WorldWideScience

Sample records for 3d materials science

  1. Advanced Bioinks for 3D Printing: A Materials Science Perspective.

    Science.gov (United States)

    Chimene, David; Lennox, Kimberly K; Kaunas, Roland R; Gaharwar, Akhilesh K

    2016-06-01

    Advanced bioinks for 3D printing are rationally designed materials intended to improve the functionality of printed scaffolds outside the traditional paradigm of the "biofabrication window". While the biofabrication window paradigm necessitates compromise between suitability for fabrication and ability to accommodate encapsulated cells, recent developments in advanced bioinks have resulted in improved designs for a range of biofabrication platforms without this tradeoff. This has resulted in a new generation of bioinks with high print fidelity, shear-thinning characteristics, and crosslinked scaffolds with high mechanical strength, high cytocompatibility, and the ability to modulate cellular functions. In this review, we describe some of the promising strategies being pursued to achieve these goals, including multimaterial, interpenetrating network, nanocomposite, and supramolecular bioinks. We also provide an overview of current and emerging trends in advanced bioink synthesis and biofabrication, and evaluate the potential applications of these novel biomaterials to clinical use. PMID:27184494

  2. Advanced Bioinks for 3D Printing: A Materials Science Perspective.

    Science.gov (United States)

    Chimene, David; Lennox, Kimberly K; Kaunas, Roland R; Gaharwar, Akhilesh K

    2016-06-01

    Advanced bioinks for 3D printing are rationally designed materials intended to improve the functionality of printed scaffolds outside the traditional paradigm of the "biofabrication window". While the biofabrication window paradigm necessitates compromise between suitability for fabrication and ability to accommodate encapsulated cells, recent developments in advanced bioinks have resulted in improved designs for a range of biofabrication platforms without this tradeoff. This has resulted in a new generation of bioinks with high print fidelity, shear-thinning characteristics, and crosslinked scaffolds with high mechanical strength, high cytocompatibility, and the ability to modulate cellular functions. In this review, we describe some of the promising strategies being pursued to achieve these goals, including multimaterial, interpenetrating network, nanocomposite, and supramolecular bioinks. We also provide an overview of current and emerging trends in advanced bioink synthesis and biofabrication, and evaluate the potential applications of these novel biomaterials to clinical use.

  3. 3D-Printing Crystallographic Unit Cells for Learning Materials Science and Engineering

    Science.gov (United States)

    Rodenbough, Philip P.; Vanti, William B.; Chan, Siu-Wai

    2015-01-01

    Introductory materials science and engineering courses universally include the study of crystal structure and unit cells, which are by their nature highly visual 3D concepts. Traditionally, such topics are explored with 2D drawings or perhaps a limited set of difficult-to-construct 3D models. The rise of 3D printing, coupled with the wealth of…

  4. 3D imaging by serial block face scanning electron microscopy for materials science using ultramicrotomy.

    Science.gov (United States)

    Hashimoto, Teruo; Thompson, George E; Zhou, Xiaorong; Withers, Philip J

    2016-04-01

    Mechanical serial block face scanning electron microscopy (SBFSEM) has emerged as a means of obtaining three dimensional (3D) electron images over volumes much larger than possible by focused ion beam (FIB) serial sectioning and at higher spatial resolution than achievable with conventional X-ray computed tomography (CT). Such high resolution 3D electron images can be employed for precisely determining the shape, volume fraction, distribution and connectivity of important microstructural features. While soft (fixed or frozen) biological samples are particularly well suited for nanoscale sectioning using an ultramicrotome, the technique can also produce excellent 3D images at electron microscope resolution in a time and resource-efficient manner for engineering materials. Currently, a lack of appreciation of the capabilities of ultramicrotomy and the operational challenges associated with minimising artefacts for different materials is limiting its wider application to engineering materials. Consequently, this paper outlines the current state of the art for SBFSEM examining in detail how damage is introduced during slicing and highlighting strategies for minimising such damage. A particular focus of the study is the acquisition of 3D images for a variety of metallic and coated systems. PMID:26855205

  5. 3D imaging by serial block face scanning electron microscopy for materials science using ultramicrotomy.

    Science.gov (United States)

    Hashimoto, Teruo; Thompson, George E; Zhou, Xiaorong; Withers, Philip J

    2016-04-01

    Mechanical serial block face scanning electron microscopy (SBFSEM) has emerged as a means of obtaining three dimensional (3D) electron images over volumes much larger than possible by focused ion beam (FIB) serial sectioning and at higher spatial resolution than achievable with conventional X-ray computed tomography (CT). Such high resolution 3D electron images can be employed for precisely determining the shape, volume fraction, distribution and connectivity of important microstructural features. While soft (fixed or frozen) biological samples are particularly well suited for nanoscale sectioning using an ultramicrotome, the technique can also produce excellent 3D images at electron microscope resolution in a time and resource-efficient manner for engineering materials. Currently, a lack of appreciation of the capabilities of ultramicrotomy and the operational challenges associated with minimising artefacts for different materials is limiting its wider application to engineering materials. Consequently, this paper outlines the current state of the art for SBFSEM examining in detail how damage is introduced during slicing and highlighting strategies for minimising such damage. A particular focus of the study is the acquisition of 3D images for a variety of metallic and coated systems.

  6. New opportunities for 3D materials science of polycrystalline materials at the micrometre lengthscale by combined use of X-ray diffraction and X-ray imaging

    DEFF Research Database (Denmark)

    Ludwig, W.; King, A.; Reischig, P.;

    2009-01-01

    Non-destructive, three-dimensional (3D) characterization of the grain structure in mono-phase polycrystalline materials is an open challenge in material science. Recent advances in synchrotron based X-ray imaging and diffraction techniques offer interesting possibilities for mapping 3D grain shapes...... and crystallographic orientations for certain categories of polycrystalline materials. Direct visualisation of the three-dimensional grain boundary network or of two-phase (duplex) grain structures by means of absorption and/or phase contrast techniques may be possible, but is restricted to specific material systems......, crystallographic orientation and local attenuation coefficient distribution. The technique applies to the larger range of plastically undeformed, polycrystalline mono-phase materials, provided some conditions on grain size and texture are fulfilled. The straightforward combination with high...

  7. New opportunities for 3D materials science of polycrystalline materials at the micrometre lengthscale by combined use of X-ray diffraction and X-ray imaging

    International Nuclear Information System (INIS)

    Non-destructive, three-dimensional (3D) characterization of the grain structure in mono-phase polycrystalline materials is an open challenge in material science. Recent advances in synchrotron based X-ray imaging and diffraction techniques offer interesting possibilities for mapping 3D grain shapes and crystallographic orientations for certain categories of polycrystalline materials. Direct visualisation of the three-dimensional grain boundary network or of two-phase (duplex) grain structures by means of absorption and/or phase contrast techniques may be possible, but is restricted to specific material systems. A recent extension of this methodology, termed X-ray diffraction contrast tomography (DCT), combines the principles of X-ray diffraction imaging, three-dimensional X-ray diffraction microscopy (3DXRD) and image reconstruction from projections. DCT provides simultaneous access to 3D grain shape, crystallographic orientation and local attenuation coefficient distribution. The technique applies to the larger range of plastically undeformed, polycrystalline mono-phase materials, provided some conditions on grain size and texture are fulfilled. The straightforward combination with high-resolution microtomography opens interesting new possibilities for the observation of microstructure related damage and deformation mechanisms in these materials.

  8. The EISCAT_3D Science Case

    Science.gov (United States)

    Tjulin, A.; Mann, I.; McCrea, I.; Aikio, A. T.

    2013-05-01

    EISCAT_3D will be a world-leading international research infrastructure using the incoherent scatter technique to study the atmosphere in the Fenno-Scandinavian Arctic and to investigate how the Earth's atmosphere is coupled to space. The EISCAT_3D phased-array multistatic radar system will be operated by EISCAT Scientific Association and thus be an integral part of an organisation that has successfully been running incoherent scatter radars for more than thirty years. The baseline design of the radar system contains a core site with transmitting and receiving capabilities located close to the intersection of the Swedish, Norwegian and Finnish borders and five receiving sites located within 50 to 250 km from the core. The EISCAT_3D project is currently in its Preparatory Phase and can smoothly transit into implementation in 2014, provided sufficient funding. Construction can start 2016 and first operations in 2018. The EISCAT_3D Science Case is prepared as part of the Preparatory Phase. It is regularly updated with annual new releases, and it aims at being a common document for the whole future EISCAT_3D user community. The areas covered by the Science Case are atmospheric physics and global change; space and plasma physics; solar system research; space weather and service applications; and radar techniques, new methods for coding and analysis. Two of the aims for EISCAT_3D are to understand the ways natural variability in the upper atmosphere, imposed by the Sun-Earth system, can influence the middle and lower atmosphere, and to improve the predictivity of atmospheric models by providing higher resolution observations to replace the current parametrised input. Observations by EISCAT_3D will also be used to monitor the direct effects from the Sun on the ionosphere-atmosphere system and those caused by solar wind magnetosphere-ionosphere interaction. In addition, EISCAT_3D will be used for remote sensing the large-scale behaviour of the magnetosphere from its

  9. Magnetic materials and 3D finite element modeling

    CERN Document Server

    Bastos, Joao Pedro A

    2014-01-01

    Magnetic Materials and 3D Finite Element Modeling explores material characterization and finite element modeling (FEM) applications. This book relates to electromagnetic analysis based on Maxwell’s equations and application of the finite element (FE) method to low frequency devices. A great source for senior undergraduate and graduate students in electromagnetics, it also supports industry professionals working in magnetics, electromagnetics, ferromagnetic materials science and electrical engineering. The authors present current concepts on ferromagnetic material characterizations and losses. They provide introductory material; highlight basic electromagnetics, present experimental and numerical modeling related to losses and focus on FEM applied to 3D applications. They also explain various formulations, and discuss numerical codes.

  10. Extraordinary 3D Surface Materials: A practice based exhibition of 3D learning artefacts and prototypes.

    OpenAIRE

    Taylor, Andrew; Harris, Joanne; Unver, Ertu; Lewis, Linda

    2011-01-01

    A collection of 3D prototyped research learning artefacts were exhibited at Surface Design Show 2011. The artefacts on display provided tacit evidence of the 3D concept modelling and reflective learning experiences of a final year BA (Hons) Surface Design for Fashion & Interiors student group using 3D polygon modelling software and additive prototyping technologies (3D Printing) for the first time. The student authored project blog http://extraordinary-3d-materials.blogspot.co.uk/ documen...

  11. Quantum transport through 3D Dirac materials

    International Nuclear Information System (INIS)

    Bismuth and its alloys provide a paradigm to realize three dimensional materials whose low-energy effective theory is given by Dirac equation in 3+1 dimensions. We study the quantum transport properties of three dimensional Dirac materials within the framework of Landauer–Büttiker formalism. Charge carriers in normal metal satisfying the Schrödinger equation, can be split into four-component with appropriate matching conditions at the boundary with the three dimensional Dirac material (3DDM). We calculate the conductance and the Fano factor of an interface separating 3DDM from a normal metal, as well as the conductance through a slab of 3DDM. Under certain circumstances the 3DDM appears transparent to electrons hitting the 3DDM. We find that electrons hitting the metal-3DDM interface from metallic side can enter 3DDM in a reversed spin state as soon as their angle of incidence deviates from the direction perpendicular to interface. However the presence of a second interface completely cancels this effect

  12. Quantum transport through 3D Dirac materials

    Energy Technology Data Exchange (ETDEWEB)

    Salehi, M. [Department of Physics, Sharif University of Technology, Tehran 11155-9161 (Iran, Islamic Republic of); Jafari, S.A., E-mail: jafari@physics.sharif.edu [Department of Physics, Sharif University of Technology, Tehran 11155-9161 (Iran, Islamic Republic of); Center of Excellence for Complex Systems and Condensed Matter (CSCM), Sharif University of Technology, Tehran 1458889694 (Iran, Islamic Republic of)

    2015-08-15

    Bismuth and its alloys provide a paradigm to realize three dimensional materials whose low-energy effective theory is given by Dirac equation in 3+1 dimensions. We study the quantum transport properties of three dimensional Dirac materials within the framework of Landauer–Büttiker formalism. Charge carriers in normal metal satisfying the Schrödinger equation, can be split into four-component with appropriate matching conditions at the boundary with the three dimensional Dirac material (3DDM). We calculate the conductance and the Fano factor of an interface separating 3DDM from a normal metal, as well as the conductance through a slab of 3DDM. Under certain circumstances the 3DDM appears transparent to electrons hitting the 3DDM. We find that electrons hitting the metal-3DDM interface from metallic side can enter 3DDM in a reversed spin state as soon as their angle of incidence deviates from the direction perpendicular to interface. However the presence of a second interface completely cancels this effect.

  13. Quantum transport through 3D Dirac materials

    Science.gov (United States)

    Salehi, M.; Jafari, S. A.

    2015-08-01

    Bismuth and its alloys provide a paradigm to realize three dimensional materials whose low-energy effective theory is given by Dirac equation in 3+1 dimensions. We study the quantum transport properties of three dimensional Dirac materials within the framework of Landauer-Büttiker formalism. Charge carriers in normal metal satisfying the Schrödinger equation, can be split into four-component with appropriate matching conditions at the boundary with the three dimensional Dirac material (3DDM). We calculate the conductance and the Fano factor of an interface separating 3DDM from a normal metal, as well as the conductance through a slab of 3DDM. Under certain circumstances the 3DDM appears transparent to electrons hitting the 3DDM. We find that electrons hitting the metal-3DDM interface from metallic side can enter 3DDM in a reversed spin state as soon as their angle of incidence deviates from the direction perpendicular to interface. However the presence of a second interface completely cancels this effect.

  14. Bringing 3D Printing to Geophysical Science Education

    Science.gov (United States)

    Boghosian, A.; Turrin, M.; Porter, D. F.

    2014-12-01

    3D printing technology has been embraced by many technical fields, and is rapidly making its way into peoples' homes and schools. While there is a growing educational and hobbyist community engaged in the STEM focused technical and intellectual challenges associated with 3D printing, there is unrealized potential for the earth science community to use 3D printing to communicate scientific research to the public. Moreover, 3D printing offers scientists the opportunity to connect students and the public with novel visualizations of real data. As opposed to introducing terrestrial measurements through the use of colormaps and gradients, scientists can represent 3D concepts with 3D models, offering a more intuitive education tool. Furthermore, the tactile aspect of models make geophysical concepts accessible to a wide range of learning styles like kinesthetic or tactile, and learners including both visually impaired and color-blind students.We present a workflow whereby scientists, students, and the general public will be able to 3D print their own versions of geophysical datasets, even adding time through layering to include a 4th dimension, for a "4D" print. This will enable scientists with unique and expert insights into the data to easily create the tools they need to communicate their research. It will allow educators to quickly produce teaching aids for their students. Most importantly, it will enable the students themselves to translate the 2D representation of geophysical data into a 3D representation of that same data, reinforcing spatial reasoning.

  15. Vacuum Compatibility of 3D-Printed Materials

    CERN Document Server

    Povilus, A P; Vendeiro, Z; Baquero-Ruiz, M; Fajans, J

    2013-01-01

    The fabrication fidelity and vacuum properties are tested for currently available 3D-printed materials including polyamide, glass, acrylic, and sterling silver. The silver was the only material found to be suitable to ultrahigh vacuum environments due to outgassing and sublimation observed in other materials.

  16. Multimaterial magnetically assisted 3D printing of composite materials.

    Science.gov (United States)

    Kokkinis, Dimitri; Schaffner, Manuel; Studart, André R

    2015-10-23

    3D printing has become commonplace for the manufacturing of objects with unusual geometries. Recent developments that enabled printing of multiple materials indicate that the technology can potentially offer a much wider design space beyond unusual shaping. Here we show that a new dimension in this design space can be exploited through the control of the orientation of anisotropic particles used as building blocks during a direct ink-writing process. Particle orientation control is demonstrated by applying low magnetic fields on deposited inks pre-loaded with magnetized stiff platelets. Multimaterial dispensers and a two-component mixing unit provide additional control over the local composition of the printed material. The five-dimensional design space covered by the proposed multimaterial magnetically assisted 3D printing platform (MM-3D printing) opens the way towards the manufacturing of functional heterogeneous materials with exquisite microstructural features thus far only accessible by biological materials grown in nature.

  17. Multimaterial magnetically assisted 3D printing of composite materials

    Science.gov (United States)

    Kokkinis, Dimitri; Schaffner, Manuel; Studart, André R.

    2015-10-01

    3D printing has become commonplace for the manufacturing of objects with unusual geometries. Recent developments that enabled printing of multiple materials indicate that the technology can potentially offer a much wider design space beyond unusual shaping. Here we show that a new dimension in this design space can be exploited through the control of the orientation of anisotropic particles used as building blocks during a direct ink-writing process. Particle orientation control is demonstrated by applying low magnetic fields on deposited inks pre-loaded with magnetized stiff platelets. Multimaterial dispensers and a two-component mixing unit provide additional control over the local composition of the printed material. The five-dimensional design space covered by the proposed multimaterial magnetically assisted 3D printing platform (MM-3D printing) opens the way towards the manufacturing of functional heterogeneous materials with exquisite microstructural features thus far only accessible by biological materials grown in nature.

  18. 3D printing of natural organic materials by photochemistry

    Science.gov (United States)

    Da Silva Gonçalves, Joyce Laura; Valandro, Silvano Rodrigo; Wu, Hsiu-Fen; Lee, Yi-Hsiung; Mettra, Bastien; Monnereau, Cyrille; Schmitt Cavalheiro, Carla Cristina; Pawlicka, Agnieszka; Focsan, Monica; Lin, Chih-Lang; Baldeck, Patrice L.

    2016-03-01

    In previous works, we have used two-photon induced photochemistry to fabricate 3D microstructures based on proteins, anti-bodies, and enzymes for different types of bio-applications. Among them, we can cite collagen lines to guide the movement of living cells, peptide modified GFP biosensing pads to detect Gram positive bacteria, anti-body pads to determine the type of red blood cells, and trypsin columns in a microfluidic channel to obtain a real time biochemical micro-reactor. In this paper, we report for the first time on two-photon 3D microfabrication of DNA material. We also present our preliminary results on using a commercial 3D printer based on a video projector to polymerize slicing layers of gelatine-objects.

  19. The science case for the EISCAT_3D radar

    Science.gov (United States)

    McCrea, Ian; Aikio, Anita; Alfonsi, Lucilla; Belova, Evgenia; Buchert, Stephan; Clilverd, Mark; Engler, Norbert; Gustavsson, Björn; Heinselman, Craig; Kero, Johan; Kosch, Mike; Lamy, Hervé; Leyser, Thomas; Ogawa, Yasunobu; Oksavik, Kjellmar; Pellinen-Wannberg, Asta; Pitout, Frederic; Rapp, Markus; Stanislawska, Iwona; Vierinen, Juha

    2015-12-01

    The EISCAT (European Incoherent SCATer) Scientific Association has provided versatile incoherent scatter (IS) radar facilities on the mainland of northern Scandinavia (the EISCAT UHF and VHF radar systems) and on Svalbard (the electronically scanning radar ESR (EISCAT Svalbard Radar) for studies of the high-latitude ionised upper atmosphere (the ionosphere). The mainland radars were constructed about 30 years ago, based on technological solutions of that time. The science drivers of today, however, require a more flexible instrument, which allows measurements to be made from the troposphere to the topside ionosphere and gives the measured parameters in three dimensions, not just along a single radar beam. The possibility for continuous operation is also an essential feature. To facilitatefuture science work with a world-leading IS radar facility, planning of a new radar system started first with an EU-funded Design Study (2005-2009) and has continued with a follow-up EU FP7 EISCAT_3D Preparatory Phase project (2010-2014). The radar facility will be realised by using phased arrays, and a key aspect is the use of advanced software and data processing techniques. This type of software radar will act as a pathfinder for other facilities worldwide. The new radar facility will enable the EISCAT_3D science community to address new, significant science questions as well as to serve society, which is increasingly dependent on space-based technology and issues related to space weather. The location of the radar within the auroral oval and at the edge of the stratospheric polar vortex is also ideal for studies of the long-term variability in the atmosphere and global change. This paper is a summary of the EISCAT_3D science case, which was prepared as part of the EU-funded Preparatory Phase project for the new facility. Three science working groups, drawn from the EISCAT user community, participated in preparing this document. In addition to these working group members, who

  20. Materials Manufactured from 3D Printed Synthetic Biology Arrays

    Science.gov (United States)

    Gentry, Diana; Micks, Ashley

    2013-01-01

    Many complex, biologically-derived materials have extremely useful properties (think wood or silk), but are unsuitable for space-related applications due to production, manufacturing, or processing limitations. Large-scale ecosystem-based production, such as raising and harvesting trees for wood, is impractical in a self-contained habitat such as a space station or potential Mars colony. Manufacturing requirements, such as the specialized equipment needed to harvest and process cotton, add too much upmass for current launch technology. Cells in nature are already highly specialized for making complex biological materials on a micro scale. We envision combining these strengths with the recently emergent technologies of synthetic biology and 3D printing to create 3D-structured arrays of cells that are bioengineered to secrete different materials in a specified three-dimensional pattern.

  1. Touring Mars Online, Real-time, in 3D for Math and Science Educators and Students

    Science.gov (United States)

    Jones, Greg; Kalinowski, Kevin

    2007-01-01

    This article discusses a project that placed over 97% of Mars' topography made available from NASA into an interactive 3D multi-user online learning environment beginning in 2003. In 2005 curriculum materials that were created to support middle school math and science education were developed. Research conducted at the University of North Texas…

  2. Towards manipulating relativistic laser pulses with 3D printed materials

    OpenAIRE

    Ji, L. L.; Snyder, J.; Pukhov, A.; Freeman, R. R.; Akli, K. U.

    2015-01-01

    Efficient coupling of intense laser pulses to solid-density matter is critical to many applications including ion acceleration for cancer therapy. At relativistic intensities, the focus has been mainly on investigating various laser beams irradiating initially flat interfaces with little or no control over the interaction. Here, we propose a novel approach that leverages recent advancements in 3D direct laser writing (DLW) of materials and high contrast lasers to manipulate the laser-matter i...

  3. Quantifying Interparticle Forces and Heterogeneity in 3D Granular Materials.

    Science.gov (United States)

    Hurley, R C; Hall, S A; Andrade, J E; Wright, J

    2016-08-26

    Interparticle forces in granular materials are intimately linked to mechanical properties and are known to self-organize into heterogeneous structures, or force chains, under external load. Despite progress in understanding the statistics and spatial distribution of interparticle forces in recent decades, a systematic method for measuring forces in opaque, three-dimensional (3D), frictional, stiff granular media has yet to emerge. In this Letter, we present results from an experiment that combines 3D x-ray diffraction, x-ray tomography, and a numerical force inference technique to quantify interparticle forces and their heterogeneity in an assembly of quartz grains undergoing a one-dimensional compression cycle. Forces exhibit an exponential decay above the mean and partition into strong and weak networks. We find a surprising inverse relationship between macroscopic load and the heterogeneity of interparticle forces, despite the clear emergence of two force chains that span the system. PMID:27610890

  4. Towards manipulating relativistic laser pulses with 3D printed materials

    CERN Document Server

    Ji, L L; Pukhov, A; Freeman, R R; Akli, K U

    2015-01-01

    Efficient coupling of intense laser pulses to solid-density matter is critical to many applications including ion acceleration for cancer therapy. At relativistic intensities, the focus has been mainly on investigating various laser beams irradiating initially flat interfaces with little or no control over the interaction. Here, we propose a novel approach that leverages recent advancements in 3D direct laser writing (DLW) of materials and high contrast lasers to manipulate the laser-matter interactions on the micro-scales. We demonstrate, via simulations, that usable intensities >10^23Wcm^(-2) could be achieved with current tabletop lasers coupled to 3D printed plasma lenses. We show that these plasma optical elements act not only as a lens to focus laser light, but also as an electromagnetic guide for secondary particle beams. These results open new paths to engineering light-matter interactions at ultra-relativistic intensities.

  5. Quantifying Interparticle Forces and Heterogeneity in 3D Granular Materials.

    Science.gov (United States)

    Hurley, R C; Hall, S A; Andrade, J E; Wright, J

    2016-08-26

    Interparticle forces in granular materials are intimately linked to mechanical properties and are known to self-organize into heterogeneous structures, or force chains, under external load. Despite progress in understanding the statistics and spatial distribution of interparticle forces in recent decades, a systematic method for measuring forces in opaque, three-dimensional (3D), frictional, stiff granular media has yet to emerge. In this Letter, we present results from an experiment that combines 3D x-ray diffraction, x-ray tomography, and a numerical force inference technique to quantify interparticle forces and their heterogeneity in an assembly of quartz grains undergoing a one-dimensional compression cycle. Forces exhibit an exponential decay above the mean and partition into strong and weak networks. We find a surprising inverse relationship between macroscopic load and the heterogeneity of interparticle forces, despite the clear emergence of two force chains that span the system.

  6. Gold Nanoparticle Synthesis by 3D Integrated Micro-solution Plasma in a 3D Printed Artificial Porous Dielectric Material

    Science.gov (United States)

    Sotoda, Naoya; Tanaka, Kenji; Shirafuji, Tatsuru

    2015-09-01

    Plasma in contact with HAuCl4 aqueous solution can promote the synthesis of gold nanoparticles. To scale up this process, we have developed 3D integrated micro-solution plasma (3D IMSP). It can generate a large number of argon microplasmas in contact with the aqueous solution flowing in a porous dielectric material. The porous dielectric material in our prototype 3D IMSP reactor, however, consists of non-regularly arranged random-sized pores. These pore parameters may be the parameters for controlling the size and dispersion of synthesized gold nanoparticles. We have hence fabricated a 3D IMSP reactor with an artificial porous dielectric material that has regularly arranged same-sized pores by using a 3D printer. We have applied the reactor to the gold- nanoparticle synthesis. We have confirmed the synthesis of gold nanoparticles through the observation of a plasmon resonance absorption peak at 550 nm in the HAuCl4 aqueous solution treated with 3D IMSP. The size and distribution of the synthesized gold nanoparticles are under investigation. We expect that these characteristics of the gold nanoparticles can be manipulated by changing pore size and their distribution in the porous dielectric material.

  7. Emulsion Inks for 3D Printing of High Porosity Materials.

    Science.gov (United States)

    Sears, Nicholas A; Dhavalikar, Prachi S; Cosgriff-Hernandez, Elizabeth M

    2016-08-01

    Photocurable emulsion inks for use with solid freeform fabrication (SFF) to generate constructs with hierarchical porosity are presented. A high internal phase emulsion (HIPE) templating technique was utilized to prepare water-in-oil emulsions from a hydrophobic photopolymer, surfactant, and water. These HIPEs displayed strong shear thinning behavior that permitted layer-by-layer deposition into complex shapes and adequately high viscosity at low shear for shape retention after extrusion. Each layer was actively polymerized with an ultraviolet cure-on-dispense (CoD) technique and compositions with sufficient viscosity were able to produce tall, complex scaffolds with an internal lattice structure and microscale porosity. Evaluation of the rheological and cure properties indicated that the viscosity and cure rate both played an important role in print fidelity. These 3D printed polyHIPE constructs benefit from the tunable pore structure of emulsion templated material and the designed architecture of 3D printing. As such, these emulsion inks can be used to create ultra high porosity constructs with complex geometries and internal lattice structures not possible with traditional manufacturing techniques. PMID:27305061

  8. Emulsion Inks for 3D Printing of High Porosity Materials.

    Science.gov (United States)

    Sears, Nicholas A; Dhavalikar, Prachi S; Cosgriff-Hernandez, Elizabeth M

    2016-08-01

    Photocurable emulsion inks for use with solid freeform fabrication (SFF) to generate constructs with hierarchical porosity are presented. A high internal phase emulsion (HIPE) templating technique was utilized to prepare water-in-oil emulsions from a hydrophobic photopolymer, surfactant, and water. These HIPEs displayed strong shear thinning behavior that permitted layer-by-layer deposition into complex shapes and adequately high viscosity at low shear for shape retention after extrusion. Each layer was actively polymerized with an ultraviolet cure-on-dispense (CoD) technique and compositions with sufficient viscosity were able to produce tall, complex scaffolds with an internal lattice structure and microscale porosity. Evaluation of the rheological and cure properties indicated that the viscosity and cure rate both played an important role in print fidelity. These 3D printed polyHIPE constructs benefit from the tunable pore structure of emulsion templated material and the designed architecture of 3D printing. As such, these emulsion inks can be used to create ultra high porosity constructs with complex geometries and internal lattice structures not possible with traditional manufacturing techniques.

  9. 3D morphological and micromechanical modeling of cementitious materials

    International Nuclear Information System (INIS)

    The goal of this thesis is to develop morphological models of cementitious materials and use these models to study their local and effective response. To this aim, 3D images of cementitious materials (mortar and concrete), obtained by micro-tomography, are studied. First, the mortar image is segmented in order to obtain an image of a real microstructure, to be used for linear elasticity computations. The image of concrete is used, after being processed, to determine various morphological characteristics of the material. A random model of concrete is then developed and validated by means of morphological data. This model is made up of three phases, corresponding to the matrix, aggregates and voids. The aggregates phase is modelled by implantation of Poisson polyhedra without overlap. For this purpose, an algorithm suited to the vector generation of Poisson polyhedra is introduced and validated with morphological measurements. Finally, the effective linear elastic properties of the mortar and other simulated microstructures are estimated with the FFT (Fast-Fourier Transform) method, for various contrasts between the aggregates and matrix' Young moduli. To complete this work, focused on effective properties, an analysis of the local elastic response in the matrix phase is undertaken, in order to determine the spatial arrangement between stress concentration zones in the matrix and the phases of the microstructure (aggregates and voids). Moreover, a statistical fields characterization, in the matrix, is achieved, including the determination of the Representative Volume Element (RVE) size. Furthermore, a comparison between effective and local elastic properties obtained from microstructures containing polyhedra and spheres is carried out. (author)

  10. Thermal Protection System Materials (TPSM): 3D MAT Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The 3D MAT Project seeks to design and develop a game changing Woven Thermal Protection System (TPS) technology tailored to meet the needs of the Orion...

  11. Nested structures approach for bulk 3D negative index materials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei

    2009-01-01

    We propose a generic conceptual idea to obtain bulk 3D negative index metamaterials, which exhibit isotropic properties. The design is based on the nested structures approach, when one element providing magnetic response is inserted into another design with negative dielectric constant. Both...

  12. 3D Corporate Tourism in the Marine Sciences: Application-Oriented Problem Solving in Marine and Coastal Ecosystems

    CERN Document Server

    Gebeshuber, Ille Christine; Esichaikul, Ranee; Macqueen, Mark; Majlis, Burhanuddin Yeop

    2010-01-01

    3D corporate tourism in the marine sciences is a solution-based approach to innovation in science, engineering and design. Corporate international scientists, engineers and designers work with local experts in Malaysian marine and coastal environments: they jointly discover, develop and design complex materials and designs inspired by nature directly on site (e.g. at the UKM Marine Ecosystem Research Centre EKOMAR and Malaysian Marine Parks) and construct initial biomimetic prototypes and novel designs. Thereby, new links, networks and collaborations are established between communities of thinkers in different countries. 3D tourism aims at mapping new frontiers in emerging engineering and design fields. This provides a novel way to foster and promote innovative thinking in the sciences, and considers the need for synergy and collaboration between marine sciences, engineering and design rather than segmentation and isolation. With the concept of 3D corporate tourism the potential of Malaysian marine ecosystems...

  13. Impact of the 3-D model strategy on science learning of the solar system

    Science.gov (United States)

    Alharbi, Mohammed

    The purpose of this mixed method study, quantitative and descriptive, was to determine whether the first-middle grade (seventh grade) students at Saudi schools are able to learn and use the Autodesk Maya software to interact and create their own 3-D models and animations and whether their use of the software influences their study habits and their understanding of the school subject matter. The study revealed that there is value to the science students regarding the use of 3-D software to create 3-D models to complete science assignments. Also, this study aimed to address the middle-school students' ability to learn 3-D software in art class, and then ultimately use it in their science class. The success of this study may open the way to consider the impact of 3-D modeling on other school subjects, such as mathematics, art, and geography. When the students start using graphic design, including 3-D software, at a young age, they tend to develop personal creativity and skills. The success of this study, if applied in schools, will provide the community with skillful young designers and increase awareness of graphic design and the new 3-D technology. Experimental method was used to answer the quantitative research question, are there significant differences applying the learning method using 3-D models (no 3-D, premade 3-D, and create 3-D) in a science class being taught about the solar system and its impact on the students' science achievement scores? Descriptive method was used to answer the qualitative research questions that are about the difficulty of learning and using Autodesk Maya software, time that students take to use the basic levels of Polygon and Animation parts of the Autodesk Maya software, and level of students' work quality.

  14. Database Description - BodyParts3D | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available Oct 3. Pubmed ID: 18835852 Original website information Database maintenance site The Database Center for L...ife Science URL of the original website http://lifesciencedb.jp/bp3d/ Operation s...s http://lifesciencedb.jp/bp3d/info_en/webapi/ Need for user registration - Jooml

  15. 3D Printing Optical Engine for Controlling Material Microstructure

    Science.gov (United States)

    Huang, Wei-Chin; Chang, Kuang-Po; Wu, Ping-Han; Wu, Chih-Hsien; Lin, Ching-Chih; Chuang, Chuan-Sheng; Lin, De-Yau; Liu, Sung-Ho; Horng, Ji-Bin; Tsau, Fang-Hei

    Controlling the cooling rate of alloy during melting and resolidification is the most commonly used method for varying the material microstructure and consequently the resuling property. However, the cooling rate of a selective laser melting (SLM) production is restricted by a preset optimal parameter of a good dense product. The head room for locally manipulating material property in a process is marginal. In this study, we invent an Optical Engine for locally controlling material microstructure in a SLM process. It develops an invovative method to control and adjust thermal history of the solidification process to gain desired material microstucture and consequently drastically improving the quality. Process parameters selected locally for specific materials requirement according to designed characteristics by using thermal dynamic principles of solidification process. It utilize a technique of complex laser beam shape of adaptive irradiation profile to permit local control of material characteristics as desired. This technology could be useful for industrial application of medical implant, aerospace and automobile industries.

  16. 3D Corporate Tourism in the Marine Sciences: Application-Oriented Problem Solving in Marine and Coastal Ecosystems

    OpenAIRE

    Gebeshuber, Ille Christine; Matin, Tina Rezaie; Esichaikul, Ranee; Macqueen, Mark; Majlis, Burhanuddin Yeop

    2010-01-01

    3D corporate tourism in the marine sciences is a solution-based approach to innovation in science, engineering and design. Corporate international scientists, engineers and designers work with local experts in Malaysian marine and coastal environments: they jointly discover, develop and design complex materials and designs inspired by nature directly on site (e.g. at the UKM Marine Ecosystem Research Centre EKOMAR and Malaysian Marine Parks) and construct initial biomimetic prototypes and nov...

  17. Education System Using Interactive 3D Computer Graphics (3D-CG) Animation and Scenario Language for Teaching Materials

    Science.gov (United States)

    Matsuda, Hiroshi; Shindo, Yoshiaki

    2006-01-01

    The 3D computer graphics (3D-CG) animation using a virtual actor's speaking is very effective as an educational medium. But it takes a long time to produce a 3D-CG animation. To reduce the cost of producing 3D-CG educational contents and improve the capability of the education system, we have developed a new education system using Virtual Actor.…

  18. 3D manufacturing of micro and nano-architected materials

    Science.gov (United States)

    Valdevit, Lorenzo

    2016-04-01

    Reducing mass without sacrificing mechanical integrity and performance is a critical goal in a vast range of applications. Introducing a controlled amount of porosity in a strong and dense material (hence fabricating a cellular solid) is an obvious avenue to weight reduction. The mechanical effectiveness of this strategy, though, depends strongly on the architecture of the resulting cellular material (i.e., the topology of the introduced porosity). Recent progress in additive manufacturing enables fabrication of macro-scale cellular materials (both single-phase and hybrid) with unprecedented dimensional control on the unit-cell and sub-unit-cell features, potentially producing architectures with structural hierarchy from the nano to the macro-scale. As mechanical properties of materials often exhibit beneficial size effects at the nano-scale (e.g., strengthening of metals and toughening of ceramics), these novel manufacturing approaches provide a unique opportunity to translate these beneficial effects to the macro-scale, further improving the mechanical performance of architected materials. The enormous design space for architected materials, and the strong relationship between the topological features of the architecture and the effective physical and mechanical properties of the material at the macro-scale, present both a huge opportunity and an urgent need for the development of suitable optimal design strategies. Here we present a number of strategies for the advanced manufacturing, characterization and optimal design of a variety of lightweight architected materials with unique combinations of mechanical properties (stiffness, strength, damping coefficient…). The urgent need to form strong synergies among the fields of additive manufacturing, topology optimization and architectureproperties relations is emphasized throughout.

  19. Dynamic triangulations for efficient 3D simulation of granular materials

    OpenAIRE

    Ferrez, Jean-Albert; Liebling, Thomas M.

    2007-01-01

    Granular materials are omnipresent in many fields ranging from civil engineering to food, mining and pharmaceutical industries. Often considered a fourth state of matter, they exhibit specific phenomena such as segregation, arching effects, pattern formation, etc. Due to its potential capability of realistically rendering these behaviors, the Distinct Element Method (DEM) is a very enticing simulation technique. Indeed it makes it possible to analyze and observe phenomena that are barely if a...

  20. 3D Printing Fabrication of Amorphous Thermoelectric Materials with Ultralow Thermal Conductivity.

    Science.gov (United States)

    He, Minhong; Zhao, Yan; Wang, Biao; Xi, Qing; Zhou, Jun; Liang, Ziqi

    2015-11-25

    Thermoelectric materials are prepared by developing 3D printing technology. The 3D fabricated Bi0.5 Sb1.5 Te3 samples exhibit amorphous characteristics and thus show an ultralow thermal conductivity of 0.2 W m(-1) K(-1) . 3D printing fabrication readily generates bulk thermoelectric samples of any shape, which is not the case with traditional hot-pressing and spark plasma sintering methods.

  1. MultiFab: a machine vision assisted platform for multi-material 3D printing

    OpenAIRE

    Sitthi-Amorn, Pitchaya; Ramos, Javier E.; Wangy, Yuwang; KWAN, JOYCE; Lan, Justin; Wang, Wenshou; Matusik, Wojciech

    2015-01-01

    We have developed a multi-material 3D printing platform that is high-resolution, low-cost, and extensible. The key part of our platform is an integrated machine vision system. This system allows for self-calibration of printheads, 3D scanning, and a closed-feedback loop to enable print corrections. The integration of machine vision with 3D printing simplifies the overall platform design and enables new applications such as 3D printing over auxiliary parts. Furthermore, our platform dramatical...

  2. Effects of 3D Virtual Reality of Plate Tectonics on Fifth Grade Students' Achievement and Attitude toward Science

    Science.gov (United States)

    Kim, Paul

    2006-01-01

    This study examines the effects of a teaching method using 3D virtual reality simulations on achievement and attitude toward science. An experiment was conducted with fifth-grade students (N = 41) to examine the effects of 3D simulations, designed to support inquiry-based science curriculum. An ANOVA analysis revealed that the 3D group scored…

  3. Meta!Blast computer game: a pipeline from science to 3D art to education

    Science.gov (United States)

    Schneller, William; Campbell, P. J.; Bassham, Diane; Wurtele, Eve Syrkin

    2012-03-01

    Meta!Blast (http://www.metablast.org) is designed to address the challenges students often encounter in understanding cell and metabolic biology. Developed by faculty and students in biology, biochemistry, computer science, game design, pedagogy, art and story, Meta!Blast is being created using Maya (http://usa.autodesk.com/maya/) and the Unity 3D (http://unity3d.com/) game engine, for Macs and PCs in classrooms; it has also been exhibited in an immersive environment. Here, we describe the pipeline from protein structural data and holographic information to art to the threedimensional (3D) environment to the game engine, by which we provide a publicly-available interactive 3D cellular world that mimics a photosynthetic plant cell.

  4. Use of 3D Printed Models in Medical Education: A Randomized Control Trial Comparing 3D Prints versus Cadaveric Materials for Learning External Cardiac Anatomy

    Science.gov (United States)

    Lim, Kah Heng Alexander; Loo, Zhou Yaw; Goldie, Stephen J.; Adams, Justin W.; McMenamin, Paul G.

    2016-01-01

    Three-dimensional (3D) printing is an emerging technology capable of readily producing accurate anatomical models, however, evidence for the use of 3D prints in medical education remains limited. A study was performed to assess their effectiveness against cadaveric materials for learning external cardiac anatomy. A double blind randomized…

  5. 3D graphene-based hybrid materials: synthesis and applications in energy storage and conversion.

    Science.gov (United States)

    Shi, Qiurong; Cha, Younghwan; Song, Yang; Lee, Jung-In; Zhu, Chengzhou; Li, Xiaoyu; Song, Min-Kyu; Du, Dan; Lin, Yuehe

    2016-08-25

    Porous 3D graphene-based hybrid materials (3D GBHMs) are currently attractive nanomaterials employed in the field of energy. Heteroatom-doped 3D graphene and metal, metal oxide, and polymer-decorated 3D graphene with modified electronic and atomic structures provide promising performance as electrode materials in energy storage and conversion. Numerous synthesis methods such as self-assembly, templating, electrochemical deposition, and supercritical CO2, pave the way to mass production of 3D GBHMs in the commercialization of energy devices. This review summarizes recent advances in the fabrication of 3D GBHMs with well-defined architectures such as finely controlled pore sizes, heteroatom doping types and levels. Moreover, current progress toward applications in fuel cells, supercapacitors and batteries employing 3D GBHMs is also highlighted, along with the detailed mechanisms of the enhanced electrochemical performance. Furthermore, current critical issues, challenges and future prospects with respect to applications of 3D GBHMs in practical devices are discussed at the end of this review. PMID:27531643

  6. Investigation of Dynamic Crack Coalescence Using a Gypsum-Like 3D Printing Material

    Science.gov (United States)

    Jiang, Chao; Zhao, Gao-Feng; Zhu, Jianbo; Zhao, Yi-Xin; Shen, Luming

    2016-10-01

    Dynamic crack coalescence attracts great attention in rock mechanics. However, specimen preparation in experimental study is a time-consuming and difficult procedure. In this work, a gypsum-like material by powder bed and inkjet 3D printing technique was applied to produce specimens with preset cracks for split Hopkinson pressure bar (SHPB) test. From micro X-ray CT test, it was found that the 3D printing technique could successfully prepare specimens that contain preset cracks with width of 0.2 mm. Basic mechanical properties of the 3D printing material, i.e., the elastic modulus, the Poisson's ratio, the density, the compressive strength, the indirect tensile strength, and the fracture toughness, were obtained and reported. Unlike 3D printed specimens using polylactic acid, these gypsum-like specimens can produce failure patterns much closer to those observed in classical rock mechanical tests. Finally, the dynamic crack coalescence of the 3D printed specimens with preset cracks were captured using a high-speed camera during SHPB tests. Failure patterns of these 3D printed specimens are similar to the specimens made by Portland cement concrete. Our results indicate that sample preparation by 3D printing is highly competitive due to its quickness in prototyping, precision and flexibility on the geometry, and high material homogeneity.

  7. Defeating anisotropy in material extrusion 3D printing via materials development

    Science.gov (United States)

    Torrado Perez, Angel Ramon

    Additive Manufacturing technologies has been in continuous development for more than 35 years. Specifically, the later denominated Material Extrusion Additive Manufacturing (MEAM), was first developed by S. Scott Crump around 1988 and trademarked later as Fused Deposition Modeling (FDM). Although all of these technologies have been around for a while, it was not until recently that they have been more accessible to everyone. Today, the market of 3D printers covers all ranges of price, from very specialized, heavy and expensive machines, to desktop printers of only a few cubic inches in volume. Until recently, FDM technology had remained somewhat stagnant in terms of developments; however, with the new market boom, scholars and hobbyists have opened new doors for investigation in this area. The technology is now better understood from a software, mechanical, electrical and not less important, materials point of view. The current availability of materials for MEAM is very broad: PLA (Polylactic Acid), ABS (Acrylonitrile Butadiene Styrene), PC (Polycarbonate), PEEK (Polyether Ether Ketone), nylon, polyurethanes, and many others. Even so, these are all materials that were used before for other technologies, adapted but not specifically developed for MEAM. The processes that take place during the production of a part are currently not very well understood, and the final properties exhibited are long ways away from reaching the potential of more traditional manufacturing techniques. Due to the nature of the process, all the material properties always display a certain level of anisotropy. The research covered in these pages aims to shed some light on understanding the different mechanics taking place during the extrusion process of additive manufacturing. The development of new materials for MEAM has been explored. Several blends and composites have been developed, and their tensile properties and fracture mechanics evaluated. The blending of different combinations of

  8. Cookoff response of PBXN-109: material characterization and ALE3D model

    Energy Technology Data Exchange (ETDEWEB)

    McClelland, M A; Tran, T D; Cunningham, B J; Weese, R K; Maienschein, J L

    2000-10-24

    Materials properties measurements are made for the RDX-based explosive, PBXN-109, and an initial ALE3D model for cookoff is discussed. A significant effort is underway in the U.S. Navy and Department of Energy (DOE) laboratories to understand the thermal explosion behavior of this material. Benchmark cookoff experiments are being performed by the U.S. Navy to validate DOE materials models and computer codes. The ALE3D computer code can model the coupled thermal, mechanical, and chemical behavior of heating and ignition in cookoff tests. In order to provide a predictive capability, materials characterization measurements are being performed to specify parameters in these models. We report on progress in the development of these ALE3D materials models and present measurements as a function of temperature for thermal expansion, heat capacity, shear modulus, bulk modulus, and One-Dimensional-Time-to-Explosion (ODTX).

  9. Finite element analysis of 3D elastic-plastic frictional contact problem for Cosserat materials

    Science.gov (United States)

    Zhang, S.; Xie, Z. Q.; Chen, B. S.; Zhang, H. W.

    2013-06-01

    The objective of this paper is to develop a finite element model for 3D elastic-plastic frictional contact problem of Cosserat materials. Because 3D elastic-plastic frictional contact problems belong to the unspecified boundary problems with nonlinearities in both material and geometric forms, a large number of calculations are needed to obtain numerical results with high accuracy. Based on the parametric variational principle and the corresponding quadratic programming method for numerical simulation of frictional contact problems, a finite element model is developed for 3D elastic-plastic frictional contact analysis of Cosserat materials. The problems are finally reduced to linear complementarity problems (LCP). Numerical examples show the feasibility and importance of the developed model for analyzing the contact problems of structures with materials which have micro-polar characteristics.

  10. 3D Visualization Types in Multimedia Applications for Science Learning: A Case Study for 8th Grade Students in Greece

    Science.gov (United States)

    Korakakis, G.; Pavlatou, E. A.; Palyvos, J. A.; Spyrellis, N.

    2009-01-01

    This research aims to determine whether the use of specific types of visualization (3D illustration, 3D animation, and interactive 3D animation) combined with narration and text, contributes to the learning process of 13- and 14- years-old students in science courses. The study was carried out with 212 8th grade students in Greece. This…

  11. ECOLOGICAL AND TECHNOLOGICAL ANALYSIS OF MATERIALS FOR 3D-PRINTING

    OpenAIRE

    Є.О. Бовсуновський; Зінченко, Р. О.

    2016-01-01

    The article analyzes the main materials used for 3D-printing. Particular attention is paid to the study of ecological and technological analysis of the effects of the most widely used material: Polylactic Acid and Acrylonitrile Butadiene Styrene, as well as their professional series and Nylon, Polyethylene Terephthalate, TPE on the environment. The article deals with the characteristic features of the physical properties of materials (material) for their intended purpose, according sharing al...

  12. A simple, low-cost conductive composite material for 3D printing of electronic sensors.

    Science.gov (United States)

    Leigh, Simon J; Bradley, Robert J; Purssell, Christopher P; Billson, Duncan R; Hutchins, David A

    2012-01-01

    3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes ('rapid prototyping') before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term 'carbomorph' and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes. PMID:23185319

  13. A simple, low-cost conductive composite material for 3D printing of electronic sensors.

    Directory of Open Access Journals (Sweden)

    Simon J Leigh

    Full Text Available 3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes ('rapid prototyping' before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term 'carbomorph' and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes.

  14. 3D Printed Reversible Shape Changing Components with Stimuli Responsive Materials

    Science.gov (United States)

    Mao, Yiqi; Ding, Zhen; Yuan, Chao; Ai, Shigang; Isakov, Michael; Wu, Jiangtao; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry

    2016-04-01

    The creation of reversibly-actuating components that alter their shapes in a controllable manner in response to environmental stimuli is a grand challenge in active materials, structures, and robotics. Here we demonstrate a new reversible shape-changing component design concept enabled by 3D printing two stimuli responsive polymers—shape memory polymers and hydrogels—in prescribed 3D architectures. This approach uses the swelling of a hydrogel as the driving force for the shape change, and the temperature-dependent modulus of a shape memory polymer to regulate the time of such shape change. Controlling the temperature and aqueous environment allows switching between two stable configurations – the structures are relatively stiff and can carry load in each – without any mechanical loading and unloading. Specific shape changing scenarios, e.g., based on bending, or twisting in prescribed directions, are enabled via the controlled interplay between the active materials and the 3D printed architectures. The physical phenomena are complex and nonintuitive, and so to help understand the interplay of geometric, material, and environmental stimuli parameters we develop 3D nonlinear finite element models. Finally, we create several 2D and 3D shape changing components that demonstrate the role of key parameters and illustrate the broad application potential of the proposed approach.

  15. Establishment of gel materials with different mechanical properties by 3D gel printer SWIM-ER

    Science.gov (United States)

    Ota, Takafumi; Tase, Taishi; Okada, Koji; Saito, Azusa; Takamatsu, Kyuuichiro; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    A 3D printer is a device which can directly produce objects whose shape is the same as the original 3D digital data. Hydrogels have unique properties such as high water content, low frictional properties, biocompatibility, material permeability and high transparency, which are rare in hard and dry materials. These superior characteristics of gels promise useful medical applications. We have been working on the development of a 3D gel printer, SWIM-ER (Soft and Wet Industrial - Easy Realizer), which can make models of organs and artificial blood vessels with gel material. However, 3D printing has a problem: the mechanical properties of the printed object vary depending on printing conditions, and this matter was investigated with SWIM-ER. In the past, we found that mechanical properties of 3D gel objects depend on the deposition orientation in SWIM-ER. In this study, gels were printed with different laser scanning speeds. The mechanical properties of these gels were investigated by compression tests, water content measurements and SMILS (Scanning Microscopic Light Scattering).

  16. Modeling heterogeneous materials failure: 3D meso-scale models with embedded discontinuities

    OpenAIRE

    Benkemoun, Nathan; Hautefeuille, Martin; Colliat, Jean-Baptiste; Ibrahimbegovic, Adnan

    2010-01-01

    We present a meso-scale model for failure of heterogeneous quasi-brittle materials. The model problem of heterogeneous materials that is addressed in detail is based on two-phase 3D representation of reinforced heterogeneous materials, such as concrete, where the inclusions are melt within the matrix. The quasi-brittle failure mechanisms are described by the spatial truss representation, which is defined by the chosen Voronoi mesh. In order to explicitly incorporate heterogeneities with no ne...

  17. A 3D domain decomposition approach for the identification of spatially varying elastic material parameters

    KAUST Repository

    Moussawi, Ali

    2015-02-24

    Summary: The post-treatment of (3D) displacement fields for the identification of spatially varying elastic material parameters is a large inverse problem that remains out of reach for massive 3D structures. We explore here the potential of the constitutive compatibility method for tackling such an inverse problem, provided an appropriate domain decomposition technique is introduced. In the method described here, the statically admissible stress field that can be related through the known constitutive symmetry to the kinematic observations is sought through minimization of an objective function, which measures the violation of constitutive compatibility. After this stress reconstruction, the local material parameters are identified with the given kinematic observations using the constitutive equation. Here, we first adapt this method to solve 3D identification problems and then implement it within a domain decomposition framework which allows for reduced computational load when handling larger problems.

  18. Micro 3D printing using a digital projector and its application in the study of soft materials mechanics.

    Science.gov (United States)

    Lee, Howon; Fang, Nicholas X

    2012-01-01

    Buckling is a classical topic in mechanics. While buckling has long been studied as one of the major structural failure modes(1), it has recently drawn new attention as a unique mechanism for pattern transformation. Nature is full of such examples where a wealth of exotic patterns are formed through mechanical instability(2-5). Inspired by this elegant mechanism, many studies have demonstrated creation and transformation of patterns using soft materials such as elastomers and hydrogels(6-11). Swelling gels are of particular interest because they can spontaneously trigger mechanical instability to create various patterns without the need of external force(6-10). Recently, we have reported demonstration of full control over buckling pattern of micro-scaled tubular gels using projection micro-stereolithography (PμSL), a three-dimensional (3D) manufacturing technology capable of rapidly converting computer generated 3D models into physical objects at high resolution(12,13). Here we present a simple method to build up a simplified PμSL system using a commercially available digital data projector to study swelling-induced buckling instability for controlled pattern transformation. A simple desktop 3D printer is built using an off-the-shelf digital data projector and simple optical components such as a convex lens and a mirror(14). Cross-sectional images extracted from a 3D solid model is projected on the photosensitive resin surface in sequence, polymerizing liquid resin into a desired 3D solid structure in a layer-by-layer fashion. Even with this simple configuration and easy process, arbitrary 3D objects can be readily fabricated with sub-100 μm resolution. This desktop 3D printer holds potential in the study of soft material mechanics by offering a great opportunity to explore various 3D geometries. We use this system to fabricate tubular shaped hydrogel structure with different dimensions. Fixed on the bottom to the substrate, the tubular gel develops

  19. Emerging Technologies in the Built Environment: Geographic Information Science (GIS), 3D Printing, and Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    New, Joshua Ryan [ORNL

    2014-01-01

    Abstract 1: Geographic information systems emerged as a computer application in the late 1960s, led in part by projects at ORNL. The concept of a GIS has shifted through time in response to new applications and new technologies, and is now part of a much larger world of geospatial technology. This presentation discusses the relationship of GIS and estimating hourly and seasonal energy consumption profiles in the building sector at spatial scales down to the individual parcel. The method combines annual building energy simulations for city-specific prototypical buildings and commonly available geospatial data in a GIS framework. Abstract 2: This presentation focuses on 3D printing technologies and how they have rapidly evolved over the past couple of years. At a basic level, 3D printing produces physical models quickly and easily from 3D CAD, BIM (Building Information Models), and other digital data. Many AEC firms have adopted 3D printing as part of commercial building design development and project delivery. This presentation includes an overview of 3D printing, discusses its current use in building design, and talks about its future in relation to the HVAC industry. Abstract 3: This presentation discusses additive manufacturing and how it is revolutionizing the design of commercial and residential facilities. Additive manufacturing utilizes a broad range of direct manufacturing technologies, including electron beam melting, ultrasonic, extrusion, and laser metal deposition for rapid prototyping. While there is some overlap with the 3D printing talk, this presentation focuses on the materials aspect of additive manufacturing and also some of the more advanced technologies involved with rapid prototyping. These technologies include design of carbon fiber composites, lightweight metals processing, transient field processing, and more.

  20. Implementation of a Stress-dependent Strength Material Model in PLAXIS 3D

    DEFF Research Database (Denmark)

    Knudsen, Bjørn S.; Østergaard, Martin Underlin; Clausen, Johan

    , and in the region of small stresses, a non-linear behaviour is observed - unlike the linear behaviour normally assumed in Mohr-Coulomb. To better model this non-linearity, a stress-dependent model for the strength of the soil material is sought to be implemented in PLAXIS 3D through FORTRAN to improve...

  1. Micromechanical analysis of nanocomposites using 3D voxel based material model

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon

    2012-01-01

    A computational study on the effect of nanocomposite structures on the elastic properties is carried out with the use of the 3D voxel based model of materials and the combined Voigt–Reuss method. A hierarchical voxel based model of a material reinforced by an array of exfoliated and intercalated ...... of glass fibers in hybrid (hierarchical) composites, using the micromechanical voxel-based model of nanocomposites, it was observed that the nanoreinforcement in the matrix leads to slightly lower fiber failure probability....

  2. A 3D Osteoblast In Vitro Model for the Evaluation of Biomedical Materials

    OpenAIRE

    Luciana Restle; Daniela Costa-Silva; Emanuelle Stellet Lourenço; Rober Freitas Bachinski; Ana Carolina Batista; Adriana Brandão Ribeiro Linhares; Gutemberg Gomes Alves

    2015-01-01

    Biomedical materials for bone therapy are usually assessed for their biocompatibility and safety employing animal models or in vitro monolayer cell culture assays. However, alternative in vitro models may offer controlled conditions closer to physiological responses and reduce animal testing. In this work, we developed a 3D spheroidal cell culture with potential to evaluate simultaneously material-cell and cell-cell interactions. Different cell densities of murine MC3T3-E1 preosteoblasts or h...

  3. Preliminary Study for Dosimetric Characteristics of 3D-printed Materials with Megavoltage Photons

    CERN Document Server

    Jeong, Seonghoon; Chung, Weon Kuu; Kim, Dong Wook

    2015-01-01

    In these days, 3D-printer is on the rise in various fields including radiation therapy. This preliminary study aimed to estimate the dose characteristics of the 3D-printer materials which could be used as the compensator or immobilizer in radiation treatment. The cubes which have 5cm length and different densities as 50%, 75% and 100% were printed by 3D-printer. A planning CT scans for cubes were performed using a CT simulator (Brilliance CT, Philips Medical System, Netherlands). Dose distributions behind the cube were calculated when 6MV photon beam passed through cube. The dose response for 3D-printed cube, air and water were measured by using EBT3 film and 2D array detector. When results of air case were normalized to 100, dose calculated by TPS and measured dose of 50% and 75% cube were 96~99. Measured and calculated doses of water and 100% cube were 82~84. HU values of 50%, 75% and 100% were -910, -860 and -10, respectively. From these results, 3D-printer in radiotherapy could be used for medical purpose...

  4. Arctic Research Mapping Application (ARMAP): 2D Maps and 3D Globes Support Arctic Science

    Science.gov (United States)

    Johnson, G.; Gaylord, A. G.; Brady, J. J.; Cody, R. P.; Aguilar, J. A.; Dover, M.; Garcia-Lavigne, D.; Manley, W.; Score, R.; Tweedie, C. E.

    2007-12-01

    The Arctic Research Mapping Application (ARMAP) is a suite of online services to provide support of Arctic science. These services include: a text based online search utility, 2D Internet Map Server (IMS); 3D globes and Open Geospatial Consortium (OGC) Web Map Services (WMS). With ARMAP's 2D maps and 3D globes, users can navigate to areas of interest, view a variety of map layers, and explore U.S. Federally funded research projects. Projects can be queried by location, year, funding program, discipline, and keyword. Links take you to specific information and other web sites associated with a particular research project. The Arctic Research Logistics Support Service (ARLSS) database is the foundation of ARMAP including US research funded by the National Science Foundation, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, and the United States Geological Survey. Avoiding a duplication of effort has been a primary objective of the ARMAP project which incorporates best practices (e.g. Spatial Data Infrastructure and OGC standard web services and metadata) and off the shelf technologies where appropriate. The ARMAP suite provides tools for users of various levels of technical ability to interact with the data by importing the web services directly into their own GIS applications and virtual globes; performing advanced GIS queries; simply printing maps from a set of predefined images in the map gallery; browsing the layers in an IMS; or by choosing to "fly to" sites using a 3D globe. With special emphasis on the International Polar Year (IPY), ARMAP has targeted science planners, scientists, educators, and the general public. In sum, ARMAP goes beyond a simple map display to enable analysis, synthesis, and coordination of Arctic research. ARMAP may be accessed via the gateway web site at http://www.armap.org.

  5. Micromechanical devices with controllable stiffness fabricated from regular 3D porous materials

    International Nuclear Information System (INIS)

    Hierarchical pore structures can dramatically change the mechanical properties of materials, but current methods for creating porous materials make the mechanical properties difficult to engineer. Here we present template based techniques for making three-dimensional (3D) regular macroporous microcantilevers with Young’s moduli that can vary from 2.0 to 44.3 GPa. The Young’s moduli can be tuned by controlling the porosity and the deformation mode, which is dependent on the pore structure. The template technique allows 3D spatial control of the ordered porous structure and the ability to use a broad set of materials, demonstrated with nickel and alumina microcantilevers. (paper)

  6. Separating the Representation from the Science: Training Students in Comprehending 3D Diagrams

    Science.gov (United States)

    Bemis, K. G.; Silver, D.; Chiang, J.; Halpern, D.; Oh, K.; Tremaine, M.

    2011-12-01

    Studies of students taking first year geology and earth science courses at universities find that a remarkable number of them are confused by the three-dimensional representations used to explain the science [1]. Comprehension of these 3D representations has been found to be related to an individual's spatial ability [2]. A variety of interactive programs and animations have been created to help explain the diagrams to beginning students [3, 4]. This work has demonstrated comprehension improvement and removed a gender gap between male (high spatial) and female (low spatial) students [5]. However, not much research has examined what makes the 3D diagrams so hard to understand or attempted to build a theory for creating training designed to remove these difficulties. Our work has separated the science labeling and comprehension of the diagrams from the visualizations to examine how individuals mentally see the visualizations alone. In particular, we asked subjects to create a cross-sectional drawing of the internal structure of various 3D diagrams. We found that viewing planes (the coordinate system the designer applies to the diagram), cutting planes (the planes formed by the requested cross sections) and visual property planes (the planes formed by the prominent features of the diagram, e.g., a layer at an angle of 30 degrees to the top surface of the diagram) that deviated from a Cartesian coordinate system imposed by the viewer caused significant problems for subjects, in part because these deviations forced them to mentally re-orient their viewing perspective. Problems with deviations in all three types of plane were significantly harder than those deviating on one or two planes. Our results suggest training that does not focus on showing how the components of various 3D geologic formations are put together but rather training that guides students in re-orienting themselves to deviations that differ from their right-angle view of the world, e.g., by showing how

  7. Cookoff Response of PBXN-109: Material Characterization and ALE3D Thermal Predictions

    Energy Technology Data Exchange (ETDEWEB)

    McClelland, M A; Tran, T D; Cunningham, B J; Weese, R K; Maienschein, J L

    2001-05-29

    Materials properties measurements are made for the RDX-based explosive, PBXN-109, and initial ALE3D model predictions are given for the cookoff temperature in a U.S. Navy test. This work is part of an effort in the U.S. Navy and Department of Energy (DOE) laboratories to understand the thermal explosion behavior of this material. Benchmark cookoff experiments are being performed by the U.S. Navy to validate DOE materials models and computer codes. The ALE3D computer code can model the coupled thermal, mechanical, and chemical behavior of heating, ignition, and explosion in cookoff tests. In our application, a standard three-step step model is selected for the chemical kinetics. The strength behavior of the solid constituents is represented by a Steinberg-Guinan model while polynomial and gamma-law expressions are used for the Equation Of State (EOS) for the solid and gas species, respectively. Materials characterization measurements are given for thermal expansion, heat capacity, shear modulus, bulk modulus, and One-Dimensional-Time-to-Explosion (ODTX). These measurements and those of the other project participants are used to determine parameters in the ALE3D chemical, mechanical, and thermal models. Time-dependent, two-dimensional results are given for the temperature and material expansion. The results show predicted cookoff temperatures slightly higher than the measured values.

  8. Cookoff Response of PBXN-109: Material Characterization and ALE3D Thermal Predictions

    Energy Technology Data Exchange (ETDEWEB)

    McClelland, M A; Tran, T D; Cunningham, B J; Weese, R K; Maienschein, J L

    2001-08-21

    Materials properties measurements are made for the RDX-based explosive, PBXN-109, and initial ALE3D model predictions are given for the cookoff temperature in a U.S. Navy test. This work is part of an effort in the U.S. Navy and Department of Energy (DOE) laboratories to understand the thermal explosion behavior of this material. Benchmark cookoff experiments are being performed by the U.S. Navy to validate DOE materials models and computer codes. The ALE3D computer code can model the coupled thermal, mechanical, and chemical behavior of heating, ignition, and explosion in cookoff tests. In our application, a standard three-step step model is selected for the chemical kinetics. The strength behavior of the solid constituents is represented by a Steinberg-Guinan model while polynomial and gamma-law expressions are used for the Equation Of State (EOS) for the solid and gas species, respectively. Materials characterization measurements are given for thermal expansion, heat capacity, shear modulus, bulk modulus, and One-Dimensional-Time-to-Explosion (ODTX). These measurements and those of the other project participants are used to determine parameters in the ALE3D chemical, mechanical, and thermal models. Time-dependent, two-dimensional results are given for the temperature and material expansion. The results show predicted cookoff temperatures slightly higher than the measured values.

  9. A stabilized complementarity formulation for nonlinear analysis of 3D bimodular materials

    Institute of Scientific and Technical Information of China (English)

    L Zhang; H W Zhang; J Wu; B Yan

    2016-01-01

    Bi-modulus materials with different mechanical responses in tension and compression are often found in civil, composite, and biological engineering. Numerical analysis of bimodular materials is strongly nonlinear and convergence is usually a problem for traditional iterative schemes. This paper aims to develop a stabilized computational method for nonlinear analysis of 3D bimodular materials. Based on the parametric variational principle, a unified constitutive equa-tion of 3D bimodular materials is proposed, which allows the eight principal stress states to be indicated by three para-metric variables introduced in the principal stress directions. The original problem is transformed into a standard linear complementarity problem (LCP) by the parametric virtual work principle and a quadratic programming algorithm is developed by solving the LCP with the classic Lemke’s algo-rithm. Update of elasticity and stiffness matrices is avoided and, thus, the proposed algorithm shows an excellent conver-gence behavior compared with traditional iterative schemes. Numerical examples show that the proposed method is valid and can accurately analyze mechanical responses of 3D bimodular materials. Also, stability of the algorithm is greatly improved.

  10. A stabilized complementarity formulation for nonlinear analysis of 3D bimodular materials

    Science.gov (United States)

    Zhang, L.; Zhang, H. W.; Wu, J.; Yan, B.

    2016-06-01

    Bi-modulus materials with different mechanical responses in tension and compression are often found in civil, composite, and biological engineering. Numerical analysis of bimodular materials is strongly nonlinear and convergence is usually a problem for traditional iterative schemes. This paper aims to develop a stabilized computational method for nonlinear analysis of 3D bimodular materials. Based on the parametric variational principle, a unified constitutive equation of 3D bimodular materials is proposed, which allows the eight principal stress states to be indicated by three parametric variables introduced in the principal stress directions. The original problem is transformed into a standard linear complementarity problem (LCP) by the parametric virtual work principle and a quadratic programming algorithm is developed by solving the LCP with the classic Lemke's algorithm. Update of elasticity and stiffness matrices is avoided and, thus, the proposed algorithm shows an excellent convergence behavior compared with traditional iterative schemes. Numerical examples show that the proposed method is valid and can accurately analyze mechanical responses of 3D bimodular materials. Also, stability of the algorithm is greatly improved.

  11. Emissions of Nanoparticles and Gaseous Material from 3D Printer Operation.

    Science.gov (United States)

    Kim, Yuna; Yoon, Chungsik; Ham, Seunghon; Park, Jihoon; Kim, Songha; Kwon, Ohhun; Tsai, Perng-Jy

    2015-10-20

    This study evaluated the emissions characteristics of hazardous material during fused deposition modeling type 3D printing. Particulate and gaseous materials were measured before, during, and after 3D printing in an exposure chamber. One ABS and two PLA (PLA1 and PLA2) cartridges were tested three times. For online monitoring, a scanning mobility particle sizer, light scattering instrument, and total volatile organic compound (TVOC) monitor were employed and a polycarbonate filter and various adsorbent tubes were used for offline sampling. The particle concentration of 3D printing using ABS material was 33-38 times higher than when PLA materials were used. Most particles were nanosize (<100 nm) during ABS (96%) and PLA1 (98%) use, but only 12% were nanosize for PLA2. The emissions rates were 1.61 × 10(10) ea/min and 1.67 × 10(11) ea/g cartridge with the ABS cartridge and 4.27-4.89 × 10(8) ea/min and 3.77-3.91 × 10(9) ea/g cartridge with the PLA cartridge. TVOCs were also emitted when the ABS was used (GM; 155 ppb, GSD; 3.4), but not when the PLA cartridges were used. Our results suggest that more research and sophisticated control methods, including the use of less harmful materials, blocking emitted containments, and using filters or adsorbents, should be implemented. PMID:26402038

  12. Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials

    Science.gov (United States)

    Yan, Zheng; Zhang, Fan; Liu, Fei; Han, Mengdi; Ou, Dapeng; Liu, Yuhao; Lin, Qing; Guo, Xuelin; Fu, Haoran; Xie, Zhaoqian; Gao, Mingye; Huang, Yuming; Kim, JungHwan; Qiu, Yitao; Nan, Kewang; Kim, Jeonghyun; Gutruf, Philipp; Luo, Hongying; Zhao, An; Hwang, Keh-Chih; Huang, Yonggang; Zhang, Yihui; Rogers, John A.

    2016-01-01

    Capabilities for assembly of three-dimensional (3D) micro/nanostructures in advanced materials have important implications across a broad range of application areas, reaching nearly every class of microsystem technology. Approaches that rely on the controlled, compressive buckling of 2D precursors are promising because of their demonstrated compatibility with the most sophisticated planar technologies, where materials include inorganic semiconductors, polymers, metals, and various heterogeneous combinations, spanning length scales from submicrometer to centimeter dimensions. We introduce a set of fabrication techniques and design concepts that bypass certain constraints set by the underlying physics and geometrical properties of the assembly processes associated with the original versions of these methods. In particular, the use of releasable, multilayer 2D precursors provides access to complex 3D topologies, including dense architectures with nested layouts, controlled points of entanglement, and other previously unobtainable layouts. Furthermore, the simultaneous, coordinated assembly of additional structures can enhance the structural stability and drive the motion of extended features in these systems. The resulting 3D mesostructures, demonstrated in a diverse set of more than 40 different examples with feature sizes from micrometers to centimeters, offer unique possibilities in device design. A 3D spiral inductor for near-field communication represents an example where these ideas enable enhanced quality (Q) factors and broader working angles compared to those of conventional 2D counterparts. PMID:27679820

  13. SU-E-T-455: Characterization of 3D Printed Materials for Proton Beam Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zou, W; Siderits, R; McKenna, M; Khan, A; Yue, N [Rutgers University, New Brunswick, NJ (United States); McDonough, J; Yin, L; Teo, B [University of Pennsylvania, Philadelphia, PA (United States); Fisher, T [Memorial Medical Center, Modesto, CA (United States)

    2014-06-01

    Purpose: The widespread availability of low cost 3D printing technologies provides an alternative fabrication method for customized proton range modifying accessories such as compensators and boluses. However the material properties of the printed object are dependent on the printing technology used. In order to facilitate the application of 3D printing in proton therapy, this study investigated the stopping power of several printed materials using both proton pencil beam measurements and Monte Carlo simulations. Methods: Five 3–4 cm cubes fabricated using three 3D printing technologies (selective laser sintering, fused-deposition modeling and stereolithography) from five printers were investigated. The cubes were scanned on a CT scanner and the depth dose curves for a mono-energetic pencil beam passing through the material were measured using a large parallel plate ion chamber in a water tank. Each cube was measured from two directions (perpendicular and parallel to printing plane) to evaluate the effects of the anisotropic material layout. The results were compared with GEANT4 Monte Carlo simulation using the manufacturer specified material density and chemical composition data. Results: Compared with water, the differences from the range pull back by the printed blocks varied and corresponded well with the material CT Hounsfield unit. The measurement results were in agreement with Monte Carlo simulation. However, depending on the technology, inhomogeneity existed in the printed cubes evidenced from CT images. The effect of such inhomogeneity on the proton beam is to be investigated. Conclusion: Printed blocks by three different 3D printing technologies were characterized for proton beam with measurements and Monte Carlo simulation. The effects of the printing technologies in proton range and stopping power were studied. The derived results can be applied when specific devices are used in proton radiotherapy.

  14. SU-E-T-455: Characterization of 3D Printed Materials for Proton Beam Therapy

    International Nuclear Information System (INIS)

    Purpose: The widespread availability of low cost 3D printing technologies provides an alternative fabrication method for customized proton range modifying accessories such as compensators and boluses. However the material properties of the printed object are dependent on the printing technology used. In order to facilitate the application of 3D printing in proton therapy, this study investigated the stopping power of several printed materials using both proton pencil beam measurements and Monte Carlo simulations. Methods: Five 3–4 cm cubes fabricated using three 3D printing technologies (selective laser sintering, fused-deposition modeling and stereolithography) from five printers were investigated. The cubes were scanned on a CT scanner and the depth dose curves for a mono-energetic pencil beam passing through the material were measured using a large parallel plate ion chamber in a water tank. Each cube was measured from two directions (perpendicular and parallel to printing plane) to evaluate the effects of the anisotropic material layout. The results were compared with GEANT4 Monte Carlo simulation using the manufacturer specified material density and chemical composition data. Results: Compared with water, the differences from the range pull back by the printed blocks varied and corresponded well with the material CT Hounsfield unit. The measurement results were in agreement with Monte Carlo simulation. However, depending on the technology, inhomogeneity existed in the printed cubes evidenced from CT images. The effect of such inhomogeneity on the proton beam is to be investigated. Conclusion: Printed blocks by three different 3D printing technologies were characterized for proton beam with measurements and Monte Carlo simulation. The effects of the printing technologies in proton range and stopping power were studied. The derived results can be applied when specific devices are used in proton radiotherapy

  15. Polymer Crosslinked 3-D Assemblies of Nanoparticles: Mechanically Strong Lightweight Porous Materials

    Science.gov (United States)

    Leventis, Nicholas

    2005-01-01

    In analogy to supramolecular assemblies, which are pursued because of properties above and beyond those of the individual molecules, self-standing monolithic three-dimensional assemblies of nanoparticles also have unique properties attributed to their structure. For example, ultra low-density 3-D assemblies of silica nanoparticles, known as silica aerogels, are characterized by large internal void space, high surface area and very low thermal conductivity. Aerogels, however, are also extremely fragile materials, limiting their application to a few specialized environments, e.g., in nuclear reactors as Cerenkov radiation detectors, in space (refer to NASA's Stardust Program) and aboard certain planetary vehicles (thermal insulators on Mars Rovers in 1997 and 2004). The fragility problem is traced to well-defined weak points in the aerogel skeletal framework, the interparticle necks. Using the surface functionality of the nanoparticle building blocks as a focal point, we have directed attachment of a conformal polymer coating over the entire framework, rendering all necks wider. Thus, although the bulk density may increase only by 3x, the mesoporosity (pores in the range 2-50 nm) remains unchanged, while the strength of the material increases by up to 300... Having addressed the fragility problem, aerogels are now robust materials, and a variety of applications, ranging from thermal/acoustic insulators to catalyst supports, to platform for sensors, and dielectrics are all within reach. Our approach employs molecular science to manipulate nanoscopic matter for achieving useful macroscopic properties, and in our view it resides at the core of what defines nanotechnology. In that spirit, this technology is expandable in three directions. Thus, we have already crosslinked successfully amine-modified silica, and we anticipate that more rich chemistry will be realized by been creative with the nanoparticle surface modifiers. On the other hand, although we do not expect

  16. Estimation of the thermal conductivity of hemp based insulation material from 3D tomographic images

    Science.gov (United States)

    El-Sawalhi, R.; Lux, J.; Salagnac, P.

    2016-08-01

    In this work, we are interested in the structural and thermal characterization of natural fiber insulation materials. The thermal performance of these materials depends on the arrangement of fibers, which is the consequence of the manufacturing process. In order to optimize these materials, thermal conductivity models can be used to correlate some relevant structural parameters with the effective thermal conductivity. However, only a few models are able to take into account the anisotropy of such material related to the fibers orientation, and these models still need realistic input data (fiber orientation distribution, porosity, etc.). The structural characteristics are here directly measured on a 3D tomographic image using advanced image analysis techniques. Critical structural parameters like porosity, pore and fiber size distribution as well as local fiber orientation distribution are measured. The results of the tested conductivity models are then compared with the conductivity tensor obtained by numerical simulation on the discretized 3D microstructure, as well as available experimental measurements. We show that 1D analytical models are generally not suitable for assessing the thermal conductivity of such anisotropic media. Yet, a few anisotropic models can still be of interest to relate some structural parameters, like the fiber orientation distribution, to the thermal properties. Finally, our results emphasize that numerical simulations on 3D realistic microstructure is a very interesting alternative to experimental measurements.

  17. 3D reconstruction of grains in polycrystalline materials using a tessellation model with curved grain boundaries

    Science.gov (United States)

    Šedivý, Ondřej; Brereton, Tim; Westhoff, Daniel; Polívka, Leoš; Beneš, Viktor; Schmidt, Volker; Jäger, Aleš

    2016-06-01

    A compact and tractable representation of the grain structure of a material is an extremely valuable tool when carrying out an empirical analysis of the material's microstructure. Tessellations have proven to be very good choices for such representations. Most widely used tessellation models have convex cells with planar boundaries. Recently, however, a new tessellation model - called the generalised balanced power diagram (GBPD) - has been developed that is very flexible and can incorporate features such as curved boundaries and non-convexity of cells. In order to use a GBPD to describe the grain structure observed in empirical image data, the parameters of the model must be chosen appropriately. This typically involves solving a difficult optimisation problem. In this paper, we describe a method for fitting GBPDs to tomographic image data. This method uses simulated annealing to solve a suitably chosen optimisation problem. We then apply this method to both artificial data and experimental 3D electron backscatter diffraction (3D EBSD) data obtained in order to study the properties of fine-grained materials with superplastic behaviour. The 3D EBSD data required new alignment and segmentation procedures, which we also briefly describe. Our numerical experiments demonstrate the effectiveness of the simulated annealing approach (compared to heuristic fitting methods) and show that GBPDs are able to describe the structures of polycrystalline materials very well.

  18. 3D Visualisation and Artistic Imagery to Enhance Interest in "Hidden Environments"--New Approaches to Soil Science

    Science.gov (United States)

    Gilford, J.; Falconer, R. E.; Wade, R.; Scott-Brown, K. C.

    2014-01-01

    Interactive Virtual Environments (VEs) have the potential to increase student interest in soil science. Accordingly a bespoke "soil atlas" was created using Java3D as an interactive 3D VE, to show soil information in the context of (and as affected by) the over-lying landscape. To display the below-ground soil characteristics, four sets…

  19. Simulation of 3D material flow in friction stir welding of AA6061-T6

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhao; Zhang Hongwu

    2008-01-01

    This paper reports the numerical simulation of the 3D material flow in friction stir welding process by using finite element methods based on solid mechanics. It is found that the material flow behind the pin is much faster than that in front of the pin. The material in front of the pin moves upwards and then rotates with the pin due to the effect of the rotating tool. Behind of the pin, the material moves downwards. This process of material movement is the real cause to make the friction stir welding process continuing successfully. With the increase of the translational velocity or the rotational velocity of the pin, the material flow becomes faster.

  20. Science version 2: the most recent capabilities of the Framatome 3-D nuclear code package

    International Nuclear Information System (INIS)

    The Framatome nuclear code package SCIENCE developed in the 1990's has been fully operational for nuclear design since 1997. Results obtained using the package demonstrate the high accuracy of its physical models. Nevertheless, since the first release of the SCIENCE package, continuous improvement work has been carried out at Framatome, which leads today to Version 2 of the package. The intensive use of the package by Framatome teams, for example, while performing reload calculations and the associated core follow, is a permanent opportunity to point out any trend or scattering in the results, even the smaller they are. Thus the main objective of improvements was to take advantage of the progress in computer performances in using more sophisticated calculation schemes conducting to more accurate results. Besides the implementation of more accurate physical models, SCIENCE Version 2 also exploits developments conducted in other fields, mainly for transient calculations using 3-D kinetics or coupling with open-channel core thermal-hydraulics and the plant simulator. These developments allow Framatome to perform accident analyses with advanced methodologies using the SCIENCE package. (author)

  1. NDE of spacecraft materials using 3D Compton backscatter x-ray imaging

    Science.gov (United States)

    Burke, E. R.; Grubsky, V.; Romanov, V.; Shoemaker, K.

    2016-02-01

    We present the results of testing of the NDE performance of a Compton Imaging Tomography (CIT) system for single-sided, penetrating 3D inspection. The system was recently developed by Physical Optics Corporation (POC) and delivered to NASA for testing and evaluation. The CIT technology is based on 3D structure mapping by collecting the information on density profiles in multiple object cross sections through hard x-ray Compton backscatter imaging. The individual cross sections are processed and fused together in software, generating a 3D map of the density profile of the object which can then be analyzed slice-by-slice in x, y, or z directions. The developed CIT scanner is based on a 200-kV x-ray source, flat-panel x-ray detector (FPD), and apodized x-ray imaging optics. The CIT technology is particularly well suited to the NDE of lightweight aerospace materials, such as the thermal protection system (TPS) ceramic and composite materials, micrometeoroid and orbital debris (MMOD) shielding, spacecraft pressure walls, inflatable habitat structures, composite overwrapped pressure vessels (COPVs), and aluminum honeycomb materials. The current system provides 3D localization of defects and features with field of view 20x12x8 cm3 and spatial resolution ˜2 mm. In this paper, we review several aerospace NDE applications of the CIT technology, with particular emphasis on TPS. Based on the analysis of the testing results, we provide recommendations for continued development on TPS applications that can benefit the most from the unique capabilities of this new NDE technology.

  2. Preliminary study of the dosimetric characteristics of 3D-printed materials with megavoltage photons

    Science.gov (United States)

    Jeong, Seonghoon; Yoon, Myonggeun; Chung, Weon Kuu; Kim, Dong Wook

    2015-07-01

    These days, 3D-printers are on the rise in various fields including radiation therapy. This preliminary study aimed to estimate the dose characteristics of 3D-printer materials that could be used as compensators or immobilizers in radiation treatment. The cubes with length of 5 cm and different densities of 50%, 75% and 100% were printed by using a 3D-printer. Planning CT scans of the cubes were performed by using a CT simulator (Brilliance CT, Philips Medical System, Netherlands). Dose distributions behind the cube were calculated after a 6 MV photon beam had passed through the cube. The dose responses for the 3D-printed cube, air and water were measured by using EBT3 film and a 2D array detector. When the results of air case were normalized to 100, the dose calculated by the TPS and the measured doses to 50% and 75% cube were of the 96 ~ 99. The measured and the calculated doses to water and to 100% of the cube were 82 ~ 84. The HU values for the 50%, 75% and 100% density cases were -910, -860 and -10, respectively. The dose characteristics of the 50% and the 75% products were similar to that of air while the 100% product seemed to be similar to that of water. This information will provide guidelines for making an immobilization tool that can play the role of a compensator and for making a real human phantom that can exactly describe the inside of the human body. This study was necessary for Poly Lactic Acid (PLA) based 3D-printer users who are planning to make something related to radiation therapy.

  3. Combination of SANS and 3D stochastic reconstruction techniques for the study of nanostructured materials

    CERN Document Server

    Kikkinides, E S; Steriotis, T A; Kanellopoulos, N K; Mitropoulos, A C; Treimer, W

    2002-01-01

    Ceramic nanostructured materials have recently received scientific and industrial interest due to their unique properties. A series of such nanoporous structures were characterised by SANS techniques. The resulting scattering curves were analysed to obtain basic structural information regarding the pore size distribution and autocorrelation function of each material. Furthermore, stochastic reconstruction models were employed to generate 3D images with the same basic structural characteristics obtained from SANS. Finally, simulation results of permeation on the reconstructed images provide very good agreement with experimental data. (orig.)

  4. 3D optical printing of piezoelectric nanoparticle-polymer composite materials.

    Science.gov (United States)

    Kim, Kanguk; Zhu, Wei; Qu, Xin; Aaronson, Chase; McCall, William R; Chen, Shaochen; Sirbuly, Donald J

    2014-10-28

    Here we demonstrate that efficient piezoelectric nanoparticle-polymer composite materials can be optically printed into three-dimensional (3D) microstructures using digital projection printing. Piezoelectric polymers were fabricated by incorporating barium titanate (BaTiO3, BTO) nanoparticles into photoliable polymer solutions such as polyethylene glycol diacrylate and exposing to digital optical masks that could be dynamically altered to generate user-defined 3D microstructures. To enhance the mechanical-to-electrical conversion efficiency of the composites, the BTO nanoparticles were chemically modified with acrylate surface groups, which formed direct covalent linkages with the polymer matrix under light exposure. The composites with a 10% mass loading of the chemically modified BTO nanoparticles showed piezoelectric coefficients (d(33)) of ∼ 40 pC/N, which were over 10 times larger than composites synthesized with unmodified BTO nanoparticles and over 2 times larger than composites containing unmodified BTO nanoparticles and carbon nanotubes to boost mechanical stress transfer efficiencies. These results not only provide a tool for fabricating 3D piezoelectric polymers but lay the groundwork for creating highly efficient piezoelectric polymer materials via nanointerfacial tuning.

  5. 3D optical printing of piezoelectric nanoparticle-polymer composite materials.

    Science.gov (United States)

    Kim, Kanguk; Zhu, Wei; Qu, Xin; Aaronson, Chase; McCall, William R; Chen, Shaochen; Sirbuly, Donald J

    2014-10-28

    Here we demonstrate that efficient piezoelectric nanoparticle-polymer composite materials can be optically printed into three-dimensional (3D) microstructures using digital projection printing. Piezoelectric polymers were fabricated by incorporating barium titanate (BaTiO3, BTO) nanoparticles into photoliable polymer solutions such as polyethylene glycol diacrylate and exposing to digital optical masks that could be dynamically altered to generate user-defined 3D microstructures. To enhance the mechanical-to-electrical conversion efficiency of the composites, the BTO nanoparticles were chemically modified with acrylate surface groups, which formed direct covalent linkages with the polymer matrix under light exposure. The composites with a 10% mass loading of the chemically modified BTO nanoparticles showed piezoelectric coefficients (d(33)) of ∼ 40 pC/N, which were over 10 times larger than composites synthesized with unmodified BTO nanoparticles and over 2 times larger than composites containing unmodified BTO nanoparticles and carbon nanotubes to boost mechanical stress transfer efficiencies. These results not only provide a tool for fabricating 3D piezoelectric polymers but lay the groundwork for creating highly efficient piezoelectric polymer materials via nanointerfacial tuning. PMID:25046646

  6. The OpenEarth Framework (OEF) for the 3D Visualization of Integrated Earth Science Data

    Science.gov (United States)

    Nadeau, David; Moreland, John; Baru, Chaitan; Crosby, Chris

    2010-05-01

    Data integration is increasingly important as we strive to combine data from disparate sources and assemble better models of the complex processes operating at the Earth's surface and within its interior. These data are often large, multi-dimensional, and subject to differing conventions for data structures, file formats, coordinate spaces, and units of measure. When visualized, these data require differing, and sometimes conflicting, conventions for visual representations, dimensionality, symbology, and interaction. All of this makes the visualization of integrated Earth science data particularly difficult. The OpenEarth Framework (OEF) is an open-source data integration and visualization suite of applications and libraries being developed by the GEON project at the University of California, San Diego, USA. Funded by the NSF, the project is leveraging virtual globe technology from NASA's WorldWind to create interactive 3D visualization tools that combine and layer data from a wide variety of sources to create a holistic view of features at, above, and beneath the Earth's surface. The OEF architecture is open, cross-platform, modular, and based upon Java. The OEF's modular approach to software architecture yields an array of mix-and-match software components for assembling custom applications. Available modules support file format handling, web service communications, data management, user interaction, and 3D visualization. File parsers handle a variety of formal and de facto standard file formats used in the field. Each one imports data into a general-purpose common data model supporting multidimensional regular and irregular grids, topography, feature geometry, and more. Data within these data models may be manipulated, combined, reprojected, and visualized. The OEF's visualization features support a variety of conventional and new visualization techniques for looking at topography, tomography, point clouds, imagery, maps, and feature geometry. 3D data such as

  7. Researching Interplay between 3D-Materials and Young Children in Socio-Cultural Contexts

    Directory of Open Access Journals (Sweden)

    Biljana C. Fredriksen

    2011-11-01

    Full Text Available This text presents empirical and interpretative methodological inquiry in a study of young children’s interplay with three-dimensional (3D materials in early childhood educational settings. Recent acknowledgement of young children as competent individuals challenges forms of research with them. Respecting their views and competence demands that they are treated as actors and not objects of research. At the same time, young children are vulnerable and need to be protected from harm, for example when they use tools. This combination of children’s competence and vulnerability challenges research ethics and methods. This article discusses the following question: How to conduct ethical and valid research in sloyd education with young children?The study was carried out in a Norwegian Early Childhood Education Centre, ECEC, using a multiple case study approach. To be able to understand young children’s experiences, the researcher positioned herself inside the educational contexts taking the role of an A/R/T-ographer. Ten case contexts were conducted, in which pairs of different children played with 3D-materials. The cases were filmed and the video-material was analyzed both contextually and in a cross-case manner.Keywords: method, sloyd, early childhood education, video observation, three-dimensional materialsURN:NBN:no-29956

  8. 3D Surface Profile and Color Stability of Tooth Colored Filling Materials after Bleaching.

    Science.gov (United States)

    Irawan, Bryant Anthony; Irawan, Stacey Natalie; Masudi, Sam'an Malik; Sukminingrum, Ninin; Alam, Mohammad Khursheed

    2015-01-01

    This study aims to evaluate the effects of vital tooth bleaching with carbamide peroxide home bleaching and in-office bleaching on the color stability and 3D surface profile of dental restorative filling materials. Thirty discs (n = 30) measure 6 mm in diameter and 2 mm thick for each of three restorative materials. These are nanofilled composite Filtek Z350 XT, the submicron composite Estelite Σ Quick, and nanofilled glass ionomer Ketac N100 nanoionomer and were fabricated in shade A2. Each group was further divided into three subgroups (n = 10): subgroup A (Opalescence PF), subgroup B (Opalescence Boost in-office bleaching), and subgroup C (distilled water) serving as control. Samples were bleached according to the manufacturer's instructions for a period of two weeks. The Commission Internationale de L'Eclairage (CIE L(*), a(*), b(*)) system was chosen for image processing, while 3D surface profile was tested with atomic force microscopy (AFM). Statistical analyses were performed with the Mann-Whitney tests and Krusal-Wallis with a P value of ≤ 0.05. The three restorative materials showed significant color changes (ΔE); P ≤ 0.05. In diminishing order, the mean color changes recorded were Estelite Σ (3.82 ± 1.6) > Ketac Nano (2.97 ± 1.2) > Filtek Z350 XT (2.25 ± 1.0). However, none of the tested materials showed statistically significant changes in surface roughness; P > 0.05. PMID:26558267

  9. Laser processes and analytics for high power 3D battery materials

    Science.gov (United States)

    Pfleging, W.; Zheng, Y.; Mangang, M.; Bruns, M.; Smyrek, P.

    2016-03-01

    Laser processes for cutting, modification and structuring of energy storage materials such as electrodes, separator materials and current collectors have a great potential in order to minimize the fabrication costs and to increase the performance and operational lifetime of high power lithium-ion-batteries applicable for stand-alone electric energy storage devices and electric vehicles. Laser direct patterning of battery materials enable a rather new technical approach in order to adjust 3D surface architectures and porosity of composite electrode materials such as LiCoO2, LiMn2O4, LiFePO4, Li(NiMnCo)O2, and Silicon. The architecture design, the increase of active surface area, and the porosity of electrodes or separator layers can be controlled by laser processes and it was shown that a huge impact on electrolyte wetting, lithium-ion diffusion kinetics, cell life-time and cycling stability can be achieved. In general, the ultrafast laser processing can be used for precise surface texturing of battery materials. Nevertheless, regarding cost-efficient production also nanosecond laser material processing can be successfully applied for selected types of energy storage materials. A new concept for an advanced battery manufacturing including laser materials processing is presented. For developing an optimized 3D architecture for high power composite thick film electrodes electrochemical analytics and post mortem analytics using laser-induced breakdown spectroscopy were performed. Based on mapping of lithium in composite electrodes, an analytical approach for studying chemical degradation in structured and unstructured lithium-ion batteries will be presented.

  10. Tensile Properties and Failure Mechanism of a New 3D Nonorthogonal Woven Composite Material

    Science.gov (United States)

    Wang, Yu; Sun, Jin; Cai, Deng'an; Zhou, Guangming

    2016-05-01

    Tensile properties and failure mechanism of a newly developed three-dimensional (3D) woven composite material named 3D nonorthogonal woven composite are investigated in this paper. The microstructure of the composite is studied and the tensile properties are obtained by quasi-static tensile tests. The failure mechanism of specimen is discussed based on observation of the fracture surfaces via electron microscope. It is found that the specimens always split along the oblique yarns and produce typical v-shaped fracture surfaces. The representative volume cell (RVC) is established based on the microstructure. A finite element analysis is conducted with periodical boundary conditions. The finite element simulation results agree well with the experimental data. By analyzing deformation and stress distribution under different loading conditions, it is demonstrated that finite element model based on RVC is valid in predicting tensile properties of 3D nonorthogonal woven composites. Stress distribution shows that the oblique yarns and warp yarns oriented along the x direction carry primary load under x tension and that warp yarns bear primary load under y tension.

  11. Simulation domain size requirements for elastic response of 3D polycrystalline materials

    Science.gov (United States)

    Ozturk, Tugce; Stein, Clayton; Pokharel, Reeju; Hefferan, Christopher; Tucker, Harris; Jha, Sushant; John, Reji; Lebensohn, Ricardo A.; Kenesei, Peter; Suter, Robert M.; Rollett, Anthony D.

    2016-01-01

    A fast Fourier transform (FFT) based spectral algorithm is used to compute the full field mechanical response of polycrystalline microstructures. The field distributions in a specific region are used to determine the sensitivity of the method to the number of surrounding grains through quantification of the divergence of the field values from the largest simulation domain, as successively smaller surrounding volumes are included in the simulation. The analysis considers a mapped 3D structure where the location of interest is taken to be a particular pair of surface grains that enclose a small fatigue crack, and synthetically created statistically representative microstructures to further investigate the effect of anisotropy, loading condition, loading direction, and texture. The synthetic structures are generated via DREAM3D and the measured material is a cyclically loaded, Ni-based, low solvus high refractory (LSHR) superalloy that was characterized via 3D high energy x-ray diffraction microscopy (HEDM). Point-wise comparison of distributions in the grain pairs shows that, in order to obtain a Pearson correlation coefficient larger than 99%, the domain must extend to at least the third nearest neighbor. For an elastic FFT calculation, the stress-strain distributions are not sensitive to the shape of the domain. The main result is that convergence can be specified in terms of the number of grains surrounding a region of interest.

  12. 3D visualization of the material flow in friction stir welding process

    Institute of Scientific and Technical Information of China (English)

    Zhao Yanhua; Lin Sanbao; Shen Jiajie; Wu Lin

    2005-01-01

    The material flow in friction stir welded 2014 Al alloy has been investigated using a marker insert technique (MIT). Results of the flow visualization show that the material flow is asymmetrical during the friction stir welding(FSW)process and there are also significant differences in the flow patterns observed on advancing side and retreating side. On advancing side, some material transport forward and some move backward, but on retreating side, material only transport backward. At the top surface of the weld, significant material traasport forward due to the action of the rotating tool shoulder.Combining the data from all the markers, a three-dimensional flow visualization, similar to the 3D image reconstruction technique, was obtained. The three-dimensional plot gives the tendency chart of material flow in friction stir welding process and from the plot it can be seen that there is a vertical, circular motion around the longitudinal axis of the weld. On the advancing side of the weld, the material is pushed downward but on the retreating side, the material is pushed toward the crown of the weld. The net result of the two relative motions in both side of the advancing and the retreating is that a circular motion comes into being. Comparatively, the material flow around the longitudinal axis is a secondary motion.

  13. Materials science symposium 'materials science using accelerators'

    International Nuclear Information System (INIS)

    The facility of the JAERI-Tokai tandem accelerator and its booster has been contributing to advancing heavy-ion sciences in the fields of nuclear physics, nuclear chemistry, atomic and solid-state physics and materials science, taking advantage of its prominent performance of heavy-ion acceleration. This facility was recently upgraded by changing the acceleration tubes and installing an ECR ion-source at the terminal. The radioactive nuclear beam facility (Tokai Radioactive Ion Accelerator Complex, TRIAC) was also installed by the JAERI-KEK joint project. On this occasion, this meeting was held in order to provide a new step for the advancement of heavy-ion science, and to exchange information on recent activities and future plans using the tandem facility as well as on promising new experimental techniques. This meeting was held at Tokai site of JAERI on January 6th and 7th in 2005, having 24 oral presentations, and was successfully carried out with as many as 90 participants and lively discussions among scientists from all the fields of heavy-ion science, including solid-sate physics, nuclear physics and chemistry, and accelerator physics. This summary is the proceedings of this meeting. We would like to thank all the staffs of the accelerators section, participants and office workers in the Department of Materials Science for their support. The 24 of the presented papers are indexed individually. (J.P.N.)

  14. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences.

    Science.gov (United States)

    Gross, Bethany C; Erkal, Jayda L; Lockwood, Sarah Y; Chen, Chengpeng; Spence, Dana M

    2014-04-01

    Nearing 30 years since its introduction, 3D printing technology is set to revolutionize research and teaching laboratories. This feature encompasses the history of 3D printing, reviews various printing methods, and presents current applications. The authors offer an appraisal of the future direction and impact this technology will have on laboratory settings as 3D printers become more accessible.

  15. Learning to Provide 3D Virtual Reference: A Library Science Assignment

    Science.gov (United States)

    Johnson, Megan; Purpur, Geraldine; Abbott, Lisa T.

    2009-01-01

    In spring semester 2009, two of the authors taught LIB 5020--Information Sources & Services to graduate library science students at Appalachian State University. The course covers information seeking patterns and provides an overview of reference services. The course is also designed to examine and evaluate library reference materials and other…

  16. 液晶材料与3D显示%Liquid Crystal Materials and 3D Display

    Institute of Scientific and Technical Information of China (English)

    张兴; 郑成武; 李宁; 周兴丹; 李正强; 华瑞茂

    2012-01-01

    The article describes the basic principles of the 3D display, highlights the current mainstream 3D display types, including glasses 3D technology and naked eye 3D technology. Glasses 3D technology contains anaglyphic 3D, polarized 3D and active shutter 3D; naked eye 3D technology contains parallax barrier 3D, lenticular lens 3D, directional backlight 3D and multi-layer display 3D. The realization methods of 3D images and applications of the different 3D technologies mentioned above are described. Advantages and disadvantages of the 3D technologies concerning liquid crystal display are discussed in details. According to the characteristics of liquid crystal materials and 3D liquid crystal display, rapid response property of liquid crystal materials used in 3D display panels are concluded. Also requirements of the optical anisotropy parameters of liquid crystal materials are summarized.%介绍了3D显示的基本原理,重点介绍了目前3D显示的主流技术类型,包含了眼镜式3D技术以及裸眼式3D技术,其中眼镜式3D技术包含色差式3D技术、偏光式3D技术和主动快门式3D技术;裸眼式3D技术包含视差屏障式3D技术、柱状透镜式3D技术、指向光源式3D技术和多层显示式3D技术.阐述了各种3D显示技术的基本实现原理和应用领域、并对涉及液晶显示的几种3D技术的优缺点进行了对比.结合液晶材料的特点与3D液晶显示的实际要求,阐述了3D液晶面板对液晶材料快速响应方面的要求,以及液晶透镜对液晶材料光学各向异性参数的要求.

  17. GEM printer: 3D gel printer for free shaping of functional gel engineering materials

    Science.gov (United States)

    Furukawa, Hidemitsu; Muroi, Hisato; Yamamoto, Kouki; Serizawa, Ryo; Gong, Jin

    2013-04-01

    In the past decade, several high-strength gels have been developed. These gels are expected to use as a kind of new engineering materials in the fields of industry and medical as substitutes to polyester fibers, which are materials of artificial blood vessels. The gels have both low surface friction and well permeability due to a large amount of water absorbed in the gels, which are superiority of the gels compering to the polyester fibers. It is, however, difficult for gels to be forked structure or cavity structure by using cutting or mold. Consequently, it is necessary to develop the additive manufacturing device to synthesize and mode freely gels at the same time. Here we try to develop an optical 3D gel printer that enables gels to be shaped precisely and freely. For the free forming of high-strength gels, the 1st gels are ground to particles and mixed with 2nd pregel solution, and the mixed solution is gelled by the irradiation of UV laser beam through an optical fiber. The use of the optical fiber makes one-point UV irradiation possible. Since the optical fiber is controlled by 3D-CAD, the precise and free molding in XYZ directions is easily realized. We successfully synthesized tough gels using the gel printer.

  18. Table of 3D organ model IDs and organ names (PART-OF Tree) - BodyParts3D | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available [ Credits ] BLAST Search Image Search Home About Archive Update History Contact us BodyParts3D Table of 3D... organ model IDs and organ names (PART-OF Tree) Data detail Data name Table of 3D org...an model IDs and organ names (PART-OF Tree) Description of data contents List of downloadable 3D organ model...s in a tab-delimited text file format, describing the correspondence between 3D o...-OF Tree) File URL: ftp://ftp.biosciencedbc.jp/archive/bodyparts3d/LATEST/partof_parts_list_e.txt File size:

  19. A NURBS-based generalized finite element scheme for 3D simulation of heterogeneous materials

    Science.gov (United States)

    Safdari, Masoud; Najafi, Ahmad R.; Sottos, Nancy R.; Geubelle, Philippe H.

    2016-08-01

    A 3D NURBS-based interface-enriched generalized finite element method (NIGFEM) is introduced to solve problems with complex discontinuous gradient fields observed in the analysis of heterogeneous materials. The method utilizes simple structured meshes of hexahedral elements that do not necessarily conform to the material interfaces in heterogeneous materials. By avoiding the creation of conforming meshes used in conventional FEM, the NIGFEM leads to significant simplification of the mesh generation process. To achieve an accurate solution in elements that are crossed by material interfaces, the NIGFEM utilizes Non-Uniform Rational B-Splines (NURBS) to enrich the solution field locally. The accuracy and convergence of the NIGFEM are tested by solving a benchmark problem. We observe that the NIGFEM preserves an optimal rate of convergence, and provides additional advantages including the accurate capture of the solution fields in the vicinity of material interfaces and the built-in capability for hierarchical mesh refinement. Finally, the use of the NIGFEM in the computational analysis of heterogeneous materials is discussed.

  20. 3D Surface Profile and Color Stability of Tooth Colored Filling Materials after Bleaching

    Directory of Open Access Journals (Sweden)

    Bryant Anthony Irawan

    2015-01-01

    Full Text Available This study aims to evaluate the effects of vital tooth bleaching with carbamide peroxide home bleaching and in-office bleaching on the color stability and 3D surface profile of dental restorative filling materials. Thirty discs (n=30 measure 6 mm in diameter and 2 mm thick for each of three restorative materials. These are nanofilled composite Filtek Z350 XT, the submicron composite Estelite Σ Quick, and nanofilled glass ionomer Ketac N100 nanoionomer and were fabricated in shade A2. Each group was further divided into three subgroups (n=10: subgroup A (Opalescence PF, subgroup B (Opalescence Boost in-office bleaching, and subgroup C (distilled water serving as control. Samples were bleached according to the manufacturer’s instructions for a period of two weeks. The Commission Internationale de L’Eclairage (CIE L*, a*, b* system was chosen for image processing, while 3D surface profile was tested with atomic force microscopy (AFM. Statistical analyses were performed with the Mann-Whitney tests and Krusal-Wallis with a P value of ≤0.05. The three restorative materials showed significant color changes (ΔE; P≤0.05. In diminishing order, the mean color changes recorded were Estelite Σ (3.82 ± 1.6 > Ketac Nano (2.97 ± 1.2 > Filtek Z350 XT (2.25 ± 1.0. However, none of the tested materials showed statistically significant changes in surface roughness; P>0.05.

  1. ALE3D Model Predictions and Materials Characterization for the Cookoff Response of PBXN-109

    Energy Technology Data Exchange (ETDEWEB)

    McClelland, M A; Maienschein, J L; Nichols, A L; Wardell, J F; Atwood, A I; Curran, P O

    2002-03-19

    ALE3D simulations are presented for the thermal explosion of PBXN-109 (RDX, AI, HTPB, DOA) in support of an effort by the U. S. Navy and Department of Energy (DOE) to validate computational models. The U.S. Navy is performing benchmark tests for the slow cookoff of PBXN-109 in a sealed tube. Candidate models are being tested using the ALE3D code, which can simulate the coupled thermal, mechanical, and chemical behavior during heating, ignition, and explosion. The strength behavior of the solid constituents is represented by a Steinberg-Guinan model while polynomial and gamma-law expressions are used for the Equation Of State (EOS) for the solid and gas species, respectively. A void model is employed to represent the air in gaps. ALE3D model 'parameters are specified using measurements of thermal and mechanical properties including thermal expansion, heat capacity, shear modulus, and bulk modulus. A standard three-step chemical kinetics model is used during the thermal ramp, and a pressure-dependent burn front model is employed during the rapid expansion. Parameters for the three-step kinetics model are specified using measurements of the One-Dimensional-Time-to-Explosion (ODTX), while measurements for burn rate of pristine and thermally damaged material are employed to determine parameters in the burn front model. Results are given for calculations in which heating, ignition, and explosion are modeled in a single simulation. We compare model results to measurements for the cookoff temperature and tube wall strain.

  2. Hubble 3D: A Science and Hollywood Collaboration Made (Nearly) in Heaven

    Science.gov (United States)

    Showstack, Randy

    2010-04-01

    Just 2 days after the 2010 Academy Awards® ceremony in early March bestowed Oscars® for motion picture achievements, NASA deputy administrator Lori Garver touted a new film about the Hubble Space Telescope, Hubble 3D, for best drama, special effects, screenplay, actors and actress, and director and producer. The 43-minute IMAX and Warner Brothers Pictures production, which opened in theaters on 19 March, is an example of the ability of Hollywood and the science community to partner in providing a dynamic educational and entertaining product, according to a number of people associated with the film. Sharing the red carpet at the Smithsonian National Air and Space Museum in Washington, D. C., with astronauts and others to mark the world premiere, Garver said the film shows the drama of the astronauts’ efforts to repair the telescope while traveling 17,000 miles per hour and performing grueling space walks (see Figure 1). “We have literally opened our eyes on the universe through this telescope,” she said. “This is a taxpayer-funded agency, and we are giving back to the public the very story that they paid for.”

  3. Art-Science-Technology collaboration through immersive, interactive 3D visualization

    Science.gov (United States)

    Kellogg, L. H.

    2014-12-01

    At the W. M. Keck Center for Active Visualization in Earth Sciences (KeckCAVES), a group of geoscientists and computer scientists collaborate to develop and use of interactive, immersive, 3D visualization technology to view, manipulate, and interpret data for scientific research. The visual impact of immersion in a CAVE environment can be extremely compelling, and from the outset KeckCAVES scientists have collaborated with artists to bring this technology to creative works, including theater and dance performance, installations, and gamification. The first full-fledged collaboration designed and produced a performance called "Collapse: Suddenly falling down", choreographed by Della Davidson, which investigated the human and cultural response to natural and man-made disasters. Scientific data (lidar scans of disaster sites, such as landslides and mine collapses) were fully integrated into the performance by the Sideshow Physical Theatre. This presentation will discuss both the technological and creative characteristics of, and lessons learned from the collaboration. Many parallels between the artistic and scientific process emerged. We observed that both artists and scientists set out to investigate a topic, solve a problem, or answer a question. Refining that question or problem is an essential part of both the creative and scientific workflow. Both artists and scientists seek understanding (in this case understanding of natural disasters). Differences also emerged; the group noted that the scientists sought clarity (including but not limited to quantitative measurements) as a means to understanding, while the artists embraced ambiguity, also as a means to understanding. Subsequent art-science-technology collaborations have responded to evolving technology for visualization and include gamification as a means to explore data, and use of augmented reality for informal learning in museum settings.

  4. Interactive 3D Visualization of the Great Lakes of the World (GLOW) as a Tool to Facilitate Informal Science Education

    Science.gov (United States)

    Yikilmaz, M.; Harwood, C. L.; Hsi, S.; Kellogg, L. H.; Kreylos, O.; McDermott, J.; Pellett, B.; Schladow, G.; Segale, H. M.; Yalowitz, S.

    2013-12-01

    Three-dimensional (3D) visualization is a powerful research tool that has been used to investigate complex scientific problems in various fields. It allows researchers to explore and understand processes and features that are not directly observable and help with building of new models. It has been shown that 3D visualization creates a more engaging environment for public audiences. Interactive 3D visualization can allow individuals to explore scientific concepts on their own. We present an NSF funded project developed in collaboration with UC Davis KeckCAVES, UC Davis Tahoe Environmental Research Center, ECHO Lake Aquarium & Science Center, and Lawrence Hall of Science. The Great Lakes of the World (GLOW) project aims to build interactive 3D visualization of some of the major lakes and reservoirs of the world to enhance public awareness and increase understanding and stewardship of freshwater lake ecosystems, habitats, and earth science processes. The project includes a collection of publicly available satellite imagery and digital elevation models at various resolutions for the 20 major lakes of the world as well as the bathymetry data for the 12 lakes. It also includes the vector based 'Global Lakes and Wetlands Database (GLWD)' by the World Wildlife Foundation (WWF) and the Center for Environmental System Research University of Kassel, Germany and the CIA World DataBank II data sets to show wetlands and water reservoirs at global scale. We use a custom virtual globe (Crusta) developed at the UC Davis KeckCAVES. Crusta is designed to specifically allow for visualization and mapping of features in very high spatial resolution (learn about the lake and watershed processes as well as geologic processes (e.g. faulting, landslide, glacial, volcanic) that have shaped these lakes. With the advances in 3D imaging technology, the hardware is becoming more affordable and accessible. Affordable 3D projectors, monitors and TVs will allow schools and informal science centers

  5. Research into 3D Printed Materials & Methods: An exploratory practice based approach into the application of 3D technologies for textile & surface design

    OpenAIRE

    Taylor, Andrew; Lewis, Linda; Ward, Geoff

    2013-01-01

    Virtual fabrics may not be material, but they are real nonetheless. As textiles surfaces find new expressions in engineering, science, computer technology and other disciplines, a new textiles culture is emerging (Quinn, 2010). This emergence is being generated by experimental approaches and creative art, design & science collaborations through digital communication technologies and tools, which is positioning pattern making within wider systems of reference. The focus of the presentatio...

  6. Materials Sciences Programs

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    A compilation and index of the ERDA materials sciences program is presented. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs. (GHT)

  7. Rudiments of materials science

    CERN Document Server

    Pillai, SO

    2007-01-01

    Writing a comprehensive book on Materials Science for the benefit of undergraduate courses in Science and Engineering was a day dream of the first author, Dr. S.O. Pillai for a long period. However, the dream became true after a lapse of couple of years. Lucid and logical exposition of the subject matter is the special feature of this book.

  8. A 3D Osteoblast In Vitro Model for the Evaluation of Biomedical Materials

    Directory of Open Access Journals (Sweden)

    Luciana Restle

    2015-01-01

    Full Text Available Biomedical materials for bone therapy are usually assessed for their biocompatibility and safety employing animal models or in vitro monolayer cell culture assays. However, alternative in vitro models may offer controlled conditions closer to physiological responses and reduce animal testing. In this work, we developed a 3D spheroidal cell culture with potential to evaluate simultaneously material-cell and cell-cell interactions. Different cell densities of murine MC3T3-E1 preosteoblasts or human primary osteoblasts (HOb were used to determine the ideal procedure of spheroidal cultures and their adequacy to material testing. Cells were seeded on 96-well plates coated with agar and incubated in agitation from 1 to 7 days. Aggregate morphology was qualitatively evaluated considering the shape, size, repeatability, handling, and stability of spheroids. Higher cell densities induced more stable spheroids, and handling was considered appropriate starting from 2 × 104 cells. Confocal microscopy and Scanning Electron Microscopy indicate that most cells within the aggregate core are viable. Exposure to positive controls has shown a dose dependent cell death as measured by XTT assay. Aggregates were stable and presented good viability when employed on standardized testing of metallic and polymer-based biomaterials. Therefore, osteoblast spheroids may provide a promising tool for material screening and biocompatibility testing.

  9. Bending response of 3-D woven and braided preform composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Pochiraju, K.; Parvizi-Majidi, A.; Chou, T.W. [Univ. of Delaware, Newark, DE (United States); Shah, B. [Lockheed Aeronautical Systems Company, Marietta, GA (United States)

    1994-12-31

    Three dimensional textile carbon-epoxy composites exhibit general anisotropy. Further, these materials may possess different modulus in uniaxial tension than that in compression. In an earlier material characterization effort, the tension, compression, and shear properties of these composites were determined. In this paper, theoretical modeling of flexure of the textile composites and experimental correlation are presented. Four point bending tests were conducted according to STM D709 standards to determine the load to mid-span deflection relationships for typical textile composites. The results of experimental analysis are compared with classical beam theory, theory of elasticity solutions considering material orthotropy and shear deflection, and finite element analysis considering material orthotropy and finite deformation/rotations. The derivation of a harmonic function, required for the theory of elasticity solution, is described in the paper. Homogeneous orthotropic elastic properties are assumed for the 3-D textile composites, which is a reasonable approximation for specimens considerably larger than the repeated geometric unit of the fiber preform. The so called ``flex modulus`` is determined from the experimental data.

  10. Fabrication, Characterization, And Deformation of 3D Structural Meta-Materials

    Science.gov (United States)

    Montemayor, Lauren C.

    Current technological advances in fabrication methods have provided pathways to creating architected structural meta-materials similar to those found in natural organisms that are structurally robust and lightweight, such as diatoms. Structural meta-materials are materials with mechanical properties that are determined by material properties at various length scales, which range from the material microstructure (nm) to the macro-scale architecture (mum -- mm). It is now possible to exploit material size effect, which emerge at the nanometer length scale, as well as structural effects to tune the material properties and failure mechanisms of small-scale cellular solids, such as nanolattices. This work demonstrates the fabrication and mechanical properties of 3-dimensional hollow nanolattices in both tension and compression. Hollow gold nanolattices loaded in uniaxial compression demonstrate that strength and stiffness vary as a function of geometry and tube wall thickness. Structural effects were explored by increasing the unit cell angle from 30° to 60° while keeping all other parameters constant; material size effects were probed by varying the tube wall thickness, t, from 200nm to 635nm, at a constant relative density and grain size. In-situ uniaxial compression experiments reveal an order-of-magnitude increase in yield stress and modulus in nanolattices with greater lattice angles, and a 150% increase in the yield strength without a concomitant change in modulus in thicker-walled nanolattices for fixed lattice angles. These results imply that independent control of structural and material size effects enables tunability of mechanical properties of 3-dimensional architected meta-materials and highlight the importance of material, geometric, and microstructural effects in small-scale mechanics. This work also explores the flaw tolerance of 3D hollow-tube alumina kagome nanolattices with and without pre-fabricated notches, both in experiment and simulation

  11. Materials Science Laboratory

    Science.gov (United States)

    Jackson, Dionne

    2005-01-01

    The NASA Materials Science Laboratory (MSL) provides science and engineering services to NASA and Contractor customers at KSC, including those working for the Space Shuttle. International Space Station. and Launch Services Programs. These services include: (1) Independent/unbiased failure analysis (2) Support to Accident/Mishap Investigation Boards (3) Materials testing and evaluation (4) Materials and Processes (M&P) engineering consultation (5) Metrology (6) Chemical analysis (including ID of unknown materials) (7) Mechanical design and fabrication We provide unique solutions to unusual and urgent problems associated with aerospace flight hardware, ground support equipment and related facilities.

  12. Carbon Nanofiber/3D Nanoporous Silicon Hybrids as High Capacity Lithium Storage Materials.

    Science.gov (United States)

    Park, Hyeong-Il; Sohn, Myungbeom; Kim, Dae Sik; Park, Cheolho; Choi, Jeong-Hee; Kim, Hansu

    2016-04-21

    Carbon nanofiber (CNF)/3D nanoporous (3DNP) Si hybrid materials were prepared by chemical etching of melt-spun Si/Al-Cu-Fe alloy nanocomposites, followed by carbonization using a pitch. CNFs were successfully grown on the surface of 3DNP Si particles using residual Fe impurities after acidic etching, which acted as a catalyst for the growth of CNFs. The resulting CNF/3DNP Si hybrid materials showed an enhanced cycle performance up to 100 cycles compared to that of the pristine Si/Al-Cu-Fe alloy nanocomposite as well as that of bare 3DNP Si particles. These results indicate that CNFs and the carbon coating layer have a beneficial effect on the capacity retention characteristics of 3DNP Si particles by providing continuous electron-conduction pathways in the electrode during cycling. The approach presented here provides another way to improve the electrochemical performances of porous Si-based high capacity anode materials for lithium-ion batteries. PMID:26970098

  13. Materials science and engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.

    1997-02-01

    During FY-96, work within the Materials Science and Engineering Thrust Area was focused on material modeling. Our motivation for this work is to develop the capability to study the structural response of materials as well as material processing. These capabilities have been applied to a broad range of problems, in support of many programs at Lawrence Livermore National Laboratory. These studies are described in (1) Strength and Fracture Toughness of Material Interfaces; (2) Damage Evolution in Fiber Composite Materials; (3) Flashlamp Envelope Optical Properties and Failure Analysis; (4) Synthesis and Processing of Nanocrystalline Hydroxyapatite; and (5) Room Temperature Creep Compliance of Bulk Kel-E.

  14. 3D Printing Meets Astrophysics: A New Way to Visualize and Communicate Science

    Science.gov (United States)

    Madura, Thomas Ignatius; Steffen, Wolfgang; Clementel, Nicola; Gull, Theodore R.

    2015-08-01

    3D printing has the potential to improve the astronomy community’s ability to visualize, understand, interpret, and communicate important scientific results. I summarize recent efforts to use 3D printing to understand in detail the 3D structure of a complex astrophysical system, the supermassive binary star Eta Carinae and its surrounding bipolar ‘Homunculus’ nebula. Using mapping observations of molecular hydrogen line emission obtained with the ESO Very Large Telescope, we obtained a full 3D model of the Homunculus, allowing us to 3D print, for the first time, a detailed replica of a nebula (Steffen et al. 2014, MNRAS, 442, 3316). I also present 3D prints of output from supercomputer simulations of the colliding stellar winds in the highly eccentric binary located near the center of the Homunculus (Madura et al. 2015, arXiv:1503.00716). These 3D prints, the first of their kind, reveal previously unknown ‘finger-like’ structures at orbital phases shortly after periastron (when the two stars are closest to each other) that protrude outward from the spiral wind-wind collision region. The results of both efforts have received significant media attention in recent months, including two NASA press releases (http://www.nasa.gov/content/goddard/astronomers-bring-the-third-dimension-to-a-doomed-stars-outburst/ and http://www.nasa.gov/content/goddard/nasa-observatories-take-an-unprecedented-look-into-superstar-eta-carinae/), demonstrating the potential of using 3D printing for astronomy outreach and education. Perhaps more importantly, 3D printing makes it possible to bring the wonders of astronomy to new, often neglected, audiences, i.e. the blind and visually impaired.

  15. Experimental Investigation of Material Flows Within FSWs Using 3D Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Charles R. Tolle; Timothy A. White; Karen S. Miller; Denis E. Clark; Herschel B. Smartt

    2008-06-01

    There exists significant prior work using tracers or pre-placed hardened markers within friction stir welding (FSWing) to experimentally explore material flow within the FSW process. Our experiments replaced markers with a thin sheet of copper foil placed between the 6061 aluminum lap and butt joints that were then welded. The absorption characteristics of x-rays for copper and aluminum are significantly different allowing for non-destructive evaluation (NDE) methods such as x-ray computed tomography (CT) to be used to demonstrate the material movement within the weldment on a much larger scale than previously shown. 3D CT reconstruction of the copper components of the weldment allows for a unique view into the final turbulent state of the welding process as process parameters are varied. The x-ray CT data of a section of the weld region was collected using a cone-beam x-ray imaging system developed at the INL. Six-hundred projections were collected over 360-degrees using a 160-kVp Bremsstrahlung x-ray generator (25-micrometer focal spot) and amorphoussilicon x-ray detector. The region of the object that was imaged was about 3cm tall and 1.5cm x 1cm in cross section, and was imaged at a magnification of about 3.6x. The data were reconstructed on a 0.5x0.5x0.5 mm3 voxel grid. After reconstruction, the aluminum and copper could be easily discriminated using a gray level threshold allowing visualization of the copper components. Fractal analysis of the tomographic reconstructed material topology is investigated as a means to quantify macro level material flow based on process parameters. The results of multi-pass FSWs show increased refinement of the copper trace material. Implications of these techniques for quantifying process flow are discussed.

  16. Materials science and engineering

    Energy Technology Data Exchange (ETDEWEB)

    Holden, T.M.

    1995-10-01

    The science-based stockpile stewardship program emphasizes a better understanding of how complex components function through advanced computer calculations. Many of the problem areas are in the behavior of materials making up the equipment. The Los Alamos Neutron Science Center (LANSCE) can contribute to solving these problems by providing diagnostic tools to examine parts noninvasively and by providing the experimental tools to understand material behavior in terms of both the atomic structure and the microstructure. Advanced computer codes need experimental information on material behavior in response to stress, temperature, and pressure as input, and they need benchmarking experiments to test the model predictions for the finished part.

  17. Characterization of fatigue resistance in photochromic composite materials for 3D rewritable optical memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Samoylova, Elena, E-mail: Elena.Samoylova@physik.uni-muenchen.de [Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy); Dallari, William; Allione, Marco; Pignatelli, Francesca; Marini, Lara; Cingolani, Roberto; Diaspro, Alberto [Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy); Athanassiou, Athanassia, E-mail: athanassia.athanassiou@iit.it [Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy); Center for Biomolecular Nanotechnologies-Unile, Istituto Italiano di Tecnologia, via Barsanti, 73010 Arnesano, Lecce (Italy)

    2013-06-01

    Highlights: • Fatigue resistance of diarylethene–polymer composites was tested with optical absorption and fluorescence methods upon repetitive UV–VIS irradiation. • Significant differences in fatigue were found in different polymeric matrices and in one-photon and two-photon excitation experiments. • Several explanations for fatigue resistance of the composites are proposed based on the physico-chemical properties of the diarylethenes and polymeric matrices. -- Abstract: Fatigue resistance of the photochromic diarylethene molecules 1,2-bis[2-methylbenzo[b]thyophen-3-yl] -3,3,4,4,5,5-hexafluoro-1-cyclopentene embedded in three different acrylic polymers is studied upon multiple coloration–decoloration cycles. The resistance to photofatigue is found to be different in the three polymeric materials when one-photon excitation was used for the reversible photoconversion experiment. In particular, the photochromic molecules lose their photoisomerization ability faster if they are embedded in poly(methyl methacrylate) (PMMA) with respect to poly(ethyl methacrylate-co-methyl acrylate) (PEMMA) and poly(ethyl methacrylate) (PEMA). We propose several explanations based on the physico-chemical properties of the matrix and of the photochromic molecules. In the case of two-photon excitation, which is necessary for 3D optical writing, the fatigue resistance is found to be poorer than in the one-photon case. The accelerated photodegradation can be assigned to the non-linear nature of interaction between the polymeric composite material and light.

  18. Characterization of fatigue resistance in photochromic composite materials for 3D rewritable optical memory applications

    International Nuclear Information System (INIS)

    Highlights: • Fatigue resistance of diarylethene–polymer composites was tested with optical absorption and fluorescence methods upon repetitive UV–VIS irradiation. • Significant differences in fatigue were found in different polymeric matrices and in one-photon and two-photon excitation experiments. • Several explanations for fatigue resistance of the composites are proposed based on the physico-chemical properties of the diarylethenes and polymeric matrices. -- Abstract: Fatigue resistance of the photochromic diarylethene molecules 1,2-bis[2-methylbenzo[b]thyophen-3-yl] -3,3,4,4,5,5-hexafluoro-1-cyclopentene embedded in three different acrylic polymers is studied upon multiple coloration–decoloration cycles. The resistance to photofatigue is found to be different in the three polymeric materials when one-photon excitation was used for the reversible photoconversion experiment. In particular, the photochromic molecules lose their photoisomerization ability faster if they are embedded in poly(methyl methacrylate) (PMMA) with respect to poly(ethyl methacrylate-co-methyl acrylate) (PEMMA) and poly(ethyl methacrylate) (PEMA). We propose several explanations based on the physico-chemical properties of the matrix and of the photochromic molecules. In the case of two-photon excitation, which is necessary for 3D optical writing, the fatigue resistance is found to be poorer than in the one-photon case. The accelerated photodegradation can be assigned to the non-linear nature of interaction between the polymeric composite material and light

  19. Recipe for High Moment Materials with Rare-earth and 3d Transition Metal Composites.

    Science.gov (United States)

    Autieri, Carmine; Kumar, P Anil; Walecki, Dirk; Webers, Samira; Gubbins, Mark A; Wende, Heiko; Sanyal, Biplab

    2016-01-01

    Materials with high volume magnetization are perpetually needed for the generation of sufficiently large magnetic fields by writer pole of magnetic hard disks, especially for achieving increased areal density in storage media. In search of suitable materials combinations for this purpose, we have employed density functional theory to predict the magnetic coupling between iron and gadolinium layers separated by one to several monolayers of 3d transition metals (Sc-Zn). We demonstrate that it is possible to find ferromagnetic coupling for many of them and in particular for the early transition metals giving rise to high moment. Cr and Mn are the only elements able to produce a significant ferromagnetic coupling for thicker spacer layers. We also present experimental results on two trilayer systems Fe/Sc/Gd and Fe/Mn/Gd. From the experiments, we confirm a ferromagnetic coupling between Fe and Gd across a 3 monolayers Sc spacer or a Mn spacer thicker than 1 monolayer. In addition, we observe a peculiar dependence of Fe/Gd magnetic coupling on the Mn spacer thickness. PMID:27381456

  20. Recipe for High Moment Materials with Rare-earth and 3d Transition Metal Composites

    Science.gov (United States)

    Autieri, Carmine; Kumar, P. Anil; Walecki, Dirk; Webers, Samira; Gubbins, Mark A.; Wende, Heiko; Sanyal, Biplab

    2016-01-01

    Materials with high volume magnetization are perpetually needed for the generation of sufficiently large magnetic fields by writer pole of magnetic hard disks, especially for achieving increased areal density in storage media. In search of suitable materials combinations for this purpose, we have employed density functional theory to predict the magnetic coupling between iron and gadolinium layers separated by one to several monolayers of 3d transition metals (Sc-Zn). We demonstrate that it is possible to find ferromagnetic coupling for many of them and in particular for the early transition metals giving rise to high moment. Cr and Mn are the only elements able to produce a significant ferromagnetic coupling for thicker spacer layers. We also present experimental results on two trilayer systems Fe/Sc/Gd and Fe/Mn/Gd. From the experiments, we confirm a ferromagnetic coupling between Fe and Gd across a 3 monolayers Sc spacer or a Mn spacer thicker than 1 monolayer. In addition, we observe a peculiar dependence of Fe/Gd magnetic coupling on the Mn spacer thickness. PMID:27381456

  1. Multi-contrast 3D X-ray imaging of porous and composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Sarapata, Adrian; Herzen, Julia [Lehrstuhl für Biomedizinische Physik, Physik-Department and Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Ruiz-Yaniz, Maite [Lehrstuhl für Biomedizinische Physik, Physik-Department and Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); European Synchrotron Radiation Facility, 38000 Grenoble (France); Zanette, Irene [Lehrstuhl für Biomedizinische Physik, Physik-Department and Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0QX (United Kingdom); Rack, Alexander [European Synchrotron Radiation Facility, 38000 Grenoble (France); Pfeiffer, Franz [Lehrstuhl für Biomedizinische Physik, Physik-Department and Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Institut für Diagnostische und Interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München, 81675 München (Germany)

    2015-04-13

    Grating-based X-ray computed tomography allows for simultaneous and nondestructive determination of the full X-ray complex index of refraction and the scattering coefficient distribution inside an object in three dimensions. Its multi-contrast capabilities combined with a high resolution of a few micrometers make it a suitable tool for assessing multiple phases inside porous and composite materials such as concrete. Here, we present quantitative results of a proof-of-principle experiment performed on a concrete sample. Thanks to the complementarity of the contrast channels, more concrete phases could be distinguished than in conventional attenuation-based imaging. The phase-contrast reconstruction shows high contrast between the hardened cement paste and the aggregates and thus allows easy 3D segmentation. Thanks to the dark-field image, micro-cracks inside the coarse aggregates are visible. We believe that these results are extremely interesting in the field of porous and composite materials studies because of unique information provided by grating interferometry in a non-destructive way.

  2. Materials Science Programs

    International Nuclear Information System (INIS)

    The Division of Materials Sciences is located within the Department of Energy in the Office of Basic Energy Sciences. The Office of Basic Energy Sciences reports to the Director of the Office of Energy Research. The Director of this office is appointed by the President with Senate consent. The Director advises the Secretary on the physical research program; monitors the Department's R ampersand D programs; advises the Secretary on management of the laboratories under the jurisdiction of the Department, excluding those that constitute part of the nuclear weapon complex; and advises the Secretary on basic and applied research activities of the Department. The research covers a spectrum of scientific and engineering areas of interest to the Department of Energy and is conducted generally by personnel trained in the disciplines of Solid State Physics, Metallurgy, Ceramics, Chemistry, Polymers and Materials Science. The Materials Sciences Division supports basic research on materials properties and phenomena important to all energy systems. The aim is to provide the necessary base of materials knowledge required to advance the nation's energy programs. This report contains a listing of research underway in FY 1989 together with a convenient index to the Division's programs

  3. Design and fabrication activity towards 3D negative refraction index materials in the IR region

    DEFF Research Database (Denmark)

    Malureanu, Radu; Andryieuski, Andrei; Lavrinenko, Andrei

    2009-01-01

    In this paper we present a new 3D isotropic structure that allows obtaining negative refraction index in the telecom wavelength as well as first fabrication efforts towards obtaining such structures.......In this paper we present a new 3D isotropic structure that allows obtaining negative refraction index in the telecom wavelength as well as first fabrication efforts towards obtaining such structures....

  4. High Torque Density Transverse Flux Machine without the Need to Use SMC Material for 3D Flux Paths

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Wu, Weimin

    2015-01-01

    machine topology proposed in this paper, by advantageously utilizing the magnetic flux path provided by an additional rotor, use of laminations that allow 2-D flux paths only will be sufficient to accomplish the required 3-D flux paths. The machine also has a high torque density and is therefore......This paper presents a new transverse flux permanent magnet machine. In a normal transverse flux machine, complicated 3-D flux paths often exist. Such 3-D flux paths would require the use of soft magnetic composites material instead of laminations for construction of the machine stator. In the new...

  5. Novel methods for estimating 3D distributions of radioactive isotopes in materials

    Science.gov (United States)

    Iwamoto, Y.; Kataoka, J.; Kishimoto, A.; Nishiyama, T.; Taya, T.; Okochi, H.; Ogata, H.; Yamamoto, S.

    2016-09-01

    In recent years, various gamma-ray visualization techniques, or gamma cameras, have been proposed. These techniques are extremely effective for identifying "hot spots" or regions where radioactive isotopes are accumulated. Examples of such would be nuclear-disaster-affected areas such as Fukushima or the vicinity of nuclear reactors. However, the images acquired with a gamma camera do not include distance information between radioactive isotopes and the camera, and hence are "degenerated" in the direction of the isotopes. Moreover, depth information in the images is lost when the isotopes are embedded in materials, such as water, sand, and concrete. Here, we propose two methods of obtaining depth information of radioactive isotopes embedded in materials by comparing (1) their spectra and (2) images of incident gamma rays scattered by the materials and direct gamma rays. In the first method, the spectra of radioactive isotopes and the ratios of scattered to direct gamma rays are obtained. We verify experimentally that the ratio increases with increasing depth, as predicted by simulations. Although the method using energy spectra has been studied for a long time, an advantage of our method is the use of low-energy (50-150 keV) photons as scattered gamma rays. In the second method, the spatial extent of images obtained for direct and scattered gamma rays is compared. By performing detailed Monte Carlo simulations using Geant4, we verify that the spatial extent of the position where gamma rays are scattered increases with increasing depth. To demonstrate this, we are developing various gamma cameras to compare low-energy (scattered) gamma-ray images with fully photo-absorbed gamma-ray images. We also demonstrate that the 3D reconstruction of isotopes/hotspots is possible with our proposed methods. These methods have potential applications in the medical fields, and in severe environments such as the nuclear-disaster-affected areas in Fukushima.

  6. Calcium phosphate/microgel composites for 3D powderbed printing of ceramic materials.

    Science.gov (United States)

    Birkholz, Mandy-Nicole; Agrawal, Garima; Bergmann, Christian; Schröder, Ricarda; Lechner, Sebastian J; Pich, Andrij; Fischer, Horst

    2016-06-01

    Composites of microgels and calcium phosphates are promising as drug delivery systems and basic components for bone substitute implants. In this study, we synthesized novel composite materials consisting of pure β-tricalcium phosphate and stimuli-responsive poly(N-vinylcaprolactam-co-acetoacetoxyethyl methacrylate-co-vinylimidazole) microgels. The chemical composition, thermal properties and morphology for obtained composites were extensively characterized by Fourier transform infrared, X-ray photoelectron spectroscopy, IGAsorp moisture sorption analyzer, thermogravimetric analysis, granulometric analysis, ESEM, energy dispersive X-ray spectroscopy and TEM. Mechanical properties of the composites were evaluated by ball-on-three-balls test to determine the biaxial strength. Furthermore, initial 3D powderbed-based printing tests were conducted with spray-dried composites and diluted 2-propanol as a binder to evaluate a new binding concept for β-tricalcium phosphate-based granulates. The printed ceramic bodies were characterized before and after a sintering step by ESEM. The hypothesis that the microgels act as polymer adhesive agents by efficient chemical interactions with the β-tricalcium phosphate particles was confirmed. The obtained composites can be used for the development of new scaffolds. PMID:25870955

  7. Calcium phosphate/microgel composites for 3D powderbed printing of ceramic materials.

    Science.gov (United States)

    Birkholz, Mandy-Nicole; Agrawal, Garima; Bergmann, Christian; Schröder, Ricarda; Lechner, Sebastian J; Pich, Andrij; Fischer, Horst

    2016-06-01

    Composites of microgels and calcium phosphates are promising as drug delivery systems and basic components for bone substitute implants. In this study, we synthesized novel composite materials consisting of pure β-tricalcium phosphate and stimuli-responsive poly(N-vinylcaprolactam-co-acetoacetoxyethyl methacrylate-co-vinylimidazole) microgels. The chemical composition, thermal properties and morphology for obtained composites were extensively characterized by Fourier transform infrared, X-ray photoelectron spectroscopy, IGAsorp moisture sorption analyzer, thermogravimetric analysis, granulometric analysis, ESEM, energy dispersive X-ray spectroscopy and TEM. Mechanical properties of the composites were evaluated by ball-on-three-balls test to determine the biaxial strength. Furthermore, initial 3D powderbed-based printing tests were conducted with spray-dried composites and diluted 2-propanol as a binder to evaluate a new binding concept for β-tricalcium phosphate-based granulates. The printed ceramic bodies were characterized before and after a sintering step by ESEM. The hypothesis that the microgels act as polymer adhesive agents by efficient chemical interactions with the β-tricalcium phosphate particles was confirmed. The obtained composites can be used for the development of new scaffolds.

  8. Handbook of 3D integration

    CERN Document Server

    Garrou , Philip; Ramm , Peter

    2014-01-01

    Edited by key figures in 3D integration and written by top authors from high-tech companies and renowned research institutions, this book covers the intricate details of 3D process technology.As such, the main focus is on silicon via formation, bonding and debonding, thinning, via reveal and backside processing, both from a technological and a materials science perspective. The last part of the book is concerned with assessing and enhancing the reliability of the 3D integrated devices, which is a prerequisite for the large-scale implementation of this emerging technology. Invaluable reading fo

  9. Download - BodyParts3D | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available [ Credits ] BLAST Search Image Search Home About Archive Update History Contact us BodyParts3D Download... First of all, please read the license of this database. Data names and data descriptions are about the download... 2.0 , 1.0 , and 0.1 can be also downloaded.) # Data name File Simple search and download 1 README README_e....n names (IS-A Tree) isa_parts_list_e.txt (126 KB) Simple search and download 4 Ta...ble of 3D organ model IDs and organ names (PART-OF Tree) partof_parts_list_e.txt (58 KB) Simple search and download

  10. License - BodyParts3D | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available BodyParts3D License License to Use This Database Last updated : 2011/08/25 You may use this database in comp... regarding the use of this database and the requirements you must follow in using this database.... The license for this database is specified in the Creative Commons Attribution-Share Alike 2....1 Japan. If you use data from this database, please be sure attribute this database as follows: BodyParts3D...e 2.1 Japan. The summary of the Creative Commons Attribution-Share Alike 2.1 Japan is found here . With regard to this database

  11. Effect of a Material Contrast on a Dynamic Rupture: 3-D

    Science.gov (United States)

    Harris, R. A.; Day, S. M.

    2003-12-01

    We use numerical simulations of spontaneously propagating ruptures to examine the effect of a material contrast on earthquake dynamics. We specifically study the case of a lateral contrast whereby the fault is the boundary between two different rock-types. This scenario was previously studied in two-dimensions by Harris and Day [BSSA, 1997], and Andrews and Ben-Zion [JGR, 1997], in addition to subsequent 2-D studies, but it has not been known if the two-dimensional results are applicable to the real three-dimensional world. The addition of the third dimension implies a transition from pure mode II (i.e., plane-strain) to mixed-mode crack dynamics, which is more complicated since in mode II the shear and normal stresses are coupled whereas in mode III (i.e., anti-plane strain) they are not coupled. We use a slip-weakening fracture criterion and examine the effect on an earthquake rupture of material contrasts of up to 50 percent across the fault zone. We find a surprisingly good agreement between our earlier 2-D results, and our 3-D results for along-strike propagation. We find that the analytical solution presented in Harris and Day [BSSA, 1997] does an excellent job at predicting the bilateral, along-strike rupture velocities for the three-dimensional situation. In contrast, the along-dip propagation behaves much as expected for a purely mode-III rupture, with the rupture velocities up-dip and down-dip showing the expected symmetries.

  12. Table of 3D organ model IDs and organ names (IS-A Tree) - BodyParts3D | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available sentation id ID of the corresponding 3D representation. ...d by a tab character in the file. Data item Description concept id ID of the corresponding FMA (Foundational Model of Anatomy). repre

  13. Calibration of 3D Woven Preform Design Code for CMC Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Mechanical and thermal performance of CMC components benefit from low part count, integrally fabricated designs of 3D woven reinforcement. The advantages of these...

  14. Calculation of Effective Material Strengths for 3D Woven Hybrid Preforms and Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The design concepts being considered for Heatshield for Extreme Entry Environment Technology (HEEET) rely on the use of 3D woven carbon fiber preforms. Therefore,...

  15. The modular approach enables a fully ab initio simulation of the contacts between 3D and 2D materials

    Science.gov (United States)

    Fediai, Artem; Ryndyk, Dmitry A.; Cuniberti, Gianaurelio

    2016-10-01

    Up to now, the electrical properties of the contacts between 3D metals and 2D materials have never been computed at a fully ab initio level due to the huge number of atomic orbitals involved in a current path from an electrode to a pristine 2D material. As a result, there are still numerous open questions and controversial theories on the electrical properties of systems with 3D/2D interfaces—for example, the current path and the contact length scalability. Our work provides a first-principles solution to this long-standing problem with the use of the modular approach, a method which rigorously combines a Green function formalism with the density functional theory (DFT) for this particular contact type. The modular approach is a general approach valid for any 3D/2D contact. As an example, we apply it to the most investigated among 3D/2D contacts—metal/graphene contacts—and show its abilities and consistency by comparison with existing experimental data. As it is applicable to any 3D/2D interface, the modular approach allows the engineering of 3D/2D contacts with the pre-defined electrical properties.

  16. The modular approach enables a fully ab initio simulation of the contacts between 3D and 2D materials.

    Science.gov (United States)

    Fediai, Artem; Ryndyk, Dmitry A; Cuniberti, Gianaurelio

    2016-10-01

    Up to now, the electrical properties of the contacts between 3D metals and 2D materials have never been computed at a fully ab initio level due to the huge number of atomic orbitals involved in a current path from an electrode to a pristine 2D material. As a result, there are still numerous open questions and controversial theories on the electrical properties of systems with 3D/2D interfaces-for example, the current path and the contact length scalability. Our work provides a first-principles solution to this long-standing problem with the use of the modular approach, a method which rigorously combines a Green function formalism with the density functional theory (DFT) for this particular contact type. The modular approach is a general approach valid for any 3D/2D contact. As an example, we apply it to the most investigated among 3D/2D contacts-metal/graphene contacts-and show its abilities and consistency by comparison with existing experimental data. As it is applicable to any 3D/2D interface, the modular approach allows the engineering of 3D/2D contacts with the pre-defined electrical properties. PMID:27502169

  17. 3D printing of textile-based structures by Fused Deposition Modelling (FDM) with different polymer materials

    Science.gov (United States)

    Melnikova, R.; Ehrmann, A.; Finsterbusch, K.

    2014-08-01

    3D printing is a form of additive manufacturing, i.e. creating objects by sequential layering, for pre-production or production. After creating a 3D model with a CAD program, a printable file is used to create a layer design which is printed afterwards. While often more expensive than traditional techniques like injection moulding, 3D printing can significantly enhance production times of small parts produced in small numbers, additionally allowing for large flexibility and the possibility to create parts that would be impossible to produce with conventional techniques. The Fused Deposition Modelling technique uses a plastic filament which is pushed through a heated extrusion nozzle melting the material. Depending on the material, different challenges occur in the production process, and the produced part shows different mechanical properties. The article describes some standard and novel materials and their influence on the resulting parts.

  18. Lasers in materials science

    CERN Document Server

    Ossi, Paolo; Zhigilei, Leonid

    2014-01-01

    This book covers various aspects of lasers in materials science, including a comprehensive overview on basic principles of laser-materials interactions and applications enabled by pulsed laser systems.  The material is organized in a coherent way, providing the reader with a harmonic architecture. While systematically covering the major current and emerging areas of lasers processing applications, the Volume provides examples of targeted modification of material properties achieved through careful control of the processing conditions and laser irradiation parameters. Special emphasis is placed on specific strategies aimed at nanoscale control of material structure and properties to match the stringent requirements of modern applications.  Laser fabrication of novel nanomaterials, which expands to the domains of photonics, photovoltaics, sensing, and biomedical applications, is also discussed in the Volume. This book assembles chapters based on lectures delivered at the Venice International School on Lasers...

  19. 3-D Multiphase Segmentation of X-Ray Micro Computed Tomography Data of Geologic Materials

    Science.gov (United States)

    Tuller, M.; Kulkarni, R.; Fink, W.

    2011-12-01

    Advancements of noninvasive imaging methods such as X-Ray Computed Tomography (CT) led to a recent surge of applications in Geoscience. While substantial efforts and resources have been devoted to advance CT technology and micro-scale analysis, the development of a stable 3-D multiphase image segmentation method applicable to large datasets is lacking. To eliminate the need for wet/dry or dual energy scans, image alignment, and subtraction analysis, commonly applied in synchrotron X-Ray micro CT, a segmentation method based on a Bayesian Markov Random Field (MRF) framework amenable to true 3-D multiphase processing was developed and evaluated. Furthermore, several heuristic and deterministic combinatorial optimization schemes required to solve the labeling problem of the MRF image model were implemented and tested for computational efficiency and their impact on segmentation results. Test results for natural and artificial porous media datasets demonstrate great potential of the MRF image model for 3-D multiphase segmentation.

  20. Co-Chairs’ Summary of Technical Session 3D. Nuclear Forensic Science: Radiochronometry

    International Nuclear Information System (INIS)

    This session focused on the outcomes of recent investigations at institutes specialized in the nuclear forensic age dating of nuclear material and other radioactive material. These innovative findings underscore the importance placed on the accurate measurements of the age of nuclear material and other radioactive material — the time of last radiochemical purification — as a critical tool for understanding material origin and history

  1. 3D RECONSTRUCTION AND ANALYSIS OF THE FRAGMENTED GRAINS IN A COMPOSITE MATERIAL

    Directory of Open Access Journals (Sweden)

    Luc Gillibert

    2013-06-01

    Full Text Available X-ray microtomography from solid propellant allows studying the microstructure of fragmented grains in damaged samples. A new reconstruction algorithm of fragmented grains for 3D images is introduced. Based on a watershed transform of a morphological closing of the input image, the algorithm can be used  with different sets of markers. Two of them are compared. After the grain reconstruction, a multiscale segmentation  algorithm is used to extract each fragment of the damaged grains. This allows an original quantitative study of the  fragmentation of each grain in 3D. Experimental results on X-ray microtomographic images of a solid propellant fragmented under compression are presented and validated.

  2. Measurement of material uniformity using 3-D position sensitive CdZnTe gamma-ray spectrometers

    CERN Document Server

    He, Z; Knoll, G F; Wehe, D K; Stahle, C M

    2000-01-01

    We present results from two 1 cm sup 3 CdZnTe gamma-ray spectrometers with full 3-D position sensitivity. To our knowledge, these are the first reported semiconductor spectrometers that provide independent spectral data for each of over 2000 volume elements. Energy resolutions of 1.5-1.6% FWHM and position resolutions of 0.7x0.7x0.5 mm were obtained at 662 keV gamma-ray energy from the central region of both detectors for single-pixel events. With the 3-D position sensing capability, variations in spectral response over the detector volume were recorded using a sup 1 sup 3 sup 7 Cs source. These measurements allow a study of full-energy peak efficiency, mean ionization energy and electron trapping as a function of 3-D position. The effects of material non-uniformity on detector spectroscopic performance are discussed.

  3. 3D network-like mesoporous NiCo2O4 nanostructures as advanced electrode material for supercapacitors

    International Nuclear Information System (INIS)

    Highlights: • 3D network-like mesoporous NiCo2O4 nanostructures were fabricated via a solvothermal route. • The obtained NiCo2O4 shows good electrochemical performances, especially rate capability. • Large BET surface area and abundant mesoporosity give excellent electrochemical performances. • This solvothermal method can be extended to prepare other binary or even ternary 3D metal oxides. - Abstract: 3D network-like mesoporous NiCo2O4 nanostructures have been successfully fabricated through a solvothermal route coupled with a post annealing treatment. Benefiting from its advantages of the unique 3D network-like structures with large specific surface area (170.6 m2 g−1), abundant mesoporosity (5–10 nm) and high electronic conductivity, the as-obtained NiCo2O4 manifests high specific capacitance of 931 F g−1 at 3 A g−1, remarkable capacity retention rate of 85.2 and 72.5% at 20 and 50 A g−1 compared with 2 A g−1 and superior cycling stability of 125.2% of initial capacity retention over 1000 cycles at 3 A g−1. The excellent electrochemical performances coupled with its facile and cost-effective way will render the 3D network-like mesoporous NiCo2O4 nanostructures as attractive electrode materials for promising application in supercapacitors

  4. Panel 3 - material science

    Energy Technology Data Exchange (ETDEWEB)

    Sarrao, John L [Los Alamos National Laboratory; Yip, Sidney [MIT

    2010-01-01

    In the last decades, NNSA's national security challenge has evolved, and the role of simulation and computation has grown dramatically. The process of certifying nuclear weapons performance has changed from one based on integrated tests to science-based certification in which underground nuclear tests have been replaced by large-scale simulations, appropriately validated with fundamental experimental data. Further, the breadth of national security challenges has expanded beyond stewardship of a nuclear deterrent to a broad range of global and asymmetric threats. Materials challenges are central to the full suite of these national security challenges. Mission requirements demand that materials perform predictably in extreme environments -- high pressure, high strain rate, and hostile irradiation and chemical conditions. Considerable advances have been made in incorporating fundamental materials physics into integrated codes used for component certification. On the other hand, significant uncertainties still remain, and materials properties, especially at the mesoscale, are key to understanding uncertainties that remain in integrated weapons performance codes and that at present are treated as empirical knobs. Further, additional national security mission challenges could be addressed more robustly with new and higher performing materials.

  5. 2D Maps, 3D Globes, and OGC Web Services Supporting Arctic Science through the Arctic Research Mapping Application (ARMAP)

    Science.gov (United States)

    Johnson, G. W.; Gaylord, A. G.; Brady, J.; Cody, R.; Ramirez, G.; Gonzalez, J. C.; Rubio, C.; Dover, M.; Garcia-Lavigne, D.; Manley, W.; Score, R.; Tweedie, C.

    2008-12-01

    The Arctic Research Mapping Application (ARMAP) is a suite of online services designed to provide support for Arctic science. These services include: a text based online search utility, 2D Internet Map Server (IMS), 3D globe applications (Google Earth and ArcGIS Explorer), Open Geospatial Consortium (OGC) Web Map Service (WMS) and Keyhole Markup Language (KML) Service , and a prototype 2D ArcGIS Server Web Mapping Application (WMA). Avoiding a duplication of effort has been a primary objective of the ARMAP project which incorporates best practices (e.g. OGC standard web services and metadata) and off the shelf technologies. The Arctic Research Logistics Support Service (ARLSS) database is the foundation of all the ARMAP services and includes US research funded by the National Science Foundation, National Aeronautics and Space Administration and National Oceanic and Atmospheric Administration. With ARMAP's 2D maps and 3D globes, users can navigate to areas of interest, view a variety of map layers, and explore U.S. federally funded research projects. Projects can be queried by location, year, funding program, discipline, and keyword. Links to specific information and other web sites associated with particular research projects are included. . The ARMAP suite provides tools for users of various levels of technical ability to interact with data by running text based queries, browsing in 2D or 3D, or importing the KML and OGC web services directly into their own GIS applications and virtual globes. With special emphasis on the International Polar Year (IPY), ARMAP has targeted science planners, scientists, educators, and the general public. In sum, ARMAP goes beyond a simple map display to enable analysis, synthesis, and coordination of Arctic research. ARMAP may be accessed via the gateway web site at http://www.armap.org.

  6. 3D analysis of functionally graded material plates with complex shapes and various holes

    Institute of Scientific and Technical Information of China (English)

    Zhi-yuan CAO; Shou-gao TANG; Guo-hua CHENG

    2009-01-01

    In this paper, the basic formulae for the semi-analytical graded FEM on FGM members are derived. Since FGM parameters vary along three space coordinates, the parameters can be integrated in mechanical equations. Therefore with the parameters of a given FGM plate, problems of FGM plate under various conditions can be solved. The approach uses 1D discretization to obtain 3D solutions, which is proven to be an effective numerical method for the mechanical analyses of FGM structures. Examples of FGM plates with complex shapes and various holes are presented.

  7. Animation 3D du Globe de la Science et de l'Innovation

    CERN Multimedia

    Albert Soubeyran

    2009-01-01

    Le Globe de la Science et de l'Innovation, dans toutes ses dimensions, survol extérieur et accès à la salle de conférence. On doit la Création architecturale à l'architecte Hervé Dessimoz et à l'ingénieur Thomas Büchi. Modélisation et Animation de Albert Soubeyran

  8. Computation of thermal properties via 3D homogenization of multiphase materials using FFT-based accelerated scheme

    CERN Document Server

    Lemaitre, Sophie; Choi, Daniel; Karamian, Philippe

    2015-01-01

    In this paper we study the thermal effective behaviour for 3D multiphase composite material consisting of three isotropic phases which are the matrix, the inclusions and the coating media. For this purpose we use an accelerated FFT-based scheme initially proposed in Eyre and Milton (1999) to evaluate the thermal conductivity tensor. Matrix and spherical inclusions media are polymers with similar properties whereas the coating medium is metallic hence better conducting. Thus, the contrast between the coating and the others media is very large. For our study, we use RVEs (Representative volume elements) generated by RSA (Random Sequential Adsorption) method developed in our previous works, then, we compute effective thermal properties using an FFT-based homogenization technique validated by comparison with the direct finite elements method. We study the thermal behaviour of the 3D-multiphase composite material and we show what features should be taken into account to make the computational approach efficient.

  9. 3D thermal hydraulic simulation of the hot channel of a typical material testing reactor under normal operation conditions

    Energy Technology Data Exchange (ETDEWEB)

    El-Morshedy, Salah El-Din; Salama, Amgad [Atomic Energy Authority, Cairo (Egypt). Reactors Dept.

    2010-09-15

    The hot channel in a typical Material Testing Reactor (MTR) is subjected to 3D simulation. Because of the existence of similarity planes, only a quarter of the hot channel including meat thickness, clad, and coolant channel is considered for CFD analysis using the FLUENT code. For the simulation, steady state normal operation regime at the reactor nominal power is assumed. In order to build confidence in our modeling approach, the results obtained in this work are compared with those obtained from the one-dimensional simulation code, MTRTHA. That is, modified variables were generated in order to match those obtained by MTRTHA and to allow comparisons. Quite good agreement is generally observed, however, the maximum clad surface temperature predicted by the 3D calculations, located at the clad mid-width, is higher than the 1D prediction by about 8 C but still below the onset of subcooled boiling by adequate safety margin. The results show quite interesting 3D patterns in both the flow field and the heat transfer. Temperature profiles, velocity profiles and contours are all presented to highlight the essential 3D features of this system. (orig.)

  10. Light Curing 3 D Printing Materials%光固化3D打印高分子材料

    Institute of Scientific and Technical Information of China (English)

    谢彪; 王小腾; 邱俊峰; 林润雄

    2014-01-01

    快速成型(RP)技术是近几十年发展起来的一项新兴技术,3D打印就是其中一种非常有前途的,被誉为推动了第三次工业革命快速发展的快速成型技术。本文就3D打印之一的光固化3D打印进行简单介绍,对光固化3D打印材料的组分、特点进行较详细的阐述,并对光固化3D打印高分子材料未来予以展望。%Rapid prototyping(RP)technology is a new technology developed in recent decades,3D printing,one kind of these rapid prototyping technology,is very promising and known as the promoted the rapid development of the third industrial revolution. This paper gave a briefintroduction to the light curing 3D printing,the light curing composition, characteristics of 3D printing materials were described in detail,and gave the expectation of 3D printing light curing polymer.

  11. How computer science can help in understanding the 3D genome architecture.

    Science.gov (United States)

    Shavit, Yoli; Merelli, Ivan; Milanesi, Luciano; Lio', Pietro

    2016-09-01

    Chromosome conformation capture techniques are producing a huge amount of data about the architecture of our genome. These data can provide us with a better understanding of the events that induce critical regulations of the cellular function from small changes in the three-dimensional genome architecture. Generating a unified view of spatial, temporal, genetic and epigenetic properties poses various challenges of data analysis, visualization, integration and mining, as well as of high performance computing and big data management. Here, we describe the critical issues of this new branch of bioinformatics, oriented at the comprehension of the three-dimensional genome architecture, which we call 'Nucleome Bioinformatics', looking beyond the currently available tools and methods, and highlight yet unaddressed challenges and the potential approaches that could be applied for tackling them. Our review provides a map for researchers interested in using computer science for studying 'Nucleome Bioinformatics', to achieve a better understanding of the biological processes that occur inside the nucleus.

  12. Study of materials and machines for 3D printed large-scale, flexible electronic structures using fused deposition modeling

    Science.gov (United States)

    Hwang, Seyeon

    The 3 dimensional printing (3DP), called to additive manufacturing (AM) or rapid prototyping (RP), is emerged to revolutionize manufacturing and completely transform how products are designed and fabricated. A great deal of research activities have been carried out to apply this new technology to a variety of fields. In spite of many endeavors, much more research is still required to perfect the processes of the 3D printing techniques especially in the area of the large-scale additive manufacturing and flexible printed electronics. The principles of various 3D printing processes are briefly outlined in the Introduction Section. New types of thermoplastic polymer composites aiming to specified functional applications are also introduced in this section. Chapter 2 shows studies about the metal/polymer composite filaments for fused deposition modeling (FDM) process. Various metal particles, copper and iron particles, are added into thermoplastics polymer matrices as the reinforcement filler. The thermo-mechanical properties, such as thermal conductivity, hardness, tensile strength, and fracture mechanism, of composites are tested to figure out the effects of metal fillers on 3D printed composite structures for the large-scale printing process. In Chapter 3, carbon/polymer composite filaments are developed by a simple mechanical blending process with an aim of fabricating the flexible 3D printed electronics as a single structure. Various types of carbon particles consisting of multi-wall carbon nanotube (MWCNT), conductive carbon black (CCB), and graphite are used as the conductive fillers to provide the thermoplastic polyurethane (TPU) with improved electrical conductivity. The mechanical behavior and conduction mechanisms of the developed composite materials are observed in terms of the loading amount of carbon fillers in this section. Finally, the prototype flexible electronics are modeled and manufactured by the FDM process using Carbon/TPU composite filaments and

  13. 3D nano-architecture in glass materials with a femtosecond laser

    International Nuclear Information System (INIS)

    The nonlinear interaction between glasses of transparent materials and a femtosecond laser called non-linear multiphoton effect was studied. The various nano- or microstructure changes caused by this effect have provided the internal modification inside glass materials, such as densification, valence reduction of active ions, new crystal precipitation, atom diffusion and so on. Such an ultrashort pulse laser effect of transparent materials was useful for fabrication of photonic devices such as optical waveguides and so on. In view of our findings, the advantage of a femtosecond laser combined with liquid crystal modulator was also introduced to make three-dimensional nano-architecture in materials. (author)

  14. Materials ``alchemy'': Shape-preserving chemical transformation of micro-to-macroscopic 3-D structures

    Science.gov (United States)

    Sandhage, Kenneth H.

    2010-06-01

    The scalable fabrication of nano-structured materials with complex morphologies and tailorable chemistries remains a significant challenge. One strategy for such synthesis consists of the generation of a solid structure with a desired morphology (a “preform”), followed by reactive conversion of the preform into a new chemistry. Several gas/solid and liquid/solid reaction processes that are capable of such chemical conversion into new micro-to-nano-structured materials, while preserving the macroscopic-to-microscopic preform morphologies, are described in this overview. Such shape-preserving chemical transformation of one material into another could be considered a modern type of materials “alchemy.”

  15. Revolutionising incoherent scatter science with EISCAT_3D: A European three-dimensional imaging radar for atmospheric and geospace research

    Science.gov (United States)

    Turunen, Esa; McCrea, Ian; Kosch, Mike

    2010-05-01

    from the active site respectively, on baselines running East and South from the active core, is enivisaged. This provides an optimal geometry for calculation of vector velocities in the middle and upper atmosphere. The gain of the EISCAT_3D antennas and the large size of the active site arrays will deliver an enormous increase in the figure-of-merit relative to any of EISCAT's existing radars. An active site of 5,000 elements would already exceed the performance of the current EISCAT VHF system, while an active site comprising 16,000 elements, as suggested in the Design Study carried out from 2005 to 2009, will exceed the sensitivity of the present VHF radar by an order of magnitude. Each transmitter unit will have its own signal generator, allowing the generation and transmission of arbitrary waveforms, limited only by the available transmission bandwidth and spectrum allocation by the frequency management authorities. This unique innovation allows the implementation of all currently used and envisaged modulation schemes and antenna codings (such as polyphase alternating codes, array tapering, orbital angular momentum beams) and also provides the possibility to adopt any kind of future code. In addition, it will allow advanced clutter mitigation strategies such as adaptive null steering and null shaping. In this talk the upper atmosphere and geospace science case for EISCAT_3D is reviewed. Studies of the atmospheric energy budget, space plasma physics with both small-scale structures and large-scale processes, as well as geospace environment monitoring and possible service applications are reviewed, showing recent highlights from the current EISCAT incoherent scatter radars for comparison.

  16. 3D visualisation and artistic imagery to enhance interest in `hidden environments' - new approaches to soil science

    Science.gov (United States)

    Gilford, J.; Falconer, R. E.; Wade, R.; Scott-Brown, K. C.

    2014-09-01

    Interactive Virtual Environments (VEs) have the potential to increase student interest in soil science. Accordingly a bespoke 'soil atlas' was created using Java3D as an interactive 3D VE, to show soil information in the context of (and as affected by) the over-lying landscape. To display the below-ground soil characteristics, four sets of artistic illustrations were produced, each set showing the effects of soil organic-matter density and water content on fungal density, to determine potential for visualisations and interactivity in stimulating interest in soil and soil illustrations, interest being an important factor in facilitating learning. The illustrations were created using 3D modelling packages, and a wide range of styles were produced. This allowed a preliminary study of the relative merits of different artistic styles, scientific-credibility, scale, abstraction and 'realism' (e.g. photo-realism or realism of forms), and any relationship between these and the level of interest indicated by the study participants in the soil visualisations and VE. The study found significant differences in mean interest ratings for different soil illustration styles, as well as in the perception of scientific-credibility of these styles, albeit for both measures there was considerable difference of attitude between participants about particular styles. There was also found to be a highly significant positive correlation between participants rating styles highly for interest and highly for scientific-credibility. There was furthermore a particularly high interest rating among participants for seeing temporal soil processes illustrated/animated, suggesting this as a particularly promising method for further stimulating interest in soil illustrations and soil itself.

  17. 3-D photo-patterning of refractive index structures in photosensitive thin film materials

    Science.gov (United States)

    Potter, Jr., Barrett George; Potter, Kelly Simmons

    2002-01-01

    A method of making a three-dimensional refractive index structure in a photosensitive material using photo-patterning. The wavelengths at which a photosensitive material exhibits a change in refractive index upon exposure to optical radiation is first determined and then a portion of the surface of the photosensitive material is optically irradiated at a wavelength at which the photosensitive material exhibits a change in refractive index using a designed illumination system to produce a three-dimensional refractive index structure. The illumination system can be a micro-lenslet array, a macroscopic refractive lens array, or a binary optic phase mask. The method is a single-step, direct-write procedure to produce a designed refractive index structure.

  18. 3D Effect of Ferromagnetic Materials on Alpha Particle Power Loads on First Wall Structures and Equilibrium on ITER

    International Nuclear Information System (INIS)

    Full text: The finite number and limited toroidal extent of the TF coils cause a periodic variation of the toroidal field called the magnetic ripple. This ripple can provide a significant channel for fast particle leakage, leading to very localized fast particle loads on the walls. Ferromagnetic inserts will be embedded in the double wall structure of the vacuum vessel in order to reduce the ripple. In ITER the toroidal field deviations are locally further enhanced by the presence of discrete ferromagnetic structures, e.g. TBM. Thus, there are complex symmetry-breaking effects. It is not yet fully understood how superimposing the periodic ripple and a local perturbation affect the fast ion confinement and concerns have been voiced that the combined effect might lead to significant channelling of the alpha power. In this work, the wall power loads due to fusion-born alpha particles were restudied for a variety of cases addressing issues such as different wall configurations, proper inclusion of the TBM effect on the magnetic background, and the possible corrections to 3D equilibrium introduced by the ferromagnetic materials using the 3D equilibrium code, VMEC, since 3D corrections to the equilibrium might enhance the alpha particle loss. To properly include the TBM effect on the magnetic background, the FEMAG code was used, and the effect was calculated on the total field including the poloidal field by the plasma current as well as the vacuum field. In the VMEC analysis, it was found that the difference between a full 3D equilibrium reconstruction and 'an axisymmetric equilibrium + vacuum fields' was small. Thus, it was concluded that no 3D equilibrium reconstruction was needed and that it was sufficient to add the vacuum field perturbations onto an axisymmetric equilibrium. Under the new boundary condition, the wall load calculation was carried out by using ASCOT, DELTA5D, and F3D OFMC code. Including the plasma current contribution in the magnetic field

  19. Informed Design to Robotic Production Systems; Developing Robotic 3D Printing System for Informed Material Deposition

    NARCIS (Netherlands)

    Mostafavi, S.; Bier, H.; Bodea, S.; Anton, A.M.

    2015-01-01

    This paper discusses the development of an informed Design-to-Robotic-Production (D2RP) system for additive manufacturing to achieve performative porosity in architecture at various scales. An extended series of experiments on materiality, fabrication and robotics were designed and carried out resul

  20. Teaching materials science and engineering

    Indian Academy of Sciences (India)

    Bernhard Ilschner

    2003-06-01

    This paper is written with the intention of simulating discussion on teaching materials science and engineering in the universities. The article illustrates the tasks, priorities, goals and means lying ahead in the teaching of materials science and engineering for a sustainable future.

  1. SIMULATION OF 3-D DEFORMATION AND MATERIAL FLOW DURING ROLL FORGING PROCESS USING SYSTEM OF OVAL-ROUND GROOVE

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Basing on the analysis of the traits of the roll forging process, a system-model of computer simulation has been established. Three-dimensional rigid-plastic FEM has been used for the simulation of the deformation process in the oval and round pass rolling, including the entering, rolling, and separating stages. The analysis was conducted using the Deform-3D ver. 5.0 code.The important information concerned with the deformation area characteristic, material fiow, and velocity field has been presented. Otherwise, the location of the neutral plane in the deformation area was shown clearly.

  2. A 3D Orthotropic Strain-Rate Dependent Elastic Damage Material Model.

    Energy Technology Data Exchange (ETDEWEB)

    English, Shawn Allen

    2014-09-01

    A three dimensional orthotropic elastic constitutive model with continuum damage and cohesive based fracture is implemented for a general polymer matrix composite lamina. The formulation assumes the possibility of distributed (continuum) damage followed b y localized damage. The current damage activation functions are simply partially interactive quadratic strain criteria . However, the code structure allows for changes in the functions without extraordinary effort. The material model formulation, implementation, characterization and use cases are presented.

  3. Design Paradigm Utilizing Reversible Diels-Alder Reactions to Enhance the Mechanical Properties of 3D Printed Materials.

    Science.gov (United States)

    Davidson, Joshua R; Appuhamillage, Gayan A; Thompson, Christina M; Voit, Walter; Smaldone, Ronald A

    2016-07-01

    A design paradigm is demonstrated that enables new functional 3D printed materials made by fused filament fabrication (FFF) utilizing a thermally reversible dynamic covalent Diels-Alder reaction to dramatically improve both strength and toughness via self-healing mechanisms. To achieve this, we used as a mending agent a partially cross-linked terpolymer consisting of furan-maleimide Diels-Alder (fmDA) adducts that exhibit reversibility at temperatures typically used for FFF printing. When this mending agent is blended with commercially available polylactic acid (PLA) and printed, the resulting materials demonstrate an increase in the interfilament adhesion strength along the z-axis of up to 130%, with ultimate tensile strength increasing from 10 MPa in neat PLA to 24 MPa in fmDA-enhanced PLA. Toughness in the z-axis aligned prints increases by up to 460% from 0.05 MJ/m(3) for unmodified PLA to 0.28 MJ/m(3) for the remendable PLA. Importantly, it is demonstrated that a thermally reversible cross-linking paradigm based on the furan-maleimide Diels-Alder (fmDA) reaction can be more broadly applied to engineer property enhancements and remending abilities to a host of other 3D printable materials with superior mechanical properties. PMID:27299858

  4. Computational design of soft materials for the capture of Cs-137 in contaminated environments: From 2D covalent cucurbituril networks to 3D supramolecular materials

    Science.gov (United States)

    Pichierri, Fabio

    2016-08-01

    Using computational quantum chemistry methods we design novel 2D and 3D soft materials made of cucurbituril macrocycles covalently connected with each other via rigid linkers. Such covalent cucurbituril networks might be useful for the capture of radioactive Cs-137 (present as Cs+) in the contaminated environment.

  5. Neutron imaging in materials science

    OpenAIRE

    Nikolay Kardjilov; Ingo Manke; André Hilger; Markus Strobl; John Banhart

    2011-01-01

    Neutron imaging is a non-destructive technique that can reveal the interior of many materials and engineering components and also probe magnetic fields. Within the past few years, several new imaging modes have been introduced that extend the scope of neutron imaging beyond conventional neutron attenuation imaging, yielding both 2- and 3D information about properties and phenomena inaccessible until now. We present an overview of the most important advances in the application of neutron imagi...

  6. Multispectral/fluorescence CT using superconducting tunnel junction detector for 3-D material analysis

    International Nuclear Information System (INIS)

    We have developed superconducting tunnel junctions (STJs) for applications to astrophysics, particle physics, material physics, etc. The spectrum capability of STJs is the wide wavelength/energy range from visible light to X-ray. STJs are applicable to photon detectors with good energy resolution and a high photon-counting rate. STJs also have good efficiency because of their high absorption efficiency below 1 keV photon energy. This is advantageous in low photon emission observation like fluorescence from objects. STJs have potentials to open new windows of the Multispectral/fluorescence computed tomography (CT) below 1 keV photon energy. As first step, we are starting STJ-CT experiments from the high-energy X-ray region (6-20 keV). We report and discuss the CT using STJs

  7. Development and Analysis of New 3D Tactile Materials for the Enhancement of STEM Education for the Blind and Visually Impaired

    Science.gov (United States)

    Gonzales, Ashleigh

    Blind and visually impaired individuals have historically demonstrated a low participation in the fields of science, engineering, mathematics, and technology (STEM). This low participation is reflected in both their education and career choices. Despite the establishment of the Americans with Disabilities Act (ADA) and the Individuals with Disabilities Education Act (IDEA), blind and visually impaired (BVI) students continue to academically fall below the level of their sighted peers in the areas of science and math. Although this deficit is created by many factors, this study focuses on the lack of adequate accessible image based materials. Traditional methods for creating accessible image materials for the vision impaired have included detailed verbal descriptions accompanying an image or conversion into a simplified tactile graphic. It is very common that no substitute materials will be provided to students within STEM courses because they are image rich disciplines and often include a large number images, diagrams and charts. Additionally, images that are translated into text or simplified into basic line drawings are frequently inadequate because they rely on the interpretations of resource personnel who do not have expertise in STEM. Within this study, a method to create a new type of tactile 3D image was developed using High Density Polyethylene (HDPE) and Computer Numeric Control (CNC) milling. These tactile image boards preserve high levels of detail when compared to the original print image. To determine the discernibility and effectiveness of tactile images, these customizable boards were tested in various university classrooms as well as in participation studies which included BVI and sighted students. Results from these studies indicate that tactile images are discernable and were found to improve performance in lab exercises as much as 60% for those with visual impairment. Incorporating tactile HDPE 3D images into a classroom setting was shown to

  8. Update History of This Database - BodyParts3D | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available [ Credits ] BLAST Search Image Search Home About Archive Update History Contact us BodyParts3D Update... History of This Database Date Update contents 2013/06/19 3D data (Release 4.0) is updated...11/09/15 3D data (Release 3.0) is updated. 2011/08/25 License is updated. 2010/08/16 3D data (Release 2.0) is update...omla SEF URLs by Artio About This Database Database Description Download License Update History of This Data...base Site Policy | Contact Us Update History of This Database - BodyParts3D | LSDB Archive ...

  9. Removal of phosphate by Fe-coordinated amino-functionalized 3D mesoporous silicates hybrid materials

    Institute of Scientific and Technical Information of China (English)

    Jianda Zhang; Zhemin Shen; Zhijian Mei; Shanping Li; Wenhua Wang

    2011-01-01

    Phosphate removal from aqueous waste streams is an important approach to control the eutrophication downstream bodies of water.A Fe(Ⅲ) coordinated amino-functionalized silicate adsorbent for phosphate adsorption was synthesized by a post-grafting and metal cation incorporation process. The surface structure of the adsorbent was characterized by X-ray diffraction, N2 adsoropion/desoprotion technique, and Fourier transform infrared spectroscopy. The experimental results showed that the adsorption equilibrium data were well fitted to the Langmuir equation. The maximum adsorption capacity of the modified silicate material was 51.8 mg/g. The kinetic data from the adsorption of phosphate were fitted to pseudo second-order model. The phosphate adsorption was highly pH dependent and the relatively high removal of phosphate fell within the pH range 3.0-6.0. The coexistence of other anions in soiutions has an adverse effect on phosphate adsorption; a decrease in adsorption capacity followed the order of exogenous anions: F- > SO42- > NO3- > Cl-. In addition, the adsorbed phosphate could be desorbed by NaOH solutions. This silicate adsorbent with a large adsorption capacity and relatively high selectivity could be utilized for the removal of phosphate from aqueous waste streams or in aquatic environment.

  10. 3-d Brownian dynamics simulations of the smallest units of an active biological material

    Science.gov (United States)

    Luettmer-Strathmann, Jutta; Paudyal, Nabina; Adeli Koudehi, Maral

    Motor proteins generate stress in a cytoskeletal network by walking on one strand of the network while being attached to another one. A protein walker in contact with two elements of the network may be considered the smallest unit of an active biological material. In vitro experiments, mathematical modeling and computer simulations have provided important insights into active matter on large and on very small length and time scales. However, it is still difficult to model the effects of local environment and interactions at intermediate scales. Recently, we developed a coarse-grained, three-dimensional model for a motor protein transporting cargo by walking on a substrate. In this work, we simulate a tethered motor protein pulling a substrate with elastic response. As the walker progresses, the retarding force due to the substrate tension increases until contact fails. We present simulation results for the effect of motor-protein activity on the tension in the substrate and the effect of the retarding force on the processivity of the molecular motor.

  11. Automatic Determination of Fiber-Length Distribution in Composite Material Using 3D CT Data

    Directory of Open Access Journals (Sweden)

    Günther Greiner

    2010-01-01

    Full Text Available Determining fiber length distribution in fiber reinforced polymer components is a crucial step in quality assurance, since fiber length has a strong influence on overall strength, stiffness, and stability of the material. The approximate fiber length distribution is usually determined early in the development process, as conventional methods require a destruction of the sample component. In this paper, a novel, automatic, and nondestructive approach for the determination of fiber length distribution in fiber reinforced polymers is presented. For this purpose, high-resolution computed tomography is used as imaging method together with subsequent image analysis for evaluation. The image analysis consists of an iterative process where single fibers are detected automatically in each iteration step after having applied image enhancement algorithms. Subsequently, a model-based approach is used together with a priori information in order to guide a fiber tracing and segmentation process. Thereby, the length of the segmented fibers can be calculated and a length distribution can be deduced. The performance and the robustness of the segmentation method is demonstrated by applying it to artificially generated test data and selected real components.

  12. Three-diemensional materials science: An intersection of three-dimensional reconstructions and simulations

    DEFF Research Database (Denmark)

    Thornton, Katsuyo; Poulsen, Henning Friis

    2008-01-01

    . Combined with three-dimensional (3D) simulations and analyses that are capable of handling the complexity of these microstructures, 3D reconstruction, or tomography, has become a powerful tool that provides clear insights into materials processing and properties. This introductory article provides...... an overview of this emerging field of materials science, as well as brief descriptions of selected methods and their applicability....

  13. PRODUCTION WITH 3D PRINTERS IN TEXTILES [REVIEW

    OpenAIRE

    KESKIN Reyhan; GOCEK Ikilem

    2015-01-01

    3D printers are gaining more attention, finding different applications and 3D printing is being regarded as a ‘revolution’ of the 2010s for production. 3D printing is a production method that produces 3-dimensional objects by combining very thin layers over and over to form the object using 3D scanners or via softwares either private or open source. 3D printed materials find application in a large range of fields including aerospace, automotive, medicine and material science. There are severa...

  14. 3-D analysis of fatigue crack behaviour in a shot peened steam turbine blade material

    International Nuclear Information System (INIS)

    Serial mechanical sectioning and high resolution X-ray tomography have been used to study the three-dimensional morphology of small fatigue cracks growing in a 12 Cr tempered martensitic steam turbine blade material. A range of surface conditions has been studied, namely polished and shot peened (with varying levels of intensity). In the polished (unpeened) condition, inclusions (alumina and manganese sulphide) played an important role in initiating and controlling early fatigue crack behaviour. When fatigue cracks initiated from an alumina stringer, the crack morphology was normally dominated by single stringers, which were always in the centre of the fatigue crack, indicating its primary role in initiation. Manganese sulphide inclusion groups however seemed to dominate and affect the crack path along both the surface and depth crack growth directions. The more intensely shot peened condition did not however evidence inclusion or stringer affected fatigue crack initiation or growth behaviour; sub-surface crack coalescence being clearly observed by both serial sectioning and computed tomography (CT) imaging techniques at a depth of about 150–180 μm. These sub-surface crack coalescences can be linked to both the extent of the compressive residual stress as well as the depth of the plastic deformation arising from the intense shot peening process. Shot peening appears to provide a different defect population that initiates fatigue cracks and competes with the underlying metallurgical defect populations. The most beneficial shot peening process would in this case appear to “deactivate” the original metallurgical defect population and substitute a known defect distribution from the shot peening process from which fatigue cracks grow rather slowly in the strain hardened surface layer which also contains compressive residual stresses. A benefit to fatigue life in bending, even under Low Cycle Fatigue (LCF) conditions, has been observed in these tests if a

  15. 3-D analysis of fatigue crack behaviour in a shot peened steam turbine blade material

    Energy Technology Data Exchange (ETDEWEB)

    He, B.Y., E-mail: Binyan.he@soton.ac.uk [Engineering Materials, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Katsamenis, O.L. [muVIS X-ray Imaging Centre, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Mellor, B.G.; Reed, P.A.S. [Engineering Materials, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2015-08-26

    Serial mechanical sectioning and high resolution X-ray tomography have been used to study the three-dimensional morphology of small fatigue cracks growing in a 12 Cr tempered martensitic steam turbine blade material. A range of surface conditions has been studied, namely polished and shot peened (with varying levels of intensity). In the polished (unpeened) condition, inclusions (alumina and manganese sulphide) played an important role in initiating and controlling early fatigue crack behaviour. When fatigue cracks initiated from an alumina stringer, the crack morphology was normally dominated by single stringers, which were always in the centre of the fatigue crack, indicating its primary role in initiation. Manganese sulphide inclusion groups however seemed to dominate and affect the crack path along both the surface and depth crack growth directions. The more intensely shot peened condition did not however evidence inclusion or stringer affected fatigue crack initiation or growth behaviour; sub-surface crack coalescence being clearly observed by both serial sectioning and computed tomography (CT) imaging techniques at a depth of about 150–180 μm. These sub-surface crack coalescences can be linked to both the extent of the compressive residual stress as well as the depth of the plastic deformation arising from the intense shot peening process. Shot peening appears to provide a different defect population that initiates fatigue cracks and competes with the underlying metallurgical defect populations. The most beneficial shot peening process would in this case appear to “deactivate” the original metallurgical defect population and substitute a known defect distribution from the shot peening process from which fatigue cracks grow rather slowly in the strain hardened surface layer which also contains compressive residual stresses. A benefit to fatigue life in bending, even under Low Cycle Fatigue (LCF) conditions, has been observed in these tests if a

  16. Electrospinning synthesis of 3D porous NiO nanorods as anode material for lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Wei Kong Xiang

    2016-06-01

    Full Text Available Three-dimensional NiO nanorods were synthesized as anode material by electrospinning method. X-ray diffraction results revealed that the product sintered at 400 °C had impure metallic nickel phase which, however, became pure NiO phase as the sintering temperature rose. Nevertheless, the nanorods sintered at 400, 500 and 600 °C had similar diameters (∼200 nm.The NiO nanorod material sintered at 500 °C was chip-shaped with a diameter of 200 nm and it exhibited a porous 3D structure. The nanorod sintered at 500 °C had the optimal electrochemical performance. Its discharge specific capacity was 1127 mAh·g−1 initially and remained as high as 400 mAh·g−1 at a current density of 55 mA·g−1 after 50 cycles.

  17. Optimization and Use of 3D sintered porous material in medical field for mixing fibrin glue.

    Science.gov (United States)

    Delmotte, Y.; Laroumanie, H.; Brossard, G.

    2012-04-01

    In medical field, Mixing of two or more chemical components (liquids and/or gases) is extremely important as improper mixing can affect the physico-chemical properties of the final product. At Baxter Healthcare Corporation, we are using a sintered porous material (PM) as a micro-mixer in medical device for mixing Fibrinogen and Thrombin in order to obtain a homogeneous polymerized Fibrin glue clot used in surgery. First trials were carried out with an interconnected PM from Porvair® (made of PE - porosity: 40% - permeability: 18Darcy). The injection rate is very low, usually about 10mL/min (Re number about 50) which keeps fluids in a laminar flow. Such a low flow rate does not favour mixing of fluids having gradient of viscosity if a mixer is not used. Promising results that were obtained lead the team to understand this ability to mix fluids which will be presented in the poster. Topology of porous media (PM) which associates a solid phase with interconnected (or not) porous structure is known and used in many commodity products. Researches on PM usually focus on flows inside this structure. By opposition to transport and filtration capacity, as well as mechanic and thermic properties, mixing is rarely associated with PM. However over the past few years, we shown that some type of PM have a real capacity to mix certain fluids. Poster will also describe the problematic of mixing complex biological fluids as fibrinogen and Thrombin. They indeed present a large viscosity difference (ratio about 120) limiting the diffusion and the interaction between the two solutions. As those products are expensive, we used Water (1cPo) and Glycerol 87% (120cPo) which are matching the viscosities of Thrombin and Fibrinogen. A parametric investigation of the "porous micro-mixer" as well as a scale up investigation was carried out to examine the influence of both diffusion and advection to successful mix fluids of different viscosity. Experiments were implemented with Planar Laser

  18. Experimental Investigation of Three-Dimensional (3-D) Material Flow Pattern in Thick Dissimilar 2050 Friction-Stir Welds

    Science.gov (United States)

    Avettand-Fènoël, Marie-Noëlle; Taillard, Roland; Laye, Julien; Odièvre, Thierry

    2014-02-01

    The current microstructural investigation performed at various scales deals with the three-dimensional (3-D) material flow in thick dissimilar Airware™ 2050 friction-stir butt welds (Airware, Newport Beach, CA) because of the scarcity of the results obtained with thicker than 8 mm joints and the lack of detailed interpretation of features in the longitudinal direction. An additional originality consists in the study of material flow under the probe tip. In the current case of thick plates, the variation of local temperature along the weld depth is of key importance for the material flow. Indeed, it governs the slight difference of local mechanical behavior between both materials and therefore the shift of the interface, which was clearly put into evidence by means of a difference of Mn content as small as 0.3 pct between both alloys. This importance of temperature for the malleability also entails the pear shape of the nugget as well as a change of grains orientation along the depth in the thermomechanically affected zone. Due to the modification of tool-material adhesion with temperature, a new phenomenological model of material flow for thick friction-stir welds is proposed. In accordance with their difference of origin, the coexistence of onion rings and serrated interface is also highlighted.

  19. Anatomical study to the vessels of the lower limb by using CT scan and 3D reconstructions of the injected material

    NARCIS (Netherlands)

    Chen, Sheng-hua; Chen, Mei-mei; Xu, Da-chuan; He, Hui; Peng, Tian-hong; Tan, Jian-guo; Xiang, Yu-yan

    2011-01-01

    To find out the advantages and insufficiency of the 3D reconstruction and traditional anatomy by comparing them with each other. 1. Infused with the radio-opaque material from the arteries and veins, respectively, fresh lower extremity specimens were subjected to spiral CT scanning and then 3D recon

  20. Computer simulation in materials science

    Energy Technology Data Exchange (ETDEWEB)

    Arsenault, R.J.; Beeler, J.R.; Esterling, D.M.

    1988-01-01

    This book contains papers on the subject of modeling in materials science. Topics include thermodynamics of metallic solids and fluids, grain-boundary modeling, fracture from an atomistic point of view, and computer simulation of dislocations on an atomistic level.

  1. Moessbauer Spectroscopy in Materials Science

    International Nuclear Information System (INIS)

    The publication in electronic form has been set up as proceedings of the conference dealing with applications of the Moessbauer spectroscopy in material science. Twenty-three abstracts and twenty-two presentations are included.

  2. Weightless Materials Science

    Science.gov (United States)

    Curtis, Jeremy

    2012-01-01

    Gravity affects everything we do. Only in very recent years have we been able to carry out experiments in orbit around the Earth and see for the first time how things behave in its absence. This has allowed us to understand fundamental processes better and to design new materials using this knowledge. (Contains 6 figures.)

  3. Neutron imaging in materials science

    Directory of Open Access Journals (Sweden)

    Nikolay Kardjilov

    2011-06-01

    Full Text Available Neutron imaging is a non-destructive technique that can reveal the interior of many materials and engineering components and also probe magnetic fields. Within the past few years, several new imaging modes have been introduced that extend the scope of neutron imaging beyond conventional neutron attenuation imaging, yielding both 2- and 3D information about properties and phenomena inaccessible until now. We present an overview of the most important advances in the application of neutron imaging in materials research with a focus on novel techniques such as energy-selective imaging, interferometric imaging with phase gratings, and polarized-neutron imaging. Examples given include the investigation of fluid dynamics in fuel cells, materials phases and structural heterogeneities, distribution of strains, and magnetic structures or phase transitions.

  4. Materials Science in Ancient Rome

    CERN Document Server

    Sparavigna, Amelia Carolina

    2011-01-01

    Two books, the "De Architectura" by Vitruvius and the "Naturalis Historia" by Pliny the Elder, give us a portrait of the Materials Science, that is, the knowledge of materials, in Rome at the beginning of the Empire. Here, I am reporting some very attractive contents that we can find in these books. The reader will see the discussion proposed in fours case studies: concretes, coatings, amorphous materials and colloidal crystals, to describe them in modern words.

  5. Setting science free from materialism.

    Science.gov (United States)

    Sheldrake, Rupert

    2013-01-01

    Contemporary science is based on the claim that all reality is material or physical. There is no reality but material reality. Consciousness is a by-product of the physical activity of the brain. Matter is unconscious. Evolution is purposeless. This view is now undergoing a credibility crunch. The biggest problem of all for materialism is the existence of consciousness. Panpsychism provides a way forward. So does the recognition that minds are not confined to brains. PMID:23906099

  6. Medical 3D Printing for the Radiologist.

    Science.gov (United States)

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A; Cai, Tianrun; Kumamaru, Kanako K; George, Elizabeth; Wake, Nicole; Caterson, Edward J; Pomahac, Bohdan; Ho, Vincent B; Grant, Gerald T; Rybicki, Frank J

    2015-01-01

    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article.

  7. An Examination of the Effects of Collaborative Scientific Visualization via Model-Based Reasoning on Science, Technology, Engineering, and Mathematics (STEM) Learning within an Immersive 3D World

    Science.gov (United States)

    Soleimani, Ali

    2013-01-01

    Immersive 3D worlds can be designed to effectively engage students in peer-to-peer collaborative learning activities, supported by scientific visualization, to help with understanding complex concepts associated with learning science, technology, engineering, and mathematics (STEM). Previous research studies have shown STEM learning benefits…

  8. Material Science Smart Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rubinstein, A. I. [Univ. of Nebraska Medical Center, Omaha, NE (United States); Sabirianov, R. F. [Univ. of Nebraska Medical Center, Omaha, NE (United States); Namavar, Fereydoon [Univ. of Nebraska Medical Center, Omaha, NE (United States)

    2014-07-01

    The contribution of electrostatic interactions to the free energy of binding between model protein and a ceramic implant surface in the aqueous solvent, considered in the framework of the nonlocal electrostatic model, is calculated as a function of the implant low-frequency dielectric constant. We show that the existence of a dynamically ordered (low-dielectric) interfacial solvent layer at the protein-solvent and ceramic-solvent interface markedly increases charging energy of the protein and ceramic implant, and consequently makes the electrostatic contribution to the protein-ceramic binding energy more favorable (attractive). Our analysis shows that the corresponding electrostatic energy between protein and oxide ceramics depends nonmonotonically on the dielectric constant of ceramic, εC. Obtained results indicate that protein can attract electrostatically to the surface if ceramic material has a moderate εC below or about 35 (in particularly ZrO2 or Ta2O5). This is in contrast to classical (local) consideration of the solvent, which demonstrates an unfavorable electrostatic interaction of protein with typical metal oxide ceramic materialsC>10). Thus, a solid implant coated by combining oxide ceramic with a reduced dielectric constant can be beneficial to strengthen the electrostatic binding of the protein-implant complex.

  9. Neutrons for materials science

    International Nuclear Information System (INIS)

    The discussion will be limited to applied materials research performed on a customer/contractor basis. The information obtained using neutrons must therefore compete both scientifically and financially with information obtained using other techniques, particularly electron microscopy, X-ray, NMR, infra-red and Raman spectroscopy. It will be argued that the unique nature of the information gained from neutrons often outweighs the undoubted difficulties of access to neutron beams. Examples are given. Small angle scattering has emerged as the neutron technique of widest application in applied materials research. The penetration of neutron beams through containment vessels, as well as through the sample, allows the measurement of 'in situ' time dependent experiments within a furnace, cryostat, pressure vessel or chemical reactor vessel. High resolution powder diffraction is another technique with wide applications. Structural studies are possible on increasing complex phases. The structure and volume fraction of minority phases can be measured at levels appreciably below that possible by X-ray diffraction. A rapidly growing field at present is the measurement of internal strains through the small shifts in lattice spacing. Inelastic scattering measurements exploit the unique property of neutrons to measure the orientations of vibrating molecules. (author)

  10. 3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography

    Energy Technology Data Exchange (ETDEWEB)

    Midgley, P.A.; Weyland, M

    2003-09-15

    The rapid advances in nanotechnology and the ever decreasing size of features in the microelectronics industry brings with it the need for advanced characterisation with high spatial resolution in two and three dimensions. Stereo microscopy allows some insight into the three-dimensional nature of an object but for true quantitative analysis, one has to turn to tomography as a way to reconstruct a three-dimensional object from a series of two-dimensional projections (images). X-ray tomography allow structures to be imaged at relatively large length scales, atom probe tomography at the atomic level. Electron tomography offers an intermediate resolution (of about 1 nm) with a field of view of hundreds of nm making it ideal for the characterisation of many nanoscale devices. Whilst electron tomography has been used in the biological sciences for more than 30 years, it is only now being applied to the physical sciences. In this paper, we review the status of electron tomography, describe the basis behind the technique and some of the practicalities of recording and analysing data for tomographic reconstruction, particularly in regard to solving three-dimensional problems that are encountered in materials science at the nanometre level. We present examples of how STEM dark-field imaging and energy-filtered TEM can be used successfully to examine nearly all types of specimens likely to be encountered by the physical scientist.

  11. Biological materials: a materials science approach.

    Science.gov (United States)

    Meyers, Marc A; Chen, Po-Yu; Lopez, Maria I; Seki, Yasuaki; Lin, Albert Y M

    2011-07-01

    The approach used by Materials Science and Engineering is revealing new aspects in the structure and properties of biological materials. The integration of advanced characterization, mechanical testing, and modeling methods can rationalize heretofore unexplained aspects of these structures. As an illustration of the power of this methodology, we apply it to biomineralized shells, avian beaks and feathers, and fish scales. We also present a few selected bioinspired applications: Velcro, an Al2O3-PMMA composite inspired by the abalone shell, and synthetic attachment devices inspired by gecko.

  12. Full 3D internal strain measurement for device packaging materials using synchrotron laminography and volumetric digital image correlation method

    International Nuclear Information System (INIS)

    In order to measure full 3D internal strain field of resin molding compound specimens, synchrotron computed tomography and laminography at SPring-8 were performed. Then the reconstructed images were applied to 3D digital image correlation method to compute internal strain field. The results showed that internal strains in resin molding compound could be visualized in this way. (author)

  13. 3D printing for dummies

    CERN Document Server

    Hausman, Kalani Kirk

    2014-01-01

    Get started printing out 3D objects quickly and inexpensively! 3D printing is no longer just a figment of your imagination. This remarkable technology is coming to the masses with the growing availability of 3D printers. 3D printers create 3-dimensional layered models and they allow users to create prototypes that use multiple materials and colors.  This friendly-but-straightforward guide examines each type of 3D printing technology available today and gives artists, entrepreneurs, engineers, and hobbyists insight into the amazing things 3D printing has to offer. You'll discover methods for

  14. PRODUCTION WITH 3D PRINTERS IN TEXTILES [REVIEW

    Directory of Open Access Journals (Sweden)

    KESKIN Reyhan

    2015-05-01

    Full Text Available 3D printers are gaining more attention, finding different applications and 3D printing is being regarded as a ‘revolution’ of the 2010s for production. 3D printing is a production method that produces 3-dimensional objects by combining very thin layers over and over to form the object using 3D scanners or via softwares either private or open source. 3D printed materials find application in a large range of fields including aerospace, automotive, medicine and material science. There are several 3D printing methods such as fused deposition modeling (FDM, stereolithographic apparatus (SLA, selective laser sintering (SLS, inkjet 3D printing and laminated object manufacturing (LOM. 3D printing process involves three steps: production of the 3D model file, conversion of the 3D model file into G-code and printing the object. 3D printing finds a large variety of applications in many fields; however, textile applications of 3D printing remain rare. There are several textile-like 3D printed products mostly for use in fashion design, for research purposes, for technical textile applications and for substituting traditional textiles suchas weft-knitted structures and lace patterns. 3D printed textile-like structures are not strong enough for textile applications as they tend to break easily and although they have the drape of a textile material, they still lack the flexibility of textiles. 3D printing technology has to gain improvement to produce materials that will be an equivalent for textile materials, and has to be a faster method to compete with traditional textile production methods.

  15. Thick fibrous composite reinforcements behave as special second-gradient materials: three-point bending of 3D interlocks

    Science.gov (United States)

    Madeo, Angela; Ferretti, Manuel; dell'Isola, Francesco; Boisse, Philippe

    2015-08-01

    In this paper, we propose to use a second gradient, 3D orthotropic model for the characterization of the mechanical behavior of thick woven composite interlocks. Such second-gradient theory is seen to directly account for the out-of-plane bending rigidity of the yarns at the mesoscopic scale which is, in turn, related to the bending stiffness of the fibers composing the yarns themselves. The yarns' bending rigidity evidently affects the macroscopic bending of the material and this fact is revealed by presenting a three-point bending test on specimens of composite interlocks. These specimens differ one from the other for the different relative direction of the yarns with respect to the edges of the sample itself. Both types of specimens are independently seen to take advantage of a second-gradient modeling for the correct description of their macroscopic bending modes. The results presented in this paper are essential for the setting up of a correct continuum framework suitable for the mechanical characterization of composite interlocks. The few second-gradient parameters introduced by the present model are all seen to be associated with peculiar deformation modes of the mesostructure (bending of the yarns) and are determined by inverse approach. Although the presented results undoubtedly represent an important step toward the complete characterization of the mechanical behavior of fibrous composite reinforcements, more complex hyperelastic second-gradient constitutive laws must be conceived in order to account for the description of all possible mesostructure-induced deformation patterns.

  16. Advanced batteries materials science aspects

    CERN Document Server

    Huggins, Robert A

    2008-01-01

    Storage and conversion are critical components of important energy-related technologies. This title employs materials science concepts and tools to describe the features that control the behavior of advanced electrochemical storage systems. It focuses on the basic phenomena that determine the properties of the components.

  17. Materials Science with Ion Beams

    CERN Document Server

    Bernas, Harry

    2010-01-01

    This book introduces materials scientists and designers, physicists and chemists to the properties of materials that can be modified by ion irradiation or implantation. These techniques can help design new materials or to test modified properties; novel applications already show that ion-beam techniques are complementary to others, yielding previously unattainable properties. Also, ion-beam interactions modify materials at the nanoscale, avoiding the often detrimental results of lithographic or chemical techniques. Here, the effects are related to better-known quasi-equilibrium thermodynamics, and the consequences to materials are discussed with concepts that are familiar to materials science. Examples addressed concern semiconductor physics, crystal and nanocluster growth, optics, magnetism, and applications to geology and biology.

  18. Radiochromic 3D Detectors

    Science.gov (United States)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  19. 3DSEM: A 3D microscopy dataset.

    Science.gov (United States)

    Tafti, Ahmad P; Kirkpatrick, Andrew B; Holz, Jessica D; Owen, Heather A; Yu, Zeyun

    2016-03-01

    The Scanning Electron Microscope (SEM) as a 2D imaging instrument has been widely used in many scientific disciplines including biological, mechanical, and materials sciences to determine the surface attributes of microscopic objects. However the SEM micrographs still remain 2D images. To effectively measure and visualize the surface properties, we need to truly restore the 3D shape model from 2D SEM images. Having 3D surfaces would provide anatomic shape of micro-samples which allows for quantitative measurements and informative visualization of the specimens being investigated. The 3DSEM is a dataset for 3D microscopy vision which is freely available at [1] for any academic, educational, and research purposes. The dataset includes both 2D images and 3D reconstructed surfaces of several real microscopic samples. PMID:26779561

  20. 3DSEM: A 3D microscopy dataset

    Directory of Open Access Journals (Sweden)

    Ahmad P. Tafti

    2016-03-01

    Full Text Available The Scanning Electron Microscope (SEM as a 2D imaging instrument has been widely used in many scientific disciplines including biological, mechanical, and materials sciences to determine the surface attributes of microscopic objects. However the SEM micrographs still remain 2D images. To effectively measure and visualize the surface properties, we need to truly restore the 3D shape model from 2D SEM images. Having 3D surfaces would provide anatomic shape of micro-samples which allows for quantitative measurements and informative visualization of the specimens being investigated. The 3DSEM is a dataset for 3D microscopy vision which is freely available at [1] for any academic, educational, and research purposes. The dataset includes both 2D images and 3D reconstructed surfaces of several real microscopic samples.

  1. "We Put on the Glasses and Moon Comes Closer!" Urban Second Graders Exploring the Earth, the Sun and Moon through 3D Technologies in a Science and Literacy Unit

    Science.gov (United States)

    Isik-Ercan, Zeynep; Zeynep Inan, Hatice; Nowak, Jeffrey A.; Kim, Beomjin

    2014-01-01

    This qualitative case study describes (a) the ways 3D visualization, coupled with other science and literacy experiences, supported young children's first exploration of the Earth-Sun-Moon system and (b) the perspectives of classroom teachers and children on using 3D visualization. We created three interactive 3D software modules that…

  2. "We Put on the Glasses and Moon Comes Closer!" Urban Second Graders Exploring the Earth, the Sun and Moon through 3D Technologies in a Science and Literacy Unit

    Science.gov (United States)

    Isik-Ercan, Zeynep; Zeynep Inan, Hatice; Nowak, Jeffrey A.; Kim, Beomjin

    2014-01-01

    This qualitative case study describes (a) the ways 3D visualization, coupled with other science and literacy experiences, supported young children's first exploration of the Earth-Sun-Moon system and (b) the perspectives of classroom teachers and children on using 3D visualization. We created three interactive 3D software modules that simulate day…

  3. Re-Dimensional Thinking in Earth Science: From 3-D Virtual Reality Panoramas to 2-D Contour Maps

    Science.gov (United States)

    Park, John; Carter, Glenda; Butler, Susan; Slykhuis, David; Reid-Griffin, Angelia

    2008-01-01

    This study examines the relationship of gender and spatial perception on student interactivity with contour maps and non-immersive virtual reality. Eighteen eighth-grade students elected to participate in a six-week activity-based course called "3-D GeoMapping." The course included nine days of activities related to topographic mapping. At the end…

  4. Light curing 3D printing and the development of modifying study on printing materials%光固化3D 打印及其打印材料改性的研究进展

    Institute of Scientific and Technical Information of China (English)

    路丰军; 洪雅真; 王士斌

    2016-01-01

    At present,the light curing 3D printing is known as the most widely used,the liquid photosensi-tive resin is the basic material of light curing 3D printing.Through experimental study and refer to the rel-evant literature,the domestic and international study progress in the common printing material,such as ep-oxy acrylate unsaturated polyester and polyester acrylate is presented.The development trend of the photo-sensitive resin is analyzed and compared at home and abroad,the issues existed are analyzed and its future developments are discussed.%综述了近几年国内外对常见的打印材料如环氧丙烯酸酯、聚酯丙烯酸酯及不饱和聚酯等树脂的改性研究。分析比较了国内外在光固化树脂方面的发展趋势,对国内发展存在的问题进行分析及对未来发展进行展望。

  5. 3D Projection Installations

    DEFF Research Database (Denmark)

    Halskov, Kim; Johansen, Stine Liv; Bach Mikkelsen, Michelle

    2014-01-01

    Three-dimensional projection installations are particular kinds of augmented spaces in which a digital 3-D model is projected onto a physical three-dimensional object, thereby fusing the digital content and the physical object. Based on interaction design research and media studies, this article...... contributes to the understanding of the distinctive characteristics of such a new medium, and identifies three strategies for designing 3-D projection installations: establishing space; interplay between the digital and the physical; and transformation of materiality. The principal empirical case, From...... Fingerplan to Loop City, is a 3-D projection installation presenting the history and future of city planning for the Copenhagen area in Denmark. The installation was presented as part of the 12th Architecture Biennale in Venice in 2010....

  6. Materials Sciences Division 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  7. Materials Sciences Division 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  8. Materials Sciences Division 1990 annual report

    International Nuclear Information System (INIS)

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals

  9. Materials Sciences Division long range plan

    International Nuclear Information System (INIS)

    The intent of this document is to provide a framework for programmatic guidance into the future for Materials Sciences. The Materials Sciences program is the basic research program for materials in the Department of Energy. It includes a wide variety of activities associated with the sciences related to materials. It also includes the support for developing, constructing, and operating major facilities which are used extensively but not exclusively by the materials sciences

  10. 3D Printing Functional Nanocomposites

    OpenAIRE

    Leong, Yew Juan

    2016-01-01

    3D printing presents the ability of rapid prototyping and rapid manufacturing. Techniques such as stereolithography (SLA) and fused deposition molding (FDM) have been developed and utilized since the inception of 3D printing. In such techniques, polymers represent the most commonly used material for 3D printing due to material properties such as thermo plasticity as well as its ability to be polymerized from monomers. Polymer nanocomposites are polymers with nanomaterials composited into the ...

  11. Three-Dimensional Transmission Electron Microscopy: A Novel Imaging and Characterization Technique with Nanometer Scale Resolution for Materials Science

    NARCIS (Netherlands)

    Koster, A.J.; Ziese, Ulrike; Verkleij, A.J.; Janssen, A.H.; Jong, K.P. de

    2001-01-01

    Three-dimensional transmission electron microscopy (3D-TEM), effectuated by multiple imaging of a sample combined with image analysis, offers a new approach in materials science to obtain 3D information of complex solid materials. Here we report first-of-its-kind results that have been obtained with

  12. Natural fibre composites for 3D Printing

    OpenAIRE

    Pandey, Kapil

    2015-01-01

    3D printing has been common option for prototyping. Not all the materials are suitable for 3D printing. Various studies have been done and still many are ongoing regarding the suitability of the materials for 3D printing. This thesis work discloses the possibility of 3D printing of certain polymer composite materials. The main objective of this thesis work was to study the possibility for 3D printing the polymer composite material composed of natural fibre composite and various different ...

  13. The chemical, mechanical, and physical properties of 3D printed materials composed of TiO2-ABS nanocomposites

    Science.gov (United States)

    Skorski, Matthew; Esenther, Jake; Ahmed, Zeeshan; Miller, Abigail E.

    2016-01-01

    To expand the chemical capabilities of 3D printed structures generated from commercial thermoplastic printers, we have produced and printed polymer filaments that contain inorganic nanoparticles. TiO2 was dispersed into acrylonitrile butadiene styrene (ABS) and extruded into filaments with 1.75 mm diameters. We produced filaments with TiO2 compositions of 1%, 5%, and 10% (kg/kg) and printed structures using a commercial 3D printer. Our experiments suggest that ABS undergoes minor degradation in the presence of TiO2 during the different processing steps. The measured mechanical properties (strain and Young’s modulus) for all of the composites are similar to those of structures printed from the pure polymer. TiO2 incorporation at 1% negatively affects the stress at breaking point and the flexural stress. Structures produced from the 5 and 10% nanocomposites display a higher breaking point stress than those printed from the pure polymer. TiO2 within the printed matrix was able to quench the intrinsic fluorescence of the polymer. TiO2 was also able to photocatalyze the degradation of a rhodamine 6G in solution. These experiments display chemical reactivity in nanocomposites that are printed using commercial 3D printers, and we expect that our methodology will help to inform others who seek to incorporate catalytic nanoparticles in 3D printed structures. PMID:27375367

  14. Laser printing and femtosecond laser structuring of electrode materials for the manufacturing of 3D lithium-ion micro-batteries

    Science.gov (United States)

    Smyrek, P.; Kim, H.; Zheng, Y.; Seifert, H. J.; Piqué, A.; Pfleging, W.

    2016-04-01

    Recently, three-dimensional (3D) electrode architectures have attracted great interest for the development of lithium-ion micro-batteries applicable for Micro-Electro-Mechanical Systems (MEMS), sensors, and hearing aids. Since commercial available micro-batteries are mainly limited in overall cell capacity by their electrode footprint, new processing strategies for increasing both capacity and electrochemical performance have to be developed. In case of such standard microbatteries, two-dimensional (2D) electrode arrangements are applied with thicknesses up to 200 μm. These electrode layers are composed of active material, conductive agent, graphite, and polymeric binder. Nevertheless, with respect to the type of active material, the active material to conductive agent ratio, and the film thickness, such thick-films suffer from low ionic and electronic conductivities, poor electrolyte accessibility, and finally, limited electrochemical performance under challenging conditions. In order to overcome these drawbacks, 3D electrode arrangements are under intense investigation since they allow the reduction of lithium-ion diffusion pathways in between inter-digitated electrodes, even for electrodes with enhanced mass loadings. In this paper, we present how to combine laser-printing and femtosecond laser-structuring for the development of advanced 3D electrodes composed of Li(Ni1/3Mn1/3Co1/3)O2 (NMC). In a first step, NMC thick-films were laser-printed and calendered to achieve film thicknesses in the range of 50 μm - 80 μm. In a second step, femtosecond laser-structuring was carried out in order to generate 3D architectures directly into thick-films. Finally, electrochemical cycling of laser-processed films was performed in order to evaluate the most promising 3D electrode designs suitable for application in long life-time 3D micro-batteries.

  15. Nanoscale tomography in materials science

    Directory of Open Access Journals (Sweden)

    Günter Möbus

    2007-12-01

    Full Text Available In materials science, various techniques for three-dimensional reconstruction of microstructures have been applied successfully for decades, such as X-ray tomography and mechanical sectioning. However, in the last decade the family tree of methods has grown significantly. This is partly through advances in instrumentation. The introduction of the focused ion beam microscope and the transformation of transmission electron microscopy into a multipurpose analytical and structural tool have made major impacts. The main driving force for progress is perhaps the advent of nanotechnology with the need to achieve nanometer-scale resolution and the desire to get a real three-dimensional view of the nanoscale world.

  16. 3D hierarchical computational model of wood as a cellular material with fibril reinforced, heterogeneous multiple layers

    DEFF Research Database (Denmark)

    Qing, Hai; Mishnaevsky, Leon

    2009-01-01

    is presented as a 3D hexagon-shape-tube with multilayered walls. The layers in the softwood cell are considered as considered as composite reinforced by microfibrils (celluloses). The elastic properties of the layers are determined with Halpin–Tsai equations, and introduced into mesoscale finite element......A 3D hierarchical computational model of deformation and stiffness of wood, which takes into account the structures of wood at several scale levels (cellularity, multilayered nature of cell walls, composite-like structures of the wall layers) is developed. At the mesoscale, the softwood cell...... cellular model. With the use of the developed hierarchical model, the influence of the microstructure, including microfibril angles (MFAs, which characterizes the orientation of the cellulose fibrils with respect to the cell axis), the thickness of the cell wall, the shape of the cell cross...

  17. Photopatterning of Hydrogel Scaffolds Coupled to Filter Materials Using Stereolithography for Perfused 3D Culture of Hepatocytes

    OpenAIRE

    Shepard Neiman, Jaclyn A.; Raman, Ritu; Chan, Vincent; Rhoads, Mary G.; Raredon, Micha Sam B.; Velazquez, Jeremy J.; Dyer, Rachel L.; Bashir, Rashid; Hammond, Paula T.; Griffith, Linda G.

    2015-01-01

    In vitro models that recapitulate the liver’s structural and functional complexity could prolong hepatocellular viability and function to improve platforms for drug toxicity studies and understanding liver pathophysiology. Here, stereolithography (SLA) was employed to fabricate hydrogel scaffolds with open channels designed for post-seeding and perfused culture of primary hepatocytes that form 3D structures in a bioreactor. Photopolymerizable polyethylene glycol-based hydrogels were fabricate...

  18. 3D bioprinting of skin: a state-of-the-art review on modelling, materials, and processes.

    Science.gov (United States)

    Vijayavenkataraman, S; Lu, W F; Fuh, J Y H

    2016-01-01

    The skin is the largest organ of the body, having a complex multi-layered structure and guards the underlying muscles, bones, ligaments, and internal organs. It serves as the first line of defence to any external stimuli, hence it is the most vulnerable to injury and warrants the need for rapid and reliable regeneration methods. Tissue engineered skin substitutes help overcome the limitations of traditional skin treatment methods, in terms of technology, time, and cost. While there is commendable progress in the treating of superficial wounds and injuries with skin substitutes, treatment of full-thickness injuries, especially with third or fourth degree burns, still looks murkier. Engineering multi-layer skin architecture, conforming to the native skin structure is a tougher goal to achieve with the current tissue engineering methods, if not impossible, restoring all the functions of the native skin. The testing of drugs and cosmetics is another area, where engineered skins are very much needed, with bans being imposed on product testing on animals. Given this greater need, 3D bioprinting is a promising technology that can achieve rapid and reliable production of biomimetic cellular skin substitutes, satisfying both clinical and industrial needs. This paper reviews all aspects related to the 3D bioprinting of skin, right from imaging the injury site, 3D model creation, biomaterials that are used and their suitability, types of cells and their functions, actual bioprinting technologies, along with the challenges and future prospects. PMID:27606434

  19. Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone.

    Science.gov (United States)

    Chen, Cen; Bang, Sumi; Cho, Younghak; Lee, Sahnghoon; Lee, Inseop; Zhang, ShengMin; Noh, Insup

    2016-01-01

    This review discusses about biomimetic medical materials for tissue engineering of bone and cartilage, after previous scientific commentary of the invitation-based, Korea-China joint symposium on biomimetic medical materials, which was held in Seoul, Korea, from October 22 to 26, 2015. The contents of this review were evolved from the presentations of that symposium. Four topics of biomimetic medical materials were discussed from different research groups here: 1) 3D bioprinting medical materials, 2) nano/micro-technology, 3) surface modification of biomaterials for their interactions with cells and 4) clinical aspects of biomaterials for cartilage focusing on cells, scaffolds and cytokines.

  20. 3D-printing technologies for electrochemical applications.

    Science.gov (United States)

    Ambrosi, Adriano; Pumera, Martin

    2016-05-21

    Since its conception during the 80s, 3D-printing, also known as additive manufacturing, has been receiving unprecedented levels of attention and interest from industry and research laboratories. This is in addition to end users, who have benefited from the pervasiveness of desktop-size and relatively cheap printing machines available. 3D-printing enables almost infinite possibilities for rapid prototyping. Therefore, it has been considered for applications in numerous research fields, ranging from mechanical engineering, medicine, and materials science to chemistry. Electrochemistry is another branch of science that can certainly benefit from 3D-printing technologies, paving the way for the design and fabrication of cheaper, higher performing, and ubiquitously available electrochemical devices. Here, we aim to provide a general overview of the most commonly available 3D-printing methods along with a review of recent electrochemistry related studies adopting 3D-printing as a possible rapid prototyping fabrication tool. PMID:27048921

  1. 3D-printing technologies for electrochemical applications.

    Science.gov (United States)

    Ambrosi, Adriano; Pumera, Martin

    2016-05-21

    Since its conception during the 80s, 3D-printing, also known as additive manufacturing, has been receiving unprecedented levels of attention and interest from industry and research laboratories. This is in addition to end users, who have benefited from the pervasiveness of desktop-size and relatively cheap printing machines available. 3D-printing enables almost infinite possibilities for rapid prototyping. Therefore, it has been considered for applications in numerous research fields, ranging from mechanical engineering, medicine, and materials science to chemistry. Electrochemistry is another branch of science that can certainly benefit from 3D-printing technologies, paving the way for the design and fabrication of cheaper, higher performing, and ubiquitously available electrochemical devices. Here, we aim to provide a general overview of the most commonly available 3D-printing methods along with a review of recent electrochemistry related studies adopting 3D-printing as a possible rapid prototyping fabrication tool.

  2. High density resolution synchrotron radiation based x-ray microtomography (SR μCT) for quantitative 3D-morphometrics in zoological sciences

    Science.gov (United States)

    Nickel, Michael; Hammel, Jörg U.; Herzen, Julia; Bullinger, Eric; Beckmann, Felix

    2008-08-01

    Zoological sciences widely rely on morphological data to reconstruct and understand body structures of animals. The best suitable methods like tomography allow for a direct representation of 3D-structures. In recent years, synchrotron radiation based x-ray microtomography (SR μCT) placed high resolutions to the disposal of morphologists. With the development of highly brilliant and collimated third generation synchrotron sources, phase contrast SR μCT became widely available. A number of scientific contributions stressed the superiority of phase contrast over absorption contrast. However, here we demonstrate the power of high density resolution methods based on absorption-contrast SRμCT for quantitative 3D-measurements of tissues and other delicate bio-structures in zoological sciences. We used beamline BW2 at DORIS III (DESY, Hamburg, Germany) to perform microtomography on tissue and mineral skeletons of marine sponges (Porifera) which were shock frozen and/or fixed in a glutamate osmium tetroxide solution, followed by critical point drying. High density resolution tomographic reconstructions allowed running quantitative 3D-image analyses in Matlab and ImageJ. By applying contrast and shape rule based algorithms we semi-automatically extracted and measured sponge body structures like mineral spicules, elements of the canal system or tissue structures. This lead to a better understanding of sponge biology: from skeleton functional morphology and internal water flow regimes to body contractility. Our high density resolution based quantitative approach can be applied to a wide variety of biological structures. However, two prerequisites apply: (1) maximum density resolution is necessary; (2) edge effects as seen for example in phase outline contrast SR μCT must not be present. As a consequence, to allow biological sciences to fully exploit the power of SR μCT further increase of density resolution in absorption contrast methods is desirable.

  3. Science for informed decision: A 3D unified conceptual model of the Milk River Transboundary Aquifer (Alberta-Montana)

    Science.gov (United States)

    Rivera, A.; Pétré, M.

    2013-12-01

    of the Milk River Aquifer has been built. This model follows the natural limits of the aquifer and is not interrupted by the USCanada border. The conceptual model covers many aspects such as the hydrostratigraphic 3D model, the groundwater flow, the recharge and discharge areas, the hydrogeological parameters, the pumping and observation wells, and the transboundary aspects. This model covers circa 55 000 km2. The study area is limited to the North/Northeast and Southeast by gas fields. This unified conceptual model will form the basis for a future 3D numerical hydrogeological model of groundwater flow in the Milk River Aquifer across the Canada-US border.

  4. 3D chemical mapping: application of scanning transmission (soft) X-ray microscopy (STXM) in combination with angle-scan tomography in bio-, geo-, and environmental sciences.

    Science.gov (United States)

    Obst, Martin; Schmid, Gregor

    2014-01-01

    The identification of environmental processes and mechanisms often requires information on the organochemical and inorganic composition of specimens at high spatial resolution. X-ray spectroscopy (XAS) performed in the soft X-ray range (100-2,200 eV) provides chemical speciation information for elements that are of high biogeochemical relevance such as carbon, nitrogen, and oxygen but also includes transition metals such as iron, manganese, or nickel. Synchrotron-based scanning transmission X-ray microscopy (STXM) combines XAS with high resolution mapping on the 20-nm scale. This provides two-dimensional (2D) quantitative information about the distribution of chemical species such as organic macromolecules, metals, or mineral phases within environmental samples. Furthermore, the combination of STXM with angle-scan tomography allows for three-dimensional (3D) spectromicroscopic analysis of bio-, geo-, or environmental samples. For the acquisition of STXM tomography data, the sample is rotated around an axis perpendicular to the X-ray beam. Various sample preparation approaches such as stripes cut from TEM grids or the preparation of wet cells allow for preparing environmentally relevant specimens in a dry or in a fully hydrated state for 2D and 3D STXM measurements. In this chapter we give a short overview about the principles of STXM, its application to environmental sciences, different preparation techniques, and the analysis and 3D reconstruction of STXM tomography data.

  5. SU-C-213-05: Evaluation of a Composite Copper-Plastic Material for a 3D Printed Radiation Therapy Bolus

    Energy Technology Data Exchange (ETDEWEB)

    Vitzthum, L; Ehler, E; Sterling, D; Reynolds, T; Higgins, P; Dusenbery, K [University of Minnesota, Minneapolis, MN (United States)

    2015-06-15

    Purpose: To evaluate a novel 3D printed bolus fabricated from a copper-plastic composite as a thin flexible, custom fitting device that can replicate doses achieved with conventional bolus techniques. Methods: Two models of bolus were created on a 3D printer using a composite copper-PLA/PHA. Firstly, boluses were constructed at thicknesses of 0.4, 0.6 and 0.8 mm. Relative dose measurements were performed under the bolus with an Attix Chamber as well as with radiochromic film. Results were compared to superficial Attix Chamber measurements in a water equivalent material to determine the dosimetric water equivalence of the copper-PLA/PHA plastic. Secondly, CT images of a RANDO phantom were used to create a custom fitting bolus across the anterolateral scalp. Surface dose with the bolus placed on the RANDO phantom was measured with radiochromic film at tangential angles with 6, 10, 10 flattening filter free (FFF) and 18 MV photon beams. Results: Mean surface doses for 6, 10, 10FFF and 18 MV were measured as a percent of Dmax for the flat bolus devices of each thickness. The 0.4 mm thickness bolus was determined to be near equivalent to 2.5 mm depth in water for all four energies. Surface doses ranged from 59–63% without bolus and 85–90% with the custom 0.4 mm copper-plastic bolus relative to the prescribed dose for an oblique tangential beam arrangement on the RANDO phantom. Conclusion: Sub-millimeter thickness, 3D printed composite copper-PLA/PHA bolus can provide a build-up effect equivalent to conventional bolus. At this thickness, the 3D printed bolus allows a level of flexure that may provide more patient comfort than current 3D printing materials used in bolus fabrication while still retaining the CT based custom patient shape. Funding provided by an intra-department grant of the University of Minnesota Department of Radiation Oncology.

  6. SU-C-213-05: Evaluation of a Composite Copper-Plastic Material for a 3D Printed Radiation Therapy Bolus

    International Nuclear Information System (INIS)

    Purpose: To evaluate a novel 3D printed bolus fabricated from a copper-plastic composite as a thin flexible, custom fitting device that can replicate doses achieved with conventional bolus techniques. Methods: Two models of bolus were created on a 3D printer using a composite copper-PLA/PHA. Firstly, boluses were constructed at thicknesses of 0.4, 0.6 and 0.8 mm. Relative dose measurements were performed under the bolus with an Attix Chamber as well as with radiochromic film. Results were compared to superficial Attix Chamber measurements in a water equivalent material to determine the dosimetric water equivalence of the copper-PLA/PHA plastic. Secondly, CT images of a RANDO phantom were used to create a custom fitting bolus across the anterolateral scalp. Surface dose with the bolus placed on the RANDO phantom was measured with radiochromic film at tangential angles with 6, 10, 10 flattening filter free (FFF) and 18 MV photon beams. Results: Mean surface doses for 6, 10, 10FFF and 18 MV were measured as a percent of Dmax for the flat bolus devices of each thickness. The 0.4 mm thickness bolus was determined to be near equivalent to 2.5 mm depth in water for all four energies. Surface doses ranged from 59–63% without bolus and 85–90% with the custom 0.4 mm copper-plastic bolus relative to the prescribed dose for an oblique tangential beam arrangement on the RANDO phantom. Conclusion: Sub-millimeter thickness, 3D printed composite copper-PLA/PHA bolus can provide a build-up effect equivalent to conventional bolus. At this thickness, the 3D printed bolus allows a level of flexure that may provide more patient comfort than current 3D printing materials used in bolus fabrication while still retaining the CT based custom patient shape. Funding provided by an intra-department grant of the University of Minnesota Department of Radiation Oncology

  7. Photopolymers in 3D printing applications

    OpenAIRE

    Pandey, Ramji

    2014-01-01

    3D printing is an emerging technology with applications in several areas. The flexibility of the 3D printing system to use variety of materials and create any object makes it an attractive technology. Photopolymers are one of the materials used in 3D printing with potential to make products with better properties. Due to numerous applications of photopolymers and 3D printing technologies, this thesis is written to provide information about the various 3D printing technologies with particul...

  8. 3D Animation Essentials

    CERN Document Server

    Beane, Andy

    2012-01-01

    The essential fundamentals of 3D animation for aspiring 3D artists 3D is everywhere--video games, movie and television special effects, mobile devices, etc. Many aspiring artists and animators have grown up with 3D and computers, and naturally gravitate to this field as their area of interest. Bringing a blend of studio and classroom experience to offer you thorough coverage of the 3D animation industry, this must-have book shows you what it takes to create compelling and realistic 3D imagery. Serves as the first step to understanding the language of 3D and computer graphics (CG)Covers 3D anim

  9. 3D video

    CERN Document Server

    Lucas, Laurent; Loscos, Céline

    2013-01-01

    While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century.The chapters in this book cover a large spectrum of areas connected to 3D video, which are presented both theoretically and technologically, while taking into account both physiological and perceptual aspects. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide th

  10. Materials science research at the European Synchrotron Radiation Facility

    CERN Document Server

    Kvick, A

    2003-01-01

    The Materials Science Beamline ID11 at the European Synchrotron Radiation Facility in Grenoble, France is dedicated to research in materials science notably employing diffraction and scattering techniques. Either an in-vacuum undulator with a minimum gap of 5 mm or a 10 kW wiggler giving high-flux monochromatic X-rays generates the synchrotron radiation in the energy range 5-100 keV. The dominant research is in the area of time-resolved diffraction, powder diffraction, stress/strain studies of bulk material, 3D mapping of grains and grain interfaces with a measuring gauge down approx 5x5x50 mu m, and microcrystal diffraction. A variety of CCD detectors are used to give time-resolution down to the millisecond time regime.

  11. Materials sciences programs, Fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Division of Materials Sciences is responsible for basic research and research facilities in materials science topics important to the mission of the Department of Energy. The programmatic divisions under the Office of Basic Energy Sciences are Chemical Sciences, Engineering and Geosciences, and Energy Biosciences. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship among synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences subfields include: physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 517 research programs including 255 at 14 DOE National Laboratories, 262 research grants (233 of which are at universities), and 29 Small Business Innovation Research Grants. Five cross-cutting indices located at the rear of this book identify all 517 programs according to principal investigator(s), materials, techniques, phenomena, and environment.

  12. 3D Virtual Reality for Teaching Astronomy

    Science.gov (United States)

    Speck, Angela; Ruzhitskaya, L.; Laffey, J.; Ding, N.

    2012-01-01

    We are developing 3D virtual learning environments (VLEs) as learning materials for an undergraduate astronomy course, in which will utilize advances both in technologies available and in our understanding of the social nature of learning. These learning materials will be used to test whether such VLEs can indeed augment science learning so that it is more engaging, active, visual and effective. Our project focuses on the challenges and requirements of introductory college astronomy classes. Here we present our virtual world of the Jupiter system and how we plan to implement it to allow students to learn course material - physical laws and concepts in astronomy - while engaging them into exploration of the Jupiter's system, encouraging their imagination, curiosity, and motivation. The VLE can allow students to work individually or collaboratively. The 3D world also provides an opportunity for research in astronomy education to investigate impact of social interaction, gaming features, and use of manipulatives offered by a learning tool on students’ motivation and learning outcomes. Use of this VLE is also a valuable source for exploration of how the learners’ spatial awareness can be enhanced by working in 3D environment. We will present the Jupiter-system environment along with a preliminary study of the efficacy and usability of our Jupiter 3D VLE.

  13. Inertial Confinement Fusion Materials Science

    Energy Technology Data Exchange (ETDEWEB)

    Hamza, A V

    2004-06-01

    Demonstration of thermonuclear ignition and gain on a laboratory scale is one of science's grand challenges. The National Ignition Facility (NIF) is committed to achieving inertial confinement fusion (ICF) by 2010. Success in this endeavor depends on four elements: the laser driver performance, target design, experimental diagnostics performance, and target fabrication and target materials performance. This article discusses the current state of target fabrication and target materials performance. The first three elements will only be discussed insofar as they relate to target fabrication specifications and target materials performance. Excellent reviews of the physics of ICF are given by Lindl [Lindl 1998] and Lindl et al. [Lindl 2004]. To achieve conditions under which inertial confinement is sufficient to achieve thermonuclear burn, an imploded fuel capsule is compressed to conditions of high density and temperature. In the laboratory a driver is required to impart energy to the capsule to effect an implosion. There are three drivers currently being considered for ICF in the laboratory: high-powered lasers, accelerated heavy ions, and x rays resulting from pulsed power machines. Of these, high-powered lasers are the most developed, provide the most symmetric drive, and provide the most energy. Laser drive operates in two configurations. The first is direct drive where the laser energy impinges directly on the ICF capsule and drives the implosion. The second is indirect drive, where the energy from the laser is first absorbed in a high-Z enclosure or hohlraum surrounding the capsule, and the resulting x-rays emitted by the hohlraum material drives the implosion. Using direct drive the laser beam energy is absorbed by the electrons in the outer corona of the target. The electrons transport the energy to the denser shell region to provide the ablation and the resulting implosion. Laser direct drive is generally less efficient and more hydrodynamically unstable

  14. Photopatterning of hydrogel scaffolds coupled to filter materials using stereolithography for perfused 3D culture of hepatocytes.

    Science.gov (United States)

    Neiman, Jaclyn A Shepard; Raman, Ritu; Chan, Vincent; Rhoads, Mary G; Raredon, Micha Sam B; Velazquez, Jeremy J; Dyer, Rachel L; Bashir, Rashid; Hammond, Paula T; Griffith, Linda G

    2015-04-01

    In vitro models that recapitulate the liver's structural and functional complexity could prolong hepatocellular viability and function to improve platforms for drug toxicity studies and understanding liver pathophysiology. Here, stereolithography (SLA) was employed to fabricate hydrogel scaffolds with open channels designed for post-seeding and perfused culture of primary hepatocytes that form 3D structures in a bioreactor. Photopolymerizable polyethylene glycol-based hydrogels were fabricated coupled to chemically activated, commercially available filters (polycarbonate and polyvinylidene fluoride) using a chemistry that permitted cell viability, and was robust enough to withstand perfused culture of up to 1 µL/s for at least 7 days. SLA energy dose, photoinitiator concentrations, and pretreatment conditions were screened to determine conditions that maximized cell viability and hydrogel bonding to the filter. Multiple open channel geometries were readily achieved, and included ellipses and rectangles. Rectangular open channels employed for subsequent studies had final dimensions on the order of 350 µm by 850 µm. Cell seeding densities and flow rates that promoted cell viability were determined. Perfused culture of primary hepatocytes in hydrogel scaffolds in the presence of soluble epidermal growth factor (EGF) prolonged the maintenance of albumin production throughout the 7-day culture relative to 2D controls. This technique of bonding hydrogel scaffolds can be employed to fabricate soft scaffolds for a number of bioreactor configurations and applications.

  15. Feasibility Study on 3-D Printing of Metallic Structural Materials with Robotized Laser-Based Metal Additive Manufacturing

    Science.gov (United States)

    Ding, Yaoyu; Kovacevic, Radovan

    2016-07-01

    Metallic structural materials continue to open new avenues in achieving exotic mechanical properties that are naturally unavailable. They hold great potential in developing novel products in diverse industries such as the automotive, aerospace, biomedical, oil and gas, and defense. Currently, the use of metallic structural materials in industry is still limited because of difficulties in their manufacturing. This article studied the feasibility of printing metallic structural materials with robotized laser-based metal additive manufacturing (RLMAM). In this study, two metallic structural materials characterized by an enlarged positive Poisson's ratio and a negative Poisson's ratio were designed and simulated, respectively. An RLMAM system developed at the Research Center for Advanced Manufacturing of Southern Methodist University was used to print them. The results of the tensile tests indicated that the printed samples successfully achieved the corresponding mechanical properties.

  16. Feasibility Study on 3-D Printing of Metallic Structural Materials with Robotized Laser-Based Metal Additive Manufacturing

    Science.gov (United States)

    Ding, Yaoyu; Kovacevic, Radovan

    2016-05-01

    Metallic structural materials continue to open new avenues in achieving exotic mechanical properties that are naturally unavailable. They hold great potential in developing novel products in diverse industries such as the automotive, aerospace, biomedical, oil and gas, and defense. Currently, the use of metallic structural materials in industry is still limited because of difficulties in their manufacturing. This article studied the feasibility of printing metallic structural materials with robotized laser-based metal additive manufacturing (RLMAM). In this study, two metallic structural materials characterized by an enlarged positive Poisson's ratio and a negative Poisson's ratio were designed and simulated, respectively. An RLMAM system developed at the Research Center for Advanced Manufacturing of Southern Methodist University was used to print them. The results of the tensile tests indicated that the printed samples successfully achieved the corresponding mechanical properties.

  17. On the Mechanical Modeling, Visco-Elasticity and Application of Aerographite, a 3D Carbon Nano-Material

    OpenAIRE

    Schuchardt, Arnim

    2015-01-01

    A three dimensional carbon network material of seamless interconnected and hollow tubes, featuring a graphitic structure and an extremely low density has been designed and fabricated in cm3 volumes. The synthesis of this foam like material, named Aerographite, is based on highly-porous three dimensional networks from zinc oxide (ZnO) which are utilized as sacrifcial templates in a chemical vapor deposition (CVD) process. Such type of ZnO templates are produced by the flame transport synthesis...

  18. Critical factors affecting the 3D microstructural formation in hybrid conductive adhesive materials studied by X-ray nano-tomography

    Science.gov (United States)

    Chen-Wiegart, Yu-Chen Karen; Figueroa-Santos, Miriam Aileen; Petrash, Stanislas; Garcia-Miralles, Jose; Wang, Jun

    2014-12-01

    Conductive adhesives are found favorable in a wide range of applications including a lead-free solder in micro-chips, flexible and printable electronics and enhancing the performance of energy storage devices. Composite materials comprised of metallic fillers and a polymer matrix are of great interest to be implemented as hybrid conductive adhesives. Here we investigated a cost-effective conductive adhesive material consisting of silver-coated copper as micro-fillers using synchrotron-based three-dimensional (3D) X-ray nano-tomography. The key factors affecting the quality and performance of the material were quantitatively studied in 3D on the nanometer scale for the first time. A critical characteristic parameter, defined as a shape-factor, was determined to yield a high-quality silver coating, leading to satisfactory performance. A `stack-and-screen' mechanism was proposed to elaborate such a phenomenon. The findings and the technique developed in this work will facilitate the future advancement of conductive adhesives to have a great impact in micro-electronics and other applications.Conductive adhesives are found favorable in a wide range of applications including a lead-free solder in micro-chips, flexible and printable electronics and enhancing the performance of energy storage devices. Composite materials comprised of metallic fillers and a polymer matrix are of great interest to be implemented as hybrid conductive adhesives. Here we investigated a cost-effective conductive adhesive material consisting of silver-coated copper as micro-fillers using synchrotron-based three-dimensional (3D) X-ray nano-tomography. The key factors affecting the quality and performance of the material were quantitatively studied in 3D on the nanometer scale for the first time. A critical characteristic parameter, defined as a shape-factor, was determined to yield a high-quality silver coating, leading to satisfactory performance. A `stack-and-screen' mechanism was proposed to

  19. NASA's "Eyes On The Solar System:" A Real-time, 3D-Interactive Tool to Teach the Wonder of Planetary Science

    Science.gov (United States)

    Hussey, K.

    2014-12-01

    NASA's Jet Propulsion Laboratory is using video game technology to immerse students, the general public and mission personnel in our solar system and beyond. "Eyes on the Solar System," a cross-platform, real-time, 3D-interactive application that can run on-line or as a stand-alone "video game," is of particular interest to educators looking for inviting tools to capture students interest in a format they like and understand. (eyes.nasa.gov). It gives users an extraordinary view of our solar system by virtually transporting them across space and time to make first-person observations of spacecraft, planetary bodies and NASA/ESA missions in action. Key scientific results illustrated with video presentations, supporting imagery and web links are imbedded contextually into the solar system. Educators who want an interactive, game-based approach to engage students in learning Planetary Science will see how "Eyes" can be effectively used to teach its principles to grades 3 through 14.The presentation will include a detailed demonstration of the software along with a description/demonstration of how this technology is being adapted for education. There will also be a preview of coming attractions. This work is being conducted by the Visualization Technology Applications and Development Group at NASA's Jet Propulsion Laboratory, the same team responsible for "Eyes on the Earth 3D," and "Eyes on Exoplanets," which can be viewed at eyes.nasa.gov/earth and eyes.nasa.gov/exoplanets.

  20. 桌面3D打印机工作台贴面材料分析%Analysis of the Cover Material of the Desktop 3D Printer

    Institute of Scientific and Technical Information of China (English)

    关雷; 史子木; 武坤

    2016-01-01

    3D printing technology, also known as rapid prototyping, is an emerging technology. The desktop 3D printer based on fused deposition modeling (FDM) technology is increasingly used. In order to firmly coat printing consumables on workbench, some materials adhered easily are used for the workbench surface of 3D printer. According to the different printing consumables, different covering materials should be used. In this article, the performance, method of use and range of application, etc. of cover materials were analyzed. In addition, the advantages and disadvantages of the cover materials were also analyzed, with printing PLA as an example.%3D打印技术也称为快速成型,是一门新兴的技术。其中基于融熔沉积技术的桌面3D打印机应用日益广泛。为了使打印材料牢固的涂覆在打印机工作台表面,需要将一些利于粘附的材料贴附到3D打印机工作台表面。根据不同的打印耗材,应使用不同的贴面材料。文章分析了几种贴面材料的性能,使用方法,适用范围。并以使用PLA (聚乳酸)线材进行3D打印为例,分析了几种工作台贴面材料的优缺点。

  1. EUROPEANA AND 3D

    Directory of Open Access Journals (Sweden)

    D. Pletinckx

    2012-09-01

    Full Text Available The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  2. Thermomechanical behaviour of two heterogeneous tungsten materials via 2D and 3D image-based FEM

    International Nuclear Information System (INIS)

    An advanced numerical procedure based on imaging of the material microstructure (Image- Based Finite Element Method or Image-Based FEM) was extended and applied to model the thermomechanical behaviour of novel materials for fusion applications. Two tungsten based heterogeneous materials with different random morphologies have been chosen as challenging case studies: (1) a two-phase mixed ductile-brittle W/CuCr1Zr composite and (2) vacuum plasma-sprayed tungsten (VPS-W 75 vol.%), a porous coating system with complex dual-scale microstructure. Both materials are designed for the future fusion reactor DEMO: W/CuCr1Zr as main constituent of a layered functionally graded joint between plasma-facing armor and heat sink whereas VPS-W for covering the first wall of the reactor vessel in direct contact with the plasma. The primary focus of this work was to investigate the mesoscopic material behaviour and the linkage to the macroscopic response in modeling failure and heat-transfer. Particular care was taken in validating and integrating simulation findings with experimental inputs. The solution of the local thermomechanical behaviour directly on the real material microstructure enabled meaningful insights into the complex failure mechanism of both materials. For W/CuCr1Zr full macroscopic stress-strain curves including the softening and failure part could be simulated and compared with experimental ones at different temperatures, finding an overall good agreement. The comparison of simulated and experimental macroscopic behaviour of plastic deformation and rupture also showed the possibility to indirectly estimate micro- and mesoscale material parameters. Both heat conduction and elastic behaviour of VPS-W have been extensively investigated. New capabilities of the Image-Based FEM could be shown: decomposition of the heat transfer reduction as due to the individual morphological phases and back-fitting of the reduced stiffness at interlamellar boundaries. The

  3. Non-destructive 3D Imaging of Extraterrestrial Materials by Synchrotron X-ray Micro- tomography (XR-CMT) and Laser Confocal Scanning Microscopy (LCSM): Beyond Pretty Pictures

    Science.gov (United States)

    Ebel, D. S.; Greenberg, M.

    2009-05-01

    We report scientific results made possible only by the use these two non-destructive 3D imaging techniques. XR-CMT provides 3D image reconstructions at spatial resolutions of 1 to 17 micron/voxel edge. We use XR- CMT to locate potential melt-inclusion-bearing phenocrysts in batches of 100-200 micron lunar fire-fountain spherules; to locate and visualize the morphology of 1-2mm size, irregular, unmelted Ca-, Al-rich inclusions (CAIs) and to quantify chondrule/matrix ratios and chondrule size distributions in 6x6x20mm chunks of carbonaceous chondrites; to quantify the modal abundance of opaque phases in similar sized Martian meteorite fragments, and in individual 1-2mm diameter chondrules from chondrites. LCSM provides 3D image stacks at resolutions < 100 nm/pixel. We are the only group creating deconvolved image stacks of 100 to over 1000 micron long comet particle tracks in aerogel keystones from the Stardust mission. We present measurements of track morphology in 3D, and locate high-value particles using complementary synchrotron x- ray fluorescence (XRF) examination. We show that bench-top LCSM extracts maximum information about tracks and particles rapidly and cheaply prior to destructive disassembly. Using XR-CMT we quantify, for the first time, the volumetric abundances of metal grains in 1-2 mm diameter CR chondrite chondrules. Metal abundances vary from 1 to 37 vol.% between 8 chondrules (and more by inspection), in a meteorite with solar (chondritic) Fe/Si ratio, indicating that chondrules formed and accreted locally from bulk solar composition material. They are 'complementary' to each other in Fe/Si ratios. Void spaces in chondritic CAIs and chondrules are shown to be a primary feature, not due to plucking during sectioning. CAI morphology in 3D reveals pre-accretionary impact features, and various types of mineralogical layering, seen in 3D, reveal the formation history of these building blocks of planets and asteroids. We also quantify the x

  4. Solid works 3D

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Cheol Yeong

    2004-02-15

    This book explains modeling of solid works 3D and application of 3D CAD/CAM. The contents of this book are outline of modeling such as CAD and 2D and 3D, solid works composition, method of sketch, writing measurement fixing, selecting projection, choosing condition of restriction, practice of sketch, making parts, reforming parts, modeling 3D, revising 3D modeling, using pattern function, modeling necessaries, assembling, floor plan, 3D modeling method, practice floor plans for industrial engineer data aided manufacturing, processing of CAD/CAM interface.

  5. Solid works 3D

    International Nuclear Information System (INIS)

    This book explains modeling of solid works 3D and application of 3D CAD/CAM. The contents of this book are outline of modeling such as CAD and 2D and 3D, solid works composition, method of sketch, writing measurement fixing, selecting projection, choosing condition of restriction, practice of sketch, making parts, reforming parts, modeling 3D, revising 3D modeling, using pattern function, modeling necessaries, assembling, floor plan, 3D modeling method, practice floor plans for industrial engineer data aided manufacturing, processing of CAD/CAM interface.

  6. Materials sciences programs, fiscal year 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  7. Materials sciences programs, fiscal year 1994

    International Nuclear Information System (INIS)

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects

  8. Self-Forming 3D Core-Shell Ceramic Nanostructures for Halogen-Free Flame Retardant Materials.

    Science.gov (United States)

    Palacios, Elena; Leret, Pilar; De La Mata, Maria J; Fernández, Jose F; De Aza, Antonio H; Rodríguez, Miguel A; Rubio-Marcos, Fernando

    2016-04-13

    The synthesis of aluminum phosphates-based composites has been widely studied during the past decade because of the promising industrial application of these materials. Here we show a simple one-pot heterogeneous precipitation approach to fabricate a sepiolite-phosphate (SepP) composite with adequate control of the size and dispersion of the phosphate nanoparticles. This coupling between aluminum phosphate and sepiolite nanofibers results in the development of a novel three-dimensional rigid supported phosphate structure, which is generated during the thermal treatment. According to our results, this phenomenon can be explained by a migration-coalescence mechanism of phosphate nanoparticles over the sepiolite support, assisted by a liquid phase. It is worth pointing out that this stimulant behavior observed here could have potential technological applications such as halogen-free flame retardant materials. PMID:27007184

  9. Strain-rate sensitivity of foam materials: A numerical study using 3D image-based finite element model

    OpenAIRE

    Sun Yongle; Li Q.M.; Withers P.J.

    2015-01-01

    Realistic simulations are increasingly demanded to clarify the dynamic behaviour of foam materials, because, on one hand, the significant variability (e.g. 20% scatter band) of foam properties and the lack of reliable dynamic test methods for foams bring particular difficulty to accurately evaluate the strain-rate sensitivity in experiments; while on the other hand numerical models based on idealised cell structures (e.g. Kelvin and Voronoi) may not be sufficiently representative to capture t...

  10. Critical factors affecting the 3D microstructural formation in hybrid conductive adhesive materials studied by X-ray nano-tomography.

    Science.gov (United States)

    Chen-Wiegart, Yu-chen Karen; Figueroa-Santos, Miriam Aileen; Petrash, Stanislas; Garcia-Miralles, Jose; Wang, Jun

    2015-01-21

    Conductive adhesives are found favorable in a wide range of applications including a lead-free solder in micro-chips, flexible and printable electronics and enhancing the performance of energy storage devices. Composite materials comprised of metallic fillers and a polymer matrix are of great interest to be implemented as hybrid conductive adhesives. Here we investigated a cost-effective conductive adhesive material consisting of silver-coated copper as micro-fillers using synchrotron-based three-dimensional (3D) X-ray nano-tomography. The key factors affecting the quality and performance of the material were quantitatively studied in 3D on the nanometer scale for the first time. A critical characteristic parameter, defined as a shape-factor, was determined to yield a high-quality silver coating, leading to satisfactory performance. A 'stack-and-screen' mechanism was proposed to elaborate such a phenomenon. The findings and the technique developed in this work will facilitate the future advancement of conductive adhesives to have a great impact in micro-electronics and other applications. PMID:25474162

  11. Development of gel materials with high transparency and mechanical strength for use with a 3D gel printer SWIM-ER

    Science.gov (United States)

    Tase, Taishi; Okada, Koji; Takamatsu, Kyuichiro; Saito, Azusa; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    Medical doctors use artificial blood vessels and organ models, which are usually made of plastic, to explain operations to students, or patients awaiting treatment. However, there are some problems such as the high cost of making the model and there is not a realistic feel because the model is hard. These problems can be solved using soft and wet material for instance gel. Gels are materials with unique properties such as transparency, biocompatibility, and low friction. In recent years, high strength gel has been developed and is expected to be applied in medical fields in the future. Artificial models of gel can be produced by 3D gel printers. Our group has been developing a 3D gel printer with 1mm precision in printing, but the shape, size and mechanical strength are not sufficient for medical models. In this study, we overcome these problems and make a gel model which is transparent, mechanically strong with a fine shape. The strength and molding accuracy is improved by changing and preparing the cross linker and ultraviolet absorber. We conducted mechanical and molding tests to confirm that the gel material properties improved.

  12. Will 3D printers manufacture your meals?

    NARCIS (Netherlands)

    Bommel, K.J.C. van

    2013-01-01

    These days, 3D printers are laying down plastics, metals, resins, and other materials in whatever configurations creative people can dream up. But when the next 3D printing revolution comes, you'll be able to eat it.

  13. Combinatorial 3D Mechanical Metamaterials

    Science.gov (United States)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  14. The idea of material science virtual laboratory

    OpenAIRE

    L.A. Dobrzański; R. Honysz

    2010-01-01

    Purpose: This article was written to describe the Material Science Virtual Laboratory. Presented laboratory is an open scientific, investigative, simulating and didactic medium helpful in the realisation of the scientific and didactic tasks in the field of material Science. This laboratory is implemented in the Institute of Engineering Materials and Biomaterials of Silesian University of Technology in Gliwice, Poland.Design/methodology/approach: The laboratory is an aggregate of testers and t...

  15. Strain-rate sensitivity of foam materials: A numerical study using 3D image-based finite element model

    Directory of Open Access Journals (Sweden)

    Sun Yongle

    2015-01-01

    Full Text Available Realistic simulations are increasingly demanded to clarify the dynamic behaviour of foam materials, because, on one hand, the significant variability (e.g. 20% scatter band of foam properties and the lack of reliable dynamic test methods for foams bring particular difficulty to accurately evaluate the strain-rate sensitivity in experiments; while on the other hand numerical models based on idealised cell structures (e.g. Kelvin and Voronoi may not be sufficiently representative to capture the actual structural effect. To overcome these limitations, the strain-rate sensitivity of the compressive and tensile properties of closed-cell aluminium Alporas foam is investigated in this study by means of meso-scale realistic finite element (FE simulations. The FE modelling method based on X-ray computed tomography (CT image is introduced first, as well as its applications to foam materials. Then the compression and tension of Alporas foam at a wide variety of applied nominal strain-rates are simulated using FE model constructed from the actual cell geometry obtained from the CT image. The stain-rate sensitivity of compressive strength (collapse stress and tensile strength (0.2% offset yield point are evaluated when considering different cell-wall material properties. The numerical results show that the rate dependence of cell-wall material is the main cause of the strain-rate hardening of the compressive and tensile strengths at low and intermediate strain-rates. When the strain-rate is sufficiently high, shock compression is initiated, which significantly enhances the stress at the loading end and has complicated effect on the stress at the supporting end. The plastic tensile wave effect is evident at high strain-rates, but shock tension cannot develop in Alporas foam due to the softening associated with single fracture process zone occurring in tensile response. In all cases the micro inertia of individual cell walls subjected to localised deformation

  16. Strain-rate sensitivity of foam materials: A numerical study using 3D image-based finite element model

    Science.gov (United States)

    Sun, Yongle; Li, Q. M.; Withers, P. J.

    2015-09-01

    Realistic simulations are increasingly demanded to clarify the dynamic behaviour of foam materials, because, on one hand, the significant variability (e.g. 20% scatter band) of foam properties and the lack of reliable dynamic test methods for foams bring particular difficulty to accurately evaluate the strain-rate sensitivity in experiments; while on the other hand numerical models based on idealised cell structures (e.g. Kelvin and Voronoi) may not be sufficiently representative to capture the actual structural effect. To overcome these limitations, the strain-rate sensitivity of the compressive and tensile properties of closed-cell aluminium Alporas foam is investigated in this study by means of meso-scale realistic finite element (FE) simulations. The FE modelling method based on X-ray computed tomography (CT) image is introduced first, as well as its applications to foam materials. Then the compression and tension of Alporas foam at a wide variety of applied nominal strain-rates are simulated using FE model constructed from the actual cell geometry obtained from the CT image. The stain-rate sensitivity of compressive strength (collapse stress) and tensile strength (0.2% offset yield point) are evaluated when considering different cell-wall material properties. The numerical results show that the rate dependence of cell-wall material is the main cause of the strain-rate hardening of the compressive and tensile strengths at low and intermediate strain-rates. When the strain-rate is sufficiently high, shock compression is initiated, which significantly enhances the stress at the loading end and has complicated effect on the stress at the supporting end. The plastic tensile wave effect is evident at high strain-rates, but shock tension cannot develop in Alporas foam due to the softening associated with single fracture process zone occurring in tensile response. In all cases the micro inertia of individual cell walls subjected to localised deformation is found to

  17. Martian terrain - 3D

    Science.gov (United States)

    1997-01-01

    This area of terrain near the Sagan Memorial Station was taken on Sol 3 by the Imager for Mars Pathfinder (IMP). 3D glasses are necessary to identify surface detail.The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  18. 3D visualization of polymer nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Werner, James H [Los Alamos National Laboratory

    2009-01-01

    Soft materials and structured polymers are extremely useful nanotechnology building blocks. Block copolymers, in particular, have served as 2D masks for nanolithography and 3D scaffolds for photonic crystals, nanoparticle fabrication, and solar cells. F or many of these applications, the precise 3 dimensional structure and the number and type of defects in the polymer is important for ultimate function. However, directly visualizing the 3D structure of a soft material from the nanometer to millimeter length scales is a significant technical challenge. Here, we propose to develop the instrumentation needed for direct 3D structure determination at near nanometer resolution throughout a nearly millimeter-cubed volume of a soft, potentially heterogeneous, material. This new capability will be a valuable research tool for LANL missions in chemistry, materials science, and nanoscience. Our approach to soft materials visualization builds upon exciting developments in super-resolution optical microscopy that have occurred over the past two years. To date, these new, truly revolutionary, imaging methods have been developed and almost exclusively used for biological applications. However, in addition to biological cells, these super-resolution imaging techniques hold extreme promise for direct visualization of many important nanostructured polymers and other heterogeneous chemical systems. Los Alamos has a unique opportunity to lead the development of these super-resolution imaging methods for problems of chemical rather than biological significance. While these optical methods are limited to systems transparent to visible wavelengths, we stress that many important functional chemicals such as polymers, glasses, sol-gels, aerogels, or colloidal assemblies meet this requirement, with specific examples including materials designed for optical communication, manipulation, or light-harvesting Our Research Goals are: (1) Develop the instrumentation necessary for imaging materials

  19. Making Inexpensive 3-D Models

    Science.gov (United States)

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  20. Finite Element Modeling of CNS White Matter Kinematics: Use of a 3D-RVE to Determine Material Properties

    Directory of Open Access Journals (Sweden)

    Yi ePan

    2013-12-01

    Full Text Available Axonal injury represents a critical target area for the prevention and treatment of traumatic brain and spinal cord injuries. Finite element (FE models of the head and/or brain are often used to predict brain injury caused by external mechanical loadings, such as explosive waves and direct impact. The accuracy of these numerical models depends on correctly determining the material properties and on the precise depiction of the tissues’ microstructure (microscopic level. Moreover, since the axonal microstructure for specific regions of the brain white matter is locally oriented, the stress and strain fields are highly anisotropic and axon orientation dependent. Additionally, mechanical strain has been identified as the proximal cause of axonal injury, which further demonstrates the importance of this multi-scale relationship. In this study, our previously developed FE and kinematic axonal models are coupled and applied to a pseudo 3-dimensional representative volume element (RVE of central nervous system white matter to investigate the multi-scale mechanical behavior. An inverse FE procedure was developed to identify material parameters of spinal cord white matter by combining the results of uniaxial testing with FE modeling. A satisfactory balance between simulation and experiment was achieved via optimization by minimizing the squared error between the simulated and experimental force-stretch curve. The combination of experimental testing and FE analysis provides a useful analysis tool for soft biological tissues in general, and specifically enables evaluations of the axonal response to tissue-level loading and subsequent predictions of axonal damage.

  1. 3D Fe{sub 2}(MoO{sub 4}){sub 3} microspheres with nanosheet constituents as high-capacity anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Hao; Wang, Shiqiang [Hubei University, Key Laboratory for Synthesis and Applications of Organic Functional Molecules (China); Wang, Jiazhao; Wang, Jun [University of Wollongong, Institute for Superconducting and Electronic Materials (Australia); Li, Lin; Yang, Yun; Feng, Chuanqi, E-mail: cfeng@hubu.edu.cn [Hubei University, Key Laboratory for Synthesis and Applications of Organic Functional Molecules (China); Sun, Ziqi, E-mail: ziqi.sun@qut.edu.au [Queensland University of Technology, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (Australia)

    2015-11-15

    Three-dimensional (3D) Fe{sub 2}(MoO{sub 4}){sub 3} microspheres with ultrathin nanosheet constituents are first synthesized as anode materials for the lithium-ion battery. It is interesting that the single-crystalline nanosheets allow rapid electron/ion transport on the inside, and the high porosity ensures fast diffusion of liquid electrolyte in energy storage applications. The electrochemical properties of Fe{sub 2}(MoO{sub 4}){sub 3} as anode demonstrates that 3D Fe{sub 2}(MoO{sub 4}){sub 3} microspheres deliver an initial capacity of 1855 mAh/g at a current density of 100 mA/g. Particularly, when the current density is increased to 800 mA/g, the reversible capacity of Fe{sub 2}(MoO{sub 4}){sub 3} anode still arrived at 456 mAh/g over 50 cycles. The large and reversible capacities and stable charge–discharge cycling performance indicate that Fe{sub 2}(MoO{sub 4}){sub 3} is a promising anode material for lithium battery applications.Graphical abstractThe electrochemical properties of Fe{sub 2}(MoO{sub 4}){sub 3} as anode demonstrates that 3D Fe{sub 2}(MoO{sub 4}){sub 3} microspheres delivered an initial capacity of 1855 mAh/g at a current density of 100 mA/g. When the current density was increased to 800 mA/g, the Fe{sub 2}(MoO{sub 4}){sub 3} still behaved high reversible capacity and good cycle performance.

  2. 3d-3d correspondence revisited

    Science.gov (United States)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  3. Using Single-Camera 3-D Imaging to Guide Material Handling Robots in a Nuclear Waste Package Closure System

    International Nuclear Information System (INIS)

    Nuclear reactors for generating energy and conducting research have been in operation for more than 50 years, and spent nuclear fuel and associated high-level waste have accumulated in temporary storage. Preparing this spent fuel and nuclear waste for safe and permanent storage in a geological repository involves developing a robotic packaging system--a system that can accommodate waste packages of various sizes and high levels of nuclear radiation. During repository operation, commercial and government-owned spent nuclear fuel and high-level waste will be loaded into casks and shipped to the repository, where these materials will be transferred from the casks into a waste package, sealed, and placed into an underground facility. The waste packages range from 12 to 20 feet in height and four and a half to seven feet in diameter. Closure operations include sealing the waste package and all its associated functions, such as welding lids onto the container, filling the inner container with an inert gas, performing nondestructive examinations on welds, and conducting stress mitigation. The Idaho National Laboratory is designing and constructing a prototype Waste Package Closure System (WPCS). Control of the automated material handling is an important part of the overall design. Waste package lids, welding equipment, and other tools must be moved in and around the closure cell during the closure process. These objects are typically moved from tool racks to a specific position on the waste package to perform a specific function. Periodically, these objects are moved from a tool rack or the waste package to the adjacent glovebox for repair or maintenance. Locating and attaching to these objects with the remote handling system, a gantry robot, in a loosely fixtured environment is necessary for the operation of the closure cell. Reliably directing the remote handling system to pick and place the closure cell equipment within the cell is the major challenge

  4. IZDELAVA TISKALNIKA 3D

    OpenAIRE

    Brdnik, Lovro

    2015-01-01

    Diplomsko delo analizira trenutno stanje 3D tiskalnikov na trgu. Prikazan je razvoj in principi delovanja 3D tiskalnikov. Predstavljeni so tipi 3D tiskalnikov, njihove prednosti in slabosti. Podrobneje je predstavljena zgradba in delovanje koračnih motorjev. Opravljene so meritve koračnih motorjev. Opisana je programska oprema za rokovanje s 3D tiskalniki in komponente, ki jih potrebujemo za izdelavo. Diploma se oklepa vprašanja, ali je izdelava 3D tiskalnika bolj ekonomična kot pa naložba v ...

  5. Radiation materials science. V. 10

    International Nuclear Information System (INIS)

    This volume includes the papers of the international conference on radiation materials in Alushta, Ukraine in May 1990. The main topics are: basic research in radiation damage physics, a study of the structural materials for reactor cores; irradiation effect on reactor vessel, fuel, super- and semiconductor materials; investigation damage research methods

  6. Radiation materials science. V. 6

    International Nuclear Information System (INIS)

    This volume includes the papers of the international conference on radiation materials in Alushta, Ukraine in May 1990. The main topics are: basic research in radiation damage physics, a study of the structural materials for reactor cores; irradiation effect on reactor vessel, fuel, super- and semiconductor materials; investigation damage research methods

  7. Radiation materials science. V. 5

    International Nuclear Information System (INIS)

    This volume includes the papers of the international conference on radiation materials in Alushta, Ukraine in May 1990. The main topics are: basic research in radiation damage physics, a study of the structural materials for reactor cores; irradiation effect on reactor vessel, fuel, super- and semiconductor materials; investigation damage research methods

  8. Radiation materials science. V. 7

    International Nuclear Information System (INIS)

    This volume includes the papers of the international conference on radiation materials in Alushta, Ukraine in May 1990. The main topics are: basic research in radiation damage physics, a study of the structural materials for reactor cores; irradiation effect on reactor vessel, fuel, super- and semiconductor materials; investigation damage research methods

  9. The Science of Smart Materials

    Science.gov (United States)

    Boohan, Richard

    2011-01-01

    Over the last few decades, smart materials have become increasingly important in the design of products. Essentially, a smart material is one that has been designed to respond to a stimulus, such as a change in temperature or magnetic field, in a particular and useful way. This article looks at a range of smart materials that are relatively…

  10. 3-D Modeling of Directional Solidification of a Non-Dilute Alloy with Temperature and Concentration Fields Coupling via Materials Properties Dependence and via Double Diffusive Convection

    Science.gov (United States)

    Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.

    1998-01-01

    Numerical simulation of the HgCdTe growth by the vertical Bridgman method was performed using FIDAP finite element code. Double-diffusive melt convection is analyzed, as the primary factor at controls inhomogeneity of the solidified material. Temperature and concentration fields in the model are also coupled via material properties, such as thermal and solutal expansion coefficients with the dependence on both temperature and concentration, and melting temperature evaluation from pseudobinary CdTe-HgTe phase diagram. Experimental measurements were used to obtain temperature boundary conditions. Parametric study of the melt convection dependence on the gravity conditions was undertaken. It was found, that the maximum convection velocity in the melt can be reduced under certain conditions. Optimal conditions to obtain a near flat solidified interface are discussed. The predicted interface shape is in agreement with one obtained experimentally by quenching. The results of 3-D calculations are compared with previous 2- D findings. A video film featuring 3-D melt convection will be presented.

  11. Integrating 3D Flower-Like Hierarchical Cu2NiSnS4 with Reduced Graphene Oxide as Advanced Anode Materials for Na-Ion Batteries.

    Science.gov (United States)

    Yuan, Shuang; Wang, Sai; Li, Lin; Zhu, Yun-hai; Zhang, Xin-bo; Yan, Jun-min

    2016-04-13

    Development of an anode material with high performance and low cost is crucial for implementation of next-generation Na-ion batteries (NIBs) electrode, which is proposed to meet the challenges of large scale renewable energy storage. Metal chalcogenides are considered as promising anode materials for NIBs due to their high theoretical capacity, low cost, and abundant sources. Unfortunately, their practical application in NIBs is still hindered because of low conductivity and morphological collapse caused by their volume expansion and shrinkage during Na(+) intercalation/deintercalation. To solve the daunting challenges, herein, we fabricated novel three-dimensional (3D) Cu2NiSnS4 nanoflowers (CNTSNs) as a proof-of-concept experiment using a facile and low-cost method. Furthermore, homogeneous integration with reduced graphene oxide nanosheets (RGNs) endows intrinsically insulated CNTSNs with superior electrochemical performances, including high specific capacity (up to 837 mAh g(-1)), good rate capability, and long cycling stability, which could be attributed to the unique 3D hierarchical structure providing fast ion diffusion pathway and high contact area at the electrode/electrolyte interface. PMID:26986821

  12. In situ UV curable 3D printing of multi-material tri-legged soft bot with spider mimicked multi-step forward dynamic gait

    Science.gov (United States)

    Zeb Gul, Jahan; Yang, Bong-Su; Yang, Young Jin; Chang, Dong Eui; Choi, Kyung Hyun

    2016-11-01

    Soft bots have the expedient ability of adopting intricate postures and fitting in complex shapes compared to mechanical robots. This paper presents a unique in situ UV curing three-dimensional (3D) printed multi-material tri-legged soft bot with spider mimicked multi-step dynamic forward gait using commercial bio metal filament (BMF) as an actuator. The printed soft bot can produce controllable forward motion in response to external signals. The fundamental properties of BMF, including output force, contractions at different frequencies, initial loading rate, and displacement-rate are verified. The tri-pedal soft bot CAD model is designed inspired by spider’s legged structure and its locomotion is assessed by simulating strain and displacement using finite element analysis. A customized rotational multi-head 3D printing system assisted with multiple wavelength’s curing lasers is used for in situ fabrication of tri-pedal soft-bot using two flexible materials (epoxy and polyurethane) in three layered steps. The size of tri-pedal soft-bot is 80 mm in diameter and each pedal’s width and depth is 5 mm × 5 mm respectively. The maximum forward speed achieved is 2.7 mm s‑1 @ 5 Hz with input voltage of 3 V and 250 mA on a smooth surface. The fabricated tri-pedal soft bot proved its power efficiency and controllable locomotion at three input signal frequencies (1, 2, 5 Hz).

  13. DOE fundamentals handbook: Material science

    International Nuclear Information System (INIS)

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the structure and properties of metals. This volume contains the following modules: thermal shock (thermal stress, pressurized thermal shock), brittle fracture (mechanism, minimum pressurization-temperature curves, heatup/cooldown rate limits), and plant materials (properties considered when selecting materials, fuel materials, cladding and reflectors, control materials, nuclear reactor core problems, plant material problems, atomic displacement due to irradiation, thermal and displacement spikes due to irradiation, neutron capture effect, radiation effects in organic compounds, reactor use of aluminum)

  14. 3. Interindustry conference on reactor materials science

    International Nuclear Information System (INIS)

    This document contains abstracts on papers presented at the Third Interindustry Conference on Reactor Materials Science (Dimitrovgrad, 27-30 October 1992). The subject scope of the papers is a follows: fuel and fuel elements of power reactors; structural materials of fast breeder reactors and thermonuclear reactors; structural materials of WWER and RBMK type reactors; absorbers and moderators

  15. `We put on the glasses and Moon comes closer!' Urban Second Graders Exploring the Earth, the Sun and Moon Through 3D Technologies in a Science and Literacy Unit

    Science.gov (United States)

    Isik-Ercan, Zeynep; Zeynep Inan, Hatice; Nowak, Jeffrey A.; Kim, Beomjin

    2014-01-01

    This qualitative case study describes (a) the ways 3D visualization, coupled with other science and literacy experiences, supported young children's first exploration of the Earth-Sun-Moon system and (b) the perspectives of classroom teachers and children on using 3D visualization. We created three interactive 3D software modules that simulate day and night, Moon phases and seasons. These modules were used in a science and literacy unit for 35 second graders at an urban elementary school in Midwestern USA. Data included pre- and post-interviews, audio-taped lessons and classroom observations. Post-interviews demonstrated that children's knowledge of the shapes and the movements of the Earth and Moon, alternation of day and night, the occurrence of the seasons, and Moon's changing appearance increased. Second graders reported that they enjoyed expanding their knowledge through hands-on experiences; through its reality effect, 3D visualization enabled them to observe the space objects that move in the virtual space. The teachers noted that 3D visualization stimulated children's interest in space and that using 3D visualization in combination with other teaching methods-literacy experiences, videos and photos, simulations, discussions, and presentations-supported student learning. The teachers and the students still experienced challenges using 3D visualization due to technical problems with 3D vision and time constraints. We conclude that 3D visualization offers hands-on experiences for challenging science concepts and may support young children's ability to view phenomena that would typically be observed through direct, long-term observations in outer space. Results imply a reconsideration of assumed capabilities of young children to understand astronomical phenomena.

  16. Infl uence of Various Materials on Biomechanical Behavior of Endocrown-Restored, Endodontically- Treated Mandibular First Molar:A 3D-Finite Element Analysis

    Institute of Scientific and Technical Information of China (English)

    CHEN Binwen; MA Yanzhao; WU Kunxue; CHEN Hong; LI Lu; LIANG Liang; LIU Jun; CHEN Zhi

    2015-01-01

    To evaluate the effect of restorative materials on stress distribution of endodontically treated teeth, the 3D models of an endodontically treated mandibularfi rst molar, restoration, and cement layer were created. Three different materials (composite resin, ceramage and ceramic) were studied and two loading conditions (vertical and oblique load) were simulated. Mohr-Coulomb failure criterion of enamel, dentine, endocrown and cement were evaluated separately. It is indicated that under both loading conditions, the highest values of Mohr-Coulomb failure criterion were observed in Ceramage-restored group for remaining tooth structure while in ceramic-restored group for the restoration. Compared to composite resin and Ceramage, ceramic endocrown transferred less stress, namely was more protective to the tooth structure.

  17. Materials science for nuclear detection

    Directory of Open Access Journals (Sweden)

    Anthony Peurrung

    2008-03-01

    Full Text Available The increasing importance of nuclear detection technology has led to a variety of research efforts that seek to accelerate the discovery and development of useful new radiation detection materials. These efforts aim to improve our understanding of how these materials perform, develop formalized discovery tools, and enable rapid and effective performance characterization. We provide an overview of these efforts along with an introduction to the history, physics, and taxonomy of radiation detection materials.

  18. Materials irradiation research in neutron science

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Kenji; Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    Materials irradiation researches are planned in Neutron Science Research Program. A materials irradiation facility has been conceived as one of facilities in the concept of Neutron Science Research Center at JAERI. The neutron irradiation field of the facility is characterized by high flux of spallation neutrons with very wide energy range up to several hundred MeV, good accessibility to the irradiation field, good controllability of irradiation conditions, etc. Extensive use of such a materials irradiation facility is expected for fundamental materials irradiation researches and R and D of nuclear energy systems such as accelerator-driven incineration plant for long-lifetime nuclear waste. In this paper, outline concept of the materials irradiation facility, characteristics of the irradiation field, preliminary technical evaluation of target to generate spallation neutrons, and materials researches expected for Neutron Science Research program are described. (author)

  19. 3D and Education

    Science.gov (United States)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  20. Materials Sciences programs, Fiscal Year 1983

    International Nuclear Information System (INIS)

    The Materials Sciences Division constitutes one portion of a wide range of research supported by the DOE Office of Basic Energy Sciences. This report contains a listing of research underway in FY 1983 together with a convenient index to the program

  1. Introduction of 3D Printing Technology in the Classroom for Visually Impaired Students

    Science.gov (United States)

    Jo, Wonjin; I, Jang Hee; Harianto, Rachel Ananda; So, Ji Hyun; Lee, Hyebin; Lee, Heon Ju; Moon, Myoung-Woon

    2016-01-01

    The authors investigate how 3D printing technology could be utilized for instructional materials that allow visually impaired students to have full access to high-quality instruction in history class. Researchers from the 3D Printing Group of the Korea Institute of Science and Technology (KIST) provided the Seoul National School for the Blind with…

  2. The materiality of materials and artefacts used in science classrooms

    DEFF Research Database (Denmark)

    Cowie, Bronwen; Otrel-Cass, Kathrin; Moreland, Judy

    2015-01-01

    Material objects and artefacts receive limited attention in science education (Roehl, 2012) though they shape emerging interactions. This is surprising given science has material and a social dimensions (Pickering, 1995) whereby new knowledge develops as a consensus explanation of natural phenomena...... that is mediated significantly through materials and instruments used. Here we outline the ways teachers deployed material objects and artefacts by identifying their materiality to provide scenarios and resources (Roth, 2005) for interactions. Theoretical framework We use Ingold's (2011) distinction between...... materials as natural objects in this world and artefacts as manmade objects. We are aware that in a classroom material objects and artefacts shape, and are shaped by classroom practice through the way they selectively present scientific explanations. However, materials and artefacts have no intrinsic...

  3. Nuclear technology and materials science

    International Nuclear Information System (INIS)

    Current and expected problems in the materials of nuclear technology are reviewed. In the fuel elements of LWRs, cladding waterside corrosion, secondary hydriding and pellet-cladding interaction may be significant impediments to extended burnup. In the fuel, fission gas release remains a key issue. Materials issues in the structural alloys of the primary system include stress-corrosion cracking of steel, corrosion of steam generator tubing and pressurized thermal shock of the reactor vessel. Prediction of core behavior in severe accidents requires basic data and models for fuel liquefaction, aerosol formation, fission product transport and core-concrete interaction. Materials questions in nuclear waste management and fusion technology are briefly reviewed. (author)

  4. 3D microscopy - new powerful tools in geomaterials characterization

    Science.gov (United States)

    Mauko Pranjić, Alenka; Mladenovič, Ana; Turk, Janez; Šajna, Aljoša; Čretnik, Janko

    2016-04-01

    Microtomography (microCT) is becoming more and more widely recognized in geological sciences as a powerful tool for the spatial characterization of rock and other geological materials. Together with 3D image analysis and other complementary techniques, it has the characteristics of an innovative and non-destructive 3D microscopical technique. On the other hand its main disadvantages are low availability (only a few geological laboratories are equipped with high resolution tomographs), the relatively high prices of testing connected with the use of an xray source, technical limitations connected to the resolution and imaging of certain materials, as well as timeconsuming and complex 3D image analysis, necessary for quantification of 3D tomographic data sets. In this work three examples are presented of optimal 3D microscopy analysis of geomaterials in construction such as porosity characterization of impregnated sandstone, aerated concrete and marble prone to bowing. Studies include processes of microCT imaging, 3D data analysis and fitting of data with complementary analysis, such as confocal microscopy, mercury porosimetry, gas sorption, optical/fluorescent microscopy and scanning electron microscopy. Present work has been done in the frame of national research project 3D and 4D microscopy development of new powerful tools in geosciences (ARRS J1-7148) funded by Slovenian Research Agency.

  5. 3D Printing and Its Urologic Applications.

    Science.gov (United States)

    Soliman, Youssef; Feibus, Allison H; Baum, Neil

    2015-01-01

    3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology.

  6. Microgravity Materials Science Conference 2000. Volume 3

    Science.gov (United States)

    Ramachandran, Narayanan; Bennett, Nancy; McCauley, Dannah; Murphy, Karen; Poindexter, Samantha

    2001-01-01

    This is Volume 3 of 3 of the 2000 Microgravity Materials Science Conference that was held June 6-8 at the Von Braun Center, Huntsville, Alabama. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division (MRD) at NASA Headquarters, and hosted by NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the fourth NASA conference of this type in the Microgravity materials science discipline. The microgravity science program sponsored 200 investigators, all of whom made oral or poster presentations at this conference- In addition, posters and exhibits covering NASA microgravity facilities, advanced technology development projects sponsored by the NASA Microgravity Research Division at NASA Headquarters, and commercial interests were exhibited. The purpose of the conference was to inform the materials science community of research opportunities in reduced gravity and to highlight the Spring 2001 release of the NASA Research Announcement (NRA) to solicit proposals for future investigations. It also served to review the current research and activities in material,, science, to discuss the envisioned long-term goals. and to highlight new crosscutting research areas of particular interest to MRD. The conference was aimed at materials science researchers from academia, industry, and government. A workshop on in situ resource utilization (ISRU) was held in conjunction with the conference with the goal of evaluating and prioritizing processing issues in Lunar and Martian type environments. The workshop participation included invited speakers and investigators currently funded in the material science program under the Human Exploration and Development of Space (HEDS) initiative. The conference featured a plenary session every day with an invited speaker that was followed by three parallel breakout sessions in subdisciplines. Attendance was close

  7. Microgravity Materials Science Conference 2000. Volume 2

    Science.gov (United States)

    Ramachandran, Narayanan (Editor); Bennett, Nancy (Editor); McCauley, Dannah (Editor); Murphy, Karen (Editor); Poindexter, Samantha (Editor)

    2001-01-01

    This is Volume 2 of 3 of the 2000 Microgravity Materials Science Conference that was held June 6-8 at the Von Braun Center, Huntsville, Alabama. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division (MRD) at NASA Headquarters, and hosted by NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the fourth NASA conference of this type in the Microgravity materials science discipline. The microgravity science program sponsored approx. 200 investigators, all of whom made oral or poster presentations at this conference- In addition, posters and exhibits covering NASA microgravity facilities, advanced technology development projects sponsored by the NASA Microgravity Research Division at NASA Headquarters, and commercial interests were exhibited. The purpose of the conference %%,its to inform the materials science community of research opportunities in reduced gravity and to highlight the Spring 2001 release of the NASA Research Announcement (NRA) to solicit proposals for future investigations. It also served to review the current research and activities in material,, science, to discuss the envisioned long-term goals. and to highlight new crosscutting research areas of particular interest to MRD. The conference was aimed at materials science researchers from academia, industry, and government. A workshop on in situ resource utilization (ISRU) was held in conjunction with the conference with the goal of evaluating and prioritizing processing issues in Lunar and Martian type environments. The workshop participation included invited speakers and investigators currently funded in the material science program under the Human Exploration and Development of Space (HEDS) initiative. The conference featured a plenary session every day with an invited speaker that was followed by three parallel breakout sessions in subdisciplines. Attendance

  8. Microgravity Materials Science Conference 2000. Volume 1

    Science.gov (United States)

    Ramachandran, Narayanan (Editor); Bennett, Nancy (Editor); McCauley, Dannah (Editor); Murphy, Karen (Editor); Poindexter, Samantha (Editor)

    2001-01-01

    This is Volume 1 of 3 of the 2000 Microgravity Material Science Conference that was held June 6-8 at the Von Braun Center, Huntsville, Alabama. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division (MRD) at NASA Headquarters, and hosted by NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the fourth NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approx. 200 investigators, all of whom made oral or poster presentations at this conference. In addition, posters and exhibits covering NASA microgravity facilities, advanced technology development projects sponsored by the NASA Microgravity Research Division at NASA Headquarters, and commercial interests were exhibited. The purpose of the conference was to inform the materials science community of research opportunities in reduced gravity and to highlight the Spring 2001 release of the NASA Research Announcement (NRA) to solicit proposals for future investigations. It also served to review the current research and activities in materials science, to discuss the envisioned long-term goals. and to highlight new crosscutting research areas of particular interest to MRD. The conference was aimed at materials science researchers from academia, industry, and government. A workshop on in situ resource utilization (ISRU) was held in conjunction with the conference with the goal of evaluating and prioritizing processing issues in Lunar and Martian type environments. The workshop participation included invited speakers and investigators currently funded in the material science program under the Human Exploration and Development of Space (HEDS) initiative. The conference featured a plenary session every day with an invited speaker that was followed by three parallel breakout sessions in subdisciplines. Attendance was

  9. Facile preparation of 3D hierarchical porous carbon from lignin for the anode material in lithium ion battery with high rate performance

    International Nuclear Information System (INIS)

    Graphical abstract: Hierarchical porous carbon with 3D macroporous structure is prepared via a facile method and displays high lithium ion storage capacity and rate capability. - Highlights: • Hierarchical porous carbon is prepared from lignin via a facile method. • KOH acts both as activating agent and template in the preparation process. • Lignin based hierarchical porous carbon displays high lithium storage capacity. • Lignin based hierarchical porous carbon displays stable cycling stability. - Abstract: Hierarchical porous carbon derived from lignin (denoted as LHPC) was prepared via a facile method. In this method, KOH acts both as activating agent and template. The obtained LHPC was composed of unique 3D macroporous network with mesopores and micropores decorated on carbon walls. LHPC was further applied as the anode material of lithium ion battery and displayed a stable, high capacity of 470 mAh g−1 after 400 galvanostatic charge-discharge cycles at a current density of 200 mA g−1. Furthermore, LHPC displayed high cycling stability and perfect rate capability. This facile method for the preparation of LHPC offers a new route for the preparation of a series of hierarchical porous carbons for the application in supercapacitors, fuel cells, lithium ion batteries, etc

  10. Computational materials science: Nanoscale plasticity

    DEFF Research Database (Denmark)

    Jacobsen, Karsten Wedel; Schiøtz, Jakob

    2002-01-01

    How does plastic deformation of polycrystalline materials with grain sizes less than 100 nm look at the atomic scale? A large-scale molecular dynamics simulation of nanocrystalline alluminium reveals some surprising behaviour.......How does plastic deformation of polycrystalline materials with grain sizes less than 100 nm look at the atomic scale? A large-scale molecular dynamics simulation of nanocrystalline alluminium reveals some surprising behaviour....

  11. User-centered 3D geovisualisation

    DEFF Research Database (Denmark)

    Nielsen, Anette Hougaard

    2004-01-01

    . In a broader perspective, the overall aim is to develop a language in 3D Geovisualisation gained through usability projects and the development of a theoretical background. A conceptual level of user-centered 3D Geovisualisation is introduced by applying a categorisation originating from Virtual Reality......3D Geovisualisation is a multidisciplinary science mainly utilizing geographically related data, developing software systems for 3D visualisation and producing relevant models. In this paper the connection between geoinformation stored as 3D objects and the end user is of special interest...

  12. Polygon mesh data (Polygon reduction rate = 99% PART-OF Tree) - BodyParts3D | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available BodyParts3D Polygon mesh data (Polygon reduction rate = 99% PART-OF Tree) Data detail Data name Polygon mesh data (Polygon reduction... rate = 99% PART-OF Tree) Description of data contents BodyParts3D organ model data with the polygon reductio... Database Site Policy | Contact Us Polygon mesh data (Polygon reduction rate = 99% PART-OF Tree) - BodyParts3D | LSDB Archive ...

  13. Polygon mesh data (Polygon reduction rate = 99% IS-A Tree) - BodyParts3D | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available BodyParts3D Polygon mesh data (Polygon reduction rate = 99% IS-A Tree) Data detail Data name Polygon mesh data (Polygon reduction... rate = 99% IS-A Tree) Description of data contents BodyParts3D organ model data with the polygon reduction...ite Policy | Contact Us Polygon mesh data (Polygon reduction rate = 99% IS-A Tree) - BodyParts3D | LSDB Archive ...

  14. BUILDING A HOMEMADE 3D PRINTER

    OpenAIRE

    Tunc, Baran

    2015-01-01

    3D printing has been attracted much attention around the world due to its high potential of new application fields. In this respect, developing and inventing new filament materials for 3D printers or new techniques of 3D printing are the main interest of the many materials scientists. This paper reports a comprehensive overview of 3D printing followed by a summary of my ongoing study of building a composite homemade 3D printer. At this stage of this study, a CNC router was successfully conver...

  15. Synchrotron radiation in material science

    International Nuclear Information System (INIS)

    A brief review on the several experimental techniques (XRD, SAXS, EXAFS, IRRS, etc...) which, utilizing of synchrotron radiation can be applied in glass structural studies, is presented. The major part of these techniques can be also used for studies of other materials such as polymers, metals, etc... (L.C.)

  16. 3D virtuel udstilling

    DEFF Research Database (Denmark)

    Tournay, Bruno; Rüdiger, Bjarne

    2006-01-01

    3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s.......3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s....

  17. From 3D view to 3D print

    Science.gov (United States)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  18. DOE fundamentals handbook: Material science

    International Nuclear Information System (INIS)

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the structure and properties of metals. This volume contains the two modules: structure of metals (bonding, common lattic types, grain structure/boundary, polymorphis, alloys, imperfections in metals) and properties of metals (stress, strain, Young modulus, stress-strain relation, physical properties, working of metals, corrosion, hydrogen embrittlement, tritium/material compatibility)

  19. Materials Science and Technology Teachers Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Wieda, Karen J.; Schweiger, Michael J.; Bliss, Mary; Pitman, Stan G.; Eschbach, Eugene A.

    2008-09-04

    The Materials Science and Technology (MST) Handbook was developed by Pacific Northwest National Laboratory, in Richland, Washington, under support from the U.S. Department of Energy. Many individuals have been involved in writing and reviewing materials for this project since it began at Richland High School in 1986, including contributions from educators at the Northwest Regional Education Laboratory, Central Washington University, the University of Washington, teachers from Northwest Schools, and science and education personnel at Pacific Northwest National Laboratory. Support for its development was also provided by the U.S. Department of Education. This introductory course combines the academic disciplines of chemistry, physics, and engineering to create a materials science and technology curriculum. The course covers the fundamentals of ceramics, glass, metals, polymers and composites. Designed to appeal to a broad range of students, the course combines hands-on activities, demonstrations and long term student project descriptions. The basic philosophy of the course is for students to observe, experiment, record, question, seek additional information, and, through creative and insightful thinking, solve problems related to materials science and technology. The MST Teacher Handbook contains a course description, philosophy, student learning objectives, and instructional approach and processes. Science and technology teachers can collaborate to build the course from their own interests, strengths, and experience while incorporating existing school and community resources. The course is intended to meet local educational requirements for technology, vocational and science education.

  20. Overview of NASA's Microgravity Materials Science Program

    Science.gov (United States)

    Downey, James Patton

    2012-01-01

    The microgravity materials program was nearly eliminated in the middle of the aughts due to budget constraints. Hardware developments were eliminated. Some investigators with experiments that could be performed using ISS partner hardware received continued funding. Partnerships were established between US investigators and ESA science teams for several investigations. ESA conducted peer reviews on the proposals of various science teams as part of an ESA AO process. Assuming he or she was part of a science team that was selected by the ESA process, a US investigator would submit a proposal to NASA for grant funding to support their part of the science team effort. In a similar manner, a US materials investigator (Dr. Rohit Trivedi) is working as a part of a CNES selected science team. As funding began to increase another seven materials investigators were selected in 2010 through an NRA mechanism to perform research related to development of Materials Science Research Rack investigations. One of these has since been converted to a Glovebox investigation.

  1. Design and synthesis of porous nano-sized Sn@C/graphene electrode material with 3D carbon network for high-performance lithium-ion batteries

    International Nuclear Information System (INIS)

    Highlights: • Porous nano-sized Sn@C/graphene electrode material was designed and prepared. • The preparation method presented here can avoid the agglomeration of nanoparticles. • The prepared Sn@C/graphene electrode material exhibits outstanding cyclability. - Abstract: Tin is a promising high-capacity anode material for lithium-ion batteries, but it usually suffers from the problem of poor cycling stability due to the large volume change during the charge–discharge process. In this article, porous nano-sized Sn@C/graphene electrode material with three-dimensional carbon network was designed and prepared. Reducing the size of the Sn particles to nanoscale can mitigate the absolute strain induced by the large volume change during lithiation–delithiation process, and retard particle pulverization. The porous structure can provide a void space, which helps to accommodate the volume changes of the Sn nanoparticles during the lithium uptake-release process. The carbon shell can avoid the aggregation of the Sn nanoparticles on the same piece of graphene and detachment of the pulverized Sn particles during the charge–discharge process. The 3D carbon network consisted of graphene sheets and carbon shells can not only play a structural buffering role in minimizing the mechanical stress caused by the volume change of Sn, but also keep the overall electrode highly conductive during the lithium uptake-release process. As a result, the as-prepared Sn@C/graphene nanocomposite as an anode material for lithium-ion batteries exhibited outstanding cyclability. The reversible specific capacity is almost constant from the tenth cycle to the fiftieth cycle, which is about 600 mA h g−1. The strategy presented in this work may be extended to improve the cycle performances of other high-capacity electrode materials with large volume variations during charge–discharge processes

  2. Design and synthesis of porous nano-sized Sn@C/graphene electrode material with 3D carbon network for high-performance lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Peichao, E-mail: lianpeichao@126.com [Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Wang, Jingyi [Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Cai, Dandan; Liu, Guoxue [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China); Wang, Yingying [Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Wang, Haihui, E-mail: hhwang@scut.edu.cn [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China)

    2014-08-01

    Highlights: • Porous nano-sized Sn@C/graphene electrode material was designed and prepared. • The preparation method presented here can avoid the agglomeration of nanoparticles. • The prepared Sn@C/graphene electrode material exhibits outstanding cyclability. - Abstract: Tin is a promising high-capacity anode material for lithium-ion batteries, but it usually suffers from the problem of poor cycling stability due to the large volume change during the charge–discharge process. In this article, porous nano-sized Sn@C/graphene electrode material with three-dimensional carbon network was designed and prepared. Reducing the size of the Sn particles to nanoscale can mitigate the absolute strain induced by the large volume change during lithiation–delithiation process, and retard particle pulverization. The porous structure can provide a void space, which helps to accommodate the volume changes of the Sn nanoparticles during the lithium uptake-release process. The carbon shell can avoid the aggregation of the Sn nanoparticles on the same piece of graphene and detachment of the pulverized Sn particles during the charge–discharge process. The 3D carbon network consisted of graphene sheets and carbon shells can not only play a structural buffering role in minimizing the mechanical stress caused by the volume change of Sn, but also keep the overall electrode highly conductive during the lithium uptake-release process. As a result, the as-prepared Sn@C/graphene nanocomposite as an anode material for lithium-ion batteries exhibited outstanding cyclability. The reversible specific capacity is almost constant from the tenth cycle to the fiftieth cycle, which is about 600 mA h g{sup −1}. The strategy presented in this work may be extended to improve the cycle performances of other high-capacity electrode materials with large volume variations during charge–discharge processes.

  3. Carbon Nanotubes: Miracle of Materials Science?

    Science.gov (United States)

    Files, Bradley S.; Mayeaux, Brian M.

    1999-01-01

    Article to be sent to Advanced Materials and Processes, journal of ASM International, as attached. This is a news-type technical journal for a large organization of scientists, engineers, salesmen, and managers. The article is quite general, meant to be an introduction to the properties of nanotubes. This is a materials science organization, therefore the article is geared toward using nanotubes for materials uses. Pictures have not been included in this version.

  4. Scaled 3D modeling of poly-phase tectonic deformation: A new analogue material for basement rock, with controlled variable strength.

    Science.gov (United States)

    Nieuwland, D. A.; Koekoek, G.; van Mechelen, D.; Papo, M.

    2003-04-01

    A common process in tectonic faulting is that of poly-phase deformation. A majority of neo-tectonic structures is controlled by reactivated pre-existing faults in the underlying basement. A reliable interpretation of such neo-tectonic structures is only possible if the process of the poly-phase deformation can be described and understood in terms of the geomechanics. We have developed an analogue modelling approach to poly-phase deformation. The aim of the project was to construct analogue models with reliable scaling of strength, length, geometry and kinematics of poly-phase tectonic deformation in 3D. The natural process generally involves a faulted basement sequence of relatively strong rocks and a younger cover sequence of weaker rocks. The main problem here has always been to find a material to model the strong basement rocks. A good basement analogue needs to be strong enough to support fault reactivation without braking itself, however, it should brake when the stress conditions require. For example, compression perpendicular to a steep basement fault should break the basement. The weak cover can be modelled with dry sand, which is essentially cohesionless, but for the stronger basement a good analogue was not available (wooden blocks often used in analogue models are too strong). The orientation and geometry of faults and fault patterns is controlled by the internal friction angle (f) of the deformed rock. For the majority of brittle rocks f is of the order of 30o, for the sand that is used for analogue modelling f=32o. In order to model the basement rock a brittle material was needed that must be stronger that dry sand, strong enough to remain intact during fault reactivation, but weak enough to break when a fault is too steep to be reactivated in horizontal compression conditions. In the analogue modelling lab of the VU (TecLab) we have recently succeeded in forming such a basement material. The material can be made at any required strength to make

  5. 3D Printed Robotic Hand

    Science.gov (United States)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  6. Blender 3D cookbook

    CERN Document Server

    Valenza, Enrico

    2015-01-01

    This book is aimed at the professionals that already have good 3D CGI experience with commercial packages and have now decided to try the open source Blender and want to experiment with something more complex than the average tutorials on the web. However, it's also aimed at the intermediate Blender users who simply want to go some steps further.It's taken for granted that you already know how to move inside the Blender interface, that you already have 3D modeling knowledge, and also that of basic 3D modeling and rendering concepts, for example, edge-loops, n-gons, or samples. In any case, it'

  7. Density functional theory in materials science.

    Science.gov (United States)

    Neugebauer, Jörg; Hickel, Tilmann

    2013-09-01

    Materials science is a highly interdisciplinary field. It is devoted to the understanding of the relationship between (a) fundamental physical and chemical properties governing processes at the atomistic scale with (b) typically macroscopic properties required of materials in engineering applications. For many materials, this relationship is not only determined by chemical composition, but strongly governed by microstructure. The latter is a consequence of carefully selected process conditions (e.g., mechanical forming and annealing in metallurgy or epitaxial growth in semiconductor technology). A key task of computational materials science is to unravel the often hidden composition-structure-property relationships using computational techniques. The present paper does not aim to give a complete review of all aspects of materials science. Rather, we will present the key concepts underlying the computation of selected material properties and discuss the major classes of materials to which they are applied. Specifically, our focus will be on methods used to describe single or polycrystalline bulk materials of semiconductor, metal or ceramic form.

  8. 3-D Technology Approaches for Biological Ecologies

    Science.gov (United States)

    Liu, Liyu; Austin, Robert; U. S-China Physical-Oncology Sciences Alliance (PS-OA) Team

    Constructing three dimensional (3-D) landscapes is an inevitable issue in deep study of biological ecologies, because in whatever scales in nature, all of the ecosystems are composed by complex 3-D environments and biological behaviors. Just imagine if a 3-D technology could help complex ecosystems be built easily and mimic in vivo microenvironment realistically with flexible environmental controls, it will be a fantastic and powerful thrust to assist researchers for explorations. For years, we have been utilizing and developing different technologies for constructing 3-D micro landscapes for biophysics studies in in vitro. Here, I will review our past efforts, including probing cancer cell invasiveness with 3-D silicon based Tepuis, constructing 3-D microenvironment for cell invasion and metastasis through polydimethylsiloxane (PDMS) soft lithography, as well as explorations of optimized stenting positions for coronary bifurcation disease with 3-D wax printing and the latest home designed 3-D bio-printer. Although 3-D technologies is currently considered not mature enough for arbitrary 3-D micro-ecological models with easy design and fabrication, I hope through my talk, the audiences will be able to sense its significance and predictable breakthroughs in the near future. This work was supported by the State Key Development Program for Basic Research of China (Grant No. 2013CB837200), the National Natural Science Foundation of China (Grant No. 11474345) and the Beijing Natural Science Foundation (Grant No. 7154221).

  9. 3D Printed Block Copolymer Nanostructures

    Science.gov (United States)

    Scalfani, Vincent F.; Turner, C. Heath; Rupar, Paul A.; Jenkins, Alexander H.; Bara, Jason E.

    2015-01-01

    The emergence of 3D printing has dramatically advanced the availability of tangible molecular and extended solid models. Interestingly, there are few nanostructure models available both commercially and through other do-it-yourself approaches such as 3D printing. This is unfortunate given the importance of nanotechnology in science today. In this…

  10. Metallurgy, the Father of Materials Science

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The evolution of the discipline of materials science during the second half of the twentieth century is outlined. The concept emerged in the USA, almost simultaneously in an academic metallurgy department and in an avant-garde industrial research laboratory, and its development subsequently all over the world has been a joint enterprise involving universities, industrial laboratories and government establishments. The initial impetus came unambiguously from the well established discipline of physical metallurgy, but from the 1960s onwards, the input from solid-state physicists grew very rapidly, while materials chemistry is a later addition. Of all the many subdivisions of modern materials science, polymer science has been the slowest to fit under the umbrella of the broad discipline; its concepts are very different from those familiar to metallurgists. Two fields have contributed mightily to the creation of modern materials science: One is nuclear energy and, more specifically, the study of radiation damage, the other is the huge field of electronic and opto-electronic materials in which physics, chemistry and metallurgy are seamlessly combined.

  11. Materials and Chemical Sciences Division annual report, 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described. (CBS)

  12. Materials and Chemical Sciences Division annual report, 1987

    International Nuclear Information System (INIS)

    Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described

  13. 3D Printable Graphene Composite.

    Science.gov (United States)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-08

    In human being's history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today's personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite's linear thermal coefficient is below 75 ppm·°C(-1) from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  14. Steels from materials science to structural engineering

    CERN Document Server

    Sha, Wei

    2013-01-01

    Steels and computer-based modelling are fast growing fields in materials science as well as structural engineering, demonstrated by the large amount of recent literature. Steels: From Materials Science to Structural Engineering combines steels research and model development, including the application of modelling techniques in steels.  The latest research includes structural engineering modelling, and novel, prototype alloy steels such as heat-resistant steel, nitride-strengthened ferritic/martensitic steel and low nickel maraging steel.  Researchers studying steels will find the topics vital to their work.  Materials experts will be able to learn about steels used in structural engineering as well as modelling and apply this increasingly important technique in their steel materials research and development. 

  15. Materials Sciences programs, Fiscal Year 1992

    International Nuclear Information System (INIS)

    The Materials Sciences Division supports basic research on materials properties and phenomena important to all energy systems. This report contains a listing of research underway in FY 1992 together with an index to the Division's programs. Recent publications from Division-sponsored panel meetings and workshops are listed. The body of the report is arranged under the following section headings: laboratories, grant and contract research, small business innovation research, major user facilities, other user facilities, funding levels, and index

  16. Illustrating Mathematics using 3D Printers

    OpenAIRE

    Knill, Oliver; Slavkovsky, Elizabeth

    2013-01-01

    3D printing technology can help to visualize proofs in mathematics. In this document we aim to illustrate how 3D printing can help to visualize concepts and mathematical proofs. As already known to educators in ancient Greece, models allow to bring mathematics closer to the public. The new 3D printing technology makes the realization of such tools more accessible than ever. This is an updated version of a paper included in book Low-Cost 3D Printing for science, education and Sustainable Devel...

  17. The future research of material science

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Hironobu [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    1997-11-01

    High Energy Accelerator Research Organization (KEK), which was established on 1 April, consists of two institutes. One of these is Institute of Materials Structure Science. New research program in the new institute using synchrotron radiation, neutrons and muons are discussed. (author)

  18. Materials Sciences programs, Fiscal year 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-02-01

    This report provides a compilation and index of the DOE Materials Sciences Division programs; the compilation is to assist administrators, managers, and scientists to help coordinate research. The report is divided into 7 sections: laboratory projects, contract research projects, small business innovation research, major user facilities, other user facilities, funding level distributions, and indexes.

  19. Konstrukce 3D tiskárny pro materiály s vyšší pevností

    OpenAIRE

    Žlebek, Michal

    2015-01-01

    Práce se zabývá problematikou 3D tisku metodou FDM a možnostmi testování optimálních podmínek tisku pro různé materiály. Cílem této práce je konstrukční návrh a výroba experimentálního zařízení, které umožní tyto podmínky tisku zkoumat. Zařízení, zkonstruované v této práci, bylo pojmenováno UK3DP a umožňuje dvoubarevný tisk objektu o maximálních rozměrech čtvercové podstavy 150 mm a výšce 150 mm. Před tiskem je možno uživatelsky nastavit téměř všechny parametry ovlivňující průběh tisku, a to ...

  20. Materials science symposium 'heavy ion science in tandem energy region'

    International Nuclear Information System (INIS)

    The facility of the JAERI tandem accelerator and its booster has been contributing to obtain plenty of fruitful results in the fields of nuclear physics, nuclear chemistry, atomic and solid state physics and materials science, taking an advantage of its prominent performances of heavy ion acceleration. The previous meeting held in 1999 also offered an opportunity to scientists from all over the heavy ion science fields, including nuclear physics, solid state physics and cross-field physics to have active discussions. This meeting included oral presentations with a new plan and with a new scope of fields expected from now on, as an occasion for opening the 21st century in heavy ion science. The 50 of the presented papers are indexed individually. (J.P.N.)

  1. Material Science and Engineering with Neutron Imaging

    Science.gov (United States)

    Penumadu, D.

    This chapter summarizes some of the results related to the use of neutron imaging (radiography and tomography) as applied to the broad area of materials science and engineering research. These include multi-phase flow visualization in metal casting techniques, energy-selective imaging of materials and its use for texture and stress imaging in polycrystalline materials, characterization of discrete particle systems, flow through porous media, and stroboscopic imaging. The importance of spatial resolution and neutron detector type for given engineering applications is also addressed.

  2. Herramientas SIG 3D

    Directory of Open Access Journals (Sweden)

    Francisco R. Feito Higueruela

    2010-04-01

    Full Text Available Applications of Geographical Information Systems on several Archeology fields have been increasing during the last years. Recent avances in these technologies make possible to work with more realistic 3D models. In this paper we introduce a new paradigm for this system, the GIS Thetrahedron, in which we define the fundamental elements of GIS, in order to provide a better understanding of their capabilities. At the same time the basic 3D characteristics of some comercial and open source software are described, as well as the application to some samples on archeological researchs

  3. TOWARDS: 3D INTERNET

    OpenAIRE

    Ms. Swapnali R. Ghadge

    2013-01-01

    In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot o...

  4. Bootstrapping 3D fermions

    Science.gov (United States)

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-01

    We study the conformal bootstrap for a 4-point function of fermions in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge C T . We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N . We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  5. Interaktiv 3D design

    DEFF Research Database (Denmark)

    Villaume, René Domine; Ørstrup, Finn Rude

    2002-01-01

    Projektet undersøger potentialet for interaktiv 3D design via Internettet. Arkitekt Jørn Utzons projekt til Espansiva blev udviklet som et byggesystem med det mål, at kunne skabe mangfoldige planmuligheder og mangfoldige facade- og rumudformninger. Systemets bygningskomponenter er digitaliseret som...... 3D elementer og gjort tilgængelige. Via Internettet er det nu muligt at sammenstille og afprøve en uendelig  række bygningstyper som  systemet blev tænkt og udviklet til....

  6. Chemistry and Materials Science Strategic Plan

    Energy Technology Data Exchange (ETDEWEB)

    Rhodie, K B; Mailhiot, C; Eaglesham, D; Hartmann-Siantar, C L; Turpin, L S; Allen, P G

    2004-04-21

    Lawrence Livermore National Laboratory's mission is as clear today as it was in 1952 when the Laboratory was founded--to ensure our country's national security and the safety and reliability of its nuclear deterrent. As a laboratory pursuing applied science in the national interest, we strive to accomplish our mission through excellence in science and technology. We do this while developing and implementing sound and robust business practices in an environment that emphasizes security and ensures our safety and the safety of the community around us. Our mission as a directorate derives directly from the Laboratory's charter. When I accepted the assignment of Associate Director for Chemistry and Materials Science (CMS), I talked to you about the need for strategic balance and excellence in all our endeavors. We also discussed how to take the directorate to the next level. The long-range CMS strategic plan presented here was developed with this purpose in mind. It also aligns with the Lab's institutional long-range science and technology plan and its 10-year facilities and infrastructure site plan. The plan is aimed at ensuring that we fulfill our directorate's two governing principles: (1) delivering on our commitments to Laboratory programs and sponsors, and (2) anticipating change and capitalizing on opportunities through innovation in science and technology. This will require us to attain a new level of creativity, agility, and flexibility as we move forward. Moreover, a new level of engagement in partnerships with other directorates across the Laboratory as well as with universities and other national labs will also be required. The group of managers and staff that I chartered to build a strategic plan identified four organizing themes that define our directorate's work and unite our staff with a set of common goals. The plan presented here explains how we will proceed in each of these four theme areas: (1) Materials properties and

  7. Understanding solids the science of materials

    CERN Document Server

    Tilley, Richard J D

    2005-01-01

    A modern introduction to the subject taking a unique integrated approach designed to appeal to both science and engineering students. Covering a broad spectrum of topics, this book includes numerous up-to-date examples of real materials with relevant applications and a modern treatment of key concepts. The science bias allows this book to be equally accessible to engineers, chemists and physicists. * Carefully structured into self-contained bite-sized chapters to enhance student understanding * Questions have been designed to reinforce the concepts presented * Includes coverage of radioactivit

  8. Data describing the definition of compound organs (IS-A Tree) - BodyParts3D | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available [ Credits ] BLAST Search Image Search Home About Archive Update History Contact us BodyPart...ing the definition of compound organs (IS-A Tree) Description of data contents In BodyParts3D, only atomic o...ined as a sum of atomic ones are not provided in the form of the meshes. This file describes which ELEMENT part...s consistute each COMPOUND organ. Data file File name: isa_element_parts.txt File URL: ftp://ftp.biosciencedbc.jp/archive/bodypart...s3d/LATEST/isa_element_parts.txt File size: 1.1 MB Simpl

  9. Data describing the definition of compound organs (PART-OF Tree) - BodyParts3D | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available [ Credits ] BLAST Search Image Search Home About Archive Update History Contact us BodyPart...ribing the definition of compound organs (PART-OF Tree) Description of data contents In BodyParts3D, only at...D) defined as a sum of atomic ones are not provided in the form of the meshes. This file describes which ELEMENT part...s consistute each COMPOUND organ. Data file File name: partof_element_parts.txt File URL: ftp://ftp....biosciencedbc.jp/archive/bodyparts3d/LATEST/partof_element_parts.txt File size:

  10. Tangible 3D Modelling

    DEFF Research Database (Denmark)

    Hejlesen, Aske K.; Ovesen, Nis

    2012-01-01

    This paper presents an experimental approach to teaching 3D modelling techniques in an Industrial Design programme. The approach includes the use of tangible free form models as tools for improving the overall learning. The paper is based on lecturer and student experiences obtained through facil...

  11. 3D Harmonic Echocardiography:

    NARCIS (Netherlands)

    M.M. Voormolen

    2007-01-01

    textabstractThree dimensional (3D) echocardiography has recently developed from an experimental technique in the ’90 towards an imaging modality for the daily clinical practice. This dissertation describes the considerations, implementation, validation and clinical application of a unique

  12. DYNA3D2000*, Explicit 3-D Hydrodynamic FEM Program

    International Nuclear Information System (INIS)

    1 - Description of program or function: DYNA3D2000 is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding, single surface contact and automatic contact generation. 2 - Method of solution: Discretization of a continuous model transforms partial differential equations into algebraic equations. A numerical solution is then obtained by solving these algebraic equations through a direct time marching scheme. 3 - Restrictions on the complexity of the problem: Recent software improvements have eliminated most of the user identified limitations with dynamic memory allocation and a very large format description that has pushed potential problem sizes beyond the reach of most users. The dominant restrictions remain in code execution speed and robustness, which the developers constantly strive to improve

  13. Surface analysis methods in materials science

    CERN Document Server

    Sexton, Brett; Smart, Roger

    1992-01-01

    The idea for this book stemmed from a remark by Philip Jennings of Murdoch University in a discussion session following a regular meeting of the Australian Surface Science group. He observed that a text on surface analysis and applica­ tions to materials suitable for final year undergraduate and postgraduate science students was not currently available. Furthermore, the members of the Australian Surface Science group had the research experience and range of coverage of sur­ face analytical techniques and applications to provide a text for this purpose. A of techniques and applications to be included was agreed at that meeting. The list intended readership of the book has been broadened since the early discussions, particularly to encompass industrial users, but there has been no significant alter­ ation in content. The editors, in consultation with the contributors, have agreed that the book should be prepared for four major groups of readers: - senior undergraduate students in chemistry, physics, metallur...

  14. Making Inexpensive 3-D Models

    Science.gov (United States)

    Manos, Harry

    2016-03-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the TPT theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity well tailored to specific class lessons. Most of the supplies are readily available in the home or at school: rubbing alcohol, a rag, two colors of spray paint, art brushes, and masking tape. The cost of these supplies, if you don't have them, is less than 20.

  15. The ATLAS(3D) project : I. A volume-limited sample of 260 nearby early-type galaxies: science goals and selection criteria

    NARCIS (Netherlands)

    Cappellari, Michele; Emsellem, Eric; Krajnovic, Davor; McDermid, Richard M.; Scott, Nicholas; Kleijn, G. A. Verdoes; Young, Lisa M.; Alatalo, Katherine; Bacon, R.; Blitz, Leo; Bois, Maxime; Bournaud, Frederic; Bureau, M.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Khochfar, Sadegh; Kuntschner, Harald; Lablanche, Pierre-Yves; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Serra, Paolo; Weijmans, Anne-Marie

    2011-01-01

    The ATLAS3D project is a multiwavelength survey combined with a theoretical modelling effort. The observations span from the radio to the millimetre and optical, and provide multicolour imaging, two-dimensional kinematics of the atomic (H i), molecular (CO) and ionized gas (H beta, [O iii] and [N i

  16. Brilliant Light in Life and Material Sciences

    CERN Document Server

    Tsakanov, Vasili

    2007-01-01

    The present book contains an excellent overview of the status and highlights of brilliant light facilities and their applications in biology, chemistry, medicine, materials and environmental sciences. Overview papers on diverse fields of research by leading experts are accompanied by the highlights in the near and long-term perspectives of brilliant X-Ray photon beam usage for fundamental and applied research. The book includes advanced topics in the fields of high brightness photon beams, instrumentation, the spectroscopy, microscopy, scattering and imaging experimental techniques and their applications. The book is strongly recommended for students, engineers and scientists in the field of accelerator physics, X-ray optics and instrumentation, life, materials and environmental sciences, bio and nanotechnology.

  17. Materials Science Research Rack-1 (MSRR-1)

    Science.gov (United States)

    2001-01-01

    This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD). This image is from a digital still camera; higher resolution is not available.

  18. The materials science of protein aggregation

    OpenAIRE

    Cox, D L; Lashuel, H. A.; Lee, K. Y. C.; Singh, R. R. R.

    2005-01-01

    Numerous human diseases are associated with conformational change and aggregation of proteins, including Alzheimer's, Parkinson's, prion diseases (such as mad cow disease), familial amyotrophic lateral sclerosis (ALS, or Lou Gehrig's disease), Huntington's, and type II (mature onset) diabetes. In many cases, it has been demonstrated that conformational change and aggregation can occur outside living cells and complex biochemical networks. Hence, approaches from materials and physical science ...

  19. Materials Sciences programs, Fiscal Year 1984

    International Nuclear Information System (INIS)

    This report provides a convenient compilation and index of the DOE Materials Sciences Division programs. The report is divided into six sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research program, Section D has information on DOE collaborative research centers, Section E gives distributions of funding, and Section F has various indexes

  20. Materials Sciences programs, fiscal year 1986

    International Nuclear Information System (INIS)

    Purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. The report is divided into six sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Sections D and E have information on DOE collaborative research centers, Section F gives distribution of funding, and Section G has various indexes

  1. Material science experiments at the ATLAS facility

    CERN Document Server

    Keinigs, R K; Atchison, W L; Bartsch, R R; Faehl, R J; Flower-Maudlin, E C; Hammerberg, J E; Holtkamp, D B; Kyrala, G A; Oro, D M; Parker, J V; Preston, D L; Removsky, R E; Scudder, D W; Sheehey, P T; Shlachter, J S; Taylor, A J; Tonks, D L; Turchi, P J; Chandler, E A

    2001-01-01

    Summary form only given, as follows. Three experimental campaigns designed for fielding on the Atlas Pulsed Power Facility are discussed. The foci of these experiments are directed toward a better understanding of three material science issues; (1) strength at high strain and high strain rate, (2) friction at material interfaces moving at high relative velocities, and (3) material failure in convergent geometry. Atlas provides an environment for investigating these problems in parameter regimes and geometries that are inaccessible with standard techniques. For example, flow stress measurements of material strength using conventional Hopkinson bar experiments are limited to strain rates ~10/sup 4/ sec/sup -1/. Atlas will be capable of imploding metal shells to combined strains of 200% and strain rates >10/sup 6/ sec/sup -1/. Data obtained regimes is used to test different constitutive strength models used in several Los Alamos hydrocodes. Dynamic friction has been investigated for nearly 300 years, but a first...

  2. Thermal Boundary Conductance: A Materials Science Perspective

    Science.gov (United States)

    Monachon, Christian; Weber, Ludger; Dames, Chris

    2016-07-01

    The thermal boundary conductance (TBC) of materials pairs in atomically intimate contact is reviewed as a practical guide for materials scientists. First, analytical and computational models of TBC are reviewed. Five measurement methods are then compared in terms of their sensitivity to TBC: the 3ω method, frequency- and time-domain thermoreflectance, the cut-bar method, and a composite effective thermal conductivity method. The heart of the review surveys 30 years of TBC measurements around room temperature, highlighting the materials science factors experimentally proven to influence TBC. These factors include the bulk dispersion relations, acoustic contrast, and interfacial chemistry and bonding. The measured TBCs are compared across a wide range of materials systems by using the maximum transmission limit, which with an attenuated transmission coefficient proves to be a good guideline for most clean, strongly bonded interfaces. Finally, opportunities for future research are discussed.

  3. Numerical modeling in materials science and engineering

    CERN Document Server

    Rappaz, Michel; Deville, Michel

    2003-01-01

    This book introduces the concepts and methodologies related to the modelling of the complex phenomena occurring in materials processing. After a short reminder of conservation laws and constitutive relationships, the authors introduce the main numerical methods: finite differences, finite volumes and finite elements. These techniques are developed in three main chapters of the book that tackle more specific problems: phase transformation, solid mechanics and fluid flow. The two last chapters treat inverse methods to obtain the boundary conditions or the material properties and stochastic methods for microstructural simulation. This book is intended for undergraduate and graduate students in materials science and engineering, mechanical engineering and physics and for engineering professionals or researchers who want to get acquainted with numerical simulation to model and compute materials processing.

  4. Materials science. 10. compl. rev. ed.; Werkstoffwissenschaft

    Energy Technology Data Exchange (ETDEWEB)

    Worch, Hartmut; Pompe, Wolfgang [Technische Univ. Dresden (Germany). Inst. fuer Werkstoffwissenschaft; Schatt, Werner (eds.)

    2011-07-01

    This materials science textbook describes and explains the properties of materials using a standardized, scientific approach. It comprises the following chapters: 1. Materials in the solid state; 2. Transition into the solid state; 3. Phase transition in the solid state; 4. State diagrams; 5. Structures of materials; 6. Thermally activated processes (diffusion, crystal regeneration, recrystallisation); 7. Corrosion; 8. Mechanical phenomena (deformation etc.); 9. Physical phenomena (electric conductivity, superconductivity, etc.) [German] Dieses Lehrbuch zur Werkstoffwissenschaft befasst sich mit der Darstellung und Erklaerung der Eigenschaften von Werkstoffen auf der Grundlage einer einheitlichen, naturwissenschaftlich geleiteten Betrachtungsweise. Es ist in folgende Kapitel aufgeteilt: 1. Zustaende des festen Koerpers; 2. Uebergaenge in den festen Zustand; 3. Phasenumwandlung im festen Zustand; 4. Zustandsdiagramme; 5. Gefuege der Werkstoffe; 6. Thermisch aktivierte Vorgaenge (Diffusion, Kristallerholung und Rekristallisation); 7. Korrosion; 8. Mechanische Erscheinungen (Verformung, etc.); 9. Physikalische Erscheinungen (Elektrische Leitfaehigkeit; Supraleitung; etc.).

  5. Understanding structural conservation through materials science:

    DEFF Research Database (Denmark)

    Fuster-López, Laura; Krarup Andersen, Cecil

    2014-01-01

    provide both explanation and prediction of failure in materials. It has therefore shown to be an effective method for developing useful solutions to conservation problems. Since materials science and mechanics can help conservators predict the long term consequences of their treatments and provide them......Mechanical properties and the structure of materials are key elements in understanding how structural interventions in conservation treatments affect cultural heritage objects. In this context, engineering mechanics can help determine the strength and stability found in art objects as it can...... with tools to avoid future problems, it should be present in all conservation-restoration training programs to help promote students’ understanding of the degradation mechanisms in cultural materials (and their correlation with chemical and biological degradation) as well as the implications behind...

  6. Materials sciences programs: Fiscal year 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Science Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  7. Materials sciences programs fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  8. Dimensional accuracy of 3D printed vertebra

    Science.gov (United States)

    Ogden, Kent; Ordway, Nathaniel; Diallo, Dalanda; Tillapaugh-Fay, Gwen; Aslan, Can

    2014-03-01

    3D printer applications in the biomedical sciences and medical imaging are expanding and will have an increasing impact on the practice of medicine. Orthopedic and reconstructive surgery has been an obvious area for development of 3D printer applications as the segmentation of bony anatomy to generate printable models is relatively straightforward. There are important issues that should be addressed when using 3D printed models for applications that may affect patient care; in particular the dimensional accuracy of the printed parts needs to be high to avoid poor decisions being made prior to surgery or therapeutic procedures. In this work, the dimensional accuracy of 3D printed vertebral bodies derived from CT data for a cadaver spine is compared with direct measurements on the ex-vivo vertebra and with measurements made on the 3D rendered vertebra using commercial 3D image processing software. The vertebra was printed on a consumer grade 3D printer using an additive print process using PLA (polylactic acid) filament. Measurements were made for 15 different anatomic features of the vertebral body, including vertebral body height, endplate width and depth, pedicle height and width, and spinal canal width and depth, among others. It is shown that for the segmentation and printing process used, the results of measurements made on the 3D printed vertebral body are substantially the same as those produced by direct measurement on the vertebra and measurements made on the 3D rendered vertebra.

  9. 3D printing of functional structures

    NARCIS (Netherlands)

    Krijnen, G.J.M.

    2016-01-01

    The technology colloquial known as ‘3D printing’ has developed in such diversity in printing technologies and application fields that meanwhile it seems anything is possible. However, clearly the ideal 3D Printer, with high resolution, multi-material capability, fast printing, etc. is yet to be deve

  10. 3D Printing. What's the Harm?

    Science.gov (United States)

    Love, Tyler S.; Roy, Ken

    2016-01-01

    Health concerns from 3D printing were first documented by Stephens, Azimi, Orch, and Ramos (2013), who found that commercially available 3D printers were producing hazardous levels of ultrafine particles (UFPs) and volatile organic compounds (VOCs) when plastic materials were melted through the extruder. UFPs are particles less than 100 nanometers…

  11. Wireless 3D Chocolate Printer

    Directory of Open Access Journals (Sweden)

    FROILAN G. DESTREZA

    2014-02-01

    Full Text Available This study is for the BSHRM Students of Batangas State University (BatStateU ARASOF for the researchers believe that the Wireless 3D Chocolate Printer would be helpful in their degree program especially on making creative, artistic, personalized and decorative chocolate designs. The researchers used the Prototyping model as procedural method for the successful development and implementation of the hardware and software. This method has five phases which are the following: quick plan, quick design, prototype construction, delivery and feedback and communication. This study was evaluated by the BSHRM Students and the assessment of the respondents regarding the software and hardware application are all excellent in terms of Accuracy, Effecitveness, Efficiency, Maintainability, Reliability and User-friendliness. Also, the overall level of acceptability of the design project as evaluated by the respondents is excellent. With regard to the observation about the best raw material to use in 3D printing, the chocolate is good to use as the printed material is slightly distorted,durable and very easy to prepare; the icing is also good to use as the printed material is not distorted and is very durable but consumes time to prepare; the flour is not good as the printed material is distorted, not durable but it is easy to prepare. The computation of the economic viability level of 3d printer with reference to ROI is 37.14%. The recommendation of the researchers in the design project are as follows: adding a cooling system so that the raw material will be more durable, development of a more simplified version and improving the extrusion process wherein the user do not need to stop the printing process just to replace the empty syringe with a new one.

  12. The idea of material science virtual laboratory

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2010-09-01

    Full Text Available Purpose: This article was written to describe the Material Science Virtual Laboratory. Presented laboratory is an open scientific, investigative, simulating and didactic medium helpful in the realisation of the scientific and didactic tasks in the field of material Science. This laboratory is implemented in the Institute of Engineering Materials and Biomaterials of Silesian University of Technology in Gliwice, Poland.Design/methodology/approach: The laboratory is an aggregate of testers and training simulators, placed in the virtual reality and created in various languages and the programming techniques, which represents the properties, functionality and manual principles of real equipment installed and accessible in the real laboratories of scientific universities.Findings: Application of the equipment, that is practically imperishable, cheap in exploitation and easy in the use encourages students and scientific workers to independent audits and experiments in situations, where the possibilities of their execution in the real investigative laboratory will be limited because of the high material costs, difficult access to real equipment or the possible risk of his damage. Practical implications: The use possibilities of the virtual laboratory are practically unrestricted; it can be a base for any studies, course or training programme.Originality/value: The project of the virtual laboratory corresponds with the global tendency for expand the investigative and academic centres about the possibilities of training and experiments performance with use of the virtual reality. This enriches investigation and education programmes of the new abilities reserved so far exclusively for effecting only on real equipment

  13. Molecular forensic science of nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Wilkerson, Marianne Perry [Los Alamos National Laboratory

    2010-01-01

    We are interested in applying our understanding of actinide chemical structure and bonding to broaden the suite of analytical tools available for nuclear forensic analyses. Uranium- and plutonium-oxide systems form under a variety of conditions, and these chemical species exhibit some of the most complex behavior of metal oxide systems known. No less intriguing is the ability of AnO{sub 2} (An: U, Pu) to form non-stoichiometric species described as AnO{sub 2+x}. Environmental studies have shown the value of utilizing the chemical signatures of these actinide oxides materials to understand transport following release into the environment. Chemical speciation of actinide-oxide samples may also provide clues as to the age, source, process history, or transport of the material. The scientific challenge is to identify, measure and understand those aspects of speciation of actinide analytes that carry information about material origin and history most relevant to forensics. Here, we will describe our efforts in material synthesis and analytical methods development that we will use to provide the fundamental science required to characterize actinide oxide molecular structures for forensics science. Structural properties and initial results to measure structural variability of uranium oxide samples using synchrotron-based X-ray Absorption Fine Structure will be discussed.

  14. Molecular forensic science of nuclear materials

    International Nuclear Information System (INIS)

    We are interested in applying our understanding of actinide chemical structure and bonding to broaden the suite of analytical tools available for nuclear forensic analyses. Uranium- and plutonium-oxide systems form under a variety of conditions, and these chemical species exhibit some of the most complex behavior of metal oxide systems known. No less intriguing is the ability of AnO2 (An: U, Pu) to form non-stoichiometric species described as AnO2+x. Environmental studies have shown the value of utilizing the chemical signatures of these actinide oxides materials to understand transport following release into the environment. Chemical speciation of actinide-oxide samples may also provide clues as to the age, source, process history, or transport of the material. The scientific challenge is to identify, measure and understand those aspects of speciation of actinide analytes that carry information about material origin and history most relevant to forensics. Here, we will describe our efforts in material synthesis and analytical methods development that we will use to provide the fundamental science required to characterize actinide oxide molecular structures for forensics science. Structural properties and initial results to measure structural variability of uranium oxide samples using synchrotron-based X-ray Absorption Fine Structure will be discussed.

  15. Progress in the materials science of silicene

    International Nuclear Information System (INIS)

    In its freestanding, yet hypothetical form, the Si counterpart of graphene called silicene is predicted to possess massless Dirac fermions and to exhibit an experimentally accessible quantum spin Hall effect. Such interesting electronic properties are not realized in two-dimensional (2D) Si honeycomb lattices prepared recently on metallic substrates where the crystal and hybrid electronic structures of these ‘epitaxial silicene’ phases are strongly influenced by the substrate, and thus different from those predicted for isolated 2D structures. While the realization of such low-dimensional Si π materials has hardly been imagined previously, it is evident that the materials science behind silicene remains challenging. In this contribution, we will review our recent results that lead to an enhanced understanding of epitaxial silicene formed on diboride thin films, and discuss the remaining challenges that must be addressed in order to turn Si 2D nanostructures into technologically interesting nanoelectronic materials. (focus issue review)

  16. Chemistry and materials science research report

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-31

    The research reported here in summary form was conducted under the auspices of Weapons-Supporting Research (WSR) and Institutional Research and Development (IR D). The period covered is the first half of FY90. The results reported here are for work in progress; thus, they may be preliminary, fragmentary, or incomplete. Research in the following areas are briefly described: energetic materials, tritium, high-Tc superconductors, interfaces, adhesion, bonding, fundamental aspects of metal processing, plutonium, synchrotron-radiation-based materials science, photocatalysis on doped aerogels, laser-induced chemistry, laser-produced molecular plasmas, chemistry of defects, dta equipment development, electronic structure study of the thermodynamic and mechanical properties of Al-Li Alloys, and the structure-property link in sub-nanometer materials.

  17. Material science lesson from the biological photosystem

    Science.gov (United States)

    Kim, Younghye; Lee, Jun Ho; Ha, Heonjin; Im, Sang Won; Nam, Ki Tae

    2016-08-01

    Inspired by photosynthesis, artificial systems for a sustainable energy supply are being designed. Each sequential energy conversion process from light to biomass in natural photosynthesis is a valuable model for an energy collection, transport and conversion system. Notwithstanding the numerous lessons of nature that provide inspiration for new developments, the features of natural photosynthesis need to be reengineered to meet man's demands. This review describes recent strategies toward adapting key lessons from natural photosynthesis to artificial systems. We focus on the underlying material science in photosynthesis that combines photosystems as pivotal functional materials and a range of materials into an integrated system. Finally, a perspective on the future development of photosynthesis mimetic energy systems is proposed.

  18. Nanobiotechnology: synthetic biology meets materials science.

    Science.gov (United States)

    Jewett, Michael C; Patolsky, Fernando

    2013-08-01

    Nanotechnology, the area of science focused on the control of matter in the nanometer scale, allows ground-breaking changes of the fundamental properties of matter that are often radically different compared to those exhibited by the bulk counterparts. In view of the fact that dimensionality plays a key role in determining the qualities of matter, the realization of the great potential of nanotechnology has opened the door to other disciplines such as life sciences and medicine, where the merging between them offers exciting new applications, along with basic science research. The application of nanotechnology in life sciences, nanobiotechnology, is now having a profound impact on biological circuit design, bioproduction systems, synthetic biology, medical diagnostics, disease therapy and drug delivery. This special issue is dedicated to the overview of how we are learning to control biopolymers and biological machines at the molecular- and nanoscale. In addition, it covers far-reaching progress in the design and synthesis of nanoscale materials, thus enabling the construction of integrated systems in which the component blocks are comparable in size to the chemical and biological entities under investigation.

  19. Quantify Plasma Response to Non-Axisymmetric (3D) Magnetic Fields in Tokamaks, Final Report for FES (Fusion Energy Sciences) FY2014 Joint Research Target

    Energy Technology Data Exchange (ETDEWEB)

    Strait, E. J. [General Atomics, San Diego, CA (United States); Park, J. -K. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Marmar, E. S. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ahn, J. -W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Berkery, J. W. [Columbia Univ., New York, NY (United States); Burrell, K. H. [General Atomics, San Diego, CA (United States); Canik, J. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Delgado-Aparicio, L. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Ferraro, N. M. [General Atomics, San Diego, CA (United States); Garofalo, A. M. [General Atomics, San Diego, CA (United States); Gates, D. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Greenwald, M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Kim, K. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); King, J. D. [General Atomics, San Diego, CA (United States); Lanctot, M. J. [General Atomics, San Diego, CA (United States); Lazerson, S. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Liu, Y. Q. [Culham Science Centre, Abingdon (United Kingdom). Euratom/CCFE Association; Logan, N. C. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Lore, J. D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Menard, J. E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Nazikian, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Shafer, M. W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Paz-Soldan, C. [General Atomics, San Diego, CA (United States); Reiman, A. H. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Rice, J. E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Sabbagh, S. A. [Columbia Univ., New York, NY (United States); Sugiyama, L. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Turnbull, A. D. [General Atomics, San Diego, CA (United States); Volpe, F. [Columbia Univ., New York, NY (United States); Wang, Z. R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Wolfe, S. M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-09-30

    The goal of the 2014 Joint Research Target (JRT) has been to conduct experiments and analysis to investigate and quantify the response of tokamak plasmas to non-axisymmetric (3D) magnetic fields. Although tokamaks are conceptually axisymmetric devices, small asymmetries often result from inaccuracies in the manufacture and assembly of the magnet coils, or from nearby magnetized objects. In addition, non-axisymmetric fields may be deliberately applied for various purposes. Even at small amplitudes of order 10-4 of the main axisymmetric field, such “3D” fields can have profound impacts on the plasma performance. The effects are often detrimental (reduction of stabilizing plasma rotation, degradation of energy confinement, localized heat flux to the divertor, or excitation of instabilities) but may in some case be beneficial (maintenance of rotation, or suppression of instabilities). In general, the magnetic response of the plasma alters the 3D field, so that the magnetic field configuration within the plasma is not simply the sum of the external 3D field and the original axisymmetric field. Typically the plasma response consists of a mixture of local screening of the external field by currents induced at resonant surfaces in the plasma, and amplification of the external field by stable kink modes. Thus, validated magnetohydrodynamic (MHD) models of the plasma response to 3D fields are crucial to the interpretation of existing experiments and the prediction of plasma performance in future devices. The non-axisymmetric coil sets available at each facility allow well-controlled studies of the response to external 3D fields. The work performed in support of the 2014 Joint Research Target has included joint modeling and analysis of existing experimental data, and collaboration on new experiments designed to address the goals of the JRT. A major focus of the work was validation of numerical models through quantitative comparison to experimental data, in

  20. Quantify Plasma Response to Non-Axisymmetric (3D) Magnetic Fields in Tokamaks, Final Report for FES (Fusion Energy Sciences) FY2014 Joint Research Target

    Energy Technology Data Exchange (ETDEWEB)

    Strait, E. J. [General Atomics, San Diego, CA (United States); Park, J. -K. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Marmar, E. S. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ahn, J. -W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Berkery, J. W. [Columbia Univ., New York, NY (United States); Burrell, K. H. [General Atomics, San Diego, CA (United States); Canik, J. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Delgado-Aparicio, L. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Ferraro, N. M. [General Atomics, San Diego, CA (United States); Garofalo, A. M. [General Atomics, San Diego, CA (United States); Gates, D. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Greenwald, M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Kim, K. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); King, J. D. [General Atomics, San Diego, CA (United States); Lanctot, M. J. [General Atomics, San Diego, CA (United States); Lazerson, S. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Liu, Y. Q. [Culham Science Centre, Abingdon (United Kingdom). Euratom/CCFE Association; Logan, N. C. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Lore, J. D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Menard, J. E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Nazikian, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Shafer, M. W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Paz-Soldan, C. [General Atomics, San Diego, CA (United States); Reiman, A. H. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Rice, J. E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Sabbagh, S. A. [Columbia Univ., New York, NY (United States); Sugiyama, L. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Turnbull, A. D. [General Atomics, San Diego, CA (United States); Volpe, F. [Columbia Univ., New York, NY (United States); Wang, Z. R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Wolfe, S. M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-09-30

    The goal of the 2014 Joint Research Target (JRT) has been to conduct experiments and analysis to investigate and quantify the response of tokamak plasmas to non-axisymmetric (3D) magnetic fields. Although tokamaks are conceptually axisymmetric devices, small asymmetries often result from inaccuracies in the manufacture and assembly of the magnet coils, or from nearby magnetized objects. In addition, non-axisymmetric fields may be deliberately applied for various purposes. Even at small amplitudes of order 10-4 of the main axisymmetric field, such “3D” fields can have profound impacts on the plasma performance. The effects are often detrimental (reduction of stabilizing plasma rotation, degradation of energy confinement, localized heat flux to the divertor, or excitation of instabilities) but may in some case be beneficial (maintenance of rotation, or suppression of instabilities). In general, the magnetic response of the plasma alters the 3D field, so that the magnetic field configuration within the plasma is not simply the sum of the external 3D field and the original axisymmetric field. Typically the plasma response consists of a mixture of local screening of the external field by currents induced at resonant surfaces in the plasma, and amplification of the external field by stable kink modes. Thus, validated magnetohydrodynamic (MHD) models of the plasma response to 3D fields are crucial to the interpretation of existing experiments and the prediction of plasma performance in future devices. The non-axisymmetric coil sets available at each facility allow well-controlled studies of the response to external 3D fields. The work performed in support of the 2014 Joint Research Target has included joint modeling and analysis of existing experimental data, and collaboration on new experiments designed to address the goals of the JRT. A major focus of the work was validation of numerical models through quantitative comparison to experimental data, in

  1. Perspective: Materials informatics and big data: Realization of the "fourth paradigm" of science in materials science

    Science.gov (United States)

    Agrawal, Ankit; Choudhary, Alok

    2016-05-01

    Our ability to collect "big data" has greatly surpassed our capability to analyze it, underscoring the emergence of the fourth paradigm of science, which is data-driven discovery. The need for data informatics is also emphasized by the Materials Genome Initiative (MGI), further boosting the emerging field of materials informatics. In this article, we look at how data-driven techniques are playing a big role in deciphering processing-structure-property-performance relationships in materials, with illustrative examples of both forward models (property prediction) and inverse models (materials discovery). Such analytics can significantly reduce time-to-insight and accelerate cost-effective materials discovery, which is the goal of MGI.

  2. Li2S@C composite incorporated into 3D reduced graphene oxide as a cathode material for lithium-sulfur batteries

    Science.gov (United States)

    Wang, D. H.; Xie, D.; Yang, T.; Zhong, Y.; Wang, X. L.; Xia, X. H.; Gu, C. D.; Tu, J. P.

    2016-05-01

    Surface conductive engineering on Li2S is critical for construction of advanced cathodes of lithium-sulfur batteries. Herein, we construct a high-performance Li2S-based composite cathode with the help of three-dimensional reduced graphene oxide (3D-rGO) network and outer carbon coating. Typically, the Li2S@C particles are uniformly embedded into 3D-rGO to form a binder-free 3D-rGO-Li2S@C cathode by the combination of a liquid solution-evaporation coating and PVP (Polyvinyl Pyrrolidone) carbonization. The 3D-rGO-Li2S@C cathode exhibits a high initial discharge capacity of 856 mAh g-1 at 0.1C, superior cycling stability with a capacity of 388.4 mAh g-1 after 200 cycles at 1C, corresponding to a low capacity fading rate. It is demonstrated that the outer conductive coating is effective and necessary for electrochemical enhancement of Li2S cathodes by improving electrical conductivity and prohibiting polysulfide from shuttling during cycling.

  3. Massive 3D Supergravity

    CERN Document Server

    Andringa, Roel; de Roo, Mees; Hohm, Olaf; Sezgin, Ergin; Townsend, Paul K

    2009-01-01

    We construct the N=1 three-dimensional supergravity theory with cosmological, Einstein-Hilbert, Lorentz Chern-Simons, and general curvature squared terms. We determine the general supersymmetric configuration, and find a family of supersymmetric adS vacua with the supersymmetric Minkowski vacuum as a limiting case. Linearizing about the Minkowski vacuum, we find three classes of unitary theories; one is the supersymmetric extension of the recently discovered `massive 3D gravity'. Another is a `new topologically massive supergravity' (with no Einstein-Hilbert term) that propagates a single (2,3/2) helicity supermultiplet.

  4. Massive 3D supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Andringa, Roel; Bergshoeff, Eric A; De Roo, Mees; Hohm, Olaf [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Sezgin, Ergin [George and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Townsend, Paul K, E-mail: E.A.Bergshoeff@rug.n, E-mail: O.Hohm@rug.n, E-mail: sezgin@tamu.ed, E-mail: P.K.Townsend@damtp.cam.ac.u [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2010-01-21

    We construct the N=1 three-dimensional supergravity theory with cosmological, Einstein-Hilbert, Lorentz Chern-Simons, and general curvature squared terms. We determine the general supersymmetric configuration, and find a family of supersymmetric adS vacua with the supersymmetric Minkowski vacuum as a limiting case. Linearizing about the Minkowski vacuum, we find three classes of unitary theories; one is the supersymmetric extension of the recently discovered 'massive 3D gravity'. Another is a 'new topologically massive supergravity' (with no Einstein-Hilbert term) that propagates a single (2,3/2) helicity supermultiplet.

  5. 3D Digital Modelling

    DEFF Research Database (Denmark)

    Hundebøl, Jesper

    ABSTRACT: Lack of productivity in construction is a well known issue. Despite the fact that causes hereof are multiple, the introduction of information technology is a frequently observed response to almost any challenge. ICT in construction is a thoroughly researched matter, however, the current...... important to appreciate the analysis. Before turning to the presentation of preliminary findings and a discussion of 3D digital modelling, it begins, however, with an outline of industry specific ICT strategic issues. Paper type. Multi-site field study...

  6. Ukrainian Program for Material Science in Microgravity

    Science.gov (United States)

    Fedorov, Oleg

    Ukrainian Program for Material Sciences in Microgravity O.P. Fedorov, Space Research Insti-tute of NASU -NSAU, Kyiv, The aim of the report is to present previous and current approach of Ukrainian research society to the prospect of material sciences in microgravity. This approach is based on analysis of Ukrainian program of research in microgravity, preparation of Russian -Ukrainian experiments on Russian segment of ISS and development of new Ukrainian strategy of space activity for the years 2010-2030. Two parts of issues are discussed: (i) the evolution of our views on the priorities in microgravity research (ii) current experiments under preparation and important ground-based results. item1 The concept of "space industrialization" and relevant efforts in Soviet and post -Soviet Ukrainian research institutions are reviewed. The main topics are: melt supercooling, crystal growing, testing of materials, electric welding and study of near-Earth environment. The anticipated and current results are compared. item 2. The main experiments in the framework of Ukrainian-Russian Research Program for Russian Segment of ISS are reviewed. Flight installations under development and ground-based results of the experiments on directional solidification, heat pipes, tribological testing, biocorrosion study is presented. Ground-based experiments and theoretical study of directional solidification of transparent alloys are reviewed as well as preparation of MORPHOS installation for study of succinonitrile -acetone in microgravity.

  7. 3D Printing the ATLAS' barrel toroid

    CERN Document Server

    Goncalves, Tiago Barreiro

    2016-01-01

    The present report summarizes my work as part of the Summer Student Programme 2016 in the CERN IR-ECO-TSP department (International Relations – Education, Communication & Outreach – Teacher and Student Programmes). Particularly, I worked closely with the S’Cool LAB team on a science education project. This project included the 3D designing, 3D printing, and assembling of a model of the ATLAS’ barrel toroid. A detailed description of the project' development is presented and a short manual on how to use 3D printing software and hardware is attached.

  8. 3D Biomaterial Microarrays for Regenerative Medicine

    DEFF Research Database (Denmark)

    Gaharwar, Akhilesh K.; Arpanaei, Ayyoob; Andresen, Thomas Lars;

    2015-01-01

    Three dimensional (3D) biomaterial microarrays hold enormous promise for regenerative medicine because of their ability to accelerate the design and fabrication of biomimetic materials. Such tissue-like biomaterials can provide an appropriate microenvironment for stimulating and controlling stem...

  9. Multicultural Science Education and Curriculum Materials

    Science.gov (United States)

    Atwater, Mary M.

    2010-01-01

    This article describes multicultural science education and explains the purposes of multicultural science curricula. It also serves as an introductory article for the other multicultural science education activities in this special issue of "Science Activities".

  10. Materials Sciences programs. Fiscal year 1982

    International Nuclear Information System (INIS)

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs. The report is divided into five sections. Section A contains all laboratory projects, Section B has all contract research projects, Section C has information on DOE collaborative research centers, Section D shows distribution of funding, and Section E has various indices

  11. Annual report, Materials Science Branch, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, S. [ed.

    1993-10-01

    This report summarizes the progress of the Materials Science Branch of the National Renewable Energy Laboratory (NREL) from October 1, 1991, through September 30, 1992. Six technical sections of the report cover these main areas of NREL`s in-house research: Crystal Growth, Amorphous Silicon, III-V High-Efficiency Photovoltaic Cells, Solid State Theory, Solid State Spectroscopy, and Program Management. Each section explains the purpose and major accomplishments of the work in the context of the US Department of Energy`s National Photovoltaic Research Program plans.

  12. Materials Sciences Programs. Fiscal Year 1985

    International Nuclear Information System (INIS)

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into six sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Sections D and E have information on DOE collaborative research centers, Section F gives distribution of funding, and Section G has various indexes

  13. TOWARDS: 3D INTERNET

    Directory of Open Access Journals (Sweden)

    Ms. Swapnali R. Ghadge

    2013-08-01

    Full Text Available In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot of discussions. Basically, one can look into this matter from a few different perspectives: visualization and representation of information, and creation and transportation of information, among others. All of them still constitute research challenges, as no products or services are yet available or foreseen for the near future. Nevertheless, one can try to envisage the directions that can be taken towards achieving this goal. People who take part in virtual worlds stay online longer with a heightened level of interest. To take advantage of that interest, diverse businesses and organizations have claimed an early stake in this fast-growing market. They include technology leaders such as IBM, Microsoft, and Cisco, companies such as BMW, Toyota, Circuit City, Coca Cola, and Calvin Klein, and scores of universities, including Harvard, Stanford and Penn State.

  14. An aerial 3D printing test mission

    Science.gov (United States)

    Hirsch, Michael; McGuire, Thomas; Parsons, Michael; Leake, Skye; Straub, Jeremy

    2016-05-01

    This paper provides an overview of an aerial 3D printing technology, its development and its testing. This technology is potentially useful in its own right. In addition, this work advances the development of a related in-space 3D printing technology. A series of aerial 3D printing test missions, used to test the aerial printing technology, are discussed. Through completing these test missions, the design for an in-space 3D printer may be advanced. The current design for the in-space 3D printer involves focusing thermal energy to heat an extrusion head and allow for the extrusion of molten print material. Plastics can be used as well as composites including metal, allowing for the extrusion of conductive material. A variety of experiments will be used to test this initial 3D printer design. High altitude balloons will be used to test the effects of microgravity on 3D printing, as well as parabolic flight tests. Zero pressure balloons can be used to test the effect of long 3D printing missions subjected to low temperatures. Vacuum chambers will be used to test 3D printing in a vacuum environment. The results will be used to adapt a current prototype of an in-space 3D printer. Then, a small scale prototype can be sent into low-Earth orbit as a 3-U cube satellite. With the ability to 3D print in space demonstrated, future missions can launch production hardware through which the sustainability and durability of structures in space will be greatly improved.

  15. 3D Printable Graphene Composite

    Science.gov (United States)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  16. The Mars Science Laboratory Organic Check Material

    Science.gov (United States)

    Conrad, Pamela G.; Eigenbrode, J. E.; Mogensen, C. T.; VonderHeydt, M. O.; Glavin, D. P.; Mahaffy, P. M.; Johnson, J. A.

    2011-01-01

    The Organic Check Material (OCM) has been developed for use on the Mars Science Laboratory mission to serve as a sample standard for verification of organic cleanliness and characterization of potential sample alteration as a function of the sample acquisition and portioning process on the Curiosity rover. OCM samples will be acquired using the same procedures for drilling, portioning and delivery as are used to study martian samples with The Sample Analysis at Mars (SAM) instrument suite during MSL surface operations. Because the SAM suite is highly sensitive to organic molecules, the mission can better verify the cleanliness of Curiosity's sample acquisition hardware if a known material can be processed through SAM and compared with the results obtained from martian samples.

  17. Design of smart 3D-digital X-ray microtomographic scanners for non-destructive testing of materials and components of electronic devices with a multilayered structure

    Science.gov (United States)

    Syryamkin, V. I.; Suntsov, S. B.; Klestov, S. A.; Echina, E. S.

    2015-10-01

    The article studies the operating procedures of an X-ray microtomographic scanner and the module of reconstruction and analysis 3D-image of a test sample in particular. An algorithm for 3D-image reconstruction based on image shadow projections and mathematical methods of the processing are described. Chapter 1 describes the basic principles of X-ray tomography and general procedures of the device developed. Chapters 2 and 3 are devoted to the problem of resources saving by the system during the X-ray tomography procedure, which is achieved by preprocessing of the initial shadow projections. Preprocessing includes background noise removing from the images, which reduces the amount of shadow projections in general and increases the efficiency of the group shadow projections compression. Chapter 4 covers general procedures of defect search, which is based on vector analysis principles. In conclusion, the main applications of X-ray tomography are presented.

  18. Design of smart 3D-digital X-ray microtomographic scanners for non-destructive testing of materials and components of electronic devices with a multilayered structure

    Energy Technology Data Exchange (ETDEWEB)

    Syryamkin, V. I., E-mail: hailun@mail.ru; Klestov, S. A., E-mail: klestov-simon@mail.ru; Echina, E. S., E-mail: zrtom1@mail.ru [National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Suntsov, S. B., E-mail: sbsun@iss-reshetnev.ru [National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Academician M.F. Reshetnev Information Satellite Systems, Zheleznogorsk, Krasnoyarsk region, 662972 (Russian Federation)

    2015-10-27

    The article studies the operating procedures of an X-ray microtomographic scanner and the module of reconstruction and analysis 3D-image of a test sample in particular. An algorithm for 3D-image reconstruction based on image shadow projections and mathematical methods of the processing are described. Chapter 1 describes the basic principles of X-ray tomography and general procedures of the device developed. Chapters 2 and 3 are devoted to the problem of resources saving by the system during the X-ray tomography procedure, which is achieved by preprocessing of the initial shadow projections. Preprocessing includes background noise removing from the images, which reduces the amount of shadow projections in general and increases the efficiency of the group shadow projections compression. Chapter 4 covers general procedures of defect search, which is based on vector analysis principles. In conclusion, the main applications of X-ray tomography are presented.

  19. Development of PC-based Electronic Teaching and Learning Materials for De-scriptive Geometry (Attempt to Make the Most Use of Animation Creator Flash® and 3D-CAD SolidWorks®)

    Institute of Scientific and Technical Information of China (English)

    LI Shao-jing; Soichiroh INOUE; Tohru KANADA

    2013-01-01

    Descriptive geometry is very important and recognized as a basic skill and knowledge for mechanical engineering student. In this study, PC-based electronic teaching/learning materials for descriptive geometry are created using Flash®, which is a typical animation creator. Furthermore, several axonometric representations, created by 3D-CAD, SolidWorks®, for 3D objects are auxiliary materials to promote understanding of descriptive geometry. The axonometric representations in 3D-CAD are also dynamic, in other words, a viewpoint can be moved free. The movement of 3D model in a PC monitor can be recorded using a normal function of SolidWorks and replayed by typical animation software. The developed materials are excellent at accuracy of drawing, repeatability of self-study and visual attraction in comparison to oral presentation using still image and inaccurate drawing on a textbook or blackboard in a classroom. Actually, questionnaire survey results present favorable impressions from student-users, although they point out the further improvement in the replaying speed. The replaying speed can be controlled easily by using a normal function of Flash®. In addition, usual playback software for animation has functions of pause and replay on demand and, thus, it is not contro-versial.

  20. A new direction in mathematics for materials science

    CERN Document Server

    Ikeda, Susumu

    2015-01-01

    This book is the first volume of the SpringerBriefs in the Mathematics of Materials and provides a comprehensive guide to the interaction of mathematics with materials science. The anterior part of the book describes a selected history of materials science as well as the interaction between mathematics and materials in history. The emergence of materials science was itself a result of an interdisciplinary movement in the 1950s and 1960s. Materials science was formed by the integration of metallurgy, polymer science, ceramics, solid state physics, and related disciplines. We believe that such historical background helps readers to understand the importance of interdisciplinary interaction such as mathematics–materials science collaboration. The middle part of the book describes mathematical ideas and methods that can be applied to materials problems and introduces some examples of specific studies—for example, computational homology applied to structural analysis of glassy materials, stochastic models for ...

  1. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data......, making them different from typical, existing box shaping techniques. The basis of the proposed techniques is a new algorithm for constructing a full box from just three of its corners. The evaluation of the new techniques compares their precision and completion times in a 9 degree-of-freedom (Do......F) docking experiment against an existing technique, which requires the user to perform the rotation and scaling of the box explicitly. The precision of the users' box construction is evaluated by a novel error metric measuring the difference between two boxes. The results of the experiment strongly indicate...

  2. Gender Equity in Materials Science and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Angus Rockett

    2008-12-01

    At the request of the University Materials Council, a national workshop was convened to examine 'Gender Equity Issues in Materials Science and Engineering.' The workshop considered causes of the historic underrepresentation of women in materials science and engineering (MSE), with a goal of developing strategies to increase the gender diversity of the discipline in universities and national laboratories. Specific workshop objectives were to examine efforts to level the playing field, understand implicit biases, develop methods to minimize bias in all aspects of training and employment, and create the means to implement a broadly inclusive, family-friendly work environment in MSE departments. Held May 18-20, 2008, at the Conference Center at the University of Maryland, the workshop included heads and chairs of university MSE departments and representatives of the National Science Foundation (NSF), the Office of Basic Energy Sciences of the Department of Energy (DOE-BES), and the national laboratories. The following recommendations are made based on the outcomes of the discussions at the workshop. Many or all of these apply equally well to universities and national laboratories and should be considered in context of industrial environments as well. First, there should be a follow-up process by which the University Materials Council (UMC) reviews the status of women in the field of MSE on a periodic basis and determines what additional changes should be made to accelerate progress in gender equity. Second, all departments should strengthen documentation and enforcement of departmental procedures such that hiring, promotion, compensation, and tenure decisions are more transparent, that the reasons why a candidate was not selected or promoted are clear, and that faculty are less able to apply their biases to personnel decisions. Third, all departments should strengthen mentoring of junior faculty. Fourth, all departments must raise awareness of gender biases

  3. FOREWORD: Focus on Combinatorial Materials Science Focus on Combinatorial Materials Science

    Science.gov (United States)

    Chikyo, Toyohiro

    2011-10-01

    About 15 years have passed since the introduction of modern combinatorial synthesis and high-throughput techniques for the development of novel inorganic materials; however, similar methods existed before. The most famous was reported in 1970 by Hanak who prepared composition-spread films of metal alloys by sputtering mixed-material targets. Although this method was innovative, it was rarely used because of the large amount of data to be processed. This problem is solved in the modern combinatorial material research, which is strongly related to computer data analysis and robotics. This field is still at the developing stage and may be enriched by new methods. Nevertheless, given the progress in measurement equipment and procedures, we believe the combinatorial approach will become a major and standard tool of materials screening and development. The first article of this journal, published in 2000, was titled 'Combinatorial solid state materials science and technology', and this focus issue aims to reintroduce this topic to the Science and Technology of Advanced Materials audience. It covers recent progress in combinatorial materials research describing new results in catalysis, phosphors, polymers and metal alloys for shape memory materials. Sophisticated high-throughput characterization schemes and innovative synthesis tools are also presented, such as spray deposition using nanoparticles or ion plating. On a technical note, data handling systems are introduced to familiarize researchers with the combinatorial methodology. We hope that through this focus issue a wide audience of materials scientists can learn about recent and future trends in combinatorial materials science and high-throughput experimentation.

  4. Non-rigid alignment in electron tomography in materials science.

    Science.gov (United States)

    Printemps, Tony; Bernier, Nicolas; Bleuet, Pierre; Mula, Guido; Hervé, Lionel

    2016-09-01

    Electron tomography is a key technique that enables the visualization of an object in three dimensions with a resolution of about a nanometre. High-quality 3D reconstruction is possible thanks to the latest compressed sensing algorithms and/or better alignment and preprocessing of the 2D projections. Rigid alignment of 2D projections is routine in electron tomography. However, it cannot correct misalignments induced by (i) deformations of the sample due to radiation damage or (ii) drifting of the sample during the acquisition of an image in scanning transmission electron microscope mode. In both cases, those misalignments can give rise to artefacts in the reconstruction. We propose a simple-to-implement non-rigid alignment technique to correct those artefacts. This technique is particularly suited for needle-shaped samples in materials science. It is initiated by a rigid alignment of the projections and it is then followed by several rigid alignments of different parts of the projections. Piecewise linear deformations are applied to each projection to force them to simultaneously satisfy the rigid alignments of the different parts. The efficiency of this technique is demonstrated on three samples, an intermetallic sample with deformation misalignments due to a high electron dose typical to spectroscopic electron tomography, a porous silicon sample with an extremely thin end particularly sensitive to electron beam and another porous silicon sample that was drifting during image acquisitions.

  5. Conducting polymer 3D microelectrodes

    DEFF Research Database (Denmark)

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi;

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...... showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared...... with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described...

  6. Conducting Polymer 3D Microelectrodes

    Directory of Open Access Journals (Sweden)

    Jenny Emnéus

    2010-12-01

    Full Text Available Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements.

  7. On the Application of 3D Printing in the Field of Building Materials%3D打印技术在建筑材料领域的应用研究

    Institute of Scientific and Technical Information of China (English)

    王冠; 申逸林

    2015-01-01

    3D printing technology is a new technique developed in recent years. It has gotten the success in machinery manufacturing, medical treatment and other industries. It also has some development in the fields of material and construction. At first, this paper simply introduces 3D printing. And then, combines with the present situation of domestic and foreign development, it lists several typical building materials suit for 3D printing. Through the research of domestic and foreign application examples, the several current problems of 3D printing technology in building materials are summarized. Finally, the related conclusions are obtained, the application of 3D printing in the field of building in the future prospect are put forward.%3D打印技术是近年来发展起来的新兴技术,已在机械制造医疗等行业取得巨大成功,在材料和建筑等领域也有所发展。文章首先对3D打印技术做了简明的介绍,然后结合国内外的发展现状,列举出了几种典型的目前适用于3D打印技术的建筑材料。通过国内外的应用实例的研究,总结出3D打印技术在建筑材料领域当前所面临的几种问题。最后,得出相关结论并对3D打印技术在建筑领域未来的应用情况提出了展望。

  8. Eyes on the Earth 3D

    Science.gov (United States)

    Kulikov, anton I.; Doronila, Paul R.; Nguyen, Viet T.; Jackson, Randal K.; Greene, William M.; Hussey, Kevin J.; Garcia, Christopher M.; Lopez, Christian A.

    2013-01-01

    Eyes on the Earth 3D software gives scientists, and the general public, a realtime, 3D interactive means of accurately viewing the real-time locations, speed, and values of recently collected data from several of NASA's Earth Observing Satellites using a standard Web browser (climate.nasa.gov/eyes). Anyone with Web access can use this software to see where the NASA fleet of these satellites is now, or where they will be up to a year in the future. The software also displays several Earth Science Data sets that have been collected on a daily basis. This application uses a third-party, 3D, realtime, interactive game engine called Unity 3D to visualize the satellites and is accessible from a Web browser.

  9. 3D network single-phase Ni0.9Zn0.1O as anode materials for lithium-ion batteries

    DEFF Research Database (Denmark)

    Huang, Guoyong; Guo, Xueyi; Cao, Xiao;

    2016-01-01

    two-step Li-ion storage mechanism in the 3D network single−phase Ni0.9Zn0.1O has been discovered and verified to be: a reversible conversion reaction between Ni0.9Zn0.1O and Ni-Zn alloy (Ni0.9Zn0.1), and a reversible Li-alloying reaction between Ni-Zn alloy and Ni0.9Zn0.1Li. More remarkably, due...

  10. INGRID, 3-D Mesh Generator for Program DYNA3D and NIKE3D and FACET and TOPAZ3D

    International Nuclear Information System (INIS)

    1 - Description of program or function: INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D (NESC 9909), NIKE3D (NESC 9725), FACET, and TOPAZ3D. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surface equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The most important new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition. 2 - Method of solution: Geometries are described primarily using the index space notation of the INGEN program (NESC 975) with an additional type of notation, index progression. Index progressions provide a concise and simple method for describing complex structures; the concept was developed to facilitate defining multiple regions in index space. Rather than specifying the minimum and maximum indices for a region, one specifies the progression of indices along the I, J and K directions, respectively. The index progression method allows the analyst to describe most geometries including nodes and elements with roughly the same amount of input as a solids modeler

  11. 3D monitor

    OpenAIRE

    Szkandera, Jan

    2009-01-01

    Tato bakalářská práce se zabývá návrhem a realizací systému, který umožní obraz scény zobrazovaný na ploše vnímat prostorově. Prostorové vnímání 2D obrazové informace je umožněno jednak stereopromítáním a jednak tím, že se obraz mění v závislosti na poloze pozorovatele. Tato práce se zabývá hlavně druhým z těchto problémů. This Bachelor's thesis goal is to design and realize system, which allows user to perceive 2D visual information as three-dimensional. 3D visual preception of 2D image i...

  12. Graphene: from materials science to particle physics

    CERN Document Server

    Drut, Joaquín E; Tölö, Eero

    2010-01-01

    Since its discovery in 2004, graphene, a two-dimensional hexagonal carbon allotrope, has generated great interest and spurred research activity from materials science to particle physics and vice versa. In particular, graphene has been found to exhibit outstanding electronic and mechanical properties, as well as an unusual low-energy spectrum of Dirac quasiparticles giving rise to a fractional quantum Hall effect when freely suspended and immersed in a magnetic field. One of the most intriguing puzzles of graphene involves the low-temperature conductivity at zero density, a central issue in the design of graphene-based nanoelectronic components. While suspended graphene experiments have shown a trend reminiscent of semiconductors, with rising resistivity at low temperatures, most theories predict a constant or even decreasing resistivity. However, lattice field theory calculations have revealed that suspended graphene is at or near the critical coupling for excitonic gap formation due to strong Coulomb intera...

  13. Innovative Video Diagnostic Equipment for Material Science

    Science.gov (United States)

    Capuano, G.; Titomanlio, D.; Soellner, W.; Seidel, A.

    2012-01-01

    Materials science experiments under microgravity increasingly rely on advanced optical systems to determine the physical properties of the samples under investigation. This includes video systems with high spatial and temporal resolution. The acquisition, handling, storage and transmission to ground of the resulting video data are very challenging. Since the available downlink data rate is limited, the capability to compress the video data significantly without compromising the data quality is essential. We report on the development of a Digital Video System (DVS) for EML (Electro Magnetic Levitator) which provides real-time video acquisition, high compression using advanced Wavelet algorithms, storage and transmission of a continuous flow of video with different characteristics in terms of image dimensions and frame rates. The DVS is able to operate with the latest generation of high-performance cameras acquiring high resolution video images up to 4Mpixels@60 fps or high frame rate video images up to about 1000 fps@512x512pixels.

  14. Molecular forensic science analysis of nuclear materials

    Science.gov (United States)

    Reilly, Dallas David

    Concerns over the proliferation and instances of nuclear material in the environment have increased interest in the expansion of nuclear forensics analysis and attribution programs. A new related field, molecular forensic science (MFS) has helped meet this expansion by applying common scientific analyses to nuclear forensics scenarios. In this work, MFS was applied to three scenarios related to nuclear forensics analysis. In the first, uranium dioxide was synthesized and aged at four sets of static environmental conditions and studied for changes in chemical speciation. The second highlighted the importance of bulk versus particle characterizations by analyzing a heterogeneous industrially prepared sample with similar techniques. In the third, mixed uranium/plutonium hot particles were collected from the McGuire Air Force Base BOMARC Site and analyzed for chemical speciation and elemental surface composition. This work has identified new signatures and has indicated unexpected chemical behavior under various conditions. These findings have lead to an expansion of basic actinide understanding, proof of MFS as a tool for nuclear forensic science, and new areas for expansion in these fields.

  15. 3D-printed bioanalytical devices

    Science.gov (United States)

    Bishop, Gregory W.; Satterwhite-Warden, Jennifer E.; Kadimisetty, Karteek; Rusling, James F.

    2016-07-01

    While 3D printing technologies first appeared in the 1980s, prohibitive costs, limited materials, and the relatively small number of commercially available printers confined applications mainly to prototyping for manufacturing purposes. As technologies, printer cost, materials, and accessibility continue to improve, 3D printing has found widespread implementation in research and development in many disciplines due to ease-of-use and relatively fast design-to-object workflow. Several 3D printing techniques have been used to prepare devices such as milli- and microfluidic flow cells for analyses of cells and biomolecules as well as interfaces that enable bioanalytical measurements using cellphones. This review focuses on preparation and applications of 3D-printed bioanalytical devices.

  16. Focuses of material science development in recent years

    Institute of Scientific and Technical Information of China (English)

    WANG Jing

    2011-01-01

    Materials science is an interdisciplinary field applying the properties of matter to various areas of science and engineering.This scientific field investigates the relationship between the structure of materials at atomic or molecular scales and their macroscopic properties.It incorporates elements of applied physics and chemistry.With significant media attention focused on nanoscience and nanotechnology in recent years,materials science has been propelled to the forefront at many universities.Materials science encompasses various classes of materials,including electronic materials,functional ceramics,magnesium,material and processes for flat-panel displays,eco/environmental materials,sustainable energy materials,transportation materials,electronic packaging materials,etc.

  17. 3D game environments create professional 3D game worlds

    CERN Document Server

    Ahearn, Luke

    2008-01-01

    The ultimate resource to help you create triple-A quality art for a variety of game worlds; 3D Game Environments offers detailed tutorials on creating 3D models, applying 2D art to 3D models, and clear concise advice on issues of efficiency and optimization for a 3D game engine. Using Photoshop and 3ds Max as his primary tools, Luke Ahearn explains how to create realistic textures from photo source and uses a variety of techniques to portray dynamic and believable game worlds.From a modern city to a steamy jungle, learn about the planning and technological considerations for 3D modelin

  18. X3D: Extensible 3D Graphics Standard

    OpenAIRE

    Daly, Leonard; Brutzman, Don

    2007-01-01

    The article of record as published may be located at http://dx.doi.org/10.1109/MSP.2007.905889 Extensible 3D (X3D) is the open standard for Web-delivered three-dimensional (3D) graphics. It specifies a declarative geometry definition language, a run-time engine, and an application program interface (API) that provide an interactive, animated, real-time environment for 3D graphics. The X3D specification documents are freely available, the standard can be used without paying any royalties,...

  19. Citation Analysis on Current Science Publications:3 D Print Research Topics%基于引文分析的3D打印技术研究主题发展趋势

    Institute of Scientific and Technical Information of China (English)

    吴菲菲; 段国辉; 黄鲁成; 杨梓; 乔铮

    2014-01-01

    From Web of Science database, more than 8,000 papers published about 3D print technology from 1994 to 2014 are retrieved as data source. Through using Histcite and Pajek, citation chronological chart and the main path of 3D print technology are analyzed, and the development trend of the research subjects of 3D print technology are identified. The result provides a basis for grasping the current re-search focus and predicting future research direction.%利用汤森路透公司的Web of Science数据库,以1994-2014年出版文献中关于3D打印技术的8000多篇文献为数据源,借助Histcite和Pajek软件分析3D打印技术引文编年图和研究主路径,判断3D打印技术的研究主题发展趋势。研究结果对于把握当前研究重点和预测未来研究方向提供了依据。

  20. Division of Materials Science (DMS) meeting presentation

    Energy Technology Data Exchange (ETDEWEB)

    Cline, C.F.; Weber, M.J.

    1982-11-08

    Materials preparation techniques are listed. Materials preparation capabilities are discussed for making BeF/sub 2/ glasses and other materials. Materials characterization techniques are listed. (DLC)

  1. Extra Dimensions: 3D in PDF Documentation

    International Nuclear Information System (INIS)

    Experimental science is replete with multi-dimensional information which is often poorly represented by the two dimensions of presentation slides and print media. Past efforts to disseminate such information to a wider audience have failed for a number of reasons, including a lack of standards which are easy to implement and have broad support. Adobe's Portable Document Format (PDF) has in recent years become the de facto standard for secure, dependable electronic information exchange. It has done so by creating an open format, providing support for multiple platforms and being reliable and extensible. By providing support for the ECMA standard Universal 3D (U3D) and the ISO PRC file format in its free Adobe Reader software, Adobe has made it easy to distribute and interact with 3D content. Until recently, Adobe's Acrobat software was also capable of incorporating 3D content into PDF files from a variety of 3D file formats, including proprietary CAD formats. However, this functionality is no longer available in Acrobat X, having been spun off to a separate company. Incorporating 3D content now requires the additional purchase of a separate plug-in. In this talk we present alternatives based on open source libraries which allow the programmatic creation of 3D content in PDF format. While not providing the same level of access to CAD files as the commercial software, it does provide physicists with an alternative path to incorporate 3D content into PDF files from such disparate applications as detector geometries from Geant4, 3D data sets, mathematical surfaces or tesselated volumes.

  2. Chemistry and Materials Science progress report, FY 1994. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    Thrust areas of the weapons-supporting research include surface science, fundamentals of the physics and processing of metals, energetic materials, etc. The laboratory directed R and D include director`s initiatives, individual projects, and transactinium science studies.

  3. 3D printed bionic ears.

    Science.gov (United States)

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  4. 3D printed bionic ears.

    Science.gov (United States)

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.

  5. 3D Printing an Octohedron

    OpenAIRE

    Aboufadel, Edward F.

    2014-01-01

    The purpose of this short paper is to describe a project to manufacture a regular octohedron on a 3D printer. We assume that the reader is familiar with the basics of 3D printing. In the project, we use fundamental ideas to calculate the vertices and faces of an octohedron. Then, we utilize the OPENSCAD program to create a virtual 3D model and an STereoLithography (.stl) file that can be used by a 3D printer.

  6. Salient Local 3D Features for 3D Shape Retrieval

    CERN Document Server

    Godil, Afzal

    2011-01-01

    In this paper we describe a new formulation for the 3D salient local features based on the voxel grid inspired by the Scale Invariant Feature Transform (SIFT). We use it to identify the salient keypoints (invariant points) on a 3D voxelized model and calculate invariant 3D local feature descriptors at these keypoints. We then use the bag of words approach on the 3D local features to represent the 3D models for shape retrieval. The advantages of the method are that it can be applied to rigid as well as to articulated and deformable 3D models. Finally, this approach is applied for 3D Shape Retrieval on the McGill articulated shape benchmark and then the retrieval results are presented and compared to other methods.

  7. 3D modelling and recognition

    OpenAIRE

    Rodrigues, Marcos; Robinson, Alan; Alboul, Lyuba; Brink, Willie

    2006-01-01

    3D face recognition is an open field. In this paper we present a method for 3D facial recognition based on Principal Components Analysis. The method uses a relatively large number of facial measurements and ratios and yields reliable recognition. We also highlight our approach to sensor development for fast 3D model acquisition and automatic facial feature extraction.

  8. Development of a lab-scale, high-resolution, tube-generated X-ray computed-tomography system for three-dimensional (3D) materials characterization

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, J.C.E., E-mail: james.mertens@asu.edu; Williams, J.J., E-mail: jason.williams@asu.edu; Chawla, Nikhilesh, E-mail: nchawla@asu.edu

    2014-06-01

    The design and construction of a modular high resolution X-ray computed tomography (XCT) system is highlighted in this paper. The design approach is detailed for meeting a specified set of instrument performance goals tailored towards experimental versatility and high resolution imaging. The XCT tool is unique in the detector and X-ray source design configuration, enabling control in the balance between detection efficiency and spatial resolution. The system package is also unique: The sample manipulation approach implemented enables a wide gamut of in situ experimentation to analyze structure evolution under applied stimulus, by optimizing scan conditions through a high degree of controllability. The component selection and design process is detailed: Incorporated components are specified, custom designs are shared, and the approach for their integration into a fully functional XCT scanner is provided. Custom designs discussed include the dual-target X-ray source cradle which maintains position and trajectory of the beam between the two X-ray target configurations with respect to a scintillator mounting and positioning assembly and the imaging sensor, as well as a novel large-format X-ray detector with enhanced adaptability. The instrument is discussed from an operational point of view, including the details of data acquisition and processing implemented for 3D imaging via micro-CT. The performance of the instrument is demonstrated on a silica-glass particle/hydroxyl-terminated-polybutadiene (HTPB) matrix binder PBX simulant. Post-scan data processing, specifically segmentation of the sample's relevant microstructure from the 3D reconstruction, is provided to demonstrate the utility of the instrument. - Highlights: • Custom built X-ray tomography system for microstructural characterization • Detector design for maximizing polychromatic X-ray detection efficiency • X-ray design offered for maximizing X-ray flux with respect to imaging resolution

  9. Innovations in 3D printing: a 3D overview from optics to organs.

    Science.gov (United States)

    Schubert, Carl; van Langeveld, Mark C; Donoso, Larry A

    2014-02-01

    3D printing is a method of manufacturing in which materials, such as plastic or metal, are deposited onto one another in layers to produce a three dimensional object, such as a pair of eye glasses or other 3D objects. This process contrasts with traditional ink-based printers which produce a two dimensional object (ink on paper). To date, 3D printing has primarily been used in engineering to create engineering prototypes. However, recent advances in printing materials have now enabled 3D printers to make objects that are comparable with traditionally manufactured items. In contrast with conventional printers, 3D printing has the potential to enable mass customisation of goods on a large scale and has relevance in medicine including ophthalmology. 3D printing has already been proved viable in several medical applications including the manufacture of eyeglasses, custom prosthetic devices and dental implants. In this review, we discuss the potential for 3D printing to revolutionise manufacturing in the same way as the printing press revolutionised conventional printing. The applications and limitations of 3D printing are discussed; the production process is demonstrated by producing a set of eyeglass frames from 3D blueprints.

  10. Synthesis, crystal structure and thermal properties of Ca6(C12H14O4)4(CO3)(OH)2(H2O)x – a 3D inorganic hybrid material

    DEFF Research Database (Denmark)

    Nielsen, Renie Birkedal; Norby, Poul; Kongshaug, Kjell Ove;

    2012-01-01

    of Ca6(C12H14O4)4(CO3)(OH)2(H2O)14 is tetragonal, space group I41/amd (141) with a = 29.12 Å, c = 15.85 Å, V = 13 440 Å3 and Z = 8. The compound is classified as a 3D inorganic hybrid material with a 3-dimensional inorganic framework consisting of Ca and O, connected to 1,3-adamantanedicarboxylate...

  11. Materials science tools for regenerative medicine

    Science.gov (United States)

    Richardson, Wade Nicholas

    Regenerative therapies originating from recent technological advances in biology could revolutionize medicine in the coming years. In particular, the advent of human pluripotent stem cells (hPSCs), with their ability to become any cell in the adult body, has opened the door to an entirely new way of treating disease. However, currently these medical breakthroughs remain only a promise. To make them a reality, new tools must be developed to surmount the new technical hurdles that have arisen from dramatic departure from convention that this field represents. The collected work presented in this dissertation covers several projects that seek to apply the skills and knowledge of materials science to this tool synthesizing effort. The work is divided into three chapters. The first deals with our work to apply Raman spectroscopy, a tool widely used for materials characterization, to degeneration in cartilage. We have shown that Raman can effectively distinguish the matrix material of healthy and diseased tissue. The second area of work covered is the development of a new confocal image analysis for studying hPSC colonies that are chemical confined to uniform growth regions. This tool has important application in understanding the heterogeneity that may slow the development of hPSC -based treatment, as well as the use of such confinement in the eventually large-scale manufacture of hPSCs for therapeutic use. Third, the use of structural templating in tissue engineering scaffolds is detailed. We have utilized templating to tailor scaffold structures for engineering of constructs mimicking two tissues: cartilage and lung. The work described here represents several important early steps towards large goals in regenerative medicine. These tools show a great deal of potential for accelerating progress in this field that seems on the cusp of helping a great many people with otherwise incurable disease.

  12. Plasma-material interactions: A Langmuir probe analysis of a cylindrical SiO(2) deposition system and a computational study using VFTRIM3D

    Science.gov (United States)

    Turkot, Robert Bruce, Jr.

    This dissertation is broken into two sections describing, first, a computer code simulating ion-surface interactions, VFTRIM3D, and, second, an experimental Langmuir probe analysis of a cylindrical SiOsb2 deposition system. VFTRIM3D is a 3-dimensional, Monte-Carlo, binary collision code employing fractal algorithms used to simulate atomic-scale surface roughness. This work applies this code to studies of incident ion energies in the 10's to 100's of eV on various targets and comparisons to experimental data prove its dependability for such simulations. The experimental portion of this thesis includes the development and investigation of a cylindrical SiOsb2 deposition system used to deposit gas permeation barrier thin films onto PET bottles. The plasma analysis is done utilizing time- and spatially resolved Langmuir probe techniques. In order to study the characteristics of the dielectric deposition plasma, a "hot" Langmuir probe was developed to acquire typical Langmuir probe data during SiOsb2 deposition. The SiOsb2 films deposited in this system are analyzed for their gas permeation qualities and are correlated to the plasma properties gathered using Langmuir probes as well as the gas, pressure, and time recipes used to produce them. It is found in this work that the application of SiOsb2 films onto flexible PET bottles using the fashion explained herein results in a decrease in the gas permeation characteristics of the SiOsb2-PET membrane as desired, but is found to be independent of the thickness of the SiOsb2 present. This limit is found to be caused by cracks and pinhole defects across the SiOsb2 film that permit uninhibited gas flow directly to the PET bottle.

  13. Energy-selective neutron imaging for materials science

    OpenAIRE

    Peetermans, Steven Luc X

    2015-01-01

    Common neutron imaging techniques study the attenuation of a neutron beam penetrating a sample of interest. The recorded radiograph shows a contrast depending on traversed material and its thickness. Tomography allows separating both and obtaining 3D spatial information about the material distribution, solving problems in numerous fields ranging from virtually separating fossils from surrounding rock to water management in fuel cells. It is nowadays routinely performed at PSI¿s neutron imagin...

  14. Pulsed Neutron Powder Diffraction for Materials Science

    International Nuclear Information System (INIS)

    The accelerator-based neutron diffraction began in the end of 60's at Tohoku University which was succeeded by the four spallation neutron facilities with proton accelerators at the High Energy Accelerator Research Organization (Japan), Argonne National Laboratory and Los Alamos Laboratory (USA), and Rutherford Appleton Laboratory (UK). Since then, the next generation source has been pursued for 20 years, and 1MW-class spallation neutron sources will be appeared in about three years at the three parts of the world: Japan, UK and USA. The joint proton accelerator project (J-PARC), a collaborative project between KEK and JAEA, is one of them. The aim of the talk is to describe about J-PARC and the neutron diffractometers being installed at the materials and life science facility of J-PARC. The materials and life science facility of J-PARC has 23 neutron beam ports and will start delivering the first neutron beam of 25 Hz from 2008 May. Until now, more than 20 proposals have been reviewed by the review committee, and accepted proposal groups have started to get fund. Those proposals include five polycrystalline diffractometers: a super high resolution powder diffractometer (SHRPD), a 0.2%-resolution powder diffractometer of Ibaraki prefecture (IPD), an engineering diffractometers (Takumi), a high intensity S(Q) diffractometer (VSD), and a high-pressure dedicated diffractometer. SHRPD, Takumi and IPD are being designed and constructed by the joint team of KEK, JAEA and Ibaraki University, whose member are originally from the KEK powder group. These three instruments are expected to start in 2008. VSD is a super high intensity diffractometer with the highest resolution of Δd/d = 0.3%. VSD can measure rapid time-dependent phenomena of crystalline materials as well as glass, liquid and amorphous materials. The pair distribution function will be routinely obtained by the Fourier transiformation of S(Q) data. Q range of VSD will be as wide as 0.01 A-1-1. IPD is fully

  15. Material Science Image Analysis using Quant-CT in ImageJ

    Energy Technology Data Exchange (ETDEWEB)

    Ushizima, Daniela M.; Bianchi, Andrea G. C.; DeBianchi, Christina; Bethel, E. Wes

    2015-01-05

    We introduce a computational analysis workflow to access properties of solid objects using nondestructive imaging techniques that rely on X-ray imaging. The goal is to process and quantify structures from material science sample cross sections. The algorithms can differentiate the porous media (high density material) from the void (background, low density media) using a Boolean classifier, so that we can extract features, such as volume, surface area, granularity spectrum, porosity, among others. Our workflow, Quant-CT, leverages several algorithms from ImageJ, such as statistical region merging and 3D object counter. It also includes schemes for bilateral filtering that use a 3D kernel, for parallel processing of sub-stacks, and for handling over-segmentation using histogram similarities. The Quant-CT supports fast user interaction, providing the ability for the user to train the algorithm via subsamples to feed its core algorithms with automated parameterization. Quant-CT plugin is currently available for testing by personnel at the Advanced Light Source and Earth Sciences Divisions and Energy Frontier Research Center (EFRC), LBNL, as part of their research on porous materials. The goal is to understand the processes in fluid-rock systems for the geologic sequestration of CO2, and to develop technology for the safe storage of CO2 in deep subsurface rock formations. We describe our implementation, and demonstrate our plugin on porous material images. This paper targets end-users, with relevant information for developers to extend its current capabilities.

  16. 3DSEM++: Adaptive and intelligent 3D SEM surface reconstruction.

    Science.gov (United States)

    Tafti, Ahmad P; Holz, Jessica D; Baghaie, Ahmadreza; Owen, Heather A; He, Max M; Yu, Zeyun

    2016-08-01

    Structural analysis of microscopic objects is a longstanding topic in several scientific disciplines, such as biological, mechanical, and materials sciences. The scanning electron microscope (SEM), as a promising imaging equipment has been around for decades to determine the surface properties (e.g., compositions or geometries) of specimens by achieving increased magnification, contrast, and resolution greater than one nanometer. Whereas SEM micrographs still remain two-dimensional (2D), many research and educational questions truly require knowledge and facts about their three-dimensional (3D) structures. 3D surface reconstruction from SEM images leads to remarkable understanding of microscopic surfaces, allowing informative and qualitative visualization of the samples being investigated. In this contribution, we integrate several computational technologies including machine learning, contrario methodology, and epipolar geometry to design and develop a novel and efficient method called 3DSEM++ for multi-view 3D SEM surface reconstruction in an adaptive and intelligent fashion. The experiments which have been performed on real and synthetic data assert the approach is able to reach a significant precision to both SEM extrinsic calibration and its 3D surface modeling.

  17. Recent advances in 3D SEM surface reconstruction.

    Science.gov (United States)

    Tafti, Ahmad P; Kirkpatrick, Andrew B; Alavi, Zahrasadat; Owen, Heather A; Yu, Zeyun

    2015-11-01

    The scanning electron microscope (SEM), as one of the most commonly used instruments in biology and material sciences, employs electrons instead of light to determine the surface properties of specimens. However, the SEM micrographs still remain 2D images. To effectively measure and visualize the surface attributes, we need to restore the 3D shape model from the SEM images. 3D surface reconstruction is a longstanding topic in microscopy vision as it offers quantitative and visual information for a variety of applications consisting medicine, pharmacology, chemistry, and mechanics. In this paper, we attempt to explain the expanding body of the work in this area, including a discussion of recent techniques and algorithms. With the present work, we also enhance the reliability, accuracy, and speed of 3D SEM surface reconstruction by designing and developing an optimized multi-view framework. We then consider several real-world experiments as well as synthetic data to examine the qualitative and quantitative attributes of our proposed framework. Furthermore, we present a taxonomy of 3D SEM surface reconstruction approaches and address several challenging issues as part of our future work.

  18. 3DSEM++: Adaptive and intelligent 3D SEM surface reconstruction.

    Science.gov (United States)

    Tafti, Ahmad P; Holz, Jessica D; Baghaie, Ahmadreza; Owen, Heather A; He, Max M; Yu, Zeyun

    2016-08-01

    Structural analysis of microscopic objects is a longstanding topic in several scientific disciplines, such as biological, mechanical, and materials sciences. The scanning electron microscope (SEM), as a promising imaging equipment has been around for decades to determine the surface properties (e.g., compositions or geometries) of specimens by achieving increased magnification, contrast, and resolution greater than one nanometer. Whereas SEM micrographs still remain two-dimensional (2D), many research and educational questions truly require knowledge and facts about their three-dimensional (3D) structures. 3D surface reconstruction from SEM images leads to remarkable understanding of microscopic surfaces, allowing informative and qualitative visualization of the samples being investigated. In this contribution, we integrate several computational technologies including machine learning, contrario methodology, and epipolar geometry to design and develop a novel and efficient method called 3DSEM++ for multi-view 3D SEM surface reconstruction in an adaptive and intelligent fashion. The experiments which have been performed on real and synthetic data assert the approach is able to reach a significant precision to both SEM extrinsic calibration and its 3D surface modeling. PMID:27200484

  19. PLOT3D Export Tool for Tecplot

    Science.gov (United States)

    Alter, Stephen

    2010-01-01

    The PLOT3D export tool for Tecplot solves the problem of modified data being impossible to output for use by another computational science solver. The PLOT3D Exporter add-on enables the use of the most commonly available visualization tools to engineers for output of a standard format. The exportation of PLOT3D data from Tecplot has far reaching effects because it allows for grid and solution manipulation within a graphical user interface (GUI) that is easily customized with macro language-based and user-developed GUIs. The add-on also enables the use of Tecplot as an interpolation tool for solution conversion between different grids of different types. This one add-on enhances the functionality of Tecplot so significantly, it offers the ability to incorporate Tecplot into a general suite of tools for computational science applications as a 3D graphics engine for visualization of all data. Within the PLOT3D Export Add-on are several functions that enhance the operations and effectiveness of the add-on. Unlike Tecplot output functions, the PLOT3D Export Add-on enables the use of the zone selection dialog in Tecplot to choose which zones are to be written by offering three distinct options - output of active, inactive, or all zones (grid blocks). As the user modifies the zones to output with the zone selection dialog, the zones to be written are similarly updated. This enables the use of Tecplot to create multiple configurations of a geometry being analyzed. For example, if an aircraft is loaded with multiple deflections of flaps, by activating and deactivating different zones for a specific flap setting, new specific configurations of that aircraft can be easily generated by only writing out specific zones. Thus, if ten flap settings are loaded into Tecplot, the PLOT3D Export software can output ten different configurations, one for each flap setting.

  20. Three-Dimensional (3D) Additive Construction: Printing with Regolith

    Science.gov (United States)

    Tsoras, Alexandra

    2013-01-01

    Three dimensional (3D) printing is a new and booming topic in many realms of research and engineering technology. When it comes to space science and aerospace engineering, it can be useful in numerous ways. As humans travel deeper into space and farther from Earth, sending large quantities of needed supplies from Earth for a mission becomes astronomically expensive and less plausible. In order to reach further to new places, In Situ Resource Utilization (ISRU), a project that pushes for technologies to use materials already present in the destination's environment, is necessary. By using materials already available in space such as regolith from the Moon, Mars, or an asteroid's surface, fewer materials need to be brought into space on a launched vehicle. This allows a vehicle to be filled with more necessary supplies for a deep space mission that may not be found in space, like food and fuel. This project's main objective was to develop a 3D printer that uses regolith to "print" large structures, such as a dome, to be used as a heat shield upon a vehicle's reentry into the atmosphere or even a habitat. 3D printing is a growing technology that uses many different methods to mix, heat, and mold a material into a specific shape. In order to heat the regolith enough to stick together into a solid shape, it must be sintered at each layer of material that is laid. Sintering is a process that heats and compresses a powdered material until it fuses into a solid, which requires a lot of energy input. As an alternative, a polymer can be mixed with the regolith before or as it is sent to the 3D printer head to be placed in the specific shape. The addition of the polymer, which melts and binds at much lower temperatures than sintering temperatures, greatly decreases the required heating temperature and energy input. The main task of the project was to identify a functional material for the printer. The first step was to find a miscible. polymer/solvent solution. This solution

  1. Supernova Remnant in 3-D

    Science.gov (United States)

    2009-01-01

    of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through. The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave. This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron. High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these structures, but their orientation and

  2. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    Energy Technology Data Exchange (ETDEWEB)

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  3. SURVEY AND ANALYSIS OF 3D STEGANOGRAPHY

    Directory of Open Access Journals (Sweden)

    K .LAKSHMI

    2011-01-01

    Full Text Available Steganography is the science that involves communicating secret data in an appropriate multimedia carrier, eg., images, audio, and video files. The remarkable growth in computational power, increase in current security approaches and techniques are often used together to ensures security of the secret message. Steganography’s ultimate objectives, which are capacity and invisibility, are the main factors that separate it from related techniques. In this paper we focus on 3D models of steganography and conclude with some review analysis of high capacity data hiding and low-distortion 3D models.

  4. Initiation and propagation of complex 3D networks of cracks in heterogeneous quasi-brittle materials: Direct comparison between in situ testing-microCT experiments and phase field simulations

    Science.gov (United States)

    Nguyen, T. T.; Yvonnet, J.; Bornert, M.; Chateau, C.

    2016-10-01

    We provide the first direct comparisons, to our knowledge, of complex 3D micro cracking initiation and propagation in heterogeneous quasi-brittle materials modelled by the phase field numerical method and observed in X-ray microtomography images recorded during in situ mechanical testing. Some material parameters of the damage model, including the process zone (internal) length, are identified by an inverse approach combining experimental data and 3D simulations. A new technique is developed to study the micro cracking at a finer scale by prescribing the local displacements measured by digital volume correlation over the boundary of a small sub-volume inside the sample during the numerical simulations. The comparisons, performed on several samples of lightweight plaster and concrete, show a remarkable quantitative agreement between the 3D crack morphology obtained by the model and by the experiments, without any a priori knowledge about the location of the initiation of the cracks in the numerical model. The results indicate that the crack paths can be predicted in a fully deterministic way in spite of the highly random geometry of the microstructure and the brittle nature of its constituents.

  5. Chemistry and materials science progress report, FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    Research is reported in the areas of surface science, fundamentals of the physics and processing of metals, energetic materials, transactinide materials and properties and other indirectly related areas of weapons research.

  6. Pulsed Neutron Powder Diffraction for Materials Science

    Science.gov (United States)

    Kamiyama, T.

    2008-03-01

    The accelerator-based neutron diffraction began in the end of 60's at Tohoku University which was succeeded by the four spallation neutron facilities with proton accelerators at the High Energy Accelerator Research Organization (Japan), Argonne National Laboratory and Los Alamos Laboratory (USA), and Rutherford Appleton Laboratory (UK). Since then, the next generation source has been pursued for 20 years, and 1MW-class spallation neutron sources will be appeared in about three years at the three parts of the world: Japan, UK and USA. The joint proton accelerator project (J-PARC), a collaborative project between KEK and JAEA, is one of them. The aim of the talk is to describe about J-PARC and the neutron diffractometers being installed at the materials and life science facility of J-PARC. The materials and life science facility of J-PARC has 23 neutron beam ports and will start delivering the first neutron beam of 25 Hz from 2008 May. Until now, more than 20 proposals have been reviewed by the review committee, and accepted proposal groups have started to get fund. Those proposals include five polycrystalline diffractometers: a super high resolution powder diffractometer (SHRPD), a 0.2%-resolution powder diffractometer of Ibaraki prefecture (IPD), an engineering diffractometers (Takumi), a high intensity S(Q) diffractometer (VSD), and a high-pressure dedicated diffractometer. SHRPD, Takumi and IPD are being designed and constructed by the joint team of KEK, JAEA and Ibaraki University, whose member are originally from the KEK powder group. These three instruments are expected to start in 2008. VSD is a super high intensity diffractometer with the highest resolution of Δd/d = 0.3%. VSD can measure rapid time-dependent phenomena of crystalline materials as well as glass, liquid and amorphous materials. The pair distribution function will be routinely obtained by the Fourier transiformation of S(Q) data. Q range of VSD will be as wide as 0.01 Å-160 with gradually

  7. Materials and Chemical Sciences Division annual report 1989

    International Nuclear Information System (INIS)

    This report describes research conducted at Lawrence Berkeley Laboratories, programs are discussed in the following topics: materials sciences; chemical sciences; fossil energy; energy storage systems; health and environmental sciences; exploratory research and development funds; and work for others. A total of fifty eight programs are briefly presented. References, figures, and tables are included where appropriate with each program

  8. Materials and Chemical Sciences Division annual report 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    This report describes research conducted at Lawrence Berkeley Laboratories, programs are discussed in the following topics: materials sciences; chemical sciences; fossil energy; energy storage systems; health and environmental sciences; exploratory research and development funds; and work for others. A total of fifty eight programs are briefly presented. References, figures, and tables are included where appropriate with each program.

  9. 3D-skannaukseen perehtyminen

    OpenAIRE

    Santaluoto, Olli

    2012-01-01

    Tässä insinöörityössä tarkastellaan erilaisia 3D-skannaustekniikoita ja menetelmiä. Työssä myös kerrotaan esimerkkien avulla eri 3D-skannaustekniikoiden käyttökohteista. 3D-skannaus on Suomessa vielä melko harvinaista, siksi eri tekniikat ja käyttömahdollisuudet ovat monille tuntemattomia. 3D-skanneri on laite, jolla tutkitaan reaalimaailman esineitä tai ympäristöä keräämällä dataa kohteen muodoista. 3D-skannerit ovat hyvin paljon vastaavia tavallisen kameran kanssa. Kuten kameroilla, 3D...

  10. 3D printed diffractive terahertz lenses.

    Science.gov (United States)

    Furlan, Walter D; Ferrando, Vicente; Monsoriu, Juan A; Zagrajek, Przemysław; Czerwińska, Elżbieta; Szustakowski, Mieczysław

    2016-04-15

    A 3D printer was used to realize custom-made diffractive THz lenses. After testing several materials, phase binary lenses with periodic and aperiodic radial profiles were designed and constructed in polyamide material to work at 0.625 THz. The nonconventional focusing properties of such lenses were assessed by computing and measuring their axial point spread function (PSF). Our results demonstrate that inexpensive 3D printed THz diffractive lenses can be reliably used in focusing and imaging THz systems. Diffractive THz lenses with unprecedented features, such as extended depth of focus or bifocalization, have been demonstrated. PMID:27082335

  11. Wireless Rover Meets 3D Design and Product Development

    Science.gov (United States)

    Deal, Walter F., III; Hsiung, Steve C.

    2016-01-01

    Today there are a number of 3D printing technologies that are low cost and within the budgets of middle and high school programs. Educational technology companies offer a variety of 3D printing technologies and parallel curriculum materials to enable technology and engineering teachers to easily add 3D learning activities to their programs.…

  12. Forward ramp in 3D

    Science.gov (United States)

    1997-01-01

    Mars Pathfinder's forward rover ramp can be seen successfully unfurled in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This ramp was not used for the deployment of the microrover Sojourner, which occurred at the end of Sol 2. When this image was taken, Sojourner was still latched to one of the lander's petals, waiting for the command sequence that would execute its descent off of the lander's petal.The image helped Pathfinder scientists determine whether to deploy the rover using the forward or backward ramps and the nature of the first rover traverse. The metallic object at the lower left of the image is the lander's low-gain antenna. The square at the end of the ramp is one of the spacecraft's magnetic targets. Dust that accumulates on the magnetic targets will later be examined by Sojourner's Alpha Proton X-Ray Spectrometer instrument for chemical analysis. At right, a lander petal is visible.The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  13. 3D Elevation Program—Virtual USA in 3D

    Science.gov (United States)

    Lukas, Vicki; Stoker, J.M.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  14. 3D IBFV : Hardware-Accelerated 3D Flow Visualization

    NARCIS (Netherlands)

    Telea, Alexandru; Wijk, Jarke J. van

    2003-01-01

    We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique for 2D flow visualization in two main directions. First, we decompose the 3D flow visualization problem in a

  15. "Sweet Science": Romantic Materialism and the New Sciences of Life

    OpenAIRE

    Goldstein, Amanda Jo

    2011-01-01

    This dissertation on late Enlightenment poetics and the history of the biomedical sciences unfolds a lapsed possibility near the historical beginnings of the division of labor between literary and scientific representation. Against the pressure, then and now, to treat the culture of science as context or antithesis to literary production, I recover a countervailing epistemology that cast poetry as a privileged technique of empirical inquiry: a knowledgeable practice whose figurative work brou...

  16. Interactive 3D multimedia content

    CERN Document Server

    Cellary, Wojciech

    2012-01-01

    The book describes recent research results in the areas of modelling, creation, management and presentation of interactive 3D multimedia content. The book describes the current state of the art in the field and identifies the most important research and design issues. Consecutive chapters address these issues. These are: database modelling of 3D content, security in 3D environments, describing interactivity of content, searching content, visualization of search results, modelling mixed reality content, and efficient creation of interactive 3D content. Each chapter is illustrated with example a

  17. 3D Bayesian contextual classifiers

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    2000-01-01

    We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours.......We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours....

  18. 3-D printers for libraries

    CERN Document Server

    Griffey, Jason

    2014-01-01

    As the maker movement continues to grow and 3-D printers become more affordable, an expanding group of hobbyists is keen to explore this new technology. In the time-honored tradition of introducing new technologies, many libraries are considering purchasing a 3-D printer. Jason Griffey, an early enthusiast of 3-D printing, has researched the marketplace and seen several systems first hand at the Consumer Electronics Show. In this report he introduces readers to the 3-D printing marketplace, covering such topics asHow fused deposition modeling (FDM) printing workBasic terminology such as build

  19. 3D for Graphic Designers

    CERN Document Server

    Connell, Ellery

    2011-01-01

    Helping graphic designers expand their 2D skills into the 3D space The trend in graphic design is towards 3D, with the demand for motion graphics, animation, photorealism, and interactivity rapidly increasing. And with the meteoric rise of iPads, smartphones, and other interactive devices, the design landscape is changing faster than ever.2D digital artists who need a quick and efficient way to join this brave new world will want 3D for Graphic Designers. Readers get hands-on basic training in working in the 3D space, including product design, industrial design and visualization, modeling, ani

  20. Using 3D in Visualization

    DEFF Research Database (Denmark)

    Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen;

    2005-01-01

    to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...... with abstracted representations embedded in a 3D space. The interactions between development of geovisualization, the technology used to implement it and the theory surrounding cartographic representation are explored. The dominance of computing technologies, driven particularly by the gaming industry...

  1. Method of Reducing Consumption of 3 D Printing Materials Based on Model Structure Optimization%基于模型结构优化的降低3D打印材料消耗方法

    Institute of Scientific and Technical Information of China (English)

    王洁瑜; 董方敏

    2016-01-01

    3D printing technology is a new and high technology based on the principle of increasing material manufacturing,which is the continuation and development of rapid prototyping technology with increasing expansion and popularity. Currently,the research hotspot of 3D printing is concentrated on principle and structure for 3D printer,and free forming process,materials,costs for 3D printing. How to re-duce material consumption in order to lower the cost of 3D printing is one of the most important research. Optimizing the model structure and reducing material consumption is currently commonly used. From the viewpoint of using the model structure optimization method to lower the 3D printing costs,the basic principles of the model structure optimization is described,and several typical algorithms are intro-duced for reducing the material 3D printing consumption based on model structure optimization method. Then the characteristics of the al-gorithms and their application areas are analyzed. Finally,several possible future research directions in the area are pointed out.%3D打印技术是基于增材制造法原理的一种高新技术,是快速成型技术的延续与发展,其应用领域正在不断扩大和普及。目前,对3D打印方面的研究热点集中在3D打印机的原理和结构、3D打印自由成形工艺、3D打印材料、3D打印成本等方面。如何减少材料消耗来降低3D打印成本是其中重要的研究内容之一,而通过优化模型结构来减少材料的消耗是目前常用的方法。从采用对模型结构进行优化的方法来降低3D打印成本的角度,阐述了模型结构优化的基本原理,介绍了几类典型的基于模型结构优化技术降低3D打印材料消耗的算法,分析了各种算法的特点及适用领域,并指出了未来可能的研究内容和方向。

  2. 3D microfabrication technology

    Science.gov (United States)

    Tang, Esheng; FuTing, Yi; Tian, Yangchao; Liang, Jingqiu; Xian, Dingchang

    1998-08-01

    In the late of this century the great success of VSIC impacts into almost every fields of our social. Following this idea people starts to integrate microsensor microprocessor and microactuators into a small space to forming a Micro Electro and Mechanical System. Such small robot parts are applied to including satellites, computer communication, medical, chemical, biological and environment and so on research fields. The development of MEMS would strongly influence industrial revolution in the next century. LIGA technology including X-ray deep etching lithography; electroplating and plastic molding developed by Karlsruhe Nuclear Research Center, Germany since the beginning of 1980. Its advantages are: it could make three-dimensional microstructures with lateral dimension in several micron range and thickness of several hundred microns with sub-micron precision. In principle all kinds of materials such as polymer, metal and ceramic could be used as microcomponents and could be mass- produced by plastic molding to a commercially available fabrication. LIGA process has become one of the most promising Microfabrication technologies for producing micromechanical, microfluid and micro-optical elements. It opens an additional field in the microstructure market.

  3. 3D Printed Multimaterial Microfluidic Valve

    Science.gov (United States)

    Patrick, William G.; Sharma, Sunanda; Kong, David S.; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics. PMID:27525809

  4. 3D Printed Multimaterial Microfluidic Valve.

    Science.gov (United States)

    Keating, Steven J; Gariboldi, Maria Isabella; Patrick, William G; Sharma, Sunanda; Kong, David S; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics. PMID:27525809

  5. 3D culture for cardiac cells.

    Science.gov (United States)

    Zuppinger, Christian

    2016-07-01

    This review discusses historical milestones, recent developments and challenges in the area of 3D culture models with cardiovascular cell types. Expectations in this area have been raised in recent years, but more relevant in vitro research, more accurate drug testing results, reliable disease models and insights leading to bioartificial organs are expected from the transition to 3D cell culture. However, the construction of organ-like cardiac 3D models currently remains a difficult challenge. The heart consists of highly differentiated cells in an intricate arrangement.Furthermore, electrical “wiring”, a vascular system and multiple cell types act in concert to respond to the rapidly changing demands of the body. Although cardiovascular 3D culture models have been predominantly developed for regenerative medicine in the past, their use in drug screening and for disease models has become more popular recently. Many sophisticated 3D culture models are currently being developed in this dynamic area of life science. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  6. Materials science with SR using x-ray imaging

    International Nuclear Information System (INIS)

    Some examples of applications of synchrotron radiation to materials science demonstrate the importance of microstructure information within structural as well as functional materials in order to control their properties and quality as designed for industrial purposes. To collect such information, x-ray imaging in quasi real time is required in either the microradiographic mode or the diffraction (in transmission) mode. New measurement technologies based on imaging are applied to polycrystalline materials, single crystal materials and multilayered device materials to illustrate what kind of synchrotron radiation facility is most desirable for materials science and engineering. (author)

  7. PREFACE: Tsukuba International Conference on Materials Science 2013

    Science.gov (United States)

    Kijima, Masashi; Ohshima, Kenichi; Kojima, Seiji; Nagasaki, Yukio; Miyazaki, Shuichi; Kim, Hee Young; Kadowaki, Kazuo; Kashiwagi, Takanari; Nakamura, Junji; Yamamoto, Yohei; Goto, Hiromasa

    2014-03-01

    Tsukuba International Conference on Materials Science (TICMS) was held from 28th August to 6th September, 2013 for the celebration of 40th year anniversary of the University of Tsukuba. The conference was organized by the Division of Materials Science, in cooperation with the Graduate School of Pure and Applied Sciences, and Tsukuba Research Center for Interdisciplinary Materials Science. The purpose of the conference was to provide a unique forum for researchers and students working in various fields of materials science, which have been progressing so rapidly that no single society could cover. The conference consists of following seven workshops to cover various fields. The organizing committee believed that the conference gave all participants new insights into the widespread development of materials science and enhanced the circulation, among them, of information released at the conference. The organizers are grateful for the financial support from University of Tsukuba. This volume contains 25 selected papers from invited and contributed papers, all of which have been screened on the basis of the standard review process of the program committee. The editors express their thanks to those authors who contributed the papers published in this proceedings, which reflects the scientific value of the conference. Nov. 20, 2013 Seiji Kojima, Prof. Dr. Chair, Division of Materials Science Chair, Doctoral Program in Materials Science TICMS 2013 (http://www.ticonfms.tsukuba.ac.jp/) Workshop list The 13th Japan-Korea Joint Workshop on Materials Science Summer School of Biomaterials Science The Japan-Korea Joint Workshop on Shape Memory and Superelastic Technologies The 2nd Workshop on THz Radiation from Intrinsic Josephson Junctions The 3rd German-Japan Nanoworkshop TICMS and IWP Joint Workshop on Conjugated Polymers International Workshop on Science and Patents (IWP) 2013

  8. 3D-PRINTING OF BUILD OBJECTS

    Directory of Open Access Journals (Sweden)

    SAVYTSKYI M. V.

    2016-03-01

    Full Text Available Raising of problem. Today, in all spheres of our life we can constate the permanent search for new, modern methods and technologies that meet the principles of sustainable development. New approaches need to be, on the one hand more effective in terms of conservation of exhaustible resources of our planet, have minimal impact on the environment and on the other hand to ensure a higher quality of the final product. Construction is not exception. One of the new promising technology is the technology of 3D -printing of individual structures and buildings in general. 3Dprinting - is the process of real object recreating on the model of 3D. Unlike conventional printer which prints information on a sheet of paper, 3D-printer allows you to display three-dimensional information, i.e. creates certain physical objects. Currently, 3D-printer finds its application in many areas of production: machine building elements, a variety of layouts, interior elements, various items. But due to the fact that this technology is fairly new, it requires the creation of detailed and accurate technologies, efficient equipment and materials, and development of common vocabulary and regulatory framework in this field. Research Aim. The analysis of existing methods of creating physical objects using 3D-printing and the improvement of technology and equipment for the printing of buildings and structures. Conclusion. 3D-printers building is a new generation of equipment for the construction of buildings, structures, and structural elements. A variety of building printing technics opens up wide range of opportunities in the construction industry. At this stage, printers design allows to create low-rise buildings of different configurations with different mortars. The scientific novelty of this work is to develop proposals to improve the thermal insulation properties of constructed 3D-printing objects and technological equipment. The list of key terms and notions of construction

  9. Improvement of 3D Scanner

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The disadvantage remaining in 3D scanning system and its reasons are discussed. A new host-and-slave structure with high speed image acquisition and processing system is proposed to quicken the image processing and improve the performance of 3D scanning system.

  10. 3D Printing for Bricks

    OpenAIRE

    ECT Team, Purdue

    2015-01-01

    Building Bytes, by Brian Peters, is a project that uses desktop 3D printers to print bricks for architecture. Instead of using an expensive custom-made printer, it uses a normal standard 3D printer which is available for everyone and makes it more accessible and also easier for fabrication.

  11. 3D printing in dentistry.

    Science.gov (United States)

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery. PMID:26657435

  12. 3D printing in dentistry.

    Science.gov (United States)

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  13. PLOT3D user's manual

    Science.gov (United States)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  14. General and special engineering materials science. Vol. 1

    International Nuclear Information System (INIS)

    The present report about general and special engineering materials science is the result of lectures given by the authors in two terms in 1982 at Instituto Balseiro, San Carlos de Bariloche, the graduated college of the Universidad de Cuyo and Comision Nacional de Energia Atomica, Republica Argentina. These lectures were organised in the frame of the project ''nuclear engineering'' (ARG/78/020) of the United Nations Development Program (UNDP) by the International Atomic Energy Agency (IAEA). Some chapters of the report are written in English, others in Spanish. The report is subdivided into three volumes: Volume I treats general engineering materials science in 4 capital chapters on the structure of materials, the properties of materials, materials technology and materials testing and investigation supplemented by a selected detailed chapter about elasticity plasticity and rupture mechanics. Volume II concerns special engineering materials science with respect to nuclear materials under normal reactor operation conditions including reactor clad and structural materials, nuclear fuels and fuel elements and nuclear waste as a materials viewpoint. Volume III - also concerning special engineering materials science - considers nuclear materials with respect to off-normal (''accident'') reactor operation conditions including nuclear materials in loss-of-coolant accidents and nuclear materials in core melt accidents. (orig.)

  15. Materials Centered Science and Manipulative Skill

    Science.gov (United States)

    Struve, Nancy L.; And Others

    1974-01-01

    Evaluated were effects of experience with two physical science units adapted for use by the visually impaired on the manipulative skills of 14 visually impaired low income students from 9 to 19 years of age. (DB)

  16. DOE fundamentals handbook: Material science. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The Mechanical Science Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mechanical components and mechanical science. The handbook includes information on diesel engines, heat exchangers, pumps, valves, and miscellaneous mechanical components. This information will provide personnel with a foundation for understanding the construction and operation of mechanical components that are associated with various DOE nuclear facility operations and maintenance.

  17. Multichannel mould processing of 3D structures from microporous coralline hydroxyapatite granules and chitosan support materials for guided tissue regeneration/engineering

    OpenAIRE

    Baran, E. T.; Tuzlakoglu, K.; Salgado, A. J.; Reis, R. L.

    2004-01-01

    A three-dimensional composite material was produced from microporous coralline origin hydroxyapatite (HA) microgranules, chitosan fibers and chitosan membrane. Cylindrical HA microgranules were oriented along channel direction within multichannel mould space and aligned particles were supported with fibers and a chitosan membrane. The positive replica of mould channels was clasp fixed to produce thicker scaffolds. Light microphotographs of the developed complex structure showed good adhesion ...

  18. 3-D Video Processing for 3-D TV

    Science.gov (United States)

    Sohn, Kwanghoon; Kim, Hansung; Kim, Yongtae

    One of the most desirable ways of realizing high quality information and telecommunication services has been called "The Sensation of Reality," which can be achieved by visual communication based on 3-D (Three-dimensional) images. These kinds of 3-D imaging systems have revealed potential applications in the fields of education, entertainment, medical surgery, video conferencing, etc. Especially, three-dimensional television (3-D TV) is believed to be the next generation of TV technology. Figure 13.1 shows how TV's display technologies have evolved , and Fig. 13.2 details the evolution of TV broadcasting as forecasted by the ETRI (Electronics and Telecommunications Research Institute). It is clear that 3-D TV broadcasting will be the next development in this field, and realistic broadcasting will soon follow.

  19. Thermoluminescence emission spectra for the LiF:Mg,Cu,Na,Si thermoluminescent materials with various concentrations of the dopants (3-D measurement)

    International Nuclear Information System (INIS)

    The thermoluminescence (TL) emission spectra from LiF TL materials, called KLT-300 (LiF:Mg,Cu,Na,Si) with various dopant concentrations are measured and analysed. These KLT-300 materials were developed by the Korea Atomic Energy Research Inst. (KAERI) to achieve an enhancement of the thermal stability in TL readings. Six types of samples are prepared with different dopant concentrations in the following ranges; Mg (0-0.20 mol%), Cu (0-0.05 mol%), Na and Si (0-0.9 mol%). The spectra measurements are carried out for the six types of samples using a TL emission spectra measurement device. The spectra measurement device consists of a monochromator, photomultiplier tube and temperature control unit to thermally stimulate the samples. The measured data shows the light emission during heating of the sample as a function of temperature and wavelength (three-dimensional TL spectra). The spectra were analysed using a method of deconvolution based on gaussian curve. The wavelength of a main peak of the emission spectra changes depending on the existence of the Cu dopant, while intensity of the spectra rapidly changes with the Cu dopant concentrations. The 385 nm emission is mainly observed in all the spectra from the samples with the Cu dopant, but in those from the samples without the Cu dopant a very weak 401 nm emission is mainly observed. However, any change in the wavelength at a main peak of the TL emission spectra from the sample materials with Na and Si dopants is not observed but that in the intensity at a peak of the spectra is observed. (authors)

  20. ADT-3D Tumor Detection Assistant in 3D

    Directory of Open Access Journals (Sweden)

    Jaime Lazcano Bello

    2008-12-01

    Full Text Available The present document describes ADT-3D (Three-Dimensional Tumor Detector Assistant, a prototype application developed to assist doctors diagnose, detect and locate tumors in the brain by using CT scan. The reader may find on this document an introduction to tumor detection; ADT-3D main goals; development details; description of the product; motivation for its development; result’s study; and areas of applicability.

  1. The use of historical materials in elementary science classrooms

    Science.gov (United States)

    Kafai, Yasmin B.; Gilliland-Swetland, Anne J.

    2001-07-01

    Science educators have stressed in recent years the importance of providing students with an historical understanding of the development of scientific knowledge. Although many approaches have been suggested for building historical understanding of science, historical source materials have often been deemed too difficult to use with elementary school students. This article reports on a case study that used archival and contemporary source materials in project activities, such as photographs and field notes, to engage students in the processes of data generation, selection, annotation, and evaluation. The curricular science activities of one elementary classroom with 29 fourth and fifth grade students are decribed and analyzed as they build and use archives of historical and contemporary naturalist materials. The article concludes with a discussion of the feasibility and benefits of using historical source materials within elementary science education, as well as the implications for selecting and preparing historical source materials in digital format for use in elementary education.

  2. Unassisted 3D camera calibration

    Science.gov (United States)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  3. Piezoelectric materials and devices applications in engineering and medical sciences

    CERN Document Server

    Vijaya, M S

    2012-01-01

    Piezoelectric Materials and Devices: Applications in Engineering and Medical Sciences provides a complete overview of piezoelectric materials, covering all aspects of the materials starting from fundamental concepts. The treatment includes physics of piezoelectric materials, their characteristics and applications. The author uses simple language to explain the theory of piezoelectricity and introduce readers to the properties and design of different types of piezoelectric materials, such as those used in engineering and medical device applications.This book: Introduces various types of dielect

  4. Preservice Elementary Teachers' Adaptation of Science Curriculum Materials for Inquiry-Based Elementary Science

    Science.gov (United States)

    Forbes, Cory T.

    2011-01-01

    Curriculum materials are important resources with which teachers make pedagogical decisions about the design of science learning environments. To become well-started beginning elementary teachers capable of engaging their students in inquiry-based science, preservice elementary teachers need to learn to use science curriculum materials…

  5. 3D Analysis of D-RaCe and Self-Adjusting File in Removing Filling Materials from Curved Root Canals Instrumented and Filled with Different Techniques

    Directory of Open Access Journals (Sweden)

    Neslihan Simsek

    2014-01-01

    Full Text Available The aim of this study was to compare the efficacy of D-RaCe files and a self-adjusting file (SAF system in removing filling material from curved root canals instrumented and filled with different techniques by using microcomputed tomography (micro-CT. The mesial roots of 20 extracted mandibular first molars were used. Root canals (mesiobuccal and mesiolingual were instrumented with SAF or Revo-S. The canals were then filled with gutta-percha and AH Plus sealer using cold lateral compaction or thermoplasticized injectable techniques. The root fillings were first removed with D-RaCe (Step 1, followed by Step 2, in which a SAF system was used to remove the residual fillings in all groups. Micro-CT scans were used to measure the volume of residual filling after root canal filling, reinstrumentation with D-RaCe (Step 1, and reinstrumentation with SAF (Step 2. Data were analyzed using Wilcoxon and Kruskal-Wallis tests. There were no statistically significant differences between filling techniques in the canals instrumented with SAF (P=0.292 and Revo-S (P=0.306. The amount of remaining filling material was similar in all groups (P=0.363; all of the instrumentation techniques left filling residue inside the canals. However, the additional use of SAF was more effective than using D-RaCe alone.

  6. Ultrafast laser inscribed integrated photonics: material science to device development

    Directory of Open Access Journals (Sweden)

    Gross S.

    2013-11-01

    Full Text Available Detailed studies of intense light – material interactions has led to new insights into fs laser induced refractive index change in a range of glass types. This body of knowledge enables the development of advanced processing methodologies, resulting in novel planar and 3D guided wave devices. We will review the chemistry and morphology associated with fs laser induced refractive index change in multi-component glasses such as ZBLAN, phosphates and silicates, and discuss how these material changes inform our research programs developing a range of active and passive lightwave systems.

  7. Effectiveness of 3D Printing in Small Scale Production

    OpenAIRE

    Huttunen, Jani

    2015-01-01

    The purpose of this thesis is to estimate the effectiveness of two 3D printing methods (fused deposition modeling and stereolithography) for prototyping and small-scale production at a 3D printing laboratory at Metropolia University of Applied Sciences. The 3D printing technology is currently developing, so not much literature is available yet. That is the reason why before actual production a thorough analysis is needed of the advantages and disadvantages and of the effectiveness of the...

  8. Tuotekehitysprojekti: 3D-tulostin

    OpenAIRE

    Pihlajamäki, Janne

    2011-01-01

    Opinnäytetyössä tutustuttiin 3D-tulostamisen teknologiaan. Työssä käytiin läpi 3D-tulostimesta tehty tuotekehitysprojekti. Sen lisäksi esiteltiin yleisellä tasolla tuotekehitysprosessi ja syntyneiden tulosten mahdollisia suojausmenetelmiä. Tavoitteena tässä työssä oli kehittää markkinoilta jo löytyvää kotitulostin-tasoista 3D-laiteteknologiaa lähemmäksi ammattilaistason ratkaisua. Tavoitteeseen pyrittiin keskittymällä parantamaan laitteella saavutettavaa tulostustarkkuutta ja -nopeutt...

  9. 3D on the internet

    OpenAIRE

    Puntar, Matej

    2012-01-01

    The purpose of this thesis is the presentation of already established and new technologies of displaying 3D content in a web browser. The thesis begins with a short presentation of the history of 3D content available on the internet and its development together with advantages and disadvantages of individual technologies. The latter two are described in detail as well is their use and the differences among them. Special emphasis has been given to WebGL, the newest technology of 3D conte...

  10. Color 3D Reverse Engineering

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper presents a principle and a method of col or 3D laser scanning measurement. Based on the fundamental monochrome 3D measureme nt study, color information capture, color texture mapping, coordinate computati on and other techniques are performed to achieve color 3D measurement. The syste m is designed and composed of a line laser light emitter, one color CCD camera, a motor-driven rotary filter, a circuit card and a computer. Two steps in captu ring object's images in the measurement process: Firs...

  11. Exploration of 3D Printing

    OpenAIRE

    Lin, Zeyu

    2014-01-01

    3D printing technology is introduced and defined in this Thesis. Some methods of 3D printing are illustrated and their principles are explained with pictures. Most of the essential parts are presented with pictures and their effects are explained within the whole system. Problems on Up! Plus 3D printer are solved and a DIY product is made with this machine. The processes of making product are recorded and the items which need to be noticed during the process are the highlight in this th...

  12. 3-D Numerical Simulation and Analysis of Complex Fiber Geometry RaFC Materials with High Volume Fraction and High Aspect Ratio based on ABAQUS PYTHON

    Science.gov (United States)

    Jin, BoCheng

    2011-12-01

    Organic and inorganic fiber reinforced composites with innumerable fiber orientation distributions and fiber geometries are abundantly available in several natural and synthetic structures. Inorganic glass fiber composites have been introduced to numerous applications due to their economical fabrication and tailored structural properties. Numerical characterization of such composite material systems is necessitated due to their intrinsic statistical nature, which renders extensive experimentation prohibitively time consuming and costly. To predict various mechanical behavior and characterizations of Uni-Directional Fiber Composites (UDFC) and Random Fiber Composites (RaFC), we numerically developed Representative Volume Elements (RVE) with high accuracy and efficiency and with complex fiber geometric representations encountered in uni-directional and random fiber networks. In this thesis, the numerical simulations of unidirectional RaFC fiber strand RVE models (VF>70%) are first presented by programming in ABAQUS PYTHON. Secondly, when the cross sectional aspect ratios (AR) of the second phase fiber inclusions are not necessarily one, various types of RVE models with different cross sectional shape fibers are simulated and discussed. A modified random sequential absorption algorithm is applied to enhance the volume fraction number (VF) of the RVE, which the mechanical properties represents the composite material. Thirdly, based on a Spatial Segment Shortest Distance (SSSD) algorithm, a 3-Dimentional RaFC material RVE model is simulated in ABAQUS PYTHON with randomly oriented and distributed straight fibers of high fiber aspect ratio (AR=100:1) and volume fraction (VF=31.8%). Fourthly, the piecewise multi-segments fiber geometry is obtained in MATLAB environment by a modified SSSD algorithm. Finally, numerical methods including the polynomial curve fitting and piecewise quadratic and cubic B-spline interpolation are applied to optimize the RaFC fiber geometries

  13. Diamond detector - material science, design and application

    Science.gov (United States)

    Gaowei, Mengjia

    Modern synchrotrons, such as the NSLS-II, will enable unprecedented science by having extremely high brightness and flux with exceptional beam stability. These capabilities create a harsh and demanding environment for measuring the characteristics of the x-ray beam. In many cases, existing measurement techniques fail completely, requiring the development of new detectors which can meet the demands of the synchrotron. The combination of diamond properties ranked diamond an appealing candidate in the field of radiation detection in extreme conditions and it has been used as x-ray sensor material for decades. However, only until the development of chemical vapor deposition (CVD) process in the synthesis of diamond that has it been considered for wider applications in the state-of-art synchrotron light sources as part of beamline diagnostics, including the detection of x-ray beam flux and position. While defects and dislocations in CVD grown single crystal diamonds are inevitable, there are solutions in other aspects of a device fabrication to compensate this technological downside, including improving device performance in engineering diamond surface electrode materials and patterns and slicing and polishing diamond plates into thinner pieces. The content of this dissertation summarizes our effort in addressing several problems we encounter in the process of design and fabrication of single crystal CVD diamond based electronic devices. In order to study the generation of post-anneal photoconductive gain in our devices we have discussed in section 3 and 4 the two criteria for the observation of photoconductive current. In section 3 we reveal the correlation between structural defects in diamond and the post-anneal photoconductive regions. Section 4 introduces the measurements of hard x-ray photoelectron spectroscopy (HAXPES) we applied to investigate the diamond-metal Schottky barrier height for several metals and diamond surface terminations. The position of the

  14. Characterization of a 3D multi-mechanism SMA material model for the prediction of the cyclic "evolutionary" response of NiTi for use in actuations

    Science.gov (United States)

    Dhakal, Binod

    The intermetallic NiTi-based alloys are known as Shape Memory material. They exhibit unique ability to remember a shape after large deformation. They are desirable in various engineering applications, such as actuators, biomedical devices, vibration damping, etc, as they can absorb and dissipate mechanical/thermal energies by undergoing a reversible hysteretic shape change under the applied mechanical/thermal cyclic loadings. This reflects the effect of micro-structural changes occurring during phase transformation between Austenite(A) and Martensite(M), as well as differently-oriented M-variants. As typically utilized in applications, a particular shape memory alloy (SMA) device or component operates under a large number of thermo-mechanical cycles, hence, the importance of accounting for the cyclic behavior characteristics in modeling and characterization of these systems. A detailed study of the multi-mechanism-based, comprehensive, thus complex modeling framework (by Saleeb et al) and the determination of its material parameters responsible for the physical significance of the shape memory effect are made. This formulation utilizes multiple, inelastic mechanisms to regulate the partitioning of energy dissipation and storage governing the evolutionary thermo-mechanical behavior. Equipped with the understanding of the physical significance of the model parameters and utilizing the SMA modeling strategy effectively, a comprehensive characterization of the evolutionary, cyclic response of the complex real SMA, known as 55NiTi (Ni49.9Ti50.1) is carried out. The detailed comparisons between the SMA model and experimental results provided the necessary validation of the modeling capabilities of the framework to calibrate the complex alloys like 55NiTi. In addition, the details of interplays between the internal mechanisms to describe the material behavior within all the important response characteristic regions provides a convenient means to compliment the theoretical

  15. 2003 research briefs : Materials and Process Sciences Center.

    Energy Technology Data Exchange (ETDEWEB)

    Cieslak, Michael J.

    2003-08-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems and Materials Modeling and Computational Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  16. 2005 Research Briefs : Materials and Process Sciences Center.

    Energy Technology Data Exchange (ETDEWEB)

    Cieslak, Michael J.

    2005-05-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  17. 2004 research briefs :Materials and Process Sciences Center.

    Energy Technology Data Exchange (ETDEWEB)

    Cieslak, Michael J.

    2004-01-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  18. ORMGEN3D, 3-D Crack Geometry FEM Mesh Generator

    International Nuclear Information System (INIS)

    1 - Description of program or function: ORMGEN3D is a finite element mesh generator for computational fracture mechanics analysis. The program automatically generates a three-dimensional finite element model for six different crack geometries. These geometries include flat plates with straight or curved surface cracks and cylinders with part-through cracks on the outer or inner surface. Mathematical or user-defined crack shapes may be considered. The curved cracks may be semicircular, semi-elliptical, or user-defined. A cladding option is available that allows for either an embedded or penetrating crack in the clad material. 2 - Method of solution: In general, one eighth or one-quarter of the structure is modelled depending on the configuration or option selected. The program generates a core of special wedge or collapsed prism elements at the crack front to introduce the appropriate stress singularity at the crack tip. The remainder of the structure is modelled with conventional 20-node iso-parametric brick elements. Element group I of the finite element model consists of an inner core of special crack tip elements surrounding the crack front enclosed by a single layer of conventional brick elements. Eight element divisions are used in a plane orthogonal to the crack front, while the number of element divisions along the arc length of the crack front is user-specified. The remaining conventional brick elements of the model constitute element group II. 3 - Restrictions on the complexity of the problem: Maxima of 5,500 nodes, 4 layers of clad elements

  19. Science Perspectives for 3D Spectroscopy

    CERN Document Server

    Kissler-Patig, Markus; Roth, Martin M; ESO Workshop

    2007-01-01

    This volume contains the proceedings of the last conference ever on integral-field spectroscopy. A daring statement, indicating that integral-field spectroscopy has evolved into a mature technique - a common user utility for astronomical research. Nowadays many integral-field spectrographs are installed on 4m to 8-10m class telescopes around the world. While many of those instruments are referred to in this volume, the book is explicitly not dedicated to technical issues, but is focusing on the scientific questions that can be answered with integral-field spectroscopy. These range from solar system studies all the way to high redshift surveys.

  20. 3D bioprinting for engineering complex tissues.

    Science.gov (United States)

    Mandrycky, Christian; Wang, Zongjie; Kim, Keekyoung; Kim, Deok-Ho

    2016-01-01

    Bioprinting is a 3D fabrication technology used to precisely dispense cell-laden biomaterials for the construction of complex 3D functional living tissues or artificial organs. While still in its early stages, bioprinting strategies have demonstrated their potential use in regenerative medicine to generate a variety of transplantable tissues, including skin, cartilage, and bone. However, current bioprinting approaches still have technical challenges in terms of high-resolution cell deposition, controlled cell distributions, vascularization, and innervation within complex 3D tissues. While no one-size-fits-all approach to bioprinting has emerged, it remains an on-demand, versatile fabrication technique that may address the growing organ shortage as well as provide a high-throughput method for cell patterning at the micrometer scale for broad biomedical engineering applications. In this review, we introduce the basic principles, materials, integration strategies and applications of bioprinting. We also discuss the recent developments, current challenges and future prospects of 3D bioprinting for engineering complex tissues. Combined with recent advances in human pluripotent stem cell technologies, 3D-bioprinted tissue models could serve as an enabling platform for high-throughput predictive drug screening and more effective regenerative therapies.

  1. 3D-TECLMOLOGIES IN FORMING AND FOUNDRY

    Directory of Open Access Journals (Sweden)

    V. S. Doroshenko

    2015-01-01

    Full Text Available This review describes metal castings produced using 3D technology. Methods for 3D processing of materials related to the additive method of production, characterized by resource conservation. Frame-cellular casting can inherit the structure of nature with the best combination of materials, durability and attractive appearance. 3D technologies expand the existing range of metal products. Among the new foundry processes at the Institute PTIMA of NAS of Ukraine patented 3D technology of molding sand products through the deformation of granular materials, as well as getting sand shell molds for one-time pattern.

  2. Materials science for solar energy conversion systems

    CERN Document Server

    Granqvist, CG

    1991-01-01

    Rapid advances in materials technology are creating many novel forms of coatings for energy efficient applications in solar energy. Insulating heat mirrors, selective absorbers, transparent insulation and fluorescent concentrators are already available commercially. Radiative cooling, electrochromic windows and polymeric light pipes hold promise for future development, while chemical and photochemical processes are being considered for energy storage. This book investigates new material advances as well as applications, costs, reliability and industrial production of existing materials. Each c

  3. 3D-BioPrinting: The future of Red Biotech

    International Nuclear Information System (INIS)

    Every day Science moves little steps forward, contributing to the progress of our society. Sometimes, however, a single invention revolutionizes the world. Indeed, the invention of woodblock printing and development of industrial-scale printing-press in the 15. century have changed our society. 3D-printing is now boosting another revolution. The production of custom-made objects from a virtual model will trigger a rapid development of a more versatile, less expensive manufacturing sector for the on-demand market. The real revolution, however, is represented by 3D-printing in biomedicine. 3D-bioprinting represents the future of the Red-Biotech. This technology, indeed, will be able to build ex-novo organs using biocompatible materials and human cells; replace the allograft transplants, eliminating waiting lists that often make the difference between life and death; and provide more predictive, less expensive experimental models, replacing animal tests. The high innovation content of this technology, can make the difference between being obsolete and new

  4. Materialedreven 3d digital formgivning

    DEFF Research Database (Denmark)

    Hansen, Flemming Tvede

    2010-01-01

    traditionel keramisk produktionssammenhæng. Problemstillingen opmuntrede endvidere til i et samarbejde med en programmør at udvikle et 3d digitalt redskab, der er blevet kaldt et digitalt interaktivt formgivningsredskab (DIF). Eksperimentet undersøger interaktive 3d digitale dynamiske systemer, der...... samarbejder med designere fra fagområder som interaktionsdesign og programmering. Afhandlingen peger på et fremtidigt forskningsfelt indenfor generative og responderende digitale systemer til 3d formgivning, der ligeledes inkluderer følesansen. Endvidere er det relevant at forske i, hvordan de RP teknikker...... formgivning og Rapid Prototyping (RP). RP er en fællesbetegnelse for en række af de teknikker, der muliggør at overføre den digitale form til 3d fysisk form. Forskningsprojektet koncentrerer sig om to overordnede forskningsspørgsmål. Det første handler om, hvordan viden og erfaring indenfor det keramiske...

  5. Proceedings of the international conference on material science: abstract volume

    International Nuclear Information System (INIS)

    Materials Science is an interdisciplinary field applying the properties of matter to various areas of science and engineering. This scientific field investigates the relationship between the structure of materials at atomic or molecular scales and their macroscopic properties. In the recent years, materials science has been propelled to the forefront at many universities and research institutions due to the significant advancement on nanoscience and nanotechnology. ICMS-2013 will cover a wide range of interdisciplinary and current research topics related to material science. Research on advanced materials includes nanomaterials, bio-nanomaterials, zero bandgap materials, composites, surface engineering, tissue engineering and biomaterials etc. These materials have numerous applications in electronics, biotechnology, medicine and energy harvesting. The importance of nano-science and nanotechnology has been well documented by both industrial and academic communities worldwide. It is believed that breakthroughs in nano-science and technology will change all aspects of human life in such diverse areas as, electronic devices, energy, biomedicine, sensing, environment, and security etc. Papers relevant to INIS are indexed separately

  6. A two-fold interpenetrating 3D metal-organic framework material constructed from helical chains linked via 4,4'-H2bpz fragments

    International Nuclear Information System (INIS)

    A 3-connected dia-f-type metal-organic framework compound {[Ag(L)3/2H2PO4]}n (1) has been synthesized by self-assembly of 4,4'-H2bpz (L=4,4'-H2bpz=3,3',5,5'-tetramethyl-4,4'-bipyrazole) and Ag4P2O7 under hydrothermal conditions. It crystallizes in the tetragonal space group I41/acd with a=21.406(4) A, b=21.406(4) A, c=36.298(8) A, Z=32. X-ray single-crystal diffraction reveals that 1 has a three-dimensional framework with an unprecedented alternate left- and right-handed helices structure, featuring a non-uniform two-fold interpenetrated (4.142) net. Photoluminescent investigation reveals that the title compound displays interesting emissions in a wide region, which shows that the title compound may be a good potential candidate as a photoelectric material. - Graphical abstract: A 3-connected dia-f-type metal-organic framework compound [Ag(4,4'-bpz)3/2H2PO4] shows unprecedented alternating left- and right-handed helices structure, featuring a non-uniform two-fold interpenetrated (4.142) net

  7. Biological issues in materials science and engineering: Interdisciplinarity and the bio-materials paradigm

    Science.gov (United States)

    Murr, L. E.

    2006-07-01

    Biological systems and processes have had, and continue to have, important implications and applications in materials extraction, processing, and performance. This paper illustrates some interdisciplinary, biological issues in materials science and engineering. These include metal extraction involving bacterial catalysis, galvanic couples, bacterial-assisted corrosion and degradation of materials, biosorption and bioremediation of toxic and other heavy metals, metal and material implants and prostheses and related dental and medical biomaterials developments and applications, nanomaterials health benefits and toxicity issue, and biomimetics and biologically inspired materials developments. These and other examples provide compelling evidence and arguments for emphasizing biological sicences in materials science and engineering curricula and the implementation of a bio-materials paradigm to facilitate the emergence of innovative interdisciplinarity involving the biological sciences and materials sciences and engineering.

  8. Statistical Model of the 3-D Braided Composites Strength

    Institute of Scientific and Technical Information of China (English)

    XIAO Laiyuan; ZUO Weiwei; CAI Ganwei; LIAO Daoxun

    2007-01-01

    Based on the statistical model for the tensile statistical strength of unidirectional composite materials and the stress analysis of 3-D braided composites, a new method is proposed to calculate the tensile statistical strength of the 3-D braided composites. With this method, the strength of 3-D braided composites can be calculated with very large accuracy, and the statistical parameters of 3-D braided composites can be determined. The numerical result shows that the tensile statistical strength of 3-D braided composites can be predicted using this method.

  9. 3D Face Apperance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Astrom, K

    2006-01-01

    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations......We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations...

  10. Main: TATCCAYMOTIFOSRAMY3D [PLACE

    Lifescience Database Archive (English)

    Full Text Available TATCCAYMOTIFOSRAMY3D S000256 01-August-2006 (last modified) kehi TATCCAY motif foun...d in rice (O.s.) RAmy3D alpha-amylase gene promoter; Y=T/C; a GATA motif as its antisense sequence; TATCCAY ...motif and G motif (see S000130) are responsible for sugar repression (Toyofuku et al. 1998); GATA; amylase; sugar; repression; rice (Oryza sativa) TATCCAY ...

  11. AI 3D Cybug Gaming

    CERN Document Server

    Ahmed, Zeeshan

    2010-01-01

    In this short paper I briefly discuss 3D war Game based on artificial intelligence concepts called AI WAR. Going in to the details, I present the importance of CAICL language and how this language is used in AI WAR. Moreover I also present a designed and implemented 3D War Cybug for AI WAR using CAICL and discus the implemented strategy to defeat its enemies during the game life.

  12. 3D Face Appearance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Åström, Kalle

    2006-01-01

    We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}......We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}...

  13. Materials Science Experiment Module Accommodation within the Materials Science Research Rack (MSRR-1) on the International Space Station (ISS)

    Science.gov (United States)

    Higgins, D. B.; Jayroe, R. R.; McCarley, K. S.

    2000-01-01

    The Materials Science Research Rack I (MSRR-1) of the Materials Science Research Facility (MSRF) is a modular facility designed to accommodate two Experiment Modules (EM) simultaneously on board the International Space Station (ISS). One of these EMs will be the NASA/ESA EM being, developed collaboratively by NASA and the European Space Agency. The other EM position will be occupied by various multi-user EMs that will be exchanged in-orbit to accommodate a variety of materials science investigations. This paper discusses the resources, services, and allocations available to the EMs and briefly describes performance capabilities of the EMs currently planned for flight.

  14. First Materials Science Research Rack Capabilities and Design Features

    Science.gov (United States)

    Schaefer, D.; King, R.; Cobb, S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The first Materials Science Research Rack (MSRR-1) will accommodate dual Experiment Modules (EM's) and provide simultaneous on-orbit processing operations capability. The first international Materials Science Experiment Module for the MSRR-1 is an international cooperative research activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center. (ESTEC). This International Standard Payload Rack (ISPR) will contain the Materials Science Laboratory (MSL) developed by ESA as an Experiment Module. The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts. Module Inserts currently planned are a Quench Module Insert, Low Gradient Furnace, Solidification with Quench Furnace, and Diffusion Module Insert. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Department (SPD). It includes capabilities for vapor transport processes and liquid metal sintering. This Experiment Module will be replaced on-orbit with other NASA Materials Science EMs.

  15. Materials science and engineering in space

    Science.gov (United States)

    Zoller, L. K.

    1980-01-01

    The influences of gravitational forces on processes used in the preparation of materials employed in earth-based applications are addressed and the benefits which may be derived from the microgravity environment of space in improving on such constraints are considered. Attention is given to the fact that Materials Processing in Space is directed toward the utilization of the unique space environment as a tool to establish a scientific characterization of materials processes for technological exploitation in the public benefit. In the context of enhancement to earth-based technology or implementation of space-based processes for specialized, low volume, high value materials, the thrust of the Materials Processing in Space program is surveyed.

  16. Materials science of graphene: a flagship perspective

    Science.gov (United States)

    Garcia-Hernandez, Mar; Coleman, Jonathan

    2016-03-01

    Driving the superlative properties of mechanically exfoliated graphene to real world applications requires a large effort to develop synthetic routes providing cost effective high quality materials. It can also be agreed, that when it comes to reality, one should not refer just to Graphene but ‘Graphenes’ as each synthesis method renders a material characterized by different properties. Recently, Graphene and other 2D materials scalable synthesis methods have provided improved materials at highly competitive costs. However, a long way is ahead to approach the properties of mechanically exfoliated materials. Also, as a scalable method succeeds and it is indeed upscaled for industrial production, new characterization protocols and metrics have to be devised to enable efficient on line quality control of the produced materials. Significant advances can be reported recently in the synthesis of high quality graphene although a shift towards other 2D materials research is clearly observed. An overview of the progress made by several groups in WP ‘ Materials‘ of the Graphene Flagship is given.

  17. Critical materialism: science, technology, and environmental sustainability.

    Science.gov (United States)

    York, Richard; Clark, Brett

    2010-01-01

    There are widely divergent views on how science and technology are connected to environmental problems. A view commonly held among natural scientists and policy makers is that environmental problems are primarily technical problems that can be solved via the development and implementation of technological innovations. This technologically optimistic view tends to ignore power relationships in society and the political-economic order that drives environmental degradation. An opposed view, common among postmodernist and poststructuralist scholars, is that the emergence of the scientific worldview is one of the fundamental causes of human oppression. This postmodernist view rejects scientific epistemology and often is associated with an anti-realist stance, which ultimately serves to deny the reality of environmental problems, thus (unintentionally) abetting right-wing efforts to scuttle environmental protection. We argue that both the technologically optimistic and the postmodernist views are misguided, and both undermine our ability to address environmental crises. We advocate the adoption of a critical materialist stance, which recognizes the importance of natural science for helping us to understand the world while also recognizing the social embeddedness of the scientific establishment and the need to challenge the manipulation of science by the elite.

  18. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 4 covers articles on single crystal compound semiconductors and complex polycrystalline materials. The book discusses narrow gap semiconductors and solid state batteries. The text then describes the advantages of hot-pressed microcrystalline compacts of oxygen-octahedra ferroelectrics over single crystal materials, as well as heterostructure junction lasers. Solid state physicists, materials scientists, electrical engineers, and graduate students studying the subjects being discussed will find the book invaluable.

  19. MPML3D: Scripting Agents for the 3D Internet.

    Science.gov (United States)

    Prendinger, Helmut; Ullrich, Sebastian; Nakasone, Arturo; Ishizuka, Mitsuru

    2011-05-01

    The aim of this paper is two-fold. First, it describes a scripting language for specifying communicative behavior and interaction of computer-controlled agents ("bots") in the popular three-dimensional (3D) multiuser online world of "Second Life" and the emerging "OpenSimulator" project. While tools for designing avatars and in-world objects in Second Life exist, technology for nonprogrammer content creators of scenarios involving scripted agents is currently missing. Therefore, we have implemented new client software that controls bots based on the Multimodal Presentation Markup Language 3D (MPML3D), a highly expressive XML-based scripting language for controlling the verbal and nonverbal behavior of interacting animated agents. Second, the paper compares Second Life and OpenSimulator platforms and discusses the merits and limitations of each from the perspective of agent control. Here, we also conducted a small study that compares the network performance of both platforms.

  20. Computational materials science: Predictions of pinning

    Science.gov (United States)

    Paruch, Patrycja; Ghosez, Philippe

    2016-06-01

    A multiscale model has been implemented that provides accurate predictions of the behaviour of ferroelectric materials in electric fields, and might aid efforts to design devices such as sensors and digital memory. See Letter p.360