereo pair of images are available, recovery of 3D surfaces of natural scenes are possible in a computationally efficient manner by using cepstrum matching and regularization techniques. Section 2 of this paper describes a motion stereo model using multi-scale cepstrum matching for the detection of disparity between image pairs in a sequence of images and subsequent recovery of 3D surfaces from depth-map obtained by a non convergent triangulation technique. Section 3 presents a 3D surface recovery technique from a stereo pair using cepstrum matching for disparity detection and cubic B-splines for surface smoothing. Section 4 contains the results of 3D surface recovery using both of the techniques mentioned above. Section 5 discusses the merit of 2D cepstrum matching and cubic B

  12. Robust hashing for 3D models

    Science.gov (United States)

    Berchtold, Waldemar; Schäfer, Marcel; Rettig, Michael; Steinebach, Martin

    2014-02-01

    3D models and applications are of utmost interest in both science and industry. With the increment of their usage, their number and thereby the challenge to correctly identify them increases. Content identification is commonly done by cryptographic hashes. However, they fail as a solution in application scenarios such as computer aided design (CAD), scientific visualization or video games, because even the smallest alteration of the 3D model, e.g. conversion or compression operations, massively changes the cryptographic hash as well. Therefore, this work presents a robust hashing algorithm for 3D mesh data. The algorithm applies several different bit extraction methods. They are built to resist desired alterations of the model as well as malicious attacks intending to prevent correct allocation. The different bit extraction methods are tested against each other and, as far as possible, the hashing algorithm is compared to the state of the art. The parameters tested are robustness, security and runtime performance as well as False Acceptance Rate (FAR) and False Rejection Rate (FRR), also the probability calculation of hash collision is included. The introduced hashing algorithm is kept adaptive e.g. in hash length, to serve as a proper tool for all applications in practice.

  13. Simplified 3d City Models from LIDAR

    Science.gov (United States)

    Lesparre, J.; Gorte, B. G. H.

    2012-07-01

    Aerial laser scan data is widely used to produce 2 1/2D digital elevation models automatically. However, creating full 3D city models from this data is a complex task. A simplified 3D model, like a 2 1/2D model with vertical walls will be easier to produce automatically, especially when the model is not produced to look nice, but just to give realistic results in an analysis or a simulation. To be able to include vertical walls in a 2 1/2D model we extend the TIN data structure in such way that the height of a vertex is stored implicitly in a way that allows multiple heights and efficient processing at the same time. To generate the city model we first apply data reduction in planar areas of an initial TIN. Next, we segment the TIN into planar segments for the ground, walls and roof planes. Finally, we intersect the segments to obtain a 2 1/2D model with slightly slanted walls, which should be adjusted to become exactly vertical. The results for simulated point cloud data are near-perfect. Real aerial laser scan data are more challenging, but the method still gives promising results.

  14. 3D modeling of buildings outstanding sites

    CERN Document Server

    Héno, Rapha?le

    2014-01-01

    Conventional topographic databases, obtained by capture on aerial or spatial images provide a simplified 3D modeling of our urban environment, answering the needs of numerous applications (development, risk prevention, mobility management, etc.). However, when we have to represent and analyze more complex sites (monuments, civil engineering works, archeological sites, etc.), these models no longer suffice and other acquisition and processing means have to be implemented. This book focuses on the study of adapted lifting means for "notable buildings". The methods tackled in this book cover las

  15. 3D space analysis of dental models

    Science.gov (United States)

    Chuah, Joon H.; Ong, Sim Heng; Kondo, Toshiaki; Foong, Kelvin W. C.; Yong, Than F.

    2001-05-01

    Space analysis is an important procedure by orthodontists to determine the amount of space available and required for teeth alignment during treatment planning. Traditional manual methods of space analysis are tedious and often inaccurate. Computer-based space analysis methods that work on 2D images have been reported. However, as the space problems in the dental arch exist in all three planes of space, a full 3D analysis of the problems is necessary. This paper describes a visualization and measurement system that analyses 3D images of dental plaster models. Algorithms were developed to determine dental arches. The system is able to record the depths of the Curve of Spee, and quantify space liabilities arising from a non-planar Curve of Spee, malalignment and overjet. Furthermore, the difference between total arch space available and the space required to arrange the teeth in ideal occlusion can be accurately computed. The system for 3D space analysis of the dental arch is an accurate, comprehensive, rapid and repeatable method of space analysis to facilitate proper orthodontic diagnosis and treatment planning.

  16. Deposit 3D modeling and application

    Institute of Scientific and Technical Information of China (English)

    LUO Zhou-quan; LIU Xiao-ming; SU Jia-hong; WU Ya-bin; LIU Wang-ping

    2007-01-01

    By the aid of the international mining software SURPAC, a geologic database for a multi-metal mine was established, 3D models of the surface, geologic fault, ore body, cavity and the underground openings were built, and the volume of the cavity of the mine based on the cavity 3D model was calculated. In order to compute the reserves, a grade block model was built and each metal element grade was estimated using Ordinary Kriging. Then, the reserve of each metal element and every sublevel of the mine was worked out. Finally, the calculated result of each metal reserve to its actual prospecting reserve was compared, and the results show that they are all almost equal to each other. The absolute errors of Sn, Pb, and Zn reserves are only 1.45%, 1.59% and 1.62%,respectively. Obviously, the built models are reliable and the calculated results of reserves are correct. They can be used to assist the geologic and mining engineers of the mine to do research work of reserves estimation, mining design, plan making and so on.

  17. Design and Implementation of 3D Model Database for General-Purpose 3D GIS

    Institute of Scientific and Technical Information of China (English)

    XU Weiping; ZHU Qing; DU Zhiqiang; ZHANG Yeting

    2010-01-01

    To improve the reusability of three-dimensional (3D) models and simplify the complexity of natural scene reconstruction, this paper presents a 3D model database for universal 3D GIS. After the introduction of its extensible function architecture,accompanied by the conclusion of implicit spatial-temporal hierarchy of models in any reconstructed scene of 3D GIS for general purpose, several key issues are discussed in detail, such as the storage and management of 3D models and related retrieval and load method, as well as the interfaces for further on-demand development. Finally, the validity and feasibility of this model database are proved through its application in the development of 3D visualization system of railway operation.

  18. 3D Stratigraphic Modeling of Central Aachen

    Science.gov (United States)

    Dong, M.; Neukum, C.; Azzam, R.; Hu, H.

    2010-05-01

    Since 1980s, advanced computer hardware and software technologies, as well as multidisciplinary research have provided possibilities to develop advanced three dimensional (3D) simulation software for geosciences application. Some countries, such as USA1) and Canada2) 3), have built up regional 3D geological models based on archival geological data. Such models have played huge roles in engineering geology2), hydrogeology2) 3), geothermal industry1) and so on. In cooperating with the Municipality of Aachen, the Department of Engineering Geology of RWTH Aachen University have built up a computer-based 3D stratigraphic model of 50 meter' depth for the center of Aachen, which is a 5 km by 7 km geologically complex area. The uncorrelated data from multi-resources, discontinuous nature and unconformable connection of the units are main challenges for geological modeling in this area. The reliability of 3D geological models largely depends on the quality and quantity of data. Existing 1D and 2D geological data were collected, including 1) approximately 6970 borehole data of different depth compiled in Microsoft Access database and MapInfo database; 2) a Digital Elevation Model (DEM); 3) geological cross sections; and 4) stratigraphic maps in 1m, 2m and 5m depth. Since acquired data are of variable origins, they were managed step by step. The main processes are described below: 1) Typing errors of borehole data were identified and the corrected data were exported to Variowin2.2 to distinguish duplicate points; 2) The surface elevation of borehole data was compared to the DEM, and differences larger than 3m were eliminated. Moreover, where elevation data missed, it was read from the DEM; 3) Considerable data were collected from municipal constructions, such as residential buildings, factories, and roads. Therefore, many boreholes are spatially clustered, and only one or two representative points were picked out in such areas; After above procedures, 5839 boreholes with -x

  19. 3D Model Optimization of Four-Facet Drill for 3D Drilling Simulation

    Directory of Open Access Journals (Sweden)

    Buranský Ivan

    2016-09-01

    Full Text Available The article is focused on optimization of four-facet drill for 3D drilling numerical modelling. For optimization, the process of reverse engineering by PowerShape software was used. The design of four-facet drill was created in NumrotoPlus software. The modified 3D model of the drill was used in the numerical analysis of cutting forces. Verification of the accuracy of 3D models for reverse engineering was implemented using the colour deviation maps. The CAD model was in the STEP format. For simulation software, 3D model in the STEP format is ideal. STEP is a solid model. Simulation software automatically splits the 3D model into finite elements. The STEP model was therefore more suitable than the STL model.

  20. 3D Hilbert Space Filling Curves in 3D City Modeling for Faster Spatial Queries

    DEFF Research Database (Denmark)

    Ujang, Uznir; Antón Castro, Francesc/François; Azri, Suhaibah;

    2014-01-01

    are presented in this paper. The advantages of implementing space-filling curves in 3D city modeling will improve data retrieval time by means of optimized 3D adjacency, nearest neighbor information and 3D indexing. The Hilbert mapping, which maps a sub-interval of the ([0,1]) interval to the corresponding...... method, retrieving portions of and especially searching these 3D city models, will not be done optimally. Even though current developments are based on an open data model allotted by the Open Geospatial Consortium (OGC) called CityGML, its XML-based structure makes it challenging to cluster the 3D urban...... web standards. However, these 3D city models consume much more storage compared to two dimensional (2 D) spatial data. They involve extra geometrical and topological information together with semantic data. Without a proper spatial data clustering method and its corresponding spatial data access...

  1. Anvendt 3D modellering og parametrisk formgivning

    DEFF Research Database (Denmark)

    Hermund, Anders

    2011-01-01

    hjælpe med at identificere problemer og fordele, og fokusere på vigtigheden af at være i stand til at påvirke udviklingen af moderne 3D teknologier og systemer i en plausibel retning for kvaliteten af fremtidens arkitektoniske projekter. Forskningsspørgsmål er: Hvorledes kan en diagrammatisk metode sikre...... kreativitet i det parametriske system? Denne Ph.d. afhandling søger at skabe en teoretisk ramme, med henblik på at identificere og klarlægge nye potentialer for anvendt 3D modellering og parametrisk formgivningspraksis. Efter at have fået denne klarhed, er det nødvendigt at drøfte anvendelse og etik i de nye...... kommunikationsmidler og gennem interviews og praksis-baseret forskning etablere et brugbart fundament ud fra disse erfaringer. Den digitale udvikling skal ses som en helhed, der tager del i samspillet mellem både en historisk tradition og en langsigtet vision. Et værktøj, og en metode, der med mulighederne...

  2. Scalable 3D GIS environment managed by 3D-XML-based modeling

    Science.gov (United States)

    Shi, Beiqi; Rui, Jianxun; Chen, Neng

    2008-10-01

    Nowadays, the namely 3D GIS technologies become a key factor in establishing and maintaining large-scale 3D geoinformation services. However, with the rapidly increasing size and complexity of the 3D models being acquired, a pressing needed for suitable data management solutions has become apparent. This paper outlines that storage and exchange of geospatial data between databases and different front ends like 3D models, GIS or internet browsers require a standardized format which is capable to represent instances of 3D GIS models, to minimize loss of information during data transfer and to reduce interface development efforts. After a review of previous methods for spatial 3D data management, a universal lightweight XML-based format for quick and easy sharing of 3D GIS data is presented. 3D data management based on XML is a solution meeting the requirements as stated, which can provide an efficient means for opening a new standard way to create an arbitrary data structure and share it over the Internet. To manage reality-based 3D models, this paper uses 3DXML produced by Dassault Systemes. 3DXML uses opening XML schemas to communicate product geometry, structure and graphical display properties. It can be read, written and enriched by standard tools; and allows users to add extensions based on their own specific requirements. The paper concludes with the presentation of projects from application areas which will benefit from the functionality presented above.

  3. Regional geothermal 3D modelling in Denmark

    Science.gov (United States)

    Poulsen, S. E.; Balling, N.; Bording, T. S.; Nielsen, S. B.

    2012-04-01

    In the pursuit of sustainable and low carbon emission energy sources, increased global attention has been given to the exploration and exploitation of geothermal resources within recent decades. In 2009 a national multi-disciplinary geothermal research project was established. As a significant part of this project, 3D temperature modelling is to be carried out, with special emphasis on temperatures of potential geothermal reservoirs in the Danish area. The Danish subsurface encompasses low enthalpy geothermal reservoirs of mainly Triassic and Jurassic age. Geothermal plants at Amager (Copenhagen) and Thisted (Northern Jutland) have the capacity of supplying the district heating network with up to 14 MW and 7 MW, respectively, by withdrawing warm pore water from the Gassum (Lower Jurassic/Upper Triassic) and Bunter (Lower Triassic) sandstone reservoirs, respectively. Explorative studies of the subsurface temperature regime typically are based on a combination of observations and modelling. In this study, the open-source groundwater modelling code MODFLOW is modified to simulate the subsurface temperature distribution in three dimensions by taking advantage of the mathematical similarity between saturated groundwater flow (Darcy flow) and heat conduction. A numerical model of the subsurface geology in Denmark is built and parameterized from lithological information derived from joint interpretation of seismic surveys and borehole information. Boundary conditions are constructed from knowledge about the heat flow from the Earth's interior and the shallow ground temperature. Matrix thermal conductivities have been estimated from analysis of high-resolution temperature logs measured in deep wells and porosity-depth relations are included using interpreted main lithologies. The model takes into account the dependency of temperature and pressure on thermal conductivity. Moreover, a transient model based correction of the paleoclimatic thermal disturbance caused by the

  4. 3D Modelling of Kizildag Monument

    Science.gov (United States)

    Karauguz, Güngör; Kalayci, İbrahim; Öğütcü, Sermet

    2016-10-01

    The most important cultural property that the nations possess is their historical accumulation, and bringing these to light, taking measures to preserve them or at least maintain the continuity of transferring them to next generations by means of recent technic and technology, ought to be the business of present generations. Although, nowadays, intensive documentation and archiving studies are done by means of classical techniques, besides studies towards preserving historical objects, modelling one-to-one or scaled modelling were not possible until recently. Computing devices and the on-going reflection of this, which is acknowledged as digital technology, is widely used in many areas and makes it possible to document and archive historical works. Even virtual forms in quantitative environments can be transferred to next generations in a scaled and one-to-one modelled way. Within this scope, every single artefact categorization belonging to any era or civilization present in our country can be considered in separate study areas. Furthermore, any work or likewise can be evaluated in separate categories. Also, it is possible to construct travelable virtual 3D museums that make it possible to visit these artefacts. Under the auspices of these technologies, it is quite possible to construct single virtual indoor museums or also, at the final stage, a 3D travelable open-air museum, a platform or more precisely, to establish a data system that spreads all over the country on a broad spectrum. With a long-termed, significant and extensive study and a substantial organization, such a data system can be established, which also serves as a serious infrastructure for alternative tourism possibilities. Located beside a stepped altar and right above the Kizildag IV inscription, the offering pot is destructed and rolled away a few meters to the south slope of the mould. Every time visiting these artefacts with our undergraduate students, unfortunately, we observe more

  5. Efficient 3D scene modeling and mosaicing

    CERN Document Server

    Nicosevici, Tudor

    2013-01-01

    This book proposes a complete pipeline for monocular (single camera) based 3D mapping of terrestrial and underwater environments. The aim is to provide a solution to large-scale scene modeling that is both accurate and efficient. To this end, we have developed a novel Structure from Motion algorithm that increases mapping accuracy by registering camera views directly with the maps. The camera registration uses a dual approach that adapts to the type of environment being mapped.   In order to further increase the accuracy of the resulting maps, a new method is presented, allowing detection of images corresponding to the same scene region (crossovers). Crossovers then used in conjunction with global alignment methods in order to highly reduce estimation errors, especially when mapping large areas. Our method is based on Visual Bag of Words paradigm (BoW), offering a more efficient and simpler solution by eliminating the training stage, generally required by state of the art BoW algorithms.   Also, towards dev...

  6. Approaches for a 3D assessment of pavement evenness data based on 3D vehicle models

    Directory of Open Access Journals (Sweden)

    Andreas Ueckermann

    2015-04-01

    Full Text Available Pavements are 3D in their shape. They can be captured in three dimensions by modern road mapping equipment which allows for the assessment of pavement evenness in a more holistic way as opposed to current practice which divides into longitudinal and transversal evenness. It makes sense to use 3D vehicle models to simulate the effects of 3D surface data on certain functional criteria like pavement loading, cargo loading and driving comfort. In order to evaluate the three criteria mentioned two vehicle models have been created: a passenger car used to assess driving comfort and a truck-semitrailer submodel used to assess pavement and cargo loading. The vehicle models and their application to 3D surface data are presented. The results are well in line with existing single-track (planar models. Their advantage over existing 1D/2D models is demonstrated by the example of driving comfort evaluation. Existing “geometric” limit values for the assessment of longitudinal evenness in terms of the power spectral density could be used to establish corresponding limit values for the dynamic response, i.e. driving comfort, pavement loading and cargo loading. The limit values are well in line with existing limit values based on planar vehicle models. They can be used as guidelines for the proposal of future limit values. The investigations show that the use of 3D vehicle models is an appropriate and meaningful way of assessing 3D evenness data gathered by modern road mapping systems.

  7. Multi-view and 3D deformable part models.

    Science.gov (United States)

    Pepik, Bojan; Stark, Michael; Gehler, Peter; Schiele, Bernt

    2015-11-01

    As objects are inherently 3D, they have been modeled in 3D in the early days of computer vision. Due to the ambiguities arising from mapping 2D features to 3D models, 3D object representations have been neglected and 2D feature-based models are the predominant paradigm in object detection nowadays. While such models have achieved outstanding bounding box detection performance, they come with limited expressiveness, as they are clearly limited in their capability of reasoning about 3D shape or viewpoints. In this work, we bring the worlds of 3D and 2D object representations closer, by building an object detector which leverages the expressive power of 3D object representations while at the same time can be robustly matched to image evidence. To that end, we gradually extend the successful deformable part model [1] to include viewpoint information and part-level 3D geometry information, resulting in several different models with different level of expressiveness. We end up with a 3D object model, consisting of multiple object parts represented in 3D and a continuous appearance model. We experimentally verify that our models, while providing richer object hypotheses than the 2D object models, provide consistently better joint object localization and viewpoint estimation than the state-of-the-art multi-view and 3D object detectors on various benchmarks (KITTI [2] , 3D object classes [3] , Pascal3D+ [4] , Pascal VOC 2007 [5] , EPFL multi-view cars[6] ).

  8. 3D-GNOME: an integrated web service for structural modeling of the 3D genome.

    Science.gov (United States)

    Szalaj, Przemyslaw; Michalski, Paul J; Wróblewski, Przemysław; Tang, Zhonghui; Kadlof, Michal; Mazzocco, Giovanni; Ruan, Yijun; Plewczynski, Dariusz

    2016-07-08

    Recent advances in high-throughput chromosome conformation capture (3C) technology, such as Hi-C and ChIA-PET, have demonstrated the importance of 3D genome organization in development, cell differentiation and transcriptional regulation. There is now a widespread need for computational tools to generate and analyze 3D structural models from 3C data. Here we introduce our 3D GeNOme Modeling Engine (3D-GNOME), a web service which generates 3D structures from 3C data and provides tools to visually inspect and annotate the resulting structures, in addition to a variety of statistical plots and heatmaps which characterize the selected genomic region. Users submit a bedpe (paired-end BED format) file containing the locations and strengths of long range contact points, and 3D-GNOME simulates the structure and provides a convenient user interface for further analysis. Alternatively, a user may generate structures using published ChIA-PET data for the GM12878 cell line by simply specifying a genomic region of interest. 3D-GNOME is freely available at http://3dgnome.cent.uw.edu.pl/.

  9. Building 3D models with modo 701

    CERN Document Server

    García, Juan Jiménez

    2013-01-01

    The book will focus on creating a sample application throughout the book, building gradually from chapter to chapter.If you are new to the 3D world, this is the key to getting started with a modern software in the modern visualization industry. Only minimal previous knowledge is needed.If you have some previous knowledge about 3D content creation, you will find useful tricks that will differentiate the learning experience from a typical user manual from this, a practical guide concerning the most common problems and situations and how to solve them.

  10. Micromechanics of hierarchical materials

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon, Jr.

    2012-01-01

    A short overview of micromechanical models of hierarchical materials (hybrid composites, biomaterials, fractal materials, etc.) is given. Several examples of the modeling of strength and damage in hierarchical materials are summarized, among them, 3D FE model of hybrid composites...... with nanoengineered matrix, fiber bundle model of UD composites with hierarchically clustered fibers and 3D multilevel model of wood considered as a gradient, cellular material with layered composite cell walls. The main areas of research in micromechanics of hierarchical materials are identified, among them......, the investigations of the effects of load redistribution between reinforcing elements at different scale levels, of the possibilities to control different material properties and to ensure synergy of strengthening effects at different scale levels and using the nanoreinforcement effects. The main future directions...

  11. Using dissipative particle dynamics to model micromechanics of responsive hydrogels

    Science.gov (United States)

    Alexeev, Alexander; Nikolov, Svetoslav; Fernandez de Las Nieves, Alberto

    2015-03-01

    The ability of responsive hydrogels to undergo complex and reversible shape transformations in response to external stimuli such as temperature, magnetic/electric fields, pH levels, and light intensity has made them the material of choice for tissue scaffolding, drug delivery, bio-adhesive, bio-sensing, and micro-sorting applications. The complex micromechanics and kinetics of these responsive networks however, currently hinders developments in the aforementioned areas. In order to better understand the mechanical properties of these systems and how they change during the volume transition we have developed a dissipative particle dynamics (DPD) model for responsive polymer networks. We use this model to examine the impact of the Flory-Huggins parameter on the bulk and shear moduli. In this fashion we evaluate how environmental factors can affect the micromechanical properties of these networks. Support from NSF CAREER Award (DMR-1255288) is gratefully acknowledged.

  12. A 3D mechanistic model for brittle materials containing evolving flaw distributions under dynamic multiaxial loading

    Science.gov (United States)

    Hu, Guangli; Liu, Junwei; Graham-Brady, Lori; Ramesh, K. T.

    2015-05-01

    We present a validated fully 3D mechanism-based micromechanical constitutive model for brittle solids under dynamic multiaxial loading conditions. Flaw statistics are explicitly incorporated through a defect density, and evolving flaw distributions in both orientation and size. Interactions among cracks are modeled by means of a crack-matrix-effective-medium approach. A tensorial damage parameter is defined based upon the crack length and orientation development under local effective stress fields. At low confining stresses, the wing-cracking mechanism dominates, leading to the degradation of the modulus and peak strength of the material, whereas at high enough confining stresses, the cracking mechanism is completely shut-down and dislocation mechanisms become dominant. The model handles general multiaxial stress states, accounts for evolving internal variables in the form of evolving flaw size and orientation distributions, includes evolving anisotropic damage and irreversible damage strains in a thermodynamically consistent fashion, incorporates rate-dependence through the micromechanics, and includes dynamic bulking based on independent experimental data. Simulation results are discussed and compared with experimental results on one specific structural ceramic, aluminum nitride. We demonstrate that this 3D constitutive model is capable of capturing the general constitutive response of structural ceramics.

  13. A 3-D shape model of Interamnia

    Science.gov (United States)

    Sato, Isao

    2015-08-01

    A 3-D shape model of the sixth largest of the main belt asteroids, (704) Interamnia, is presented. The model is reproduced from its two stellar occultation observations and six lightcurves between 1969 and 2011. The first stellar occultation was the occultation of TYC 234500183 on 1996 December 17 observed from 13 sites in the USA. An elliptical cross section of (344.6±9.6km)×(306.2±9.1km), for position angle P=73.4±12.5 was fitted. The lightcurve around the occultation shows that the peak-to-peak amplitude was 0.04 mag. and the occultation phase was just before the minimum. The second stellar occultation was the occultation of HIP 036189 on 2003 March 23 observed from 39 sites in Japan and Hawaii. An elliptical cross section of (349.8±0.9km)×(303.7±1.7km), for position angle P=86.0±1.1 was fitted. A companion of 8.5 mag. of the occulted star was discovered whose separation is 12±2 mas (milli-arcseconds), P=148±11 . A combined analysis of rotational lightcurves and occultation chords can return more information than can be obtained with either technique alone. From follow-up photometric observations of the asteroid between 2003 and 2011, its rotation period is determined to be 8.728967167±0.00000007 hours, which is accurate enough to fix the rotation phases at other occultation events. The derived north pole is λ2000=259±8, β2000=-50±5 (retrograde rotation); the lengths of the three principal axes are 2a=361.8±2.8km, 2b=324.4±5.0km, 2c=297.3±3.5km, and the mean diameter is D=326.8±3.0km. Supposing the mass of Interamnia as (3.5±0.9)×10-11 solar masses, the density is then ρ=3.8±1.0 g cm-3.

  14. Development of 3D statistical mandible models for cephalometric measurements

    OpenAIRE

    2012-01-01

    Purpose The aim of this study was to provide sex-matched three-dimensional (3D) statistical shape models of the mandible, which would provide cephalometric parameters for 3D treatment planning and cephalometric measurements in orthognathic surgery. Materials and Methods The subjects used to create the 3D shape models of the mandible included 23 males and 23 females. The mandibles were segmented semi-automatically from 3D facial CT images. Each individual mandible shape was reconstructed as a ...

  15. 3D Modeling Techniques for Print and Digital Media

    Science.gov (United States)

    Stephens, Megan Ashley

    In developing my thesis, I looked to gain skills using ZBrush to create 3D models, 3D scanning, and 3D printing. The models created compared the hearts of several vertebrates and were intended for students attending Comparative Vertebrate Anatomy. I used several resources to create a model of the human heart and was able to work from life while creating heart models from other vertebrates. I successfully learned ZBrush and 3D scanning, and successfully printed 3D heart models. ZBrush allowed me to create several intricate models for use in both animation and print media. The 3D scanning technique did not fit my needs for the project, but may be of use for later projects. I was able to 3D print using two different techniques as well.

  16. Integrating 3D modeling, photogrammetry and design

    CERN Document Server

    Foster, Shaun

    2014-01-01

    This book looks at the convergent nature of technology and its relationship to the field of photogrammetry and 3D design. This is a facet of a broader discussion of the nature of technology itself and the relationship of technology to art, as well as an examination of the educational process. In the field of technology-influenced design-based education it is natural to push for advanced technology, yet within a larger institution the constraints of budget and adherence to tradition must be accepted. These opposing forces create a natural balance; in some cases constraints lead to greater creat

  17. 3D modeling of metallic grain growth

    Energy Technology Data Exchange (ETDEWEB)

    George, D.; Carlson, N.; Gammel, J.T.; Kuprat, A.

    1999-06-01

    This paper will describe simulating metallic grain growth using the Gradient Weighted Moving Finite Elements code, GRAIN3D. The authors also describe the set of mesh topology change operations developed to respond to changes in the physical topology such as the collapse of grains and to maintain uniform calculational mesh quality. Validation of the method is demonstrated by comparison to analytic calculations. The authors present results of multigrain simulations where grain boundaries evolve by mean curvature motion and include results which incorporate grain boundary orientation dependence.

  18. 3D facial geometric features for constrained local model

    NARCIS (Netherlands)

    Cheng, Shiyang; Zafeiriou, Stefanos; Asthana, Akshay; Pantic, Maja

    2014-01-01

    We propose a 3D Constrained Local Model framework for deformable face alignment in depth image. Our framework exploits the intrinsic 3D geometric information in depth data by utilizing robust histogram-based 3D geometric features that are based on normal vectors. In addition, we demonstrate the fusi

  19. 3-D numerical modelling of flow around a groin

    DEFF Research Database (Denmark)

    Miller, R.; Roulund, A.; Sumer, B. Mutlu

    2003-01-01

    A 3-D flow code, EllipSys3D, has been implemented to simulate the 3-D flow around a groin in steady current. The k  turbulence model has been used for closure. Two kinds of groins are considered: (1) A vertical-wall groin, and (2) A groin with a side slope. Steady-flow simulations were conducted...

  20. 3D modeling based on CityEngine

    Science.gov (United States)

    Jia, Guangyin; Liao, Kaiju

    2017-03-01

    Currently, there are many 3D modeling softwares, like 3DMAX, AUTOCAD, and more populous BIM softwares represented by REVIT. CityEngine modeling software introduced in this paper can fully utilize the existing GIS data and combine other built models to make 3D modeling on internal and external part of buildings in a rapid and batch manner, so as to improve the 3D modeling efficiency.

  1. APPLICATION OF 3D MODELING IN 3D PRINTING FOR THE LOWER JAW RECONSTRUCTION

    Directory of Open Access Journals (Sweden)

    Yu. Yu. Dikov

    2015-01-01

    Full Text Available Aim of study: improvement of functional and aesthetic results of microsurgery reconstructions of the lower jaw due to the use of the methodology of 3D modeling and 3D printing. Application of this methodology has been demonstrated on the example of treatment of 4 patients with locally distributed tumors of the mouth cavity, who underwent excision of the tumor with simultaneous reconstruction of the lower jaw with revascularized fibular graft.Before, one patient has already undergo segmental resection of the lower jaw with the defect replacement with the avascular ileac graft and a reconstruction plate. Then, a relapse of the disease and lysis of the graft has developed with him. Modeling of the graft according to the shape of the lower jaw was performed by making osteotomies of the bone part of the graft using three-dimensional virtual models created by computed tomography data. Then these 3D models were printed with a 3D printer of plastic with the scale of 1:1 with the fused deposition modeling (FDM technology and were used during the surgery in the course of modeling of the graft. Sterilizing of the plastic model was performed in the formalin chamber.This methodology allowed more specific reconstruction of the resected fragment of the lower jaw and get better functional and aesthetic results and prepare patients to further dental rehabilitation. Advantages of this methodology are the possibility of simultaneous performance of stages of reconstruction and resection and shortening of the time of surgery.

  2. 3D tumor models: history, advances and future perspectives.

    Science.gov (United States)

    Benien, Parul; Swami, Archana

    2014-05-01

    Evaluation of cancer therapeutics by utilizing 3D tumor models, before clinical studies, could be more advantageous than conventional 2D tumor models (monolayer cultures). The 3D systems mimic the tumor microenvironment more closely than 2D systems. The following review discusses the various 3D tumor models present today with the advantages and limitations of each. 3D tumor models replicate the elements of a tumor microenvironment such as hypoxia, necrosis, angiogenesis and cell adhesion. The review introduces application of techniques such as microfluidics, imaging and tissue engineering to improve the 3D tumor models. Despite their tremendous potential to better screen chemotherapeutics, 3D tumor models still have a long way to go before they are used commonly as in vitro tumor models in pharmaceutical industrial research.

  3. From medical imaging data to 3D printed anatomical models.

    Science.gov (United States)

    Bücking, Thore M; Hill, Emma R; Robertson, James L; Maneas, Efthymios; Plumb, Andrew A; Nikitichev, Daniil I

    2017-01-01

    Anatomical models are important training and teaching tools in the clinical environment and are routinely used in medical imaging research. Advances in segmentation algorithms and increased availability of three-dimensional (3D) printers have made it possible to create cost-efficient patient-specific models without expert knowledge. We introduce a general workflow that can be used to convert volumetric medical imaging data (as generated by Computer Tomography (CT)) to 3D printed physical models. This process is broken up into three steps: image segmentation, mesh refinement and 3D printing. To lower the barrier to entry and provide the best options when aiming to 3D print an anatomical model from medical images, we provide an overview of relevant free and open-source image segmentation tools as well as 3D printing technologies. We demonstrate the utility of this streamlined workflow by creating models of ribs, liver, and lung using a Fused Deposition Modelling 3D printer.

  4. Life in 3D is never flat: 3D models to optimise drug delivery.

    Science.gov (United States)

    Fitzgerald, Kathleen A; Malhotra, Meenakshi; Curtin, Caroline M; O' Brien, Fergal J; O' Driscoll, Caitriona M

    2015-10-10

    The development of safe, effective and patient-acceptable drug products is an expensive and lengthy process and the risk of failure at different stages of the development life-cycle is high. Improved biopharmaceutical tools which are robust, easy to use and accurately predict the in vivo response are urgently required to help address these issues. In this review the advantages and challenges of in vitro 3D versus 2D cell culture models will be discussed in terms of evaluating new drug products at the pre-clinical development stage. Examples of models with a 3D architecture including scaffolds, cell-derived matrices, multicellular spheroids and biochips will be described. The ability to simulate the microenvironment of tumours and vital organs including the liver, kidney, heart and intestine which have major impact on drug absorption, distribution, metabolism and toxicity will be evaluated. Examples of the application of 3D models including a role in formulation development, pharmacokinetic profiling and toxicity testing will be critically assessed. Although utilisation of 3D cell culture models in the field of drug delivery is still in its infancy, the area is attracting high levels of interest and is likely to become a significant in vitro tool to assist in drug product development thus reducing the requirement for unnecessary animal studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Development of 3D statistical mandible models for cephalometric measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Goo; Yi, Won Jin; Hwang, Soon Jung; Choi, Soon Chul; Lee, Sam Sun; Heo, Min Suk; Huh, Kyung Hoe; Kim, Tae Il [School of Dentistry, Seoul National University, Seoul (Korea, Republic of); Hong, Helen; Yoo, Ji Hyun [Division of Multimedia Engineering, Seoul Women' s University, Seoul (Korea, Republic of)

    2012-09-15

    The aim of this study was to provide sex-matched three-dimensional (3D) statistical shape models of the mandible, which would provide cephalometric parameters for 3D treatment planning and cephalometric measurements in orthognathic surgery. The subjects used to create the 3D shape models of the mandible included 23 males and 23 females. The mandibles were segmented semi-automatically from 3D facial CT images. Each individual mandible shape was reconstructed as a 3D surface model, which was parameterized to establish correspondence between different individual surfaces. The principal component analysis (PCA) applied to all mandible shapes produced a mean model and characteristic models of variation. The cephalometric parameters were measured directly from the mean models to evaluate the 3D shape models. The means of the measured parameters were compared with those from other conventional studies. The male and female 3D statistical mean models were developed from 23 individual mandibles, respectively. The male and female characteristic shapes of variation produced by PCA showed a large variability included in the individual mandibles. The cephalometric measurements from the developed models were very close to those from some conventional studies. We described the construction of 3D mandibular shape models and presented the application of the 3D mandibular template in cephalometric measurements. Optimal reference models determined from variations produced by PCA could be used for craniofacial patients with various types of skeletal shape.

  6. Micromechanisms of damage in unidirectional fiber reinforced composites

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Brøndsted, Povl

    2009-01-01

    Numerical micromechanical investigations of the mechanical behavior and damage evolution of glass fiber reinforced composites are presented. A program code for the automatic generation of 3D micromechanical unit cell models of composites with damageable elements is developed, and used in the nume...

  7. Micromechanical modeling of unidirectional composites with uneven interfacial strengths

    DEFF Research Database (Denmark)

    Ashouri Vajari, Danial; Legarth, Brian Nyvang; Niordson, Christian Frithiof

    2013-01-01

    Composite materials under loads normal to the fiber orientation often fail due to debonding between fibers and matrix. In this paper a micromechanical model is developed to study the interfacial and geometrical effects in fiber-reinforced composites using generalized plane strain by means......, a trapezoidal cohesive zone model is used. A parametric study is carried out to evaluate the influence of the interfacial properties, fiber position and fiber volume fraction on the overall stressestrain response as well as the end-crack opening displacement and the opening crack angle. All the results...

  8. Simple micromechanical model of protein crystals for their mechanical characterizations

    Directory of Open Access Journals (Sweden)

    Na S.

    2010-06-01

    Full Text Available Proteins have been known to perform the excellent mechanical functions and exhibit the remarkable mechanical properties such as high fracture toughness in spider silk protein [1]. This indicates that the mechanical characterization of protein molecules and/or crystals is very essential to understand such remarkable mechanical function of protein molecules. In this study, for gaining insight into mechanical behavior of protein crystals, we developed the micromechanical model by using the empirical potential field prescribed to alpha carbon atoms of a protein crystal in a unit cell. We consider the simple protein crystals for their mechanical behavior under tensile loading to be compared with full atomic models

  9. AUTOMATIC MESH GENERATION OF 3-D GEOMETRIC MODELS

    Institute of Scientific and Technical Information of China (English)

    刘剑飞

    2003-01-01

    In this paper the presentation of the ball-packing method is reviewed,and a scheme to generate mesh for complex 3-D geometric models is given,which consists of 4 steps:(1)create nodes in 3-D models by ball-packing method,(2)connect nodes to generate mesh by 3-D Delaunay triangulation,(3)retrieve the boundary of the model after Delaunay triangulation,(4)improve the mesh.

  10. Business Models for Future Networked 3D Services

    OpenAIRE

    Bøhler, Marianne

    2011-01-01

    3-Dimensional (3D) technology has seen an increasingly widespread use over the last years, although the concept of 3D has been around for many years. Large studio movies being released in 3D and the development of 3DTVs and 3D games are the major reasons for its increasing popularity. The purpose of this thesis is to specify future collaboration space services based on the use of autostereoscopic 3D technology and propose possible business models. The collaboration spaces are geographically s...

  11. Statistical Model of the 3-D Braided Composites Strength

    Institute of Scientific and Technical Information of China (English)

    XIAO Laiyuan; ZUO Weiwei; CAI Ganwei; LIAO Daoxun

    2007-01-01

    Based on the statistical model for the tensile statistical strength of unidirectional composite materials and the stress analysis of 3-D braided composites, a new method is proposed to calculate the tensile statistical strength of the 3-D braided composites. With this method, the strength of 3-D braided composites can be calculated with very large accuracy, and the statistical parameters of 3-D braided composites can be determined. The numerical result shows that the tensile statistical strength of 3-D braided composites can be predicted using this method.

  12. Comparing a quasi-3D to a full 3D nearshore circulation model: SHORECIRC and ROMS

    Science.gov (United States)

    Haas, K.A.; Warner, J.C.

    2009-01-01

    Predictions of nearshore and surf zone processes are important for determining coastal circulation, impacts of storms, navigation, and recreational safety. Numerical modeling of these systems facilitates advancements in our understanding of coastal changes and can provide predictive capabilities for resource managers. There exists many nearshore coastal circulation models, however they are mostly limited or typically only applied as depth integrated models. SHORECIRC is an established surf zone circulation model that is quasi-3D to allow the effect of the variability in the vertical structure of the currents while maintaining the computational advantage of a 2DH model. Here we compare SHORECIRC to ROMS, a fully 3D ocean circulation model which now includes a three dimensional formulation for the wave-driven flows. We compare the models with three different test applications for: (i) spectral waves approaching a plane beach with an oblique angle of incidence; (ii) monochromatic waves driving longshore currents in a laboratory basin; and (iii) monochromatic waves on a barred beach with rip channels in a laboratory basin. Results identify that the models are very similar for the depth integrated flows and qualitatively consistent for the vertically varying components. The differences are primarily the result of the vertically varying radiation stress utilized by ROMS and the utilization of long wave theory for the radiation stress formulation in vertical varying momentum balance by SHORECIRC. The quasi-3D model is faster, however the applicability of the fully 3D model allows it to extend over a broader range of processes, temporal, and spatial scales. ?? 2008 Elsevier Ltd.

  13. Vel-IO 3D: A tool for 3D velocity model construction, optimization and time-depth conversion in 3D geological modeling workflow

    Science.gov (United States)

    Maesano, Francesco E.; D'Ambrogi, Chiara

    2017-02-01

    We present Vel-IO 3D, a tool for 3D velocity model creation and time-depth conversion, as part of a workflow for 3D model building. The workflow addresses the management of large subsurface dataset, mainly seismic lines and well logs, and the construction of a 3D velocity model able to describe the variation of the velocity parameters related to strong facies and thickness variability and to high structural complexity. Although it is applicable in many geological contexts (e.g. foreland basins, large intermountain basins), it is particularly suitable in wide flat regions, where subsurface structures have no surface expression. The Vel-IO 3D tool is composed by three scripts, written in Python 2.7.11, that automate i) the 3D instantaneous velocity model building, ii) the velocity model optimization, iii) the time-depth conversion. They determine a 3D geological model that is consistent with the primary geological constraints (e.g. depth of the markers on wells). The proposed workflow and the Vel-IO 3D tool have been tested, during the EU funded Project GeoMol, by the construction of the 3D geological model of a flat region, 5700 km2 in area, located in the central part of the Po Plain. The final 3D model showed the efficiency of the workflow and Vel-IO 3D tool in the management of large amount of data both in time and depth domain. A 4 layer-cake velocity model has been applied to a several thousand (5000-13,000 m) thick succession, with 15 horizons from Triassic up to Pleistocene, complicated by a Mesozoic extensional tectonics and by buried thrusts related to Southern Alps and Northern Apennines.

  14. a Fast Method for Measuring the Similarity Between 3d Model and 3d Point Cloud

    Science.gov (United States)

    Zhang, Zongliang; Li, Jonathan; Li, Xin; Lin, Yangbin; Zhang, Shanxin; Wang, Cheng

    2016-06-01

    This paper proposes a fast method for measuring the partial Similarity between 3D Model and 3D point Cloud (SimMC). It is crucial to measure SimMC for many point cloud-related applications such as 3D object retrieval and inverse procedural modelling. In our proposed method, the surface area of model and the Distance from Model to point Cloud (DistMC) are exploited as measurements to calculate SimMC. Here, DistMC is defined as the weighted distance of the distances between points sampled from model and point cloud. Similarly, Distance from point Cloud to Model (DistCM) is defined as the average distance of the distances between points in point cloud and model. In order to reduce huge computational burdens brought by calculation of DistCM in some traditional methods, we define SimMC as the ratio of weighted surface area of model to DistMC. Compared to those traditional SimMC measuring methods that are only able to measure global similarity, our method is capable of measuring partial similarity by employing distance-weighted strategy. Moreover, our method is able to be faster than other partial similarity assessment methods. We demonstrate the superiority of our method both on synthetic data and laser scanning data.

  15. 3D scene modeling from multiple range views

    Science.gov (United States)

    Sequeira, Vitor; Goncalves, Joao G. M.; Ribeiro, M. Isabel

    1995-09-01

    This paper presents a new 3D scene analysis system that automatically reconstructs the 3D geometric model of real-world scenes from multiple range images acquired by a laser range finder on board of a mobile robot. The reconstruction is achieved through an integrated procedure including range data acquisition, geometrical feature extraction, registration, and integration of multiple views. Different descriptions of the final 3D scene model are obtained: a polygonal triangular mesh, a surface description in terms of planar and biquadratics surfaces, and a 3D boundary representation. Relevant experimental results from the complete 3D scene modeling are presented. Direct applications of this technique include 3D reconstruction and/or update of architectual or industrial plans into a CAD model, design verification of buildings, navigation of autonomous robots, and input to virtual reality systems.

  16. [Potentials of 3D-modeling in reconstructive orbital surgery].

    Science.gov (United States)

    Butsan, S B; Khokhlachev, S B; Ĭigitaliev, Sh N; Zaiakin, Ia A

    2012-01-01

    A technique of bone reconstructive surgery of orbitofrontonasomalar region using 3D-modeling based on multispiral computer tomography data is presented. The efficacy of intraoperative templates created using 3D-modeling was showed for harvesting and modeling of bone calvarial autografts. The steps of reconstructive procedure are explained in details for repair of medial and inferior orbital fractures.

  17. A 3D Geometry Model Search Engine to Support Learning

    Science.gov (United States)

    Tam, Gary K. L.; Lau, Rynson W. H.; Zhao, Jianmin

    2009-01-01

    Due to the popularity of 3D graphics in animation and games, usage of 3D geometry deformable models increases dramatically. Despite their growing importance, these models are difficult and time consuming to build. A distance learning system for the construction of these models could greatly facilitate students to learn and practice at different…

  18. 3-D Radiative Transfer Modeling of Structured Winds in Massive Hot Stars with Wind3D

    CERN Document Server

    Lobel, A; Blomme, R

    2010-01-01

    We develop 3-D models of the structured winds of massive hot stars with the Wind3D radiative transfer (RT) code. We investigate the physical properties of large-scale structures observed in the wind of the B-type supergiant HD 64760 with detailed line profile fits to Discrete Absorption Components (DACs) and rotational modulations observed with IUE in Si IV {\\lambda}1395. We develop parameterized input models Wind3D with large-scale equatorial wind density- and velocity-structures, or so-called `Co-rotating Interaction Regions' (CIRs) and `Rotational Modulation Regions' (RMRs). The parameterized models offer important advantages for high-performance RT calculations over ab-initio hydrodynamic input models. The acceleration of the input model calculations permits us to simulate and investigate a wide variety of physical conditions in the extended winds of massive hot stars. The new modeling method is very flexible for constraining the dynamic and geometric wind properties of RMRs in HD 64760. We compute that t...

  19. Micromechanics and constitutive modeling of connective soft tissues.

    Science.gov (United States)

    Fallah, A; Ahmadian, M T; Firozbakhsh, K; Aghdam, M M

    2016-07-01

    In this paper, a micromechanical model for connective soft tissues based on the available histological evidences is developed. The proposed model constituents i.e. collagen fibers and ground matrix are considered as hyperelastic materials. The matrix material is assumed to be isotropic Neo-Hookean while the collagen fibers are considered to be transversely isotropic hyperelastic. In order to take into account the effects of tissue structure in lower scales on the macroscopic behavior of tissue, a strain energy density function (SEDF) is developed for collagen fibers based on tissue hierarchical structure. Macroscopic response and properties of tissue are obtained using the numerical homogenization method with the help of ABAQUS software. The periodic boundary conditions and the proposed constitutive models are implemented into ABAQUS using the DISP and the UMAT subroutines, respectively. The existence of the solution and stable material behavior of proposed constitutive model for collagen fibers are investigated based on the poly-convexity condition. Results of the presented micromechanics model for connective tissues are compared and validated with available experimental data. Effects of geometrical and material parameters variation at microscale on macroscopic mechanical behavior of tissues are investigated. The results show that decrease in collagen content of the connective tissues like the tendon due to diseases leads 20% more stretch than healthy tissue under the same load which can results in connective tissue malfunction and hypermobility in joints.

  20. Multi-level spherical moments based 3D model retrieval

    Institute of Scientific and Technical Information of China (English)

    LIU Wei; HE Yuan-jun

    2006-01-01

    In this paper a novel 3D model retrieval method that employs multi-level spherical moment analysis and relies on voxelization and spherical mapping of the 3D models is proposed. For a given polygon-soup 3D model, first a pose normalization step is done to align the model into a canonical coordinate frame so as to define the shape representation with respect to this orientation. Afterward we rasterize its exterior surface into cubical voxel grids, then a series of homocentric spheres with their center superposing the center of the voxel grids cut the voxel grids into several spherical images. Finally moments belonging to each sphere are computed and the moments of all spheres constitute the descriptor of the model. Experiments showed that Euclidean distance based on this kind of feature vector can distinguish different 3D models well and that the 3D model retrieval system based on this arithmetic yields satisfactory performance.

  1. Numerical 3-D Modelling of Overflows

    DEFF Research Database (Denmark)

    Larsen, Torben; Nielsen, L.; Jensen, B.;

    2008-01-01

    The present study uses laboratory experiments to evaluate the reliability of two types of numerical models of sewers systems: - 1-dimensional model based on the extended Saint-Venant equation including the term for curvature of the water surface (the so-called Boussinesq approximation) - 2- and 3...

  2. 3D modeling for the generation of virtual heritage

    Directory of Open Access Journals (Sweden)

    Francisco Díaz Gómez

    2015-10-01

    Full Text Available The present article is focused on the generation of virtual 3D contents from cultural heritage. Its main structure is divided in two well-defined blocks: the first one focused in the generation of 3D models, analyzing the most used technologies of 3D measuring in the cultural heritage, the most important software applications for the management of the 3D models obtained and the generation of the target contents; and a second block for exposing two case studies showing potential of these technologies, previously shown, for approaching the cultural heritage to both the general public and researchers, due to the development of the information and communication technologies.

  3. NASA 3D Models: Cassini Assembly

    Data.gov (United States)

    National Aeronautics and Space Administration — Includes orbiter from CAD models. Accurate (to a fault) except no thermal blanketing is shown (this would cover most of the central structure of the spacecraft)....

  4. Active Shapes for Automatic 3D Modeling of Buildings

    NARCIS (Netherlands)

    Sirmacek, B.; Lindenbergh, R.C.

    2015-01-01

    Recent technological developments help us to acquire high quality 3D measurements of our urban environment. However, these measurements, which come as point clouds or Digital Surface Models (DSM), do not directly give 3D geometrical models of buildings. In addition to that, they are not suitable for

  5. Complex crustal structures: their 3D grav/mag modelling and 3D printing

    Science.gov (United States)

    Götze, Hans-Jürgen; Schmidt, Sabine; Menzel, Peter

    2017-04-01

    Our new techniques for modelling and visualization are user-friendly because they are highly interactive, ideally real-time and topology conserving and can be used for both flat and spherical models in 3D. These are important requirements for joint inversion for gravity and magnetic modelling of fields and their derivatives, constrained by seismic and structural input from independent data sources. A borehole tool for magnetic and gravity modelling will also be introduced. We are already close to satisfying the demand of treating several geophysical methods in a single model for subsurface evaluation purposes and aim now for fulfilling most of the constraints: consistency of modelling results and measurements and geological plausibility as well. For 3D modelling, polyhedrons built by triangles are used. All elements of the gravity and magnetic tensors can be included. In the modelling interface, after geometry changes the effect on the model is quickly updated because only the changed triangles have to be recalculated. Because of the triangular model structure, our approach can handle complex structures very well and flexible (e.g. overhangs of salt domes or plumes). For regional models, the use of spherical geometries and calculations is necessary and available. 3D visualization is performed with a 3D-printer (Ultimaker 2) and gives new insights into even rather complicated Earth subsurface structures. Inversion can either be run over the whole model, but typically it is used in smaller parts of the model, helping to solve local problems and/or proving/disproving local hypotheses. The basic principles behind this interactive approach are high performance optimized algorithms (CMA-ES: Covariance-matrix-adoption-evolution-strategy). The efficiency of the algorithm is rather good in terms of stable convergence due to topological model validity. Potential field modelling is always influenced by edge effects. To avoid this, a simple but very robust method has been

  6. Numerical modeling of 3-D terrain effect on MT field

    Institute of Scientific and Technical Information of China (English)

    徐世浙; 阮百尧; 周辉; 陈乐寿; 徐师文

    1997-01-01

    Using the boundary element method, the numerical modeling problem of three-dimensional terrain effect on magnetotelluric (MT) field is solved. This modeling technique can be run on PC in the case of adopting special net division. The result of modeling test for 2-D terrain by this modeling technique is basically coincident with that by 2-D modeling technique, but there is a great difference between the results of 3-D and 2-D modeling for 3-D terrain.

  7. An Automated 3d Indoor Topological Navigation Network Modelling

    Science.gov (United States)

    Jamali, A.; Rahman, A. A.; Boguslawski, P.; Gold, C. M.

    2015-10-01

    Indoor navigation is important for various applications such as disaster management and safety analysis. In the last decade, indoor environment has been a focus of wide research; that includes developing techniques for acquiring indoor data (e.g. Terrestrial laser scanning), 3D indoor modelling and 3D indoor navigation models. In this paper, an automated 3D topological indoor network generated from inaccurate 3D building models is proposed. In a normal scenario, 3D indoor navigation network derivation needs accurate 3D models with no errors (e.g. gap, intersect) and two cells (e.g. rooms, corridors) should touch each other to build their connections. The presented 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. For reducing time and cost of indoor building data acquisition process, Trimble LaserAce 1000 as surveying instrument is used. The modelling results were validated against an accurate geometry of indoor building environment which was acquired using Trimble M3 total station.

  8. Several Strategies on 3D Modeling of Manmade Objects

    Institute of Scientific and Technical Information of China (English)

    SHAO Zhenfeng; LI Deren; CHENG Qimin

    2004-01-01

    Several different strategies of 3D modeling are adopted for different kinds of manmade objects. Firstly, for those manmade objects with regular structure, if 2D information is available and elevation information can be obtained conveniently, then 3D modeling of them can be executed directly. Secondly, for those manmade objects with complicated structure comparatively and related stereo images pair can be acquired, in the light of topology-based 3D model we finish 3D modeling of them by integrating automatic and semi-automatic object extraction. Thirdly, for the most complicated objects whose geometrical information cannot be got from stereo images pair completely, we turn to topological 3D model based on CAD.

  9. An Automatic Registration Algorithm for 3D Maxillofacial Model

    Science.gov (United States)

    Qiu, Luwen; Zhou, Zhongwei; Guo, Jixiang; Lv, Jiancheng

    2016-09-01

    3D image registration aims at aligning two 3D data sets in a common coordinate system, which has been widely used in computer vision, pattern recognition and computer assisted surgery. One challenging problem in 3D registration is that point-wise correspondences between two point sets are often unknown apriori. In this work, we develop an automatic algorithm for 3D maxillofacial models registration including facial surface model and skull model. Our proposed registration algorithm can achieve a good alignment result between partial and whole maxillofacial model in spite of ambiguous matching, which has a potential application in the oral and maxillofacial reparative and reconstructive surgery. The proposed algorithm includes three steps: (1) 3D-SIFT features extraction and FPFH descriptors construction; (2) feature matching using SAC-IA; (3) coarse rigid alignment and refinement by ICP. Experiments on facial surfaces and mandible skull models demonstrate the efficiency and robustness of our algorithm.

  10. Highway 3D model from image and lidar data

    Science.gov (United States)

    Chen, Jinfeng; Chu, Henry; Sun, Xiaoduan

    2014-05-01

    We present a new method of highway 3-D model construction developed based on feature extraction in highway images and LIDAR data. We describe the processing road coordinate data that connect the image frames to the coordinates of the elevation data. Image processing methods are used to extract sky, road, and ground regions as well as significant objects (such as signs and building fronts) in the roadside for the 3D model. LIDAR data are interpolated and processed to extract the road lanes as well as other features such as trees, ditches, and elevated objects to form the 3D model. 3D geometry reasoning is used to match the image features to the 3D model. Results from successive frames are integrated to improve the final model.

  11. EDGE REMOVAL OF 3D POLYGONAL MODEL USING MAYA API

    Directory of Open Access Journals (Sweden)

    SAMEER ARORA

    2010-09-01

    Full Text Available In various applications of computer graphics, 3D polygonal modeling is used, which consists millions of triangular polygon. In this polygon attributes – vertices, edges and faces’ details are to be stored. In order to control the processing time, storing space, and transfer speed, it is often required to reduce the information ofthese polygonal 3D models. In this paper an effort is made to reduce the number of edges. There are various methods to reduce faces and edges of these 3D models. A C++ dynamic link library as Maya Plugin has been created to remove number of edges of 3D triangular polygon model using the Quadric Error Metrics (QEM in MAYA v2010 x64 API. QEM allows fast and accurate geometric simplification of 3D models.

  12. Micromechanical models for graded composite materials

    DEFF Research Database (Denmark)

    Reiter, T; Dvorak, G.J.; Tvergaard, Viggo

    1997-01-01

    Elastic response of selected plane-array models of graded composite microstructures is examined under both uniform and linearly varying boundary tractions and displacements, by means of detailed finite element studies of large domains containing up to several thousand inclusions. Models consisting...... fields are predicted by Mori-Tanaka estimates. On the other hand, the response of graded materials with a skeletal microstructure in a wide transition zone between clearly defined matrix phases is better approximated by the self-consistent estimates. Certain exceptions are noted for loading by overall...

  13. Beyond 3D culture models of cancer

    Science.gov (United States)

    Tanner, Kandice; Gottesman, Michael M.

    2016-01-01

    The mechanisms underlying the spatiotemporal evolution of tumor ecosystems present a challenge in evaluating drug efficacy. In this Perspective, we address the use of three-dimensional in vitro culture models to delineate the dynamic interplay between the tumor and the host microenvironment in an effort to attain realistic platforms for assessing pharmaceutical efficacy in patients. PMID:25877888

  14. RELAP5-3D Compressor Model

    Energy Technology Data Exchange (ETDEWEB)

    James E. Fisher; Cliff B. Davis; Walter L. Weaver

    2005-06-01

    A compressor model has been implemented in the RELAP5-3D© code. The model is similar to that of the existing pump model, and performs the same function on a gas as the pump performs on a single-phase or two-phase fluid. The compressor component consists of an inlet junction and a control volume, and optionally, an outlet junction. This feature permits cascading compressor components in series. The equations describing the physics of the compressor are derived from first principles. These equations are used to obtain the head, the torque, and the energy dissipation. Compressor performance is specified using a map, specific to the design of the machine, in terms of the ratio of outlet-to-inlet total (or stagnation) pressure and adiabatic efficiency as functions of rotational velocity and flow rate. The input quantities are specified in terms of dimensionless variables, which are corrected to stagnation density and stagnation sound speed. A small correction was formulated for the input of efficiency to account for the error introduced by assumption of constant density when integrating the momentum equation. Comparison of the results of steady-state operation of the compressor model to those of the MIT design calculation showed excellent agreement for both pressure ratio and power.

  15. A micromechanics model for bread dough

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, M. A. P; Tarleton, E.; Charalambides, M. N.; Williams, J. G. [Imperial College London, Mechanical Engineering Department, London SW7 2AZ (United Kingdom)

    2015-01-22

    The mechanical behaviour of dough and gluten was studied in an effort to investigate whether bread dough can be treated as a two phase (starch and gluten) composite material. The dough and gluten show rate dependent behaviour under tension, compression and shear tests, and non-linear unloading-reloading curves under cyclic compression tests. There is evidence from cryo-Scanning Electron Microscopy (SEM) that damage in the form of debonding between starch and gluten occurs when the sample is stretched. A composite finite element model was developed using starch as filler and gluten as matrix. The interaction between the starch and gluten was modelled as cohesive contact. The finite element analysis predictions agree with trends seen in experimental test data on dough and gluten, further evidence that debonding of starch and gluten is a possible damage mechanism in dough.

  16. A micromechanics model for bread dough

    Science.gov (United States)

    Mohammed, M. A. P.; Tarleton, E.; Charalambides, M. N.; Williams, J. G.

    2015-01-01

    The mechanical behaviour of dough and gluten was studied in an effort to investigate whether bread dough can be treated as a two phase (starch and gluten) composite material. The dough and gluten show rate dependent behaviour under tension, compression and shear tests, and non-linear unloading-reloading curves under cyclic compression tests. There is evidence from cryo-Scanning Electron Microscopy (SEM) that damage in the form of debonding between starch and gluten occurs when the sample is stretched. A composite finite element model was developed using starch as filler and gluten as matrix. The interaction between the starch and gluten was modelled as cohesive contact. The finite element analysis predictions agree with trends seen in experimental test data on dough and gluten, further evidence that debonding of starch and gluten is a possible damage mechanism in dough.

  17. Modeling of a PWR using 3D components; Modelado de un PWR mediante componentes 3D

    Energy Technology Data Exchange (ETDEWEB)

    Mesado, C.; Garcia-Fenoll, M.; Miro, R.; Barrachina, T.; Verdu, G.

    2013-07-01

    The simulation of the behavior of the nucleus in nuclear reactors is especially important in the design, operation and safety of the plant. It is such importance that it has been decided to make a model of a nuclear reactor fully 3D. This has been used trailers codes TRACE v5.0 patch 3/PARCS v3.0. In addition, the model has been validated with another model of the same reactor through the attached code basis/PARCS2.7.

  18. Modelling Polymer Deformation during 3D Printing

    Science.gov (United States)

    McIlroy, Claire; Olmsted, Peter

    Three-dimensional printing has the potential to transform manufacturing processes, yet improving the strength of printed parts, to equal that of traditionally-manufactured parts, remains an underlying issue. The fused deposition modelling technique involves melting a thermoplastic, followed by layer-by-layer extrusion to fabricate an object. The key to ensuring strength at the weld between layers is successful inter-diffusion. However, prior to welding, both the extrusion process and the cooling temperature profile can significantly deform the polymer micro-structure and, consequently, how well the polymers are able to ``re-entangle'' across the weld. In particular, polymer alignment in the flow can cause de-bonding of the layers and create defects. We have developed a simple model of the non-isothermal extrusion process to explore the effects that typical printing conditions and material rheology have on the conformation of a polymer melt. In particular, we incorporate both stretch and orientation using the Rolie-Poly constitutive equation to examine the melt structure as it flows through the nozzle, the subsequent alignment with the build plate and the resulting deformation due to the fixed nozzle height, which is typically less than the nozzle radius.

  19. Virtual 3d City Modeling: Techniques and Applications

    Science.gov (United States)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2013-08-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as Building, Tree, Vegetation, and some manmade feature belonging to urban area. There are various terms used for 3D city models such as "Cybertown", "Cybercity", "Virtual City", or "Digital City". 3D city models are basically a computerized or digital model of a city contains the graphic representation of buildings and other objects in 2.5 or 3D. Generally three main Geomatics approach are using for Virtual 3-D City models generation, in first approach, researcher are using Conventional techniques such as Vector Map data, DEM, Aerial images, second approach are based on High resolution satellite images with LASER scanning, In third method, many researcher are using Terrestrial images by using Close Range Photogrammetry with DSM & Texture mapping. We start this paper from the introduction of various Geomatics techniques for 3D City modeling. These techniques divided in to two main categories: one is based on Automation (Automatic, Semi-automatic and Manual methods), and another is Based on Data input techniques (one is Photogrammetry, another is Laser Techniques). After details study of this, finally in short, we are trying to give the conclusions of this study. In the last, we are trying to give the conclusions of this research paper and also giving a short view for justification and analysis, and present trend for 3D City modeling. This paper gives an overview about the Techniques related with "Generation of Virtual 3-D City models using Geomatics Techniques" and the Applications of Virtual 3D City models. Photogrammetry, (Close range, Aerial, Satellite), Lasergrammetry, GPS, or combination of these modern Geomatics techniques play a major role to create a virtual 3-D City model. Each and every techniques and method has some advantages and some drawbacks. Point cloud model is a modern trend for virtual 3-D city model. Photo-realistic, Scalable, Geo-referenced virtual 3

  20. Micromechanical modeling of rate-dependent behavior of Connective tissues.

    Science.gov (United States)

    Fallah, A; Ahmadian, M T; Firozbakhsh, K; Aghdam, M M

    2017-03-07

    In this paper, a constitutive and micromechanical model for prediction of rate-dependent behavior of connective tissues (CTs) is presented. Connective tissues are considered as nonlinear viscoelastic material. The rate-dependent behavior of CTs is incorporated into model using the well-known quasi-linear viscoelasticity (QLV) theory. A planar wavy representative volume element (RVE) is considered based on the tissue microstructure histological evidences. The presented model parameters are identified based on the available experiments in the literature. The presented constitutive model introduced to ABAQUS by means of UMAT subroutine. Results show that, monotonic uniaxial test predictions of the presented model at different strain rates for rat tail tendon (RTT) and human patellar tendon (HPT) are in good agreement with experimental data. Results of incremental stress-relaxation test are also presented to investigate both instantaneous and viscoelastic behavior of connective tissues.

  1. Kongsfjorden-MIKE 3D model

    Science.gov (United States)

    Przyborska, Anna; Kosecki, Szymon; Jakacki, Jaromir

    2014-05-01

    Kongsfjorden is a West Svalbard fjord with a surface area of about 210 km2. It is obvious that the depths of the outer and central basins are influenced by the open sea, under influence of West Spitsbergen Current (WSC), which curry out warm Atlantic water and cold East Spitsbergen Current, while the shallower, inner basin has a large glacial outflow and its maximum depths do not exceed 100 m. Freshwater stored in Spitsbergen glaciers have strong influence on local hydrology and physical fjord conditions. Both, local and shelf conditions have impact on state of the fjord. External forces like tides, velocities at the boundary and atmospheric forces together with sources of cold and dens fresh water in the fjords will give reliable representation of physical conditions in Kongsfjorden. Modeling could help to solve this problem and we have hope that we find answer which one is the most important for local conditions in fjord. Calculations of balances between cold fresh water and warm and salt will provide additional information that could help to answer the main question of the GAME (Growing of the Arctic Marine Ecosystem) project - what is the reaction of physically controlled Arctic marine ecosystem to temperature rise.

  2. Image based 3D city modeling : Comparative study

    Science.gov (United States)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2014-06-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing rapidly for various engineering and non-engineering applications. Generally four main image based approaches were used for virtual 3D city models generation. In first approach, researchers were used Sketch based modeling, second method is Procedural grammar based modeling, third approach is Close range photogrammetry based modeling and fourth approach is mainly based on Computer Vision techniques. SketchUp, CityEngine, Photomodeler and Agisoft Photoscan are the main softwares to represent these approaches respectively. These softwares have different approaches & methods suitable for image based 3D city modeling. Literature study shows that till date, there is no complete such type of comparative study available to create complete 3D city model by using images. This paper gives a comparative assessment of these four image based 3D modeling approaches. This comparative study is mainly based on data acquisition methods, data processing techniques and output 3D model products. For this research work, study area is the campus of civil engineering department, Indian Institute of Technology, Roorkee (India). This 3D campus acts as a prototype for city. This study also explains various governing parameters, factors and work experiences. This research work also gives a brief introduction, strengths and weakness of these four image based techniques. Some personal comment is also given as what can do or what can't do from these softwares. At the last, this study shows; it concluded that, each and every software has some advantages and limitations. Choice of software depends on user requirements of 3D project. For normal visualization project, SketchUp software is a good option. For 3D documentation record, Photomodeler gives good result. For Large city

  3. NoSQL Based 3D City Model Management System

    Science.gov (United States)

    Mao, B.; Harrie, L.; Cao, J.; Wu, Z.; Shen, J.

    2014-04-01

    To manage increasingly complicated 3D city models, a framework based on NoSQL database is proposed in this paper. The framework supports import and export of 3D city model according to international standards such as CityGML, KML/COLLADA and X3D. We also suggest and implement 3D model analysis and visualization in the framework. For city model analysis, 3D geometry data and semantic information (such as name, height, area, price and so on) are stored and processed separately. We use a Map-Reduce method to deal with the 3D geometry data since it is more complex, while the semantic analysis is mainly based on database query operation. For visualization, a multiple 3D city representation structure CityTree is implemented within the framework to support dynamic LODs based on user viewpoint. Also, the proposed framework is easily extensible and supports geoindexes to speed up the querying. Our experimental results show that the proposed 3D city management system can efficiently fulfil the analysis and visualization requirements.

  4. DESIGN OF 3D MODEL OF CUSTOMIZED ANATOMICALLY ADJUSTED IMPLANTS

    OpenAIRE

    Miodrag Manić; Zoran Stamenković; Milorad Mitković; Miloš Stojković; Duncan E.T. Shephard

    2015-01-01

    Design and manufacturing of customized implants is a field that has been rapidly developing in recent years. This paper presents an originally developed method for designing a 3D model of customized anatomically adjusted implants. The method is based upon a CT scan of a bone fracture. A CT scan is used to generate a 3D bone model and a fracture model. Using these scans, an indicated location for placing the implant is recognized and the design of a 3D model of customized implants is made. Wit...

  5. 3D Model Retrieval Based on Semantic and Shape Indexes

    CERN Document Server

    Kassimi, My Abdellah

    2011-01-01

    The size of 3D models used on the web or stored in databases is becoming increasingly high. Then, an efficient method that allows users to find similar 3D objects for a given 3D model query has become necessary. Keywords and the geometry of a 3D model cannot meet the needs of users' retrieval because they do not include the semantic information. In this paper, a new method has been proposed to 3D models retrieval using semantic concepts combined with shape indexes. To obtain these concepts, we use the machine learning methods to label 3D models by k-means algorithm in measures and shape indexes space. Moreover, semantic concepts have been organized and represented by ontology language OWL and spatial relationships are used to disambiguate among models of similar appearance. The SPARQL query language has been used to question the information displayed in this language and to compute the similarity between two 3D models. We interpret our results using the Princeton Shape Benchmark Database and the results show ...

  6. Focus for 3D city models should be on interoperability

    DEFF Research Database (Denmark)

    Bodum, Lars; Kjems, Erik; Jaegly, Marie Michele Helena

    2006-01-01

    3D city models have become a very popular commodity for cities in general. The politicians and/or the administrative management have in the last few years been very active when it comes to investments in dimensionality, and the models come in many different forms and for many specific or non...... of interoperability. Verisimilarity would in this case mean a 3D model with close resemblance to reality and based on modelling principles from CAD and scenes from this, build with focus on photorealism. Interoperability would mean a 3D model that included semantics in form of an object model and an ontology...... that would make it useful for other purposes than visualisation. Time has come to try to change this trend and to convince the municipalities that interoperability and semantics are important issues for the future. It is important for them to see that 3D modelling, mapping and geographic information...

  7. INCREMENTAL MICRO-MECHANICAL MODEL OF PLAIN WOVEN FABRIC

    Institute of Scientific and Technical Information of China (English)

    ZhangYitong; HaoYongjiang; LiCuiyu

    2004-01-01

    Warp yarns and weft yarns of plain woven fabric are the principal axes of material of fabric. They are orthogonal in their original configuration, but are obliquely crisscross in deformed configuration in general. In this paper the expressions of incremental components of strain tensor are derived, the non-linear model of woven fabric is linearized physically and its geometric non-linearity survives. The convenience of determining the total deformation is shown by the choice of the coordinate system of the principal axes of the material, with the convergence of the incremental methods illustrated by examples. This incremental model furnishes a basis for numerical simulations of fabric draping and wrinkling based oll the micro-mechanical model of fabric.

  8. Modeling 3D Objects for Navigation Purposes Using Laser Scanning

    Directory of Open Access Journals (Sweden)

    Cezary Specht

    2016-07-01

    Full Text Available The paper discusses the creation of 3d models and their applications in navigation. It contains a review of available methods and geometric data sources, focusing mostly on terrestrial laser scanning. It presents detailed description, from field survey to numerical elaboration, how to construct accurate model of a typical few storey building as a hypothetical reference in complex building navigation. Hence, the paper presents fields where 3d models are being used and their potential new applications.

  9. Mechanical properties of Composite Engineering Structures by Multivolume Micromechanical Modelling

    Directory of Open Access Journals (Sweden)

    B. Novotný

    2000-01-01

    Full Text Available Engineering structures often consist of elements having the character of a periodically repeated composite structure. A multivolume micromechanical model based on a representative cell division into r1 × r2 × r3 subcells with different elastic material properties has been used in this paper to derive macromechanical characteristics of the composite construction response to applied load and temperature changes. The multivolume method is based on ensuring the equilibrium of the considered volume on an average basis. In the same (average way, the continuity conditions of displacements and tractions at the interfaces between subcells and between neighboring representative elements are imposed, resulting in a homogenization procedure that eliminates the discrete nature of the composite model. The details of the method are shown for the case of a concrete block pavement. A parametric study is presented illustrating the influence of joint thickness, joint filling material properties and the quality of bonding between block and filler elements.

  10. 3D Servicescape Model: Atmospheric Qualities of Virtual Reality Retailing

    Directory of Open Access Journals (Sweden)

    Aasim Munir Dad

    2016-02-01

    Full Text Available The purpose of this paper is to provide a 3D servicescape conceptual model which explores the potential effect of 3D virtual reality retail stores’ environment on shoppers' behaviour. Extensive review of literature within two different domains, namely: servicescape models, and retail atmospherics, was carried out in order to propose a conceptual model. Further, eight detailed interviews were conducted to confirm the stimulus dimension of the conceptual model. A 3D servicescape conceptual model is offered on the basis of stimulus-organism-dimension, which proposes that a 3D virtual reality retail (VRR store environment consists of physical, social, socially symbolic and natural dimensions. These dimensions are proposed to affect shoppers’ behaviour through the mediating variables of emotions (pleasure and arousal. An interrelationship between pleasure and arousal, as mediating variables, is also proposed. This research opens a number of new avenues for further research through the proposed model of shoppers’ behaviour in a VRR store environment. Further, a systematic taxonomy development of VRR store environment is attempted through this proposed model that may prove to be an important step in theory building. A comprehensive 3D service scape model along with a large number of propositions is made to define a 3D VRR store environment.

  11. 3D Image Modelling and Specific Treatments in Orthodontics Domain

    Directory of Open Access Journals (Sweden)

    Dionysis Goularas

    2007-01-01

    Full Text Available In this article, we present a 3D specific dental plaster treatment system for orthodontics. From computer tomography scanner images, we propose first a 3D image modelling and reconstruction method of the Mandible and Maxillary based on an adaptive triangulation allowing management of contours meant for the complex topologies. Secondly, we present two specific treatment methods directly achieved on obtained 3D model allowing the automatic correction for the setting in occlusion of the Mandible and the Maxillary, and the teeth segmentation allowing more specific dental examinations. Finally, these specific treatments are presented via a client/server application with the aim of allowing a telediagnosis and treatment.

  12. A method of 3D modeling and codec

    Institute of Scientific and Technical Information of China (English)

    QI Yue; YANG Shen; CAI Su; HOU Fei; SHEN XuKun; ZHAO QinPing

    2009-01-01

    3D modeling and codec of real objects are hot Issues in the field of virtual reality. In this paper, we propose an automatic registration two range Images method and a cycle based automatic global reg-istration algorithm for rapidly and automatically registering all range Images and constructing a real-istic 3D model. Besides, to meet the requirement of huge data transmission over Internet, we present a 3D mesh encoding/decoding method for encoding geometry, topology and attribute data with high compression ratio and supporting progressive transmission. The research results have already been applied successfully in digital museum.

  13. 3D-model building of the jaw impression

    Science.gov (United States)

    Ahmed, Moumen T.; Yamany, Sameh M.; Hemayed, Elsayed E.; Farag, Aly A.

    1997-03-01

    A novel approach is proposed to obtain a record of the patient's occlusion using computer vision. Data acquisition is obtained using intra-oral video cameras. The technique utilizes shape from shading to extract 3D information from 2D views of the jaw, and a novel technique for 3D data registration using genetic algorithms. The resulting 3D model can be used for diagnosis, treatment planning, and implant purposes. The overall purpose of this research is to develop a model-based vision system for orthodontics to replace traditional approaches. This system will be flexible, accurate, and will reduce the cost of orthodontic treatments.

  14. A 3-D constitutive model for pressure-dependent phase transformation of porous shape memory alloys.

    Science.gov (United States)

    Ashrafi, M J; Arghavani, J; Naghdabadi, R; Sohrabpour, S

    2015-02-01

    Porous shape memory alloys (SMAs) exhibit the interesting characteristics of porous metals together with shape memory effect and pseudo-elasticity of SMAs that make them appropriate for biomedical applications. In this paper, a 3-D phenomenological constitutive model for the pseudo-elastic behavior and shape memory effect of porous SMAs is developed within the framework of irreversible thermodynamics. Comparing to micromechanical and computational models, the proposed model is computationally cost effective and predicts the behavior of porous SMAs under proportional and non-proportional multiaxial loadings. Considering the pressure dependency of phase transformation in porous SMAs, proper internal variables, free energy and limit functions are introduced. With the aim of numerical implementation, time discretization and solution algorithm for the proposed model are also presented. Due to lack of enough experimental data on multiaxial loadings of porous SMAs, we employ a computational simulation method (CSM) together with available experimental data to validate the proposed constitutive model. The method is based on a 3-D finite element model of a representative volume element (RVE) with random pores pattern. Good agreement between the numerical predictions of the model and CSM results is observed for elastic and phase transformation behaviors in various thermomechanical loadings.

  15. Conceptual Development af a 3D Product Configuration Model

    DEFF Research Database (Denmark)

    Skauge, Jørn

    2006-01-01

    Paper. This project deals with 3D product configuration of a digital building element which has been developed as a prototype in cooperation between a product manufacturer and a research institution in Denmark. The project falls within the concept of product modelling which is more and more used...... in the development of IT-systems that support the procedures in companies and in the building industry. In other words, it is a knowledge-based system that helps companies in their daily work. The aim of the project has been to develop and examine conceptual ideas about 3D modelling configurator used in the company......’s production of steel fire sliding doors. The development of the 3D digital model is based on practical rather than theoretical research. The result of the research is a prototype digital 3D model to be presented live....

  16. Animation of 3D Model of Human Head

    Directory of Open Access Journals (Sweden)

    V. Michalcin

    2007-04-01

    Full Text Available The paper deals with the new algorithm of animation of 3D model of the human head in combination with its global motion. The designed algorithm is very fast and with low calculation requirements, because it does not need the synthesis of the input videosequence for estimation of the animation parameters as well as the parameters of global motion. The used 3D model Candide generates different expressions using its animation units which are controlled by the animation parameters. These ones are estimated on the basis of optical flow without the need of extracting of the feature points in the frames of the input videosequence because they are given by the selected vertices of the animation units of the calibrated 3D model Candide. The established multiple iterations inside the designed animation algorithm of 3D model of the human head between two successive frames significantly improved its accuracy above all for the large motion.

  17. 3D Modelling with Structured Light GAMMA Calibration

    Directory of Open Access Journals (Sweden)

    Eser Sert

    2014-01-01

    Full Text Available Structured light method is one of the non-contact measurement methods used for high resolution and high sensitive 3D modeling. In this method, a projector, camera and computer are used. Projector projects patterns that are generated with specific coding strategies onto the object that will be 3D modeled. Camera receives these patterns. By processing the images received by the camera, object is 3D modeled. Light intensity that is emitted from the projector generally not a linear function of the signal input. This causes brightness problems in the patterns projected. Thus, images received from the camera needs to the gamma corrected. In this study, gamma calibration method is proposed to overcome this problem. Test results show that proposed calibration system improves the accuracy and quality of the 3D modeling.

  18. Phase Transition Properties of 3D Potts Models

    CERN Document Server

    Bazavov, Alexei; Dubey, Santosh

    2008-01-01

    Using multicanonical Metropolis simulations we estimate phase transition properties of 3D Potts models for q=4 to 10: The transition temperatures, latent heats, entropy gaps, normalized entropies at the disordered and ordered endpoints, interfacial tensions, and spinodal endpoints.

  19. An integrable 3D lattice model with positive Boltzmann weights

    CERN Document Server

    Mangazeev, Vladimir V; Sergeev, Sergey M

    2013-01-01

    In this paper we construct a three-dimensional (3D) solvable lattice model with non-negative Boltzmann weights. The spin variables in the model are assigned to edges of the 3D cubic lattice and run over an infinite number of discrete states. The Boltzmann weights satisfy the tetrahedron equation, which is a 3D generalisation of the Yang-Baxter equation. The weights depend on a free parameter 0model form a two-parameter commutative family. This is the first example of a solvable 3D lattice model with non-negative Boltzmann weights.

  20. Quantification of the accuracy of MRI generated 3D models of long bones compared to CT generated 3D models.

    Science.gov (United States)

    Rathnayaka, Kanchana; Momot, Konstantin I; Noser, Hansrudi; Volp, Andrew; Schuetz, Michael A; Sahama, Tony; Schmutz, Beat

    2012-04-01

    Orthopaedic fracture fixation implants are increasingly being designed using accurate 3D models of long bones based on computer tomography (CT). Unlike CT, magnetic resonance imaging (MRI) does not involve ionising radiation and is therefore a desirable alternative to CT. This study aims to quantify the accuracy of MRI-based 3D models compared to CT-based 3D models of long bones. The femora of five intact cadaver ovine limbs were scanned using a 1.5 T MRI and a CT scanner. Image segmentation of CT and MRI data was performed using a multi-threshold segmentation method. Reference models were generated by digitising the bone surfaces free of soft tissue with a mechanical contact scanner. The MRI- and CT-derived models were validated against the reference models. The results demonstrated that the CT-based models contained an average error of 0.15 mm while the MRI-based models contained an average error of 0.23 mm. Statistical validation shows that there are no significant differences between 3D models based on CT and MRI data. These results indicate that the geometric accuracy of MRI based 3D models was comparable to that of CT-based models and therefore MRI is a potential alternative to CT for generation of 3D models with high geometric accuracy.

  1. Formal representation of 3D structural geological models

    Science.gov (United States)

    Wang, Zhangang; Qu, Honggang; Wu, Zixing; Yang, Hongjun; Du, Qunle

    2016-05-01

    The development and widespread application of geological modeling methods has increased demands for the integration and sharing services of three dimensional (3D) geological data. However, theoretical research in the field of geological information sciences is limited despite the widespread use of Geographic Information Systems (GIS) in geology. In particular, fundamental research on the formal representations and standardized spatial descriptions of 3D structural models is required. This is necessary for accurate understanding and further applications of geological data in 3D space. In this paper, we propose a formal representation method for 3D structural models using the theory of point set topology, which produces a mathematical definition for the major types of geological objects. The spatial relationships between geologic boundaries, structures, and units are explained in detail using the 9-intersection model. Reasonable conditions for describing the topological space of 3D structural models are also provided. The results from this study can be used as potential support for the standardized representation and spatial quality evaluation of 3D structural models, as well as for specific needs related to model-based management, query, and analysis.

  2. Porosity estimation of aged mortar using a micromechanical model.

    Science.gov (United States)

    Hernández, M G; Anaya, J J; Sanchez, T; Segura, I

    2006-12-22

    Degradation of concrete structures located in high humidity atmospheres or under flowing water is a very important problem. In this study, a method for ultrasonic non-destructive characterization in aged mortar is presented. The proposed method makes a prediction of the behaviour of aged mortar accomplished with a three phase micromechanical model using ultrasonic measurements. Aging mortar was accelerated by immersing the probes in ammonium nitrate solution. Both destructive and non-destructive characterization of mortar was performed. Destructive tests of porosity were performed using a vacuum saturation method and non-destructive characterization was carried out using ultrasonic velocities. Aging experiments show that mortar degradation not only involves a porosity increase, but also microstructural changes in the cement matrix. Experimental results show that the estimated porosity using the proposed non-destructive methodology had a comparable performance to classical destructive techniques.

  3. Performance Evaluation of 3d Modeling Software for Uav Photogrammetry

    Science.gov (United States)

    Yanagi, H.; Chikatsu, H.

    2016-06-01

    UAV (Unmanned Aerial Vehicle) photogrammetry, which combines UAV and freely available internet-based 3D modeling software, is widely used as a low-cost and user-friendly photogrammetry technique in the fields such as remote sensing and geosciences. In UAV photogrammetry, only the platform used in conventional aerial photogrammetry is changed. Consequently, 3D modeling software contributes significantly to its expansion. However, the algorithms of the 3D modelling software are black box algorithms. As a result, only a few studies have been able to evaluate their accuracy using 3D coordinate check points. With this motive, Smart3DCapture and Pix4Dmapper were downloaded from the Internet and commercial software PhotoScan was also employed; investigations were performed in this paper using check points and images obtained from UAV.

  4. Automatic Texture Mapping of Architectural and Archaeological 3d Models

    Science.gov (United States)

    Kersten, T. P.; Stallmann, D.

    2012-07-01

    Today, detailed, complete and exact 3D models with photo-realistic textures are increasingly demanded for numerous applications in architecture and archaeology. Manual texture mapping of 3D models by digital photographs with software packages, such as Maxon Cinema 4D, Autodesk 3Ds Max or Maya, still requires a complex and time-consuming workflow. So, procedures for automatic texture mapping of 3D models are in demand. In this paper two automatic procedures are presented. The first procedure generates 3D surface models with textures by web services, while the second procedure textures already existing 3D models with the software tmapper. The program tmapper is based on the Multi Layer 3D image (ML3DImage) algorithm and developed in the programming language C++. The studies showing that the visibility analysis using the ML3DImage algorithm is not sufficient to obtain acceptable results of automatic texture mapping. To overcome the visibility problem the Point Cloud Painter algorithm in combination with the Z-buffer-procedure will be applied in the future.

  5. 3D Object Recognition Based on Linear Lie Algebra Model

    Institute of Scientific and Technical Information of China (English)

    LI Fang-xing; WU Ping-dong; SUN Hua-fei; PENG Lin-yu

    2009-01-01

    A surface model called the fibre bundle model and a 3D object model based on linear Lie algebra model are proposed.Then an algorithm of 3D object recognition using the linear Lie algebra models is presented.It is a convenient recognition method for the objects which are symmetric about some axis.By using the presented algorithm,the representation matrices of the fibre or the base curve from only finite points of the linear Lie algebra model can be obtained.At last some recognition results of practicalities are given.

  6. Combined registration of 3D tibia and femur implant models in 3D magnetic resonance images

    Science.gov (United States)

    Englmeier, Karl-Hans; Siebert, Markus; von Eisenhart-Rothe, Ruediger; Graichen, Heiko

    2008-03-01

    The most frequent reasons for revision of total knee arthroplasty are loosening and abnormal axial alignment leading to an unphysiological kinematic of the knee implant. To get an idea about the postoperative kinematic of the implant, it is essential to determine the position and orientation of the tibial and femoral prosthesis. Therefore we developed a registration method for fitting 3D CAD-models of knee joint prostheses into an 3D MR image. This rigid registration is the basis for a quantitative analysis of the kinematics of knee implants. Firstly the surface data of the prostheses models are converted into a voxel representation; a recursive algorithm determines all boundary voxels of the original triangular surface data. Secondly an initial preconfiguration of the implants by the user is still necessary for the following step: The user has to perform a rough preconfiguration of both remaining prostheses models, so that the fine matching process gets a reasonable starting point. After that an automated gradient-based fine matching process determines the best absolute position and orientation: This iterative process changes all 6 parameters (3 rotational- and 3 translational parameters) of a model by a minimal amount until a maximum value of the matching function is reached. To examine the spread of the final solutions of the registration, the interobserver variability was measured in a group of testers. This variability, calculated by the relative standard deviation, improved from about 50% (pure manual registration) to 0.5% (rough manual preconfiguration and subsequent fine registration with the automatic fine matching process).

  7. Gis-Based Smart Cartography Using 3d Modeling

    Science.gov (United States)

    Malinverni, E. S.; Tassetti, A. N.

    2013-08-01

    3D City Models have evolved to be important tools for urban decision processes and information systems, especially in planning, simulation, analysis, documentation and heritage management. On the other hand existing and in use numerical cartography is often not suitable to be used in GIS because not geometrically and topologically correctly structured. The research aim is to 3D structure and organize a numeric cartography for GIS and turn it into CityGML standardized features. The work is framed around a first phase of methodological analysis aimed to underline which existing standard (like ISO and OGC rules) can be used to improve the quality requirement of a cartographic structure. Subsequently, from this technical specifics, it has been investigated the translation in formal contents, using an owner interchange software (SketchUp), to support some guide lines implementations to generate a GIS3D structured in GML3. It has been therefore predisposed a test three-dimensional numerical cartography (scale 1:500, generated from range data captured by 3D laser scanner), tested on its quality according to the previous standard and edited when and where necessary. Cad files and shapefiles are converted into a final 3D model (Google SketchUp model) and then exported into a 3D city model (CityGML LoD1/LoD2). The GIS3D structure has been managed in a GIS environment to run further spatial analysis and energy performance estimate, not achievable in a 2D environment. In particular geometrical building parameters (footprint, volume etc.) are computed and building envelop thermal characteristics are derived from. Lastly, a simulation is carried out to deal with asbestos and home renovating charges and show how the built 3D city model can support municipal managers with risk diagnosis of the present situation and development of strategies for a sustainable redevelop.

  8. 3D Cadastral Data Model Based on Conformal Geometry Algebra

    Directory of Open Access Journals (Sweden)

    Ji-yi Zhang

    2016-02-01

    Full Text Available Three-dimensional (3D cadastral data models that are based on Euclidean geometry (EG are incapable of providing a unified representation of geometry and topological relations for 3D spatial units in a cadastral database. This lack of unification causes problems such as complex expression structure and inefficiency in the updating of 3D cadastral objects. The inability of current cadastral data models to express cadastral objects in a unified manner can be attributed to the different expressions of dimensional objects. Because the hierarchical Grassmann structure corresponds to the hierarchical structure of dimensions in conformal geometric algebra (CGA, geometric objects in different dimensions can be constructed by outer products in a unified expression form, which enables the direct extension of two-dimensional (2D spatial representations to 3D spatial representations. The multivector structure in CGA can be employed to organize and store different dimensional objects in a multidimensional and unified manner. With the advantages of CGA in multidimensional expressions, a new 3D cadastral data model that is based on CGA is proposed in this paper. The geometries and topological relations of 3D spatial units can be represented in a unified form within the multivector structure. Detailed methods for 3D cadastral data model design based on CGA and data organization in CGA are introduced. The new cadastral data model is tested and analyzed with experimental data. The results indicate that the geometry and topological relations of 3D cadastral objects can be represented in a multidimensional manner with an intuitive topological structure and a unified dimensional expression.

  9. Implementation of virtual models from sheet metal forming simulation into physical 3D colour models using 3D printing

    Science.gov (United States)

    Junk, S.

    2016-08-01

    Today the methods of numerical simulation of sheet metal forming offer a great diversity of possibilities for optimization in product development and in process design. However, the results from simulation are only available as virtual models. Because there are any forming tools available during the early stages of product development, physical models that could serve to represent the virtual results are therefore lacking. Physical 3D-models can be created using 3D-printing and serve as an illustration and present a better understanding of the simulation results. In this way, the results from the simulation can be made more “comprehensible” within a development team. This paper presents the possibilities of 3D-colour printing with particular consideration of the requirements regarding the implementation of sheet metal forming simulation. Using concrete examples of sheet metal forming, the manufacturing of 3D colour models will be expounded upon on the basis of simulation results.

  10. Estimation of shape model parameters for 3D surfaces

    DEFF Research Database (Denmark)

    Erbou, Søren Gylling Hemmingsen; Darkner, Sune; Fripp, Jurgen;

    2008-01-01

    Statistical shape models are widely used as a compact way of representing shape variation. Fitting a shape model to unseen data enables characterizing the data in terms of the model parameters. In this paper a Gauss-Newton optimization scheme is proposed to estimate shape model parameters of 3D s...

  11. Creating physical 3D stereolithograph models of brain and skull.

    Directory of Open Access Journals (Sweden)

    Daniel J Kelley

    Full Text Available The human brain and skull are three dimensional (3D anatomical structures with complex surfaces. However, medical images are often two dimensional (2D and provide incomplete visualization of structural morphology. To overcome this loss in dimension, we developed and validated a freely available, semi-automated pathway to build 3D virtual reality (VR and hand-held, stereolithograph models. To evaluate whether surface visualization in 3D was more informative than in 2D, undergraduate students (n = 50 used the Gillespie scale to rate 3D VR and physical models of both a living patient-volunteer's brain and the skull of Phineas Gage, a historically famous railroad worker whose misfortune with a projectile tamping iron provided the first evidence of a structure-function relationship in brain. Using our processing pathway, we successfully fabricated human brain and skull replicas and validated that the stereolithograph model preserved the scale of the VR model. Based on the Gillespie ratings, students indicated that the biological utility and quality of visual information at the surface of VR and stereolithograph models were greater than the 2D images from which they were derived. The method we developed is useful to create VR and stereolithograph 3D models from medical images and can be used to model hard or soft tissue in living or preserved specimens. Compared to 2D images, VR and stereolithograph models provide an extra dimension that enhances both the quality of visual information and utility of surface visualization in neuroscience and medicine.

  12. 2 types of spicules "observed" in 3D realistic models

    CERN Document Server

    Martínez-Sykora, Juan

    2010-01-01

    Realistic numerical 3D models of the outer solar atmosphere show two different kind of spicule-like phenomena, as also observed on the solar limb. The numerical models are calculated using the 2 types of spicules "observed" in 3D realistic models Oslo Staggered Code (OSC) to solve the full MHD equations with non-grey and NLTE radiative transfer and thermal conduction along the magnetic field lines. The two types of spicules arise as a natural result of the dynamical evolution in the models. We discuss the different properties of these two types of spicules, their differences from observed spicules and what needs to be improved in the models.

  13. Research on 3D Distribution of Meandering River Sand Body Using Sedimentary Facies Method and 3D Geological Modeling

    Institute of Scientific and Technical Information of China (English)

    WU Jian; CAO Dai-yong

    2006-01-01

    Sedimentary facies study is an important method in describing the property and distribution of reservoir. 3D geological modeling is a powerful tool in 3D characterization of geological bodies. By combining the sedimentary facies study with 3D geological modeling to generate 3D sedimentary facies model, the 3D geometry and distribution feature of sand bodies can be more accurately characterized, particularly in 3D view. In Liuchu oilfield of Jizhong depression, the Ed2IV formation was recognized as meandering river deposition facies and five sedimentary facies were identified, which include point bar sand, levee, channel margin, abandoned channel and floodplain. All the 24 sand body facies in Ed2IV were mapped and the 3D sedimentary facies model established based on 2D facies maps. The result shows that the 3D sedimentary facies model is well matched for the research result of sedimentary facies. Being an extension of traditional sedimentary study, the 3D sedimentary facies model can be used to describe the 3D geometry and distribution orders of a single sand body more reliably and more accurately.

  14. 3D City Models with Different Temporal Characteristica

    DEFF Research Database (Denmark)

    Bodum, Lars

    2005-01-01

    the variation in time is non-synchronous with real-time, usually more effort can be put on the fi delity in relation to the aesthetic and geometric representation. This means that the models are more realistic or contain another level of detail. However, if one looks at virtual environments with an in......3D city models are mostly seen as static or at least as background for various animations types. In the last couple of years, experts have realized that 3D city models (technical maps of the future) should be maintained in order to be used in a continuous and dynamical planning and administration....... Therefore it is important that temporal information is attached to the different parts of a city model so that it can be used as part of metadata for city models. Another and just as important use of time is related to the temporal characteristics of the 3D city models. There is a huge difference between...

  15. 3D Bioprinting of Tissue/Organ Models.

    Science.gov (United States)

    Pati, Falguni; Gantelius, Jesper; Svahn, Helene Andersson

    2016-04-04

    In vitro tissue/organ models are useful platforms that can facilitate systematic, repetitive, and quantitative investigations of drugs/chemicals. The primary objective when developing tissue/organ models is to reproduce physiologically relevant functions that typically require complex culture systems. Bioprinting offers exciting prospects for constructing 3D tissue/organ models, as it enables the reproducible, automated production of complex living tissues. Bioprinted tissues/organs may prove useful for screening novel compounds or predicting toxicity, as the spatial and chemical complexity inherent to native tissues/organs can be recreated. In this Review, we highlight the importance of developing 3D in vitro tissue/organ models by 3D bioprinting techniques, characterization of these models for evaluating their resemblance to native tissue, and their application in the prioritization of lead candidates, toxicity testing, and as disease/tumor models.

  16. 3D WHOLE-PROMINENCE FINE STRUCTURE MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Gunár, Stanislav; Mackay, Duncan H. [School of Mathematics and Statistics, University of St Andrews, North Haugh, St Andrews, KY16 9SS (United Kingdom)

    2015-04-20

    We present the first 3D whole-prominence fine structure model. The model combines a 3D magnetic field configuration of an entire prominence obtained from nonlinear force-free field simulations, with a detailed description of the prominence plasma. The plasma is located in magnetic dips in hydrostatic equilibrium and is distributed along multiple fine structures within the 3D magnetic model. Through the use of a novel radiative transfer visualization technique for the Hα line such plasma-loaded magnetic field model produces synthetic images of the modeled prominence comparable with high-resolution observations. This allows us for the first time to use a single technique to consistently study, in both emission on the limb and absorption against the solar disk, the fine structures of prominences/filaments produced by a magnetic field model.

  17. Arbitrary modeling of TSVs for 3D integrated circuits

    CERN Document Server

    Salah, Khaled; El-Rouby, Alaa

    2014-01-01

    This book presents a wide-band and technology independent, SPICE-compatible RLC model for through-silicon vias (TSVs) in 3D integrated circuits. This model accounts for a variety of effects, including skin effect, depletion capacitance and nearby contact effects. Readers will benefit from in-depth coverage of concepts and technology such as 3D integration, Macro modeling, dimensional analysis and compact modeling, as well as closed form equations for the through silicon via parasitics. Concepts covered are demonstrated by using TSVs in applications such as a spiral inductor?and inductive-based

  18. Modeling And Position Control Of Scara Type 3D Printer

    Directory of Open Access Journals (Sweden)

    Ahmet Saygamp305n Ogulmuamp351

    2015-08-01

    Full Text Available In this work a scara robot type 3D printer system is dynamically modeled and position control of the system is realized. For this aim computer aided design model of three degrees of freedom robotic system is created using SolidWorks program then obtained model is exported to MATLABSimMechanics software for position control. Also mathematical model of servo motors used in robotic 3D printer system is included in control methodology to design proportional controllers. Uncontrolled and controlled position results are simulated and given in the form of the graphics.

  19. Shape: A 3D Modeling Tool for Astrophysics.

    Science.gov (United States)

    Steffen, Wolfgang; Koning, Nicholas; Wenger, Stephan; Morisset, Christophe; Magnor, Marcus

    2011-04-01

    We present a flexible interactive 3D morpho-kinematical modeling application for astrophysics. Compared to other systems, our application reduces the restrictions on the physical assumptions, data type, and amount that is required for a reconstruction of an object's morphology. It is one of the first publicly available tools to apply interactive graphics to astrophysical modeling. The tool allows astrophysicists to provide a priori knowledge about the object by interactively defining 3D structural elements. By direct comparison of model prediction with observational data, model parameters can then be automatically optimized to fit the observation. The tool has already been successfully used in a number of astrophysical research projects.

  20. Automatically Creating Design Models from 3D Anthropometry Data

    CERN Document Server

    Wuhrer, Stefanie; Bose, Prosenjit

    2011-01-01

    When designing a product that needs to fit the human shape, designers often use a small set of 3D models, called design models, either in physical or digital form, as representative shapes to cover the shape variabilities of the population for which the products are designed. Until recently, the process of creating these models has been an art involving manual interaction and empirical guesswork. The availability of the 3D anthropometric databases provides an opportunity to create design models optimally. In this paper, we propose a novel way to use 3D anthropometric databases to generate design models that represent a given population for design applications such as the sizing of garments and gear. We generate the representative shapes by solving a covering problem in a parameter space. Well-known techniques in computational geometry are used to solve this problem. We demonstrate the method using examples in designing glasses and helmets.

  1. 3D Modelling of Biological Systems for Biomimetics

    Institute of Scientific and Technical Information of China (English)

    Shujun Zhang; Kevin Hapeshi; Ashok K. Bhattacharya

    2004-01-01

    With the advanced development of computer-based enabling technologies, many engineering, medical, biology,chemistry, physics and food science etc have developed to the unprecedented levels, which lead to many research and development interests in various multi-discipline areas. Among them, biomimetics is one of the most promising and attractive branches of study. Biomimetics is a branch of study that uses biological systems as a model to develop synthetic systems.To learn from nature, one of the fundamental issues is to understand the natural systems such animals, insects, plants and human beings etc. The geometrical characterization and representation of natural systems is an important fundamental work for biomimetics research. 3D modeling plays a key role in the geometrical characterization and representation, especially in computer graphical visualization. This paper firstly presents the typical procedure of 3D modelling methods and then reviews the previous work of 3D geometrical modelling techniques and systems developed for industrial, medical and animation applications. Especially the paper discusses the problems associated with the existing techniques and systems when they are applied to 3D modelling of biological systems. Based upon the discussions, the paper proposes some areas of research interests in 3D modelling of biological systems and for Biomimetics.

  2. Mathematical structure of three - dimensional (3D) Ising model

    CERN Document Server

    Zhang, Zhi-dong

    2013-01-01

    An overview of the mathematical structure of the three-dimensional (3D) Ising model is given, from the viewpoints of topologic, algebraic and geometric aspects. By analyzing the relations among transfer matrices of the 3D Ising model, Reidemeister moves in the knot theory, Yang-Baxter and tetrahedron equations, the following facts are illustrated for the 3D Ising model: 1) The complexified quaternion basis constructed for the 3D Ising model represents naturally the rotation in a (3 + 1) - dimensional space-time, as a relativistic quantum statistical mechanics model, which is consistent with the 4-fold integrand of the partition function by taking the time average. 2) A unitary transformation with a matrix being a spin representation in 2^(nlo)-space corresponds to a rotation in 2nlo-space, which serves to smooth all the crossings in the transfer matrices and contributes as the non-trivial topologic part of the partition function of the 3D Ising model. 3) A tetrahedron relation would ensure the commutativity o...

  3. Aortic valve and ascending aortic root modeling from 3D and 3D+t CT

    Science.gov (United States)

    Grbic, Saša; Ionasec, Razvan I.; Zäuner, Dominik; Zheng, Yefeng; Georgescu, Bogdan; Comaniciu, Dorin

    2010-02-01

    Aortic valve disorders are the most frequent form of valvular heart disorders (VHD) affecting nearly 3% of the global population. A large fraction among them are aortic root diseases, such as aortic root aneurysm, often requiring surgical procedures (valve-sparing) as a treatment. Visual non-invasive assessment techniques could assist during pre-selection of adequate patients, planning procedures and afterward evaluation of the same. However state of the art approaches try to model a rather short part of the aortic root, insufficient to assist the physician during intervention planning. In this paper we propose a novel approach for morphological and functional quantification of both the aortic valve and the ascending aortic root. A novel physiological shape model is introduced, consisting of the aortic valve root, leaflets and the ascending aortic root. The model parameters are hierarchically estimated using robust and fast learning-based methods. Experiments performed on 63 CT sequences (630 Volumes) and 20 single phase CT volumes demonstrated an accuracy of 1.45mm and an performance of 30 seconds (3D+t) for this approach. To the best of our knowledge this is the first time a complete model of the aortic valve (including leaflets) and the ascending aortic root, estimated from CT, has been proposed.

  4. 3D Printing of Biomolecular Models for Research and Pedagogy

    Science.gov (United States)

    Da Veiga Beltrame, Eduardo; Tyrwhitt-Drake, James; Roy, Ian; Shalaby, Raed; Suckale, Jakob; Pomeranz Krummel, Daniel

    2017-01-01

    The construction of physical three-dimensional (3D) models of biomolecules can uniquely contribute to the study of the structure-function relationship. 3D structures are most often perceived using the two-dimensional and exclusively visual medium of the computer screen. Converting digital 3D molecular data into real objects enables information to be perceived through an expanded range of human senses, including direct stereoscopic vision, touch, and interaction. Such tangible models facilitate new insights, enable hypothesis testing, and serve as psychological or sensory anchors for conceptual information about the functions of biomolecules. Recent advances in consumer 3D printing technology enable, for the first time, the cost-effective fabrication of high-quality and scientifically accurate models of biomolecules in a variety of molecular representations. However, the optimization of the virtual model and its printing parameters is difficult and time consuming without detailed guidance. Here, we provide a guide on the digital design and physical fabrication of biomolecule models for research and pedagogy using open source or low-cost software and low-cost 3D printers that use fused filament fabrication technology. PMID:28362403

  5. Tangible 3D modeling of coherent and themed structures

    DEFF Research Database (Denmark)

    Walther, Jeppe Ullè; Bærentzen, J. Andreas; Aanæs, Henrik

    2016-01-01

    , allows the user to tangibly build structures of greater details than the blocks provide in and of themselves. We show a number of shapes that have been modeled by users and are indicative of the expressive power of the system. Furthermore, we demonstrate the scalability of the tangible interface which......We present CubeBuilder, a system for interactive, tangible 3D shape modeling. CubeBuilder allows the user to create a digital 3D model by placing physical, non-interlocking cubic blocks. These blocks may be placed in a completely arbitrary fashion and combined with other objects. In effect......, this turns the task of 3D modeling into a playful activity that hardly requires any learning on the part of the user. The blocks are registered using a depth camera and entered into the cube graph where each block is a node and adjacent blocks are connected by edges. From the cube graph, we transform...

  6. Support Vector Machine active learning for 3D model retrieval

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, we present a novel Support Vector Machine active learning algorithm for effective 3D model retrieval using the concept of relevance feedback. The proposed method learns from the most informative objects which are marked by the user, and then creates a boundary separating the relevant models from irrelevant ones. What it needs is only a small number of 3D models labelled by the user. It can grasp the user's semantic knowledge rapidly and accurately. Experimental results showed that the proposed algorithm significantly improves the retrieval effectiveness. Compared with four state-of-the-art query refinement schemes for 3D model retrieval, it provides superior retrieval performance after no more than two rounds of relevance feedback.

  7. High-Fidelity Micromechanics Model Enhanced for Multiphase Particulate Materials

    Science.gov (United States)

    Pindera, Marek-Jerzy; Arnold, Steven M.

    2003-01-01

    This 3-year effort involves the development of a comprehensive micromechanics model and a related computer code, capable of accurately estimating both the average response and the local stress and strain fields in the individual phases, assuming both elastic and inelastic behavior. During the first year (fiscal year 2001) of the investigation, a version of the model called the High-Fidelity Generalized Method of Cells (HFGMC) was successfully completed for the thermo-inelastic response of continuously reinforced multiphased materials with arbitrary periodic microstructures (refs. 1 and 2). The model s excellent predictive capability for both the macroscopic response and the microlevel stress and strain fields was demonstrated through comparison with exact analytical and finite element solutions. This year, HFGMC was further extended in two technologically significant ways. The first enhancement entailed the incorporation of fiber/matrix debonding capability into the two-dimensional version of HFGMC for modeling the response of unidirectionally reinforced composites such as titanium matrix composites, which exhibit poor fiber/matrix bond. Comparison with experimental data validated the model s predictive capability. The second enhancement entailed further generalization of HFGMC to three dimensions to enable modeling the response of particulate-reinforced (discontinuous) composites in the elastic material behavior domain. Next year, the three-dimensional version will be generalized to encompass inelastic effects due to plasticity, viscoplasticity, and damage, as well as coupled electromagnetothermomechanical (including piezoelectric) effects.

  8. High Strain Rate Deformation Modeling of a Polymer Matrix Composite. Part 2; Composite Micromechanical Model

    Science.gov (United States)

    Goldberg, Robert K.; Stouffer, Donald C.

    1998-01-01

    Recently applications have exposed polymer matrix composite materials to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under these extreme conditions. In this second paper of a two part report, a three-dimensional composite micromechanical model is described which allows for the analysis of the rate dependent, nonlinear deformation response of a polymer matrix composite. Strain rate dependent inelastic constitutive equations utilized to model the deformation response of a polymer are implemented within the micromechanics method. The deformation response of two representative laminated carbon fiber reinforced composite materials with varying fiber orientation has been predicted using the described technique. The predicted results compare favorably to both experimental values and the response predicted by the Generalized Method of Cells, a well-established micromechanics analysis method.

  9. Potential of 3D City Models to assess flood vulnerability

    Science.gov (United States)

    Schröter, Kai; Bochow, Mathias; Schüttig, Martin; Nagel, Claus; Ross, Lutz; Kreibich, Heidi

    2016-04-01

    Vulnerability, as the product of exposure and susceptibility, is a key factor of the flood risk equation. Furthermore, the estimation of flood loss is very sensitive to the choice of the vulnerability model. Still, in contrast to elaborate hazard simulations, vulnerability is often considered in a simplified manner concerning the spatial resolution and geo-location of exposed objects as well as the susceptibility of these objects at risk. Usually, area specific potential flood loss is quantified on the level of aggregated land-use classes, and both hazard intensity and resistance characteristics of affected objects are represented in highly simplified terms. We investigate the potential of 3D City Models and spatial features derived from remote sensing data to improve the differentiation of vulnerability in flood risk assessment. 3D City Models are based on CityGML, an application scheme of the Geography Markup Language (GML), which represents the 3D geometry, 3D topology, semantics and appearance of objects on different levels of detail. As such, 3D City Models offer detailed spatial information which is useful to describe the exposure and to characterize the susceptibility of residential buildings at risk. This information is further consolidated with spatial features of the building stock derived from remote sensing data. Using this database a spatially detailed flood vulnerability model is developed by means of data-mining. Empirical flood damage data are used to derive and to validate flood susceptibility models for individual objects. We present first results from a prototype application in the city of Dresden, Germany. The vulnerability modeling based on 3D City Models and remote sensing data is compared i) to the generally accepted good engineering practice based on area specific loss potential and ii) to a highly detailed representation of flood vulnerability based on a building typology using urban structure types. Comparisons are drawn in terms of

  10. 3D MHD Models of Active Region Loops

    Science.gov (United States)

    Ofman, Leon

    2004-01-01

    Present imaging and spectroscopic observations of active region loops allow to determine many physical parameters of the coronal loops, such as the density, temperature, velocity of flows in loops, and the magnetic field. However, due to projection effects many of these parameters remain ambiguous. Three dimensional imaging in EUV by the STEREO spacecraft will help to resolve the projection ambiguities, and the observations could be used to setup 3D MHD models of active region loops to study the dynamics and stability of active regions. Here the results of 3D MHD models of active region loops are presented, and the progress towards more realistic 3D MHD models of active regions. In particular the effects of impulsive events on the excitation of active region loop oscillations, and the generation, propagations and reflection of EIT waves are shown. It is shown how 3D MHD models together with 3D EUV observations can be used as a diagnostic tool for active region loop physical parameters, and to advance the science of the sources of solar coronal activity.

  11. 3D head model classification using optimized EGI

    Science.gov (United States)

    Tong, Xin; Wong, Hau-san; Ma, Bo

    2006-02-01

    With the general availability of 3D digitizers and scanners, 3D graphical models have been used widely in a variety of applications. This has led to the development of search engines for 3D models. Especially, 3D head model classification and retrieval have received more and more attention in view of their many potential applications in criminal identifications, computer animation, movie industry and medical industry. This paper addresses the 3D head model classification problem using 2D subspace analysis methods such as 2D principal component analysis (2D PCA[3]) and 2D fisher discriminant analysis (2DLDA[5]). It takes advantage of the fact that the histogram is a 2D image, and we can extract the most useful information from these 2D images to get a good result accordingingly. As a result, there are two main advantages: First, we can perform less calculation to obtain the same rate of classification; second, we can reduce the dimensionality more than PCA to obtain a higher efficiency.

  12. Vhrs Stereo Images for 3d Modelling of Buildings

    Science.gov (United States)

    Bujakiewicz, A.; Holc, M.

    2012-07-01

    The paper presents the project which was carried out in the Photogrammetric Laboratory of Warsaw University of Technology. The experiment is concerned with the extraction of 3D vector data for buildings creation from 3D photogrammetric model based on the Ikonos stereo images. The model was reconstructed with photogrammetric workstation - Summit Evolution combined with ArcGIS 3D platform. Accuracy of 3D model was significantly improved by use for orientation of pair of satellite images the stereo measured tie points distributed uniformly around the model area in addition to 5 control points. The RMS for model reconstructed on base of the RPC coefficients only were 16,6 m, 2,7 m and 47,4 m, for X, Y and Z coordinates, respectively. By addition of 5 control points the RMS were improved to 0,7 m, 0,7 m 1,0 m, where the best results were achieved when RMS were estimated from deviations in 17 check points (with 5 control points)and amounted to 0,4 m, 0,5 m and 0,6 m, for X, Y, and Z respectively. The extracted 3D vector data for buildings were integrated with 2D data of the ground footprints and afterwards they were used for 3D modelling of buildings in Google SketchUp software. The final results were compared with the reference data obtained from other sources. It was found that the shape of buildings (in concern to the number of details) had been reconstructed on level of LoD1, when the accuracy of these models corresponded to the level of LoD2.

  13. VHRS STEREO IMAGES FOR 3D MODELLING OF BUILDINGS

    Directory of Open Access Journals (Sweden)

    A. Bujakiewicz

    2012-07-01

    Full Text Available The paper presents the project which was carried out in the Photogrammetric Laboratory of Warsaw University of Technology. The experiment is concerned with the extraction of 3D vector data for buildings creation from 3D photogrammetric model based on the Ikonos stereo images. The model was reconstructed with photogrammetric workstation – Summit Evolution combined with ArcGIS 3D platform. Accuracy of 3D model was significantly improved by use for orientation of pair of satellite images the stereo measured tie points distributed uniformly around the model area in addition to 5 control points. The RMS for model reconstructed on base of the RPC coefficients only were 16,6 m, 2,7 m and 47,4 m, for X, Y and Z coordinates, respectively. By addition of 5 control points the RMS were improved to 0,7 m, 0,7 m 1,0 m, where the best results were achieved when RMS were estimated from deviations in 17 check points (with 5 control pointsand amounted to 0,4 m, 0,5 m and 0,6 m, for X, Y, and Z respectively. The extracted 3D vector data for buildings were integrated with 2D data of the ground footprints and afterwards they were used for 3D modelling of buildings in Google SketchUp software. The final results were compared with the reference data obtained from other sources. It was found that the shape of buildings (in concern to the number of details had been reconstructed on level of LoD1, when the accuracy of these models corresponded to the level of LoD2.

  14. Statistical 3D damage accumulation model for ion implant simulators

    CERN Document Server

    Hernandez-Mangas, J M; Enriquez, L E; Bailon, L; Barbolla, J; Jaraiz, M

    2003-01-01

    A statistical 3D damage accumulation model, based on the modified Kinchin-Pease formula, for ion implant simulation has been included in our physically based ion implantation code. It has only one fitting parameter for electronic stopping and uses 3D electron density distributions for different types of targets including compound semiconductors. Also, a statistical noise reduction mechanism based on the dose division is used. The model has been adapted to be run under parallel execution in order to speed up the calculation in 3D structures. Sequential ion implantation has been modelled including previous damage profiles. It can also simulate the implantation of molecular and cluster projectiles. Comparisons of simulated doping profiles with experimental SIMS profiles are presented. Also comparisons between simulated amorphization and experimental RBS profiles are shown. An analysis of sequential versus parallel processing is provided.

  15. Statistical 3D damage accumulation model for ion implant simulators

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Mangas, J.M. E-mail: jesman@ele.uva.es; Lazaro, J.; Enriquez, L.; Bailon, L.; Barbolla, J.; Jaraiz, M

    2003-04-01

    A statistical 3D damage accumulation model, based on the modified Kinchin-Pease formula, for ion implant simulation has been included in our physically based ion implantation code. It has only one fitting parameter for electronic stopping and uses 3D electron density distributions for different types of targets including compound semiconductors. Also, a statistical noise reduction mechanism based on the dose division is used. The model has been adapted to be run under parallel execution in order to speed up the calculation in 3D structures. Sequential ion implantation has been modelled including previous damage profiles. It can also simulate the implantation of molecular and cluster projectiles. Comparisons of simulated doping profiles with experimental SIMS profiles are presented. Also comparisons between simulated amorphization and experimental RBS profiles are shown. An analysis of sequential versus parallel processing is provided.

  16. 3D subsurface temperature model of Europe for geothermal exploration

    NARCIS (Netherlands)

    Limberger, J.; Wees, J.D. van

    2014-01-01

    For the assessment of geothermal resources in Europe we constructed a digital 3D temperature model of the European crust and sedimentary basins, incorporating publicly available temperature data. Using European crustal thickness models and indirect parameters such as surface heat flow measurements,

  17. 3D subsurface temperature model of Europe for geothermal exploration

    NARCIS (Netherlands)

    Limberger, J.; Wees, J.D. van

    2014-01-01

    For the assessment of geothermal resources in Europe we constructed a digital 3D temperature model of the European crust and sedimentary basins, incorporating publicly available temperature data. Using European crustal thickness models and indirect parameters such as surface heat flow measurements,

  18. 3D-DART: a DNA structure modelling server

    NARCIS (Netherlands)

    van Dijk, M.; Bonvin, A.M.J.J.

    2009-01-01

    There is a growing interest in structural studies of DNA by both experimental and computational approaches. Often, 3D-structural models of DNA are required, for instance, to serve as templates for homology modeling, as starting structures for macro-molecular docking or as scaffold for NMR structure

  19. 3D surface digitizing and modeling development at ITRI

    Science.gov (United States)

    Hsueh, Wen-Jean

    2000-06-01

    This paper gives an overview of the research and development activities in 3D surface digitizing and modeling conducted at the Industrial Technology Research Institute (ITRI) of Taiwan in the past decade. As a major technology and consulting service provider of the area, ITRI has developed 3D laser scanning digitizers ranging from low-cost compacts, industrial CAD/CAM digitizing, to large human body scanner, with in-house 3D surface modeling software to provide total solution in reverse engineering that requires processing capabilities of large number of 3D data. Based on both hardware and software technologies in scanning, merging, registration, surface fitting, reconstruction, and compression, ITRI is now exploring innovative methodologies that provide higher performances, including hardware-based correlation algorithms with advanced camera designs, animation surface model reconstruction, and optical tracking for motion capture. It is expected that the need for easy and fast high-quality 3D information in the near future will grow exponentially, at the same amazing rate as the internet and the human desire for realistic and natural images.

  20. LIME: 3D visualisation and interpretation of virtual geoscience models

    Science.gov (United States)

    Buckley, Simon; Ringdal, Kari; Dolva, Benjamin; Naumann, Nicole; Kurz, Tobias

    2017-04-01

    Three-dimensional and photorealistic acquisition of surface topography, using methods such as laser scanning and photogrammetry, has become widespread across the geosciences over the last decade. With recent innovations in photogrammetric processing software, robust and automated data capture hardware, and novel sensor platforms, including unmanned aerial vehicles, obtaining 3D representations of exposed topography has never been easier. In addition to 3D datasets, fusion of surface geometry with imaging sensors, such as multi/hyperspectral, thermal and ground-based InSAR, and geophysical methods, create novel and highly visual datasets that provide a fundamental spatial framework to address open geoscience research questions. Although data capture and processing routines are becoming well-established and widely reported in the scientific literature, challenges remain related to the analysis, co-visualisation and presentation of 3D photorealistic models, especially for new users (e.g. students and scientists new to geomatics methods). Interpretation and measurement is essential for quantitative analysis of 3D datasets, and qualitative methods are valuable for presentation purposes, for planning and in education. Motivated by this background, the current contribution presents LIME, a lightweight and high performance 3D software for interpreting and co-visualising 3D models and related image data in geoscience applications. The software focuses on novel data integration and visualisation of 3D topography with image sources such as hyperspectral imagery, logs and interpretation panels, geophysical datasets and georeferenced maps and images. High quality visual output can be generated for dissemination purposes, to aid researchers with communication of their research results. The background of the software is described and case studies from outcrop geology, in hyperspectral mineral mapping and geophysical-geospatial data integration are used to showcase the novel

  1. 3D-model view characterization using equilibrium planes

    OpenAIRE

    Theetten, Adrien; Filali Ansary, Tarik; Vandeborre, Jean-Philippe

    2008-01-01

    International audience; We propose a new method for 3D-mesh model characteristic view selection. It consists in using the views that come from the equilibrium states of a 3D-model: they correspond to the horizontal plane on which an object is stat- ically laying under the effect of gravity. The selected views are then very intuitive for the user. Indeed, to present a query, the user will take a photo or draw a sketch of the object on a table or on a floor, putting thus the object in a static ...

  2. Modelling Gaia CCD pixels with Silvaco 3D engineering software

    CERN Document Server

    Seabroke, G M; Hopkinson, G; Burt, D; Robbins, M; Holland, A

    2010-01-01

    Gaia will only achieve its unprecedented measurement accuracy requirements with detailed calibration and correction for radiation damage. We present our Silvaco 3D engineering software model of the Gaia CCD pixel and two of its applications for Gaia: (1) physically interpreting supplementary buried channel (SBC) capacity measurements (pocket-pumping and first pixel response) in terms of e2v manufacturing doping alignment tolerances; and (2) deriving electron densities within a charge packet as a function of the number of constituent electrons and 3D position within the charge packet as input to microscopic models being developed to simulate radiation damage.

  3. Automatic Generation of 3D Building Models with Multiple Roofs

    Institute of Scientific and Technical Information of China (English)

    Kenichi Sugihara; Yoshitugu Hayashi

    2008-01-01

    Based on building footprints (building polygons) on digital maps, we are proposing the GIS and CG integrated system that automatically generates 3D building models with multiple roofs. Most building polygons' edges meet at right angles (orthogonal polygon). The integrated system partitions orthogonal building polygons into a set of rectangles and places rectangular roofs and box-shaped building bodies on these rectangles. In order to partition an orthogonal polygon, we proposed a useful polygon expression in deciding from which vertex a dividing line is drawn. In this paper, we propose a new scheme for partitioning building polygons and show the process of creating 3D roof models.

  4. Probabilistic reasoning for assembly-based 3D modeling

    KAUST Repository

    Chaudhuri, Siddhartha

    2011-01-01

    Assembly-based modeling is a promising approach to broadening the accessibility of 3D modeling. In assembly-based modeling, new models are assembled from shape components extracted from a database. A key challenge in assembly-based modeling is the identification of relevant components to be presented to the user. In this paper, we introduce a probabilistic reasoning approach to this problem. Given a repository of shapes, our approach learns a probabilistic graphical model that encodes semantic and geometric relationships among shape components. The probabilistic model is used to present components that are semantically and stylistically compatible with the 3D model that is being assembled. Our experiments indicate that the probabilistic model increases the relevance of presented components. © 2011 ACM.

  5. Parallel Optimization of 3D Cardiac Electrophysiological Model Using GPU

    Directory of Open Access Journals (Sweden)

    Yong Xia

    2015-01-01

    Full Text Available Large-scale 3D virtual heart model simulations are highly demanding in computational resources. This imposes a big challenge to the traditional computation resources based on CPU environment, which already cannot meet the requirement of the whole computation demands or are not easily available due to expensive costs. GPU as a parallel computing environment therefore provides an alternative to solve the large-scale computational problems of whole heart modeling. In this study, using a 3D sheep atrial model as a test bed, we developed a GPU-based simulation algorithm to simulate the conduction of electrical excitation waves in the 3D atria. In the GPU algorithm, a multicellular tissue model was split into two components: one is the single cell model (ordinary differential equation and the other is the diffusion term of the monodomain model (partial differential equation. Such a decoupling enabled realization of the GPU parallel algorithm. Furthermore, several optimization strategies were proposed based on the features of the virtual heart model, which enabled a 200-fold speedup as compared to a CPU implementation. In conclusion, an optimized GPU algorithm has been developed that provides an economic and powerful platform for 3D whole heart simulations.

  6. GEOSPATIAL MODELLING APPROACH FOR 3D URBAN DENSIFICATION DEVELOPMENTS

    Directory of Open Access Journals (Sweden)

    O. Koziatek

    2016-06-01

    Full Text Available With growing populations, economic pressures, and the need for sustainable practices, many urban regions are rapidly densifying developments in the vertical built dimension with mid- and high-rise buildings. The location of these buildings can be projected based on key factors that are attractive to urban planners, developers, and potential buyers. Current research in this area includes various modelling approaches, such as cellular automata and agent-based modelling, but the results are mostly linked to raster grids as the smallest spatial units that operate in two spatial dimensions. Therefore, the objective of this research is to develop a geospatial model that operates on irregular spatial tessellations to model mid- and high-rise buildings in three spatial dimensions (3D. The proposed model is based on the integration of GIS, fuzzy multi-criteria evaluation (MCE, and 3D GIS-based procedural modelling. Part of the City of Surrey, within the Metro Vancouver Region, Canada, has been used to present the simulations of the generated 3D building objects. The proposed 3D modelling approach was developed using ESRI’s CityEngine software and the Computer Generated Architecture (CGA language.

  7. Geospatial Modelling Approach for 3d Urban Densification Developments

    Science.gov (United States)

    Koziatek, O.; Dragićević, S.; Li, S.

    2016-06-01

    With growing populations, economic pressures, and the need for sustainable practices, many urban regions are rapidly densifying developments in the vertical built dimension with mid- and high-rise buildings. The location of these buildings can be projected based on key factors that are attractive to urban planners, developers, and potential buyers. Current research in this area includes various modelling approaches, such as cellular automata and agent-based modelling, but the results are mostly linked to raster grids as the smallest spatial units that operate in two spatial dimensions. Therefore, the objective of this research is to develop a geospatial model that operates on irregular spatial tessellations to model mid- and high-rise buildings in three spatial dimensions (3D). The proposed model is based on the integration of GIS, fuzzy multi-criteria evaluation (MCE), and 3D GIS-based procedural modelling. Part of the City of Surrey, within the Metro Vancouver Region, Canada, has been used to present the simulations of the generated 3D building objects. The proposed 3D modelling approach was developed using ESRI's CityEngine software and the Computer Generated Architecture (CGA) language.

  8. Computational micromechanics

    Science.gov (United States)

    Ortiz, M.

    1996-09-01

    Selected issues in computational micromechanics are reviewed, with particular emphasis on multiple-scale problems and micromechanical models of material behavior. Examples considered include: the bridging of atomistic and continuum scales, with application to nanoindentation and the brittle-to-ductile transition; the development of dislocation-based constitutive relations for pure metallic crystals and intermetallic compounds, with applications to fracture of single crystals and bicrystals; the simulation of non-planar three-dimensional crack growth at the microscale, with application to mixed mode I III effective behavior and crack trapping and bridging in fiber-reinforced composites; and the direct micromechanical simulation of fragmentation of brittle solids and subsequent flow of the comminuted phase.

  9. 3D Model Generation From the Engineering Drawing

    Science.gov (United States)

    Vaský, Jozef; Eliáš, Michal; Bezák, Pavol; Červeňanská, Zuzana; Izakovič, Ladislav

    2010-01-01

    The contribution deals with the transformation of engineering drawings in a paper form into a 3D computer representation. A 3D computer model can be further processed in CAD/CAM system, it can be modified, archived, and a technical drawing can be then generated from it as well. The transformation process from paper form to the data one is a complex and difficult one, particularly owing to the different types of drawings, forms of displayed objects and encountered errors and deviations from technical standards. The algorithm for 3D model generating from an orthogonal vector input representing a simplified technical drawing of the rotational part is described in this contribution. The algorithm was experimentally implemented as ObjectARX application in the AutoCAD system and the test sample as the representation of the rotational part was used for verificaton.

  10. Space Partitioning for Privacy Enabled 3D City Models

    Science.gov (United States)

    Filippovska, Y.; Wichmann, A.; Kada, M.

    2016-10-01

    Due to recent technological progress, data capturing and processing of highly detailed (3D) data has become extensive. And despite all prospects of potential uses, data that includes personal living spaces and public buildings can also be considered as a serious intrusion into people's privacy and a threat to security. It becomes especially critical if data is visible by the general public. Thus, a compromise is needed between open access to data and privacy requirements which can be very different for each application. As privacy is a complex and versatile topic, the focus of this work particularly lies on the visualization of 3D urban data sets. For the purpose of privacy enabled visualizations of 3D city models, we propose to partition the (living) spaces into privacy regions, each featuring its own level of anonymity. Within each region, the depicted 2D and 3D geometry and imagery is anonymized with cartographic generalization techniques. The underlying spatial partitioning is realized as a 2D map generated as a straight skeleton of the open space between buildings. The resulting privacy cells are then merged according to the privacy requirements associated with each building to form larger regions, their borderlines smoothed, and transition zones established between privacy regions to have a harmonious visual appearance. It is exemplarily demonstrated how the proposed method generates privacy enabled 3D city models.

  11. Vizuelizacija 3D modela geopodataka i njihova primjena : Visualisation of the 3D geodata models and their application

    Directory of Open Access Journals (Sweden)

    Mirko Borisov

    2014-12-01

    Full Text Available U radu se opisuju 3D modeli geopodataka i njihova primjena. Na geodetskim planovima i topografskim kartama najčešće se primjenjuju metode prikaza terena (reljefa pomoću kota i izohipsi. Međutim, sa pojavom novih tehnologija mijenja se način vizualizacije i naglašava koncept 3D modela geopodataka. Pritom, koriste se različiti pojmovi: digitalni model visina (DMV, digitalni model terena (DMT, digitalni model površi (DMP i drugo. Infrastruktura i 3D modeli geopodataka su standardizovani, ali se vizualizacija i detaljnost sadržaja mijenja i usklađuje prema namjeni i razmjeri prikaza. Primjena 3D modela geopodataka u digitalnom obliku (raster ili vektor postaje sve više aktuelna i putem interneta. Zato je važno razlikovati navedene pojmove i odlike 3D modela geopodataka kao i mogućnosti njihove primjene. : This paper describes the 3D geodata models and their application. On geodetic plans and topographic maps commonly applied methods of terrain (relief by spots elevation and contour lines. However, with the advent of new technologies the way of the visualisation is changing and highlights the concept 3D geodata model. Namely, there are different concepts: digital elevation model (DEM, digital terrain model (DTM, digital surface model (DSP and so on. Infrastructure and 3D geodata models are standardized, while the visualization and details of information change and adjust the needs and aspect ratio display. Application of 3D geodata models in digital format (raster or vector is becoming increasingly topical over the internet. Therefore, it is important to distinguish between certain concepts and features of 3D geodata models and the possibility of their application.

  12. Causal Dynamical Triangulation of 3D Tensor Model

    CERN Document Server

    Kawabe, Hiroshi

    2016-01-01

    We extend the string field theory of the two dimensional (2D) generalized causal dynamical triangulation (GCDT) with the Ishibashi-Kawai (IK-) type interaction formulated by the matrix model, to the three dimensional (3D) model of the surface field theory. Based on the loop gas model, we construct a tensor model for the discretized surface field and then apply it the stochastic quantization method. In the double scaling limit, the model is characterized by two scaling dimensions $D$ and $D_N$, the power indices of the minimal length as the scaling parameter. The continuum GCDT model with the IK-type interaction is realized with the similar restriction in the $D_N$-$D$ space, to the 2D model. The distinct property in the 3D model is that the quantum effect contains the IK-type interaction only, while the ordinary splitting interaction is excluded.

  13. 3-D QSAutogrid/R: an alternative procedure to build 3-D QSAR models. Methodologies and applications.

    Science.gov (United States)

    Ballante, Flavio; Ragno, Rino

    2012-06-25

    Since it first appeared in 1988 3-D QSAR has proved its potential in the field of drug design and activity prediction. Although thousands of citations now exist in 3-D QSAR, its development was rather slow with the majority of new 3-D QSAR applications just extensions of CoMFA. An alternative way to build 3-D QSAR models, based on an evolution of software, has been named 3-D QSAutogrid/R and has been developed to use only software freely available to academics. 3-D QSAutogrid/R covers all the main features of CoMFA and GRID/GOLPE with implementation by multiprobe/multiregion variable selection (MPGRS) that improves the simplification of interpretation of the 3-D QSAR map. The methodology is based on the integration of the molecular interaction fields as calculated by AutoGrid and the R statistical environment that can be easily coupled with many free graphical molecular interfaces such as UCSF-Chimera, AutoDock Tools, JMol, and others. The description of each R package is reported in detail, and, to assess its validity, 3-D QSAutogrid/R has been applied to three molecular data sets of which either CoMFA or GRID/GOLPE models were reported in order to compare the results. 3-D QSAutogrid/R has been used as the core engine to prepare more that 240 3-D QSAR models forming the very first 3-D QSAR server ( www.3d-qsar.com ) with its code freely available through R-Cran distribution.

  14. Improving Semantic Updating Method on 3d City Models Using Hybrid Semantic-Geometric 3d Segmentation Technique

    Science.gov (United States)

    Sharkawi, K.-H.; Abdul-Rahman, A.

    2013-09-01

    Cities and urban areas entities such as building structures are becoming more complex as the modern human civilizations continue to evolve. The ability to plan and manage every territory especially the urban areas is very important to every government in the world. Planning and managing cities and urban areas based on printed maps and 2D data are getting insufficient and inefficient to cope with the complexity of the new developments in big cities. The emergence of 3D city models have boosted the efficiency in analysing and managing urban areas as the 3D data are proven to represent the real world object more accurately. It has since been adopted as the new trend in buildings and urban management and planning applications. Nowadays, many countries around the world have been generating virtual 3D representation of their major cities. The growing interest in improving the usability of 3D city models has resulted in the development of various tools for analysis based on the 3D city models. Today, 3D city models are generated for various purposes such as for tourism, location-based services, disaster management and urban planning. Meanwhile, modelling 3D objects are getting easier with the emergence of the user-friendly tools for 3D modelling available in the market. Generating 3D buildings with high accuracy also has become easier with the availability of airborne Lidar and terrestrial laser scanning equipments. The availability and accessibility to this technology makes it more sensible to analyse buildings in urban areas using 3D data as it accurately represent the real world objects. The Open Geospatial Consortium (OGC) has accepted CityGML specifications as one of the international standards for representing and exchanging spatial data, making it easier to visualize, store and manage 3D city models data efficiently. CityGML able to represents the semantics, geometry, topology and appearance of 3D city models in five well-defined Level-of-Details (LoD), namely LoD0

  15. Embedding 3D models of biological specimens in PDF publications.

    Science.gov (United States)

    Ruthensteiner, Bernhard; Hess, Martin

    2008-11-01

    By providing two examples, the option for embedding 3D models in electronic versions of life science publications is presented. These examples, presumably representing the first such models published, are developmental stages of an evertebrate (Patella caerulea, Mollusca) and a vertebrate species (Psetta maxima, Teleostei) obtained from histological section series reconstruction processed with the software package Amira. These surface rendering models are particularly suitable for a PDF file because they can easily be transformed to a file format required and components may be conveniently combined and hierarchically arranged. All methodological steps starting from specimen preparation until embedding of resulting models in PDF files with emphasis on conversion of Amira data to the appropriate 3D file format are explained. Usability of 3D models in PDF documents is exemplified and advantages over 2D illustrations are discussed, including better explanation capabilities for spatial arrangements, higher information contents, and limiting options for disguising results by authors. Possibilities for additional applications reaching far beyond the examples presented are suggested. Problems such as long-term compatibility of file format and hardware plus software, editing and embedding of files, file size and differences in information contents between printed and electronic version will likely be overcome by technical development and increasing tendency toward electronic at the cost of printed publications. Since 3D visualization plays an increasing role in manifold disciplines of science and appropriate tools for the popular PDF format are readily available, we propose routine application of this way of illustration in electronic life science papers.

  16. DESIGN OF 3D MODEL OF CUSTOMIZED ANATOMICALLY ADJUSTED IMPLANTS

    Directory of Open Access Journals (Sweden)

    Miodrag Manić

    2015-12-01

    Full Text Available Design and manufacturing of customized implants is a field that has been rapidly developing in recent years. This paper presents an originally developed method for designing a 3D model of customized anatomically adjusted implants. The method is based upon a CT scan of a bone fracture. A CT scan is used to generate a 3D bone model and a fracture model. Using these scans, an indicated location for placing the implant is recognized and the design of a 3D model of customized implants is made. With this method it is possible to design volumetric implants used for replacing a part of the bone or a plate type for fixation of a bone part. The sides of the implants, this one lying on the bone, are fully aligned with the anatomical shape of the bone surface which neighbors the fracture. The given model is designed for implants production utilizing any method, and it is ideal for 3D printing of implants.

  17. Improving 3D spatial queries search: newfangled technique of space filling curves in 3D city modeling

    DEFF Research Database (Denmark)

    Uznir, U.; Anton, François; Suhaibah, A.

    2013-01-01

    web standards. However, these 3D city models consume much more storage compared to two dimensional (2D) spatial data. They involve extra geometrical and topological information together with semantic data. Without a proper spatial data clustering method and its corresponding spatial data access method......, retrieving portions of and especially searching these 3D city models, will not be done optimally. Even though current developments are based on an open data model allotted by the Open Geospatial Consortium (OGC) called CityGML, its XML-based structure makes it challenging to cluster the 3D urban objects...... modeling will improve data retrieval time by means of optimized 3D adjacency, nearest neighbor information and 3D indexing. The Hilbert mapping, which maps a subinterval of the [0, 1] interval to the corresponding portion of the d-dimensional Hilbert’s curve, preserves the Lebesgue measure and is Lipschitz...

  18. Enhanced LOD Concepts for Virtual 3d City Models

    Science.gov (United States)

    Benner, J.; Geiger, A.; Gröger, G.; Häfele, K.-H.; Löwner, M.-O.

    2013-09-01

    Virtual 3D city models contain digital three dimensional representations of city objects like buildings, streets or technical infrastructure. Because size and complexity of these models continuously grow, a Level of Detail (LoD) concept effectively supporting the partitioning of a complete model into alternative models of different complexity and providing metadata, addressing informational content, complexity and quality of each alternative model is indispensable. After a short overview on various LoD concepts, this paper discusses the existing LoD concept of the CityGML standard for 3D city models and identifies a number of deficits. Based on this analysis, an alternative concept is developed and illustrated with several examples. It differentiates between first, a Geometric Level of Detail (GLoD) and a Semantic Level of Detail (SLoD), and second between the interior building and its exterior shell. Finally, a possible implementation of the new concept is demonstrated by means of an UML model.

  19. Active microrheology of a model of the nuclear micromechanical environment

    Science.gov (United States)

    Byrd, Henry; Kilfoil, Maria

    2014-03-01

    In order to successfully complete the final stages of chromosome segregation, eukaryotic cells require the motor enzyme topoisomerase II, which can resolve topological constraints between entangled strands of duplex DNA. We created an in vitro model of a close approximation of the nuclear micromechanical environment in terms of DNA mass and entanglement density, and investigated the influence of this motor enzyme on the DNA mechanics. Topoisomerase II is a non-processive ATPase which we found significantly increases the motions of embedded microspheres in the DNA network. Because of this activity, we study the mechanical properties of our model system by active microrheology by optical trapping. We test the limits of fluctuation dissipation theorem (FDT) under this type of activity by comparing the active microrheology to passive measurements, where thermal motion alone drives the beads. We can relate any departure from FDT to the timescale of topoisomerase II activity in the DNA network. These experiments provide insight into the physical necessity of this motor enzyme in the cell.

  20. Teaching the geological subsurface with 3D models

    Science.gov (United States)

    Thorpe, Steve; Ward, Emma

    2014-05-01

    3D geological models have great potential as a resource when teaching geological concepts as it allows the student to visualise and interrogate UK geology. They are especially useful when dealing with the conversion of 2D field, map and GIS outputs into three dimensional geological units, which is a common problem for many students. Today's earth science students use a variety of skills and processes during their learning experience including spatial thinking, image construction, detecting patterns, making predictions and deducing the orientation of themselves. 3D geological models can reinforce spatial thinking strategies and encourage students to think about processes and properties, in turn helping the student to recognise pre-learnt geological principles in the field and to convert what they see at the surface into a picture of what is going on at depth. The British Geological Survey (BGS) has been producing digital 3D geological models for over 10 years. The models produced are revolutionising the working practices, data standards and products of the BGS. Sharing our geoscience information with academia is highlighted throughout the BGS strategy as is instilling practical skills in future geoscience professionals, such as model building and interpretation. In 2009 a project was launched to investigate the potential of the models as a teaching resource. The study included justifying if and how the models help students to learn, how models have been used historically, and how other forms of modelling are being used today. BGS now produce 3D geological models for use by anyone teaching or learning geoscience. They incorporate educational strategies that will develop geospatial skills and alleviate potential problems that some students experience. They are contained within contemporary case studies and show standard geological concepts, structures, sedimentary rocks, cross sections and field techniques. 3D geological models of the Isle of Wight and Ingleborough

  1. 3D Geological Model for "LUSI" - a Deep Geothermal System

    Science.gov (United States)

    Sohrabi, Reza; Jansen, Gunnar; Mazzini, Adriano; Galvan, Boris; Miller, Stephen A.

    2016-04-01

    Geothermal applications require the correct simulation of flow and heat transport processes in porous media, and many of these media, like deep volcanic hydrothermal systems, host a certain degree of fracturing. This work aims to understand the heat and fluid transport within a new-born sedimentary hosted geothermal system, termed Lusi, that began erupting in 2006 in East Java, Indonesia. Our goal is to develop conceptual and numerical models capable of simulating multiphase flow within large-scale fractured reservoirs such as the Lusi region, with fractures of arbitrary size, orientation and shape. Additionally, these models can also address a number of other applications, including Enhanced Geothermal Systems (EGS), CO2 sequestration (Carbon Capture and Storage CCS), and nuclear waste isolation. Fractured systems are ubiquitous, with a wide-range of lengths and scales, making difficult the development of a general model that can easily handle this complexity. We are developing a flexible continuum approach with an efficient, accurate numerical simulator based on an appropriate 3D geological model representing the structure of the deep geothermal reservoir. Using previous studies, borehole information and seismic data obtained in the framework of the Lusi Lab project (ERC grant n°308126), we present here the first 3D geological model of Lusi. This model is calculated using implicit 3D potential field or multi-potential fields, depending on the geological context and complexity. This method is based on geological pile containing the geological history of the area and relationship between geological bodies allowing automatic computation of intersections and volume reconstruction. Based on the 3D geological model, we developed a new mesh algorithm to create hexahedral octree meshes to transfer the structural geological information for 3D numerical simulations to quantify Thermal-Hydraulic-Mechanical-Chemical (THMC) physical processes.

  2. Improving 1D Stellar Models with 3D Atmospheres

    CERN Document Server

    Mosumgaard, Jakob Rørsted; Weiss, Achim; Christensen-Dalsgaard, Jørgen; Trampedach, Regner

    2016-01-01

    Stellar evolution codes play a major role in present-day astrophysics, yet they share common issues. In this work we seek to remedy some of those by the use of results from realistic and highly detailed 3D hydrodynamical simulations of stellar atmospheres. We have implemented a new temperature stratification extracted directly from the 3D simulations into the Garching Stellar Evolution Code to replace the simplified atmosphere normally used. Secondly, we have implemented the use of a variable mixing-length parameter, which changes as a function of the stellar surface gravity and temperature -- also derived from the 3D simulations. Furthermore, to make our models consistent, we have calculated new opacity tables to match the atmospheric simulations. Here, we present the modified code and initial results on stellar evolution using it.

  3. Coarse-grained modeling of RNA 3D structure.

    Science.gov (United States)

    Dawson, Wayne K; Maciejczyk, Maciej; Jankowska, Elzbieta J; Bujnicki, Janusz M

    2016-07-01

    Functional RNA molecules depend on three-dimensional (3D) structures to carry out their tasks within the cell. Understanding how these molecules interact to carry out their biological roles requires a detailed knowledge of RNA 3D structure and dynamics as well as thermodynamics, which strongly governs the folding of RNA and RNA-RNA interactions as well as a host of other interactions within the cellular environment. Experimental determination of these properties is difficult, and various computational methods have been developed to model the folding of RNA 3D structures and their interactions with other molecules. However, computational methods also have their limitations, especially when the biological effects demand computation of the dynamics beyond a few hundred nanoseconds. For the researcher confronted with such challenges, a more amenable approach is to resort to coarse-grained modeling to reduce the number of data points and computational demand to a more tractable size, while sacrificing as little critical information as possible. This review presents an introduction to the topic of coarse-grained modeling of RNA 3D structures and dynamics, covering both high- and low-resolution strategies. We discuss how physics-based approaches compare with knowledge based methods that rely on databases of information. In the course of this review, we discuss important aspects in the reasoning process behind building different models and the goals and pitfalls that can result.

  4. Volume Sculpting: Intuitive, Interactive 3D Shape Modelling

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas

    A system for interactive modelling of 3D shapes on a computer is presented. The system is intuitive and has a flat learning curve. It is especially well suited to the creation of organic shapes and shapes of complex topology. The interaction is simple; the user can either add new shape features...

  5. 3D Property Modeling of Void Ratio by Cokriging

    Institute of Scientific and Technical Information of China (English)

    Yao Lingqing; Pan Mao; Cheng Qiuming

    2008-01-01

    Void ratio measures compactness of ground soil in geotechnical engineering. When samples are collected in certain area for mapping void ratios, other relevant types of properties such as water content may be also analyzed. To map the spatial distribution of void ratio in the area based on these types of point, observation data interpolation is often needed. Owing to the variance of sampling density along the horizontal and vertical directions, special consideration is required to handle anisotropy of estimator. 3D property modeling aims at predicting the overall distribution of property values from limited samples, and geostatistical method can he employed naturally here because they help to minimize the mean square error of estimation. To construct 3D property model of void ratio, cokriging was used considering its mutual correlation with water content, which is another important soil parameter. Moreover, K-D tree was adopted to organize the samples to accelerate neighbor query in 3D space during the above modeling process. At last, spatial configuration of void ratio distribution in an engineering body was modeled through 3D visualization, which provides important information for civil engineering purpose.

  6. On Angular Sampling Methods for 3-D Spatial Channel Models

    DEFF Research Database (Denmark)

    Fan, Wei; Jämsä, Tommi; Nielsen, Jesper Ødum

    2015-01-01

    This paper discusses generating three dimensional (3D) spatial channel models with emphasis on the angular sampling methods. Three angular sampling methods, i.e. modified uniform power sampling, modified uniform angular sampling, and random pairing methods are proposed and investigated in detail....

  7. Automatic 3D modeling of the urban landscape

    NARCIS (Netherlands)

    I. Esteban; J. Dijk; F. Groen

    2010-01-01

    In this paper we present a fully automatic system for building 3D models of urban areas at the street level. We propose a novel approach for the accurate estimation of the scale consistent camera pose given two previous images. We employ a new method for global optimization and use a novel sampling

  8. Large scale semantic 3D modeling of the urban landscape

    NARCIS (Netherlands)

    I. Esteban Lopez

    2012-01-01

    Modeling and understanding large urban areas is becoming an important topic in a world were everything is being digitized. A semantic and accurate 3D representation of a city can be used in many applications such as event and security planning and management, assisted navigation, autonomous operatio

  9. Automatic 3D Modeling of the Urban Landscape

    NARCIS (Netherlands)

    Esteban, I.; Dijk, J.; Groen, F.A.

    2010-01-01

    In this paper we present a fully automatic system for building 3D models of urban areas at the street level. We propose a novel approach for the accurate estimation of the scale consistent camera pose given two previous images. We employ a new method for global optimization and use a novel sampling

  10. Particle based 3D modeling of positive streamer inception

    NARCIS (Netherlands)

    Teunissen, H.J.

    2012-01-01

    In this report we present a particle based 3D model for the study of streamer inception near positive electrodes in air. The particle code is of the PIC-MCC type and an electrode is included using the charge simulation method. An algorithm for the adaptive creation of super-particles is introduced,

  11. Strains at the myotendinous junction predicted by a micromechanical model.

    Science.gov (United States)

    Sharafi, Bahar; Ames, Elizabeth G; Holmes, Jeffrey W; Blemker, Silvia S

    2011-11-10

    The goal of this work was to create a finite element micromechanical model of the myotendinous junction (MTJ) to examine how the structure and mechanics of the MTJ affect the local micro-scale strains experienced by muscle fibers. We validated the model through comparisons with histological longitudinal sections of muscles fixed in slack and stretched positions. The model predicted deformations of the A-bands within the fiber near the MTJ that were similar to those measured from the histological sections. We then used the model to predict the dependence of local fiber strains on activation and the mechanical properties of the endomysium. The model predicted that peak micro-scale strains increase with activation and as the compliance of the endomysium decreases. Analysis of the models revealed that, in passive stretch, local fiber strains are governed by the difference of the mechanical properties between the fibers and the endomysium. In active stretch, strain distributions are governed by the difference in cross-sectional area along the length of the tapered region of the fiber near the MTJ. The endomysium provides passive resistance that balances the active forces and prevents the tapered region of the fiber from undergoing excessive strain. These model predictions lead to the following hypotheses: (i) the increased likelihood of injury during active lengthening of muscle fibers may be due to the increase in peak strain with activation and (ii) endomysium may play a role in protecting fibers from injury by reducing the strains within the fiber at the MTJ. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Table of 3D organ model IDs and organ names (IS-A Tree) - BodyParts3D | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us BodyParts3D Table of 3D organ model IDs and organ names (IS-A Tree) Data detail Data name Table of 3D organ model...ontents List of downloadable 3D organ models in a tab-delimited text file format, describing the correspondence between 3D organ mode...| Contact Us Table of 3D organ model IDs and organ names (IS-A Tree) - BodyParts3D | LSDB Archive ...

  13. 3D for Geosciences: Interactive Tangibles and Virtual Models

    Science.gov (United States)

    Pippin, J. E.; Matheney, M.; Kitsch, N.; Rosado, G.; Thompson, Z.; Pierce, S. A.

    2016-12-01

    Point cloud processing provides a method of studying and modelling geologic features relevant to geoscience systems and processes. Here, software including Skanect, MeshLab, Blender, PDAL, and PCL are used in conjunction with 3D scanning hardware, including a Structure scanner and a Kinect camera, to create and analyze point cloud images of small scale topography, karst features, tunnels, and structures at high resolution. This project successfully scanned internal karst features ranging from small stalactites to large rooms, as well as an external waterfall feature. For comparison purposes, multiple scans of the same object were merged into single object files both automatically, using commercial software, and manually using open source libraries and code. Files with format .ply were manually converted into numeric data sets to be analyzed for similar regions between files in order to match them together. We can assume a numeric process would be more powerful and efficient than the manual method, however it could lack other useful features that GUI's may have. The digital models have applications in mining as efficient means of replacing topography functions such as measuring distances and areas. Additionally, it is possible to make simulation models such as drilling templates and calculations related to 3D spaces. Advantages of using methods described here for these procedures include the relatively quick time to obtain data and the easy transport of the equipment. With regard to openpit mining, obtaining 3D images of large surfaces and with precision would be a high value tool by georeferencing scan data to interactive maps. The digital 3D images obtained from scans may be saved as printable files to create physical 3D-printable models to create tangible objects based on scientific information, as well as digital "worlds" able to be navigated virtually. The data, models, and algorithms explored here can be used to convey complex scientific ideas to a range of

  14. A biochemical/biophysical 3D FE intervertebral disc model.

    Science.gov (United States)

    Schroeder, Y; Huyghe, J M; van Donkelaar, C C; Ito, K

    2010-10-01

    Present research focuses on different strategies to preserve the degenerated disc. To assure long-term success of novel approaches, favorable mechanical conditions in the disc tissue are essential. To evaluate these, a model is required that can determine internal mechanical conditions which cannot be directly measured as a function of assessable biophysical characteristics. Therefore, the objective is to evaluate if constitutive and material laws acquired on isolated samples of nucleus and annulus tissue can be used directly in a whole-organ 3D FE model to describe intervertebral disc behavior. The 3D osmo-poro-visco-hyper-elastic disc (OVED) model describes disc behavior as a function of annulus and nucleus tissue biochemical composition, organization and specific constituent properties. The description of the 3D collagen network was enhanced to account for smaller fibril structures. Tissue mechanical behavior tests on isolated nucleus and annulus samples were simulated with models incorporating tissue composition to calculate the constituent parameter values. The obtained constitutive laws were incorporated into the whole-organ model. The overall behavior and disc properties of the model were corroborated against in vitro creep experiments of human L4/L5 discs. The OVED model simulated isolated tissue experiments on confined compression and uniaxial tensile test and whole-organ disc behavior. This was possible, provided that secondary fiber structures were accounted for. The fair agreement (radial bulge, axial creep deformation and intradiscal pressure) between model and experiment was obtained using constitutive properties that are the same for annulus and nucleus. Both tissue models differed in the 3D OVED model only by composition. The composition-based modeling presents the advantage of reducing the numbers of material parameters to a minimum and to use tissue composition directly as input. Hence, this approach provides the possibility to describe internal

  15. Statistical skull models from 3D X-ray images

    CERN Document Server

    Berar, M; Bailly, G; Payan, Y; Berar, Maxime; Desvignes, Michel; Payan, Yohan

    2006-01-01

    We present 2 statistical models of the skull and mandible built upon an elastic registration method of 3D meshes. The aim of this work is to relate degrees of freedom of skull anatomy, as static relations are of main interest for anthropology and legal medicine. Statistical models can effectively provide reconstructions together with statistical precision. In our applications, patient-specific meshes of the skull and the mandible are high-density meshes, extracted from 3D CT scans. All our patient-specific meshes are registrated in a subject-shared reference system using our 3D-to-3D elastic matching algorithm. Registration is based upon the minimization of a distance between the high density mesh and a shared low density mesh, defined on the vertexes, in a multi resolution approach. A Principal Component analysis is performed on the normalised registrated data to build a statistical linear model of the skull and mandible shape variation. The accuracy of the reconstruction is under the millimetre in the shape...

  16. Robust 3D reconstruction system for human jaw modeling

    Science.gov (United States)

    Yamany, Sameh M.; Farag, Aly A.; Tazman, David; Farman, Allan G.

    1999-03-01

    This paper presents a model-based vision system for dentistry that will replace traditional approaches used in diagnosis, treatment planning and surgical simulation. Dentistry requires accurate 3D representation of the teeth and jaws for many diagnostic and treatment purposes. For example orthodontic treatment involves the application of force systems to teeth over time to correct malocclusion. In order to evaluate tooth movement progress, the orthodontists monitors this movement by means of visual inspection, intraoral measurements, fabrication of plastic models, photographs and radiographs, a process which is both costly and time consuming. In this paper an integrate system has been developed to record the patient's occlusion using computer vision. Data is acquired with an intraoral video camera. A modified shape from shading (SFS) technique, using perspective projection and camera calibration, is used to extract accurate 3D information from a sequence of 2D images of the jaw. A new technique for 3D data registration, using a Grid Closest Point transform and genetic algorithms, is used to register the SFS output. Triangulization is then performed, and a solid 3D model is obtained via a rapid prototype machine.

  17. The Finite Element Numerical Modelling of 3D Magnetotelluric

    Directory of Open Access Journals (Sweden)

    Ligang Cao

    2014-01-01

    Full Text Available The ideal numerical simulation of 3D magnetotelluric was restricted by the methodology complexity and the time-consuming calculation. Boundary values, the variation of weighted residual equation, and the hexahedral mesh generation method of finite element are three major causes. A finite element method for 3D magnetotelluric numerical modeling is presented in this paper as a solution for the problem mentioned above. In this algorithm, a hexahedral element coefficient matrix for magnetoelluric finite method is developed, which solves large-scale equations using preconditioned conjugate gradient of the first-type boundary conditions. This algorithm is verified using the homogeneous model, and the positive landform model, as well as the low resistance anomaly model.

  18. Modeling Perception of 3D Forms Using Fuzzy Knowledge Bases

    DEFF Research Database (Denmark)

    Achiche, Sofiane; Ahmed, Saeema

    2009-01-01

    the aesthetics of their products are likely to be perceived are of value. In this paper the authors propose an approach to formalize the relationship between geometric information of a 3D object and the intended perception using fuzzy logic. 3D objects (shapes) created by design engineering students to evoke...... a certain perception were analysed. Three different fuzzy logic models, with different input variables, for evaluating massiveness and lightness in a form are proposed. The uthors identified geometric information as inputs of the fuzzy model and developed a set of fuzzy if/then rules to map...... the relationships between the fuzzy sets on each input premise and the output premise. In our case the output premise of the fuzzy logic model is the level of belonging to the design context (perception). An evaluation of how users perceived the shapes was conducted to validate the fuzzy logic models and showed...

  19. RNA and protein 3D structure modeling: similarities and differences.

    Science.gov (United States)

    Rother, Kristian; Rother, Magdalena; Boniecki, Michał; Puton, Tomasz; Bujnicki, Janusz M

    2011-09-01

    In analogy to proteins, the function of RNA depends on its structure and dynamics, which are encoded in the linear sequence. While there are numerous methods for computational prediction of protein 3D structure from sequence, there have been very few such methods for RNA. This review discusses template-based and template-free approaches for macromolecular structure prediction, with special emphasis on comparison between the already tried-and-tested methods for protein structure modeling and the very recently developed "protein-like" modeling methods for RNA. We highlight analogies between many successful methods for modeling of these two types of biological macromolecules and argue that RNA 3D structure can be modeled using "protein-like" methodology. We also highlight the areas where the differences between RNA and proteins require the development of RNA-specific solutions.

  20. A 3D Babcock-Leighton Solar Dynamo Model

    CERN Document Server

    Miesch, Mark S

    2014-01-01

    We present a 3D kinematic solar dynamo model in which poloidal field is generated by the emergence and dispersal of tilted sunspot pairs (more generally Bipolar Magnetic Regions, or BMRs). The axisymmetric component of this model functions similarly to previous 2D Babcock-Leighton (BL) dynamo models that employ a double-ring prescription for poloidal field generation but we generalize this prescription into a 3D flux emergence algorithm that places BMRs on the surface in response to the dynamo-generated toroidal field. In this way, the model can be regarded as a unification of BL dynamo models (2D in radius/latitude) and surface flux transport models (2D in latitude/longitude) into a more self-consistent framework that captures the full 3D structure of the evolving magnetic field. The model reproduces some basic features of the solar cycle including an 11-yr periodicity, equatorward migration of toroidal flux in the deep convection zone, and poleward propagation of poloidal flux at the surface. The poleward-p...

  1. Integrated modeling and 3D visualization for mine complex fields

    Institute of Scientific and Technical Information of China (English)

    LI Zhong-xue; SUN En-ji; LI Cui-ping; MA Bin

    2007-01-01

    Proposed a novel approach to the problem of mine complex fields in a perspective of digital modeling and visual representation, and it aimed at developing a theoretical framework for mine complex fields with the factors and their relationships delineated in a unified manner and at building a prototype for an integrated system of methods, models,and techniques with mine complex fields modeled digitally and represented visually. Specifically, the paper addressed the issues of data mining and knowledge discovery techniques as used in the processing of geological and ore deposit samples, digital modeling techniques as used in the description of mine complex fields, 3D visual simulation techniques as used in the representation of ore bodies and underground excavations, seamless interfacing techniques with other systems such as CAD and web GIS as used in the restructuring of 2D data into 3D models and mapping of 3D models onto 2D graphics, and implementation techniques as used in the case of building a web based prototype system for the integrated modeling and visualization of underground mines.

  2. Fast, Automated, 3D Modeling of Building Interiors

    Science.gov (United States)

    2012-10-30

    Cheng, M. Anderson, S. He, A. Zakhor, "Texture Mapping 3D Planar Models of Indoor Environments with Noisy Camera Poses," SPIE electronic imaging...successfully process noisy scans with non-zero registration error. Most of the processing is performed after a dramatic dimensionality reduction, yielding a...lobby and hallways of a hotel .  Applying textures to these models is an important step in generating photorealistic visualizations of data

  3. Kallen Lehman approach to 3D Ising model

    Science.gov (United States)

    Canfora, F.

    2007-03-01

    A “Kallen-Lehman” approach to Ising model, inspired by quantum field theory à la Regge, is proposed. The analogy with the Kallen-Lehman representation leads to a formula for the free-energy of the 3D model with few free parameters which could be matched with the numerical data. The possible application of this scheme to the spin glass case is shortly discussed.

  4. Modeling of 3D Woven Composites Containing Multiple Delaminations

    Science.gov (United States)

    2012-08-20

    researchers 3D woven composites shows better damage tolerance than laminated textile composites without z-yarns such as plain woven composites even...modeling of quasi-static short beam shear test of plain woven laminated composites. Cohesive elements were used in regions where transverse cracks and...Title ABSTRACT In this paper we present FE modeling of quasi-static short beam shear test of plain woven laminated composites. Cohesive elements were

  5. 3D model of the Bernese Part of the Swiss Molasse Basin: visualization of uncertainties in a 3D model

    Science.gov (United States)

    Mock, Samuel; Allenbach, Robin; Reynolds, Lance; Wehrens, Philip; Kurmann-Matzenauer, Eva; Kuhn, Pascal; Michael, Salomè; Di Tommaso, Gennaro; Herwegh, Marco

    2016-04-01

    The Swiss Molasse Basin comprises the western and central part of the North Alpine Foreland Basin. In recent years it has come under closer scrutiny due to its promising geopotentials such as geothermal energy and CO2 sequestration. In order to adress these topics good knowledge of the subsurface is a key prerequisite. For that matter, geological 3D models serve as valuable tools. In collaboration with the Swiss Geological Survey (swisstopo) and as part of the project GeoMol CH, a geological 3D model of the Swiss Molasse Basin in the Canton of Bern has been built. The model covers an area of 1810 km2and reaches depth of up to 6.7 km. It comprises 10 major Cenozoic and Mesozoic units and numerous faults. The 3D model is mainly based on 2D seismic data complemented by information from few deep wells. Additionally, data from geological maps and profiles were used for refinement at shallow depths. In total, 1163 km of reflection seismic data, along 77 seismic lines, have been interpreted by different authors with respect to stratigraphy and structures. Both, horizons and faults, have been interpreted in 2D and modelled in 3D using IHS's Kingdom Suite and Midland Valley's MOVE software packages, respectively. Given the variable degree of subsurface information available, each 3D model is subject of uncertainty. With the primary input data coming from interpretation of reflection seismic data, a variety of uncertainties comes into play. Some of them are difficult to address (e.g. author's style of interpretation) while others can be quantified (e.g. mis-tie correction, well-tie). An important source of uncertainties is the quality of seismic data; this affects the traceability and lateral continuation of seismic reflectors. By defining quality classes we can semi-quantify this source of uncertainty. In order to visualize the quality and density of the input data in a meaningful way, we introduce quality-weighted data density maps. In combination with the geological 3D

  6. Experimental Characterization and Micromechanical Modelling of Anisotropic Slates

    Science.gov (United States)

    Chen, Yi-Feng; Wei, Kai; Liu, Wu; Hu, Shao-Hua; Hu, Ran; Zhou, Chuang-Bing

    2016-09-01

    Laboratory tests were performed in this study to examine the anisotropic physical and mechanical properties of the well-foliated Jiujiang slate. The P-wave velocity and the apparent Young's modulus were found to increase remarkably with the foliation angle θ, and the compressive strength at any confining pressure varies in a typical U-shaped trend, with the maximum strength consistently attained at θ = 90° and the minimum strength at θ = 45°. The slate samples failed in three typical patterns relevant to the foliation angle, i.e. shear failure across foliation planes for θ ≤ 15°, sliding along foliation planes for 30° ≤ θ ≤ 60° and axial splitting along foliation planes for θ = 90°. The stress-strain curves at any given foliation angle and confining pressure display an initial nonlinear phase, a linear elastic phase, a crack initiation and growth phase, as well as a rapid stress drop phase and a residual stress phase. Based on the experimental evidences, a micromechanical damage-friction model was proposed for the foliated slate by simply modelling the foliation planes as a family of elastic interfaces and by characterizing the interaction between the foliation planes and the rock matrix with a nonlinear damage evolution law associated with the inclination angle. The proposed model was applied to predict the deformational and strength behaviours of the foliated slate under triaxial compressive conditions using the material parameters calibrated with the uniaxial and/or triaxial test data, with good agreement between the model predictions and the laboratory measurements.

  7. Geometric and colour data fusion for outdoor 3D models.

    Science.gov (United States)

    Merchán, Pilar; Adán, Antonio; Salamanca, Santiago; Domínguez, Vicente; Chacón, Ricardo

    2012-01-01

    This paper deals with the generation of accurate, dense and coloured 3D models of outdoor scenarios from scanners. This is a challenging research field in which several problems still remain unsolved. In particular, the process of 3D model creation in outdoor scenes may be inefficient if the scene is digitalized under unsuitable technical (specific scanner on-board camera) and environmental (rain, dampness, changing illumination) conditions. We address our research towards the integration of images and range data to produce photorealistic models. Our proposal is based on decoupling the colour integration and geometry reconstruction stages, making them independent and controlled processes. This issue is approached from two different viewpoints. On the one hand, given a complete model (geometry plus texture), we propose a method to modify the original texture provided by the scanner on-board camera with the colour information extracted from external images taken at given moments and under specific environmental conditions. On the other hand, we propose an algorithm to directly assign external images onto the complete geometric model, thus avoiding tedious on-line calibration processes. We present the work conducted on two large Roman archaeological sites dating from the first century A.D., namely, the Theatre of Segobriga and the Fori Porticus of Emerita Augusta, both in Spain. The results obtained demonstrate that our approach could be useful in the digitalization and 3D modelling fields.

  8. Geometric and Colour Data Fusion for Outdoor 3D Models

    Directory of Open Access Journals (Sweden)

    Ricardo Chacón

    2012-05-01

    Full Text Available This paper deals with the generation of accurate, dense and coloured 3D models of outdoor scenarios from scanners. This is a challenging research field in which several problems still remain unsolved. In particular, the process of 3D model creation in outdoor scenes may be inefficient if the scene is digitalized under unsuitable technical (specific scanner on-board camera and environmental (rain, dampness, changing illumination conditions. We address our research towards the integration of images and range data to produce photorealistic models. Our proposal is based on decoupling the colour integration and geometry reconstruction stages, making them independent and controlled processes. This issue is approached from two different viewpoints. On the one hand, given a complete model (geometry plus texture, we propose a method to modify the original texture provided by the scanner on-board camera with the colour information extracted from external images taken at given moments and under specific environmental conditions. On the other hand, we propose an algorithm to directly assign external images onto the complete geometric model, thus avoiding tedious on-line calibration processes. We present the work conducted on two large Roman archaeological sites dating from the first century A.D., namely, the Theatre of Segobriga and the Fori Porticus of Emerita Augusta, both in Spain. The results obtained demonstrate that our approach could be useful in the digitalization and 3D modelling fields.

  9. Parallel tempering and 3D spin glass models

    Science.gov (United States)

    Papakonstantinou, T.; Malakis, A.

    2014-03-01

    We review parallel tempering schemes and examine their main ingredients for accuracy and efficiency. We discuss two selection methods of temperatures and some alternatives for the exchange of replicas, including all-pair exchange methods. We measure specific heat errors and round-trip efficiency using the two-dimensional (2D) Ising model, and also test the efficiency for the ground state production in 3D spin glass models. We find that the optimization of the GS problem is highly influenced by the choice of the temperature range of the PT process. Finally, we present numerical evidence concerning the universality aspects of an anisotropic case of the 3D spin-glass model.

  10. 3D contaminant migration model with consolidation dependent transport coefficients

    Institute of Scientific and Technical Information of China (English)

    Lu Huang; Cheng-Gang Zhao; Yan Liu; Guo-Qing Cai

    2012-01-01

    Soil consolidation would induce variations of its transport coefficients such as hydraulic conductivity and diffusion coefficient. This paper presents a study of the influence of barrier consolidation on transport coefficients,and a 3D transport model based on mixture theory is proposed for describing the liners that involve circular defects in the geomembrane.The elastoplastic ALPHA model is revised by using the spatially mobilized plane (SMP) criterion for simulating the deformation of the soils.Then,the 3D model coupling the nonlinear consolidation and contaminant advection-diffusion is solved using the finite element software ABAQUS.The results show that the importance of reducing the defect size in the geomembrane and the liner porosity to control the contaminant concentration increase.

  11. Technical illustration based on 3D CSG models

    Institute of Scientific and Technical Information of China (English)

    GENG Wei-dong; DING Lei; YU Hong-feng; PAN Yun-he

    2005-01-01

    This paper presents an automatic non-photorealistic rendering approach to generating technical illustration from 3D models. It first decomposes the 3D object into a set of CSG primitives, and then performs the hidden surface removal based on the prioritized list, in which the rendition order of CSG primitives is sorted out by depth. Then, each primitive is illustrated by the pre-defined empirical lighting model, and the system mimics the stroke-drawing by user-specified style. In order to artistically and flexibly modulate the illumination, the empirical lighting model is defined by three major components: parameters of multi-level lighting intensities, parametric spatial occupations for each lighting level, and an interpolation method to calculate the lighting units into the spatial occupation of CSG primitives, instead of"pixel-by-pixel" painting. This region-by-region shading facilitates the simulation of illustration styles.

  12. 3-D model-based tracking for UAV indoor localization.

    Science.gov (United States)

    Teulière, Céline; Marchand, Eric; Eck, Laurent

    2015-05-01

    This paper proposes a novel model-based tracking approach for 3-D localization. One main difficulty of standard model-based approach lies in the presence of low-level ambiguities between different edges. In this paper, given a 3-D model of the edges of the environment, we derive a multiple hypotheses tracker which retrieves the potential poses of the camera from the observations in the image. We also show how these candidate poses can be integrated into a particle filtering framework to guide the particle set toward the peaks of the distribution. Motivated by the UAV indoor localization problem where GPS signal is not available, we validate the algorithm on real image sequences from UAV flights.

  13. Two-equation turbulence modeling for 3-D hypersonic flows

    Science.gov (United States)

    Bardina, J. E.; Coakley, T. J.; Marvin, J. G.

    1992-01-01

    An investigation to verify, incorporate and develop two-equation turbulence models for three-dimensional high speed flows is presented. The current design effort of hypersonic vehicles has led to an intensive study of turbulence models for compressible hypersonic flows. This research complements an extensive review of experimental data and the current development of 2D turbulence models. The review of experimental data on 2D and 3D flows includes complex hypersonic flows with pressure profiles, skin friction, wall heat transfer, and turbulence statistics data. In a parallel effort, turbulence models for high speed flows have been tested against flat plate boundary layers, and are being tested against the 2D database. In the present paper, we present the results of 3D Navier-Stokes numerical simulations with an improved k-omega two-equation turbulence model against experimental data and empirical correlations of an adiabatic flat plate boundary layer, a cold wall flat plate boundary layer, and a 3D database flow, the interaction of an oblique shock wave and a thick turbulent boundary layer with a free stream Mach number = 8.18 and Reynolds number = 5 x 10 to the 6th.

  14. Generation and use of human 3D-CAD models

    Science.gov (United States)

    Grotepass, Juergen; Speyer, Hartmut; Kaiser, Ralf

    2002-05-01

    Individualized Products are one of the ten mega trends of the 21st Century with human modeling as the key issue for tomorrow's design and product development. The use of human modeling software for computer based ergonomic simulations within the production process increases quality while reducing costs by 30- 50 percent and shortening production time. This presentation focuses on the use of human 3D-CAD models for both, the ergonomic design of working environments and made to measure garment production. Today, the entire production chain can be designed, individualized models generated and analyzed in 3D computer environments. Anthropometric design for ergonomics is matched to human needs, thus preserving health. Ergonomic simulation includes topics as human vision, reachability, kinematics, force and comfort analysis and international design capabilities. In German more than 17 billions of Mark are moved to other industries, because clothes do not fit. Individual clothing tailored to the customer's preference means surplus value, pleasure and perfect fit. The body scanning technology is the key to generation and use of human 3D-CAD models for both, the ergonomic design of working environments and made to measure garment production.

  15. Method for modeling post-mortem biometric 3D fingerprints

    Science.gov (United States)

    Rajeev, Srijith; Shreyas, Kamath K. M.; Agaian, Sos S.

    2016-05-01

    Despite the advancements of fingerprint recognition in 2-D and 3-D domain, authenticating deformed/post-mortem fingerprints continue to be an important challenge. Prior cleansing and reconditioning of the deceased finger is required before acquisition of the fingerprint. The victim's finger needs to be precisely and carefully operated by a medium to record the fingerprint impression. This process may damage the structure of the finger, which subsequently leads to higher false rejection rates. This paper proposes a non-invasive method to perform 3-D deformed/post-mortem finger modeling, which produces a 2-D rolled equivalent fingerprint for automated verification. The presented novel modeling method involves masking, filtering, and unrolling. Computer simulations were conducted on finger models with different depth variations obtained from Flashscan3D LLC. Results illustrate that the modeling scheme provides a viable 2-D fingerprint of deformed models for automated verification. The quality and adaptability of the obtained unrolled 2-D fingerprints were analyzed using NIST fingerprint software. Eventually, the presented method could be extended to other biometric traits such as palm, foot, tongue etc. for security and administrative applications.

  16. 3D cartographic modeling of the Alpine arc

    Science.gov (United States)

    Vouillamoz, Naomi; Sue, Christian; Champagnac, Jean-Daniel; Calcagno, Philippe

    2012-12-01

    We built a 3D cartography of the Alpine arc, a highly non-cylindrical mountain belt, using the 3D GeoModeller of the BRGM (French geological survey). The model allows to handle the large-scale 3D structure of seventeen major crustal units of the belt (from the lower crust to the sedimentary cover nappes), and two main discontinuities (the Insubric Line and the Crustal Penninic Front). It provides a unique document to better understand their structural relationships and to produce new sections. The study area comprises the western Alpine arc, from the Jura to the Northwest, up to the Bergell granite intrusion and the Lepontine Dome to the East, and is limited to the South by the Ligurian basin. The model is limited vertically 10 km above sea level at the top, and the moho interface at the bottom. We discarded the structural relationships between the Alps sensus stricto and the surrounding geodynamic systems such as the Rhine graben or the connection with the Apennines. The 3D-model is based on the global integration of various data such as the DEM of the Alps, the moho isobaths, the simplified geological and tectonic maps of the belt, the crustal cross-sections ECORS-CROP and NFP-20, and complementary cross-sections specifically built to precise local complexities. The database has first been integrated in a GIS-project to prepare their implementation in the GeoModeller, by homogenizing the different spatial referencing systems. The global model is finally interpolated from all these data, using the potential field method. The final document is a new tri-dimensional cartography that would be used as input for further alpine studies.

  17. Geometric and Textural Blending for 3D Model Stylization.

    Science.gov (United States)

    Huang, YiJheng; Lin, Wen-Chieh; Yeh, I-Cheng; Lee, Tong-Yee

    2017-01-25

    Stylizing a 3D model with characteristic shapes or appearances is common in product design, particularly in the design of 3D model merchandise, such as souvenirs, toys, furniture, and stylized items. A model stylization approach is proposed in this study. The approach combines base and style models while preserving user-specified shape features of the base model and the attractive features of the style model with limited assistance from a user. The two models are first combined at the topological level. A tree-growing technique is utilized to search for all possible combinations of the two models. Second, the models are combined at textural and geometric levels by employing a morphing technique. Results show that the proposed approach generates various appealing models and allows users to control the diversity of the output models and adjust the blending degree between the base and style models. The results of this work are also experimentally compared with those of a recent work through a user study. The comparison indicates that our results are more appealing, feature-preserving, and reasonable than those of the compared previous study. The proposed system allows product designers to easily explore design possibilities and assists novice users in creating their own stylized models.

  18. CityGML - Interoperable semantic 3D city models

    Science.gov (United States)

    Gröger, Gerhard; Plümer, Lutz

    2012-07-01

    CityGML is the international standard of the Open Geospatial Consortium (OGC) for the representation and exchange of 3D city models. It defines the three-dimensional geometry, topology, semantics and appearance of the most relevant topographic objects in urban or regional contexts. These definitions are provided in different, well-defined Levels-of-Detail (multiresolution model). The focus of CityGML is on the semantical aspects of 3D city models, its structures, taxonomies and aggregations, allowing users to employ virtual 3D city models for advanced analysis and visualization tasks in a variety of application domains such as urban planning, indoor/outdoor pedestrian navigation, environmental simulations, cultural heritage, or facility management. This is in contrast to purely geometrical/graphical models such as KML, VRML, or X3D, which do not provide sufficient semantics. CityGML is based on the Geography Markup Language (GML), which provides a standardized geometry model. Due to this model and its well-defined semantics and structures, CityGML facilitates interoperable data exchange in the context of geo web services and spatial data infrastructures. Since its standardization in 2008, CityGML has become used on a worldwide scale: tools from notable companies in the geospatial field provide CityGML interfaces. Many applications and projects use this standard. CityGML is also having a strong impact on science: numerous approaches use CityGML, particularly its semantics, for disaster management, emergency responses, or energy-related applications as well as for visualizations, or they contribute to CityGML, improving its consistency and validity, or use CityGML, particularly its different Levels-of-Detail, as a source or target for generalizations. This paper gives an overview of CityGML, its underlying concepts, its Levels-of-Detail, how to extend it, its applications, its likely future development, and the role it plays in scientific research. Furthermore, its

  19. Lattice percolation approach to 3D modeling of tissue aging

    Science.gov (United States)

    Gorshkov, Vyacheslav; Privman, Vladimir; Libert, Sergiy

    2016-11-01

    We describe a 3D percolation-type approach to modeling of the processes of aging and certain other properties of tissues analyzed as systems consisting of interacting cells. Lattice sites are designated as regular (healthy) cells, senescent cells, or vacancies left by dead (apoptotic) cells. The system is then studied dynamically with the ongoing processes including regular cell dividing to fill vacant sites, healthy cells becoming senescent or dying, and senescent cells dying. Statistical-mechanics description can provide patterns of time dependence and snapshots of morphological system properties. The developed theoretical modeling approach is found not only to corroborate recent experimental findings that inhibition of senescence can lead to extended lifespan, but also to confirm that, unlike 2D, in 3D senescent cells can contribute to tissue's connectivity/mechanical stability. The latter effect occurs by senescent cells forming the second infinite cluster in the regime when the regular (healthy) cell's infinite cluster still exists.

  20. Multi-scale representations of virtual 3D city models

    OpenAIRE

    Glander, Tassilo

    2013-01-01

    Virtual 3D city and landscape models are the main subject investigated in this thesis. They digitally represent urban space and have many applications in different domains, e.g., simulation, cadastral management, and city planning. Visualization is an elementary component of these applications. Photo-realistic visualization with an increasingly high degree of detail leads to fundamental problems for comprehensible visualization. A large number of highly detailed and textured objects within a ...

  1. Modeling 3D faces from samplings via compressive sensing

    Science.gov (United States)

    Sun, Qi; Tang, Yanlong; Hu, Ping

    2013-07-01

    3D data is easier to acquire for family entertainment purpose today because of the mass-production, cheapness and portability of domestic RGBD sensors, e.g., Microsoft Kinect. However, the accuracy of facial modeling is affected by the roughness and instability of the raw input data from such sensors. To overcome this problem, we introduce compressive sensing (CS) method to build a novel 3D super-resolution scheme to reconstruct high-resolution facial models from rough samples captured by Kinect. Unlike the simple frame fusion super-resolution method, this approach aims to acquire compressed samples for storage before a high-resolution image is produced. In this scheme, depth frames are firstly captured and then each of them is measured into compressed samples using sparse coding. Next, the samples are fused to produce an optimal one and finally a high-resolution image is recovered from the fused sample. This framework is able to recover 3D facial model of a given user from compressed simples and this can reducing storage space as well as measurement cost in future devices e.g., single-pixel depth cameras. Hence, this work can potentially be applied into future applications, such as access control system using face recognition, and smart phones with depth cameras, which need high resolution and little measure time.

  2. Micromechanical Models of Mechanical Response of High Performance Fibre Reinforced Cement Composites

    DEFF Research Database (Denmark)

    Li, V. C.; Mihashi, H.; Alwan, J.;

    1996-01-01

    generation of FRC with high performance and economical viability, is in sight. However, utilization of micromechanical models for a more comprehensive set of important HPFRCC properties awaits further investigations into fundamental mechanisms governing composite properties, as well as intergrative efforts......The state-of-the-art in micromechanical modeling of the mechanical response of HPFRCC is reviewed. Much advances in modeling has been made over the last decade to the point that certain properties of composites can be carefully designed using the models as analytic tools. As a result, a new...

  3. 3D Shape Modeling Using High Level Descriptors

    DEFF Research Database (Denmark)

    Andersen, Vedrana

    The goal of this Ph.D. project is to investigate and improve the methods for describing the surface of 3D objects, with focus on modeling geometric texture on surfaces. Surface modeling being a large field of research, the work done during this project concentrated around a few smaller areas corr...... of my work involved developing feature-aware resizing of models with complex surfaces consisting of underlying shape and a distinctive texture detail. The aim was to deform an object while preserving the shape and size of the features....

  4. 3D-printer visualization of neuron models

    Directory of Open Access Journals (Sweden)

    Robert A McDougal

    2015-06-01

    Full Text Available Neurons come in a wide variety of shapes and sizes. In a quest to understand this neuronal diversity, researchers have three-dimensionally traced tens of thousands of neurons; many of these tracings are freely available through online repositories like NeuroMorpho.Org and ModelDB. Tracings can be visualized on the computer screen, used for statistical analysis of the properties of different cell types, used to simulate neuronal behavior, and more. We introduce the use of 3D printing as a technique for visualizing traced morphologies. Our method for generating printable versions of a cell or group of cells is to expand dendrite and axon diameters and then to transform the wireframe tracing into a 3D object with a neuronal surface generating algorithm like Constructive Tessellated Neuronal Geometry (CTNG. We show that 3D printed cells can be readily examined, manipulated, and compared with other neurons to gain insight into both the biology and the reconstruction process. We share our printable models in a new database, 3DModelDB, and encourage others to do the same with cells that they generate using our code or other methods. To provide additional context, 3DModelDB provides a simulatable version of each cell, links to papers that use or describe it, and links to associated entries in other databases.

  5. Right approach to 3D modeling using CAD tools

    Science.gov (United States)

    Baddam, Mounica Reddy

    The thesis provides a step-by-step methodology to enable an instructor dealing with CAD tools to optimally guide his/her students through an understandable 3D modeling approach which will not only enhance their knowledge about the tool's usage but also enable them to achieve their desired result in comparatively lesser time. In the known practical field, there is particularly very little information available to apply CAD skills to formal beginners' training sessions. Additionally, advent of new software in 3D domain cumulates updating into a more difficult task. Keeping up to the industry's advanced requirements emphasizes the importance of more skilled hands in the field of CAD development, rather than just prioritizing manufacturing in terms of complex software features. The thesis analyses different 3D modeling approaches specified to the varieties of CAD tools currently available in the market. Utilizing performance-time databases, learning curves have been generated to measure their performance time, feature count etc. Based on the results, improvement parameters have also been provided for (Asperl, 2005).

  6. Effective 3-D surface modeling for geographic information systems

    Directory of Open Access Journals (Sweden)

    K. Yüksek

    2013-11-01

    Full Text Available In this work, we propose a dynamic, flexible and interactive urban digital terrain platform (DTP with spatial data and query processing capabilities of Geographic Information Systems (GIS, multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized Directional Replacement Policy (DRP based buffer management scheme. Polyhedron structures are used in Digital Surface Modeling (DSM and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g. X3-D and VRML and services which integrate multi-dimensional spatial information and satellite/aerial imagery.

  7. 3D-printer visualization of neuron models.

    Science.gov (United States)

    McDougal, Robert A; Shepherd, Gordon M

    2015-01-01

    Neurons come in a wide variety of shapes and sizes. In a quest to understand this neuronal diversity, researchers have three-dimensionally traced tens of thousands of neurons; many of these tracings are freely available through online repositories like NeuroMorpho.Org and ModelDB. Tracings can be visualized on the computer screen, used for statistical analysis of the properties of different cell types, used to simulate neuronal behavior, and more. We introduce the use of 3D printing as a technique for visualizing traced morphologies. Our method for generating printable versions of a cell or group of cells is to expand dendrite and axon diameters and then to transform the tracing into a 3D object with a neuronal surface generating algorithm like Constructive Tessellated Neuronal Geometry (CTNG). We show that 3D printed cells can be readily examined, manipulated, and compared with other neurons to gain insight into both the biology and the reconstruction process. We share our printable models in a new database, 3DModelDB, and encourage others to do the same with cells that they generate using our code or other methods. To provide additional context, 3DModelDB provides a simulatable version of each cell, links to papers that use or describe it, and links to associated entries in other databases.

  8. Effective 3-D surface modeling for geographic information systems

    Science.gov (United States)

    Yüksek, K.; Alparslan, M.; Mendi, E.

    2016-01-01

    In this work, we propose a dynamic, flexible and interactive urban digital terrain platform with spatial data and query processing capabilities of geographic information systems, multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized directional replacement policy (DRP) based buffer management scheme. Polyhedron structures are used in digital surface modeling and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g., X3-D and VRML) and services which integrate multi-dimensional spatial information and satellite/aerial imagery.

  9. Computational Challenges of 3D Radiative Transfer in Atmospheric Models

    Science.gov (United States)

    Jakub, Fabian; Bernhard, Mayer

    2017-04-01

    The computation of radiative heating and cooling rates is one of the most expensive components in todays atmospheric models. The high computational cost stems not only from the laborious integration over a wide range of the electromagnetic spectrum but also from the fact that solving the integro-differential radiative transfer equation for monochromatic light is already rather involved. This lead to the advent of numerous approximations and parameterizations to reduce the cost of the solver. One of the most prominent one is the so called independent pixel approximations (IPA) where horizontal energy transfer is neglected whatsoever and radiation may only propagate in the vertical direction (1D). Recent studies implicate that the IPA introduces significant errors in high resolution simulations and affects the evolution and development of convective systems. However, using fully 3D solvers such as for example MonteCarlo methods is not even on state of the art supercomputers feasible. The parallelization of atmospheric models is often realized by a horizontal domain decomposition, and hence, horizontal transfer of energy necessitates communication. E.g. a cloud's shadow at a low zenith angle will cast a long shadow and potentially needs to communication through a multitude of processors. Especially light in the solar spectral range may travel long distances through the atmosphere. Concerning highly parallel simulations, it is vital that 3D radiative transfer solvers put a special emphasis on parallel scalability. We will present an introduction to intricacies computing 3D radiative heating and cooling rates as well as report on the parallel performance of the TenStream solver. The TenStream is a 3D radiative transfer solver using the PETSc framework to iteratively solve a set of partial differential equation. We investigate two matrix preconditioners, (a) geometric algebraic multigrid preconditioning(MG+GAMG) and (b) block Jacobi incomplete LU (ILU) factorization. The

  10. Underwater 3d Modeling: Image Enhancement and Point Cloud Filtering

    Science.gov (United States)

    Sarakinou, I.; Papadimitriou, K.; Georgoula, O.; Patias, P.

    2016-06-01

    This paper examines the results of image enhancement and point cloud filtering on the visual and geometric quality of 3D models for the representation of underwater features. Specifically it evaluates the combination of effects from the manual editing of images' radiometry (captured at shallow depths) and the selection of parameters for point cloud definition and mesh building (processed in 3D modeling software). Such datasets, are usually collected by divers, handled by scientists and used for geovisualization purposes. In the presented study, have been created 3D models from three sets of images (seafloor, part of a wreck and a small boat's wreck) captured at three different depths (3.5m, 10m and 14m respectively). Four models have been created from the first dataset (seafloor) in order to evaluate the results from the application of image enhancement techniques and point cloud filtering. The main process for this preliminary study included a) the definition of parameters for the point cloud filtering and the creation of a reference model, b) the radiometric editing of images, followed by the creation of three improved models and c) the assessment of results by comparing the visual and the geometric quality of improved models versus the reference one. Finally, the selected technique is tested on two other data sets in order to examine its appropriateness for different depths (at 10m and 14m) and different objects (part of a wreck and a small boat's wreck) in the context of an ongoing research in the Laboratory of Photogrammetry and Remote Sensing.

  11. UNDERWATER 3D MODELING: IMAGE ENHANCEMENT AND POINT CLOUD FILTERING

    Directory of Open Access Journals (Sweden)

    I. Sarakinou

    2016-06-01

    Full Text Available This paper examines the results of image enhancement and point cloud filtering on the visual and geometric quality of 3D models for the representation of underwater features. Specifically it evaluates the combination of effects from the manual editing of images’ radiometry (captured at shallow depths and the selection of parameters for point cloud definition and mesh building (processed in 3D modeling software. Such datasets, are usually collected by divers, handled by scientists and used for geovisualization purposes. In the presented study, have been created 3D models from three sets of images (seafloor, part of a wreck and a small boat's wreck captured at three different depths (3.5m, 10m and 14m respectively. Four models have been created from the first dataset (seafloor in order to evaluate the results from the application of image enhancement techniques and point cloud filtering. The main process for this preliminary study included a the definition of parameters for the point cloud filtering and the creation of a reference model, b the radiometric editing of images, followed by the creation of three improved models and c the assessment of results by comparing the visual and the geometric quality of improved models versus the reference one. Finally, the selected technique is tested on two other data sets in order to examine its appropriateness for different depths (at 10m and 14m and different objects (part of a wreck and a small boat's wreck in the context of an ongoing research in the Laboratory of Photogrammetry and Remote Sensing.

  12. 3D Massive MIMO Systems: Channel Modeling and Performance Analysis

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain

    2015-03-01

    Multiple-input-multiple-output (MIMO) systems of current LTE releases are capable of adaptation in the azimuth only. More recently, the trend is to enhance the system performance by exploiting the channel\\'s degrees of freedom in the elevation through the dynamic adaptation of the vertical antenna beam pattern. This necessitates the derivation and characterization of three-dimensional (3D) channels. Over the years, channel models have evolved to address the challenges of wireless communication technologies. In parallel to theoretical studies on channel modeling, many standardized channel models like COST-based models, 3GPP SCM, WINNER, ITU have emerged that act as references for industries and telecommunication companies to assess system-level and link-level performances of advanced signal processing techniques over real-like channels. Given the existing channels are only two dimensional (2D) in nature; a large effort in channel modeling is needed to study the impact of the channel component in the elevation direction. The first part of this work sheds light on the current 3GPP activity around 3D channel modeling and beamforming, an aspect that to our knowledge has not been extensively covered by a research publication. The standardized MIMO channel model is presented, that incorporates both the propagation effects of the environment and the radio effects of the antennas. In order to facilitate future studies on the use of 3D beamforming, the main features of the proposed 3D channel model are discussed. A brief overview of the future 3GPP 3D channel model being outlined for the next generation of wireless networks is also provided. In the subsequent part of this work, we present an information-theoretic channel model for MIMO systems that supports the elevation dimension. The model is based on the principle of maximum entropy, which enables us to determine the distribution of the channel matrix consistent with the prior information on the angles of departure and

  13. Image-Based 3D Face Modeling System

    Directory of Open Access Journals (Sweden)

    Vladimir Vezhnevets

    2005-08-01

    Full Text Available This paper describes an automatic system for 3D face modeling using frontal and profile images taken by an ordinary digital camera. The system consists of four subsystems including frontal feature detection, profile feature detection, shape deformation, and texture generation modules. The frontal and profile feature detection modules automatically extract the facial parts such as the eye, nose, mouth, and ear. The shape deformation module utilizes the detected features to deform the generic head mesh model such that the deformed model coincides with the detected features. A texture is created by combining the facial textures augmented from the input images and the synthesized texture and mapped onto the deformed generic head model. This paper provides a practical system for 3D face modeling, which is highly automated by aggregating, customizing, and optimizing a bunch of individual computer vision algorithms. The experimental results show a highly automated process of modeling, which is sufficiently robust to various imaging conditions. The whole model creation including all the optional manual corrections takes only 2∼3 minutes.

  14. 3D flare particle model for ShipIR/NTCS

    Science.gov (United States)

    Ramaswamy, Srinivasan; Vaitekunas, David A.

    2016-05-01

    A key component in any soft-kill response to an incoming guided missile is the flare /chaff decoy used to distract or seduce the seeker homing system away from the naval platform. This paper describes a new 3D flare particle model in the naval threat countermeasure simulator (NTCS) of the NATO-standard ship signature model (ShipIR), which provides independent control over the size and radial distribution of its signature. The 3D particles of each flare sub-munition are modelled stochastically and rendered using OpenGL z-buffering, 2D projection, and alpha-blending to produce a unique and time varying signature. A sensitivity analysis on each input parameter provides the data and methods needed to synthesize a model from an IR measurement of a decoy. The new model also eliminated artifacts and deficiencies in our previous model which prevented reliable tracks from the adaptive track gate algorithm already presented by Ramaswamy and Vaitekunas (2015). A sequence of scenarios are used to test and demonstrate the new flare model during a missile engagement.

  15. 3D finite element model for treatment of cleft lip

    Science.gov (United States)

    Jiao, Chun; Hong, Dongming; Lu, Hongbing; Wang, Jianqi; Lin, Qin; Liang, Zhengrong

    2009-02-01

    Cleft lip is a congenital facial deformity with high occurrence rate in China. Surgical procedure involving Millard or Tennison methods is usually employed for treatment of cleft lip. However, due to the elasticity of the soft tissues and the mechanical interaction between skin and maxillary, the occurrence rate of facial abnormality or dehisce is still high after the surgery, leading to multiple operations of the patient. In this study, a framework of constructing a realistic 3D finite element model (FEM) for the treatment of cleft lip has been established. It consists of two major steps. The first one is the reconstruction of a 3D geometrical model of the cleft lip from scanning CT data. The second step is the build-up of a FEM for cleft lip using the geometric model, where the material property of all the tetrahedrons was calculated from the CT densities directly using an empirical curve. The simulation results demonstrated (1) the deformation procedure of the model step-by-step when forces were applied, (2) the stress distribution inside the model, and (3) the displacement of all elements in the model. With the computer simulation, the minimal force of having the cleft be repaired is predicted, as well as whether a given force sufficient for the treatment of a specific individual. It indicates that the proposed framework could integrate the treatment planning with stress analysis based on a realistic patient model.

  16. Using Micromechanical Resonators to Measure Rheological Properties and Alcohol Content of Model Solutions and Commercial Beverages

    Directory of Open Access Journals (Sweden)

    Bart W. Hoogenboom

    2012-05-01

    Full Text Available Micromechanic resonators provide a small-volume and potentially high-throughput method to determine rheological properties of fluids. Here we explore the accuracy in measuring mass density and viscosity of ethanol-water and glycerol-water model solutions, using a simple and easily implemented model to deduce the hydrodynamic effects on resonating cantilevers of various length-to-width aspect ratios. We next show that these measurements can be extended to determine the alcohol percentage of both model solutions and commercial beverages such as beer, wine and liquor. This demonstrates how micromechanical resonators can be used for quality control of every-day drinks.

  17. Using micromechanical resonators to measure rheological properties and alcohol content of model solutions and commercial beverages.

    Science.gov (United States)

    Paxman, Rosemary; Stinson, Jake; Dejardin, Anna; McKendry, Rachel A; Hoogenboom, Bart W

    2012-01-01

    Micromechanic resonators provide a small-volume and potentially high-throughput method to determine rheological properties of fluids. Here we explore the accuracy in measuring mass density and viscosity of ethanol-water and glycerol-water model solutions, using a simple and easily implemented model to deduce the hydrodynamic effects on resonating cantilevers of various length-to-width aspect ratios. We next show that these measurements can be extended to determine the alcohol percentage of both model solutions and commercial beverages such as beer, wine and liquor. This demonstrates how micromechanical resonators can be used for quality control of every-day drinks.

  18. Electromagnetic Mathematical Modeling of 3D Supershaped Dielectric Lens Antennas

    Directory of Open Access Journals (Sweden)

    L. Mescia

    2016-01-01

    Full Text Available The electromagnetic analysis of a special class of 3D dielectric lens antennas is described in detail. This new class of lens antennas has a geometrical shape defined by the three-dimensional extension of Gielis’ formula. The analytical description of the lens shape allows the development of a dedicated semianalytical hybrid modeling approach based on geometrical tube tracing and physical optic. In order to increase the accuracy of the model, the multiple reflections occurring within the lens are also taken into account.

  19. Automated 3D model generation for urban environments [online

    OpenAIRE

    Frueh, Christian

    2007-01-01

    Abstract In this thesis, we present a fast approach to automated generation of textured 3D city models with both high details at ground level and complete coverage for bird’s-eye view. A ground-based facade model is acquired by driving a vehicle equipped with two 2D laser scanners and a digital camera under normal traffic conditions on public roads. One scanner is mounted horizontally and is used to determine the approximate component of relative motion along the move...

  20. Discrete Method of Images for 3D Radio Propagation Modeling

    Science.gov (United States)

    Novak, Roman

    2016-09-01

    Discretization by rasterization is introduced into the method of images (MI) in the context of 3D deterministic radio propagation modeling as a way to exploit spatial coherence of electromagnetic propagation for fine-grained parallelism. Traditional algebraic treatment of bounding regions and surfaces is replaced by computer graphics rendering of 3D reflections and double refractions while building the image tree. The visibility of reception points and surfaces is also resolved by shader programs. The proposed rasterization is shown to be of comparable run time to that of the fundamentally parallel shooting and bouncing rays. The rasterization does not affect the signal evaluation backtracking step, thus preserving its advantage over the brute force ray-tracing methods in terms of accuracy. Moreover, the rendering resolution may be scaled back for a given level of scenario detail with only marginal impact on the image tree size. This allows selection of scene optimized execution parameters for faster execution, giving the method a competitive edge. The proposed variant of MI can be run on any GPU that supports real-time 3D graphics.

  1. The Modelling of Stereoscopic 3D Scene Acquisition

    Directory of Open Access Journals (Sweden)

    M. Hasmanda

    2012-04-01

    Full Text Available The main goal of this work is to find a suitable method for calculating the best setting of a stereo pair of cameras that are viewing the scene to enable spatial imaging. The method is based on a geometric model of a stereo pair cameras currently used for the acquisition of 3D scenes. Based on selectable camera parameters and object positions in the scene, the resultant model allows calculating the parameters of the stereo pair of images that influence the quality of spatial imaging. For the purpose of presenting the properties of the model of a simple 3D scene, an interactive application was created that allows, in addition to setting the cameras and scene parameters and displaying the calculated parameters, also displaying the modelled scene using perspective views and the stereo pair modelled with the aid of anaglyphic images. The resulting modelling method can be used in practice to determine appropriate parameters of the camera configuration based on the known arrangement of the objects in the scene. Analogously, it can, for a given camera configuration, determine appropriate geometrical limits of arranging the objects in the scene being displayed. This method ensures that the resulting stereoscopic recording will be of good quality and observer-friendly.

  2. Relations between a micro-mechanical model and a damage model for ductile failure in shear

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Nielsen, Kim Lau

    2010-01-01

    Gurson type constitutive models that account for void growth to coalescence are not able to describe ductile fracture in simple shear, where there is no hydrostatic tension in the material. But recent micro-mechanical studies have shown that in shear the voids are flattened out to micro-cracks, w......Gurson type constitutive models that account for void growth to coalescence are not able to describe ductile fracture in simple shear, where there is no hydrostatic tension in the material. But recent micro-mechanical studies have shown that in shear the voids are flattened out to micro......-cracks, which rotate and elongate until interaction with neighbouring micro-cracks gives coalescence. Thus, the failure mechanism is very different from that under tensile loading. Also, the Gurson model has recently been extended to describe failure in shear, by adding a damage term to the expression...... for the growth of the void volume fraction, and it has been shown that this extended model can represent experimental observations. Here, numerical studies are carried out to compare predictions of the shear-extended Gurson model with the shear failures predicted by the micro-mechanical cell model. Both models...

  3. Simulation of current generation in a 3-D plasma model

    Energy Technology Data Exchange (ETDEWEB)

    Tsung, F.S.; Dawson, J.M. [Univ. of California, Los Angeles, CA (United States)

    1996-12-31

    Two wires carrying current in the same direction will attract each other, and two wires carrying current in the opposite direction will repel each other. Now, consider a test charge in a plasma. If the test charge carries current parallel to the plasma, then it will be pulled toward the plasma core, and if the test charge carries current anti-parallel to the plasma, then it will be pushed to the edge. The electromagnetic coupling between the plasma and a test charge (i.e., the A{sub {parallel}} {circ} v{sub {parallel}} term in the test charge`s Hamiltonian) breaks the symmetry in the parallel direction, and gives rise to a diffusion coefficient which is dependent on the particle`s parallel velocity. This is the basis for the {open_quotes}preferential loss{close_quotes} mechanism described in the work by Nunan et al. In our previous 2+{1/2}D work, in both cylindrical and toroidal geometries, showed that if the plasma column is centrally fueled, then an initial current increases steadily. The results in straight, cylindrical plasmas showed that self generated parallel current arises without trapped particle or neoclassical diffusion, as assumed by the bootstrap theory. It suggests that the fundamental mechanism seems to be the conservation of particles canonical momenta in the direction of the ignorable coordinate. We have extended the simulation to 3D to verify the model put forth. A scalable 3D EM-PIC code, with a localized field-solver, has been implemented to run on a large class of parallel computers. On the 512-node SP2 at Cornell Theory Center, we have benchmarked the 2+{1/2}D calculations using 32 grids in the previously ignored direction, and a 100-fold increase in the number of particles. Our preliminary results show good agreements between the 2+{1/2}D and the 3D calculations. We will present our 3D results at the meeting.

  4. Inferring 3D Articulated Models for Box Packaging Robot

    CERN Document Server

    Yang, Heran; Cong, Matthew; Saxena, Ashutosh

    2011-01-01

    Given a point cloud, we consider inferring kinematic models of 3D articulated objects such as boxes for the purpose of manipulating them. While previous work has shown how to extract a planar kinematic model (often represented as a linear chain), such planar models do not apply to 3D objects that are composed of segments often linked to the other segments in cyclic configurations. We present an approach for building a model that captures the relation between the input point cloud features and the object segment as well as the relation between the neighboring object segments. We use a conditional random field that allows us to model the dependencies between different segments of the object. We test our approach on inferring the kinematic structure from partial and noisy point cloud data for a wide variety of boxes including cake boxes, pizza boxes, and cardboard cartons of several sizes. The inferred structure enables our robot to successfully close these boxes by manipulating the flaps.

  5. Testing Mercury Porosimetry with 3D Printed Porosity Models

    Science.gov (United States)

    Hasiuk, F.; Ewing, R. P.; Hu, Q.

    2014-12-01

    Mercury intrusion porosimetry is one of the most widely used techniques to study the porous nature of a geological and man-made materials. In the geosciences, it is commonly used to describe petroleum reservoir and seal rocks as well as to grade aggregates for the design of asphalt and portland cement concretes. It's wide utility stems from its ability to characterize a wide range of pore throat sizes (from nanometers to around a millimeter). The fundamental physical model underlying mercury intrusion porosimetry, the Washburn Equation, is based on the assumption that rock porosity can be described as a bundle of cylindrical tubes. 3D printing technology, also known as rapid prototyping, allows the construction of intricate and accurate models, exactly what is required to build models of rock porosity. We evaluate the applicability of the Washburn Equation by comparing properties (like porosity, pore and pore throat size distribution, and surface area) computed on digital porosity models (built from CT data, CAD designs, or periodic geometries) to properties measured via mercury intrusion porosimetry on 3D printed versions of the same digital porosity models.

  6. Exploiting Textured 3D Models for Developing Serious Games

    Science.gov (United States)

    Kontogianni, G.; Georgopoulos, A.

    2015-08-01

    Digital technologies have affected significantly many fields of computer graphics such as Games and especially the field of the Serious Games. These games are usually used for educational proposes in many fields such as Health Care, Military applications, Education, Government etc. Especially Digital Cultural Heritage is a scientific area that Serious Games are applied and lately many applications appear in the related literature. Realistic 3D textured models which have been produced using different photogrammetric methods could be a useful tool for the creation of Serious Game applications in order to make the final result more realistic and close to the reality. The basic goal of this paper is how 3D textured models which are produced by photogrammetric methods can be useful for developing a more realistic environment of a Serious Game. The application of this project aims at the creation of an educational game for the Ancient Agora of Athens. The 3D models used vary not only as far as their production methods (i.e. Time of Flight laser scanner, Structure from Motion, Virtual historical reconstruction etc.) is concerned, but also as far as their era as some of them illustrated according to their existing situation and some others according to how these monuments looked like in the past. The Unity 3D® game developing environment was used for creating this application, in which all these models were inserted in the same file format. For the application two diachronic virtual tours of the Athenian Agora were produced. The first one illustrates the Agora as it is today and the second one at the 2nd century A.D. Finally the future perspective for the evolution of this game is presented which includes the addition of some questions that the user will be able to answer. Finally an evaluation is scheduled to be performed at the end of the project.

  7. Simulation of AIMS measurements using rigorous mask 3D modeling

    Science.gov (United States)

    Chou, Chih-Shiang; Huang, Hsu-Ting; Chu, Fu-Sheng; Chu, Yuan-Chih; Huang, Wen-Chun; Liu, Ru-Gun; Gau, Tsai-Sheng

    2015-03-01

    Aerial image measurement system (AIMSTM) has been widely used for wafer level inspection of mask defects. Reported inspection flows include die-to-die (D2D) and die-to-database (D2DB) methods. For patterns that do not repeat in another die, only the D2DB approach is applicable. The D2DB method requires accurate simulation of AIMS measurements for a mask pattern. An optical vectorial model is needed to depict the mask diffraction effect in this simulation. To accurately simulate the imaging results, a rigorous electro-magnetic field (EMF) model is essential to correctly take account of the EMF scattering induced by the mask topography, which is usually called the mask 3D effect. In this study, the mask 3D model we use is rigorous coupled-wave analysis (RCWA), which calculates the diffraction fields from a single plane wave incidence. A hybrid Hopkins-Abbe method with RCWA is used to calculate the EMF diffraction at a desired accuracy level while keeping the computation time practical. We will compare the speed of the hybrid Hopkins-Abbe method to the rigorous Abbe method. The matching between simulation and experiment is more challenging for AIMS than CD-SEM because its measurements provide full intensity information. Parameters in the mask 3D model such as film stack thickness or film optical properties, is optimized during the fitting process. We will report the fitting results of AIMS images for twodimensional structures with various pitches. By accurately simulating the AIMS measurements, it provides a necessary tool to perform the mask inspection using the D2DB approach and to accurately predict the mask defects.

  8. 3D model tools for architecture and archaeology reconstruction

    Science.gov (United States)

    Vlad, Ioan; Herban, Ioan Sorin; Stoian, Mircea; Vilceanu, Clara-Beatrice

    2016-06-01

    The main objective of architectural and patrimonial survey is to provide a precise documentation of the status quo of the surveyed objects (monuments, buildings, archaeological object and sites) for preservation and protection, for scientific studies and restoration purposes, for the presentation to the general public. Cultural heritage documentation includes an interdisciplinary approach having as purpose an overall understanding of the object itself and an integration of the information which characterize it. The accuracy and the precision of the model are directly influenced by the quality of the measurements realized on field and by the quality of the software. The software is in the process of continuous development, which brings many improvements. On the other side, compared to aerial photogrammetry, close range photogrammetry and particularly architectural photogrammetry is not limited to vertical photographs with special cameras. The methodology of terrestrial photogrammetry has changed significantly and various photographic acquisitions are widely in use. In this context, the present paper brings forward a comparative study of TLS (Terrestrial Laser Scanner) and digital photogrammetry for 3D modeling. The authors take into account the accuracy of the 3D models obtained, the overall costs involved for each technology and method and the 4th dimension - time. The paper proves its applicability as photogrammetric technologies are nowadays used at a large scale for obtaining the 3D model of cultural heritage objects, efficacious in their assessment and monitoring, thus contributing to historic conservation. Its importance also lies in highlighting the advantages and disadvantages of each method used - very important issue for both the industrial and scientific segment when facing decisions such as in which technology to invest more research and funds.

  9. The Engelbourg's ruins: from 3D TLS point cloud acquisition to 3D virtual and historic models

    Science.gov (United States)

    Koehl, Mathieu; Berger, Solveig; Nobile, Sylvain

    2014-05-01

    The Castle of Engelbourg was built at the beginning of the 13th century, at the top of the Schlossberg. It is situated on the territory of the municipality of Thann (France), at the crossroads of Alsace and Lorraine, and dominates the outlet of the valley of Thur. Its strategic position was one of the causes of its systematic destructions during the 17th century, and Louis XIV finished his fate by ordering his demolition in 1673. Today only few vestiges remain, of which a section of the main tower from about 7m of diameter and 4m of wide laying on its slice, unique characteristic in the regional castral landscape. It is visible since the valley, was named "the Eye of the witch", and became a key attraction of the region. The site, which extends over approximately one hectare, is for several years the object of numerous archaeological studies and is at the heart of a project of valuation of the vestiges today. It was indeed a key objective, among the numerous planned works, to realize a 3D model of the site in its current state, in other words, a virtual model "such as seized", exploitable as well from a cultural and tourist point of view as by scientists and in archaeological researches. The team of the ICube/INSA lab had in responsibility the realization of this model, the acquisition of the data until the delivery of the virtual model, thanks to 3D TLS and topographic surveying methods. It was also planned to integrate into this 3D model, data of 2D archives, stemming from series of former excavations. The objectives of this project were the following ones: • Acquisition of 3D digital data of the site and 3D modelling • Digitization of the 2D archaeological data and integration in the 3D model • Implementation of a database connected to the 3D model • Virtual Visit of the site The obtained results allowed us to visualize every 3D object individually, under several forms (point clouds, 3D meshed objects and models, etc.) and at several levels of detail

  10. 3-D Modeling of a Nearshore Dye Release

    Science.gov (United States)

    Maxwell, A. R.; Hibler, L. F.; Miller, L. M.

    2006-12-01

    The usage of computer modeling software in predicting the behavior of a plume discharged into deep water is well established. Nearfield plume spreading in coastal areas with complex bathymetry is less commonly studied; in addition to geometry, some of the difficulties of this environment include: tidal exchange, temperature, and salinity gradients. Although some researchers have applied complex hydrodynamic models to this problem, nearfield regions are typically modeled by calibration of an empirical or expert system model. In the present study, the 3D hydrodynamic model Delft3D-FLOW was used to predict the advective transport from a point release in Sequim Bay, Washington. A nested model approach was used, wherein a coarse model using a mesh extending to nearby tide gages (cell sizes up to 1 km) was run over several tidal cycles in order to provide boundary conditions to a smaller area. The nested mesh (cell sizes up to 30 m) was forced on two open boundaries using the water surface elevation derived from the coarse model. Initial experiments with the uncalibrated model were conducted in order to predict plume propagation based on the best available field data. Field experiments were subsequently carried out by releasing rhodamine dye into the bay at near-peak flood tidal current and near high slack tidal conditions. Surface and submerged releases were carried out from an anchored vessel. Concurrently collected data from the experiment include temperature, salinity, dye concentration, and hyperspectral imagery, collected from boats and aircraft. A REMUS autonomous underwater vehicle was used to measure current velocity and dye concentration at varying depths, as well as to acquire additional bathymetric information. Preliminary results indicate that the 3D hydrodynamic model offers a reasonable prediction of plume propagation speed and shape. A sensitivity analysis is underway to determine the significant factors in effectively using the model as a predictive tool

  11. Computational Modelling of Piston Ring Dynamics in 3D

    Directory of Open Access Journals (Sweden)

    Dlugoš Jozef

    2014-12-01

    Full Text Available Advanced computational models of a piston assembly based on the level of virtual prototypes require a detailed description of piston ring behaviour. Considering these requirements, the piston rings operate in regimes that cannot, in general, be simplified into an axisymmetric model. The piston and the cylinder liner do not have a perfect round shape, mainly due to machining tolerances and external thermo-mechanical loads. If the ring cannot follow the liner deformations, a local loss of contact occurs resulting in blow-by and increased consumption of lubricant oil in the engine. Current computational models are unable to implement such effects. The paper focuses on the development of a flexible 3D piston ring model based on the Timoshenko beam theory using the multibody system (MBS. The MBS model is compared to the finite element method (FEM solution.

  12. 3D multispecies collisional model of Ganymede's atmosphere

    Science.gov (United States)

    Leblanc, Francois; Leclercq, Ludivine; Oza, Apurva; Schmidt, Carl; Modolo, Ronan; Chaufray, Jean-Yves; Johnson, Robert E.

    2016-10-01

    Ganymede's atmosphere is produced by the interaction of the Sun and of the Jovian magnetosphere with its surface. It is a reflection of Ganymede's surface properties, but also of the complex interaction between the Ganymede and Jupiter magnetospheres. The Exospheric Global Model (EGM) has been developed in order to be able to integrate surface and magnetosphere processes with those in Ganymede's atmosphere. It is a 3D parallelized multi-species collisional model, coupled with LatHys, a hybrid multi-grid 3D multi-species model of Ganymede's magnetosphere (Leclercq et al., Geophys. Res. Let., Submitted, 2016). EGM's description of the species-dependent spatial distribution of Ganymede's atmosphere, its temporal variability during rotation around Jupiter, its connection to the surface, the role of collisions, and respective roles of sublimation and sputtering in producing Ganymede's exosphere, illustrates how modeling combined with in situ and remote sensing of Ganymede's atmosphere can contribute to our understanding of this unique surface-atmosphere-magnetosphere integrated system.

  13. FISHEYE LENSES FOR 3D MODELING: EVALUATIONS AND CONSIDERATIONS

    Directory of Open Access Journals (Sweden)

    L. Barazzetti

    2017-02-01

    Full Text Available Fisheye lenses are becoming more popular in complete image-based modelling projects of small and narrow spaces. The growing interest in fisheye lenses is confirmed by the availability of different commercial software incorporating a fisheye camera model. Such software are now able to carry out the steps of the image processing pipeline in a fully automated way, from camera calibration and orientation to dense matching, surface generation, and orthophoto production. This paper highlights the advantages (and disadvantages of fisheye lenses when used for 3D modelling projects through different commercial software. The goal is not only a comparison of commercial software, but also an analysis of the additional issues that arise when a fisheye lens is used for 3D modelling. Results confirm that a fisheye lens is suitable for accurate metric documentation, especially when limited space is available. On the other hand, additional issues where found during the camera calibration/image orientation step as well as the texture generation and orthophoto production phases, for which particular attention is required.

  14. Fisheye Lenses for 3d Modeling: Evaluations and Considerations

    Science.gov (United States)

    Barazzetti, L.; Previtali, M.; Roncoroni, F.

    2017-02-01

    Fisheye lenses are becoming more popular in complete image-based modelling projects of small and narrow spaces. The growing interest in fisheye lenses is confirmed by the availability of different commercial software incorporating a fisheye camera model. Such software are now able to carry out the steps of the image processing pipeline in a fully automated way, from camera calibration and orientation to dense matching, surface generation, and orthophoto production. This paper highlights the advantages (and disadvantages) of fisheye lenses when used for 3D modelling projects through different commercial software. The goal is not only a comparison of commercial software, but also an analysis of the additional issues that arise when a fisheye lens is used for 3D modelling. Results confirm that a fisheye lens is suitable for accurate metric documentation, especially when limited space is available. On the other hand, additional issues where found during the camera calibration/image orientation step as well as the texture generation and orthophoto production phases, for which particular attention is required.

  15. 3D simulation of the Cluster-Cluster Aggregation model

    Science.gov (United States)

    Li, Chao; Xiong, Hailing

    2014-12-01

    We write a program to implement the Cluster-Cluster Aggregation (CCA) model with java programming language. By using the simulation program, the fractal aggregation growth process can be displayed dynamically in the form of a three-dimensional (3D) figure. Meanwhile, the related kinetics data of aggregation simulation can be also recorded dynamically. Compared to the traditional programs, the program has better real-time performance and is more helpful to observe the fractal growth process, which contributes to the scientific study in fractal aggregation. Besides, because of adopting java programming language, the program has very good cross-platform performance.

  16. A generic 3D kinetic model of gene expression

    Science.gov (United States)

    Zhdanov, Vladimir

    2012-04-01

    Recent experiments show that mRNAs and proteins can be localized both in prokaryotic and eukaryotic cells. To describe such situations, I present a 3D mean-field kinetic model aimed primarily at gene expression in prokaryotic cells, including the formation of mRNA, its translation into protein, and slow diffusion of these species. Under steady-state conditions, the mRNA and protein spatial distribution is described by simple exponential functions. The protein concentration near the gene transcribed into mRNA is shown to depend on the protein and mRNA diffusion coefficients and degradation rate constants.

  17. QCD thermodynamics from 3d adjoint Higgs model

    CERN Document Server

    Karsch, Frithjof; Patkós, András; Petreczky, P; Szép, Z; Szep, Zs.

    1998-01-01

    The screening masses of hot SU(N) gauge theory, defined as poles of the corresponding propagators are studied in 3d adjoint Higgs model, considered as an effective theory of QCD, using coupled gap equations and lattice Monte-Carlo simulations (for N=2). Using so-called lambda gauges non-perturbative evidence for gauge independence of the pole masses within this class of gauges is given. A possible application of the screening masses for the resummation of the free energy is discussed.

  18. Discrete Element Modeling of Asphalt Concrete Cracking Using a User-defined Tlree-dimensional Micromechanical Approach

    Institute of Scientific and Technical Information of China (English)

    CHEN Jun; PAN Tongyan; HUANG Xiaoming

    2011-01-01

    We established a user-defined micromechanical model using discrete element method (DEM) to investigate the cracking behavior of asphalt concrete (AC).Using the “Fish” language provided in the particle flow code in 3-Demensions (PFC3D),the air voids and mastics in asphalt concrete were realistically built as two distinct phases.With the irregular shape of individual aggregate particles modeled using a clump of spheres of different sizes,the three-dimensional (3D) discrete element model was able to account for aggregate gradation and fraction.Laboratory uniaxial complex modulus test and indirect tensile strength test were performed to obtain input material parameters for the numerical simulation.A set of the indirect tensile test were simulated to study the cracking behavior of AC at two levels of temperature,i e,-10 ℃ and 15 ℃.The predicted results of the numerical simulation were compared with laboratory experimental measurements.Results show that the 3D DEM model is able to predict accurately the fracture pattern of different asphalt mixtures.Based on the DEM model,the effects of air void content and aggregate volumetric fraction on the cracking behavior of asphalt concrete were evaluated.

  19. Tracking topological entity changes in 3D collaborative modeling systems

    Institute of Scientific and Technical Information of China (English)

    ChengYuan; He Fazhi; HuangZhiyong; Cai Xiantao; and Zhang Dejun

    2012-01-01

    One of the key problems in collaborative geometric modeling systems is topological entity correspondence when topolog- ical structure of geometry models on collaborative sites changes, ha this article, we propose a solution for tracking topological entity alterations in 3D collaborative modeling environment. We firstly make a thorough analysis and detailed categorization on the altera- tion properties and causations for each type of topological entity, namely topological face and topological edge. Based on collabora- tive topological entity naming mechanism, a data structure called TEST (Topological Entity Structure Tree) is introduced to track the changing history and current state of each topological entity, to embody the relationship among topological entities. Rules and algo- rithms are presented for identification of topological entities referenced by operations for correct execution and model consistency. The algorithm has been verified within the prototype we have implemented with ACIS.

  20. 3D MODELING OF THE ARCHAIC AMPHORAS OF IONIA

    Directory of Open Access Journals (Sweden)

    A. Denker

    2015-04-01

    Full Text Available Few other regions offer such a rich collection of amphoras than the cities of Ionia. Throughout history amphoras of these cities had been spread all over the Mediterranean. Despite their common characteristics, amphora manufacturing cities of Ionia had their own distinctive styles that can be identified. They differed in details of shape and decoration. Each city produced an authentic type of amphora which served as a trademark of itself and enabled its attribution to where it originated from. That’s why, amphoras provide important insight into commerce of old ages and yield evidence into ancient sailing routes. Owing to this our knowledge of the ancient trade is profoundly enriched. The following is based on the finds of amphoras which originated from the Ionian cities of Chios, Clazomenai, Lesbos, Miletus, and Samos. Starting from city-specific forms which offer interpretative advantages in provenancing, this article surveys the salient features of the regional forms and styles of the those Ionian cities. 3D modeling is utilized with the aim of bringing fresh glimpses of the investigated amphoras by showing how they originally looked. Due to their virtual indestructibility these models offer interpretative advantages by enabling experimental testing of hypotheses upon the finds without risking them. The 3D models in the following sections were reconstructed from numerous fragments of necks, handles, body sherds and bases. They convey in color- unlike the monochrome drawings which we were accustomed to-the texture, decoration, tint and the vitality of the amphoras of Ionia.

  1. 3D Massive MIMO Systems: Modeling and Performance Analysis

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain

    2015-07-30

    Multiple-input-multiple-output (MIMO) systems of current LTE releases are capable of adaptation in the azimuth only. Recently, the trend is to enhance system performance by exploiting the channel’s degrees of freedom in the elevation, which necessitates the characterization of 3D channels. We present an information-theoretic channel model for MIMO systems that supports the elevation dimension. The model is based on the principle of maximum entropy, which enables us to determine the distribution of the channel matrix consistent with the prior information on the angles. Based on this model, we provide analytical expression for the cumulative density function (CDF) of the mutual information (MI) for systems with a single receive and finite number of transmit antennas in the general signalto- interference-plus-noise-ratio (SINR) regime. The result is extended to systems with finite receive antennas in the low SINR regime. A Gaussian approximation to the asymptotic behavior of MI distribution is derived for the large number of transmit antennas and paths regime. We corroborate our analysis with simulations that study the performance gains realizable through meticulous selection of the transmit antenna downtilt angles, confirming the potential of elevation beamforming to enhance system performance. The results are directly applicable to the analysis of 5G 3D-Massive MIMO-systems.

  2. Computational model of mesenchymal migration in 3D under chemotaxis.

    Science.gov (United States)

    Ribeiro, F O; Gómez-Benito, M J; Folgado, J; Fernandes, P R; García-Aznar, J M

    2017-01-01

    Cell chemotaxis is an important characteristic of cellular migration, which takes part in crucial aspects of life and development. In this work, we propose a novel in silico model of mesenchymal 3D migration with competing protrusions under a chemotactic gradient. Based on recent experimental observations, we identify three main stages that can regulate mesenchymal chemotaxis: chemosensing, dendritic protrusion dynamics and cell-matrix interactions. Therefore, each of these features is considered as a different module of the main regulatory computational algorithm. The numerical model was particularized for the case of fibroblast chemotaxis under a PDGF-bb gradient. Fibroblasts migration was simulated embedded in two different 3D matrices - collagen and fibrin - and under several PDGF-bb concentrations. Validation of the model results was provided through qualitative and quantitative comparison with in vitro studies. Our numerical predictions of cell trajectories and speeds were within the measured in vitro ranges in both collagen and fibrin matrices. Although in fibrin, the migration speed of fibroblasts is very low, because fibrin is a stiffer and more entangling matrix. Testing PDGF-bb concentrations, we noticed that an increment of this factor produces a speed increment. At 1 ng mL(-1) a speed peak is reached after which the migration speed diminishes again. Moreover, we observed that fibrin exerts a dampening behavior on migration, significantly affecting the migration efficiency.

  3. Dualities in 3D large N vector models

    Science.gov (United States)

    Muteeb, Nouman; Zayas, Leopoldo A. Pando; Quevedo, Fernando

    2016-05-01

    Using an explicit path integral approach we derive non-abelian bosonization and duality of 3D systems in the large N limit. We first consider a fermionic U( N) vector model coupled to level k Chern-Simons theory, following standard techniques we gauge the original global symmetry and impose the corresponding field strength F μν to vanish introducing a Lagrange multiplier Λ. Exchanging the order of integrations we obtain the bosonized theory with Λ as the propagating field using the large N rather than the previously used large mass limit. Next we follow the same procedure to dualize the scalar U ( N) vector model coupled to Chern-Simons and find its corresponding dual theory. Finally, we compare the partition functions of the two resulting theories and find that they agree in the large N limit including a level/rank duality. This provides a constructive evidence for previous proposals on level/rank duality of 3D vector models in the large N limit. We also present a partial analysis at subleading order in large N and find that the duality does not generically hold at this level.

  4. Dualities in 3D large N vector models

    Energy Technology Data Exchange (ETDEWEB)

    Muteeb, Nouman [The Abdus Salam International Centre for Theoretical Physics, ICTP,Strada Costiera 11, 34014 Trieste (Italy); SISSA,Via Bonomea 265, 34136 Trieste (Italy); Zayas, Leopoldo A. Pando [The Abdus Salam International Centre for Theoretical Physics, ICTP,Strada Costiera 11, 34014 Trieste (Italy); Michigan Center for Theoretical Physics, Department of Physics,University of Michigan, Ann Arbor, MI 48109 (United States); Quevedo, Fernando [The Abdus Salam International Centre for Theoretical Physics, ICTP,Strada Costiera 11, 34014 Trieste (Italy); DAMTP, CMS, University of Cambridge,Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2016-05-09

    Using an explicit path integral approach we derive non-abelian bosonization and duality of 3D systems in the large N limit. We first consider a fermionic U(N) vector model coupled to level k Chern-Simons theory, following standard techniques we gauge the original global symmetry and impose the corresponding field strength F{sub μν} to vanish introducing a Lagrange multiplier Λ. Exchanging the order of integrations we obtain the bosonized theory with Λ as the propagating field using the large N rather than the previously used large mass limit. Next we follow the same procedure to dualize the scalar U(N) vector model coupled to Chern-Simons and find its corresponding dual theory. Finally, we compare the partition functions of the two resulting theories and find that they agree in the large N limit including a level/rank duality. This provides a constructive evidence for previous proposals on level/rank duality of 3D vector models in the large N limit. We also present a partial analysis at subleading order in large N and find that the duality does not generically hold at this level.

  5. Pose invariant face recognition: 3D model from single photo

    Science.gov (United States)

    Napoléon, Thibault; Alfalou, Ayman

    2017-02-01

    Face recognition is widely studied in the literature for its possibilities in surveillance and security. In this paper, we report a novel algorithm for the identification task. This technique is based on an optimized 3D modeling allowing to reconstruct faces in different poses from a limited number of references (i.e. one image by class/person). Particularly, we propose to use an active shape model to detect a set of keypoints on the face necessary to deform our synthetic model with our optimized finite element method. Indeed, in order to improve our deformation, we propose a regularization by distances on graph. To perform the identification we use the VanderLugt correlator well know to effectively address this task. On the other hand we add a difference of Gaussian filtering step to highlight the edges and a description step based on the local binary patterns. The experiments are performed on the PHPID database enhanced with our 3D reconstructed faces of each person with an azimuth and an elevation ranging from -30° to +30°. The obtained results prove the robustness of our new method with 88.76% of good identification when the classic 2D approach (based on the VLC) obtains just 44.97%.

  6. Micromechanical modelling of partially molten and sand reinforced polycrystalline ice

    Science.gov (United States)

    Castelnau, O.; Duval, P.

    2009-12-01

    The viscoplastic behaviour of polycrystalline ice is strongly affected by the very strong anisotropy of ice crystals. Indeed, in the dislocations creep regime relevant for ice sheet flow, dislocation glide on the basal plane of ice single crystals leads to strain-rates ~6 order of magnitude larger than strain-rates that might be obtain if only non-basal glide is activated. At the polycrystal scale, this behaviour is responsible for a strong mechanical interaction between grains in the secondary (stationary) creep regime, and strain-rate is essentially partitioned between soft grains well-oriented for basal glide and hard grains exhibiting an unfavourable orientation for basal slip. As a consequence, the macroscopic flow stress at the polycrystal scale essentially depends on the resistance of the hardest slip systems or on the associated accommodation processes such as climb of basal dislocation on non-basal planes. Creep experiments performed on polycrystalline ices containing a small amount (less than 10% volume fraction) of liquid water show a dramatic increase of strain-rate, by more than one order of magnitude, compared to solid ice when deformed under similar thermo-mechanical conditions. Similarly, a strong hardening is observed when polycrystalline ice is reinforced by sand (which can be considered as a rigid phase here). This behaviour can be explained by micromechanical models, which aims at estimating the mechanical interactions between grains. For example, the presence of water releases stress concentrations at grain boundaries and therefore favours the inactivation of non-basal systems. To estimate such effect and to reach quantitative comparison with experimental data, we make use of the recent Second-Order homogenization mean-field approach of Ponte-Castaneda, based on self-consistent scheme. The advantage of this approach, which has been shown to provide excellent results when applied to many different non-linear composite materials, comes from the

  7. A Prototype Digital Library for 3D Collections: Tools To Capture, Model, Analyze, and Query Complex 3D Data.

    Science.gov (United States)

    Rowe, Jeremy; Razdan, Anshuman

    The Partnership for Research in Spatial Modeling (PRISM) project at Arizona State University (ASU) developed modeling and analytic tools to respond to the limitations of two-dimensional (2D) data representations perceived by affiliated discipline scientists, and to take advantage of the enhanced capabilities of three-dimensional (3D) data that…

  8. Canada in 3D - Toward a Sustainable 3D Model for Canadian Geology from Diverse Data Sources

    Science.gov (United States)

    Brodaric, B.; Pilkington, M.; Snyder, D. B.; St-Onge, M. R.; Russell, H.

    2015-12-01

    Many big science issues span large areas and require data from multiple heterogeneous sources, for example climate change, resource management, and hazard mitigation. Solutions to these issues can significantly benefit from access to a consistent and integrated geological model that would serve as a framework. However, such a model is absent for most large countries including Canada, due to the size of the landmass and the fragmentation of the source data into institutional and disciplinary silos. To overcome these barriers, the "Canada in 3D" (C3D) pilot project was recently launched by the Geological Survey of Canada. C3D is designed to be evergreen, multi-resolution, and inter-disciplinary: (a) it is to be updated regularly upon acquisition of new data; (b) portions vary in resolution and will initially consist of four layers (surficial, sedimentary, crystalline, and mantle) with intermediary patches of higher-resolution fill; and (c) a variety of independently managed data sources are providing inputs, such as geophysical, 3D and 2D geological models, drill logs, and others. Notably, scalability concerns dictate a decentralized and interoperable approach, such that only key control objects, denoting anchors for the modeling process, are imported into the C3D database while retaining provenance links to original sources. The resultant model is managed in the database, contains full modeling provenance as well as links to detailed information on rock units, and is to be visualized in desktop and online environments. It is anticipated that C3D will become the authoritative state of knowledge for the geology of Canada at a national scale.

  9. A MICROMECHANICAL MODEL FOR γ-TiAl BASE PST CRYSTALS

    Institute of Scientific and Technical Information of China (English)

    J.L. Su; G.K. Hu

    2005-01-01

    An analytical micromechanical method is proposed to examine the dependence of plastic deformation on the microstructure for a PST crystal. The sub-domain rnicrostructure of the γ phase and the effect of the α2 phase are taken into account by a proper micromechanical formulation,the dislocation slip and twinning deformation mechanisms are considered in the context of crystal plasticity. The model can well predict the dependence of stress-strain relations on loading angle with respect to the microstructure. The influence of the twinning and lamellar spacing on the deformation behavior and biaxial yield surfaces for PST crystals are also examined.

  10. Comparative 3-D Modeling of tmRNA

    Directory of Open Access Journals (Sweden)

    Wower Iwona

    2005-06-01

    Full Text Available Abstract Background Trans-translation releases stalled ribosomes from truncated mRNAs and tags defective proteins for proteolytic degradation using transfer-messenger RNA (tmRNA. This small stable RNA represents a hybrid of tRNA- and mRNA-like domains connected by a variable number of pseudoknots. Comparative sequence analysis of tmRNAs found in bacteria, plastids, and mitochondria provides considerable insights into their secondary structures. Progress toward understanding the molecular mechanism of template switching, which constitutes an essential step in trans-translation, is hampered by our limited knowledge about the three-dimensional folding of tmRNA. Results To facilitate experimental testing of the molecular intricacies of trans-translation, which often require appropriately modified tmRNA derivatives, we developed a procedure for building three-dimensional models of tmRNA. Using comparative sequence analysis, phylogenetically-supported 2-D structures were obtained to serve as input for the program ERNA-3D. Motifs containing loops and turns were extracted from the known structures of other RNAs and used to improve the tmRNA models. Biologically feasible 3-D models for the entire tmRNA molecule could be obtained. The models were characterized by a functionally significant close proximity between the tRNA-like domain and the resume codon. Potential conformational changes which might lead to a more open structure of tmRNA upon binding to the ribosome are discussed. The method, described in detail for the tmRNAs of Escherichia coli, Bacillus anthracis, and Caulobacter crescentus, is applicable to every tmRNA. Conclusion Improved molecular models of biological significance were obtained. These models will guide in the design of experiments and provide a better understanding of trans-translation. The comparative procedure described here for tmRNA is easily adopted for the modeling the members of other RNA families.

  11. Development of Advanced Models for 3D Photocathode PIC Simulations

    CERN Document Server

    Dimitrov, Dimitre; Cary, John R; Feldman, Donald; Jensen, Kevin; Messmer, Peter; Stoltz, Peter

    2005-01-01

    Codes for simulating photocathode electron guns invariably assume the emission of an idealized electron distribution from the cathode, regardless of the particular particle emission model that is implemented. The output of such simulations, a relatively clean and smooth distribution with very little variation as a function of the azimuthal angle, is inconsistent with the highly irregular and asymmetric electron bunches seen in experimental diagnostics. To address this problem, we have implemented a recently proposed theoretical model* that takes into account detailed solid-state physics of photocathode materials in the VORPAL particle-in-cell code.** Initial results from 3D simulations with this model and future research directions will be presented and discussed.

  12. Modeling tree crown dynamics with 3D partial differential equations.

    Science.gov (United States)

    Beyer, Robert; Letort, Véronique; Cournède, Paul-Henry

    2014-01-01

    We characterize a tree's spatial foliage distribution by the local leaf area density. Considering this spatially continuous variable allows to describe the spatiotemporal evolution of the tree crown by means of 3D partial differential equations. These offer a framework to rigorously take locally and adaptively acting effects into account, notably the growth toward light. Biomass production through photosynthesis and the allocation to foliage and wood are readily included in this model framework. The system of equations stands out due to its inherent dynamic property of self-organization and spontaneous adaptation, generating complex behavior from even only a few parameters. The density-based approach yields spatially structured tree crowns without relying on detailed geometry. We present the methodological fundamentals of such a modeling approach and discuss further prospects and applications.

  13. Measurement of Laser Weld Temperatures for 3D Model Input.

    Energy Technology Data Exchange (ETDEWEB)

    Dagel, Daryl; GROSSETETE, GRANT; Maccallum, Danny O.

    2016-10-01

    Laser welding is a key joining process used extensively in the manufacture and assembly of critical components for several weapons systems. Sandia National Laboratories advances the understanding of the laser welding process through coupled experimentation and modeling. This report summarizes the experimental portion of the research program, which focused on measuring temperatures and thermal history of laser welds on steel plates. To increase confidence in measurement accuracy, researchers utilized multiple complementary techniques to acquire temperatures during laser welding. This data serves as input to and validation of 3D laser welding models aimed at predicting microstructure and the formation of defects and their impact on weld-joint reliability, a crucial step in rapid prototyping of weapons components.

  14. Modeling Tree Crown Dynamics with 3D Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Robert eBeyer

    2014-07-01

    Full Text Available We characterize a tree's spatial foliage distribution by the local leaf area density. Considering this spatially continuous variable allows to describe the spatiotemporal evolution of the tree crown by means of 3D partial differential equations. These offer a framework to rigorously take locally and adaptively acting effects into account, notably the growth towards light. Biomass production through photosynthesis and the allocation to foliage and wood are readily included in this model framework. The system of equations stands out due to its inherent dynamic property of self-organization and spontaneous adaptation, generating complex behavior from even only a few parameters. The density-based approach yields spatially structured tree crowns without relying on detailed geometry. We present the methodological fundamentals of such a modeling approach and discuss further prospects and applications.

  15. 3D Building Model Fitting Using A New Kinetic Framework

    CERN Document Server

    Brédif, Mathieu; Pierrot-Deseilligny, Marc; Maître, Henri

    2008-01-01

    We describe a new approach to fit the polyhedron describing a 3D building model to the point cloud of a Digital Elevation Model (DEM). We introduce a new kinetic framework that hides to its user the combinatorial complexity of determining or maintaining the polyhedron topology, allowing the design of a simple variational optimization. This new kinetic framework allows the manipulation of a bounded polyhedron with simple faces by specifying the target plane equations of each of its faces. It proceeds by evolving continuously from the polyhedron defined by its initial topology and its initial plane equations to a polyhedron that is as topologically close as possible to the initial polyhedron but with the new plane equations. This kinetic framework handles internally the necessary topological changes that may be required to keep the faces simple and the polyhedron bounded. For each intermediate configurations where the polyhedron looses the simplicity of its faces or its boundedness, the simplest topological mod...

  16. Plasticized protein for 3D printing by fused deposition modeling

    Science.gov (United States)

    Chaunier, Laurent; Leroy, Eric; Della Valle, Guy; Lourdin, Denis

    2016-10-01

    The developments of Additive Manufacturing (AM) by Fused Deposition Modeling (FDM) now target new 3D printable materials, leading to novel properties like those given by biopolymers such as proteins: degradability, biocompatibility and edibility. Plasticized materials from zein, a storage protein issued from corn, present interesting thermomechanical and rheological properties, possibly matching with AM-FDM specifications. Thus commercial zein plasticized with 20% glycerol has a glass transition temperature (Tg) at about 42°C, after storage at intermediate relative humidity (RH=59%). Its principal mechanical relaxation at Tα ≈ 50°C leads to a drop of the elastic modulus from about 1.1 GPa, at ambient temperature, to 0.6 MPa at Tα+100°C. These values are in the same range as values obtained in the case of standard polymers for AM-FDM processing, as PLA and ABS, although relaxation mechanisms are likely different in these materials. Such results lead to the setting up of zein-based compositions printable by AM-FDM and allow processing bioresorbable printed parts, with designed 3D geometry and structure.

  17. Brandenburg 3D - a comprehensive 3D Subsurface Model, Conception of an Infrastructure Node and a Web Application

    Science.gov (United States)

    Kerschke, Dorit; Schilling, Maik; Simon, Andreas; Wächter, Joachim

    2014-05-01

    The Energiewende and the increasing scarcity of raw materials will lead to an intensified utilization of the subsurface in Germany. Within this context, geological 3D modeling is a fundamental approach for integrated decision and planning processes. Initiated by the development of the European Geospatial Infrastructure INSPIRE, the German State Geological Offices started digitizing their predominantly analog archive inventory. Until now, a comprehensive 3D subsurface model of Brandenburg did not exist. Therefore the project B3D strived to develop a new 3D model as well as a subsequent infrastructure node to integrate all geological and spatial data within the Geodaten-Infrastruktur Brandenburg (Geospatial Infrastructure, GDI-BB) and provide it to the public through an interactive 2D/3D web application. The functionality of the web application is based on a client-server architecture. Server-sided, all available spatial data is published through GeoServer. GeoServer is designed for interoperability and acts as the reference implementation of the Open Geospatial Consortium (OGC) Web Feature Service (WFS) standard that provides the interface that allows requests for geographical features. In addition, GeoServer implements, among others, the high performance certified compliant Web Map Service (WMS) that serves geo-referenced map images. For publishing 3D data, the OGC Web 3D Service (W3DS), a portrayal service for three-dimensional geo-data, is used. The W3DS displays elements representing the geometry, appearance, and behavior of geographic objects. On the client side, the web application is solely based on Free and Open Source Software and leans on the JavaScript API WebGL that allows the interactive rendering of 2D and 3D graphics by means of GPU accelerated usage of physics and image processing as part of the web page canvas without the use of plug-ins. WebGL is supported by most web browsers (e.g., Google Chrome, Mozilla Firefox, Safari, and Opera). The web

  18. 3D GIS FOR FLOOD MODELLING IN RIVER VALLEYS

    Directory of Open Access Journals (Sweden)

    P. Tymkow

    2016-06-01

    Full Text Available The objective of this study is implementation of system architecture for collecting and analysing data as well as visualizing results for hydrodynamic modelling of flood flows in river valleys using remote sensing methods, tree-dimensional geometry of spatial objects and GPU multithread processing. The proposed solution includes: spatial data acquisition segment, data processing and transformation, mathematical modelling of flow phenomena and results visualization. Data acquisition segment was based on aerial laser scanning supplemented by images in visible range. Vector data creation was based on automatic and semiautomatic algorithms of DTM and 3D spatial features modelling. Algorithms for buildings and vegetation geometry modelling were proposed or adopted from literature. The implementation of the framework was designed as modular software using open specifications and partially reusing open source projects. The database structure for gathering and sharing vector data, including flood modelling results, was created using PostgreSQL. For the internal structure of feature classes of spatial objects in a database, the CityGML standard was used. For the hydrodynamic modelling the solutions of Navier-Stokes equations in two-dimensional version was implemented. Visualization of geospatial data and flow model results was transferred to the client side application. This gave the independence from server hardware platform. A real-world case in Poland, which is a part of Widawa River valley near Wroclaw city, was selected to demonstrate the applicability of proposed system.

  19. 3D model generation using an airborne swarm

    Energy Technology Data Exchange (ETDEWEB)

    Clark, R. A.; Punzo, G.; Macdonald, M. [Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow, G1 1XW (United Kingdom); Dobie, G.; MacLeod, C. N.; Summan, R.; Pierce, G. [Centre for Ultrasonic Engineering, University of Strathclyde, Glasgow, G1 1XW (United Kingdom); Bolton, G. [National Nuclear Laboratory Limited, Chadwick House, Warrington Road, Birchwood Park, Warrington, WA3 6AE (United Kingdom)

    2015-03-31

    Using an artificial kinematic field to provide co-ordination between multiple inspection UAVs, the authors herein demonstrate full 3D modelling capability based on a photogrammetric system. The operation of the system is demonstrated by generating a full 3D surface model of an intermediate level nuclear waste storage drum. Such drums require periodic inspection to ensure that drum distortion or corrosion is carefully monitored. Performing this inspection with multiple airborne platforms enables rapid inspection of structures that are inaccessible to on-surface remote vehicles and are in human-hazardous environments. A three-dimensional surface-meshed model of the target can then be constructed in post-processing through photogrammetry analysis of the visual inspection data. The inspection environment uses a tracking system to precisely monitor the position of each aerial vehicle within the enclosure. The vehicles used are commercially available Parrot AR. Drone quadcopters, controlled through a computer interface connected over an IEEE 802.11n (WiFi) network, implementing a distributed controller for each vehicle. This enables the autonomous and distributed elements of the control scheme to be retained, while alleviating the vehicles of the control algorithm’s computational load. The control scheme relies on a kinematic field defined with the target at its centre. This field defines the trajectory for all the drones in the volume relative to the central target, enabling the drones to circle the target at a set radius while avoiding drone collisions. This function enables complete coverage along the height of the object, which is assured by transitioning to another inspection band only after completing circumferential coverage. Using a swarm of vehicles, the time until complete coverage can be significantly reduced.

  20. 3-D numerical modeling of plume-induced subduction initiation

    Science.gov (United States)

    Baes, Marzieh; Gerya, taras; Sobolev, Stephan

    2016-04-01

    Investigation of mechanisms involved in formation of a new subduction zone can help us to better understand plate tectonics. Despite numerous previous studies, it is still unclear how and where an old oceanic plate starts to subduct beneath the other plate. One of the proposed scenarios for nucleation of subduction is plume-induced subduction initiation, which was investigated in detail, using 2-D models, by Ueda et al. (2008). Recently. Gerya et al. (2015), using 3D numerical models, proposed that plume-lithosphere interaction in the Archean led to the subduction initiation and onset of plate tectonic. In this study, we aim to pursue work of Ueda et al. (2008) by incorporation of 3-D thermo-mechanical models to investigate conditions leading to oceanic subduction initiation as a result of thermal-chemical mantle plume-lithosphere interaction in the modern earth. Results of our experiments show four different deformation regimes in response to plume-lithosphere interaction, that are a) self-sustaining subduction initiation where subduction becomes self-sustained, b) freezing subduction initiation where subduction stops at shallow depths, c) slab break-off where subducting circular slab breaks off soon after formation and d) plume underplating where plume does not pass through the lithosphere but spreads beneath it (failed subduction initiation). These different regimes depend on several parameters such as plume's size, composition and temperature, lithospheric brittle/plastic strength, age of the oceanic lithosphere and presence/absence of lithospheric heterogeneities. Results show that subduction initiates and becomes self-sustained when lithosphere is older than 10 Myr and non-dimensional ratio of the plume buoyancy force and lithospheric strength above the plume is higher than 2.

  1. The Use of Satellite Data in the Operational 3D Coupled Ecosystem Model of the Baltic Sea (3D Cembs

    Directory of Open Access Journals (Sweden)

    Nowicki Artur

    2016-01-01

    Full Text Available The objective of this paper is to present an automatic monitoring system for the 3D CEMBS model in the operational version. This predictive, eco hydrodynamic model is used as a tool to control the conditions and bio productivity of the Baltic sea environment and to forecast physical and ecological changes in the studied basin. Satellite-measured data assimilation is used to constrain the model and achieve higher accuracy of its results.

  2. Massive fermion model in 3d and higher spin currents

    CERN Document Server

    Bonora, L; Prester, P Dominis; de Souza, B Lima; Smolic, I

    2016-01-01

    We analyze the 3d free massive fermion theory coupled to external sources. The presence of a mass explicitly breaks parity invariance. We calculate two- and three-point functions of a gauge current and the energy momentum tensor and, for instance, obtain the well-known result that in the IR limit (but also in the UV one) we reconstruct the relevant CS action. We then couple the model to higher spin currents and explicitly work out the spin 3 case. In the UV limit we obtain an effective action which was proposed many years ago as a possible generalization of spin 3 CS action. In the IR limit we derive a different higher spin action. This analysis can evidently be generalized to higher spins. We also discuss the conservation and properties of the correlators we obtain in the intermediate steps of our derivation.

  3. View subspaces for indexing and retrieval of 3D models

    CERN Document Server

    Dutagaci, Helin; Sankur, Bulent; Yemez, Yücel

    2011-01-01

    View-based indexing schemes for 3D object retrieval are gaining popularity since they provide good retrieval results. These schemes are coherent with the theory that humans recognize objects based on their 2D appearances. The viewbased techniques also allow users to search with various queries such as binary images, range images and even 2D sketches. The previous view-based techniques use classical 2D shape descriptors such as Fourier invariants, Zernike moments, Scale Invariant Feature Transform-based local features and 2D Digital Fourier Transform coefficients. These methods describe each object independent of others. In this work, we explore data driven subspace models, such as Principal Component Analysis, Independent Component Analysis and Nonnegative Matrix Factorization to describe the shape information of the views. We treat the depth images obtained from various points of the view sphere as 2D intensity images and train a subspace to extract the inherent structure of the views within a database. We a...

  4. Energy flow in passive and active 3D cochlear model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanli; Steele, Charles [Department of Mechanical Engineering, Stanford University, Stanford, California (United States); Puria, Sunil [Department of Mechanical Engineering, Stanford University, Stanford, California (United States); Department of Otolaryngology, Head and Neck Surgery, Stanford University, Stanford, California (United States)

    2015-12-31

    Energy flow in the cochlea is an important characteristic of the cochlear traveling wave, and many investigators, such as von Békésy and Lighthill, have discussed this phenomenon. Particularly after the discovery of the motility of the outer hair cells (OHCs), the nature of the power gain of the cochlea has been a fundamental research question. In the present work, direct three-dimensional (3D) calculations of the power on cross sections of the cochlea and on the basilar membrane are performed based on a box model of the mouse cochlea. The distributions of the fluid pressure and fluid velocity in the scala vestibuli are presented. The power output from the OHCs and the power loss due to fluid viscous damping are calculated along the length of the cochlea. This work provides a basis for theoretical calculations of the power gain of the OHCs from mechanical considerations.

  5. Interactive 3D computer model of the human corneolimbal region

    DEFF Research Database (Denmark)

    Molvaer, Rikke Kongshaug; Andreasen, Arne; Heegaard, Steffen;

    2013-01-01

    in the superior limbal region and one LEC, six LCs and 12 FSPs in the inferior limbal region. Only few LECs, LCs and FSPs were localized nasally and temporally. CONCLUSION: Interactive 3D models are a powerful tool that may help to shed more light on the existence and spatial localization of the different stem......PURPOSE: This study aims to clarify the existence of and to map the localization of different proposed stem cell niches in the corneal limbal region. MATERIALS AND METHODS: One human eye was cut into 2200 consecutive sections. Every other section was stained with haematoxylin and eosin, digitized...... in the limbal region: limbal epithelial crypts (LECs), limbal crypts (LCs) and focal stromal projections (FSPs). In all, eight LECs, 25 LCs and 105 FSPs were identified in the limbal region. The LECs, LCs and FSPs were predominantly located in the superior limbal region with seven LECs, 19 LCs and 93 FSPs...

  6. Beyond Virtual Replicas: 3D Modeling and Maltese Prehistoric Architecture

    Directory of Open Access Journals (Sweden)

    Filippo Stanco

    2013-01-01

    Full Text Available In the past decade, computer graphics have become strategic for the development of projects aimed at the interpretation of archaeological evidence and the dissemination of scientific results to the public. Among all the solutions available, the use of 3D models is particularly relevant for the reconstruction of poorly preserved sites and monuments destroyed by natural causes or human actions. These digital replicas are, at the same time, a virtual environment that can be used as a tool for the interpretative hypotheses of archaeologists and as an effective medium for a visual description of the cultural heritage. In this paper, the innovative methodology and aims and outcomes of a virtual reconstruction of the Borg in-Nadur megalithic temple, carried out by Archeomatica Project of the University of Catania, are offered as a case study for a virtual archaeology of prehistoric Malta.

  7. Towards Automatic Semantic Labelling of 3D City Models

    Science.gov (United States)

    Rook, M.; Biljecki, F.; Diakité, A. A.

    2016-10-01

    The lack of semantic information in many 3D city models is a considerable limiting factor in their use, as a lot of applications rely on semantics. Such information is not always available, since it is not collected at all times, it might be lost due to data transformation, or its lack may be caused by non-interoperability in data integration from other sources. This research is a first step in creating an automatic workflow that semantically labels plain 3D city model represented by a soup of polygons, with semantic and thematic information, as defined in the CityGML standard. The first step involves the reconstruction of the topology, which is used in a region growing algorithm that clusters upward facing adjacent triangles. Heuristic rules, embedded in a decision tree, are used to compute a likeliness score for these regions that either represent the ground (terrain) or a RoofSurface. Regions with a high likeliness score, to one of the two classes, are used to create a decision space, which is used in a support vector machine (SVM). Next, topological relations are utilised to select seeds that function as a start in a region growing algorithm, to create regions of triangles of other semantic classes. The topological relationships of the regions are used in the aggregation of the thematic building features. Finally, the level of detail is detected to generate the correct output in CityGML. The results show an accuracy between 85 % and 99 % in the automatic semantic labelling on four different test datasets. The paper is concluded by indicating problems and difficulties implying the next steps in the research.

  8. Modeling Electric Current Flow in 3D Fractured Media

    Science.gov (United States)

    Demirel, S.; Roubinet, D.; Irving, J.

    2014-12-01

    The study of fractured rocks is extremely important in a variety of research fields and applications such as hydrogeology, hydrocarbon extraction and long-term storage of toxic waste. As fractures are highly conductive structures in comparison to the surrounding rock, their presence can be either an advantage or a drawback. For hydrocarbon extraction, fractures allow for quick and easy access to the resource whereas for toxic waste storage their presence increases the risk of leakage and migration of pollutants. In both cases, the identification of fracture network characteristics is an essential step. Recently, we have developed an approach for modeling electric current flow in 2D fractured media. This approach is based on a discrete-dual-porosity model where fractures are represented explicitly, the matrix is coarsely discretized into blocks, and current flow exchange between the fractures and matrix is analytically evaluated at the fracture-scale and integrated at the block-scale [1]. Although this approach has shown much promise and has proven its efficiency for 2D simulations, its extension to 3D remains to be addressed. To this end, we assume that fractures can be represented as two-dimensional finite planes embedded in the surrounding matrix, and we express analytically the distribution of electric potential at the fracture scale. This fracture-scale expression takes into account the electric-current-flow exchange with the surrounding matrix and flow conservation is enforced at the fracture intersections. The fracture-matrix exchange is then integrated at the matrix-block scale where the electric current flow conservation at the block boundaries is formulated with a modified finite volume method. With the objective of providing a low-computational-cost modeling approach adapted to 3D simulations in fractured media, our model is (i) validated and compared to existing modeling approaches and, (ii) used to evaluate the impact of the presence of fractures on

  9. 3D Printed Molecules and Extended Solid Models for Teaching Symmetry and Point Groups

    Science.gov (United States)

    Scalfani, Vincent F.; Vaid, Thomas P.

    2014-01-01

    Tangible models help students and researchers visualize chemical structures in three dimensions (3D). 3D printing offers a unique and straightforward approach to fabricate plastic 3D models of molecules and extended solids. In this article, we prepared a series of digital 3D design files of molecular structures that will be useful for teaching…

  10. 3D Printed Molecules and Extended Solid Models for Teaching Symmetry and Point Groups

    Science.gov (United States)

    Scalfani, Vincent F.; Vaid, Thomas P.

    2014-01-01

    Tangible models help students and researchers visualize chemical structures in three dimensions (3D). 3D printing offers a unique and straightforward approach to fabricate plastic 3D models of molecules and extended solids. In this article, we prepared a series of digital 3D design files of molecular structures that will be useful for teaching…

  11. 3-D GRACE gravity model for the 2011 Japan earthquake

    Science.gov (United States)

    Sastry, Rambhatla G.; Sonker, Mahendra K.

    2017-02-01

    The GRACE mission has contributed to the seismic characterization of major earthquakes in offshore regions of the world. Here, we isolate satellite gravity signal (μGal range) for the Japan Earthquake of 2011 using a difference method. Contrary to the existing gravity models, we propose a unit vertical pyramid based five-layer 3-D thrust fault model, which extends to the hypocenter and honors the ocean water layer and sea floor upheaval also. Our model partly uses existing seismological information (hypocenter depth of 32 km, rupture length of 300 km and vertical slip of 4 m), provides a snapshot of episodic subduction of the Pacific Plate below the Atlantic Plate and its gravity response closely matches the observed gravity (RMS error of 3.4012×10-13μGal), fully accounting for co-seismic mass redistribution including sea surface deformation. Our inferred rupture length, rupture velocity, average seismic moment magnitude and momentum, respectively, are 300 km, 4.49 km/s, 1.152×1021-1.8816×1021 N m and 2.319×106 GNs, which fairly agree with the literature. Further, our model inferred momentum at the sea floor corresponds to an area pulse that led to Tsunami generation.

  12. Automatic paper sliceform design from 3D solid models.

    Science.gov (United States)

    Le-Nguyen, Tuong-Vu; Low, Kok-Lim; Ruiz, Conrado; Le, Sang N

    2013-11-01

    A paper sliceform or lattice-style pop-up is a form of papercraft that uses two sets of parallel paper patches slotted together to make a foldable structure. The structure can be folded flat, as well as fully opened (popped-up) to make the two sets of patches orthogonal to each other. Automatic design of paper sliceforms is still not supported by existing computational models and remains a challenge. We propose novel geometric formulations of valid paper sliceform designs that consider the stability, flat-foldability and physical realizability of the designs. Based on a set of sufficient construction conditions, we also present an automatic algorithm for generating valid sliceform designs that closely depict the given 3D solid models. By approximating the input models using a set of generalized cylinders, our method significantly reduces the search space for stable and flat-foldable sliceforms. To ensure the physical realizability of the designs, the algorithm automatically generates slots or slits on the patches such that no two cycles embedded in two different patches are interlocking each other. This guarantees local pairwise assembility between patches, which is empirically shown to lead to global assembility. Our method has been demonstrated on a number of example models, and the output designs have been successfully made into real paper sliceforms.

  13. 3-D Eutrophication Modeling for Lake Simcoe, Canada

    Science.gov (United States)

    Lu, Q.; Duckett, F.; Nairn, R.; Brunton, A.

    2006-12-01

    The Lake Simcoe Region Conservation Authority (LSRCA) and the Province of Ontario are undertaking a series of studies to facilitate management of the pressures of population growth in the Lake Simcoe watershed. With rapid population growth and urban development comes additional land clearing, storm water runoff and the discharge of treated sewage, all of which are sources of increased phosphorus loading to Lake Simcoe. Depressed oxygen levels were linked to phosphorous enrichment of the lake, with the resultant stimulation of algal growth in the sunlit upper waters of the lake, and its subsequent senescence and settling into the hypolimnion where bacterial decomposition consumes oxygen from the stratified waters. This poster describes a 3-D hydrodynamic, thermal and water quality model of Lake Simcoe developed using the Danish Hydraulics Institute (DHI) MIKE3 model. The hydrodynamic module includes wind-driven circulation, temperature variation, development of the thermocline and thermal stratification, and hydraulic forcing from inflowing tributaries. This is linked to the water quality module which simulates the eutrophication processes in the response of the lake to loadings of phosphorus, such as algal growth, the growth of aquatic plants and subsequent oxygen consumption. The model has been calibrated against Acoustic Doppler Current Profiler velocity data, plus measured temperature and water quality data at MOE stations in the lake and water intakes. The model is an important assessment tool for the management of the lake and its watersheds, allowing assessment of the impacts of the urban growth and land use change on the water quality in Lake Simcoe.

  14. Indoor Modelling Benchmark for 3D Geometry Extraction

    Science.gov (United States)

    Thomson, C.; Boehm, J.

    2014-06-01

    A combination of faster, cheaper and more accurate hardware, more sophisticated software, and greater industry acceptance have all laid the foundations for an increased desire for accurate 3D parametric models of buildings. Pointclouds are the data source of choice currently with static terrestrial laser scanning the predominant tool for large, dense volume measurement. The current importance of pointclouds as the primary source of real world representation is endorsed by CAD software vendor acquisitions of pointcloud engines in 2011. Both the capture and modelling of indoor environments require great effort in time by the operator (and therefore cost). Automation is seen as a way to aid this by reducing the workload of the user and some commercial packages have appeared that provide automation to some degree. In the data capture phase, advances in indoor mobile mapping systems are speeding up the process, albeit currently with a reduction in accuracy. As a result this paper presents freely accessible pointcloud datasets of two typical areas of a building each captured with two different capture methods and each with an accurate wholly manually created model. These datasets are provided as a benchmark for the research community to gauge the performance and improvements of various techniques for indoor geometry extraction. With this in mind, non-proprietary, interoperable formats are provided such as E57 for the scans and IFC for the reference model. The datasets can be found at: http://indoor-bench.github.io/indoor-bench.

  15. A multipurpose 3-D grid of stellar models

    CERN Document Server

    Apellániz, J Maíz

    2012-01-01

    The last two decades have produced a proliferation of stellar atmosphere grids, evolutionary tracks, and isochrones which are available to the astronomical community from different internet services. However, it is not straightforward (at least for an inexperienced user) to manipulate those models to answer questions of the type: What is the spectral energy distribution of a 9000 K giant? What about its J-band magnitude for different metallicities? What can I tell about the mass of a star if I know that its unreddened B-V color is -0.05 and its luminosity in solar units is 10^5? The answers to those questions are indeed in the models but a series of transformations and combinations involving different variables and models are required to obtain them. To make the available knowledge more user friendly, I have combined a number of state-of-the-art sources to create a 3-D (effective temperature, luminosity, and metallicity) grid of stellar models for which I provide calibrated SEDs and magnitudes as well as auxi...

  16. Reynolds-stress model prediction of 3-D duct flows

    CERN Document Server

    Gerolymos, G A

    2014-01-01

    The paper examines the impact of different modelling choices in second-moment closures by assessing model performance in predicting 3-D duct flows. The test-cases (developing flow in a square duct [Gessner F.B., Emery A.F.: {\\em ASME J. Fluids Eng.} {\\bf 103} (1981) 445--455], circular-to-rectangular transition-duct [Davis D.O., Gessner F.B.: {\\em AIAA J.} {\\bf 30} (1992) 367--375], and \\tsn{S}-duct with large separation [Wellborn S.R., Reichert B.A., Okiishi T.H.: {\\em J. Prop. Power} {\\bf 10} (1994) 668--675]) include progressively more complex strains. Comparison of experimental data with selected 7-equation models (6 Reynolds-stress-transport and 1 scale-determining equations), which differ in the closure of the velocity/pressure-gradient tensor $\\Pi_{ij}$, suggests that rapid redistribution controls separation and secondary-flow prediction, whereas, inclusion of pressure-diffusion modelling improves reattachment and relaxation behaviour.

  17. 3-D GRACE gravity model for the 2011 Japan earthquake

    Indian Academy of Sciences (India)

    Rambhatla G Sastry; Mahendra K Sonker

    2017-02-01

    The GRACE mission has contributed to the seismic characterization of major earthquakes in offshore regions of the world. Here, we isolate satellite gravity signal (μGal range) for the Japan Earthquake of 2011 using a difference method. Contrary to the existing gravity models, we propose a unit vertical pyramid based five-layer 3-D thrust fault model, which extends to the hypocenter and honors the ocean water layer and sea floor upheaval also. Our model partly uses existing seismological information (hypocenter depth of 32 km, rupture length of 300 km and vertical slip of 4 m), provides a snapshot of episodic subduction of the Pacific Plate below the Atlantic Plate and its gravity response closely matches the observed gravity (RMS error of 3.4012×10−13μGal), fully accounting for co-seismic mass redistribution including sea surface deformation. Our inferred rupture length, rupture velocity, average seismic moment magnitude and momentum, respectively, are 300 km, 4.49 km/s, 1.152×1021 −1.8816×1021 N m and 2.319×106 GNs, which fairly agree with the literature. Further, our model inferred momentum at the sea floor corresponds to an area pulse that led to Tsunami generation.

  18. 3D RECORDING FOR 2D DELIVERING – THE EMPLOYMENT OF 3D MODELS FOR STUDIES AND ANALYSES –

    Directory of Open Access Journals (Sweden)

    A. Rizzi

    2012-09-01

    Full Text Available In the last years, thanks to the advances of surveying sensors and techniques, many heritage sites could be accurately replicated in digital form with very detailed and impressive results. The actual limits are mainly related to hardware capabilities, computation time and low performance of personal computer. Often, the produced models are not visible on a normal computer and the only solution to easily visualized them is offline using rendered videos. This kind of 3D representations is useful for digital conservation, divulgation purposes or virtual tourism where people can visit places otherwise closed for preservation or security reasons. But many more potentialities and possible applications are available using a 3D model. The problem is the ability to handle 3D data as without adequate knowledge this information is reduced to standard 2D data. This article presents some surveying and 3D modeling experiences within the APSAT project ("Ambiente e Paesaggi dei Siti d’Altura Trentini", i.e. Environment and Landscapes of Upland Sites in Trentino. APSAT is a multidisciplinary project funded by the Autonomous Province of Trento (Italy with the aim documenting, surveying, studying, analysing and preserving mountainous and hill-top heritage sites located in the region. The project focuses on theoretical, methodological and technological aspects of the archaeological investigation of mountain landscape, considered as the product of sequences of settlements, parcelling-outs, communication networks, resources, and symbolic places. The mountain environment preserves better than others the traces of hunting and gathering, breeding, agricultural, metallurgical, symbolic activities characterised by different lengths and environmental impacts, from Prehistory to the Modern Period. Therefore the correct surveying and documentation of this heritage sites and material is very important. Within the project, the 3DOM unit of FBK is delivering all the surveying

  19. Planetary subsurface investigation by 3D visualization model .

    Science.gov (United States)

    Seu, R.; Catallo, C.; Tragni, M.; Abbattista, C.; Cinquepalmi, L.

    Subsurface data analysis and visualization represents one of the main aspect in Planetary Observation (i.e. search for water or geological characterization). The data are collected by subsurface sounding radars as instruments on-board of deep space missions. These data are generally represented as 2D radargrams in the perspective of space track and z axes (perpendicular to the subsurface) but without direct correlation to other data acquisition or knowledge on the planet . In many case there are plenty of data from other sensors of the same mission, or other ones, with high continuity in time and in space and specially around the scientific sites of interest (i.e. candidate landing areas or particular scientific interesting sites). The 2D perspective is good to analyse single acquisitions and to perform detailed analysis on the returned echo but are quite useless to compare very large dataset as now are available on many planets and moons of solar system. The best way is to approach the analysis on 3D visualization model generated from the entire stack of data. First of all this approach allows to navigate the subsurface in all directions and analyses different sections and slices or moreover navigate the iso-surfaces respect to a value (or interval). The last one allows to isolate one or more iso-surfaces and remove, in the visualization mode, other data not interesting for the analysis; finally it helps to individuate the underground 3D bodies. Other aspect is the needs to link the on-ground data, as imaging, to the underground one by geographical and context field of view.

  20. Accurate, low-cost 3D-models of gullies

    Science.gov (United States)

    Onnen, Nils; Gronz, Oliver; Ries, Johannes B.; Brings, Christine

    2015-04-01

    Soil erosion is a widespread problem in arid and semi-arid areas. The most severe form is the gully erosion. They often cut into agricultural farmland and can make a certain area completely unproductive. To understand the development and processes inside and around gullies, we calculated detailed 3D-models of gullies in the Souss Valley in South Morocco. Near Taroudant, we had four study areas with five gullies different in size, volume and activity. By using a Canon HF G30 Camcorder, we made varying series of Full HD videos with 25fps. Afterwards, we used the method Structure from Motion (SfM) to create the models. To generate accurate models maintaining feasible runtimes, it is necessary to select around 1500-1700 images from the video, while the overlap of neighboring images should be at least 80%. In addition, it is very important to avoid selecting photos that are blurry or out of focus. Nearby pixels of a blurry image tend to have similar color values. That is why we used a MATLAB script to compare the derivatives of the images. The higher the sum of the derivative, the sharper an image of similar objects. MATLAB subdivides the video into image intervals. From each interval, the image with the highest sum is selected. E.g.: 20min. video at 25fps equals 30.000 single images. The program now inspects the first 20 images, saves the sharpest and moves on to the next 20 images etc. Using this algorithm, we selected 1500 images for our modeling. With VisualSFM, we calculated features and the matches between all images and produced a point cloud. Then, MeshLab has been used to build a surface out of it using the Poisson surface reconstruction approach. Afterwards we are able to calculate the size and the volume of the gullies. It is also possible to determine soil erosion rates, if we compare the data with old recordings. The final step would be the combination of the terrestrial data with the data from our aerial photography. So far, the method works well and we

  1. 3D Printing of Molecular Potential Energy Surface Models

    Science.gov (United States)

    Lolur, Phalgun; Dawes, Richard

    2014-01-01

    Additive manufacturing, commonly known as 3D printing, is gaining popularity in a variety of applications and has recently become routinely available. Today, 3D printing services are not only found in engineering design labs and through online companies, but also in university libraries offering student access. In addition, affordable options for…

  2. 3D Printing of Molecular Potential Energy Surface Models

    Science.gov (United States)

    Lolur, Phalgun; Dawes, Richard

    2014-01-01

    Additive manufacturing, commonly known as 3D printing, is gaining popularity in a variety of applications and has recently become routinely available. Today, 3D printing services are not only found in engineering design labs and through online companies, but also in university libraries offering student access. In addition, affordable options for…

  3. 3D-Digital soil property mapping by geoadditive models

    Science.gov (United States)

    Papritz, Andreas

    2016-04-01

    In many digital soil mapping (DSM) applications, soil properties must be predicted not only for a single but for multiple soil depth intervals. In the GlobalSoilMap project, as an example, predictions are computed for the 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, 100-200 cm depth intervals (Arrouays et al., 2014). Legacy soil data are often used for DSM. It is common for such datasets that soil properties were measured for soil horizons or for layers at varying soil depth and with non-constant thickness (support). This poses problems for DSM: One strategy is to harmonize the soil data to common depth prior to the analyses (e.g. Bishop et al., 1999) and conduct the statistical analyses for each depth interval independently. The disadvantage of this approach is that the predictions for different depths are computed independently from each other so that the predicted depth profiles may be unrealistic. Furthermore, the error induced by the harmonization to common depth is ignored in this approach (Orton et al. 2016). A better strategy is therefore to process all soil data jointly without prior harmonization by a 3D-analysis that takes soil depth and geographical position explicitly into account. Usually, the non-constant support of the data is then ignored, but Orton et al. (2016) presented recently a geostatistical approach that accounts for non-constant support of soil data and relies on restricted maximum likelihood estimation (REML) of a linear geostatistical model with a separable, heteroscedastic, zonal anisotropic auto-covariance function and area-to-point kriging (Kyriakidis, 2004.) Although this model is theoretically coherent and elegant, estimating its many parameters by REML and selecting covariates for the spatial mean function is a formidable task. A simpler approach might be to use geoadditive models (Kammann and Wand, 2003; Wand, 2003) for 3D-analyses of soil data. geoAM extend the scope of the linear model with spatially correlated errors to

  4. A Unified Building Model for 3D Urban GIS

    Directory of Open Access Journals (Sweden)

    Ihab Hijazi

    2012-07-01

    Full Text Available Several tasks in urban and architectural design are today undertaken in a geospatial context. Building Information Models (BIM and geospatial technologies offer 3D data models that provide information about buildings and the surrounding environment. The Industry Foundation Classes (IFC and CityGML are today the two most prominent semantic models for representation of BIM and geospatial models respectively. CityGML has emerged as a standard for modeling city models while IFC has been developed as a reference model for building objects and sites. Current CAD and geospatial software provide tools that allow the conversion of information from one format to the other. These tools are however fairly limited in their capabilities, often resulting in data and information losses in the transformations. This paper describes a new approach for data integration based on a unified building model (UBM which encapsulates both the CityGML and IFC models, thus avoiding translations between the models and loss of information. To build the UBM, all classes and related concepts were initially collected from both models, overlapping concepts were merged, new objects were created to ensure the capturing of both indoor and outdoor objects, and finally, spatial relationships between the objects were redefined. Unified Modeling Language (UML notations were used for representing its objects and relationships between them. There are two use-case scenarios, both set in a hospital: “evacuation” and “allocating spaces for patient wards” were developed to validate and test the proposed UBM data model. Based on these two scenarios, four validation queries were defined in order to validate the appropriateness of the proposed unified building model. It has been validated, through the case scenarios and four queries, that the UBM being developed is able to integrate CityGML data as well as IFC data in an apparently seamless way. Constraints and enrichment functions are

  5. 3D Finite Difference Modelling of Basaltic Region

    Science.gov (United States)

    Engell-Sørensen, L.

    2003-04-01

    The main purpose of the work was to generate realistic data to be applied for testing of processing and migration tools for basaltic regions. The project is based on the three - dimensional finite difference code (FD), TIGER, made by Sintef. The FD code was optimized (parallelized) by the author, to run on parallel computers. The parallel code enables us to model large-scale realistic geological models and to apply traditional seismic and micro seismic sources. The parallel code uses multiple processors in order to manipulate subsets of large amounts of data simultaneously. The general anisotropic code uses 21 elastic coefficients. Eight independent coefficients are needed as input parameters for the general TI medium. In the FD code, the elastic wave field computation is implemented by a higher order FD solution to the elastic wave equation and the wave fields are computed on a staggered grid, shifted half a node in one or two directions. The geological model is a gridded basalt model, which covers from 24 km to 37 km of a real shot line in horizontal direction and from the water surface to the depth of 3.5 km. The 2frac {1}{2}D model has been constructed using the compound modeling software from Norsk Hydro. The vertical parameter distribution is obtained from observations in two wells. At The depth of between 1100 m to 1500 m, a basalt horizon covers the whole sub surface layers. We have shown that it is possible to simulate a line survey in realistic (3D) geological models in reasonable time by using high performance computers. The author would like to thank Norsk Hydro, Statoil, GEUS, and SINTEF for very helpful discussions and Parallab for being helpful with the new IBM, p690 Regatta system.

  6. 3D computer modeling of sitting working place.

    Science.gov (United States)

    Mijović, B; Ujević, D; Skoko, M; Baksa, S

    2002-12-01

    Ergonomic contribution to designing and modeling of sitting working place by use of a computer and computer programs have been presented in this work. The influences of modeling working places on regular posture of a man/woman during work have been reconsidered, so that consumption of energy and fatigue are brought down to a minimum. For that purpose a computer program has been made which with input data on various kinds of work, sex and height of a worker determines the optimal ergonomic parameters during the modeling of a sitting working place. By computer visualisation the values of angle of spine curving have been calculated, the manipulation angle of arms and legs for three anthropometric heights of workers (160 cm, 175 cm and 190 cm). The dimensions of manipulative body space have been established by computerised 3D anthropometric analysis of movement as for example, reach of arms, legs, head, back etc positions. In this process the dimensions of machine and working space surrounding it in respect to optimal utilisation have been put in accordance with the anthropometric size of a man/woman.

  7. Predicted 3D Model of the Rabies Virus Glycoprotein Trimer

    Directory of Open Access Journals (Sweden)

    Bastida-González Fernando

    2016-01-01

    Full Text Available The RABVG ectodomain is a homotrimer, and trimers are often called spikes. They are responsible for the attachment of the virus through the interaction with nicotinic acetylcholine receptors, neural cell adhesion molecule (NCAM, and the p75 neurotrophin receptor (p75NTR. This makes them relevant in viral pathogenesis. The antigenic structure differs significantly between the trimers and monomers. Surfaces rich in hydrophobic amino acids are important for trimer stabilization in which the C-terminal of the ectodomain plays an important role; to understand these interactions between the G proteins, a mechanistic study of their functions was performed with a molecular model of G protein in its trimeric form. This verified its 3D conformation. The molecular modeling of G protein was performed by a I-TASSER server and was evaluated via a Rachamandran plot and ERRAT program obtained 84.64% and 89.9% of the residues in the favorable regions and overall quality factor, respectively. The molecular dynamics simulations were carried out on RABVG trimer at 310 K. From these theoretical studies, we retrieved the RMSD values from Cα atoms to assess stability. Preliminary model of G protein of rabies virus stable at 12 ns with molecular dynamics was obtained.

  8. Predicted 3D Model of the Rabies Virus Glycoprotein Trimer

    Science.gov (United States)

    Fernando, Bastida-González; Yersin, Celaya-Trejo; José, Correa-Basurto; Paola, Zárate-Segura

    2016-01-01

    The RABVG ectodomain is a homotrimer, and trimers are often called spikes. They are responsible for the attachment of the virus through the interaction with nicotinic acetylcholine receptors, neural cell adhesion molecule (NCAM), and the p75 neurotrophin receptor (p75NTR). This makes them relevant in viral pathogenesis. The antigenic structure differs significantly between the trimers and monomers. Surfaces rich in hydrophobic amino acids are important for trimer stabilization in which the C-terminal of the ectodomain plays an important role; to understand these interactions between the G proteins, a mechanistic study of their functions was performed with a molecular model of G protein in its trimeric form. This verified its 3D conformation. The molecular modeling of G protein was performed by a I-TASSER server and was evaluated via a Rachamandran plot and ERRAT program obtained 84.64% and 89.9% of the residues in the favorable regions and overall quality factor, respectively. The molecular dynamics simulations were carried out on RABVG trimer at 310 K. From these theoretical studies, we retrieved the RMSD values from Cα atoms to assess stability. Preliminary model of G protein of rabies virus stable at 12 ns with molecular dynamics was obtained. PMID:27294109

  9. Twisted gauge theories in 3D Walker-Wang models

    CERN Document Server

    Wang, Zitao

    2016-01-01

    Three dimensional gauge theories with a discrete gauge group can emerge from spin models as a gapped topological phase with fractional point excitations (gauge charge) and loop excitations (gauge flux). It is known that 3D gauge theories can be "twisted", in the sense that the gauge flux loops can have nontrivial braiding statistics among themselves and such twisted gauge theories are realized in models discovered by Dijkgraaf and Witten. A different framework to systematically construct three dimensional topological phases was proposed by Walker and Wang and a series of examples have been studied. Can the Walker Wang construction be used to realize the topological order in twisted gauge theories? This is not immediately clear because the Walker-Wang construction is based on a loop condensation picture while the Dijkgraaf-Witten theory is based on a membrane condensation picture. In this paper, we show that the answer to this question is Yes, by presenting an explicit construction of the Walker Wang models wh...

  10. A 3D world model builder with a mobile robot

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.; Faugeras, O. (INRIA, Valbonne (France))

    1992-08-01

    This article describes a system to incrementally build a world model with a mobile robot in an unknown environment. The model is, for the moment, segment based. A trinocular stereo system is used to build a local map about the environment. A global map is obtained by integrating a sequence of stereo frames taken when the robot navigates in the environment. The emphasis of this article is on the representation of the uncertainty of 3D segments from stereo and on the integration of segments from multiple views. The proposed representation is simple and very convenient to characterize the uncertainty of segment. A Kalman filter is used to merge matched line segments. An important characteristic of this integration strategy is that a segment observed by the stereo system corresponds only to one part of the segment in space, so the union of the different observations gives a better estimate on the segment in space. The authors have succeeded in integrating 35 stereo frames taken in their robot room.

  11. Modelling Polymer Deformation and Welding Behaviour during 3D Printing

    Science.gov (United States)

    McIlroy, Claire; Olmsted, Peter

    2016-11-01

    3D printing has the potential to transform manufacturing processes, yet improving the strength of printed parts, to equal that of traditionally-manufactured parts, remains an underlying issue. The most common method, fused deposition modelling, involves melting a thermoplastic, followed by layer-by-layer extrusion of the material to fabricate a three-dimensional object. The key to the ensuring strength at the weld between these layers is successful inter-diffusion. However, as the printed layer cools towards the glass transition temperature, the time available for diffusion is limited. In addition, the extrusion process significantly deforms the polymer micro-structure prior to welding and consequently affects how the polymers "re-entangle" across the weld. We have developed a simple model of the non-isothermal printing process to explore the effects that typical printing conditions and amorphous polymer rheology have on the ultimate weld structure. In particular, we incorporate both the stretch and orientation of the polymer using the Rolie-Poly constitutive equation to examine how the melt flows through the nozzle and is deposited onto the build plate. We then address how this deformation relaxes and contributes to the thickness and structure of the weld. National Institute for Standards and Technology (NIST) and Georgetown University.

  12. A novel mechanotactic 3D modeling of cell morphology

    Science.gov (United States)

    Jamaleddin Mousavi, Seyed; Hamdy Doweidar, Mohamed

    2014-08-01

    Cell morphology plays a critical role in many biological processes, such as cell migration, tissue development, wound healing and tumor growth. Recent investigations demonstrate that, among other stimuli, cells adapt their shapes according to their substrate stiffness. Until now, the development of this process has not been clear. Therefore, in this work, a new three-dimensional (3D) computational model for cell morphology has been developed. This model is based on a previous cell migration model presented by the same authors. The new model considers that during cell-substrate interaction, cell shape is governed by internal cell deformation, which leads to an accurate prediction of the cell shape according to the mechanical characteristic of its surrounding micro-environment. To study this phenomenon, the model has been applied to different numerical cases. The obtained results, which are qualitatively consistent with well-known related experimental works, indicate that cell morphology not only depends on substrate stiffness but also on the substrate boundary conditions. A cell located within an unconstrained soft substrate (several kPa) with uniform stiffness is unable to adhere to its substrate or to send out pseudopodia. When the substrate stiffness increases to tens of kPa (intermediate and rigid substrates), the cell can adequately adhere to its substrate. Subsequently, as the traction forces exerted by the cell increase, the cell elongates and its shape changes. Within very stiff (hard) substrates, the cell cannot penetrate into its substrate or send out pseudopodia. On the other hand, a cell is found to be more elongated within substrates with a constrained surface. However, this elongation decreases when the cell approaches it. It can be concluded that the higher the net traction force, the greater the cell elongation, the larger the cell membrane area, and the less random the cell alignment.

  13. Relations between a micro-mechanical model and a damage model for ductile failure in shear

    Science.gov (United States)

    Tvergaard, Viggo; Nielsen, Kim Lau

    2010-09-01

    Gurson type constitutive models that account for void growth to coalescence are not able to describe ductile fracture in simple shear, where there is no hydrostatic tension in the material. But recent micro-mechanical studies have shown that in shear the voids are flattened out to micro-cracks, which rotate and elongate until interaction with neighbouring micro-cracks gives coalescence. Thus, the failure mechanism is very different from that under tensile loading. Also, the Gurson model has recently been extended to describe failure in shear, by adding a damage term to the expression for the growth of the void volume fraction, and it has been shown that this extended model can represent experimental observations. Here, numerical studies are carried out to compare predictions of the shear-extended Gurson model with the shear failures predicted by the micro-mechanical cell model. Both models show a strong dependence on the level of hydrostatic tension. Even though the reason for this pressure dependence is different in the two models, as the shear-extended Gurson model does not describe voids flattening out and the associated failure mechanism by micro-cracks interacting with neighbouring micro-cracks, it is shown that the trends of the predictions are in good agreement.

  14. Methods for Geometric Data Validation of 3d City Models

    Science.gov (United States)

    Wagner, D.; Alam, N.; Wewetzer, M.; Pries, M.; Coors, V.

    2015-12-01

    Geometric quality of 3D city models is crucial for data analysis and simulation tasks, which are part of modern applications of the data (e.g. potential heating energy consumption of city quarters, solar potential, etc.). Geometric quality in these contexts is however a different concept as it is for 2D maps. In the latter case, aspects such as positional or temporal accuracy and correctness represent typical quality metrics of the data. They are defined in ISO 19157 and should be mentioned as part of the metadata. 3D data has a far wider range of aspects which influence their quality, plus the idea of quality itself is application dependent. Thus, concepts for definition of quality are needed, including methods to validate these definitions. Quality on this sense means internal validation and detection of inconsistent or wrong geometry according to a predefined set of rules. A useful starting point would be to have correct geometry in accordance with ISO 19107. A valid solid should consist of planar faces which touch their neighbours exclusively in defined corner points and edges. No gaps between them are allowed, and the whole feature must be 2-manifold. In this paper, we present methods to validate common geometric requirements for building geometry. Different checks based on several algorithms have been implemented to validate a set of rules derived from the solid definition mentioned above (e.g. water tightness of the solid or planarity of its polygons), as they were developed for the software tool CityDoctor. The method of each check is specified, with a special focus on the discussion of tolerance values where they are necessary. The checks include polygon level checks to validate the correctness of each polygon, i.e. closeness of the bounding linear ring and planarity. On the solid level, which is only validated if the polygons have passed validation, correct polygon orientation is checked, after self-intersections outside of defined corner points and edges

  15. Micromechanical modelling of nanocrystalline and ultrafine grained metals: A short overview

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Levashov, Evgeny

    2015-01-01

    An overview of micromechanical models of strength and deformation behaviour of nanostructured and ultrafine grained metallic materials is presented. Composite models of nanomaterials, polycrystal plasticity based models, grain boundary sliding, the effect of non-equilibrium grain boundaries...... and nanoscale properties are discussed and compared. The examples of incorporation of peculiar nanocrystalline effects (like large content of amorphous or semi-amorphous grain boundary phase, partial dislocation GB emission/glide/GB absorption based deformation mechanism, diffusion deformation, etc...

  16. Effect of fibre arrangement on the multiaxial fatigue of fibrous composites: a micromechanical computational model

    Directory of Open Access Journals (Sweden)

    Roberto Brighenti

    2015-10-01

    Full Text Available Structural components made of fibre-reinforced materials are frequently used in engineering applications. Fibre-reinforced composites are multiphase materials, and complex mechanical phenomena take place at limit conditions but also during normal service situations, especially under fatigue loading, causing a progressive deterioration and damage. Under repeated loading, the degradation mainly occurs in the matrix material and at the fibre-matrix interface, and such a degradation has to be quantified for design structural assessment purposes. To this end, damage mechanics and fracture mechanics theories can be suitably applied to examine such a problem. Damage concepts can be applied to the matrix mechanical characteristics and, by adopting a 3-D mixed mode fracture description of the fibre-matrix detachment, fatigue fracture mechanics concepts can be used to determine the progressive fibre debonding responsible for the loss of load bearing capacity of the reinforcing phase. In the present paper, a micromechanical model is used to evaluate the unixial or multiaxial fatigue behaviour of structures with equi-oriented or randomly distributed fibres. The spatial fibre arrangement is taken into account through a statistical description of their orientation angles for which a Gaussian-like distribution is assumed, whereas the mechanical effect of the fibres on the composite is accounted for by a homogenization approach aimed at obtaining the macroscopic elastic constants of the material. The composite material behaves as an isotropic one for randomly distributed fibres, while it is transversally isotropic for unidirectional fibres. The fibre arrangement in the structural component influences the fatigue life with respect to the biaxiality ratio for multiaxial constant amplitude fatigue loading. One representative parametric example is discussed.

  17. Validity and Repeatability of the Sizestream 3D Scanner and Poikos Modeling System

    NARCIS (Netherlands)

    Vonk, T.E.; Daanen, H.A.M.

    2015-01-01

    Three-dimensional (3D) body scanning becomes increasingly important in the medical, ergonomical and apparel industry. The SizeStream 3D body scanner is a 3D body scanner in the shape of a fitting room that can generate a 3D copy of the human body in a few seconds. The Poikos modeling system

  18. Validity and Repeatability of the Sizestream 3D Scanner and Poikos Modeling System

    NARCIS (Netherlands)

    Vonk, T.E.; Daanen, H.A.M.

    2015-01-01

    Three-dimensional (3D) body scanning becomes increasingly important in the medical, ergonomical and apparel industry. The SizeStream 3D body scanner is a 3D body scanner in the shape of a fitting room that can generate a 3D copy of the human body in a few seconds. The Poikos modeling system generate

  19. Development of topography in 3-D continental-collision models

    Science.gov (United States)

    Pusok, A. E.; Kaus, Boris J. P.

    2015-05-01

    Understanding the formation and evolution of high mountain belts, such as the Himalayas and the adjacent Tibetan Plateau, has been the focus of many tectonic and numerical models. Here we employ 3-D numerical simulations to investigate the role that subduction, collision, and indentation play on lithosphere dynamics at convergent margins, and to analyze the conditions under which large topographic plateaus can form in an integrated lithospheric and upper mantle-scale model. Distinct dynamics are obtained for the oceanic subduction side (trench retreat, slab rollback) and the continental-collision side (trench advance, slab detachment, topographic uplift, lateral extrusion). We show that slab pull alone is insufficient to generate high topography in the upper plate, and that external forcing and the presence of strong blocks such as the Tarim Basin are necessary to create and shape anomalously high topographic fronts and plateaus. Moreover, scaling is used to predict four different modes of surface expression in continental-collision models: (I) low-amplitude homogeneous shortening, (II) high-amplitude homogeneous shortening, (III) Alpine-type topography with topographic front and low plateau, and (IV) Tibet-Himalaya-type topography with topographic front and high plateau. Results of semianalytical models suggest that the Argand number governs the formation of high topographic fronts, while the amplitude of plateaus is controlled by the initial buoyancy ratio of the upper plate. Applying these results to natural examples, we show that the Alps belong to regime (III), the Himalaya-Tibet to regime (IV), whereas the Andes-Altiplano fall at the boundary between regimes (III) and (IV).

  20. Active Strokes: Coherent Line Stylization for Animated 3D Models

    OpenAIRE

    Bénard, Pierre; Jingwan, Lu; Cole, Forrester; Finkelstein, Adam; Thollot, Joëlle

    2012-01-01

    Paper session 8: Lines, strokes and textures in 3D; International audience; This paper presents a method for creating coherently animated line drawings that include strong abstraction and stylization effects. These effects are achieved with active strokes: 2D contours that approximate and track the lines of an animated 3D scene. Active strokes perform two functions: they connect and smooth unorganized line samples, and they carry coherent parameterization to support stylized rendering. Line s...

  1. Prediction models from CAD models of 3D objects

    Science.gov (United States)

    Camps, Octavia I.

    1992-11-01

    In this paper we present a probabilistic prediction based approach for CAD-based object recognition. Given a CAD model of an object, the PREMIO system combines techniques of analytic graphics and physical models of lights and sensors to predict how features of the object will appear in images. In nearly 4,000 experiments on analytically-generated and real images, we show that in a semi-controlled environment, predicting the detectability of features of the image can successfully guide a search procedure to make informed choices of model and image features in its search for correspondences that can be used to hypothesize the pose of the object. Furthermore, we provide a rigorous experimental protocol that can be used to determine the optimal number of correspondences to seek so that the probability of failing to find a pose and of finding an inaccurate pose are minimized.

  2. 3D numerical modeling of YSO accretion shocks

    Directory of Open Access Journals (Sweden)

    Matsakos T.

    2014-01-01

    Full Text Available The dynamics of YSO accretion shocks is determined by radiative processes as well as the strength and structure of the magnetic field. A quasi-periodic emission signature is theoretically expected to be observed, but observations do not confirm any such pattern. In this work, we assume a uniform background field, in the regime of optically thin energy losses, and we study the multi-dimensional shock evolution in the presence of perturbations, i.e. clumps in the stream and an acoustic energy flux flowing at the base of the chromosphere. We perform 3D MHD simulations using the PLUTO code, modelling locally the impact of the infalling gas onto the chromosphere. We find that the structure and dynamics of the post-shock region is strongly dependent on the plasma-beta (thermal over magnetic pressure, different values of which may give distinguishable emission signatures, relevant for observations. In particular, a strong magnetic field effectively confines the plasma inside its flux tubes and leads to the formation of quasi-independent fibrils. The fibrils may oscillate out of phase and hence the sum of their contributions in the emission results in a smooth overall profile. On the contrary, a weak magnetic field is not found to have any significant effect on the shocked plasma and the turbulent hot slab that forms is found to retain its periodic signature.

  3. Model Development for Solving 3D Landslide Generated Tsunami.

    Science.gov (United States)

    Hu, Shun-Kai; Wu, Tso-Ren

    2017-04-01

    Landslide generated tsunami often caused severe damage in the near-source coastal area. However, the dynamics of the wave generation between landslide and tsunami has not been well studied. In this paper, we explored the generation process numerically. Surface-piercing rock slide was one of the focuses. The kinematic of the rocks was described by the newly developed egg-shape Moving-Solid-Algorithm (MSA). The egg-shape, including ellipsoid-shape and sphere, was divided into four curvatures. Discrete-Element-Method (DEM) will be adopted to calculate the solid motion. The result was coupled with a fluid dynamic model, Splash3D, by solving the full Navier-Stokes equations. The violent breaking waves was described by Volume-of-Fluid (VOF) method with Piecewise-Linear-Interface-Calculation (PLIC) surface reconstruction algorithm. In this study, we present a series of numerical experiment to validation the accuracy of MSA. Cases of floating block and landslide box were performed. Good comparison results can be seen. As for the egg-shape MSA, the case of water entry sphere was chosen for validation. Very good results in terms of the displacement and the shape of air cavity can be seen. The characteristics of landslide tsunamis were presented. At the end, the boulder pushed by high-energy waves will simulated and discussed.

  4. 3D Simulation Modeling of the Tooth Wear Process.

    Science.gov (United States)

    Dai, Ning; Hu, Jian; Liu, Hao

    2015-01-01

    Severe tooth wear is the most common non-caries dental disease, and it can seriously affect oral health. Studying the tooth wear process is time-consuming and difficult, and technological tools are frequently lacking. This paper presents a novel method of digital simulation modeling that represents a new way to study tooth wear. First, a feature extraction algorithm is used to obtain anatomical feature points of the tooth without attrition. Second, after the alignment of non-attrition areas, the initial homogeneous surface is generated by means of the RBF (Radial Basic Function) implicit surface and then deformed to the final homogeneous by the contraction and bounding algorithm. Finally, the method of bilinear interpolation based on Laplacian coordinates between tooth with attrition and without attrition is used to inversely reconstruct the sequence of changes of the 3D tooth morphology during gradual tooth wear process. This method can also be used to generate a process simulation of nonlinear tooth wear by means of fitting an attrition curve to the statistical data of attrition index in a certain region. The effectiveness and efficiency of the attrition simulation algorithm are verified through experimental simulation.

  5. 3D Simulation Modeling of the Tooth Wear Process.

    Directory of Open Access Journals (Sweden)

    Ning Dai

    Full Text Available Severe tooth wear is the most common non-caries dental disease, and it can seriously affect oral health. Studying the tooth wear process is time-consuming and difficult, and technological tools are frequently lacking. This paper presents a novel method of digital simulation modeling that represents a new way to study tooth wear. First, a feature extraction algorithm is used to obtain anatomical feature points of the tooth without attrition. Second, after the alignment of non-attrition areas, the initial homogeneous surface is generated by means of the RBF (Radial Basic Function implicit surface and then deformed to the final homogeneous by the contraction and bounding algorithm. Finally, the method of bilinear interpolation based on Laplacian coordinates between tooth with attrition and without attrition is used to inversely reconstruct the sequence of changes of the 3D tooth morphology during gradual tooth wear process. This method can also be used to generate a process simulation of nonlinear tooth wear by means of fitting an attrition curve to the statistical data of attrition index in a certain region. The effectiveness and efficiency of the attrition simulation algorithm are verified through experimental simulation.

  6. Concrete Failure Modeling Based on Micromechanical Approach Subjected to Static Loading

    Directory of Open Access Journals (Sweden)

    Endah Wahyuni

    2010-02-01

    Full Text Available In this paper, a micromechanical model based on the Mori-Tanaka method and the spring-layer model is developed to study the stress-strain behavior of concrete. The concrete is modeled as a two-phase composite. And the failure of concrete is categorized as mortar failure and interface failure. The research presents a method for estimating the modulus of concrete under its whole loading process. The proposed micromechanical model owns the good capabilities for predicting the entire response of concrete under uniaxial compression. It is suitable that tensile strain is as the criterion of concrete failure and the prediction of crack direction also fits with experimental phenomenon.

  7. Micromechanical modelling of nanocrystalline and ultrafine grained metals: A short overview

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Levashov, Evgeny

    2015-01-01

    An overview of micromechanical models of strength and deformation behaviour of nanostructured and ultrafine grained metallic materials is presented. Composite models of nanomaterials, polycrystal plasticity based models, grain boundary sliding, the effect of non-equilibrium grain boundaries...... and nanoscale properties are discussed and compared. The examples of incorporation of peculiar nanocrystalline effects (like large content of amorphous or semi-amorphous grain boundary phase, partial dislocation GB emission/glide/GB absorption based deformation mechanism, diffusion deformation, etc.......) into the continuum mechanical approach are given. The possibilities of using micromechanical models to explore the ways of the improving the properties of nanocrystalline materials by modifying their structures (e.g., dispersion strengthening, creating non-equilibrium grain boundaries, varying the grain size...

  8. Modelling and inversion of 3D complex kinematic data; Modelisation et inversion de donnees cinematiques complexes en 3D

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, R.

    1997-10-27

    Reflection tomography can determine velocity models containing lateral velocity variations and reflectors of arbitrary shapes; in order to access the kinematic data, a 3D zero offset approach to the SMART (Sequential Migration Aided Reflection Tomography) method, an original method of migration velocity analysis, is adopted. The approach involves interpreting kinematic data in the post-stack depth migrated cube and then de-migrating the horizons by two-point ray-tracing. A fast and robust two-point ray-tracer is developed, which can recover multi-valued kinematic data from complex geological structures. An original formulation for 3D reflection tomography is proposed, which can reliably take into account multivalued travel times

  9. Application of 3D Morphable Models to faces in video images

    NARCIS (Netherlands)

    van Rootseler, R.T.A.; Spreeuwers, Lieuwe Jan; Veldhuis, Raymond N.J.; van den Biggelaar, Olivier

    2011-01-01

    The 3D Morphable Face Model (3DMM) has been used for over a decade for creating 3D models from single images of faces. This model is based on a PCA model of the 3D shape and texture generated from a limited number of 3D scans. The goal of fitting a 3DMM to an image is to find the model coefficients,

  10. Foam Micromechanics

    Energy Technology Data Exchange (ETDEWEB)

    Kraynik, A.M.; Neilsen, M.K.; Reinelt, D.A.; Warren, W.E.

    1998-11-03

    -dimensional situation is always easier to visualize and usually easier to analyze, the roots of foam micromechanics lie in the plane packed with polygons. There are striking similarities as well as obvious differences between 2D and 3D.

  11. Using Micromechanical Resonators to Measure Rheological Properties and Alcohol Content of Model Solutions and Commercial Beverages

    OpenAIRE

    Hoogenboom, Bart W.; Anna Dejardin; Jake Stinson; Rosemary Paxman; McKendry, Rachel A.

    2012-01-01

    Micromechanic resonators provide a small-volume and potentially high-throughput method to determine rheological properties of fluids. Here we explore the accuracy in measuring mass density and viscosity of ethanol-water and glycerol-water model solutions, using a simple and easily implemented model to deduce the hydrodynamic effects on resonating cantilevers of various length-to-width aspect ratios. We next show that these measurements can be extended to determine the alcohol percentage of bo...

  12. Modeling of multi-inclusion composites with interfacial imperfections:Micromechanical and numerical simulations

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A micromechanical approach based on a two-layer built-in model and a numerical simulation based on boundary element method are proposed to predict the effective properties of the multi-inclusion composite with imperfect interfaces.The spring model is introduced to simulate the interface imperfection.These two methods are compared with each other,and good agreement is achieved.The effects of interface spring stiffness,volume ratio and stiffness of inclusions on the micro-and macro-mechanical behaviors of fiber-reinforced composites are investigated.It is shown that the developed micromechanical method is very comprehensive and efficient for fast prediction of effective properties of composites,while the numerical method is very accurate in detailed modeling of the mechanical behavior of composites with multiple inclusions.

  13. Explicit 3D continuum fracture modeling with smooth particle hydrodynamics

    Science.gov (United States)

    Benz, W.; Asphaug, E.

    1993-01-01

    Impact phenomena shaped our solar system. As usual for most solar system processes, the scales are far different than we can address directly in the laboratory. Impact velocities are often much higher than we can achieve, sizes are often vastly larger, and most impacts take place in an environment where the only gravitational force is the mutual pull of the impactors. The Smooth Particle Hydrodynamics (SPH) technique has been applied in the past to the simulations of giant impacts. In these simulations, the colliding objects were so massive (at least a sizeable fraction of the Earth's mass) that material strength was negligible compared to gravity. This assumption can no longer be made when the bodies are much smaller. To this end, we have developed a 3D SPH code that includes a strength model to which we have added a von Mises yielding relation for stresses beyond the Hugoniot Elastic Limit. At the lower stresses associated with brittle failure, we use a rate-dependent strength based on the nucleation of incipient flaws whose number density is given by a Weibull distribution. Following Grady and Kipp and Melosh et al., we introduce a state variable D ('damage'), 0 less than D less than 1, which expresses the local reduction in strength due to crack growth under tensile loading. Unfortunately for the hydrodynamics, Grady and Kipp's model predicts which fragments are the most probable ones and not the ones that are really formed. This means, for example, that if a given laboratory experiment is modeled, the fragment distribution obtained from the Grady-Kipp theory would be equivalent to a ensemble average over many realizations of the experiment. On the other hand, the hydrodynamics itself is explicit and evolves not an ensemble average but very specific fragments. Hence, there is a clear incompatibility with the deterministic nature of the hydrodynamics equations and the statistical approach of the Grady-Kipp dynamical fracture model. We remedy these shortcomings

  14. 3D Geologic Model of the Southern Great Basin

    Science.gov (United States)

    Wagoner, J. L.; Myers, S. C.

    2006-12-01

    We have constructed a regional 3D geologic model of the southern Great Basin, in support of a seismic wave propagation investigation of the 1993 Nonproliferation Experiment (NPE) at the Nevada Test Site (NTS). The model is centered on the NPE and spans longitude -119.5° to -112.6°, latitude 34.5° to 39.8°, and a depth from the surface to 150 km below sea level. Hence, the model includes the southern half of Nevada, as well as parts of eastern California, western Utah, and a portion of northwestern Arizona. The upper crust is constrained by geologic and geophysical studies, and the lower crust and upper mantle are constrained by geophysical studies. The upper crustal geologic units are Quaternary basin fill, Tertiary deposits, pre-Tertiary deposits, intrusive rocks, and calderas. The lower crust and upper mantle are parameterized with 8 layers, including the Moho. Detailed geologic data, including surface maps, borehole data, and geophysical surveys, were used to define the geology at the NTS. Digital geologic outcrop data were available for both Nevada and Arizona, whereas we scanned and hand digitized geologic maps for California and Utah. Published gravity data (2km spacing) were used to determine the thickness of the Cenozoic deposits and constrain the depth of the basins. The free surface is based on a 10m lateral resolution DEM at the NTS and a 90m resolution DEM elsewhere. The gross geophysical structure of the crust and upper mantle is taken from regional surface-wave studies. Variations in crustal thickness are based on receiver function analysis and a compilation of reflection/refraction studies. We used the Earthvision (Dynamic Graphics, Inc.) software to integrate the geologic and geophysical information into a model of x,y,z,p nodes, where p is an integer index representing the geologic unit. For regional seismic simulations we convert this realistic geologic model into elastic parameters. Upper crustal units are treated as seismically homogeneous

  15. Creating 3D models of historical buildings using geospatial data

    Science.gov (United States)

    Alionescu, Adrian; Bǎlǎ, Alina Corina; Brebu, Floarea Maria; Moscovici, Anca-Maria

    2017-07-01

    Recently, a lot of interest has been shown to understand a real world object by acquiring its 3D images of using laser scanning technology and panoramic images. A realistic impression of geometric 3D data can be generated by draping real colour textures simultaneously captured by a colour camera images. In this context, a new concept of geospatial data acquisition has rapidly revolutionized the method of determining the spatial position of objects, which is based on panoramic images. This article describes an approach that comprises inusing terrestrial laser scanning and panoramic images captured with Trimble V10 Imaging Rover technology to enlarge the details and realism of the geospatial data set, in order to obtain 3D urban plans and virtual reality applications.

  16. 3D reconstruction of carotid atherosclerotic plaque: comparison between spatial compound ultrasound models and anatomical models

    DEFF Research Database (Denmark)

    Lind, Bo L.; Fagertun, Jens; Wilhjelm, Jens E.;

    2007-01-01

    This study deals with the creation of 3D models that can work as a tool for discriminating between tissue and background in the development of tissue classification methods. Ten formalin-fixed atherosclerotic carotid plaques removed by endarterectomy were scanned with 3D multi-angle spatial...... compound ultrasound (US) and subsequently sliced and photographed to produce a 3D anatomical data set. Outlines in the ultrasound data were found by means of active contours and combined into 10 3D ultrasound models. The plaque regions of the anatomical photographs were outlined manually and then combined...... into 10 3D anatomical models. The volumes of the anatomical models correlated with the volume found by a water displacement method (r = 0.95), except for an offset. The models were compared in three ways. Visual inspection showed quite good agreement between the models. The volumes of the ultrasound...

  17. Induction Heating Process: 3D Modeling and Optimisation

    Science.gov (United States)

    Naar, R.; Bay, F.

    2011-05-01

    An increasing number of problems in mechanics and physics involves multiphysics coupled problems. Among these problems, we can often find electromagnetic coupled problems. Electromagnetic couplings may be involved through the use of direct or induced currents for thermal purposes—in order to generate heat inside a work piece in order to get either a prescribed temperature field or some given mechanical or metallurgical properties through an accurate control of temperature evolution with respect to time-, or for solid or fluid mechanics purposes—in order to create magnetic forces such as in fluid mechanics (electromagnetic stirring,…) or solid mechanics (magnetoforming,…). Induction heat treatment processes is therefore quite difficult to control; trying for instance to minimize distortions generated by such a process is not easy. In order to achieve these objectives, we have developed a computational tool which includes an optimsation stage. A 3D finite element modeling tool for local quenching after induction heating processes has already been developed in our laboratory. The modeling of such a multiphysics coupled process needs taking into account electromagnetic, thermal, mechanical and metallurgical phenomenon—as well as their mutual interactions during the whole process: heating and quenching. The model developed is based on Maxwell equations, heat transfer equation, mechanical equilibrium computations, Johnson-Mehl-Avrami and Koistinen-Marburger laws. All these equations and laws may be coupled but some coupling may be neglected. In our study, we will also focus on induction heating process aiming at optimising the Heat Affected Zone (HAZ). Thus problem is formalized as an optimization problem—minimizing a cost function which measures the difference between computed and optimal temperatures—along with some constraints on process parameters. The optimization algorithms may be of two kinds—either zero-order or first-order algorithms. First

  18. Numerical Results of 3-D Modeling of Moon Accumulation

    Science.gov (United States)

    Khachay, Yurie; Anfilogov, Vsevolod; Antipin, Alexandr

    2014-05-01

    For the last time for the model of the Moon usually had been used the model of mega impact in which the forming of the Earth and its sputnik had been the consequence of the Earth's collision with the body of Mercurial mass. But all dynamical models of the Earth's accumulation and the estimations after the Pb-Pb system, lead to the conclusion that the duration of the planet accumulation was about 1 milliard years. But isotopic results after the W-Hf system testify about a very early (5-10) million years, dividing of the geochemical reservoirs of the core and mantle. In [1,2] it is shown, that the account of energy dissipating by the decay of short living radioactive elements and first of all Al26,it is sufficient for heating even small bodies with dimensions about (50-100) km up to the iron melting temperature and can be realized a principal new differentiation mechanism. The inner parts of the melted preplanets can join and they are mainly of iron content, but the cold silicate fragments return to the supply zone and additionally change the content of Moon forming to silicates. Only after the increasing of the gravitational radius of the Earth, the growing area of the future Earth's core can save also the silicate envelope fragments [3]. For understanding the further system Earth-Moon evolution it is significant to trace the origin and evolution of heterogeneities, which occur on its accumulation stage.In that paper we are modeling the changing of temperature,pressure,velocity of matter flowing in a block of 3d spherical body with a growing radius. The boundary problem is solved by the finite-difference method for the system of equations, which include equations which describe the process of accumulation, the Safronov equation, the equation of impulse balance, equation Navier-Stocks, equation for above litho static pressure and heat conductivity in velocity-pressure variables using the Businesque approach.The numerical algorithm of the problem solution in velocity

  19. Digital Geological Model (DGM): a 3D raster model of the subsurface of the Netherlands

    NARCIS (Netherlands)

    Gunnink, J.L.; Maljers, D.; Gessel, S.F. van; Menkovic, A.; Hummelman, H.J.

    2013-01-01

    A 3D geological raster model has been constructed of the onshore of the Netherlands. The model displays geological units for the upper 500 m in 3D in an internally consistent way. The units are based on the lithostratigraphical classification of the Netherlands. This classification is used to interp

  20. Modeling Perception of 3D Forms Using Fuzzy Knowledge Bases

    DEFF Research Database (Denmark)

    Achiche, Sofiane; Ahmed, Saeema

    2009-01-01

    the aesthetics of their products are likely to be perceived are of value. In this paper the authors propose an approach to formalize the relationship between geometric information of a 3D object and the intended perception using fuzzy logic. 3D objects (shapes) created by design engineering students to evoke......The aesthetics of a product influences the decisions made by consumers when purchasing products. Research has shown that designers are not always successful in creating a product with the desired perception amongst its users. Hence methods and tools which can support the designer in predicting how...

  1. Overall challenges in incorporating micro-mechanical models into materials design process

    Science.gov (United States)

    Bennoura, M.; Aboutajeddine, A.

    2016-10-01

    Using materials in engineering design has historically been handled using the paradigm of selecting appropriate materials from the finite set of available material databases. Recent trends, however, have moved toward the tailoring of materials that meet the overall system performance requirements, based on a process called material design. An important building block of this process is micromechanical models that relate microstructure to proprieties. Unfortunately, these models remain short and include a lot of uncertainties from assumptions and idealizations, which, unavoidably, impacts material design strategy. In this work, candidate methods to deal with micromechanical models uncertainties and their drawbacks in material design are investigated. Robust design methods for quantifying uncertainty and managing or mitigating its impact on design performances are reviewed first. These methods include principles for classifying uncertainty, mathematical techniques for evaluating its level degree, and design methods for performing and generating design alternatives, that are relatively insensitive to sources of uncertainty and flexible for admitting design changes or variations. The last section of this paper addresses the limits of the existing approaches from material modelling perspective and identifies the research opportunities to overcome the impediment of incorporating micromechanical models in material design process.

  2. 3D Geological Model of Nihe ore deposit Constrained by Gravity and Magnetic Modeling

    Science.gov (United States)

    Qi, Guang; Yan, Jiayong; Lv, Qingtan; Zhao, Jinhua

    2016-04-01

    We present a case study on using integrated geologic model in mineral exploration at depth. Nihe ore deposit in Anhui Province, is deep hidden ore deposit which was discovered in recent years, this finding is the major driving force of deep mineral exploration work in Luzong. Building 3D elaborate geological model has the important significance for prospecting to deep or surround in this area, and can help us better understand the metallogenic law and ore-controlling regularity. A 3D geological model, extending a depth from +200m to -1500m in Nihe ore deposit, has been compiled from surface geological map, cross-section, borehole logs and amounts of geological inference. And then the 3D geological models have been given physical property parameter for calculating the potential field. Modelling the potential response is proposed as means of evaluating the viability of the 3D geological models, and the evidence of making small changes to the uncertain parts of the original 3D geological models. It is expected that the final models not only reproduce supplied prior geological knowledge, but also explain the observed geophysical data. The workflow used to develop the 3D geologic model in this study includes the three major steps, as follows: (1) Determine the basic information of Model: Defining the 3D limits of the model area, the basic geological and structural unit, and the tectonic contact relations and the sedimentary sequences between these units. (2) 3D model construction: Firstly, a series of 2D geological cross sections over the model area are built by using all kinds of prior information, including surface geology, borehole data, seismic sections, and local geologists' knowledge and intuition. Lastly, we put these sections into a 3D environment according to their profile locations to build a 3D model by using geostatistics method. (3) 3D gravity and magnetic modeling: we calculate the potential field responses of the 3D model, and compare the predicted and

  3. Registration of 3D Face Scans with Average Face Models

    NARCIS (Netherlands)

    Salah, A.A.; Alyuz, N.; Akarun, L.

    2008-01-01

    The accuracy of a 3D face recognition system depends on a correct registration that aligns the facial surfaces and makes a comparison possible. The best results obtained so far use a costly one-to-all registration approach, which requires the registration of each facial surface to all faces in the g

  4. Using 3D Geometric Models to Teach Spatial Geometry Concepts.

    Science.gov (United States)

    Bertoline, Gary R.

    1991-01-01

    An explanation of 3-D Computer Aided Design (CAD) usage to teach spatial geometry concepts using nontraditional techniques is presented. The software packages CADKEY and AutoCAD are described as well as their usefulness in solving space geometry problems. (KR)

  5. Conceptual Development of a 3D Product Configuration Model

    DEFF Research Database (Denmark)

    Skauge, Jørn

    2006-01-01

      Abstract. Projektet er et 3D konfigurationsprojekt for et digitalt byggeelement udviklet i prototypeform i et samarbejde mellem en virksomhed og en forskningsinstitution i Danmark. Projektet betegnes som produktmodellering dvs et knowledge based system dvs et IT system udviklet til hjælp i prod...

  6. 3D Channel Model Emulation in a MIMO OTA Setup

    DEFF Research Database (Denmark)

    Fan, Wei; Kyösti, Pekka; Sun, Fan

    2013-01-01

    This paper presents a new channel reconstruction technique for 3D geometry-based channels in a multi-probe based MIMO OTA setup. The proposed method provides a general channel reconstruction framework for any spherical power spectrum. The channel reconstruction is formed as convex optimization...

  7. Mechanical behavior of hydroxyapatite biomaterials: an experimentally validated micromechanical model for elasticity and strength.

    Science.gov (United States)

    Fritsch, Andreas; Dormieux, Luc; Hellmich, Christian; Sanahuja, Julien

    2009-01-01

    Hydroxyapatite (HA) biomaterials production has been a major field in biomaterials science and biomechanical engineering. As concerns prediction of their stiffness and strength, we propose to go beyond statistical correlations with porosity or empirical structure-property relationships, as to resolve the material-immanent microstructures governing the overall mechanical behavior. The macroscopic mechanical properties are estimated from the microstructures of the materials and their composition, in a homogenization process based on continuum micromechanics. Thereby, biomaterials are envisioned as porous polycrystals consisting of HA needles and spherical pores. Validation of respective micromechanical models relies on two independent experimental sets: biomaterial-specific macroscopic (homogenized) stiffness and uniaxial (tensile and compressive) strength predicted from biomaterial-specific porosities, on the basis of biomaterial-independent ("universal") elastic and strength properties of HA, are compared with corresponding biomaterial-specific experimentally determined (acoustic and mechanical) stiffness and strength values. The good agreement between model predictions and the corresponding experiments underlines the potential of micromechanical modeling in improving biomaterial design, through optimization of key parameters such as porosities or geometries of microstructures, in order to reach the desired values for biomaterial stiffness or strength.

  8. Examination of 1D Solar Cell Model Limitations Using 3D SPICE Modeling: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, W. E.; Olson, J. M.; Geisz, J. F.; Friedman, D. J.

    2012-06-01

    To examine the limitations of one-dimensional (1D) solar cell modeling, 3D SPICE-based modeling is used to examine in detail the validity of the 1D assumptions as a function of sheet resistance for a model cell. The internal voltages and current densities produced by this modeling give additional insight into the differences between the 1D and 3D models.

  9. 3D object-oriented image analysis in 3D geophysical modelling: Analysing the central part of the East African Rift System

    Science.gov (United States)

    Fadel, I.; van der Meijde, M.; Kerle, N.; Lauritsen, N.

    2015-03-01

    Non-uniqueness of satellite gravity interpretation has traditionally been reduced by using a priori information from seismic tomography models. This reduction in the non-uniqueness has been based on velocity-density conversion formulas or user interpretation of the 3D subsurface structures (objects) based on the seismic tomography models and then forward modelling these objects. However, this form of object-based approach has been done without a standardized methodology on how to extract the subsurface structures from the 3D models. In this research, a 3D object-oriented image analysis (3D OOA) approach was implemented to extract the 3D subsurface structures from geophysical data. The approach was applied on a 3D shear wave seismic tomography model of the central part of the East African Rift System. Subsequently, the extracted 3D objects from the tomography model were reconstructed in the 3D interactive modelling environment IGMAS+, and their density contrast values were calculated using an object-based inversion technique to calculate the forward signal of the objects and compare it with the measured satellite gravity. Thus, a new object-based approach was implemented to interpret and extract the 3D subsurface objects from 3D geophysical data. We also introduce a new approach to constrain the interpretation of the satellite gravity measurements that can be applied using any 3D geophysical model.

  10. Evaluating procedural modelling for 3D models of informal settlements in urban design activities

    Directory of Open Access Journals (Sweden)

    Victoria Rautenbach

    2015-11-01

    Full Text Available Three-dimensional (3D modelling and visualisation is one of the fastest growing application fields in geographic information science. 3D city models are being researched extensively for a variety of purposes and in various domains, including urban design, disaster management, education and computer gaming. These models typically depict urban business districts (downtown or suburban residential areas. Despite informal settlements being a prevailing feature of many cities in developing countries, 3D models of informal settlements are virtually non-existent. 3D models of informal settlements could be useful in various ways, e.g. to gather information about the current environment in the informal settlements, to design upgrades, to communicate these and to educate inhabitants about environmental challenges. In this article, we described the development of a 3D model of the Slovo Park informal settlement in the City of Johannesburg Metropolitan Municipality, South Africa. Instead of using time-consuming traditional manual methods, we followed the procedural modelling technique. Visualisation characteristics of 3D models of informal settlements were described and the importance of each characteristic in urban design activities for informal settlement upgrades was assessed. Next, the visualisation characteristics of the Slovo Park model were evaluated. The results of the evaluation showed that the 3D model produced by the procedural modelling technique is suitable for urban design activities in informal settlements. The visualisation characteristics and their assessment are also useful as guidelines for developing 3D models of informal settlements. In future, we plan to empirically test the use of such 3D models in urban design projects in informal settlements.

  11. Framework system and research flow of uncertainty in 3D geological structure models

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Uncertainty in 3D geological structure models has become a bottleneck that restricts the development and application of 3D geological modeling.In order to solve this problem during periods of accuracy assessment,error detection and dynamic correction in 3D geological structure models,we have reviewed the current situation and development trends in 3D geological modeling.The main context of uncertainty in 3D geological structure models is discussed.Major research issues and a general framework system of unce...

  12. Model-based optical metrology and visualization of 3-D complex objects

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-li; LI A-meng; ZHAO Xiao-bo; GAO Peng-dong; TIAN Jin-dong; PENG Xiang

    2007-01-01

    This letter addresses several key issues in the process of model-based optical metrology, including three dimensional (3D) sensing, calibration, registration and fusion of range images, geometric representation, and visualization of reconstructed 3D model by taking into account the shape measurement of 3D complex structures,and some experimental results are presented.

  13. Bootstrapping Mixed Correlators in the 3D Ising Model

    CERN Document Server

    Kos, Filip; Simmons-Duffin, David

    2014-01-01

    We study the conformal bootstrap for systems of correlators involving non-identical operators. The constraints of crossing symmetry and unitarity for such mixed correlators can be phrased in the language of semidefinite programming. We apply this formalism to the simplest system of mixed correlators in 3D CFTs with a $\\mathbb{Z}_2$ global symmetry. For the leading $\\mathbb{Z}_2$-odd operator $\\sigma$ and $\\mathbb{Z}_2$-even operator $\\epsilon$, we obtain numerical constraints on the allowed dimensions $(\\Delta_\\sigma, \\Delta_\\epsilon)$ assuming that $\\sigma$ and $\\epsilon$ are the only relevant scalars in the theory. These constraints yield a small closed region in $(\\Delta_\\sigma, \\Delta_\\epsilon)$ space compatible with the known values in the 3D Ising CFT.

  14. Håndbog i 3D-modeller

    DEFF Research Database (Denmark)

    Karlshøj, Jan; Bennetsen, Jens Chr.; Kjems, Erik;

    Denne håndbog er udviklet i forbindelse med overgangen til nye digitale 3D-metoder, -værktøjer og -procedurer. Håndbogen gennemgår baggrundsmateriale, teknologi og metoder, der kan bruges til skabe alternative løsninger, kvalificere beslutninger, klæde bygherren bedre på og i det hele taget få mere...

  15. Mixed Structural Models for 3D Audio in Virtual Environments

    OpenAIRE

    Geronazzo, Michele

    2014-01-01

    In the world of ICT, strategies for innovation and development are increasingly focusing on applications that require spatial representation and real-time interaction with and within 3D media environments. One of the major challenges that such applications have to address is user-centricity, reflecting e.g. on developing complexity-hiding services so that people can personalize their own delivery of services. In these terms, multimodal interfaces represent a key factor for enabling an inclusi...

  16. Mixed Structural Models for 3D Audio in Virtual Environments

    OpenAIRE

    Geronazzo, Michele

    2014-01-01

    In the world of ICT, strategies for innovation and development are increasingly focusing on applications that require spatial representation and real-time interaction with and within 3D media environments. One of the major challenges that such applications have to address is user-centricity, reflecting e.g. on developing complexity-hiding services so that people can personalize their own delivery of services. In these terms, multimodal interfaces represent a key factor for enabling an inclusi...

  17. Multi Sensor Data Integration for AN Accurate 3d Model Generation

    Science.gov (United States)

    Chhatkuli, S.; Satoh, T.; Tachibana, K.

    2015-05-01

    The aim of this paper is to introduce a novel technique of data integration between two different data sets, i.e. laser scanned RGB point cloud and oblique imageries derived 3D model, to create a 3D model with more details and better accuracy. In general, aerial imageries are used to create a 3D city model. Aerial imageries produce an overall decent 3D city models and generally suit to generate 3D model of building roof and some non-complex terrain. However, the automatically generated 3D model, from aerial imageries, generally suffers from the lack of accuracy in deriving the 3D model of road under the bridges, details under tree canopy, isolated trees, etc. Moreover, the automatically generated 3D model from aerial imageries also suffers from undulated road surfaces, non-conforming building shapes, loss of minute details like street furniture, etc. in many cases. On the other hand, laser scanned data and images taken from mobile vehicle platform can produce more detailed 3D road model, street furniture model, 3D model of details under bridge, etc. However, laser scanned data and images from mobile vehicle are not suitable to acquire detailed 3D model of tall buildings, roof tops, and so forth. Our proposed approach to integrate multi sensor data compensated each other's weakness and helped to create a very detailed 3D model with better accuracy. Moreover, the additional details like isolated trees, street furniture, etc. which were missing in the original 3D model derived from aerial imageries could also be integrated in the final model automatically. During the process, the noise in the laser scanned data for example people, vehicles etc. on the road were also automatically removed. Hence, even though the two dataset were acquired in different time period the integrated data set or the final 3D model was generally noise free and without unnecessary details.

  18. Micromechanics model for predicting anisotropic electrical conductivity of carbon fiber composite materials

    Science.gov (United States)

    Haider, Mohammad Faisal; Haider, Md. Mushfique; Yasmeen, Farzana

    2016-07-01

    Heterogeneous materials, such as composites consist of clearly distinguishable constituents (or phases) that show different electrical properties. Multifunctional composites have anisotropic electrical properties that can be tailored for a particular application. The effective anisotropic electrical conductivity of composites is strongly affected by many parameters including volume fractions, distributions, and orientations of constituents. Given the electrical properties of the constituents, one important goal of micromechanics of materials consists of predicting electrical response of the heterogeneous material on the basis of the geometries and properties of the individual phases, a task known as homogenization. The benefit of homogenization is that the behavior of a heterogeneous material can be determined without resorting or testing it. Furthermore, continuum micromechanics can predict the full multi-axial properties and responses of inhomogeneous materials, which are anisotropic in nature. Effective electrical conductivity estimation is performed by using classical micromechanics techniques (composite cylinder assemblage method) that investigates the effect of the fiber/matrix electrical properties and their volume fractions on the micro scale composite response. The composite cylinder assemblage method (CCM) is an analytical theory that is based on the assumption that composites are in a state of periodic structure. The CCM was developed to extend capabilities variable fiber shape/array availability with same volume fraction, interphase analysis, etc. The CCM is a continuum-based micromechanics model that provides closed form expressions for upper level length scales such as macro-scale composite responses in terms of the properties, shapes, orientations and constituent distributions at lower length levels such as the micro-scale.

  19. Table of 3D organ model IDs and organ names (PART-OF Tree) - BodyParts3D | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us BodyParts3D Table of 3D organ model IDs and organ names (PART-OF Tree) Data detail Data name Table of 3D...data contents List of downloadable 3D organ models in a tab-delimited text file format, describing the correspondence between 3D...ata file File name: partof_parts_list_e.txt (PART-OF Tree) File URL: ftp://ftp.biosciencedbc.jp/archive/bodyparts3d.../LATEST/partof_parts_list_e.txt File size: 58 KB Simple search URL http://togodb.biosciencedbc.jp/togodb/view/bodyparts3d...item Description concept id ID of the corresponding FMA (Foundational Model of Anatomy). representation id I

  20. Toward an Archaeological Approach to 3d Surveying and Modeling

    Directory of Open Access Journals (Sweden)

    Giorgio Baratti

    2013-07-01

    Full Text Available Negli ultimi anni, grazie ai nuovi sensori e alle nuove tecniche di rilevamento tridimensionale sono stati avviati importanti progetti di rilevamento e restituzione di Beni culturali in forma digitale; in ambito archeologico sono però emerse alcune criticità nella definizione di scopi e precisi obiettivi. L’articolo si concentra su alcuni problemi emersi nell’applicazione delle tecnologie 3D in contesti archeologici e in generale sul ruolo dell’archeologia nel rilevamento e nella modellazione tridimensionale. Sono presentati anche alcuni spunti per un approccio metodologico alla descrizione semantica di elementi archeologici, basati sia su riflessioni teoriche che su esperienze dirette.

  1. Genetic Fuzzy Modelling of User Perception of 3D Shapes

    DEFF Research Database (Denmark)

    Achiche, Sofiane; Ahmed-Kristensen, Saeema

    2011-01-01

    Defining the aesthetic and emotional value of a product is an important consideration for its design. Furthermore, if several designers are faced with the task of creating an object that describe a certain emotion/perception (aggressive, soft, heavy, etc.), each is most likely to interpret...... the emotion/perception with different shapes composed of a set of different geometric features. In this paper, the authors propose an automatic approach to formalize the relationships between geometric information of 3D objects and the intended emotional content using fuzzy logic. In addition...

  2. Virtual and Printed 3D Models for Teaching Crystal Symmetry and Point Groups

    Science.gov (United States)

    Casas, Lluís; Estop, Euge`nia

    2015-01-01

    Both, virtual and printed 3D crystal models can help students and teachers deal with chemical education topics such as symmetry and point groups. In the present paper, two freely downloadable tools (interactive PDF files and a mobile app) are presented as examples of the application of 3D design to study point-symmetry. The use of 3D printing to…

  3. Comparative Analysis of Photogrammetric Methods for 3D Models for Museums

    DEFF Research Database (Denmark)

    Hafstað Ármannsdottir, Unnur Erla; Antón Castro, Francesc/François; Mioc, Darka

    2014-01-01

    to 3D models using Sketchup and Designing Reality. Finally, panoramic photography is discussed as a 2D alternative to 3D. Sketchup is a free-ware 3D drawing program and Designing Reality is a commercial program, which uses Structure from motion. For each program/method, the same comparative analysis...

  4. 3D Modeling and Printing in History/Social Studies Classrooms: Initial Lessons and Insights

    Science.gov (United States)

    Maloy, Robert; Trust, Torrey; Kommers, Suzan; Malinowski, Allison; LaRoche, Irene

    2017-01-01

    This exploratory study examines the use of 3D technology by teachers and students in four middle school history/social studies classrooms. As part of a university-developed 3D Printing 4 Teaching & Learning project, teachers integrated 3D modeling and printing into curriculum topics in world geography, U.S. history, and government/civics.…

  5. 3D GEOMETRIC MODELING AND FINITE ELEMENT ANALYSIS OF “TURBO-COOLER” SUBASSEMBLY

    Directory of Open Access Journals (Sweden)

    EFTIMIE Dorin

    2013-06-01

    Full Text Available 3D design of turbo-cooler subassembly can be optimized by using finite element analysis software NX 7.5. Finite element analysis results are useful for 3D design of this unit. Results can be easily implemented in 3D design in order to optain optimal virtual model that meets the requirements imposed.

  6. Behavioural modelling and system-level simulation of micromechanical beam resonators

    Science.gov (United States)

    Khine, Lynn; Palaniapan, Moorthi

    2006-04-01

    This paper presents a behavioural modelling technique for micromechanical beam resonators that enables the simulation of MEMS resonator model in Analog Hardware Description Language (AHDL) format within a system-level circuit simulation. A 1.13 MHz clamped-clamped beam and a 10.4 MHz free-free beam resonators have been modelled into Verilog-A code and successfully simulated with Spectre in Cadence. Analysis has shown that both models behave well and their electrical characteristics are in agreement with the theory.

  7. Computational approaches to 3D modeling of RNA

    Energy Technology Data Exchange (ETDEWEB)

    Laing, Christian; Schlick, Tamar, E-mail: schlick@nyu.ed [Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012 (United States)

    2010-07-21

    Many exciting discoveries have recently revealed the versatility of RNA and its importance in a variety of functions within the cell. Since the structural features of RNA are of major importance to their biological function, there is much interest in predicting RNA structure, either in free form or in interaction with various ligands, including proteins, metabolites and other molecules. In recent years, an increasing number of researchers have developed novel RNA algorithms for predicting RNA secondary and tertiary structures. In this review, we describe current experimental and computational advances and discuss recent ideas that are transforming the traditional view of RNA folding. To evaluate the performance of the most recent RNA 3D folding algorithms, we provide a comparative study in order to test the performance of available 3D structure prediction algorithms for an RNA data set of 43 structures of various lengths and motifs. We find that the algorithms vary widely in terms of prediction quality across different RNA lengths and topologies; most predictions have very large root mean square deviations from the experimental structure. We conclude by outlining some suggestions for future RNA folding research. (topical review)

  8. Parameter Vertex Color Pada Animation Procedural 3D Model Vegetasi Musaceae

    Directory of Open Access Journals (Sweden)

    I Gede Ngurah Arya Indrayasa

    2017-02-01

    Full Text Available Penggunaan vegetasi untuk industri film, video game, simulasi, dan arsitektur visualisas merupakan faktor penting untuk menghasilkan adegan pemandangan alam lebih hidup. Penelitian ini bertujuan untuk mengetahui pengaruh dari vertex color terhadap efek angin  pada animasi prosedural 3d model vegetasi musaceae serta parameter vertex color yang tepat untuk menghasilkan animasi 3d model vegetasi musaceae realistis. Hasil akhir yang di capai adalah meneliti apakah perubahan parameter vertex color dapat mempengaruhi bentuk animasi procedural 3d vegetasi musaceae serta pengaruh dari vertex color terhadap efek angin pada animasi prosedural 3d model vegetasi Musaceae. Berdasarkan pengamat dan perbandingan pada pengujian 5 sample vertex color diperoleh hasil bahwa perubahan parameter vertex color dapat mempengaruhi bentuk animasi procedural 3d vegetasi musaceae serta di peroleh kesimpulan Sample No.5 merupakan parameter vertex color yang tepat untuk menghasilkan animasi 3d model vegetasi Musaceae yang realistis. Kata kunci—3D, Animasi Prosedural, Vegetation  

  9. a Quadtree Organization Construction and Scheduling Method for Urban 3d Model Based on Weight

    Science.gov (United States)

    Yao, C.; Peng, G.; Song, Y.; Duan, M.

    2017-09-01

    The increasement of Urban 3D model precision and data quantity puts forward higher requirements for real-time rendering of digital city model. Improving the organization, management and scheduling of 3D model data in 3D digital city can improve the rendering effect and efficiency. This paper takes the complexity of urban models into account, proposes a Quadtree construction and scheduling rendering method for Urban 3D model based on weight. Divide Urban 3D model into different rendering weights according to certain rules, perform Quadtree construction and schedule rendering according to different rendering weights. Also proposed an algorithm for extracting bounding box extraction based on model drawing primitives to generate LOD model automatically. Using the algorithm proposed in this paper, developed a 3D urban planning&management software, the practice has showed the algorithm is efficient and feasible, the render frame rate of big scene and small scene are both stable at around 25 frames.

  10. A deep learning approach to the classification of 3D CAD models

    Institute of Scientific and Technical Information of China (English)

    Fei-wei QIN; Lu-ye LI; Shu-ming GAO; Xiao-ling YANG; Xiang CHEN

    2014-01-01

    Model classification is essential to the management and reuse of 3D CAD models. Manual model classification is laborious and error prone. At the same time, the automatic classification methods are scarce due to the intrinsic complexity of 3D CAD models. In this paper, we propose an automatic 3D CAD model classification approach based on deep neural networks. According to prior knowledge of the CAD domain, features are selected and extracted from 3D CAD models first, and then pre-processed as high dimensional input vectors for category recognition. By analogy with the thinking process of engineers, a deep neural network classifier for 3D CAD models is constructed with the aid of deep learning techniques. To obtain an optimal solution, multiple strategies are appropriately chosen and applied in the training phase, which makes our classifier achieve better per-formance. We demonstrate the efficiency and effectiveness of our approach through experiments on 3D CAD model datasets.

  11. High-Fidelity Micromechanics Model Developed for the Response of Multiphase Materials

    Science.gov (United States)

    Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, Steven M.

    2002-01-01

    A new high-fidelity micromechanics model has been developed under funding from the NASA Glenn Research Center for predicting the response of multiphase materials with arbitrary periodic microstructures. The model's analytical framework is based on the homogenization technique, but the method of solution for the local displacement and stress fields borrows concepts previously employed in constructing the higher order theory for functionally graded materials. The resulting closed-form macroscopic and microscopic constitutive equations, valid for both uniaxial and multiaxial loading of periodic materials with elastic and inelastic constitutive phases, can be incorporated into a structural analysis computer code. Consequently, this model now provides an alternative, accurate method.

  12. The Use of Airborne and Mobile Laser Scanning for Modeling Railway Environments in 3D

    Directory of Open Access Journals (Sweden)

    Lingli Zhu

    2014-04-01

    Full Text Available This paper presents methods for 3D modeling of railway environments from airborne laser scanning (ALS and mobile laser scanning (MLS. Conventionally, aerial data such as ALS and aerial images were utilized for 3D model reconstruction. However, 3D model reconstruction only from aerial-view datasets can not meet the requirement of advanced visualization (e.g., walk-through visualization. In this paper, objects in a railway environment such as the ground, railroads, buildings, high voltage powerlines, pylons and so on were reconstructed and visualized in real-life experiments in Kokemaki, Finland. Because of the complex terrain and scenes in railway environments, 3D modeling is challenging, especially for high resolution walk-through visualizations. However, MLS has flexible platforms and provides the possibility of acquiring data in a complex environment in high detail by combining with ALS data to produce complete 3D scene modeling. A procedure from point cloud classification to 3D reconstruction and 3D visualization is introduced, and new solutions are proposed for object extraction, 3D reconstruction, model simplification and final model 3D visualization. Image processing technology is used for the classification, 3D randomized Hough transformations (RHT are used for the planar detection, and a quadtree approach is used for the ground model simplification. The results are visually analyzed by a comparison with an orthophoto at a 20 cm ground resolution.

  13. 3D building modeling,organization and application in digital city system

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The real world is a three-dimensional(3D)space requiring that 3D geospatial information applications be developed in alignment with the observer’s visual and perceptive habits.Particularly,3D building model data are required in a wide range of areas such as urban planning,environmental protection,real estate management and emergency response.At the same time,the development of Web service[LU1]technologies allows the possibility of the widely distributed 3D geospatial data on the web.3D city building model with its related information is an important part in the construction of a digital city system,and has become a staple resource on the web nowadays.In view of the hierarchical representation of a 3D building model,an abstract of a 3D building model based on structure details is studied,and a novel representation approach named 3D transparent building hierarchical model is presented in this paper.This approach fully uses both the existing 3D modeling technologies and CAD constructing mapping data.By the spatial relationship description,structural components inside a building can be represented and integrated as hierarchical models in a unified 3D space.In addition,based on the characteristics of the 3D building model data,a service-oriented architecture and Web service technologies for 3D city building models are discussed.The aim of the approach is that 3D city building models can be used as a kind of data resource service on the web,and can also exist independently in various different web applications.

  14. A deformable generic 3D model of haptoral anchor of Monogenean.

    Directory of Open Access Journals (Sweden)

    Bee Guan Teo

    Full Text Available In this paper, a digital 3D model which allows for visualisation in three dimensions and interactive manipulation is explored as a tool to help us understand the structural morphology and elucidate the functions of morphological structures of fragile microorganisms which defy live studies. We developed a deformable generic 3D model of haptoral anchor of dactylogyridean monogeneans that can subsequently be deformed into different desired anchor shapes by using direct manipulation deformation technique. We used point primitives to construct the rectangular building blocks to develop our deformable 3D model. Point primitives are manually marked on a 2D illustration of an anchor on a Cartesian graph paper and a set of Cartesian coordinates for each point primitive is manually extracted from the graph paper. A Python script is then written in Blender to construct 3D rectangular building blocks based on the Cartesian coordinates. The rectangular building blocks are stacked on top or by the side of each other following their respective Cartesian coordinates of point primitive. More point primitives are added at the sites in the 3D model where more structural variations are likely to occur, in order to generate complex anchor structures. We used Catmull-Clark subdivision surface modifier to smoothen the surface and edge of the generic 3D model to obtain a smoother and more natural 3D shape and antialiasing option to reduce the jagged edges of the 3D model. This deformable generic 3D model can be deformed into different desired 3D anchor shapes through direct manipulation deformation technique by aligning the vertices (pilot points of the newly developed deformable generic 3D model onto the 2D illustrations of the desired shapes and moving the vertices until the desire 3D shapes are formed. In this generic 3D model all the vertices present are deployed for displacement during deformation.

  15. Micromechanical modelling of the elastoplastic behaviour of metallic material under strain-path changes

    Science.gov (United States)

    Fajoui, Jamal; Gloaguen, David; Courant, Bruno; Guillén, Ronald

    2009-07-01

    A two-level homogenization approach is applied for the micromechanical modelling of the elastoplastic material behaviour during various strain-path changes. A mechanical description of the grain is developed through a micro-meso transition based on a modified elastoplastic self-consistent approach which takes into account the dislocation evolution. Next, a meso-macro transition using a self-consistent model is used to deduce the macroscopic behaviour of the polycrystal. A correct agreement is observed between the simulations and the experimental results at the mesoscopic and macroscopic levels.

  16. Micromechanical model of cross-over fibre bridging - Prediction of mixed mode bridging laws

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Gamstedt, E.K.; Østergaard, Rasmus Christian;

    2008-01-01

    on the observed bridging mechanism, a micromechanical model is developed for the prediction of macroscopic mixed mode bridging laws (stress-opening laws). The model predicts a high normal stress for very small openings, decreasing rapidly with increasing normal and tangential crack opening displacements......The fracture resistance of fibre composites can be greatly enhanced by crack bridging. In situ observations of mixed mode crack growth in a unidirectional carbon-fibre/epoxy composite reveal crack bridging by single fibres and by beam-like ligaments consisting of several fibres. Based...

  17. Continuum cavity expansion and discrete micromechanical models for inferring macroscopic snow mechanical properties from cone penetration data

    Science.gov (United States)

    Ruiz, Siul; Capelli, Achille; van Herwijnen, Alec; Schneebeli, Martin; Or, Dani

    2017-08-01

    Digital cone penetration measurements can be used to infer snow mechanical properties, for instance, to study snow avalanche formation. The standard interpretation of these measurements is based on statistically inferred micromechanical interactions between snow microstructural elements and a well-calibrated penetrating cone. We propose an alternative continuum model to derive the modulus of elasticity and yield strength of snow based on the widely used cavity expansion model in soils. We compare results from these approaches based on laboratory cone penetration measurements in snow samples of different densities and structural sizes. Results suggest that the micromechanical model underestimates the snow elastic modulus for dense samples by 2 orders of magnitude. By comparison with the cavity expansion-based model, some of the discrepancy is attributed to low sensitivity of the micromechanical model to the snow elastic modulus. Reasons and implications of this discrepancy are discussed, and possibilities to enhance both methodologies are proposed.

  18. Detection of Disease Symptoms on Hyperspectral 3d Plant Models

    Science.gov (United States)

    Roscher, Ribana; Behmann, Jan; Mahlein, Anne-Katrin; Dupuis, Jan; Kuhlmann, Heiner; Plümer, Lutz

    2016-06-01

    We analyze the benefit of combining hyperspectral images information with 3D geometry information for the detection of Cercospora leaf spot disease symptoms on sugar beet plants. Besides commonly used one-class Support Vector Machines, we utilize an unsupervised sparse representation-based approach with group sparsity prior. Geometry information is incorporated by representing each sample of interest with an inclination-sorted dictionary, which can be seen as an 1D topographic dictionary. We compare this approach with a sparse representation based approach without geometry information and One-Class Support Vector Machines. One-Class Support Vector Machines are applied to hyperspectral data without geometry information as well as to hyperspectral images with additional pixelwise inclination information. Our results show a gain in accuracy when using geometry information beside spectral information regardless of the used approach. However, both methods have different demands on the data when applied to new test data sets. One-Class Support Vector Machines require full inclination information on test and training data whereas the topographic dictionary approach only need spectral information for reconstruction of test data once the dictionary is build by spectra with inclination.

  19. Interactive Scientific Visualization in 3D Virtual Reality Model

    Directory of Open Access Journals (Sweden)

    Filip Popovski

    2016-11-01

    Full Text Available Scientific visualization in technology of virtual reality is a graphical representation of virtual environment in the form of images or animation that can be displayed with various devices such as Head Mounted Display (HMD or monitors that can view threedimensional world. Research in real time is a desirable capability for scientific visualization and virtual reality in which we are immersed and make the research process easier. In this scientific paper the interaction between the user and objects in the virtual environment аrе in real time which gives a sense of reality to the user. Also, Quest3D VR software package is used and the movement of the user through the virtual environment, the impossibility to walk through solid objects, methods for grabbing objects and their displacement are programmed and all interactions between them will be possible. At the end some critical analysis were made on all of these techniques on various computer systems and excellent results were obtained.

  20. A new approach towards image based virtual 3D city modeling by using close range photogrammetry

    Science.gov (United States)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2014-05-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing day to day for various engineering and non-engineering applications. Generally three main image based approaches are using for virtual 3D city models generation. In first approach, researchers used Sketch based modeling, second method is Procedural grammar based modeling and third approach is Close range photogrammetry based modeling. Literature study shows that till date, there is no complete solution available to create complete 3D city model by using images. These image based methods also have limitations This paper gives a new approach towards image based virtual 3D city modeling by using close range photogrammetry. This approach is divided into three sections. First, data acquisition process, second is 3D data processing, and third is data combination process. In data acquisition process, a multi-camera setup developed and used for video recording of an area. Image frames created from video data. Minimum required and suitable video image frame selected for 3D processing. In second section, based on close range photogrammetric principles and computer vision techniques, 3D model of area created. In third section, this 3D model exported to adding and merging of other pieces of large area. Scaling and alignment of 3D model was done. After applying the texturing and rendering on this model, a final photo-realistic textured 3D model created. This 3D model transferred into walk-through model or in movie form. Most of the processing steps are automatic. So this method is cost effective and less laborious. Accuracy of this model is good. For this research work, study area is the campus of department of civil engineering, Indian Institute of Technology, Roorkee. This campus acts as a prototype for city. Aerial photography is restricted in many country

  1. Discrete Element Models of the Micromechanics of Sedimentary Rock: The Role of Organization vs. Friction

    Science.gov (United States)

    Boutt, D. F.; McPherson, B. J.

    2001-12-01

    The micromechanics of sedimentary rock deformation are a fundamental aspect of many research fields, ranging from geotechnical engineering to petroleum recovery and hazardous waste disposal. Laboratory triaxial tests yield information concerning macroscopic behaviors but are not capable of quantifying micromechanical processes such as microcracking and localization. Thus, to quantify micromechanical processes we employed the discrete element method (DEM) of rock deformation, calibrated with triaxial test results. This DEM simulates rock using rigid disc shaped particles bonded at contacts between particles. Previous studies demonstrated that this type of DEM can qualitatively and quantitatively mimic macroscopic behaviors of triaxial tests. An important conclusion of these studies is that a number of particles must be bonded together with higher bond strengths than the surrounding particles to achieve a steeper strength envelope of rocks. This process, termed clustering, is the focus of this study. We hypothesize that since clusters posses a more complicated geometry, they may increase failure strength at elevated confining pressures by interlocking and creating a higher apparent friction. An alternative hypothesis is that the clusters change force chain development by allowing chains to persist longer in specimens. This ultimately causes failure to occur at higher strengths compared to unclustered material. A systematic study comparing effects of cluster shape, particle friction, and force chain development was undertaken. Several model simulations with various cluster shapes and sizes were compared with each other as well as single particle models with high friction coefficients (>1). Preliminary results suggest that the organization of the particle clusters play a key role in increasing the strength envelope. Particle friction coefficients needed to increase slopes of the strength envelopes are well beyond those of geological materials measured in the laboratory

  2. Development of 3D Oxide Fuel Mechanics Models

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, B. W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Casagranda, A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pitts, S. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jiang, W. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-07-27

    This report documents recent work to improve the accuracy and robustness of the mechanical constitutive models used in the BISON fuel performance code. These developments include migration of the fuel mechanics models to be based on the MOOSE Tensor Mechanics module, improving the robustness of the smeared cracking model, implementing a capability to limit the time step size based on material model response, and improving the robustness of the return mapping iterations used in creep and plasticity models.

  3. Putting 3D modelling and 3D printing into practice: virtual surgery and preoperative planning to reconstruct complex post-traumatic skeletal deformities and defects

    OpenAIRE

    Tetsworth Kevin; Block Steve; Glatt Vaida

    2017-01-01

    3D printing technology has revolutionized and gradually transformed manufacturing across a broad spectrum of industries, including healthcare. Nowhere is this more apparent than in orthopaedics with many surgeons already incorporating aspects of 3D modelling and virtual procedures into their routine clinical practice. As a more extreme application, patient-specific 3D printed titanium truss cages represent a novel approach for managing the challenge of segmental bone defects. This review illu...

  4. MICROMECHANICAL DAMAGE MODEL FOR ROCKS AND CONCRETES SUBJECTED TO COUPLED TENSILE AND SHEAR STRESSES

    Institute of Scientific and Technical Information of China (English)

    Zhongjun Ren; Xianghe Peng; Chunhe Yang

    2008-01-01

    Based on the analysis of the deformation in an infinite isotropic elastic matrix with an embedded elliptic crack under far field coupled tensile and shear stresses,the energy release rate and a mixed fracture criterion are obtained using an energy balance approach.The additional compliance tensor induced by a single opening elliptic microcrack in a representative volume element is derived,and the effect of microcracks with random orientations is analyzed with the Taylor's scheme by introducing an appropriate probability density function.A micromechanical damage model for rocks and concretes is obtained and is verified with experimental results.

  5. 3D City Models with Different Temporal Characteristica

    DEFF Research Database (Denmark)

    Bodum, Lars

    2005-01-01

    traditional static city models and those models that are built for realtime applications. The difference between the city models applies both to the spatial modelling and also when using the phenomenon time in the models. If the city models are used in visualizations without any variation in time or when......-built dynamic or a model suitable for visualization in realtime, it is required that modelling is done with level-of-detail and simplification of both the aesthetics and the geometry. If a temporal characteristic is combined with a visual characteristic, the situation can easily be seen as a t/v matrix where t...... is the temporal characteristic or representation and v is the visual characteristic or representation....

  6. NASA 3D Models: ISS (Hi-res)

    Data.gov (United States)

    National Aeronautics and Space Administration — A very high resolution model of the International Space Station in many parts. The download includes an image of the final configuration. This model is provided in...

  7. 3D liver models in tissue engineering and toxicology

    NARCIS (Netherlands)

    Starokozhko, Viktoriia

    2016-01-01

    In her thesis, Viktoriia Starokozhko developed new and improved existing liver models for the use in tissue engineering and toxicology. One of the models she described and used are liver slices (PCLS), a mini-organ model for the liver. PCLS are used already for many years in various fields of pharma

  8. Micromechanics Modeling of Composites Subjected to Multiaxial Progressive Damage in the Constituents

    Science.gov (United States)

    Bednarcyk, Brett A.; Aboudi, Jacob; Amold, Steven M.

    2010-01-01

    The high-fidelity generalized method of cells composite micromechanics model is extended to include constituent-scale progressive damage via a proposed damage model. The damage model assumes that all material nonlinearity is due to damage in the form of reduced stiffness, and it uses six scalar damage variables (three for tension and three for compression) to track the damage. Damage strains are introduced that account for interaction among the strain components and that also allow the development of the damage evolution equations based on the constituent material uniaxial stress strain response. Local final-failure criteria are also proposed based on mode-specific strain energy release rates and total dissipated strain energy. The coupled micromechanics-damage model described herein is applied to a unidirectional E-glass/epoxy composite and a proprietary polymer matrix composite. Results illustrate the capability of the coupled model to capture the vastly different character of the monolithic (neat) resin matrix and the composite in response to far-field tension, compression, and shear loading.

  9. Micromechanics and statistics of slipping events in a granular seismic fault model

    Energy Technology Data Exchange (ETDEWEB)

    Arcangelis, L de [Department of Information Engineering and CNISM, Second University of Naples, Aversa (Italy); Ciamarra, M Pica [CNR-SPIN, Dipartimento di Scienze Fisiche, Universita di Napoli Federico II (Italy); Lippiello, E; Godano, C, E-mail: dearcangelis@na.infn.it [Department of Environmental Sciences and CNISM, Second University of Naples, Caserta (Italy)

    2011-09-15

    The stick-slip is investigated in a seismic fault model made of a confined granular system under shear stress via three dimensional Molecular Dynamics simulations. We study the statistics of slipping events and, in particular, the dependence of the distribution on model parameters. The distribution consistently exhibits two regimes: an initial power law and a bump at large slips. The initial power law decay is in agreement with the the Gutenberg-Richter law characterizing real seismic occurrence. The exponent of the initial regime is quite independent of model parameters and its value is in agreement with experimental results. Conversely, the position of the bump is solely controlled by the ratio of the drive elastic constant and the system size. Large slips also become less probable in absence of fault gouge and tend to disappear for stiff drives. A two-time force-force correlation function, and a susceptibility related to the system response to pressure changes, characterize the micromechanics of slipping events. The correlation function unveils the micromechanical changes occurring both during microslips and slips. The mechanical susceptibility encodes the magnitude of the incoming microslip. Numerical results for the cellular-automaton version of the spring block model confirm the parameter dependence observed for size distribution in the granular model.

  10. COMBINATION OF VIRTUAL TOURS, 3D MODEL AND DIGITAL DATA IN A 3D ARCHAEOLOGICAL KNOWLEDGE AND INFORMATION SYSTEM

    Directory of Open Access Journals (Sweden)

    M. Koehl

    2012-08-01

    Full Text Available The site of the Engelbourg ruined castle in Thann, Alsace, France, has been for some years the object of all the attention of the city, which is the owner, and also of partners like historians and archaeologists who are in charge of its study. The valuation of the site is one of the main objective, as well as its conservation and its knowledge. The aim of this project is to use the environment of the virtual tour viewer as new base for an Archaeological Knowledge and Information System (AKIS. With available development tools we add functionalities in particular through diverse scripts that convert the viewer into a real 3D interface. By beginning with a first virtual tour that contains about fifteen panoramic images, the site of about 150 times 150 meters can be completely documented by offering the user a real interactivity and that makes visualization very concrete, almost lively. After the choice of pertinent points of view, panoramic images were realized. For the documentation, other sets of images were acquired at various seasons and climate conditions, which allow documenting the site in different environments and states of vegetation. The final virtual tour was deducted from them. The initial 3D model of the castle, which is virtual too, was also joined in the form of panoramic images for completing the understanding of the site. A variety of types of hotspots were used to connect the whole digital documentation to the site, including videos (as reports during the acquisition phases, during the restoration works, during the excavations, etc., digital georeferenced documents (archaeological reports on the various constituent elements of the castle, interpretation of the excavations and the searches, description of the sets of collected objects, etc.. The completely personalized interface of the system allows either to switch from a panoramic image to another one, which is the classic case of the virtual tours, or to go from a panoramic

  11. Combination of Virtual Tours, 3d Model and Digital Data in a 3d Archaeological Knowledge and Information System

    Science.gov (United States)

    Koehl, M.; Brigand, N.

    2012-08-01

    The site of the Engelbourg ruined castle in Thann, Alsace, France, has been for some years the object of all the attention of the city, which is the owner, and also of partners like historians and archaeologists who are in charge of its study. The valuation of the site is one of the main objective, as well as its conservation and its knowledge. The aim of this project is to use the environment of the virtual tour viewer as new base for an Archaeological Knowledge and Information System (AKIS). With available development tools we add functionalities in particular through diverse scripts that convert the viewer into a real 3D interface. By beginning with a first virtual tour that contains about fifteen panoramic images, the site of about 150 times 150 meters can be completely documented by offering the user a real interactivity and that makes visualization very concrete, almost lively. After the choice of pertinent points of view, panoramic images were realized. For the documentation, other sets of images were acquired at various seasons and climate conditions, which allow documenting the site in different environments and states of vegetation. The final virtual tour was deducted from them. The initial 3D model of the castle, which is virtual too, was also joined in the form of panoramic images for completing the understanding of the site. A variety of types of hotspots were used to connect the whole digital documentation to the site, including videos (as reports during the acquisition phases, during the restoration works, during the excavations, etc.), digital georeferenced documents (archaeological reports on the various constituent elements of the castle, interpretation of the excavations and the searches, description of the sets of collected objects, etc.). The completely personalized interface of the system allows either to switch from a panoramic image to another one, which is the classic case of the virtual tours, or to go from a panoramic photographic image

  12. Content-based similarity for 3D model retrieval and classification

    Institute of Scientific and Technical Information of China (English)

    Ke Lü; Ning He; Jian Xue

    2009-01-01

    With the rapid development of 3D digital shape information,content-based 3D model retrieval and classification has become an important research area.This paper presents a novel 3D model retrieval and classification algorithm.For feature representation,a method combining a distance histogram and moment invariants is proposed to improve the retrieval performance.The major advantage of using a distance histogram is its invariance to the transforms of scaling,translation and rotation.Based on the premise that two similar objects should have high mutual information,the querying of 3D data should convey a great deal of information on the shape of the two objects,and so we propose a mutual information distance measurement to perform the similarity comparison of 3D objects.The proposed algorithm is tested with a 3D model retrieval and classification prototype,and the experimental evaluation demonstrates satisfactory retrieval results and classification accuracy.

  13. 3D BUILDING MODELS SEGMENTATION BASED ON K-MEANS++ CLUSTER ANALYSIS

    Directory of Open Access Journals (Sweden)

    C. Zhang

    2016-10-01

    Full Text Available 3D mesh model segmentation is drawing increasing attentions from digital geometry processing field in recent years. The original 3D mesh model need to be divided into separate meaningful parts or surface patches based on certain standards to support reconstruction, compressing, texture mapping, model retrieval and etc. Therefore, segmentation is a key problem for 3D mesh model segmentation. In this paper, we propose a method to segment Collada (a type of mesh model 3D building models into meaningful parts using cluster analysis. Common clustering methods segment 3D mesh models by K-means, whose performance heavily depends on randomized initial seed points (i.e., centroid and different randomized centroid can get quite different results. Therefore, we improved the existing method and used K-means++ clustering algorithm to solve this problem. Our experiments show that K-means++ improves both the speed and the accuracy of K-means, and achieve good and meaningful results.

  14. Evaluation of Model Recognition for Grammar-Based Automatic 3d Building Model Reconstruction

    Science.gov (United States)

    Yu, Qian; Helmholz, Petra; Belton, David

    2016-06-01

    In recent years, 3D city models are in high demand by many public and private organisations, and the steadily growing capacity in both quality and quantity are increasing demand. The quality evaluation of these 3D models is a relevant issue both from the scientific and practical points of view. In this paper, we present a method for the quality evaluation of 3D building models which are reconstructed automatically from terrestrial laser scanning (TLS) data based on an attributed building grammar. The entire evaluation process has been performed in all the three dimensions in terms of completeness and correctness of the reconstruction. Six quality measures are introduced to apply on four datasets of reconstructed building models in order to describe the quality of the automatic reconstruction, and also are assessed on their validity from the evaluation point of view.

  15. 3D mmWave Channel Model Proposal

    DEFF Research Database (Denmark)

    Thomas, Timothy; Nguyen, Huan Cong; R. MacCartney Jr., George

    2014-01-01

    There is growing interest in using millimeter wave (mmWave) frequencies for future access communications based on the enormous amount of available spectrum. To characterize the mmWave channel in urban areas, wideband propagation measurements at 73 GHz have recently been made in New York City. Using...... mmWave channel model is developed with special emphasis on using the ray tracer to determine elevation model parameters. The channel model includes distance-dependent elevation modeling which is critical for the expected 2D arrays which will be employed at mmWave....

  16. Micro-Mechanical Modeling of Fiber Reinforced Concrete

    DEFF Research Database (Denmark)

    Stang, Henrik

    1999-01-01

    of Fiber Reinforced Concrete (FRC) on the micro- the meso- as well as the macro-level, i.e. modeling aspects of fiber-matrix interaction, overall constitutive modeling and structural modeling. Emphasis is placed on the micro- and meso-aspects, however, some basic results on the macro-level are also......The paper is a contribution to the course Cement-Based Composites for the Building Industry, organized by POA Foundation for Postgraduate Studies in Civil Engineering in cooperation with Priority Programme Material Research (PPM) in the Netherlands. The text deals with mechanical modeling aspects...

  17. Indoor 3D Route Modeling Based On Estate Spatial Data

    Science.gov (United States)

    Zhang, H.; Wen, Y.; Jiang, J.; Huang, W.

    2014-04-01

    Indoor three-dimensional route model is essential for space intelligence navigation and emergency evacuation. This paper is motivated by the need of constructing indoor route model automatically and as far as possible. By comparing existing building data sources, this paper firstly explained the reason why the estate spatial management data is chosen as the data source. Then, an applicable method of construction three-dimensional route model in a building is introduced by establishing the mapping relationship between geographic entities and their topological expression. This data model is a weighted graph consist of "node" and "path" to express the spatial relationship and topological structure of a building components. The whole process of modelling internal space of a building is addressed by two key steps: (1) each single floor route model is constructed, including path extraction of corridor using Delaunay triangulation algorithm with constrained edge, fusion of room nodes into the path; (2) the single floor route model is connected with stairs and elevators and the multi-floor route model is eventually generated. In order to validate the method in this paper, a shopping mall called "Longjiang New City Plaza" in Nanjing is chosen as a case of study. And the whole building space is constructed according to the modelling method above. By integrating of existing path finding algorithm, the usability of this modelling method is verified, which shows the indoor three-dimensional route modelling method based on estate spatial data in this paper can support indoor route planning and evacuation route design very well.

  18. Alpha Models for 3D Eulerian mean fluid circulation

    Energy Technology Data Exchange (ETDEWEB)

    Holm, D.D. [Los Alamos National Laboratory, Los Alamos, NM (United States). Center for Nonlinear Studies and Theoretical Division

    1999-12-01

    The study provides the known analytical properties of the alpha models, including an outline of their derivation and the associated assumptions, their simplification for the case of constant dispersion length (alpha) and their conservation properties. Interpretations of nonlinear dynamics of viscous alpha models are also showed and the differences one might expect from the dynamics of the Navier-Stokes equations are indicated.

  19. 3D Finite Element Modeling of Sliding Wear

    Science.gov (United States)

    2013-12-01

    Failure Modeling of Titanium 6Al-4V and Aluminum 2024-T3 With the Johnson - Cook Material Model”, Report No DOT/FAA/AR-03/57, Office of Aviation...177 1.4.3 Johnson - Cook Viscoplastic Model...178 1.4.4 Johnson - Cook Flow Rule ...................................................................179 1.4.5 Johnson - Cook Dynamic Failure

  20. Micromechanical model of the single fiber fragmentation test

    DEFF Research Database (Denmark)

    Sørensen, Bent F.

    2017-01-01

    A shear-lag model is developed for the analysis of single fiber fragmentation tests for the characterization of the mechanical properties of the fiber/matrix interface in composite materials. The model utilizes the relation for the loss in potential energy of Budiansky, Hutchinson and Evans...

  1. Micromechanics Modeling of Functionally Graded Interphase Regions in Carbon Nanotube-Polymer Composites

    Science.gov (United States)

    Seidel, Gary D.; Lagoudas, Dimitris C.; Frankland, Sarah Jane V.; Gates, Thomas S.

    2006-01-01

    The effective elastic properties of a unidirectional carbon fiber/epoxy lamina in which the carbon fibers are coated with single-walled carbon nanotubes are modeled herein through the use of a multi-scale method involving the molecular dynamics/equivalent continuum and micromechanics methods. The specific lamina representative volume element studied consists of a carbon fiber surrounded by a region of epoxy containing a radially varying concentration of carbon nanotubes which is then embedded in the pure epoxy matrix. The variable concentration of carbon nanotubes surrounding the carbon fiber results in a functionally graded interphase region as the properties of the interphase region vary according to the carbon nanotube volume fraction. Molecular dynamics and equivalent continuum methods are used to assess the local effective properties of the carbon nanotube/epoxy comprising the interphase region. Micromechanics in the form of the Mori-Tanaka method are then applied to obtain the global effective properties of the graded interphase region wherein the carbon nanotubes are randomly oriented. Finally, the multi-layer composite cylinders micromechanics approach is used to obtain the effective lamina properties from the lamina representative volume element. It was found that even very small quantities of carbon nanotubes (0.36% of lamina by volume) coating the surface of the carbon fibers in the lamina can have a significant effect (8% increase) on the transverse properties of the lamina (E22, k23, G23 and G12) with almost no affect on the lamina properties in the fiber direction (E11 and v12).

  2. Internal variability of a 3-D ocean model

    Directory of Open Access Journals (Sweden)

    Bjarne Büchmann

    2016-11-01

    Full Text Available The Defence Centre for Operational Oceanography runs operational forecasts for the Danish waters. The core setup is a 60-layer baroclinic circulation model based on the General Estuarine Transport Model code. At intervals, the model setup is tuned to improve ‘model skill’ and overall performance. It has been an area of concern that the uncertainty inherent to the stochastical/chaotic nature of the model is unknown. Thus, it is difficult to state with certainty that a particular setup is improved, even if the computed model skill increases. This issue also extends to the cases, where the model is tuned during an iterative process, where model results are fed back to improve model parameters, such as bathymetry.An ensemble of identical model setups with slightly perturbed initial conditions is examined. It is found that the initial perturbation causes the models to deviate from each other exponentially fast, causing differences of several PSUs and several kelvin within a few days of simulation. The ensemble is run for a full year, and the long-term variability of salinity and temperature is found for different regions within the modelled area. Further, the developing time scale is estimated for each region, and great regional differences are found – in both variability and time scale. It is observed that periods with very high ensemble variability are typically short-term and spatially limited events.A particular event is examined in detail to shed light on how the ensemble ‘behaves’ in periods with large internal model variability. It is found that the ensemble does not seem to follow any particular stochastic distribution: both the ensemble variability (standard deviation or range as well as the ensemble distribution within that range seem to vary with time and place. Further, it is observed that a large spatial variability due to mesoscale features does not necessarily correlate to large ensemble variability. These findings bear

  3. Assessing a 3D smoothed seismicity model of induced earthquakes

    Science.gov (United States)

    Zechar, Jeremy; Király, Eszter; Gischig, Valentin; Wiemer, Stefan

    2016-04-01

    As more energy exploration and extraction efforts cause earthquakes, it becomes increasingly important to control induced seismicity. Risk management schemes must be improved and should ultimately be based on near-real-time forecasting systems. With this goal in mind, we propose a test bench to evaluate models of induced seismicity based on metrics developed by the CSEP community. To illustrate the test bench, we consider a model based on the so-called seismogenic index and a rate decay; to produce three-dimensional forecasts, we smooth past earthquakes in space and time. We explore four variants of this model using the Basel 2006 and Soultz-sous-Forêts 2004 datasets to make short-term forecasts, test their consistency, and rank the model variants. Our results suggest that such a smoothed seismicity model is useful for forecasting induced seismicity within three days, and giving more weight to recent events improves forecast performance. Moreover, the location of the largest induced earthquake is forecast well by this model. Despite the good spatial performance, the model does not estimate the seismicity rate well: it frequently overestimates during stimulation and during the early post-stimulation period, and it systematically underestimates around shut-in. In this presentation, we also describe a robust estimate of information gain, a modification that can also benefit forecast experiments involving tectonic earthquakes.

  4. Constructing stable 3D hydrodynamical models of giant stars

    Science.gov (United States)

    Ohlmann, Sebastian T.; Röpke, Friedrich K.; Pakmor, Rüdiger; Springel, Volker

    2017-02-01

    Hydrodynamical simulations of stellar interactions require stable models of stars as initial conditions. Such initial models, however, are difficult to construct for giant stars because of the wide range in spatial scales of the hydrostatic equilibrium and in dynamical timescales between the core and the envelope of the giant. They are needed for, e.g., modeling the common envelope phase where a giant envelope encompasses both the giant core and a companion star. Here, we present a new method of approximating and reconstructing giant profiles from a stellar evolution code to produce stable models for multi-dimensional hydrodynamical simulations. We determine typical stellar stratification profiles with the one-dimensional stellar evolution code mesa. After an appropriate mapping, hydrodynamical simulations are conducted using the moving-mesh code arepo. The giant profiles are approximated by replacing the core of the giant with a point mass and by constructing a suitable continuation of the profile to the center. Different reconstruction methods are tested that can specifically control the convective behaviour of the model. After mapping to a grid, a relaxation procedure that includes damping of spurious velocities yields stable models in three-dimensional hydrodynamical simulations. Initially convectively stable configurations lead to stable hydrodynamical models while for stratifications that are convectively unstable in the stellar evolution code, simulations recover the convective behaviour of the initial model and show large convective plumes with Mach numbers up to 0.8. Examples are shown for a 2 M⊙ red giant and a 0.67 M⊙ asymptotic giant branch star. A detailed analysis shows that the improved method reliably provides stable models of giant envelopes that can be used as initial conditions for subsequent hydrodynamical simulations of stellar interactions involving giant stars.

  5. Integration of 3D photogrammetric outcrop models in the reservoir modelling workflow

    Science.gov (United States)

    Deschamps, Remy; Joseph, Philippe; Lerat, Olivier; Schmitz, Julien; Doligez, Brigitte; Jardin, Anne

    2014-05-01

    3D technologies are now widely used in geosciences to reconstruct outcrops in 3D. The technology used for the 3D reconstruction is usually based on Lidar, which provides very precise models. Such datasets offer the possibility to build well-constrained outcrop analogue models for reservoir study purposes. The photogrammetry is an alternate methodology which principles are based in determining the geometric properties of an object from photographic pictures taken from different angles. Outcrop data acquisition is easy, and this methodology allows constructing 3D outcrop models with many advantages such as: - light and fast acquisition, - moderate processing time (depending on the size of the area of interest), - integration of field data and 3D outcrops into the reservoir modelling tools. Whatever the method, the advantages of digital outcrop model are numerous as already highlighted by Hodgetts (2013), McCaffrey et al. (2005) and Pringle et al. (2006): collection of data from otherwise inaccessible areas, access to different angles of view, increase of the possible measurements, attributes analysis, fast rate of data collection, and of course training and communication. This paper proposes a workflow where 3D geocellular models are built by integrating all sources of information from outcrops (surface picking, sedimentological sections, structural and sedimentary dips…). The 3D geomodels that are reconstructed can be used at the reservoir scale, in order to compare the outcrop information with subsurface models: the detailed facies models of the outcrops are transferred into petrophysical and acoustic models, which are used to test different scenarios of seismic and fluid flow modelling. The detailed 3D models are also used to test new techniques of static reservoir modelling, based either on geostatistical approaches or on deterministic (process-based) simulation techniques. A modelling workflow has been designed to model reservoir geometries and properties from

  6. 3D MODELING FOR UNDERWATER ARCHAEOLOGICAL DOCUMENTATION: METRIC VERIFICATIONS

    Directory of Open Access Journals (Sweden)

    S. D’Amelio

    2015-04-01

    Full Text Available The survey in underwater environment has always presented considerable difficulties both operative and technical and this has sometimes made it difficult to use the techniques of survey commonly used for the documentation of Cultural Heritage in dry environment. The work of study concerns the evaluation in terms of capability and accuracy of the Autodesk123DCatch software for the reconstruction of a three-dimensional model of an object in underwater context. The subjects of the study are models generated from sets of photographs and sets of frames extracted from video sequence. The study is based on comparative method, using a reference model, obtained with laser scanner technique.

  7. 3D active workspace of human hand anatomical model

    Directory of Open Access Journals (Sweden)

    Ungureanu Loredana

    2007-05-01

    Full Text Available Abstract Background If the model of the human hand is created with accuracy by respecting the type of motion provided by each articulation and the dimensions of articulated bones, it can function as the real organ providing the same motions. Unfortunately, the human hand is hard to model due to its kinematical chains submitted to motion constraints. On the other hand, if an application does not impose a fine manipulation it is not necessary to create a model as complex as the human hand is. But always the hand model has to perform a certain space of motions in imposed workspace architecture no matter what the practical application does. Methods Based on Denavit-Hartenberg convention, we conceived the kinematical model of the human hand, having in mind the structure and the behavior of the natural model. We obtained the kinematical equations describing the motion of every fingertip with respect to the general coordinate system, placed on the wrist. For every joint variable, a range of motion was established. Dividing these joint variables to an appropriate number of intervals and connecting them, the complex surface bordering the active hand model workspace was obtained. Results Using MATLAB 7.0, the complex surface described by fingertips, when hand articulations are all simultaneously moving, was obtained. It can be seen that any point on surface has its own coordinates smaller than the maximum length of the middle finger in static position. Therefore, a sphere having the centre in the origin of the general coordinate system and the radius which equals this length covers the represented complex surface. Conclusion We propose a human hand model that represents a new solution compared to the existing ones. This model is capable to make special movements like power grip and dexterous manipulations. During them, the fingertips do not exceed the active workspace encapsulated by determined surfaces. The proposed kinematical model can help to choose

  8. Analysis of mathematical model for micromechanical vibratory wheel gyroscope

    Institute of Scientific and Technical Information of China (English)

    LUO Yue-sheng; FAN Chong-jin; TAN Zhen-fan

    2003-01-01

    By the sketch of structure of MVWG,the working laws of this kind of gyroscope were explained.To the aid of Euler′s Dynamics Equation,a mathematical model of the gyroscope was constructed,and then by the basic working laws of MVWG the model was simplified.Under the conditions of the three axial direction rotations and general rotation,the mathematical model was resolved.And finally by the solutions, the working laws of the gyroscope, the working disparity among all sorts of gyrations and the influences from the gyrations in the axial directions were analysed.

  9. Constructing stable 3D hydrodynamical models of giant stars

    CERN Document Server

    Ohlmann, Sebastian T; Pakmor, Rüdiger; Springel, Volker

    2016-01-01

    Hydrodynamical simulations of stellar interactions require stable models of stars as initial conditions. Such initial models, however, are difficult to construct for giant stars because of the wide range in spatial scales of the hydrostatic equilibrium and in dynamical timescales between the core and the envelope of the giant. They are needed for, e.g., modeling the common envelope phase where a giant envelope encompasses both the giant core and a companion star. Here, we present a new method of approximating and reconstructing giant profiles from a stellar evolution code to produce stable models for multi-dimensional hydrodynamical simulations. We determine typical stellar stratification profiles with the 1D stellar evolution code MESA. After an appropriate mapping, hydrodynamical simulations are conducted using the moving-mesh code AREPO. The giant profiles are approximated by replacing the core of the giant with a point mass and by constructing a suitable continuation of the profile to the center. Differen...

  10. 3D Modeling and Simulation of Dendritic Growth during Solidification

    Institute of Scientific and Technical Information of China (English)

    Zuojian LIANG; Qingyan XU; Baicheng LIU

    2003-01-01

    A mathematical model for the three-dimensional simulation of free dendritic growth and microstructure evolutionwas developed based on the growth mechanism of crystal grains and basic transfer equations such as heat, massand momentum transfer equations. Ma

  11. Modeling open nanophotonic systems using the Fourier modal method: Generalization to 3D Cartesian coordinates

    DEFF Research Database (Denmark)

    Häyrynen, Teppo; Østerkryger, Andreas Dyhl; de Lasson, Jakob Rosenkrantz

    2017-01-01

    . Am. A 33, 1298 (2016)]. Here, we generalize the approach to three-dimensional (3D) Cartesian coordinates allowing for the modeling of rectangular geometries in open space. The open boundary condition is a consequence of having an infinite computational domain described using basis functions...... convergence enabling more accurate and efficient modeling of open 3D nanophotonic structures....

  12. Rethinking Design Process: Using 3D Digital Models as an Interface in Collaborative Session

    Science.gov (United States)

    Ding, Suining

    2008-01-01

    This paper describes a pilot study for an alternative design process by integrating a designer-user collaborative session with digital models. The collaborative session took place in a 3D AutoCAD class for a real world project. The 3D models served as an interface for designer-user collaboration during the design process. Students not only learned…

  13. Validity of Mixed 2D and 3D Cadastral Parcels in the Land Administration Domain Model

    NARCIS (Netherlands)

    Thompson, R.J.; Van Oosterom, P.J.M.

    2012-01-01

    In the move towards a 3D Cadastre, many jurisdictions are considering a hybrid 2D/3D database as either a stage of development or as a target in itself (van Oosterom, Stoter, Ploeger, Thompson and Karki 2011). The Land Administration Domain Model (LADM), which is the underlying model for the ISO 191

  14. 3D Anatomy Models and Impact on Learning: A Review of the Quality of the Literature

    Directory of Open Access Journals (Sweden)

    Samy A. Azer

    2016-12-01

    Conclusions: There was no solid evidence that the use of 3D models is superior to traditional teaching. However, the studies varied in research quality. More studies are needed to examine the short- and long-term impacts of 3D models on learning using valid and appropriate tools.

  15. Rethinking Design Process: Using 3D Digital Models as an Interface in Collaborative Session

    Science.gov (United States)

    Ding, Suining

    2008-01-01

    This paper describes a pilot study for an alternative design process by integrating a designer-user collaborative session with digital models. The collaborative session took place in a 3D AutoCAD class for a real world project. The 3D models served as an interface for designer-user collaboration during the design process. Students not only learned…

  16. 3D Modeling from Multi-views Images for Cultural Heritage in Wat-Pho, Thailand

    Science.gov (United States)

    Soontranon, N.; Srestasathiern, P.; Lawawirojwong, S.

    2015-08-01

    In Thailand, there are several types of (tangible) cultural heritages. This work focuses on 3D modeling of the heritage objects from multi-views images. The images are acquired by using a DSLR camera which costs around 1,500 (camera and lens). Comparing with a 3D laser scanner, the camera is cheaper and lighter than the 3D scanner. Hence, the camera is available for public users and convenient for accessing narrow areas. The acquired images consist of various sculptures and architectures in Wat-Pho which is a Buddhist temple located behind the Grand Palace (Bangkok, Thailand). Wat-Pho is known as temple of the reclining Buddha and the birthplace of traditional Thai massage. To compute the 3D models, a diagram is separated into following steps; Data acquisition, Image matching, Image calibration and orientation, Dense matching and Point cloud processing. For the initial work, small heritages less than 3 meters height are considered for the experimental results. A set of multi-views images of an interested object is used as input data for 3D modeling. In our experiments, 3D models are obtained from MICMAC (open source) software developed by IGN, France. The output of 3D models will be represented by using standard formats of 3D point clouds and triangulated surfaces such as .ply, .off, .obj, etc. To compute for the efficient 3D models, post-processing techniques are required for the final results e.g. noise reduction, surface simplification and reconstruction. The reconstructed 3D models can be provided for public access such as website, DVD, printed materials. The high accurate 3D models can also be used as reference data of the heritage objects that must be restored due to deterioration of a lifetime, natural disasters, etc.

  17. Use of 3D Printed Models in Medical Education: A Randomized Control Trial Comparing 3D Prints versus Cadaveric Materials for Learning External Cardiac Anatomy

    Science.gov (United States)

    Lim, Kah Heng Alexander; Loo, Zhou Yaw; Goldie, Stephen J.; Adams, Justin W.; McMenamin, Paul G.

    2016-01-01

    Three-dimensional (3D) printing is an emerging technology capable of readily producing accurate anatomical models, however, evidence for the use of 3D prints in medical education remains limited. A study was performed to assess their effectiveness against cadaveric materials for learning external cardiac anatomy. A double blind randomized…

  18. Use of 3D Printed Models in Medical Education: A Randomized Control Trial Comparing 3D Prints versus Cadaveric Materials for Learning External Cardiac Anatomy

    Science.gov (United States)

    Lim, Kah Heng Alexander; Loo, Zhou Yaw; Goldie, Stephen J.; Adams, Justin W.; McMenamin, Paul G.

    2016-01-01

    Three-dimensional (3D) printing is an emerging technology capable of readily producing accurate anatomical models, however, evidence for the use of 3D prints in medical education remains limited. A study was performed to assess their effectiveness against cadaveric materials for learning external cardiac anatomy. A double blind randomized…

  19. Micromechanics Fatigue Damage Analysis Modeling for Fabric Reinforced Ceramic Matrix Composites

    Science.gov (United States)

    Min, J. B.; Xue, D.; Shi, Y.

    2013-01-01

    A micromechanics analysis modeling method was developed to analyze the damage progression and fatigue failure of fabric reinforced composite structures, especially for the brittle ceramic matrix material composites. A repeating unit cell concept of fabric reinforced composites was used to represent the global composite structure. The thermal and mechanical properties of the repeating unit cell were considered as the same as those of the global composite structure. The three-phase micromechanics, the shear-lag, and the continuum fracture mechanics models were integrated with a statistical model in the repeating unit cell to predict the progressive damages and fatigue life of the composite structures. The global structure failure was defined as the loss of loading capability of the repeating unit cell, which depends on the stiffness reduction due to material slice failures and nonlinear material properties in the repeating unit cell. The present methodology is demonstrated with the analysis results evaluated through the experimental test performed with carbon fiber reinforced silicon carbide matrix plain weave composite specimens.

  20. Radiation effects in concrete for nuclear power plants, Part II: Perspective from micromechanical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Le Pape, Y., E-mail: lepapeym@ornl.gov; Field, K.G.; Remec, I.

    2015-02-15

    Highlights: • A micromechanical model for irradiated concrete is proposed. • Confrontation with literature data is successful. • Neutron radiation-induced volumetric expansion is a predominant degradation mode. • The nature of the aggregate alters the severity of damage to irradiated concrete. - Abstract: The need to understand and characterize the effects of neutron irradiation on concrete has become urgent because of the possible extension of service life of many nuclear power generating stations. Current knowledge is primarily based on a collection of data obtained in test reactors. These data are inherently difficult to interpret because materials and testing conditions are inconsistent. A micromechanical approach based on the Hashin composite sphere model is presented to derive a first-order separation of the effects of radiation on cement paste and aggregate, and, also, on their interaction. Although the scarcity of available data limits the validation of the model, it appears that, without negating a possible gamma-ray induced effect, the neutron-induced damage and swelling of aggregate plays a predominant role on the overall concrete expansion and the damage of the cement paste. The radiation-induced volumetric expansion (RIVE) effects can also be aided by temperature elevation and shrinkage in the cement paste.

  1. A topological framework for interactive queries on 3D models in the Web.

    Science.gov (United States)

    Figueiredo, Mauro; Rodrigues, José I; Silvestre, Ivo; Veiga-Pires, Cristina

    2014-01-01

    Several technologies exist to create 3D content for the web. With X3D, WebGL, and X3DOM, it is possible to visualize and interact with 3D models in a web browser. Frequently, three-dimensional objects are stored using the X3D file format for the web. However, there is no explicit topological information, which makes it difficult to design fast algorithms for applications that require adjacency and incidence data. This paper presents a new open source toolkit TopTri (Topological model for Triangle meshes) for Web3D servers that builds the topological model for triangular meshes of manifold or nonmanifold models. Web3D client applications using this toolkit make queries to the web server to get adjacent and incidence information of vertices, edges, and faces. This paper shows the application of the topological information to get minimal local points and iso-lines in a 3D mesh in a web browser. As an application, we present also the interactive identification of stalactites in a cave chamber in a 3D web browser. Several tests show that even for large triangular meshes with millions of triangles, the adjacency and incidence information is returned in real time making the presented toolkit appropriate for interactive Web3D applications.

  2. 3D Printing of Plant Golgi Stacks from Their Electron Tomographic Models.

    Science.gov (United States)

    Mai, Keith Ka Ki; Kang, Madison J; Kang, Byung-Ho

    2017-01-01

    Three-dimensional (3D) printing is an effective tool for preparing tangible 3D models from computer visualizations to assist in scientific research and education. With the recent popularization of 3D printing processes, it is now possible for individual laboratories to convert their scientific data into a physical form suitable for presentation or teaching purposes. Electron tomography is an electron microscopy method by which 3D structures of subcellular organelles or macromolecular complexes are determined at nanometer-level resolutions. Electron tomography analyses have revealed the convoluted membrane architectures of Golgi stacks, chloroplasts, and mitochondria. But the intricacy of their 3D organizations is difficult to grasp from tomographic models illustrated on computer screens. Despite the rapid development of 3D printing technologies, production of organelle models based on experimental data with 3D printing has rarely been documented. In this chapter, we present a simple guide to creating 3D prints of electron tomographic models of plant Golgi stacks using the two most accessible 3D printing technologies.

  3. An Approach to Computer Modeling of Geological Faults in 3D and an Application

    Institute of Scientific and Technical Information of China (English)

    ZHU Liang-feng; HE Zheng; PAN Xin; WU Xin-cai

    2006-01-01

    3D geological modeling, one of the most important applications in geosciences of 3D GIS, forms the basis and is a prerequisite for visualized representation and analysis of 3D geological data. Computer modeling of geological faults in 3D is currently a topical research area. Structural modeling techniques of complex geological entities containing reverse faults are discussed and a series of approaches are proposed. The geological concepts involved in computer modeling and visualization of geological fault in 3D are explained, the type of data of geological faults based on geological exploration is analyzed, and a normative database format for geological faults is designed. Two kinds of modeling approaches for faults are compared: a modeling technique of faults based on stratum recovery and a modeling technique of faults based on interpolation in subareas. A novel approach, called the Unified Modeling Technique for stratum and fault, is presented to solve the puzzling problems of reverse faults, syn-sedimentary faults and faults terminated within geological models. A case study of a fault model of bed rock in the Beijing Olympic Green District is presented in order to show the practical result of this method. The principle and the process of computer modeling of geological faults in 3D are discussed and a series of applied technical proposals established. It strengthens our profound comprehension of geological phenomena and the modeling approach, and establishes the basic techniques of 3D geological modeling for practical applications in the field of geosciences.

  4. Micromechanical models of delamination in aluminum-lithium alloys

    Science.gov (United States)

    Messner, Mark Christian

    Aluminum lithium (Al-Li) alloys are lighter, stiffer, and tougher than conventional aerospace aluminum alloys. Replacing conventional aluminums with Al-Li could substantially decrease the weight and cost of aerospace structures. However, Al-Li alloys often fracture intergranularly via a mechanism called delamination cracking. While secondary delamination cracks can improve the effective toughness of a component, no current model accurately predicts the initiation and growth of intergranular cracks. Since simulations cannot incorporate delamination into a structural model, designers cannot quantify the effect of delamination cracking on a particular component. This uncertainty limits the application of Al-Li alloys. Previous experiments identify microstructural features linked to delamination. Fractography of failed surfaces indicates plastic void growth triggers intergranular failure. Furthermore, certain types of soft/stiff grain boundaries tend to localize void growth and nucleate delamination cracks. This dissertation develops a mechanism for the initiation of delamination on the microscale that accounts for these experimental observations. Microscale simulations of grain boundaries near a long primary crack explore the delamination mechanism on the mesoscale. In these simulations, a physically-based crystal plasticity (CP) model represents the constitutive response of individual grains. This CP model incorporates plastic voriticity correction terms into a standard objective stress rate integration, to accurately account for the kinematics of lattice deformation. The CP model implements slip system hardening with a modular approach to facilitate quick testing and calibration of different theories of hardening. The microscale models reveal soft/stiff grain boundaries develop elevated mean stress and plastic strain as a consequence of the mechanics of the interface. These elevated stresses and strain drive plastic void growth. The results indicate plastic void

  5. Micromechanical modelling of oil palm empty fruit bunch fibres containing silica bodies.

    Science.gov (United States)

    Omar, Farah Nadia; Hanipah, Suhaiza Hanim; Xiang, Loo Yu; Mohammed, Mohd Afandi P; Baharuddin, Azhari Samsu; Abdullah, Jaafar

    2016-09-01

    Experimental and numerical investigation was conducted to study the micromechanics of oil palm empty fruit bunch fibres containing silica bodies. The finite viscoelastic-plastic material model called Parallel Rheological Network model was proposed, that fitted well with cyclic and stress relaxation tensile tests of the fibres. Representative volume element and microstructure models were developed using finite element method, where the models information was obtained from microscopy and X-ray micro-tomography analyses. Simulation results showed that difference of the fibres model with silica bodies and those without ones is larger under shear than compression and tension. However, in comparison to geometrical effect (i.e. silica bodies), it is suggested that ultrastructure components of the fibres (modelled using finite viscoelastic-plastic model) is responsible for the complex mechanical behaviour of oil palm fibres. This can be due to cellulose, hemicellulose and lignin components and the interface behaviour, as reported on other lignocellulosic materials.

  6. Engineered Polymeric Hydrogels for 3D Tissue Models

    Directory of Open Access Journals (Sweden)

    Sujin Park

    2016-01-01

    Full Text Available Polymeric biomaterials are widely used in a wide range of biomedical applications due to their unique properties, such as biocompatibility, multi-tunability and easy fabrication. Specifically, polymeric hydrogel materials are extensively utilized as therapeutic implants and therapeutic vehicles for tissue regeneration and drug delivery systems. Recently, hydrogels have been developed as artificial cellular microenvironments because of the structural and physiological similarity to native extracellular matrices. With recent advances in hydrogel materials, many researchers are creating three-dimensional tissue models using engineered hydrogels and various cell sources, which is a promising platform for tissue regeneration, drug discovery, alternatives to animal models and the study of basic cell biology. In this review, we discuss how polymeric hydrogels are used to create engineered tissue constructs. Specifically, we focus on emerging technologies to generate advanced tissue models that precisely recapitulate complex native tissues in vivo.

  7. A 3D City Model as User Interface Connected to an Energy Model

    DEFF Research Database (Denmark)

    Kjems, Erik; Østergaard, Poul Alberg

    2014-01-01

    production of the city using sliders and buttons as part of the interface. While the 3D model gives an immediate visual result, a connection to an underlying numerical energy model developed in earlier years at the University delivers a quite precise calculation on all vital data involved in the overall...

  8. Parallel processing for efficient 3D slope stability modelling

    Science.gov (United States)

    Marchesini, Ivan; Mergili, Martin; Alvioli, Massimiliano; Metz, Markus; Schneider-Muntau, Barbara; Rossi, Mauro; Guzzetti, Fausto

    2014-05-01

    We test the performance of the GIS-based, three-dimensional slope stability model r.slope.stability. The model was developed as a C- and python-based raster module of the GRASS GIS software. It considers the three-dimensional geometry of the sliding surface, adopting a modification of the model proposed by Hovland (1977), and revised and extended by Xie and co-workers (2006). Given a terrain elevation map and a set of relevant thematic layers, the model evaluates the stability of slopes for a large number of randomly selected potential slip surfaces, ellipsoidal or truncated in shape. Any single raster cell may be intersected by multiple sliding surfaces, each associated with a value of the factor of safety, FS. For each pixel, the minimum value of FS and the depth of the associated slip surface are stored. This information is used to obtain a spatial overview of the potentially unstable slopes in the study area. We test the model in the Collazzone area, Umbria, central Italy, an area known to be susceptible to landslides of different type and size. Availability of a comprehensive and detailed landslide inventory map allowed for a critical evaluation of the model results. The r.slope.stability code automatically splits the study area into a defined number of tiles, with proper overlap in order to provide the same statistical significance for the entire study area. The tiles are then processed in parallel by a given number of processors, exploiting a multi-purpose computing environment at CNR IRPI, Perugia. The map of the FS is obtained collecting the individual results, taking the minimum values on the overlapping cells. This procedure significantly reduces the processing time. We show how the gain in terms of processing time depends on the tile dimensions and on the number of cores.

  9. 3D Multiscale Modelling of Angiogenesis and Vascular Tumour Growth

    KAUST Repository

    Perfahl, H.

    2012-11-01

    We present a three-dimensional, multiscale model of vascular tumour growth, which couples nutrient/growth factor transport, blood flow, angiogenesis, vascular remodelling, movement of and interactions between normal and tumour cells, and nutrient-dependent cell cycle dynamics within each cell. We present computational simulations which show how a vascular network may evolve and interact with tumour and healthy cells. We also demonstrate how our model may be combined with experimental data, to predict the spatio-temporal evolution of a vascular tumour.

  10. Modular Pneumatic Snake Robot: 3D Modelling, Implementation And Control

    Directory of Open Access Journals (Sweden)

    Pål Liljebäck

    2008-01-01

    Full Text Available This paper gives a treatment of various aspects related to snake locomotion. A mathematical model and a physical implementation of a modular snake robot are presented. A control strategy is also developed, yielding a general expression for different gait patterns. Two forms of locomotion have been simulated with the mathematical model, and experiments with the physical snake robot have been conducted. The simulation results revealed the parameter through which directional control may be achieved for each gait pattern. Experiments with the physical snake robot gave a crude qualitative verification of these findings.

  11. 3-D rheologic model of earthquake preparation (Ⅲ): Precursor field

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    On the basis of the theory of viscoelastic displacement and strain field for the three-dimensional rheologic model of earthquake preparation, this paper mainly studies the theoretical solution of precursor field for the three-dimensional rheologic model of earthquake preparation. We derive the viscoelastic analytical expressions of the ground tilt, underground water level, earth resistivity at an arbitrary point (x, y, z) in the rheologic medium, and analyzed the earth resistivity preliminarily, providing a certain theoretical basis for the precursor analysis of seismogenic process.

  12. Services Oriented Smart City Platform Based On 3d City Model Visualization

    Science.gov (United States)

    Prandi, F.; Soave, M.; Devigili, F.; Andreolli, M.; De Amicis, R.

    2014-04-01

    The rapid technological evolution, which is characterizing all the disciplines involved within the wide concept of smart cities, is becoming a key factor to trigger true user-driven innovation. However to fully develop the Smart City concept to a wide geographical target, it is required an infrastructure that allows the integration of heterogeneous geographical information and sensor networks into a common technological ground. In this context 3D city models will play an increasingly important role in our daily lives and become an essential part of the modern city information infrastructure (Spatial Data Infrastructure). The work presented in this paper describes an innovative Services Oriented Architecture software platform aimed at providing smartcities services on top of 3D urban models. 3D city models are the basis of many applications and can became the platform for integrating city information within the Smart-Cites context. In particular the paper will investigate how the efficient visualisation of 3D city models using different levels of detail (LODs) is one of the pivotal technological challenge to support Smart-Cities applications. The goal is to provide to the final user realistic and abstract 3D representations of the urban environment and the possibility to interact with a massive amounts of semantic information contained into the geospatial 3D city model. The proposed solution, using OCG standards and a custom service to provide 3D city models, lets the users to consume the services and interact with the 3D model via Web in a more effective way.

  13. Synthesis of image sequences for Korean sign language using 3D shape model

    Science.gov (United States)

    Hong, Mun-Ho; Choi, Chang-Seok; Kim, Chang-Seok; Jeon, Joon-Hyeon

    1995-05-01

    This paper proposes a method for offering information and realizing communication to the deaf-mute. The deaf-mute communicates with another person by means of sign language, but most people are unfamiliar with it. This method enables to convert text data into the corresponding image sequences for Korean sign language (KSL). Using a general 3D shape model of the upper body leads to generating the 3D motions of KSL. It is necessary to construct the general 3D shape model considering the anatomical structure of the human body. To obtain a personal 3D shape model, this general model is to adjust to the personal base images. Image synthesis for KSL consists of deforming a personal 3D shape model and texture-mapping the personal images onto the deformed model. The 3D motions for KSL have the facial expressions and the 3D movements of the head, trunk, arms and hands and are parameterized for easily deforming the model. These motion parameters of the upper body are extracted from a skilled signer's motion for each KSL and are stored to the database. Editing the parameters according to the inputs of text data yields to generate the image sequences of 3D motions.

  14. Micromechanics Models for Viscoelastic Plain-Weave Composite Tape Springs

    DEFF Research Database (Denmark)

    Kwok, Kawai; Pellegrino, Sergio

    2017-01-01

    The viscoelastic behavior of polymer composites decreases the deployment force and the postdeployment shape accuracy of composite deployable space structures. This paper presents a viscoelastic model for single-ply cylindrical shells (tape springs) that are deployed after being held folded...... for a given period of time. The model is derived from a representative unit cell of the composite material, based on the microstructure geometry. Key ingredients are the fiber volume density in the composite tows and the constitutive behavior of the fibers (assumed to be linear elastic and transversely...

  15. An object-oriented 3D integral data model for digital city and digital mine

    Science.gov (United States)

    Wu, Lixin; Wang, Yanbing; Che, Defu; Xu, Lei; Chen, Xuexi; Jiang, Yun; Shi, Wenzhong

    2005-10-01

    With the rapid development of urban, city space extended from surface to subsurface. As the important data source for the representation of city spatial information, 3D city spatial data have the characteristics of multi-object, heterogeneity and multi-structure. It could be classified referring to the geo-surface into three kinds: above-surface data, surface data and subsurface data. The current research on 3D city spatial information system is divided naturally into two different branch, 3D City GIS (3D CGIS) and 3D Geological Modeling (3DGM). The former emphasizes on the 3D visualization of buildings and the terrain of city, while the latter emphasizes on the visualization of geological bodies and structures. Although, it is extremely important for city planning and construction to integrate all the city spatial information including above-surface, surface and subsurface objects to conduct integral analysis and spatial manipulation. However, either 3D CGIS or 3DGM is currently difficult to realize the information integration, integral analysis and spatial manipulation. Considering 3D spatial modeling theory and methodologies, an object-oriented 3D integral spatial data model (OO3D-ISDM) is presented and software realized. The model integrates geographical objects, surface buildings and geological objects together seamlessly with TIN being its coupling interface. This paper introduced the conceptual model of OO3D-ISDM, which is comprised of 4 spatial elements, i.e. point, line, face and body, and 4 geometric primitives, i.e. vertex, segment, triangle and generalized tri-prism (GTP). The spatial model represents the geometry of surface buildings and geographical objects with triangles, and geological objects with GTP. Any of the represented objects, no mater surface buildings, terrain or subsurface objects, could be described with the basic geometry element, i.e. triangle. So the 3D spatial objects, surface buildings, terrain and geological objects can be

  16. 3D-modelling of the stellar auroral radio emission

    CERN Document Server

    Leto, P; Buemi, C S; Umana, G; Ingallinera, A; Cerrigone, L

    2016-01-01

    The electron cyclotron maser is the coherent emission process that gives rise to the radio lighthouse effect observed in the hot magnetic chemically peculiar star CU Virginis. It has also been proposed to explain the highly circularly polarized radio pulses observed on some ultra cool dwarfs, with spectral type earlier than M7. Such kind of coherent events resemble the auroral radio emission from the magnetized planets of the solar system. In this paper, we present a tridimensional model able to simulate the timing and profile of the pulses emitted by those stars characterized by a dipolar magnetic field by following the hypothesis of the laminar source model, used to explain the beaming of the terrestrial auroral kilometric radiation. This model proves to be a powerful tool to understand the auroral radio-emission phenomenon, allowing us to derive some general conclusions about the effects of the model's free parameters on the features of the coherent pulses, and to learn more about the detectability of such...

  17. 3D modelling of stellar auroral radio emission

    Science.gov (United States)

    Leto, P.; Trigilio, C.; Buemi, C. S.; Umana, G.; Ingallinera, A.; Cerrigone, L.

    2016-06-01

    The electron cyclotron maser is the coherent emission process that gives rise to the radio lighthouse effect observed in the hot magnetic chemically peculiar star CU Virginis. It has also been proposed to explain the highly circularly polarized radio pulses observed in some ultracool dwarfs with spectral type earlier than M7. Coherent events of this kind resemble auroral radio emission from the magnetized planets of the Solar system. In this article, we present a three-dimensional model able to simulate the timing and profile of the pulses emitted by those stars characterized by a dipolar magnetic field by following the hypothesis of the laminar source model, used to explain the beaming of terrestrial auroral kilometric radiation. This model proves to be a powerful tool with which to understand the auroral radio emission phenomenon, allowing us to derive some general conclusions about the effects of the model's free parameters on the features of coherent pulses and to learn more about the detectability of such pulsed radio emission.

  18. Solar Burst Analysis with 3D Loop Models

    CERN Document Server

    Costa, Joaquim E R; Pinto, Tereza S N; Melnikov, Victor F

    2013-01-01

    A sample of Nobeyama flares was selected and analyzed using loop model for important flare parameters. The model for the flaring region consists of a three dimensional dipolar magnetic field, and spatial distributions of non-thermal electrons. We constructed a database by calculating the flare microwave emission for a wide range of these parameters. Out of this database with more than 5,000 cases we extracted general flare properties by comparing the observed and calculated microwave spectra. The analysis of NoRP data was mostly based in the center-to-limb variation of the flare properties with looptop and footpoint electron distributions and for NoRH maps on the resultant distribution of emission. One important aspect of this work is the comparison of the analysis of a flare using an inhomogeneous source model and a simplistic homogeneous source model. Our results show clearly that the homogeneous source hypothesis is not appropriate to describe the possible flare geometry and its use can easily produce misl...

  19. FUEL3-D: A Spatially Explicit Fractal Fuel Distribution Model

    Science.gov (United States)

    Russell A. Parsons

    2006-01-01

    Efforts to quantitatively evaluate the effectiveness of fuels treatments are hampered by inconsistencies between the spatial scale at which fuel treatments are implemented and the spatial scale, and detail, with which we model fire and fuel interactions. Central to this scale inconsistency is the resolution at which variability within the fuel bed is considered. Crown...

  20. Fast, Automated, Photo realistic, 3D Modeling of Building Interiors

    Science.gov (United States)

    2016-09-12

    These models are used in augmented reality , navigation, and energy simulation applications. State -of- the- art scanning produces accurate pointclouds of...preservation, entertainment, and augmented reality , the demand for both fast and accurate scanning technologies has dramatically increased. In this...With applications such as historical preservation, entertainment, and augmented reality , the demand for both fast and accurate scanning

  1. A novel micromechanics based approach in modeling pavement response

    Science.gov (United States)

    Bhattacharya, Arun

    For maintaining a smooth flow of traffic in the nation's highway system, sections of pavements that are damaged need to be serviced frequently. Among the various types of damage, those caused by heavy trucks are a major concern. Based on a detailed and broad literature survey, it is apparent that no analytical model exists which could closely predict dynamic pavement response and progressive damage, even qualitatively, due to truck loading. It is such a model that is developed in this work. In order to predict pavement response and damage analytically, a model will have to be based on a theory that captures the essential features of the pavement material. The state-of-the-art Microplane Theory, which has never been applied before to pavement, is chosen to model the material behavior in this research. The theory is implemented in a finite element code to predict tri-axial pavement response. The pavement material damage due to traffic loading is also presented qualitatively. Furthermore, using Taguchi Methods, the critical parameters in a pavement design are determined. Finally, the response of pavement to various joint designs parameters is evaluated.

  2. Micromechanical modeling of stress-induced strain in polycrystalline Ni–Mn–Ga by directional solidification

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yuping, E-mail: zhuyuping@126.com [Seismic Observation and Geophysical Imaging Laboratory, Institute of Geophysics, China Earthquake Administration, Beijing 100081 (China); Shi, Tao; Teng, Yao [Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013 (China)

    2015-10-05

    Highlights: • A micromechanical model of directional solidification Ni–Mn–Ga is developed. • The stress–strain curves in different directions are tested. • The martensite Young’s moduli in different directions are predicted. • The macro reorientation strains in different directions are investigated. - Abstract: Polycrystalline ferromagnetic shape memory alloy Ni–Mn–Ga produced by directional solidification possess unique properties. Its compressive stress–strain behaviors in loading–unloading cycle show nonlinear and anisotropic. Based on the self-consistent theory and thermodynamics principle, a micromechanical constitutive model of polycrystalline Ni–Mn–Ga by directional solidification is developed considering the generating mechanism of the macroscopic strain and anisotropy. Then, the stress induced strains at different angles to solidification direction are calculated, and the results agree well with the experimental data. The predictive curves of martensite Young’s modulus and macro reorientation strain in different directions are investigated. It may provide theoretical guidance for the design and use of ferromagnetic shape memory alloy.

  3. Robust Head Pose Estimation Using a 3D Morphable Model

    Directory of Open Access Journals (Sweden)

    Ying Cai

    2015-01-01

    Full Text Available Head pose estimation from single 2D images has been considered as an important and challenging research task in computer vision. This paper presents a novel head pose estimation method which utilizes the shape model of the Basel face model and five fiducial points in faces. It adjusts shape deformation according to Laplace distribution to afford the shape variation across different persons. A new matching method based on PSO (particle swarm optimization algorithm is applied both to reduce the time cost of shape reconstruction and to achieve higher accuracy than traditional optimization methods. In order to objectively evaluate accuracy, we proposed a new way to compute the pose estimation errors. Experiments on the BFM-synthetic database, the BU-3DFE database, the CUbiC FacePix database, the CMU PIE face database, and the CAS-PEAL-R1 database show that the proposed method is robust, accurate, and computationally efficient.

  4. Renormalization of 3d quantum gravity from matrix models

    CERN Document Server

    Ambjørn, Jan; Loll, R

    2004-01-01

    Lorentzian simplicial quantum gravity is a non-perturbatively defined theory of quantum gravity which predicts a positive cosmological constant. Since the approach is based on a sum over space-time histories, it is perturbatively non-renormalizable even in three dimensions. By mapping the three-dimensional theory to a two-matrix model with ABAB interaction we show that both the cosmological and the (perturbatively) non-renormalizable gravitational coupling constant undergo additive renormalizations consistent with canonical quantization.

  5. Time efficient 3-D electromagnetic modeling on massively parallel computers

    Energy Technology Data Exchange (ETDEWEB)

    Alumbaugh, D.L.; Newman, G.A.

    1995-08-01

    A numerical modeling algorithm has been developed to simulate the electromagnetic response of a three dimensional earth to a dipole source for frequencies ranging from 100 to 100MHz. The numerical problem is formulated in terms of a frequency domain--modified vector Helmholtz equation for the scattered electric fields. The resulting differential equation is approximated using a staggered finite difference grid which results in a linear system of equations for which the matrix is sparse and complex symmetric. The system of equations is solved using a preconditioned quasi-minimum-residual method. Dirichlet boundary conditions are employed at the edges of the mesh by setting the tangential electric fields equal to zero. At frequencies less than 1MHz, normal grid stretching is employed to mitigate unwanted reflections off the grid boundaries. For frequencies greater than this, absorbing boundary conditions must be employed by making the stretching parameters of the modified vector Helmholtz equation complex which introduces loss at the boundaries. To allow for faster calculation of realistic models, the original serial version of the code has been modified to run on a massively parallel architecture. This modification involves three distinct tasks; (1) mapping the finite difference stencil to a processor stencil which allows for the necessary information to be exchanged between processors that contain adjacent nodes in the model, (2) determining the most efficient method to input the model which is accomplished by dividing the input into ``global`` and ``local`` data and then reading the two sets in differently, and (3) deciding how to output the data which is an inherently nonparallel process.

  6. Modelling Galaxies with a 3d Multi-Phase ISM

    CERN Document Server

    Harfst, S; Hensler, G; Harfst, Stefan; Theis, Christian; Hensler, Gerhard

    2005-01-01

    We present a new particle code for modelling the evolution of galaxies. The code is based on a multi-phase description for the interstellar medium (ISM). We included star formation (SF), stellar feedback by massive stars and planetary nebulae, phase transitions and interactions between gas clouds and ambient diffuse gas, namely condensation, evaporation, drag and energy dissipation. The latter is realised by radiative cooling and inelastic cloud-cloud collisions. We present new schemes for SF and stellar feedback. They include a consistent calculation of the star formation efficiency (SFE) based on ISM properties as well as a detailed redistribution of the feedback energy into the different ISM phases. As a first test example we show a model of the evolution of a present day Milky-Way-type galaxy. Though the model exhibits a quasi-stationary behaviour in global properties like mass fractions or surface densities, the evolution of the ISM is locally strongly variable depending on the local SF and stellar feedb...

  7. Kinetic modeling of 3D equilibria in a tokamak

    Science.gov (United States)

    Albert, C. G.; Heyn, M. F.; Kasilov, S. V.; Kernbichler, W.; Martitsch, A. F.; Runov, A. M.

    2016-11-01

    External resonant magnetic perturbations (RMPs) can modify the magnetic topology in a tokamak. In this case the magnetic field cannot generally be described by ideal MHD equilibrium equations in the vicinity of resonant magnetic surfaces where parallel and perpendicular relaxation timescales are comparable. Usually, resistive MHD models are used to describe these regions. In the present work, a kinetic model is used for this purpose. Within this model, plasma response, current and charge density are computed with help of a Monte Carlo method, where guiding center orbit equations are solved using a semianalytical geometrical integrator. Besides its higher efficiency in comparison to usual integrators this method is not sensitive to noise in field quantities. The computed charges and currents are used to calculate the electromagnetic field with help of a finite element solver. A preconditioned iterative scheme is applied to search for a self-consistent solution. The discussed method is aimed at the nonlinear kinetic description of RMPs in experiments on Edge Localized Mode (ELM) mitigation by external perturbation coil systems without simplification of the device geometry.

  8. 3D MHD modeling of twisted coronal loops

    CERN Document Server

    Reale, F; Guarrasi, M; Mignone, A; Peres, G; Hood, A W; Priest, E R

    2016-01-01

    We perform MHD modeling of a single bright coronal loop to include the interaction with a non-uniform magnetic field. The field is stressed by random footpoint rotation in the central region and its energy is dissipated into heating by growing currents through anomalous magnetic diffusivity that switches on in the corona above a current density threshold. We model an entire single magnetic flux tube, in the solar atmosphere extending from the high-beta chromosphere to the low-beta corona through the steep transition region. The magnetic field expands from the chromosphere to the corona. The maximum resolution is ~30 km. We obtain an overall evolution typical of loop models and realistic loop emission in the EUV and X-ray bands. The plasma confined in the flux tube is heated to active region temperatures (~3 MK) after ~2/3 hr. Upflows from the chromosphere up to ~100 km/s fill the core of the flux tube to densities above 10^9 cm^-3. More heating is released in the low corona than the high corona and is finely ...

  9. 3D MHD modeling of twisted coronal loops

    Science.gov (United States)

    Reale, F.; Orlando, S.; Guarrasi, M.; Mignone, A.; Peres, G.; Hood, A. W.; Priest, E. R.

    2016-10-01

    We perform MHD modeling of a single bright coronal loop to include the interaction with a non-uniform magnetic field. The field is stressed by random footpoint rotation in the central region and its energy is dissipated into heating by growing currents through anomalous magnetic diffusivity that switches on in the corona above a current density threshold. We model an entire single magnetic flux tube in the solar atmosphere extending from the high-β chromosphere to the low-β corona through the steep transition region. The magnetic field expands from the chromosphere to the corona. The maximum resolution is ∼30 km. We obtain an overall evolution typical of loop models and realistic loop emission in the EUV and X-ray bands. The plasma confined in the flux tube is heated to active region temperatures (∼3 MK) after ∼2/3 hr. Upflows from the chromosphere up to ∼100 km s‑1 fill the core of the flux tube to densities above 109 cm‑3. More heating is released in the low corona than the high corona and is finely structured both in space and time.

  10. Micromechanical modeling of the deformation of HCP metals

    Energy Technology Data Exchange (ETDEWEB)

    Graff, S. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung

    2008-12-04

    Nowadays, intense research is conducted to understand the relation between microstructural features and mechanical properties of hexagonal close-packed (hcp) metals. Due to their hexagonal structure, hcp metals exhibit mechanical properties such as strong anisotropy, which is more pronounced than for construction metals with cubic crystal structure, and tension/compression asymmetry. Deformation mechanisms in hcp metals, dislocation motion on specific slip systems and activation of twinning, are not yet completely understood. The purpose of this work is to link the physical mechanisms developing during deformation of magnesium (Mg) on the microscale with the macroscopic yielding properties of texture Mg samples. It will be shown that the mechanical behavior of hcp metals may be understood and reproduced with the help of a visco-plastic model for crystal plasticity and a phenomenological yield criterion with appropriate hardening behavior. The study of single crystal specimens subjected to channel die compression tests reveals the active slip systems and twinning systems of the material considered. The material anisotropy at mesoscale is reproduced by using adequate critical resolved shear stresses (CRSS) for the considered deformation mechanisms. In order to describe the macroscopic behavior, texture is incorporated into polycrystalline Representative Volume Elements (RVEs) and various mechanical properties of extruded bars and rolled plates can be predicted. For RVEs exhibiting the texture of rolled plates the numerical results reveal the plate's anisotropic yielding and hardening behavior on a mesoscale. In order to extend the modeling possibilities to process simulations and to allow for time-saving simulations of structural behavior, a phenomenological yield surface accounting for anisotropy and tension/compression asymmetry has been established and implemented in a finite element code. Its numerous model parameters are calibrated by an optimization

  11. Micromechanism Based Modeling of Structural Life in Metal Matrix Composites

    Science.gov (United States)

    2007-11-02

    subsequent radial cracking. The work performed under this grant also included a program to experimentally characterize the morphology of Ti02 , one of...experimentally characterize the morphology of Ti02 , one of the primary stoichiometric oxides formed during oxidation of titanium, in order to develop more...accurate oxide layer growth models. An part of dm iffuu, Lhi growtn ana structure uf(thj— Ti02 mrirlr Inyrr, mnnnlilliii, rinmpli i i dlM! lllllilj

  12. Micromechanics Models for Unsaturated, Saturated, and Dry Sands.

    Science.gov (United States)

    1988-01-25

    grains must ride over one another. Soils which exhibit such behavior are loose granular materials and normaiiy consolidated clays. For soils of...of change of stress is a function of the rate of change of strain. This Is known as the hypoelastic formulation. At present, this formulation has not...attempt to describe the actual grain motion within the soil mass, but ratner tne parameter N is cnosen to fit experimental data. Some models of granular

  13. Application of Novel Rotation Angular Model for 3D Mouse System Based on MEMS Accelerometers

    Institute of Scientific and Technical Information of China (English)

    QIAN Li; CHEN Wen-yuan; XU Guo-ping

    2009-01-01

    A new scheme is proposed to model 3D angular motion of a revolving regular object with miniature, low-cost micro electro mechanical systems (MEMS) accelerometers (instead of gyroscope), which is employed in 3D mouse system. To sense 3D angular motion, the static property of MEMS accelerometer, sensitive to gravity acceleration, is exploited. With the three outputs of configured accelerometers, the proposed model is implemented to get the rotary motion of the rigid object. In order to validate the effectiveness of the proposed model, an input device is developed with the configuration of the scheme. Experimental results show that a simulated 3D cube can accurately track the rotation of the input device. The result indicates the feasibility and effectiveness of the proposed model in the 3D mouse system.

  14. Modeling the diffusion of phosphorus in silicon in 3-D

    Energy Technology Data Exchange (ETDEWEB)

    Baker, K.R. [Univ. of Texas, Austin, TX (United States)

    1994-12-31

    The use of matrix preconditioning in semiconductor process simulation is examined. The simplified nonlinear single-species model for the diffusion of phosphorus into silicon is considered. The experimental three-dimensional simulator, PEPPER3, which uses finite differences and the numerical method of lines to implement the reaction-diffusion equation is modified to allow NSPCG to be called to solve the linear system in the inner Newton loop. Use of NSPCG allowed various accelerators such as Generalized Minimal Residual (GMRES) and Conjugate Gradient (CG) to be used in conjunction with preconditioners such as Richardson, Jacobi, and Incomplete Cholesky.

  15. 3D Weight Matrices in Modeling Real Estate Prices

    Science.gov (United States)

    Mimis, A.

    2016-10-01

    Central role in spatial econometric models of real estate data has the definition of the weight matrix by which we capture the spatial dependence between the observations. The weight matrices presented in literature so far, treats space in a two dimensional manner leaving out the effect of the third dimension or in our case the difference in height where the property resides. To overcome this, we propose a new definition of the weight matrix including the third dimensional effect by using the Hadamard product. The results illustrated that the level effect can be absorbed into the new weight matrix.

  16. 3D Monte Carlo radiation transfer modelling of photodynamic therapy

    Science.gov (United States)

    Campbell, C. Louise; Christison, Craig; Brown, C. Tom A.; Wood, Kenneth; Valentine, Ronan M.; Moseley, Harry

    2015-06-01

    The effects of ageing and skin type on Photodynamic Therapy (PDT) for different treatment methods have been theoretically investigated. A multilayered Monte Carlo Radiation Transfer model is presented where both daylight activated PDT and conventional PDT are compared. It was found that light penetrates deeper through older skin with a lighter complexion, which translates into a deeper effective treatment depth. The effect of ageing was found to be larger for darker skin types. The investigation further strengthens the usage of daylight as a potential light source for PDT where effective treatment depths of about 2 mm can be achieved.

  17. Combining 3d Volume and Mesh Models for Representing Complicated Heritage Buildings

    Science.gov (United States)

    Tsai, F.; Chang, H.; Lin, Y.-W.

    2017-08-01

    This study developed a simple but effective strategy to combine 3D volume and mesh models for representing complicated heritage buildings and structures. The idea is to seamlessly integrate 3D parametric or polyhedral models and mesh-based digital surfaces to generate a hybrid 3D model that can take advantages of both modeling methods. The proposed hybrid model generation framework is separated into three phases. Firstly, after acquiring or generating 3D point clouds of the target, these 3D points are partitioned into different groups. Secondly, a parametric or polyhedral model of each group is generated based on plane and surface fitting algorithms to represent the basic structure of that region. A "bare-bones" model of the target can subsequently be constructed by connecting all 3D volume element models. In the third phase, the constructed bare-bones model is used as a mask to remove points enclosed by the bare-bones model from the original point clouds. The remaining points are then connected to form 3D surface mesh patches. The boundary points of each surface patch are identified and these boundary points are projected onto the surfaces of the bare-bones model. Finally, new meshes are created to connect the projected points and original mesh boundaries to integrate the mesh surfaces with the 3D volume model. The proposed method was applied to an open-source point cloud data set and point clouds of a local historical structure. Preliminary results indicated that the reconstructed hybrid models using the proposed method can retain both fundamental 3D volume characteristics and accurate geometric appearance with fine details. The reconstructed hybrid models can also be used to represent targets in different levels of detail according to user and system requirements in different applications.

  18. Possibility of reconstruction of dental plaster cast from 3D digital study models

    OpenAIRE

    Kasparova, Magdalena; Grafova, Lucie; Dvorak, Petr; Dostalova,Tatjana; Prochazka, Ales; Eliasova, Hana; Prusa, Josef; Kakawand, Soroush

    2013-01-01

    Objectives To compare traditional plaster casts, digital models and 3D printed copies of dental plaster casts based on various criteria. To determine whether 3D printed copies obtained using open source system RepRap can replace traditional plaster casts in dental practice. To compare and contrast the qualities of two possible 3D printing options – open source system RepRap and commercially available 3D printing. Design and settings A method comparison study on 10 dental plaster casts from th...

  19. 3D modeling and optimization of the ITER ICRH antenna

    Science.gov (United States)

    Louche, F.; Dumortier, P.; Durodié, F.; Messiaen, A.; Maggiora, R.; Milanesio, D.

    2011-12-01

    The prediction of the coupling properties of the ITER ICRH antenna necessitates the accurate evaluation of the resistance and reactance matrices. The latter are mostly dependent on the geometry of the array and therefore a model as accurate as possible is needed to precisely compute these matrices. Furthermore simulations have so far neglected the poloidal and toroidal profile of the plasma, and it is expected that the loading by individual straps will vary significantly due to varying strap-plasma distance. To take this curvature into account, some modifications of the alignment of the straps with respect to the toroidal direction are proposed. It is shown with CST Microwave Studio® [1] that considering two segments in the toroidal direction, i.e. a "V-shaped" toroidal antenna, is sufficient. A new CATIA model including this segmentation has been drawn and imported into both MWS and TOPICA [2] codes. Simulations show a good agreement of the impedance matrices in vacuum. Various modifications of the geometry are proposed in order to further optimize the coupling. In particular we study the effect of the strap box parameters and the recess of the vertical septa.

  20. Evaluation of field development plans using 3-D reservoir modelling

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, D.; Lewis, J.J.M. [Heriot-Watt Univ., Edinburgh (United Kingdom); Newbery, J.D.H. [Conoco, UK Ltd., Aberdeen (United Kingdom)] [and others

    1997-08-01

    Three-dimensional reservoir modelling has become an accepted tool in reservoir description and is used for various purposes, such as reservoir performance prediction or integration and visualisation of data. In this case study, a small Northern North Sea turbiditic reservoir was to be developed with a line drive strategy utilising a series of horizontal producer and injector pairs, oriented north-south. This development plan was to be evaluated and the expected outcome of the wells was to be assessed and risked. Detailed analyses of core, well log and analogue data has led to the development of two geological {open_quotes}end member{close_quotes} scenarios. Both scenarios have been stochastically modelled using the Sequential Indicator Simulation method. The resulting equiprobable realisations have been subjected to detailed statistical well placement optimisation techniques. Based upon bivariate statistical evaluation of more than 1000 numerical well trajectories for each of the two scenarios, it was found that the wells inclinations and lengths had a great impact on the wells success, whereas the azimuth was found to have only a minor impact. After integration of the above results, the actual well paths were redesigned to meet external drilling constraints, resulting in substantial reductions in drilling time and costs.

  1. Scaling of coercivity in a 3d random anisotropy model

    Energy Technology Data Exchange (ETDEWEB)

    Proctor, T.C., E-mail: proctortc@gmail.com; Chudnovsky, E.M., E-mail: EUGENE.CHUDNOVSKY@lehman.cuny.edu; Garanin, D.A.

    2015-06-15

    The random-anisotropy Heisenberg model is numerically studied on lattices containing over ten million spins. The study is focused on hysteresis and metastability due to topological defects, and is relevant to magnetic properties of amorphous and sintered magnets. We are interested in the limit when ferromagnetic correlations extend beyond the size of the grain inside which the magnetic anisotropy axes are correlated. In that limit the coercive field computed numerically roughly scales as the fourth power of the random anisotropy strength and as the sixth power of the grain size. Theoretical arguments are presented that provide an explanation of numerical results. Our findings should be helpful for designing amorphous and nanosintered materials with desired magnetic properties. - Highlights: • We study the random-anisotropy model on lattices containing up to ten million spins. • Irreversible behavior due to topological defects (hedgehogs) is elucidated. • Hysteresis loop area scales as the fourth power of the random anisotropy strength. • In nanosintered magnets the coercivity scales as the six power of the grain size.

  2. Lightning Modelling: From 3D to Circuit Approach

    Science.gov (United States)

    Moussa, H.; Abdi, M.; Issac, F.; Prost, D.

    2012-05-01

    The topic of this study is electromagnetic environment and electromagnetic interferences (EMI) effects, specifically the modelling of lightning indirect effects [1] on aircraft electrical systems present on deported and highly exposed equipments, such as nose landing gear (NLG) and nacelle, through a circuit approach. The main goal of the presented work, funded by a French national project: PREFACE, is to propose a simple equivalent electrical circuit to represent a geometrical structure, taking into account mutual, self inductances, and resistances, which play a fundamental role in the lightning current distribution. Then this model is intended to be coupled to a functional one, describing a power train chain composed of: a converter, a shielded power harness and a motor or a set of resistors used as a load for the converter. The novelty here, is to provide a pre-sizing qualitative approach allowing playing on integration in pre-design phases. This tool intends to offer a user-friendly way for replying rapidly to calls for tender, taking into account the lightning constraints. Two cases are analysed: first, a NLG that is composed of tubular pieces that can be easily approximated by equivalent cylindrical straight conductors. Therefore, passive R, L, M elements of the structure can be extracted through analytical engineer formulas such as those implemented in the partial element equivalent circuit (PEEC) [2] technique. Second, the same approach is intended to be applied on an electrical de-icing nacelle sub-system.

  3. Online access and sharing of reality-based 3d models

    Directory of Open Access Journals (Sweden)

    Simone Minto

    2014-12-01

    Full Text Available The article presents an investigation on techniques and solutions for publishing reality-based 3D models online. The process starts from a dense point cloud and leads to a reduced textured 3D model accessible on the web with a browser. The work is divided into four phases: (i generation of a polygon mesh model, (ii 3D model segmentation, (iii simplification of the polygonal model (geometry and texture in different levels of detail (LoD and (iv publication on the web. The entire workflow is based on open source software. Comparisons with commercial solutions are also reported.

  4. Methodology of High Accuracy and Resolution 3D Geological Model Generation and Application

    Institute of Scientific and Technical Information of China (English)

    吴键; 曹代勇; 邓爱居; 李东津; 蒋涛; 翟光华

    2004-01-01

    By generating a high accuracy and high resolution geological model in Liuchu oil field, the technique of geological modeling is expanded and involved in primary geological study, making the sand bodies and reservoir be easily described in detail. The 3D visualization and 3D interactive editing of geological structure model are the key for modeling procedure. And a high accuracy and resolution geological model has been well applied in optimizing the production scheme.

  5. 3D MODELLING WITH THE SAMSUNG GEAR 360

    Directory of Open Access Journals (Sweden)

    L. Barazzetti

    2017-02-01

    Full Text Available The Samsung Gear 360 is a consumer grade spherical camera able to capture photos and videos. The aim of this work is to test the metric accuracy and the level of detail achievable with the Samsung Gear 360 coupled with digital modelling techniques based on photogrammetry/computer vision algorithms. Results demonstrate that the direct use of the projection generated inside the mobile phone or with Gear 360 Action Direction (the desktop software for post-processing have a relatively low metric accuracy. As results were in contrast with the accuracy achieved by using the original fisheye images (front and rear facing images in photogrammetric reconstructions, an alternative solution to generate the equirectangular projections was developed. A calibration aimed at understanding the intrinsic parameters of the two lenses camera, as well as their relative orientation, allowed one to generate new equirectangular projections from which a significant improvement of geometric accuracy has been achieved.

  6. A micromechanical model for effective conductivity in granular electrode structures

    Science.gov (United States)

    Ott, Julia; Völker, Benjamin; Gan, Yixiang; McMeeking, Robert M.; Kamlah, Marc

    2013-10-01

    Optimization of composition and microstructure is important to enhance performance of solid oxide fuel cells (SOFC) and lithium-ion batteries (LIB). For this, the porous electrode structures of both SOFC and LIB are modeled as a binary mixture of electronic and ionic conducting particles to estimate effective transport properties. Particle packings of 10 000 spherical, binary sized and randomly positioned particles are created numerically and densified considering the different manufacturing processes in SOFC and LIB: the sintering of SOFC electrodes is approximated geometrically, whereas the calendering process and volume change due to intercalation in LIB are modeled physically by a discrete element approach. A combination of a tracking algorithm and a resistor network approach is developed to predict the connectivity and effective conductivity for the various densified structures. For SOFC, a systematic study of the influence of morphology on connectivity and conductivity is performed on a large number of assemblies with different compositions and particle size ratios between 1 and 10. In comparison to percolation theory, an enlarged percolation area is found, especially for large size ratios. It is shown that in contrast to former studies the percolation threshold correlates to varying coordination numbers. The effective conductivity shows not only an increase with volume fraction as expected but also with size ratio. For LIB, a general increase of conductivity during the intercalation process was observed in correlation with increasing contact forces. The positive influence of calendering on the percolation threshold and the effective conductivity of carbon black is shown. The anisotropy caused by the calendering process does not influence the carbon black phase.

  7. 3D modeling of geological anomalies based on segmentation of multiattribute fusion

    Science.gov (United States)

    Liu, Zhi-Ning; Song, Cheng-Yun; Li, Zhi-Yong; Cai, Han-Peng; Yao, Xing-Miao; Hu, Guang-Min

    2016-09-01

    3D modeling of geological bodies based on 3D seismic data is used to define the shape and volume of the bodies, which then can be directly applied to reservoir prediction, reserve estimation, and exploration. However, multiattributes are not effectively used in 3D modeling. To solve this problem, we propose a novel method for building of 3D model of geological anomalies based on the segmentation of multiattribute fusion. First, we divide the seismic attributes into edge- and region-based seismic attributes. Then, the segmentation model incorporating the edge- and region-based models is constructed within the levelset-based framework. Finally, the marching cubes algorithm is adopted to extract the zero level set based on the segmentation results and build the 3D model of the geological anomaly. Combining the edge-and region-based attributes to build the segmentation model, we satisfy the independence requirement and avoid the problem of insufficient data of single seismic attribute in capturing the boundaries of geological anomalies. We apply the proposed method to seismic data from the Sichuan Basin in southwestern China and obtain 3D models of caves and channels. Compared with 3D models obtained based on single seismic attributes, the results are better agreement with reality.

  8. 3D modeling of organic haze in Pluto's atmosphere

    Science.gov (United States)

    Bertrand, Tanguy; Forget, François

    2017-05-01

    The New Horizons spacecraft, which flew by Pluto on July 14, 2015, revealed the presence of haze in Pluto's atmosphere that were formed by CH4/N2 photochemistry at high altitudes in Pluto's atmosphere, as on Titan and Triton. In order to help the analysis of the observations and further investigate the formation of organic haze and its evolution at global scales, we have implemented a simple parameterization of the formation of organic haze in our Pluto General Circulation Model. The production of haze in our model is based on the different steps of aerosol formation as understood on Titan and Triton: photolysis of CH4 in the upper atmosphere by Lyman-α UV radiation, production of various gaseous species, and conversion into solid particles through accumulation and aggregation processes. The simulations use properties of aerosols similar to those observed in the detached haze layer on Titan. We compared two reference simulations ran with a particle radius of 50 nm: with, and without South Pole N2 condensation. We discuss the impact of the particle radius and the lifetime of the precursors on the haze distribution. We simulate CH4 photolysis and the haze formation up to 600 km above the surface. Results show that CH4 photolysis in Pluto's atmosphere in 2015 occurred mostly in the sunlit summer hemisphere with a peak at an altitude of 250 km, though the interplanetary source of Lyman-α flux can induce some photolysis even in the Winter hemisphere. We obtained an extensive haze up to altitudes comparable with the observations, and with non-negligible densities up to 500 km altitude. In both reference simulations, the haze density is not strongly impacted by the meridional circulation. With No South Pole N2 condensation, the maximum nadir opacity and haze extent is obtained at the North Pole. With South Pole N2 condensation, the descending parcel of air above the South Pole leads to a latitudinally more homogeneous haze density with a slight density peak at the South

  9. Micromechanical Failure Analyses for Finite Element Polymer Modeling

    Energy Technology Data Exchange (ETDEWEB)

    CHAMBERS,ROBERT S.; REEDY JR.,EARL DAVID; LO,CHI S.; ADOLF,DOUGLAS B.; GUESS,TOMMY R.

    2000-11-01

    Polymer stresses around sharp corners and in constrained geometries of encapsulated components can generate cracks leading to system failures. Often, analysts use maximum stresses as a qualitative indicator for evaluating the strength of encapsulated component designs. Although this approach has been useful for making relative comparisons screening prospective design changes, it has not been tied quantitatively to failure. Accurate failure models are needed for analyses to predict whether encapsulated components meet life cycle requirements. With Sandia's recently developed nonlinear viscoelastic polymer models, it has been possible to examine more accurately the local stress-strain distributions in zones of likely failure initiation looking for physically based failure mechanisms and continuum metrics that correlate with the cohesive failure event. This study has identified significant differences between rubbery and glassy failure mechanisms that suggest reasonable alternatives for cohesive failure criteria and metrics. Rubbery failure seems best characterized by the mechanisms of finite extensibility and appears to correlate with maximum strain predictions. Glassy failure, however, seems driven by cavitation and correlates with the maximum hydrostatic tension. Using these metrics, two three-point bending geometries were tested and analyzed under variable loading rates, different temperatures and comparable mesh resolution (i.e., accuracy) to make quantitative failure predictions. The resulting predictions and observations agreed well suggesting the need for additional research. In a separate, additional study, the asymptotically singular stress state found at the tip of a rigid, square inclusion embedded within a thin, linear elastic disk was determined for uniform cooling. The singular stress field is characterized by a single stress intensity factor K{sub a} and the applicable K{sub a} calibration relationship has been determined for both fully bonded and

  10. Possibility of reconstruction of dental plaster cast from 3D digital study models.

    Science.gov (United States)

    Kasparova, Magdalena; Grafova, Lucie; Dvorak, Petr; Dostalova, Tatjana; Prochazka, Ales; Eliasova, Hana; Prusa, Josef; Kakawand, Soroush

    2013-05-31

    To compare traditional plaster casts, digital models and 3D printed copies of dental plaster casts based on various criteria. To determine whether 3D printed copies obtained using open source system RepRap can replace traditional plaster casts in dental practice. To compare and contrast the qualities of two possible 3D printing options--source system RepRap and commercially available 3D printing. A method comparison study on 10 dental plaster casts from the Orthodontic department, Department of Stomatology, 2nd medical Faulty, Charles University Prague, Czech Republic. Each of 10 plaster casts were scanned by inEos Blue scanner and the printed on 3D printer RepRap [10 models] and ProJet HD3000 3D printer [1 model]. Linear measurements between selected points on the dental arches of upper and lower jaws on plaster casts and its 3D copy were recorded and statistically analyzed. 3D printed copies have many advantages over traditional plaster casts. The precision and accuracy of the RepRap 3D printed copies of plaster casts were confirmed based on the statistical analysis. Although the commercially available 3D printing enables to print more details than the RepRap system, it is expensive and for the purpose of clinical use can be replaced by the cheaper prints obtained from RepRap printed copies. Scanning of the traditional plaster casts to obtain a digital model offers a pragmatic approach. The scans can subsequently be used as a template to print the plaster casts as required. Using 3D printers can replace traditional plaster casts primarily due to their accuracy and price.

  11. Impact of the 3-D model strategy on science learning of the solar system

    Science.gov (United States)

    Alharbi, Mohammed

    The purpose of this mixed method study, quantitative and descriptive, was to determine whether the first-middle grade (seventh grade) students at Saudi schools are able to learn and use the Autodesk Maya software to interact and create their own 3-D models and animations and whether their use of the software influences their study habits and their understanding of the school subject matter. The study revealed that there is value to the science students regarding the use of 3-D software to create 3-D models to complete science assignments. Also, this study aimed to address the middle-school students' ability to learn 3-D software in art class, and then ultimately use it in their science class. The success of this study may open the way to consider the impact of 3-D modeling on other school subjects, such as mathematics, art, and geography. When the students start using graphic design, including 3-D software, at a young age, they tend to develop personal creativity and skills. The success of this study, if applied in schools, will provide the community with skillful young designers and increase awareness of graphic design and the new 3-D technology. Experimental method was used to answer the quantitative research question, are there significant differences applying the learning method using 3-D models (no 3-D, premade 3-D, and create 3-D) in a science class being taught about the solar system and its impact on the students' science achievement scores? Descriptive method was used to answer the qualitative research questions that are about the difficulty of learning and using Autodesk Maya software, time that students take to use the basic levels of Polygon and Animation parts of the Autodesk Maya software, and level of students' work quality.

  12. VIRTUAL 3-D MODELLING OF AIRWAYS IN CONGENITAL HEART DEFECTS

    Directory of Open Access Journals (Sweden)

    Simone Speggiorin

    2016-10-01

    Full Text Available The involvement of the airway is not uncommon in the presence of complex cardiovascular malformations. In these cases, a careful inspection of the relationship between the airway and the vasculature is paramount to plan the surgical procedure. Three-dimentional printing enhanced the visualization of the cardio-vascualr structure. Unfortunately IT does not allow to remove selected anatomy to improve the visualization of the surrounding ones. Computerized modelling (CM of has the potential to fill this gap by allowing a dynamic handling of different anatomies, increasing the exposure of vessels or bronchi to show their relationship.. We started to use this technique to plan the surgical repair in these complex cases where the airway is affected. This technique is routinely used in our Institution as an additional tool in the pre-surgical assessment. We report 4 cases in which the airways were compressed by vascular structures : ascending aorta in 1, left pulmonary artery sling in 1, Patent ductus arteriosus (PDA in 1 and major aorto-pulmonary collateral artery in 1. We believe this technique can enhance the understanding of the causes of airway involvement and facilitate the creation of an appropriate surgical plan.

  13. GTP-based Integral Real-3D Spatial Model for Engineering Excavation GIS

    Institute of Scientific and Technical Information of China (English)

    WU Lixin; SHI Wenzhong

    2004-01-01

    Engineering excavation GIS (E2GIS) is a real-3D GIS serving for geosciences related to geo-engineering, civil engineering and mining engineering based on generalized tri-prism (GTP) model. As two instances of GTP model, G-GTP is used for the real-3D modeling of subsurface geological bodies, and E-GTP is used for the real-3D modeling of subsurface engineering excavations.In the light of the discussions on the features and functions of E2GIS, the modeling principles of G-GTP and E-GTP are introduced. The two models couple together seamlessly to form an integral model for subsurface spatial objects including both geological bodies and excavations. An object-oriented integral real-3D data model and integral spatial topological relations are discussed.

  14. 3D Modeling of Transformer Substation Based on Mapping and 2D Images

    Directory of Open Access Journals (Sweden)

    Lei Sun

    2016-01-01

    Full Text Available A new method for building 3D models of transformer substation based on mapping and 2D images is proposed in this paper. This method segments objects of equipment in 2D images by using k-means algorithm in determining the cluster centers dynamically to segment different shapes and then extracts feature parameters from the divided objects by using FFT and retrieves the similar objects from 3D databases and then builds 3D models by computing the mapping data. The method proposed in this paper can avoid the complex data collection and big workload by using 3D laser scanner. The example analysis shows the method can build coarse 3D models efficiently which can meet the requirements for hazardous area classification and constructions representations of transformer substation.

  15. A 3D Interactive Model and Atlas of the Jaw Musculature of Alligator mississippiensis

    Science.gov (United States)

    Holliday, Casey M.; Tsai, Henry P.; Skiljan, Rebecca J.; George, Ian D.; Pathan, Sami

    2013-01-01

    Modern imaging and dissemination methods enable morphologists to share complex, three-dimensional (3D) data in ways not previously possible. Here we present a 3D interactive model of the jaw musculature of the American Alligator (Alligator mississippiensis). Alligator and crocodylian jaw musculature is notoriously challenging to inspect and interpret because of the derived nature of the feeding apparatus. Using Iodine-contrast enhanced microCT imaging, a segmented model of jaw muscles, trigeminal nerve, brain and skull are presented as a cross-sectional atlas and 3D, interactive pdf of the rendered model. Modern 3D dissemination methods like this 3D Alligator hold great potential for morphologists to share anatomical information to scientists, educators, and the public in an easily downloadable format. PMID:23762228

  16. A 3D interactive model and atlas of the jaw musculature of Alligator mississippiensis.

    Directory of Open Access Journals (Sweden)

    Casey M Holliday

    Full Text Available Modern imaging and dissemination methods enable morphologists to share complex, three-dimensional (3D data in ways not previously possible. Here we present a 3D interactive model of the jaw musculature of the American Alligator (Alligator mississippiensis. Alligator and crocodylian jaw musculature is notoriously challenging to inspect and interpret because of the derived nature of the feeding apparatus. Using Iodine-contrast enhanced microCT imaging, a segmented model of jaw muscles, trigeminal nerve, brain and skull are presented as a cross-sectional atlas and 3D, interactive pdf of the rendered model. Modern 3D dissemination methods like this 3D Alligator hold great potential for morphologists to share anatomical information to scientists, educators, and the public in an easily downloadable format.

  17. Model and numerical analysis of 3D corrosion layer of reinforced concrete structure

    Institute of Scientific and Technical Information of China (English)

    李永和; 葛修润

    2003-01-01

    Under the assumption that the corrosion at the end of steel bolt or steel bar is shaped like the contour line of ellipsoid, a mathematic model and formulas of calculating the thickness of corrosion layer at arbitrary point are presented in this paper. Then regarding the arbitrary points of 3D corrosion layer as patch element model of fictitious displacement discontinuity, we propose the basic solution of 3D problem of the patch element acting on discontinuous displacement. With three basic assumptions of the corrosion layer, we set up the 3D numerical discreted model, and derive the stress boundary equation for fictitious corrosion layer of 3D numerical analysis. We also make the numerical stimulating calculation of the shotcrete structure at some lane using 3D finite element method. The results show that this method is effective and reasonable.

  18. Fused Deposition Modeling 3D Printing for (Bio)analytical Device Fabrication : Procedures, Materials, and Applications

    NARCIS (Netherlands)

    Salentijn, Gert Ij; Oomen, Pieter E; Grajewski, Maciej; Verpoorte, Elisabeth

    2017-01-01

    In this work, the use of fused deposition modeling (FDM) in a (bio)analytical/lab-on-a-chip research laboratory is described. First, the specifications of this 3D printing method that are important for the fabrication of (micro)devices were characterized for a benchtop FDM 3D printer. These include

  19. Toward a scalable flexible-order model for 3D nonlinear water waves

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Ducrozet, Guillaume; Bingham, Harry B.

    strategy on a time-invariant mesh. The 3D numerical model is based on a finite difference method as in the original works \\cite{LiFleming1997,BinghamZhang2007}. Full details and other aspects of an improved 3D solution can be found in \\cite{EBL08}. The new and improved approach for three...

  20. A micromechanical model for predicting hydride embrittlement in nuclear fuel cladding material

    Science.gov (United States)

    Chan, K. S.

    1996-01-01

    A major concern about nuclear fuel cladding under waste repository conditions is that the slow cooling rate anticipated in the repository may lead to the formation of excessive radial hydrides, and cause embrittlement of the cladding materials. In this paper, the development of a micromechanical model for predicting hydride-induced embrittlement in nuclear fuel cladding is presented. The important features of the proposed model are: (1) the capability to predict the orientation, morphology, and types of hydrides under the influence of key variables such as cooling rate, internal pressure, and time, and (2) the ability to predict the influence of hydride orientation and morphology on the tensile ductility and fracture toughness of the cladding material. Various model calculations are presented to illustrate the characteristics and utilities of the proposed methodology. A series of experiments was also performed to check assumptions used and to verify some of the model predictions.