WorldWideScience

Sample records for 3d kinematic study

  1. Study of human body: Kinematics and kinetics of a martial arts (Silat) performers using 3D-motion capture

    Science.gov (United States)

    Soh, Ahmad Afiq Sabqi Awang; Jafri, Mohd Zubir Mat; Azraai, Nur Zaidi

    2015-04-01

    The Interest in this studies of human kinematics goes back very far in human history drove by curiosity or need for the understanding the complexity of human body motion. To find new and accurate information about the human movement as the advance computing technology became available for human movement that can perform. Martial arts (silat) were chose and multiple type of movement was studied. This project has done by using cutting-edge technology which is 3D motion capture to characterize and to measure the motion done by the performers of martial arts (silat). The camera will detect the markers (infrared reflection by the marker) around the performer body (total of 24 markers) and will show as dot in the computer software. The markers detected were analyzing using kinematic kinetic approach and time as reference. A graph of velocity, acceleration and position at time,t (seconds) of each marker was plot. Then from the information obtain, more parameters were determined such as work done, momentum, center of mass of a body using mathematical approach. This data can be used for development of the effectiveness movement in martial arts which is contributed to the people in arts. More future works can be implemented from this project such as analysis of a martial arts competition.

  2. A 3D Kinematic Study of the Northern Ejecta "Jet" of the Crab Nebula

    CERN Document Server

    Black, Christine S

    2014-01-01

    We present [O III] 4959,5007 emission line spectra (FWHM = 40 km/s) of the Crab Nebula's northern ejecta `jet'. These data, along with a recent [O III] image of the Crab, are used to build 3-dimensional models of the jet and adjacent remnant nebulosity to better understand the jet's properties and possible formation. We find that the jet's radial velocities range from -190 to +480 km/s with transverse velocities from 1600 to 2650 km/s from base to tip. The jet appears virtually hollow in [O III] emission with the exception of some material at the jet's base where the it connects with the remnant. Our 3D reconstructions indicate that the jet is elliptical in shape and slightly funnel-like rather than a straight cylindrical tube as previously thought. At the base of the jet we find evidence for a significant opening or "channel" in the Crab's main nebula shell. Our analysis of the jet's expansion properties and location supports the theory that the jet may simply represent the highest velocity component of the ...

  3. Stumbling reactions during perturbed walking: Neuromuscular reflex activity and 3-D kinematics of the trunk - A pilot study.

    Science.gov (United States)

    Müller, Juliane; Müller, Steffen; Engel, Tilman; Reschke, Antje; Baur, Heiner; Mayer, Frank

    2016-04-11

    Reflex activity of the lower leg muscles involved when compensating for falls has already been thoroughly investigated. However, the trunk׳s role in this compensation strategy remains unclear. The purpose of this study, therefore, was to analyze the kinematics and muscle activity of the trunk during perturbed walking. Ten subjects (29 ± 3 yr;79 ± 11 cm;74 ± 14 kg) walked (1m/s) on a split-belt treadmill, while 5 randomly timed, right-sided perturbations (treadmill belt deceleration: 40 m/s(2)) were applied. Trunk muscle activity was assessed with a 12-lead-EMG. Trunk kinematics were measured with a 3D-motion analysis system (12 markers framing 3 segments: upper thoracic area (UTA), lower thoracic area (LTA), lumbar area (LA)). The EMG-RMS [%] (0-200 ms after perturbation) was analyzed and then normalized to the RMS of normal walking. The total range of motion (ROM;[°]) for the extension/flexion, lateral flexion and rotation of each segment were calculated. Individual kinematic differences between walking and stumbling [%; ROM] were also computed. Data analysis was conducted descriptively, followed by one- and two-way ANOVAs (α=0.05). Stumbling led to an increase in ROM, compared to unperturbed gait, in all segments and planes. These increases ranged between 107 ± 26% (UTA/rotation) and 262 ± 132% (UTS/lateral flexion), significant only in lateral flexion. EMG activity of the trunk was increased during stumbling (abdominal: 665 ± 283%; back: 501 ± 215%), without significant differences between muscles. Provoked stumbling leads to a measurable effect on the trunk, quantifiable by an increase in ROM and EMG activity, compared to normal walking. Greater abdominal muscle activity and ROM of lateral flexion may indicate a specific compensation pattern occurring during stumbling.

  4. In vivo kinematic study of the tarsal joints complex based on fluoroscopic 3D-2D registration technique.

    Science.gov (United States)

    Chen Wang, M D; Geng, Xiang; Wang, Shaobai; Xin Ma, M D; Xu Wang, M D; Jiazhang Huang, M D; Chao Zhang, M D; Li Chen, M S; Yang, Junsheng; Wang, Kan

    2016-09-01

    The tarsal bones articulate with each other and demonstrate complicated kinematic characteristics. The in vivo motions of these tarsal joints during normal gait are still unclear. Seven healthy subjects were recruited and fourteen feet in total were tested in the current study. Three dimensional models of the tarsal bones were first created using CT scanning. Corresponding local 3D coordinate systems of each tarsal bone was subsequently established for 6DOF motion decompositions. The fluoroscopy system captured the lateral fluoroscopic images of the targeted tarsal region whilst the subject was walking. Seven key pose images during the stance phase were selected and 3D to 2D bone model registrations were performed on each image to determine joint positions. The 6DOF motions of each tarsal joint during gait were then obtained by connecting these positions together. The TNJ (talo-navicular joint) exhibited the largest ROMs (range of motion) on all rotational directions with 7.39±2.75°of dorsi/plantarflexion, 21.12±4.68°of inversion/eversion, and 16.11±4.44°of internal/external rotation. From heel strike to midstance, the TNJ, STJ (subtalar joint), and CCJ (calcaneao-cuboid joint) were associated with 5.97°, 5.04°, and 3.93°of dorsiflexion; 15.46°, 8.21°, and 5.82°of eversion; and 9.75°, 7.6°, and 4.99°of external rotation, respectively. Likewise, from midstance to heel off, the TNJ, STJ, and CCJ were associated with 6.39, 6.19°, and 4.47°of plantarflexion; 18.57°, 11.86°, and 6.32°of inversion and 13.95°, 9.66°, and 7.58°of internal rotation, respectively. In conclusion, among the tarsal joints, the TNJ exhibited the greatest rotational mobility. Synchronous and homodromous rotational motions were detected for TNJ, STJ, and CCJ during the stance phase.

  5. Complete 3D kinematics of upper extremity functional tasks.

    Science.gov (United States)

    van Andel, Carolien J; Wolterbeek, Nienke; Doorenbosch, Caroline A M; Veeger, DirkJan H E J; Harlaar, Jaap

    2008-01-01

    Upper extremity (UX) movement analysis by means of 3D kinematics has the potential to become an important clinical evaluation method. However, no standardized protocol for clinical application has yet been developed, that includes the whole upper limb. Standardization problems include the lack of a single representative function, the wide range of motion of joints and the complexity of the anatomical structures. A useful protocol would focus on the functional status of the arm and particularly the orientation of the hand. The aim of this work was to develop a standardized measurement method for unconstrained movement analysis of the UX that includes hand orientation, for a set of functional tasks for the UX and obtain normative values. Ten healthy subjects performed four representative activities of daily living (ADL). In addition, six standard active range of motion (ROM) tasks were executed. Joint angles of the wrist, elbow, shoulder and scapula were analyzed throughout each ADL task and minimum/maximum angles were determined from the ROM tasks. Characteristic trajectories were found for the ADL tasks, standard deviations were generally small and ROM results were consistent with the literature. The results of this study could form the normative basis for the development of a 'UX analysis report' equivalent to the 'gait analysis report' and would allow for future comparisons with pediatric and/or pathologic movement patterns.

  6. Kinematics and flow fields in 3D around swimming lamprey using light field PIV

    Science.gov (United States)

    Lehn, Andrea M.; Techet, Alexandra H.

    2016-11-01

    The fully time-resolved 3D kinematics and flow field velocities around freely swimming sea lamprey are derived using 3D light field imaging PIV. Lighthill's Elongated Body Theory (EBT) predicts that swimmers with anguilliform kinematics likened to lamprey, and similarly eels, will exhibit relatively poor propulsive efficiency. However, previous experimental studies of eel locomotion utilizing 2D PIV suggest disagreement with EBT estimates of wake properties; although, the thrust force generated by such swimmers has yet to be fully resolved using 3D measurements. A light field imaging array of multiple high-speed cameras is used to perform 3D synthetic aperture PIV around ammocoete sea lamprey (Petromyzon marinus). Fluid mechanics equations are used to determine thrust force generation, leading experimental studies closer to underpinning the physical mechanisms that enable aquatic locomotion of long, slender undulatory swimmers.

  7. Influence of the helical and six available Cardan sequences on 3D ankle joint kinematic parameters.

    Science.gov (United States)

    Sinclair, J; Taylor, P J; Edmundson, C J; Brooks, D; Hobbs, S J

    2012-09-01

    Cardan/Euler and helical angles are the popular methods of quantifying angular kinematics. Cardan angles are sequence dependent and crosstalk can influence the kinematic calculations. The International Society of Biomechanics (ISB) recommends a sagittal, coronal, and then transverse (XYZ) sequence of rotations, although it has been proposed that when calculating rotations outside of the sagittal plane, this may not be the most appropriate method. This study investigated the influence of the helical and six available Cardan sequences on three-dimensional (3D) ankle joint kinematics. Kinematic data were obtained using an eight-camera motion analysis system as participants ran at 4.0 m/s +/- 5%. Repeated measures ANOVAs were used to compare kinematic parameters, and intraclass correlations were employed to identify evidence of crosstalk across planes. The results indicate that in the transverse and coronal planes, peak angle and range of motion values using the YXZ and ZXY sequences were significantly greater than the other sequences. Furthermore, utilization of YXZ and ZXY sequences was associated with the strongest correlations from the sagittal plane, and the XYZ sequence was found to be associated with the lowest correlations. It appears that for the representation of 3D ankle joint kinematics, the XYZ sequence is associated with minimal planar crosstalk and as such its use is encouraged.

  8. Kinematic synthesis of a new 3D printing solution

    Directory of Open Access Journals (Sweden)

    Giberti Hermes

    2016-01-01

    The object of this article is the kinematic synthesis of a 5Dofs robot, based on two PKM machines, for additive manufacturing in order to compliant with the requirements of this new technology. Robot kinematics have been optimized by genetic algorithm in order to cover the required workspace and the design of the robot and outline of the control system are also given.

  9. Modelling and inversion of 3D complex kinematic data; Modelisation et inversion de donnees cinematiques complexes en 3D

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, R.

    1997-10-27

    Reflection tomography can determine velocity models containing lateral velocity variations and reflectors of arbitrary shapes; in order to access the kinematic data, a 3D zero offset approach to the SMART (Sequential Migration Aided Reflection Tomography) method, an original method of migration velocity analysis, is adopted. The approach involves interpreting kinematic data in the post-stack depth migrated cube and then de-migrating the horizons by two-point ray-tracing. A fast and robust two-point ray-tracer is developed, which can recover multi-valued kinematic data from complex geological structures. An original formulation for 3D reflection tomography is proposed, which can reliably take into account multivalued travel times

  10. Bore-Sight Calibration of Multiple Laser Range Finders for Kinematic 3D Laser Scanning Systems

    Directory of Open Access Journals (Sweden)

    Jaehoon Jung

    2015-05-01

    Full Text Available The Simultaneous Localization and Mapping (SLAM technique has been used for autonomous navigation of mobile systems; now, its applications have been extended to 3D data acquisition of indoor environments. In order to reconstruct 3D scenes of indoor space, the kinematic 3D laser scanning system, developed herein, carries three laser range finders (LRFs: one is mounted horizontally for system-position correction and the other two are mounted vertically to collect 3D point-cloud data of the surrounding environment along the system’s trajectory. However, the kinematic laser scanning results can be impaired by errors resulting from sensor misalignment. In the present study, the bore-sight calibration of multiple LRF sensors was performed using a specially designed double-deck calibration facility, which is composed of two half-circle-shaped aluminum frames. Moreover, in order to automatically achieve point-to-point correspondences between a scan point and the target center, a V-shaped target was designed as well. The bore-sight calibration parameters were estimated by a constrained least squares method, which iteratively minimizes the weighted sum of squares of residuals while constraining some highly-correlated parameters. The calibration performance was analyzed by means of a correlation matrix. After calibration, the visual inspection of mapped data and residual calculation confirmed the effectiveness of the proposed calibration approach.

  11. Effect of Kayak Ergometer Elastic Tension on Upper Limb EMG Activity and 3D Kinematics.

    Science.gov (United States)

    Fleming, Neil; Donne, Bernard; Fletcher, David

    2012-01-01

    Despite the prevalence of shoulder injury in kayakers, limited published research examining associated upper limb kinematics and recruitment patterns exists. Altered muscle recruitment patterns on-ergometer vs. on-water kayaking were recently reported, however, mechanisms underlying changes remain to be elucidated. The current study assessed the effect of ergometer recoil tension on upper limb recruitment and kinematics during the kayak stroke. Male kayakers (n = 10) performed 4 by 1 min on-ergometer exercise bouts at 85%VO2max at varying elastic recoil tension; EMG, stroke force and three-dimensional 3D kinematic data were recorded. While stationary recoil forces significantly increased across investigated tensions (125% increase, p kayakers maintained normal upper limb kinematics via additional AD recruitment despite ergometer induced recoil forces. Key pointsKayak ergometer elastic tension significantly alters Anterior Deltoid recruitment patterns.Kayakers maintain optimal arm kinematics despite changing external forces via altered shoulder muscle recruitment.Overhead arm movements account for a high proportion of the kayak stroke cycle.

  12. A Theoretical Study of the Build-up of the Sun’s Polar Magnetic Field by using a 3D Kinematic Dynamo Model

    Science.gov (United States)

    Hazra, Gopal; Choudhuri, Arnab Rai; Miesch, Mark S.

    2017-01-01

    We develop a three-dimensional kinematic self-sustaining model of the solar dynamo in which the poloidal field generation is from tilted bipolar sunspot pairs placed on the solar surface above regions of strong toroidal field by using the SpotMaker algorithm, and then the transport of this poloidal field to the tachocline is primarily caused by turbulent diffusion. We obtain a dipolar solution within a certain range of parameters. We use this model to study the build-up of the polar magnetic field and show that some insights obtained from surface flux transport models have to be revised. We present results obtained by putting a single bipolar sunspot pair in a hemisphere and two symmetrical sunspot pairs in two hemispheres. We find that the polar fields produced by them disappear due to the upward advection of poloidal flux at low latitudes, which emerges as oppositely signed radial flux and which is then advected poleward by the meridional flow. We also study the effect that a large sunspot pair, violating Hale’s polarity law, would have on the polar field. We find that there would be some effect—especially if the anti-Hale pair appears at high latitudes in the mid-phase of the cycle—though the effect is not very dramatic.

  13. A theoretical study of the build-up of the Sun's polar magnetic field by using a 3D kinematic dynamo model

    CERN Document Server

    Hazra, Gopal; Miesch, Mark S

    2016-01-01

    We develop a three-dimensional kinematic self-sustaining model of the solar dynamo in which the poloidal field generation is from tilted bipolar sunspot pairs placed on the solar surface above regions of strong toroidal field by using the SpotMaker algorithm and then the transport of this poloidal field to the tachocline is primarily caused by turbulent diffusion. We obtain a dipolar solution within a certain range of parameters. We use this model to study the build-up of the polar magnetic field and show that some insights obtained from surface flux transport (SFT) models have to be revised. We present results obtained by putting a single bipolar sunspot pair in a hemisphere and two symmetrical sunspot pairs in two hemispheres. We find that the polar fields produced by them disappear due to subduction by the meridional circulation sinking underneath the surface in the polar region, which is not included in the SFT models. We also study the effect that a large sunspot pair violating Hale's polarity law would ...

  14. The valuable use of Microsoft Kinect™ sensor 3D kinematic in the rehabilitation process in basketball

    Science.gov (United States)

    Braidot, Ariel; Favaretto, Guillermo; Frisoli, Melisa; Gemignani, Diego; Gumpel, Gustavo; Massuh, Roberto; Rayan, Josefina; Turin, Matías

    2016-04-01

    Subjects who practice sports either as professionals or amateurs, have a high incidence of knee injuries. There are a few publications that show studies from a kinematic point of view of lateral-structure-knee injuries, including meniscal (meniscal tears or chondral injury), without anterior cruciate ligament rupture. The use of standard motion capture systems for measuring outdoors sport is hard to implement due to many operative reasons. Recently released, the Microsoft Kinect™ is a sensor that was developed to track movements for gaming purposes and has seen an increased use in clinical applications. The fact that this device is a simple and portable tool allows the acquisition of data of sport common movements in the field. The development and testing of a set of protocols for 3D kinematic measurement using the Microsoft Kinect™ system is presented in this paper. The 3D kinematic evaluation algorithms were developed from information available and with the use of Microsoft’s Software Development Kit 1.8 (SDK). Along with this, an algorithm for calculating the lower limb joints angles was implemented. Thirty healthy adult volunteers were measured, using five different recording protocols for sport characteristic gestures which involve high knee injury risk in athletes.

  15. EFFECT OF KAYAK ERGOMETER ELASTIC TENSION ON UPPER LIMB EMG ACTIVITY AND 3D KINEMATICS

    Directory of Open Access Journals (Sweden)

    Neil Fleming

    2012-09-01

    Full Text Available Despite the prevalence of shoulder injury in kayakers, limited published research examining associated upper limb kinematics and recruitment patterns exists. Altered muscle recruitment patterns on-ergometer vs. on-water kayaking were recently reported, however, mechanisms underlying changes remain to be elucidated. The current study assessed the effect of ergometer recoil tension on upper limb recruitment and kinematics during the kayak stroke. Male kayakers (n = 10 performed 4 by 1 min on-ergometer exercise bouts at 85%VO2max at varying elastic recoil tension; EMG, stroke force and three-dimensional 3D kinematic data were recorded. While stationary recoil forces significantly increased across investigated tensions (125% increase, p < 0.001, no significant differences were detected in assessed force variables during the stroke cycle. In contrast, increasing tension induced significantly higher Anterior Deltoid (AD activity in the latter stages (70 to 90% of the cycle (p < 0.05. No significant differences were observed across tension levels for Triceps Brachii or Latissimus Dorsi. Kinematic analysis revealed that overhead arm movements accounted for 39 ± 16% of the cycle. Elbow angle at stroke cycle onset was 144 ± 10°; maximal elbow angle (151 ± 7° occurred at 78 ± 10% into the cycle. All kinematic markers moved to a more anterior position as tension increased. No significant change in wrist marker elevation was observed, while elbow and shoulder marker elevations significantly increased across tension levels (p < 0.05. In conclusion, data suggested that kayakers maintained normal upper limb kinematics via additional AD recruitment despite ergometer induced recoil forces

  16. 3D Kinematics and Hydrodynamic Analysis of Freely Swimming Cetacean

    Science.gov (United States)

    Ren, Yan; Sheinberg, Dustin; Liu, Geng; Dong, Haibo; Fish, Frank; Javed, Joveria

    2015-11-01

    It's widely thought that flexibility and the ability to control flexibility are crucial elements in determining the performance of animal swimming. However, there is a lack of quantification of both span-wise and chord-wise deformation of Cetacean's flukes and associated hydrodynamic performance during actively swimming. To fill this gap, we examined the motion and flexure of both dolphin fluke and orca fluke in steady swimming using a combined experimental and computational approach. It is found that the fluke surface morphing can effectively modulate the flow structures and influence the propulsive performance. Findings from this work are fundamental for understanding key kinematic features of effective Cetacean propulsors, and for quantifying the hydrodynamic force production that naturally occurs during different types of swimming. This work is supported by ONR MURI N00014-14-1-0533 and NSF CBET-1313217.

  17. A customized model for 3D human segmental kinematic coupling analysis by optoelectronic stereophotogrammetry

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The study of three-dimensional human kinematics has significant impacts on medical and healthcare technology innovations. As a non-invasive technology, optoelectronic stereophotogrammetry is widely used for in-vivo locomotor evaluations. However, relatively high testing difficulties, poor testing accuracies, and high analysis complexities prohibit its further employment. The objective of this study is to explore an improved modeling technique for quantitative measurement and analysis of human locomotion. Firstly, a 3D whole body model of 17 rigid segments was developed to describe human locomotion. Subsequently, a novel infrared reflective marker cluster for 17 body segments was constructed to calibrate and record the 3D segmental position and orientation of each functional body region simultaneously with high spatial accuracy. In addition, the novel calibration procedure and the conception of kinematic coupling of human locomotion were proposed to investigate the segmental functional characteristics of human motion. Eight healthy male subjects were evaluated with walking and running experiments using the Qualisys motion capture system. The experimental results demonstrated the followings: (i) The kinematic coupling of the upper limbs and the lower limbs both showed the significant characteristics of joint motion, while the torso motion of human possessed remarkable features of segmental motion; (ii) flexion/extension was the main motion feature in sagittal plane, while the lateral bending in coronal plane and the axial rotation in transverse plane were subsidiary motions during an entire walking cycle regarding to all the segments of the human body; (iii) compared with conventional methods, the improved techniques have a competitive advantage in the convenient measurement and accurate analysis of the segmental dynamic functional characteristics during human locomotion. The modeling technique proposed in this paper has great potentials in rehabilitation engineering

  18. pynoddy 1.0: an experimental platform for automated 3-D kinematic and potential field modelling

    Directory of Open Access Journals (Sweden)

    J. F. Wellmann

    2015-11-01

    Full Text Available We present a novel methodology for performing experiments with subsurface structural models using a set of flexible and extensible Python modules. We utilise the ability of kinematic modelling techniques to describe major deformational, tectonic, and magmatic events at low computational cost to develop experiments testing the interactions between multiple kinematic events, effect of uncertainty regarding event timing, and kinematic properties. These tests are simple to implement and perform, as they are automated within the Python scripting language, allowing the encapsulation of entire kinematic experiments within high-level class definitions and fully reproducible results. In addition, we provide a~link to geophysical potential-field simulations to evaluate the effect of parameter uncertainties on maps of gravity and magnetics. We provide relevant fundamental information on kinematic modelling and our implementation, and showcase the application of our novel methods to investigate the interaction of multiple tectonic events on a pre-defined stratigraphy, the effect of changing kinematic parameters on simulated geophysical potential-fields, and the distribution of uncertain areas in a full 3-D kinematic model, based on estimated uncertainties in kinematic input parameters. Additional possibilities for linking kinematic modelling to subsequent process simulations are discussed, as well as additional aspects of future research. Our modules are freely available on github, including documentation and tutorial examples, and we encourage the contribution to this project.

  19. pynoddy 1.0: an experimental platform for automated 3-D kinematic and potential field modelling

    Science.gov (United States)

    Florian Wellmann, J.; Thiele, Sam T.; Lindsay, Mark D.; Jessell, Mark W.

    2016-03-01

    We present a novel methodology for performing experiments with subsurface structural models using a set of flexible and extensible Python modules. We utilize the ability of kinematic modelling techniques to describe major deformational, tectonic, and magmatic events at low computational cost to develop experiments testing the interactions between multiple kinematic events, effect of uncertainty regarding event timing, and kinematic properties. These tests are simple to implement and perform, as they are automated within the Python scripting language, allowing the encapsulation of entire kinematic experiments within high-level class definitions and fully reproducible results. In addition, we provide a link to geophysical potential-field simulations to evaluate the effect of parameter uncertainties on maps of gravity and magnetics. We provide relevant fundamental information on kinematic modelling and our implementation, and showcase the application of our novel methods to investigate the interaction of multiple tectonic events on a pre-defined stratigraphy, the effect of changing kinematic parameters on simulated geophysical potential fields, and the distribution of uncertain areas in a full 3-D kinematic model, based on estimated uncertainties in kinematic input parameters. Additional possibilities for linking kinematic modelling to subsequent process simulations are discussed, as well as additional aspects of future research. Our modules are freely available on github, including documentation and tutorial examples, and we encourage the contribution to this project.

  20. 3D Motion Planning Algorithms for Steerable Needles Using Inverse Kinematics

    Science.gov (United States)

    Duindam, Vincent; Xu, Jijie; Alterovitz, Ron; Sastry, Shankar; Goldberg, Ken

    2010-01-01

    Steerable needles can be used in medical applications to reach targets behind sensitive or impenetrable areas. The kinematics of a steerable needle are nonholonomic and, in 2D, equivalent to a Dubins car with constant radius of curvature. In 3D, the needle can be interpreted as an airplane with constant speed and pitch rate, zero yaw, and controllable roll angle. We present a constant-time motion planning algorithm for steerable needles based on explicit geometric inverse kinematics similar to the classic Paden-Kahan subproblems. Reachability and path competitivity are analyzed using analytic comparisons with shortest path solutions for the Dubins car (for 2D) and numerical simulations (for 3D). We also present an algorithm for local path adaptation using null-space results from redundant manipulator theory. Finally, we discuss several ways to use and extend the inverse kinematics solution to generate needle paths that avoid obstacles. PMID:21359051

  1. Inferring 3D kinematics of carpal bones from single view fluoroscopic sequences.

    Science.gov (United States)

    Chen, Xin; Graham, Jim; Hutchinson, Charles; Muir, Lindsay

    2011-01-01

    We present a novel framework for inferring 3D carpal bone kinematics and bone shapes from a single view fluoroscopic sequence. A hybrid statistical model representing both the kinematics and shape variation of the carpal bones is built, based on a number of 3D CT data sets obtained from different subjects at different poses. Given a fluoroscopic sequence, the wrist pose, carpal bone kinematics and bone shapes are estimated iteratively by matching the statistical model with the 2D images. A specially designed cost function enables smoothed parameter estimation across frames. We have evaluated the proposed method on both simulated data and real fluoroscopic sequences. It was found that the relative positions between carpal bones can be accurately estimated, which is potentially useful for detection of conditions such as scapholunate dissociation.

  2. Recognition of Kinematic Joints of 3D Assembly Models Based on Reciprocal Screw Theory

    Directory of Open Access Journals (Sweden)

    Tao Xiong

    2016-01-01

    Full Text Available Reciprocal screw theory is used to recognize the kinematic joints of assemblies restricted by arbitrary combinations of geometry constraints. Kinematic analysis is common for reaching a satisfactory design. If a machine is large and the incidence of redesign frequent is high, then it becomes imperative to have fast analysis-redesign-reanalysis cycles. This work addresses this problem by providing recognition technology for converting a 3D assembly model into a kinematic joint model, which is represented by a graph of parts with kinematic joints among them. The three basic components of the geometric constraints are described in terms of wrench, and it is thus easy to model each common assembly constraint. At the same time, several different types of kinematic joints in practice are presented in terms of twist. For the reciprocal product of a twist and wrench, which is equal to zero, the geometry constraints can be converted into the corresponding kinematic joints as a result. To eliminate completely the redundant components of different geometry constraints that act upon the same part, the specific operation of a matrix space is applied. This ability is useful in supporting the kinematic design of properly constrained assemblies in CAD systems.

  3. 3D kinematics using dual quaternions: theory and applications in neuroscience

    Directory of Open Access Journals (Sweden)

    Guillaume eLeclercq

    2013-02-01

    Full Text Available In behavioral neuroscience, many experiments are developed in 1 or 2 spatialdimensions, but when scientists tackle problems in 3-dimensions (3D, theyoften face problems or new challenges. Results obtained for lower dimensionsare not always extendable in 3D. In motor planning of eye, gaze or armmovements, or sensorimotor transformation problems, the 3D kinematics ofexternal (stimuli or internal (body parts must often be considered: howto describe the 3D position and orientation of these objects and link themtogether? We describe how motors (dual quaternions provide a convenientway to describe the 3D kinematics for position only (point transformation orfor combined position and orientation (through line transformation, easilymodeling rotations, translations or screw motions or combinations of these.We also derive expressions for the velocities of points and lines as well as thetransformation velocities. Then, we apply these tools to a motor planningtask for manual tracking and to the modeling of forward and inverse kinematicsof a 7dof 3-link arm to show the interest of dual quaternions as a toolto build models for these kinds of applications.

  4. The ATLAS(3D) project : II. Morphologies, kinemetric features and alignment between photometric and kinematic axes of early-type galaxies

    NARCIS (Netherlands)

    Krajnovic, Davor; Emsellem, Eric; Cappellari, Michele; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frederic; Bureau, Martin; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Khochfar, Sadegh; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2011-01-01

    We use the ATLAS(3D) sample of 260 early-type galaxies to study the apparent kinematic misalignment angle, Psi, defined as the angle between the photometric and kinematic major axes. We find that 71 per cent of nearby early-type galaxies are strictly aligned systems (Psi

  5. GalPak3D: A Bayesian parametric tool for extracting morpho-kinematics of galaxies from 3D data

    CERN Document Server

    Bouché, N; Schroetter, I; Michel-Dansac, L; Contini, T

    2015-01-01

    We present a method to constrain galaxy parameters directly from 3-dimensional data-cubes. The algorithm compares directly the data-cube with a parametric model mapped in $x,y,\\lambda$ coordinates. It uses the spectral Line Spread Function (LSF) and the spatial Point Spread Function (PSF) to generate a 3-dimensional kernel whose characteristics are instrument-specific or user-generated. The algorithm returns the intrinsic modeled properties along with both an `intrinsic' model data-cube and the modeled galaxy convolved with the 3D-kernel. The algorithm uses a Markov Chain Monte Carlo (MCMC) approach with a non-traditional proposal distribution in order to efficiently probe the parameter space. We demonstrate the robustness of the algorithm using 1728 mock galaxies and galaxies generated from hydrodynamical simulations in various seeing conditions from 0.6" to 1.2". We find that the algorithm can recover the morphological parameters (inclination, position angle) to within 10% and the kinematic parameters (maxi...

  6. A Kinematic Model for 3-D Head-Free Gaze-Shifts

    Directory of Open Access Journals (Sweden)

    Mehdi eDaemi

    2015-06-01

    Full Text Available Rotations of the line of sight are mainly implemented by coordinated motion of the eyes and head. Here, we propose a model for the kinematics of three-dimensional (3-D head-unrestrained gaze-shifts. The model was designed to account for major principles in the known behavior, such as gaze accuracy, spatiotemporal coordination of saccades with vestibulo-ocular reflex (VOR, relative eye and head contributions, the non-commutativity of rotations, and Listing’s and Fick constraints for the eyes and head respectively. The internal design of the model was inspired by known and hypothesized elements of gaze control physiology. Inputs included retinocentric location of the visual target and internal representations of initial 3-D eye and head orientation, whereas outputs were 3-D displacements of eye relative to the head and head relative to shoulder. Internal transformations decomposed the 2-D gaze command into 3-D eye and head commands with the use of three coordinated circuits: 1 a saccade generator, 2 a head rotation generator, 3 a VOR predictor. Simulations illustrate that the model can implement: 1 the correct 3-D reference frame transformations to generate accurate gaze shifts (despite variability in other parameters, 2 the experimentally verified constraints on static eye and head orientations during fixation, and 3 the experimentally observed 3-D trajectories of eye and head motion during gaze-shifts. We then use this model to simulate how 2-D eye-head coordination strategies interact with 3-D constraints to influence 3-D orientations of the eye-in-space, and the implications of this for spatial vision.

  7. Local Muscle Fatigue and 3D Kinematics of the Cervical Spine in Healthy Subjects.

    Science.gov (United States)

    Niederer, Daniel; Vogt, Lutz; Pippig, Torsten; Wall, Rudolf; Banzer, Winfried

    2016-01-01

    The authors aimed to further explore the effects of local muscle fatigue on cervical 3D kinematics and the interrelationship between these kinematic characteristics and local muscle endurance capacity in the unimpaired cervical spine. Twenty healthy subjects (38 ± 10 years; 5 women) performed 2 × 10 maximal cervical flexion-extension movements. Isometric muscle endurance tests (prone/supine lying) were applied between sets to induce local muscle fatigue quantified by Borg scale rates of perceived exertion (RPE) and slope in mean power frequency (MPF; surface electromyography; m. sternocleidomastoideus, m. splenius capitis). Cervical motion characteristics (maximal range of motion [ROM], coefficient of variation of the 10 repetitive movements, mean angular velocity, conjunct movements in transversal and frontal plane) were calculated from raw 3D ultrasonic movement data. Average isometric strength testing duration for flexion and extension correlated to the cervical ROM (r = .49/r = .48; p parameter following local muscle fatigue (p > .05). Although subjects' cervical muscle endurance capacity and motor output seems to be conjugated, no impact of local cervical muscle fatigue on motor function was shown. These findings underline the importance of complementary measures to address muscular performance and kinematic characteristics in outcome assessment and functional rehabilitation of the cervical spine.

  8. 3D kinematics through the X-shaped Milky Way bulge

    CERN Document Server

    Vásquez, S; Hill, V; Renzini, A; González, O A; Gardner, E; Debattista, Victor P; Robin, A C; Rejkuba, M; Baffico, M; Monelli, M; Motta, V; Minniti, D

    2013-01-01

    It has recently been discovered that the Galactic bulge is X-shaped, with the two southern arms of the X both crossing the lines of sight at l=0 and |b|>4, hence producing a double red clump (RC) in the bulge CMD. Dynamical models predict the formation of X-shaped bulges, as extreme cases of boxy-peanut bulges. However, since X-shaped bulges were known to be present only in external galaxies, models have never been compared to 3D kinematical data for individual stars. We study the orbital motion of Galactic bulge stars, in the two arms of the X in the southern hemisphere. The goal is to provide observational constraints to bulge formation models that predict the formation of X-shapes through bar dynamical instabilities. Radial velocities have been obtained for a sample of 454 bulge giants, roughly equally distributed between the bright and faint RC, in a field at (l,b)=(0,-6). Proper motions were derived for all RC stars in the same field by combining images from two epochs obtained 11 years apart. The proper...

  9. Access to the kinematic information for the velocity model determination by 3-D reflexion tomography; Acces a l'information cinematique pour la determination du modele de vitesse par tomographie de reflexion 3D

    Energy Technology Data Exchange (ETDEWEB)

    Broto, K.

    1999-04-01

    The access to a reliable image of the subsurface requires a kinematically correct velocity depth model.Reflection tomography allows to meet this requirement if a complete and coherent pre-stack kinematic database can be provided. However, in case of complex sub-surfaces, wave propagation may lead to hardly interpretable seismic events in the time data. The SMART method is a sequential method that relies on reflection tomography for updating the velocity model and on the pre-stack depth migrated domain for extracting kinematic information that is not readily accessible in the time domain. For determining 3-D subsurface velocity models in case of complex structures, we propose the seriated SMART 2-D method as an alternative to the currently inconceivable SMART 3-D method. In order to extract kinematic information from a 3-D pre-stack data set, we combine detours through the 2-D pre-stack depth domain for a number of selected lines of the studied 3-D survey and 3-D reflection tomography for updating the velocity model. The travel-times from the SMART method being independent of the velocity model used for passing through the pre-stack depth migrated domain, the access to 3-D travel-times is ensured, even if they have been obtained via a 2-D domain. Besides, we propose to build a kinematical guide for ensuring the coherency of the seriated 2-D pre-stack depth interpretations and the access to a complete 3-D pre-stack kinematic database when dealing with structures associated with 3-D wave propagation. We opt for a blocky representation of the velocity model in order to be able to cope with complex structures. This representation leads us to define specific methodological rules for carrying out the different steps of the seriated SMART 2-D method. We also define strategies, built from the analysis of first inversion results, for an efficient application of reflection tomography. Besides, we discuss the problem of uncertainties to be assigned to travel-times obtained

  10. Automated Kinematic Modelling of Warped Galaxy Discs in Large Hi Surveys: 3D Tilted Ring Fitting of HI Emission Cubes

    CERN Document Server

    Kamphuis, P; Oh, S- H; Spekkens, K; Urbancic, N; Serra, P; Koribalski, B S; Dettmar, R -J

    2015-01-01

    Kinematical parameterisations of disc galaxies, employing emission line observations, are indispensable tools for studying the formation and evolution of galaxies. Future large-scale HI surveys will resolve the discs of many thousands of galaxies, allowing a statistical analysis of their disc and halo kinematics, mass distribution and dark matter content. Here we present an automated procedure which fits tilted-ring models to Hi data cubes of individual, well-resolved galaxies. The method builds on the 3D Tilted Ring Fitting Code (TiRiFiC) and is called FAT (Fully Automated TiRiFiC). To assess the accuracy of the code we apply it to a set of 52 artificial galaxies and 25 real galaxies from the Local Volume HI Survey (LVHIS). Using LVHIS data, we compare our 3D modelling to the 2D modelling methods DiskFit and rotcur. A conservative result is that FAT accurately models the kinematics and the morphologies of galaxies with an extent of eight beams across the major axis in the inclination range 20$^{\\circ}$-90$^{...

  11. Markerless motion capture can provide reliable 3D gait kinematics in the sagittal and frontal plane

    DEFF Research Database (Denmark)

    Sandau, Martin; Koblauch, Henrik; Moeslund, Thomas B.;

    2014-01-01

    Estimating 3D joint rotations in the lower extremities accurately and reliably remains unresolved in markerless motion capture, despite extensive studies in the past decades. The main problems have been ascribed to the limited accuracy of the 3D reconstructions. Accordingly, the purpose of the pr...

  12. 3D kinematic in-vitro comparison of posterolateral corner reconstruction techniques in a combined injury model.

    Science.gov (United States)

    Nau, Thomas; Chevalier, Yan; Hagemeister, Nicola; Duval, Nicolas; deGuise, Jacques A

    2005-10-01

    With the variable injury pattern to the posterolateral structures (PLS) of the knee, a number of reconstructive procedures have been introduced. It was the aim of the present study to evaluate the resulting 3D kinematics following three different surgical techniques of reconstruction in a combined posterior cruciate ligament (PCL)/PLS injury model. In nine human cadaveric knees, 3D kinematics were recorded during the path of flexion-extension using a computer based custom made 6-degree-of-freedom (DOF) testing apparatus. Additional laxity tests were conducted at 30 and 90 degrees of flexion. Testing was performed before and after cutting the PLS and PCL, followed by PCL reconstruction alone. Reconstructing the posterolateral corner, three surgical techniques were compared: (a) the posterolateral corner sling procedure (PLCS), (b) the biceps tenodesis (BT), and (c) a bone patellar-tendon bone (BTB) allograft reconstruction. Posterior as well as rotational laxity were significantly increased after PCL/PLS transection at 30 and 90 degrees of flexion. Isolated PCL reconstruction resulted in a remaining external rotational deficiency for both tested flexion angles. Additional PLS reconstruction closely restored external rotation as well as posterior translation to intact values by all tested procedures. Compared to the intact knee, dynamic testing revealed a significant internal tibial rotation for (b) BT (mean=3.9 degrees, p=0.043) and for (c) BTB allograft (mean=4.3 degrees, p=0.012). (a) The PLCS demonstrated a tendency to internal tibial rotation between 0 and 60 degrees of flexion (mean=2.2 degrees, p=0.079). Varus/valgus rotation as well as anterior/posterior translation did not show significant differences for any of the tested techniques. The present study shows that despite satisfying results in static laxity testing, pathological 3D knee kinematics were not restored to normal, demonstrated by a nonphysiological internal tibial rotation during the path of

  13. 3-D Kinematics of the near-IR HH 223 outflow in L723

    CERN Document Server

    López, R; Estalella, R; Gómez, G; García-Lorenzo, B

    2014-01-01

    In this work we derive the full 3-D kinematics of the near-infrared outflow HH 223, located in the dark cloud Lynds 723 (L723), where a well-defined quadrupolar CO outflow is found. HH 223 appears projected onto the two lobes of the east-west CO outflow. The radio continuum source VLA 2, towards the centre of the CO outflow, harbours a multiple system of low-mass young stellar objects. One of the components has been proposed to be the exciting source of the east-west CO outflow. From the analisys of the kinematics, we get further evidence on the relationship between the near-infrared and CO outflows and on the location of their exciting source. The proper motions were derived using multi-epoch, narrow-band H$_2$ (2.122 $\\mu$m line) images. Radial velocities were derived from the 2.122 $\\mu$m line of the spectra. Because of the extended (~5 arcmin), S-shaped morphology of the target, the spectra were obtained with the Multi-Object-Spectroscopy (MOS) observing mode using the instrument LIRIS at the 4.2m William...

  14. 3D kinematics of the near-IR HH 223 outflow in L723

    Science.gov (United States)

    López, R.; Acosta-Pulido, J. A.; Estalella, R.; Gómez, G.; García-Lorenzo, B.

    2015-03-01

    In this work, we derive the full 3D kinematics of the near-infrared outflow HH 223, located in the dark cloud Lynds 723 (L723), where a well-defined quadrupolar CO outflow is found. HH 223 appears projected on to the two lobes of the east-west CO outflow. The radio continuum source VLA 2, towards the centre of the CO outflow, harbours a multiple system of low-mass young stellar objects. One of the components has been proposed to be the exciting source of the east-west CO outflow. From the analysis of the kinematics, we get further evidence on the relationship between the near-infrared and CO outflows and on the location of their exciting source. The proper motions were derived using multi-epoch, narrow-band H2 (2.122 μm line) images. Radial velocities were derived from the 2.122 μm line of the spectra. Because of the extended (˜5 arcmin), S-shaped morphology of the target, the spectra were obtained with the multi-object-spectroscopy (MOS) observing mode using the instrument Long-Slit Intermediate Resolution Infrared Spectrograph (LIRIS) at the 4.2 m William Herschel Telescope. To our knowledge, this work is the first time that MOS observing mode has been successfully used in the near-infrared range for an extended target.

  15. Closed-loop control concept for kinematic 3D-profile bending

    Science.gov (United States)

    Staupendahl, Daniel; Chatti, Sami; Tekkaya, A. Erman

    2016-10-01

    Kinematic tube and profile bending processes produce bending contours by the relative movement of single process axes. Tools only need to be adapted to fit the cross-section of the tubular material. While offering a great flexibility in production, kinematic bending processes cause a high part springback and as a result, compensatory methods are needed to achieve target contours. These compensatory methods are generally embedded in bending tables or analytical calculations that in turn are embedded into the process control software. This procedure can cope with known material behavior, as for instance gained through a tensile test of the material batch prior to the bending process. Material variations inside a batch cannot be detected however and cause contour deviations. To counter this error, a closed-loop control system can be used, which can quickly adapt axes' movements to produce target shapes and thus reduce scrap. In this paper, two methods to apply closed-loop control to 3D profile bending will be presented. An indirect approach, using the bending force and torque, and a direct approach, by measuring the profile contour after bending.

  16. Discrete kinematic modeling of the 3-D deformation of sedimentary basins; Modelisation cinematique discrete de la deformation 3D des bassins sedimentaires

    Energy Technology Data Exchange (ETDEWEB)

    Cornu, T.

    2001-01-01

    The present work deals with three-dimensional deformation of sedimentary basins. The main goal of the work was to propose new ways to study tectonic deformation and to insert it into basin-modeling environment for hydrocarbon migration applications. To handle the complexity of the deformation, the model uses kinematic laws, a discrete approach, and the construction of a code that allows the greatest diversity in the deformation mechanisms we can take into account. The 3-D-volume deformation is obtained through the calculation of the behavior of the neutral surface of each basin layer. The main idea is to deform the neutral surface of each layer with the help of geometrical laws and to use the result to rebuild the volume deformation of the basin. The constitutive algorithm includes three characteristic features. The first one deals with the mathematical operator we use to describe the flexural-slip mechanism which is a combination of the translation of the neutral surface nodes and the rotation of the vertical edges attached to these nodes. This performs the reversibility that was required for the basin modeling. The second one is about. the use of a discrete approach, which gives a better description of the global deformation and offers to locally control volume evolutions. The knowledge of volume variations can become a powerful tool in structural geology analysis and the perfect complement for a field study. The last one concerns the modularity of the developed code. Indeed, the proposed model uses three main mechanisms of deformation. But the architecture of the code allows the insertion of new mechanisms or a better interaction between them. The model has been validated first with 2-D cases, then with 3-D natural cases. They give good results from a qualitative point of view. They also show the capacity of the model to provide a deformation path that is geologically acceptable, and its ability to control the volume variations of the basin through the

  17. Markerless motion capture can provide reliable 3D gait kinematics in the sagittal and frontal plane.

    Science.gov (United States)

    Sandau, Martin; Koblauch, Henrik; Moeslund, Thomas B; Aanæs, Henrik; Alkjær, Tine; Simonsen, Erik B

    2014-09-01

    Estimating 3D joint rotations in the lower extremities accurately and reliably remains unresolved in markerless motion capture, despite extensive studies in the past decades. The main problems have been ascribed to the limited accuracy of the 3D reconstructions. Accordingly, the purpose of the present study was to develop a new approach based on highly detailed 3D reconstructions in combination with a translational and rotational unconstrained articulated model. The highly detailed 3D reconstructions were synthesized from an eight camera setup using a stereo vision approach. The subject specific articulated model was generated with three rotational and three translational degrees of freedom for each limb segment and without any constraints to the range of motion. This approach was tested on 3D gait analysis and compared to a marker based method. The experiment included ten healthy subjects in whom hip, knee and ankle joint were analysed. Flexion/extension angles as well as hip abduction/adduction closely resembled those obtained from the marker based system. However, the internal/external rotations, knee abduction/adduction and ankle inversion/eversion were less reliable.

  18. Beowulf 3D: a case study

    Science.gov (United States)

    Engle, Rob

    2008-02-01

    This paper discusses the creative and technical challenges encountered during the production of "Beowulf 3D," director Robert Zemeckis' adaptation of the Old English epic poem and the first film to be simultaneously released in IMAX 3D and digital 3D formats.

  19. Dynamical Study of 3D Boson Stars

    Science.gov (United States)

    Choi, Dae-Il; Choptuik, M. W.

    1998-10-01

    We study the dynamical evolution of ``boson stars'' in 3D numerical relativity. Boson stars are equilibrium states of a self-gravitating, complex Klein-Gordon field: a resurgence of interest in scalar fields in the context of astroparticle physics and quantum cosmology has prompted investigation of their dynamics, particularly since they are possible dark matter candidates. In addition, even though any direct physical relevance has yet to be demonstrated, boson star systems provide excellent numerical laboratories in which to study strong gravitational fields. Specifically, the boson star model provides an ideal vehicle with which to implement and evaluate (1) various coordinate conditions in the context of the ADM formalism, and (2) multi-dimensional adaptive mesh refinement techniques which appear crucial for many problems in 3D numerical relativity. We first consider boson stars in the Newtonian regime, where the (numerical) stability of single stars is shown and the interaction of multiple-star-systems is simulated. We also discuss issues which hamper progress towards a stable evolution of general relativistic boson stars, and then show some preliminary results for the general relativistic case.

  20. Computer-assisted 3D kinematic analysis of all leg joints in walking insects.

    Directory of Open Access Journals (Sweden)

    John A Bender

    Full Text Available High-speed video can provide fine-scaled analysis of animal behavior. However, extracting behavioral data from video sequences is a time-consuming, tedious, subjective task. These issues are exacerbated where accurate behavioral descriptions require analysis of multiple points in three dimensions. We describe a new computer program written to assist a user in simultaneously extracting three-dimensional kinematics of multiple points on each of an insect's six legs. Digital video of a walking cockroach was collected in grayscale at 500 fps from two synchronized, calibrated cameras. We improved the legs' visibility by painting white dots on the joints, similar to techniques used for digitizing human motion. Compared to manual digitization of 26 points on the legs over a single, 8-second bout of walking (or 106,496 individual 3D points, our software achieved approximately 90% of the accuracy with 10% of the labor. Our experimental design reduced the complexity of the tracking problem by tethering the insect and allowing it to walk in place on a lightly oiled glass surface, but in principle, the algorithms implemented are extensible to free walking. Our software is free and open-source, written in the free language Python and including a graphical user interface for configuration and control. We encourage collaborative enhancements to make this tool both better and widely utilized.

  1. Influence of Particle Morphology on 3D Kinematic Behavior and Strain Localization of Sheared Sand

    Energy Technology Data Exchange (ETDEWEB)

    Alshibli, Khalid A.; Jarrar, Maha F.; Druckrey, Andrew M.; Al-Raoush, Riyadh I.

    2017-02-01

    The constitutive behavior of sheared sand is highly influenced by particle morphology, gradation, mineralogy, specimen density, loading condition, stress path, and boundary conditions. The current literature lacks a three-dimensional (3D) systematic experimental study that investigates the influence of particle morphology, confining pressure, and specimen density on the failure mode of sheared sand. In this paper, surface texture, roundness, and sphericity of three uniform sands and glass beads with similar grain size were quantified by using 3D images of particles. In situ nondestructive 3D synchrotron microcomputed tomography (SMT) was used to monitor the deformation of medium-dense and very dense dry sand specimens that were tested under axisymmetric triaxial loading condition at 15 and 400 kPa confining pressures. The particles were identified and tracked in 3D as shearing progressed within the specimens, and maps of incremental particle translation and rotation were developed and used to uncover the relationship between particle morphology, specimen density, and confining pressure on the deformation and failure mode of sheared sand. This paper discusses the relationship between the failure mode and particle morphology, specimen density, and confining pressure.

  2. Development of Kinematic 3D Laser Scanning System for Indoor Mapping and As-Built BIM Using Constrained SLAM

    Directory of Open Access Journals (Sweden)

    Jaehoon Jung

    2015-10-01

    Full Text Available The growing interest and use of indoor mapping is driving a demand for improved data-acquisition facility, efficiency and productivity in the era of the Building Information Model (BIM. The conventional static laser scanning method suffers from some limitations on its operability in complex indoor environments, due to the presence of occlusions. Full scanning of indoor spaces without loss of information requires that surveyors change the scanner position many times, which incurs extra work for registration of each scanned point cloud. Alternatively, a kinematic 3D laser scanning system, proposed herein, uses line-feature-based Simultaneous Localization and Mapping (SLAM technique for continuous mapping. Moreover, to reduce the uncertainty of line-feature extraction, we incorporated constrained adjustment based on an assumption made with respect to typical indoor environments: that the main structures are formed of parallel or orthogonal line features. The superiority of the proposed constrained adjustment is its reduction for uncertainties of the adjusted lines, leading to successful data association process. In the present study, kinematic scanning with and without constrained adjustment were comparatively evaluated in two test sites, and the results confirmed the effectiveness of the proposed system. The accuracy of the 3D mapping result was additionally evaluated by comparison with the reference points acquired by a total station: the Euclidean average distance error was 0.034 m for the seminar room and 0.043 m for the corridor, which satisfied the error tolerance for point cloud acquisition (0.051 m according to the guidelines of the General Services Administration for BIM accuracy.

  3. Development of kinematic 3D laser scanning system for indoor mapping and as-built BIM using constrained SLAM.

    Science.gov (United States)

    Jung, Jaehoon; Yoon, Sanghyun; Ju, Sungha; Heo, Joon

    2015-10-16

    The growing interest and use of indoor mapping is driving a demand for improved data-acquisition facility, efficiency and productivity in the era of the Building Information Model (BIM). The conventional static laser scanning method suffers from some limitations on its operability in complex indoor environments, due to the presence of occlusions. Full scanning of indoor spaces without loss of information requires that surveyors change the scanner position many times, which incurs extra work for registration of each scanned point cloud. Alternatively, a kinematic 3D laser scanning system, proposed herein, uses line-feature-based Simultaneous Localization and Mapping (SLAM) technique for continuous mapping. Moreover, to reduce the uncertainty of line-feature extraction, we incorporated constrained adjustment based on an assumption made with respect to typical indoor environments: that the main structures are formed of parallel or orthogonal line features. The superiority of the proposed constrained adjustment is its reduction for uncertainties of the adjusted lines, leading to successful data association process. In the present study, kinematic scanning with and without constrained adjustment were comparatively evaluated in two test sites, and the results confirmed the effectiveness of the proposed system. The accuracy of the 3D mapping result was additionally evaluated by comparison with the reference points acquired by a total station: the Euclidean average distance error was 0.034 m for the seminar room and 0.043 m for the corridor, which satisfied the error tolerance for point cloud acquisition (0.051 m) according to the guidelines of the General Services Administration for BIM accuracy.

  4. Development of Kinematic 3D Laser Scanning System for Indoor Mapping and As-Built BIM Using Constrained SLAM

    Science.gov (United States)

    Jung, Jaehoon; Yoon, Sanghyun; Ju, Sungha; Heo, Joon

    2015-01-01

    The growing interest and use of indoor mapping is driving a demand for improved data-acquisition facility, efficiency and productivity in the era of the Building Information Model (BIM). The conventional static laser scanning method suffers from some limitations on its operability in complex indoor environments, due to the presence of occlusions. Full scanning of indoor spaces without loss of information requires that surveyors change the scanner position many times, which incurs extra work for registration of each scanned point cloud. Alternatively, a kinematic 3D laser scanning system, proposed herein, uses line-feature-based Simultaneous Localization and Mapping (SLAM) technique for continuous mapping. Moreover, to reduce the uncertainty of line-feature extraction, we incorporated constrained adjustment based on an assumption made with respect to typical indoor environments: that the main structures are formed of parallel or orthogonal line features. The superiority of the proposed constrained adjustment is its reduction for uncertainties of the adjusted lines, leading to successful data association process. In the present study, kinematic scanning with and without constrained adjustment were comparatively evaluated in two test sites, and the results confirmed the effectiveness of the proposed system. The accuracy of the 3D mapping result was additionally evaluated by comparison with the reference points acquired by a total station: the Euclidean average distance error was 0.034 m for the seminar room and 0.043 m for the corridor, which satisfied the error tolerance for point cloud acquisition (0.051 m) according to the guidelines of the General Services Administration for BIM accuracy. PMID:26501292

  5. Precessing jets and molecular outflows a 3-D numerical study

    CERN Document Server

    Cliffe, J A; Frank, Adam

    1996-01-01

    We present 3-D numerical hydrodynamical simulations of precessing supersonic heavy jets to explore how well they serve as a model for generating molecular outflows from Young Stellar Objects. The dynamics are studied with a number of high resolution simulations on a Cartesian grid (128x128x128 zones) using a high order finite difference method. A range of cone angles and precession rates were included in the study. Two higher resolution runs (256x256x256 zones) were made for comparison in order to confirm numerical convergence of global flow characteristics. Morphological, kinematical and dynamical characteristics of precessing jets are described and compared to important properties of straight jets and also to observations of YSOs. In order to examine the robustness of precessing jets as a mean to produce molecular outflows around Young Stellar Objects, ``synthetic observations'' of the momentum distributions of the simulated precessing jets are compared to observations of molecular outflows. It is found tha...

  6. The appropriateness of the helical axis technique and six available cardan sequences for the representation of 3-d lead leg kinematics during the fencing lunge.

    Science.gov (United States)

    Sinclair, Jonathan; Taylor, Paul J; Bottoms, Lindsay

    2013-01-01

    Cardan/Euler angles represent the most common technique for the quantification of segmental rotations. Cardan angles are influenced by their ordered sequence, and sensitive to planar-cross talk from the dominant rotation plane, which may affect the angular parameters. The International Society of Biomechanics (ISB) currently recommends a sagittal, coronal, and then transverse (XYZ) ordered sequence, although it has been proposed that when quantifying non-sagittal rotations this may not be the most appropriate technique. This study examined the influence of the helical and six available Cardan sequences on lower extremity three-dimensional (3-D) kinematics of the lead leg during the fencing lunge. Kinematic data were obtained using a 3-D motion capture system as participants completed simulated lunges. Repeated measures ANOVAs were used to compare discrete kinematic parameters, and intraclass correlations were also utilized to determine evidence of planar crosstalk. The results indicate that in all three planes of rotation, peak angle and range of motion angles using the YXZ and ZXY sequences were significantly greater than the other sequences. It was also noted that the utilization of the YXZ and ZXY sequences was associated with the strongest correlations from the sagittal plane, and the XYZ sequence was found habitually to be associated with the lowest correlations. It appears that for accurate representation of 3-D kinematics of the lead leg during the fencing lunge, the XYZ sequence is the most appropriate and as such its continued utilization is encouraged.

  7. A volumetric model-based 2D to 3D registration method for measuring kinematics of natural knees with single-plane fluoroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Tsung-Yuan; Lu, Tung-Wu; Chen, Chung-Ming; Kuo, Mei-Ying; Hsu, Horng-Chaung [Institute of Biomedical Engineering, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei 10051, Taiwan (China); Institute of Biomedical Engineering, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei 10051, Taiwan (China) and Department of Physical Therapy, China Medical University, Taichung 40402, Taiwan (China); Department of Orthopaedic Surgery, China Medical University Hospital, Taichung 40447, Taiwan (China)

    2010-03-15

    Purpose: Accurate measurement of the three-dimensional (3D) rigid body and surface kinematics of the natural human knee is essential for many clinical applications. Existing techniques are limited either in their accuracy or lack more realistic experimental evaluation of the measurement errors. The purposes of the study were to develop a volumetric model-based 2D to 3D registration method, called the weighted edge-matching score (WEMS) method, for measuring natural knee kinematics with single-plane fluoroscopy to determine experimentally the measurement errors and to compare its performance with that of pattern intensity (PI) and gradient difference (GD) methods. Methods: The WEMS method gives higher priority to matching of longer edges of the digitally reconstructed radiograph and fluoroscopic images. The measurement errors of the methods were evaluated based on a human cadaveric knee at 11 flexion positions. Results: The accuracy of the WEMS method was determined experimentally to be less than 0.77 mm for the in-plane translations, 3.06 mm for out-of-plane translation, and 1.13 deg. for all rotations, which is better than that of the PI and GD methods. Conclusions: A new volumetric model-based 2D to 3D registration method has been developed for measuring 3D in vivo kinematics of natural knee joints with single-plane fluoroscopy. With the equipment used in the current study, the accuracy of the WEMS method is considered acceptable for the measurement of the 3D kinematics of the natural knee in clinical applications.

  8. Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion

    Science.gov (United States)

    Handy Turner, Tara

    2010-02-01

    From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.

  9. Real-Time Motion Capture Toolbox (RTMocap): an open-source code for recording 3-D motion kinematics to study action-effect anticipations during motor and social interactions.

    Science.gov (United States)

    Lewkowicz, Daniel; Delevoye-Turrell, Yvonne

    2016-03-01

    We present here a toolbox for the real-time motion capture of biological movements that runs in the cross-platform MATLAB environment (The MathWorks, Inc., Natick, MA). It provides instantaneous processing of the 3-D movement coordinates of up to 20 markers at a single instant. Available functions include (1) the setting of reference positions, areas, and trajectories of interest; (2) recording of the 3-D coordinates for each marker over the trial duration; and (3) the detection of events to use as triggers for external reinforcers (e.g., lights, sounds, or odors). Through fast online communication between the hardware controller and RTMocap, automatic trial selection is possible by means of either a preset or an adaptive criterion. Rapid preprocessing of signals is also provided, which includes artifact rejection, filtering, spline interpolation, and averaging. A key example is detailed, and three typical variations are developed (1) to provide a clear understanding of the importance of real-time control for 3-D motion in cognitive sciences and (2) to present users with simple lines of code that can be used as starting points for customizing experiments using the simple MATLAB syntax. RTMocap is freely available (http://sites.google.com/site/RTMocap/) under the GNU public license for noncommercial use and open-source development, together with sample data and extensive documentation.

  10. CASTOR3D: linear stability studies for 2D and 3D tokamak equilibria

    Science.gov (United States)

    Strumberger, E.; Günter, S.

    2017-01-01

    The CASTOR3D code, which is currently under development, is able to perform linear stability studies for 2D and 3D, ideal and resistive tokamak equilibria in the presence of ideal and resistive wall structures and coils. For these computations ideal equilibria represented by concentric nested flux surfaces serve as input (e.g. computed with the NEMEC code). Solving an extended eigenvalue problem, the CASTOR3D code takes simultaneously plasma inertia and wall resistivity into account. The code is a hybrid of the CASTOR_3DW stability code and the STARWALL code. The former is an extended version of the CASTOR and CASTOR_FLOW code, respectively. The latter is a linear 3D code computing the growth rates of resistive wall modes in the presence of multiply-connected wall structures. The CASTOR_3DW code, and some parts of the STARWALL code have been reformulated in a general 3D flux coordinate representation that allows to choose between various types of flux coordinates. Furthermore, the implemented many-valued current potentials in the STARWALL part allow a correct treatment of the m  =  0, n  =  0 perturbation. In this paper, we outline the theoretical concept, and present some numerical results which illustrate the present status of the code and demonstrate its numerous application possibilities.

  11. Instantaneous helical axis estimation from 3-D video data in neck kinematics for whiplash diagnostics.

    Science.gov (United States)

    Woltring, H J; Long, K; Osterbauer, P J; Fuhr, A W

    1994-12-01

    To date, the diagnosis of whiplash injuries has been very difficult and largely based on subjective, clinical assessment. The work by Winters and Peles Multiple Muscle Systems--Biomechanics and Movement Organization. Springer, New York (1990) suggests that the use of finite helical axes (FHAs) in the neck may provide an objective assessment tool for neck mobility. Thus, the position of the FHA describing head-trunk motion may allow discrimination between normal and pathological cases such as decreased mobility in particular cervical joints. For noisy, unsmoothed data, the FHAs must be taken over rather large angular intervals if the FHAs are to be reconstructed with sufficient accuracy; in the Winters and Peles study, these intervals were approximately 10 degrees. in order to study the movements' microstructure, the present investigation uses instantaneous helical axes (IHAs) estimated from low-pass smoothed video data. Here, the small-step noise sensitivity of the FHA no longer applies, and proper low-pass filtering allows estimation of the IHA even for small rotation velocity omega of the moving neck. For marker clusters mounted on the head and trunk, technical system validation showed that the IHAs direction dispersions were on the order of one degree, while their position dispersions were on the order of 1 mm, for low-pass cut-off frequencies of a few Hz (the dispersions were calculated from omega-weighted errors, in order to account for the adverse effects of vanishing omega). Various simple, planar models relating the instantaneous, 2-D centre of rotation with the geometry and kinematics of a multi-joint neck model are derived, in order to gauge the utility of the FHA and IHA approaches. Some preliminary results on asymptomatic and pathological subjects are provided, in terms of the 'ruled surface' formed by sampled IHAs and of their piercing points through the mid-sagittal plane during a prescribed flexion-extension movement of the neck.

  12. A method for measurement of joint kinematics in vivo by registration of 3-D geometric models with cine phase contrast magnetic resonance imaging data.

    Science.gov (United States)

    Barrance, Peter J; Williams, Glenn N; Novotny, John E; Buchanan, Thomas S

    2005-10-01

    A new method is presented for measuring joint kinematics by optimally matching modeled trajectories of geometric surface models of bones with cine phase contrast (cine-PC) magnetic resonance imaging data. The incorporation of the geometric bone models (GBMs) allows computation of kinematics based on coordinate systems placed relative to full 3-D anatomy, as well as quantification of changes in articular contact locations and relative velocities during dynamic motion. These capabilities are additional to those of cine-PC based techniques that have been used previously to measure joint kinematics during activity. Cine-PC magnitude and velocity data are collected on a fixed image plane prescribed through a repetitively moved skeletal joint. The intersection of each GBM with a simulated image plane is calculated as the model moves along a computed trajectory, and cine-PC velocity data are sampled from the regions of the velocity images within the area of this intersection. From the sampled velocity data, the instantaneous linear and angular velocities of a coordinate system fixed to the GBM are estimated, and integration of the linear and angular velocities is used to predict updated trajectories. A moving validation phantom that produces motions and velocity data similar to those observed in an experiment on human knee kinematics was designed. This phantom was used to assess cine-PC rigid body tracking performance by comparing the kinematics of the phantom measured by this method to similar measurements made using a magnetic tracking system. Average differences between the two methods were measured as 2.82 mm rms for anterior/posterior tibial position, and 2.63 deg rms for axial rotation. An intertrial repeatability study of human knee kinematics using the new method produced rms differences in anterior/posterior tibial position and axial rotation of 1.44 mm and 2.35 deg. The performance of the method is concluded to be sufficient for the effective study of kinematic

  13. 3D shoulder kinematics for static vs dynamic and passive vs active testing conditions.

    Science.gov (United States)

    Robert-Lachaine, Xavier; Allard, Paul; Godbout, Véronique; Begon, Mickael

    2015-09-18

    Shoulder motion analysis provides clinicians with references of normal joint rotations. Shoulder joints orientations assessment is often based on series of static positions, while clinicians perform either passive or active tests and exercises mostly in dynamic. These conditions of motion could modify joint coordination and lead to discrepancies with the established references. Hence, the objective was to evaluate the influence of static vs dynamic and passive vs active testing conditions on shoulder joints orientations. Twenty asymptomatic subjects setup with 45 markers on the upper limb and trunk were tracked by an optoelectronic system. Static positions (30°, 60°, 90° and 120° of thoracohumeral elevation) and dynamic motion both in active condition and passively mobilised by an examiner were executed. Three-dimensional sternoclavicular, acromioclavicular, scapulothoracic and glenohumeral joint angles (12 in total) representing the distal segment orientation relative to the proximal segment orientation were estimated using a shoulder kinematical chain model. Separate four-way repeated measures ANOVA were applied on the 12 joint angles with factors of static vs dynamic, passive vs active, thoracohumeral elevation angle (30°, 60°, 90° and 120°) and plane of elevation (frontal and sagittal). Scapulothoracic lateral rotation progressed more during arm elevation in static than in dynamic gaining 4.2° more, and also in passive than in active by 6.6°. Glenohumeral elevation increased more during arm elevation in active than in passive by 4.4°. Shoulder joints orientations are affected by the testing conditions, which should be taken into consideration for data acquisition, inter-study comparison or clinical applications.

  14. A methodology to accurately quantify patellofemoral cartilage contact kinematics by combining 3D image shape registration and cine-PC MRI velocity data.

    Science.gov (United States)

    Borotikar, Bhushan S; Sipprell, William H; Wible, Emily E; Sheehan, Frances T

    2012-04-05

    Patellofemoral osteoarthritis and its potential precursor patellofemoral pain syndrome (PFPS) are common, costly, and debilitating diseases. PFPS has been shown to be associated with altered patellofemoral joint mechanics; however, an actual variation in joint contact stresses has not been established due to challenges in accurately quantifying in vivo contact kinematics (area and location). This study developed and validated a method for tracking dynamic, in vivo cartilage contact kinematics by combining three magnetic resonance imaging (MRI) techniques, cine-phase contrast (CPC), multi-plane cine (MPC), and 3D high-resolution static imaging. CPC and MPC data were acquired from 12 healthy volunteers while they actively extended/flexed their knee within the MRI scanner. Since no gold standard exists for the quantification of in vivo dynamic cartilage contact kinematics, the accuracy of tracking a single point (patellar origin relative to the femur) represented the accuracy of tracking the kinematics of an entire surface. The accuracy was determined by the average absolute error between the PF kinematics derived through registration of MPC images to a static model and those derived through integration of the CPC velocity data. The accuracy ranged from 0.47 mm to 0.77 mm for the patella and femur and from 0.68 mm to 0.86 mm for the patellofemoral joint. For purely quantifying joint kinematics, CPC remains an analytically simpler and more accurate (accuracy <0.33 mm) technique. However, for application requiring the tracking of an entire surface, such as quantifying cartilage contact kinematics, this combined imaging approach produces accurate results with minimal operator intervention.

  15. Understanding patellofemoral pain with maltracking in the presence of joint laxity: complete 3D in vivo patellofemoral and tibiofemoral kinematics.

    Science.gov (United States)

    Sheehan, Frances T; Derasari, Aditya; Brindle, Timothy J; Alter, Katharine E

    2009-05-01

    Patellofemoral pain is widely accepted as one of the most common pathologies involving the knee, yet the etiology of this pain is still an open debate. Generalized joint laxity has been associated with patellofemoral pain, but is not often discussed as a potential source of patellar maltracking. Thus, the objective of this study was to compare the complete 6 degree of freedom patellofemoral and tibiofemoral kinematics from a group of patients diagnosed with patellofemoral pain syndrome and maltracking to those from an asymptomatic population. The following null hypotheses were tested: kinematic alterations in patellofemoral maltracking are limited to the axial plane; knee joint kinematics are the same in maltrackers with and without generalized joint laxity (defined by a clinical diagnosis of Ehlers Danlos Syndrome); and no correlations exist between tibiofemoral and patellofemoral kinematics or within patellofemoral kinematics. This study demonstrated that alterations in patellofemoral kinematics, associated with patellofemoral pain, are not limited to the axial plane, minimal correlations exist between patellofemoral and tibiofemoral kinematics, and distinct subgroups likely exist within the general population of maltrackers. Being able to identify subgroups correctly within the omnibus diagnosis of patellar maltracking is a crucial step in correctly defining the pathophysiology and the eventual treatment of these patients.

  16. 3D Spectroscopy of Local Luminous Compact Blue Galaxies: Kinematics of NGC 7673

    CERN Document Server

    Pérez-Gallego, J; Castillo-Morales, A; Castander, F J; Gallego, J; Garland, C A; Gruel, N; Pisano, D J; Sánchez, S F; Zamorano, J

    2009-01-01

    The kinematic properties of the ionized gas of local Luminous Compact Blue Galaxy (LCBG) NGC 7673 are presented using three dimensional data taken with the PPAK integral field unit at the 3.5-m telescope in the Centro Astron\\'omico Hispano Alem\\'an. Our data reveal an asymmetric rotating velocity field with a peak to peak difference of 60 km s$^{-1}$. The kinematic centre is found to be at the position of a central velocity width maximum ($\\sigma=54\\pm1$ km s$^{-1}$), which is consistent with the position of the luminosity-weighted centroid of the entire galaxy. The position angle of the minor rotation axis is 168$^{\\circ}$ as measured from the orientation of the velocity field contours. At least two decoupled kinematic components are found. The first one is compact and coincides with the position of the second most active star formation region (clump B). The second one is extended and does not have a clear optical counterpart. No evidence of active galactic nuclei activity or supernovae galactic winds poweri...

  17. 3D kinematic measurement of human movement using low cost fish-eye cameras

    Science.gov (United States)

    Islam, Atiqul; Asikuzzaman, Md.; Garratt, Matthew A.; Pickering, Mark R.

    2017-02-01

    3D motion capture is difficult when the capturing is performed in an outdoor environment without controlled surroundings. In this paper, we propose a new approach of using two ordinary cameras arranged in a special stereoscopic configuration and passive markers on a subject's body to reconstruct the motion of the subject. Firstly for each frame of the video, an adaptive thresholding algorithm is applied for extracting the markers on the subject's body. Once the markers are extracted, an algorithm for matching corresponding markers in each frame is applied. Zhang's planar calibration method is used to calibrate the two cameras. As the cameras use the fisheye lens, they cannot be well estimated using a pinhole camera model which makes it difficult to estimate the depth information. In this work, to restore the 3D coordinates we use a unique calibration method for fisheye lenses. The accuracy of the 3D coordinate reconstruction is evaluated by comparing with results from a commercially available Vicon motion capture system.

  18. Polyphase tertiary fold-and-thrust tectonics in the Belluno Dolomites: new mapping, kinematic analysis, and 3D modelling

    Science.gov (United States)

    Chistolini, Filippo; Bistacchi, Andrea; Massironi, Matteo; Consonni, Davide; Cortinovis, Silvia

    2014-05-01

    The Belluno Dolomites are comprised in the eastern sector of the Southern Alps, which corresponds to the fold-and-thrust belt at the retro-wedge of the Alpine collisional orogen. They are characterized by a complex and polyphase fold-and-thrust tectonics, highlighted by multiple thrust sheets and thrust-related folding. We have studied this tectonics in the Vajont area where a sequence of Jurassic, Cretaceous and Tertiary units have been involved in multiple deformations. The onset of contractional tectonics in this part of the Alps is constrained to be Tertiary (likely Post-Eocene) by structural relationships with the Erto Flysch, whilst in the Mesozoic tectonics was extensional. We have recognized two contractional deformation phases (D1 and D2 in the following), of which only the second was mentioned in previous studies of the area and attributed to the Miocene Neoalpine event. D1 and D2 are characterized by roughly top-to-WSW (possibly Dinaric) and top-to-S (Alpine) transport directions respectively, implying a 90° rotation of the regional-scale shortening axis, and resulting in complex thrust and fold interference and reactivation patterns. Geological mapping and detailed outcrop-scale kinematic analysis allowed us to characterize the kinematics and chronology of deformations. Particularly, relative chronology was unravelled thanks to (1) diagnostic fold interference patterns and (2) crosscutting relationships between thrust faults and thrust-related folds. A km-scale D1 syncline, filled with the Eocene Erto Flysch and "decapitated" by a D2 thrust fault, provides the best map-scale example of crosscutting relationships allowing to reconstruct the faulting history. Due to the strong competence contrast between Jurassic carbonates and Tertiary flysch, in this syncline spectacular duplexes were also developed during D2. In order to quantitatively characterize the complex interference pattern resulting from two orthogonal thrusting and folding events, we

  19. Using Gas Kinematics To Constrain 3D Models of Disks: IC 2531

    CERN Document Server

    Eigenbrot, Arthur

    2013-01-01

    We use deep, longslit spectra of the nearby edge on galaxy IC 2531 to obtain gas kinematics out to 5 radial scale-lengths (40 kpc) and 4 vertical scale-heights (1.7 kpc). The large vertical range spanned by our data offers unique leverage to constrain three-dimensional models. The shape of the observed emission-line profiles offer insights to line-of-sight density distributions in the disk, and we discuss the possibility that we are seeing disk-flaring in the ionized gas. Finally, we begin to quantify measurements of line shape to allow model galaxies to be compared to data across all radii and heights simultaneously.

  20. IN VIVO KINEMATICS OF THE ANTERIOR CRUCIATE LIGAMENT DEFICIENT KNEE DURING WIDE-BASED SQUAT USING A 2D/3D REGISTRATION TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Takeshi Miyaji

    2012-12-01

    Full Text Available Anterior cruciate ligament (ACL deficiency increases the risk of early osteoarthritis (OA. Studies of ACL deficient knee kinematics would be important to reveal the disease process and therefore to find mechanisms which would potentially slow OA progression. The purpose of this study was to determine if in vivo kinematics of the anterior cruciate ligament deficient (ACLD knee during a wide-based squat activity differ from kinematics of the contralateral intact knee. Thirty-three patients with a unilateral ACLD knee consented to participate in this institutional review board approved study with the contralateral intact knee serving as the control. In vivo knee kinematics during the wide-based squat were analyzed using a 2D/3D registration technique utilizing CT-based bone models and lateral fluoroscopy. Comparisons were performed using values between 0 and 100° flexion both in flexion and extension phases of the squat activity. Both the ACLD and intact knees demonstrated increasing tibial internal rotation with knee flexion, and no difference was observed in tibial rotation between the groups. The tibia in the ACLD knee was more anterior than that of the contralateral knees at 0 and 5° flexion in both phases (p < 0.05. Tibiofemoral medial contact points of the ACLD knees were more posterior than that of the contralateral knees at 5, 10 and 15° of knee flexion in the extension phase of the squat activity (p < 0.05. Tibiofemoral lateral contact points of the ACLD knees were more posterior than that of the contralateral knees at 0° flexion in the both phases (p < 0.05. The kinematics of the ACLD and contralateral intact knees were similar during the wide-based squat except at the low flexion angles. Therefore, we conclude the wide-based squat may be recommended for the ACLD knee by avoiding terminal extension

  1. 2D vs. 3D mammography observer study

    Science.gov (United States)

    Fernandez, James Reza F.; Hovanessian-Larsen, Linda; Liu, Brent

    2011-03-01

    Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using a mammography phantom was performed to compare traditional 2D mammography with this ne 3D mammography technique. In comparing 3D and 2D mammography there was no difference in calcification detection, and mass detection was better in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Given the limitations of the mammography phantom used, however, a clearer picture in comparing 3D and 2D mammography may be better acquired with the incorporation of human studies in the future.

  2. Image based 3D city modeling : Comparative study

    Science.gov (United States)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2014-06-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing rapidly for various engineering and non-engineering applications. Generally four main image based approaches were used for virtual 3D city models generation. In first approach, researchers were used Sketch based modeling, second method is Procedural grammar based modeling, third approach is Close range photogrammetry based modeling and fourth approach is mainly based on Computer Vision techniques. SketchUp, CityEngine, Photomodeler and Agisoft Photoscan are the main softwares to represent these approaches respectively. These softwares have different approaches & methods suitable for image based 3D city modeling. Literature study shows that till date, there is no complete such type of comparative study available to create complete 3D city model by using images. This paper gives a comparative assessment of these four image based 3D modeling approaches. This comparative study is mainly based on data acquisition methods, data processing techniques and output 3D model products. For this research work, study area is the campus of civil engineering department, Indian Institute of Technology, Roorkee (India). This 3D campus acts as a prototype for city. This study also explains various governing parameters, factors and work experiences. This research work also gives a brief introduction, strengths and weakness of these four image based techniques. Some personal comment is also given as what can do or what can't do from these softwares. At the last, this study shows; it concluded that, each and every software has some advantages and limitations. Choice of software depends on user requirements of 3D project. For normal visualization project, SketchUp software is a good option. For 3D documentation record, Photomodeler gives good result. For Large city

  3. The ATLAS3D project - XVII. Linking photometric and kinematic signatures of stellar discs in early-type galaxies

    CERN Document Server

    Krajnovic, Davor; Blitz, Leo; Bois, Maxime; Bournaud, Frederic; Bureau, Martin; Cappellari, Michele; Davies, Roger L; Davis, Timothy A; de Zeeuw, P T; Emsellem, Eric; Khochfar, Sadegh; Kuntschner, Harald; McDermid, Richard M; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M

    2012-01-01

    [Abridged] We analyse the morphological structures in galaxies of the ATLAS3D sample by fitting a single Sersic profile and decomposing all non-barred objects (180 of 260 objects) in two components parameterised by an exponential and a general Sersic function. The aim of this analysis is to look for signatures of discs in light distributions of nearby early-type galaxies and compare them to kinematic properties. Using Sersic index from single component fits for a distinction between slow and fast rotators, or even late- and early-type galaxies, is not recommended. Assuming that objects with n>3 are slow rotators (or ellipticals), there is only a 22 per cent probability to correctly classify objects as slow rotators (or 37 per cent of previously classified as ellipticals). We show that exponential sub-components, as well as light profiles fitted with only a single component of a low Sersic index, can be linked with the kinematic evidence for discs in early-type galaxies. The median disk-to-total light ratio fo...

  4. Sensitivity of the OLGA and VCM models to erroneous marker placement: effects on 3D-gait kinematics

    NARCIS (Netherlands)

    Groen, B.E.; Geurts, M.; Nienhuis, B.; Duysens, J.E.J.

    2012-01-01

    Gait data need to be reliable to be valuable for clinical decision-making. To reduce the impact of marker placement errors, the Optimized Lower Limb Gait Analysis (OLGA) model was developed. The purpose of this study was to assess the sensitivity of the kinematic gait data to a standard marker displ

  5. M3D project for simulation studies of plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Park, W.; Belova, E.V.; Fu, G.Y. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Strauss, H.R. [New York Univ., NY (United States); Sugiyama, L.E. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

    1998-12-31

    The M3D (Multi-level 3D) project carries out simulation studies of plasmas of various regimes using multi-levels of physics, geometry, and mesh schemes in one code package. This paper and papers by Strauss, Sugiyama, and Belova in this workshop describe the project, and present examples of current applications. The currently available physics models of the M3D project are MHD, two-fluids, gyrokinetic hot particle/MHD hybrid, and gyrokinetic particle ion/two-fluid hybrid models. The code can be run with both structured and unstructured meshes.

  6. True 3D kinematic analysis for slope instability assessment in the Siq of Petra (Jordan), from high resolution TLS

    Science.gov (United States)

    Gigli, Giovanni; Margottini, Claudio; Spizzichino, Daniele; Ruther, Heinz; Casagli, Nicola

    2016-04-01

    released, stratigraphic setting and tectonic activity can be recognized. As a consequence, rock-falls have been occurring, even recently, with unstable rock mass volumes ranging from 0.1 m3 up to over some hundreds m3. Slope instability, acceleration of crack deformation and consequent increasing of rock-fall hazard conditions, could threaten the safety of tourist as well as the integrity of the heritage. 3D surface model coming from Terrestrial Laser Scanner acquisitions was developed almost all over the site of Petra, including the Siq. Comprehensively, a point cloud of five billion points was generated making the site of Petra likely the largest scanned archaeological site in the word. As far as the Siq, the scanner was positioned on the path floor at intervals of not more than 10 meters from each station. The total number of scans in the Siq was 220 with an average point cloud interval of approximately 3 cm. Subsequently, for the definition of the main rockfall source areas, a spatial kinematic analysis for the whole Siq has been performed, by using discontinuity orientation data extracted from the point cloud by means of the software Diana. Orientation, number of sets, spacing/frequency, persistence, block size and scale dependent roughness was obtained combining fieldwork and automatic analysis. This kind of analysis is able to establish where a particular instability mechanism is kinematically feasible, given the geometry of the slope, the orientation of discontinuities and shear strength of the rock. The final outcome of this project was a detail landslide kinematic index map, reporting main potential instability mechanisms for a given area. The kinematic index was finally calibrated for each instability mechanism (plane failure; wedge failure; block toppling; flexural toppling) surveyed in the site. The latter is including the collapse occurred in May 2015, likely not producing any victim, in a sector clearly identified by the susceptibility maps produced by the

  7. Kinematic Analysis of Healthy Hips during Weight-Bearing Activities by 3D-to-2D Model-to-Image Registration Technique

    Directory of Open Access Journals (Sweden)

    Daisuke Hara

    2014-01-01

    Full Text Available Dynamic hip kinematics during weight-bearing activities were analyzed for six healthy subjects. Continuous X-ray images of gait, chair-rising, squatting, and twisting were taken using a flat panel X-ray detector. Digitally reconstructed radiographic images were used for 3D-to-2D model-to-image registration technique. The root-mean-square errors associated with tracking the pelvis and femur were less than 0.3 mm and 0.3° for translations and rotations. For gait, chair-rising, and squatting, the maximum hip flexion angles averaged 29.6°, 81.3°, and 102.4°, respectively. The pelvis was tilted anteriorly around 4.4° on average during full gait cycle. For chair-rising and squatting, the maximum absolute value of anterior/posterior pelvic tilt averaged 12.4°/11.7° and 10.7°/10.8°, respectively. Hip flexion peaked on the way of movement due to further anterior pelvic tilt during both chair-rising and squatting. For twisting, the maximum absolute value of hip internal/external rotation averaged 29.2°/30.7°. This study revealed activity dependent kinematics of healthy hip joints with coordinated pelvic and femoral dynamic movements. Kinematics’ data during activities of daily living may provide important insight as to the evaluating kinematics of pathological and reconstructed hips.

  8. 3D Spectroscopy of Local Luminous Compact Blue Galaxies: Kinematic Maps of a Sample of 22 Objects

    CERN Document Server

    Pérez-Gallego, J; Castillo-Morales, A; Gallego, J; Castander, F J; Garland, C A; Gruel, N; Pisano, D J; Zamorano, J

    2011-01-01

    We use three dimensional optical spectroscopy observations of a sample of 22 local Luminous Compact Blue Galaxies (LCBGs) to create kinematic maps. By means of these, we classify the kinematics of these galaxies into three different classes: rotating disk (RD), perturbed rotation (PR), and complex kinematics (CK). We find 48% are RDs, 28% are PRs, and 24% are CKs. RDs show rotational velocities that range between $\\sim50$ and $\\sim200 km s^{-1}$, and dynamical masses that range between $\\sim1\\times10^{9}$ and $\\sim3\\times10^{10} M_{\\odot}$. We also address the following two fundamental questions through the study of the kinematic maps: \\emph{(i) What processes are triggering the current starbust in LCBGs?} We search our maps of the galaxy velocity fields for signatures of recent interactions and close companions that may be responsible for the enhanced star formation in our sample. We find 5% of objects show evidence of a recent major merger, 10% of a minor merger, and 45% of a companion. This argues in favor...

  9. A Preliminary Study of 3D Printing on Rock Mechanics

    Science.gov (United States)

    Jiang, Chao; Zhao, Gao-Feng

    2015-05-01

    3D printing is an innovative manufacturing technology that enables the printing of objects through the accumulation of successive layers. This study explores the potential application of this 3D printing technology for rock mechanics. Polylactic acid (PLA) was used as the printing material, and the specimens were constructed with a "3D Touch" printer that employs fused deposition modelling (FDM) technology. Unconfined compressive strength (UCS) tests and direct tensile strength (DTS) tests were performed to determine the Young's modulus ( E) and Poisson's ratio ( υ) for these specimens. The experimental results revealed that the PLA specimens exhibited elastic to brittle behaviour in the DTS tests and exhibited elastic to plastic behaviour in the UCS tests. The influence of structural changes in the mechanical response of the printed specimen was investigated; the results indicated that the mechanical response is highly influenced by the input structures, e.g., granular structure, and lattice structure. Unfortunately, our study has demonstrated that the FDM 3D printing with PLA is unsuitable for the direct simulation of rock. However, the ability for 3D printing on manufactured rock remains appealing for researchers of rock mechanics. Additional studies should focus on the development of an appropriate substitution for the printing material (brittle and stiff) and modification of the printing technology (to print 3D grains with arbitrary shapes).

  10. NGT-3D: a simple nematode cultivation system to study Caenorhabditis elegans biology in 3D

    Directory of Open Access Journals (Sweden)

    Tong Young Lee

    2016-04-01

    Full Text Available The nematode Caenorhabditis elegans is one of the premier experimental model organisms today. In the laboratory, they display characteristic development, fertility, and behaviors in a two dimensional habitat. In nature, however, C. elegans is found in three dimensional environments such as rotting fruit. To investigate the biology of C. elegans in a 3D controlled environment we designed a nematode cultivation habitat which we term the nematode growth tube or NGT-3D. NGT-3D allows for the growth of both nematodes and the bacteria they consume. Worms show comparable rates of growth, reproduction and lifespan when bacterial colonies in the 3D matrix are abundant. However, when bacteria are sparse, growth and brood size fail to reach levels observed in standard 2D plates. Using NGT-3D we observe drastic deficits in fertility in a sensory mutant in 3D compared to 2D, and this defect was likely due to an inability to locate bacteria. Overall, NGT-3D will sharpen our understanding of nematode biology and allow scientists to investigate questions of nematode ecology and evolutionary fitness in the laboratory.

  11. NGT-3D: a simple nematode cultivation system to study Caenorhabditis elegans biology in 3D

    Science.gov (United States)

    Lee, Tong Young; Yoon, Kyoung-hye; Lee, Jin Il

    2016-01-01

    ABSTRACT The nematode Caenorhabditis elegans is one of the premier experimental model organisms today. In the laboratory, they display characteristic development, fertility, and behaviors in a two dimensional habitat. In nature, however, C. elegans is found in three dimensional environments such as rotting fruit. To investigate the biology of C. elegans in a 3D controlled environment we designed a nematode cultivation habitat which we term the nematode growth tube or NGT-3D. NGT-3D allows for the growth of both nematodes and the bacteria they consume. Worms show comparable rates of growth, reproduction and lifespan when bacterial colonies in the 3D matrix are abundant. However, when bacteria are sparse, growth and brood size fail to reach levels observed in standard 2D plates. Using NGT-3D we observe drastic deficits in fertility in a sensory mutant in 3D compared to 2D, and this defect was likely due to an inability to locate bacteria. Overall, NGT-3D will sharpen our understanding of nematode biology and allow scientists to investigate questions of nematode ecology and evolutionary fitness in the laboratory. PMID:26962047

  12. 3D CAD for concept design - a case study

    Directory of Open Access Journals (Sweden)

    S.K. Mandal

    2013-07-01

    Full Text Available Generally for any new design initially a concept layout in 2D CAD is generated. But sometimes if the geometry of product becomes complicated, then 3D CAD model is preferred. Because 3D CAD model can give us a complete all side view at a time like a real product, but in a virtual world. The present case study will show the utilization of 3D CAD at the concept design stage of a complicated shaped product for a new system. This will also give an idea about cost and time comparison. Thus this paper will describe about the importance of 3D CAD tools for product development. 

  13. 3D musculo-skeletal finite element analysis of the foot kinematics under muscle activation with and without ankle arthrodesis

    OpenAIRE

    Perrier, Antoine; Bucki, Marek; Luboz, Vincent; Vuillerme, Nicolas; Payan, Yohan

    2015-01-01

    International audience; The choice between arthrodesis and arthroplasty in the context of advanced ankle arthrosis remains a highly disputed topic in the field of foot and ankle surgery. Arthrodesis, however, represents the most popular option. Biomechanical modeling has been widely used to investigate static loading of cadaveric feet as well as consequences of arthrodesis on bony structures. Although foot kinematics has been studied using motion analysis, this approach lacks accuracy in capt...

  14. A STUDY ON USING 3D VISUALIZATION AND SIMULATION PROGRAM (OPTITEX 3D ON LEATHER APPAREL

    Directory of Open Access Journals (Sweden)

    Ork Nilay

    2016-05-01

    Full Text Available Leather is a luxury garment. Design, material, labor, fitting and time costs are very effective on the production cost of the consumer leather good. 3D visualization and simulation programs which are getting popular in textile industry can be used for material, labor and time saving in leather apparel. However these programs have a very limited use in leather industry because leather material databases are not sufficient as in textile industry. In this research, firstly material properties of leather and textile fabric were determined by using both textile and leather physical test methods, and interpreted and introduced in the program. Detailed measures of an experimental human body were measured from a 3D body scanner. An avatar was designed according to these measurements. Then a prototype dress was made by using Computer Aided Design-CAD program for designing the patterns. After the pattern making, OptiTex 3D visualization and simulation program was used to visualize and simulate the dresses. Additionally the leather and cotton fabric dresses were sewn in real life. Then the visual and real life dresses were compared and discussed. 3D virtual prototyping seems a promising potential in future manufacturing technologies by evaluating the fitting of garments in a simple and quick way, filling the gap between 3D pattern design and manufacturing, providing virtual demonstrations to customers.

  15. Study of capabilities and limitations of 3D printing technology

    Science.gov (United States)

    Lemu, H. G.

    2012-04-01

    3D printing is one of the developments in rapid prototyping technology. The inception and development of the technology has highly assisted the product development phase of product design and manufacturing. The technology is particularly important in educating product design and 3D modeling because it helps students to visualize their design idea, to enhance their creative design process and enables them to touch and feel the result of their innovative work. The availability of many 3D printers on the market has created a certain level of challenge for the user. Among others, complexity of part geometry, material type, compatibility with 3D CAD models and other technical aspects still need in-depth study. This paper presents results of the experimental work on the capabilities and limitations of the Z510 3D printer from Z-corporation. Several parameters such as dimensional and geometrical accuracy, surface quality and strength as a function of model size, orientation and file exchange format are closely studied.

  16. Seeding Osteoblasts onto Osteocytes: An In Vitro 3D Study

    Directory of Open Access Journals (Sweden)

    Judith Green

    2006-01-01

    Full Text Available Understanding the mechanisms by which bone cells communicate is vital in exploring diseases characterized by bone degeneration, namely, osteoporosis. Cell seeding has been used in two dimensional (2D cell cultures to study how bone cells interact with one another, specifically, to prove the existence of gap junctions between osteocytes and osteoblasts. However, the natural three dimensional (3D state of bone tissue requires examining it in 3D. Accordingly, the cell seeding procedure was tested on trabecular bone core explants to ascertain whether it is useful in 3D studies as well. When the dye concentrations taken from past 2D experiments were used, Day 1 showed many osteoblasts, but by Day 2 the cells were not visible. The dye concentrations were then doubled to determine if the osteoblasts were still seeded onto the bone cores and viable but not visible, or if they had actually died. With these dye concentrations, the stained osteoblasts were still visible on the second day after seeding, indicating that the cells were seeded and living. According to these results, it is evident that with minor modifications of the 2D procedure, it is possible to seed osteoblasts onto osteocytes in 3D, making this a credible test for the presence of gap junctions in 3D bone tissue.

  17. Isotropic at the Break? 3D Kinematics of Milky Way Halo Stars in the Foreground of M31

    CERN Document Server

    Cunningham, Emily C; Guhathakurta, Puragra; Rockosi, Constance M; van der Marel, Roeland P; Toloba, Elisa; Gilbert, Karoline M; Sohn, Sangmo Tony; Dorman, Claire E

    2016-01-01

    We present the line-of-sight (LOS) velocities for 13 distant main sequence Milky Way halo stars with published proper motions. The proper motions were measured using long baseline (5-7 years) multi-epoch HST/ACS photometry, and the LOS velocities were extracted from deep (5-6 hour integrations) Keck II/DEIMOS spectra. We estimate the parameters of the velocity ellipsoid of the stellar halo using a Markov chain Monte Carlo ensembler sampler method. The velocity second moments in the directions of the Galactic $(l,b,$ LOS) coordinate system are $\\langle v^2_l \\rangle^{1/2} = 138^{+43}_{-26}$ km/s, $\\langle v^2_b \\rangle^{1/2} = 88^{+28}_{-17}$ km/s, and $\\langle v^2_{\\rm{LOS}} \\rangle^{1/2} = 91^{+27}_{-14}$ km/s. We use these ellipsoid parameters to constrain the velocity anisotropy of the stellar halo. Ours is the first measurement of the anisotropy parameter $\\beta$ using 3D kinematics outside of the solar neighborhood. We find $\\beta=-0.3^{+0.4}_{-0.9}$, consistent with isotropy and lower than solar neighbo...

  18. An intelligent recovery progress evaluation system for ACL reconstructed subjects using integrated 3-D kinematics and EMG features.

    Science.gov (United States)

    Malik, Owais A; Senanayake, S M N Arosha; Zaheer, Dansih

    2015-03-01

    An intelligent recovery evaluation system is presented for objective assessment and performance monitoring of anterior cruciate ligament reconstructed (ACL-R) subjects. The system acquires 3-D kinematics of tibiofemoral joint and electromyography (EMG) data from surrounding muscles during various ambulatory and balance testing activities through wireless body-mounted inertial and EMG sensors, respectively. An integrated feature set is generated based on different features extracted from data collected for each activity. The fuzzy clustering and adaptive neuro-fuzzy inference techniques are applied to these integrated feature sets in order to provide different recovery progress assessment indicators (e.g., current stage of recovery, percentage of recovery progress as compared to healthy group, etc.) for ACL-R subjects. The system was trained and tested on data collected from a group of healthy and ACL-R subjects. For recovery stage identification, the average testing accuracy of the system was found above 95% (95-99%) for ambulatory activities and above 80% (80-84%) for balance testing activities. The overall recovery evaluation performed by the proposed system was found consistent with the assessment made by the physiotherapists using standard subjective/objective scores. The validated system can potentially be used as a decision supporting tool by physiatrists, physiotherapists, and clinicians for quantitative rehabilitation analysis of ACL-R subjects in conjunction with the existing recovery monitoring systems.

  19. Jurassic extension and Cenozoic inversion tectonics in the Asturian Basin, NW Iberian Peninsula: 3D structural model and kinematic evolution

    Science.gov (United States)

    Uzkeda, Hodei; Bulnes, Mayte; Poblet, Josep; García-Ramos, José Carlos; Piñuela, Laura

    2016-09-01

    We constructed a geological map, a 3D model and cross-sections, carried out a structural analysis, determined the stress fields and tectonic transport vectors, restored a cross section and performed a subsidence analysis to unravel the kinematic evolution of the NE emerged portion of the Asturian Basin (NW Iberian Peninsula), where Jurassic rocks crop out. The major folds run NW-SE, normal faults exhibit three dominant orientations: NW-SE, NE-SW and E-W, and thrusts display E-W strikes. After Upper Triassic-Lower Jurassic thermal subsidence, Middle Jurassic doming occurred, accompanied by normal faulting, high heat flow and basin uplift, followed by Upper Jurassic high-rate basin subsidence. Another extensional event, possibly during Late Jurassic-Early Cretaceous, caused an increment in the normal faults displacement. A contractional event, probably of Cenozoic age, led to selective and irregularly distributed buttressing and fault reactivation as reverse or strike-slip faults, and folding and/or offset of some previous faults by new generation folds and thrusts. The Middle Jurassic event could be a precursor of the Bay of Biscay and North Atlantic opening that occurred from Late Jurassic to Early Cretaceous, whereas the Cenozoic event would be responsible for the Pyrenean and Cantabrian ranges and the partial closure of the Bay of Biscay.

  20. The Atlas3D project - XIV. The extent and kinematics of molecular gas in early-type galaxies

    CERN Document Server

    Davis, Timothy A; Bureau, Martin; Cappellari, Michele; Scott, Nicholas; Young, Lisa M; Blitz, Leo; Crocker, Alison F; Bayet, Estelle; Bois, Maxime; Bournaud, Frédéric; Davies, Roger L; de Zeeuw, P Tim; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Serra, Paolo; Weijmans, Anne-Marie

    2012-01-01

    We use interferometric CO observations to compare the extent, surface brightness profiles and kinematics of the molecular gas in CO-rich Atlas3D early-type galaxies (ETGs) and spiral galaxies. We find that the molecular gas extent is smaller in absolute terms in ETGs than in late-type galaxies, but that the size distributions are similar once scaled by the galaxies optical/stellar characteristic scale-lengths. Virgo cluster ETGs have less extended molecular gas reservoirs than field counterparts. Approximately half of ETGs have molecular gas surface brightness profiles that follow the stellar light profile. These systems often have relaxed gas out to large radii, suggesting they are unlikely to have had recent merger/accretion events. A third of the sample galaxies show molecular gas surface brightness profiles that fall off slower than the light, and sometimes show a truncation. We suggest that ram pressure stripping and/or the presence of hot gas has compressed/truncated the gas in these systems. The remain...

  1. 3D Geo-Information in Urban Climate Studies

    Science.gov (United States)

    Petrescu, F.; Aldea, M.; Luca, O.; Iacoboaea, C.; Gaman, F.; Parlow, E.

    2016-10-01

    3D geo-information is essential for urban climate studies. It is obvious that both natural environment and built-up environment play the fundamental role in defining the climatic conditions for urban areas, which affect the quality of human life and human comfort. The paper presents the main categories of 3D geo-information used in urban climate studies and roles in creating and operating the numerical models specially designed to simulate urban planning scenarios and improvement of the urban climate situation.

  2. 3-D simulation for the tectonic evolution around the Kanto Region of Japan using the kinematic plate subduction model

    Science.gov (United States)

    Hashima, A.; Sato, T.; Ito, T.; Miyauchi, T.; Kameo, K.; Yamamoto, S.

    2011-12-01

    In the Kanto region of Japan, we can observe one of the most active crustal deformations on the earth. In the southern part of the Boso peninsula to the south, the uplift rate is estimated to be 5 mm/yr from the height of marine terraces. From geological evidence, the Kanto mountains to the west are considered to uplift at 1mm/yr. In contrast, the center part of the Kanto region is stable or subsiding, covered by the Holocene sediments. The depth of the basement reaches 3 km at the deepest. Vertical deformation in the timescale of 1 Myr is being revealed by the analysis of the recent seismic reflection experiments compared with the heights of the dated sediment layers exposed on land. These crustal deformation occurs in a highly complex tectonic setting with four plates interacting with each other: beneath Kanto, situated on the Eurasian and North American plates, the Philippine sea plate subducts and the Pacific plate further descends beneath the North American and Philippine sea plates, forming the unique trench-trench-trench triple junction on the earth. In addition, the Izu-Bonin (Ogasawara) arc on the Philippine sea plate is colliding with the Japan islands due to the buoyancy of the arc crust. At the plate boundaries near the Izu-Bonin arc, large interplate earthquakes occurred at the Sagami trough in 1703 and 1923 (Kanto earthquake) and at the Nankai trough in 1707, 1854 and 1944. To reveal the crustal deformation under these plate-to-plate interactions, we use the kinematic plate subduction model based on the elastic dislocation theory. This model is based on the idea that mechanical interaction between plates can rationally be represented by the increase of the displacement discontinuity (dislocation) across plate interfaces. Given the 3-D geometry of plate interfaces, the distribution of slip rate vectors for simple plate subduction can be obtained directly from relative plate velocities. In collision zones, the plate with arc crust cannot easily descend

  3. Photogrammetric 3D skull/photo superimposition: A pilot study.

    Science.gov (United States)

    Santoro, Valeria; Lubelli, Sergio; De Donno, Antonio; Inchingolo, Alessio; Lavecchia, Fulvio; Introna, Francesco

    2017-02-13

    The identification of bodies through the examination of skeletal remains holds a prominent place in the field of forensic investigations. Technological advancements in 3D facial acquisition techniques have led to the proposal of a new body identification technique that involves a combination of craniofacial superimposition and photogrammetry. The aim of this study was to test the method by superimposing various computerized 3D images of skulls onto various photographs of missing people taken while they were still alive in cases when there was a suspicion that the skulls in question belonged to them. The technique is divided into four phases: preparatory phase, 3d acquisition phase, superimposition phase, and metric image analysis 3d. The actual superimposition of the images was carried out in the fourth step. and was done so by comparing the skull images with the selected photos. Using a specific software, the two images (i.e. the 3D avatar and the photo of the missing person) were superimposed. Cross-comparisons of 5 skulls discovered in a mass grave, and of 2 skulls retrieved in the crawlspace of a house were performed. The morphologyc phase reveals a full overlap between skulls and photos of disappeared persons. Metric phase reveals that correlation coefficients of this values, higher than 0.998-0,997 allow to confirm identification hypothesis.

  4. Data Extraction from Computer Acquired Images of a Given 3D Environment for Enhanced Computer Vision and its Applications in Kinematic Design of Robos

    Directory of Open Access Journals (Sweden)

    K. Selvaraj

    2010-01-01

    Full Text Available Problem statement: Literature review was mainly aiming at recognition of objects by the computer and to make explicit the information that is implicit in the attributes of 3D objects and their relative positioning in the 3D Environment (3DE as seen in the 2D images. However quantitative estimate of position of objects in the 3DE in terms of their x, y and z co-ordinates was not touched upon. This issue assumes important dimension in areas like Kinematic Design of Robos (KDR, while the Robo is negotiating with z field or Depth Field (DF. Approach: The existing methods such as pattern matching used by Robos for Depth Visualization (DV using a set of external commands, were reviewed in detail. A methodology was developed in this study to enable the Robo to quantify the depth by itself, instead of looking for external commands. Results: The Results are presented and discussed. The Results are presented and discussed. The major conclusions drawn based on the results were listed. Conclusion: The major contribution of the present study consists of computing the Depth (D1 corresponding to the depth (d measured from the photographic image of a 3DE. It had been concluded that, there exists an excellent agreement between the computed depth D1 and the corresponding actual Depth (D. The percent deviation of D1 from D (DP lies between ±2 over the entire region of the (DF. Through suitable interfacing of the developed equation with the kinematic design of Robos, the Robo can generate its own commands for DF negotiations.

  5. 3D Studies of Neutral and Ionised Gas and Stars in Seyfert and Inactive Galaxies

    CERN Document Server

    Mundell, C G; Schinnerer, E; Nagar, N; Haan, S; Wilcots, E; Wilson, A S; Emsellem, E; Ferruit, P; Peletier, R F; De Zeeuw, P T

    2006-01-01

    We are conducting the first systematic 3D spectroscopic imaging survey to quantify the properties of the atomic gas (HI) in a distance-limited sample of 28 Seyfert galaxies and a sample of 28 inactive control galaxies with well-matched optical properties (the VHIKINGS survey). This study aims to address the role of the host galaxy in nuclear activity and confront outstanding controversies in optical/IR imaging surveys. Early results show possible relationships between Seyfert activity and HI extent, content and the prevalence of small, nearby gas-rich dwarf galaxies (M(HI)~10^7 Msun); results will be tested via rigorous comparison with control galaxies. Initial results from our optical followup study of 15 of our galaxies using the SAURON integral field unit on the WHT suggest a possible difference between Seyfert and inactive stellar and gaseous kinematics that support the conclusion that internal kinematics of galaxies are the key to nuclear activity.

  6. Construction of semi-dynamic model of subduction zone with given plate kinematics in 3D sphere

    Science.gov (United States)

    Morishige, M.; Honda, S.; Tackley, P. J.

    2010-09-01

    We present a semi-dynamic subduction zone model in a three-dimensional spherical shell. In this model, velocity is imposed on the top surface and in a small three-dimensional region around the shallow plate boundary while below this region, the slab is able to subduct under its own weight. Surface plate velocities are given by Euler's theorem of rigid plate rotation on a sphere. The velocity imposed in the region around the plate boundary is determined so that mass conservation inside the region is satisfied. A kinematic trench migration can be easily incorporated in this model. As an application of this model, mantle flow around slab edges is considered, and we find that the effect of Earth curvature is small by comparing our model with a similar one in a rectangular box, at least for the parameters used in this study. As a second application of the model, mantle flow around a plate junction is studied, and we find the existence of mantle return flow perpendicular to the plate boundary. Since this model can naturally incorporate the spherical geometry and plate movement on the sphere, it is useful for studying a specific subduction zone where the plate kinematics is well constrained.

  7. 3D Regression Heat Map Analysis of Population Study Data.

    Science.gov (United States)

    Klemm, Paul; Lawonn, Kai; Glaßer, Sylvia; Niemann, Uli; Hegenscheid, Katrin; Völzke, Henry; Preim, Bernhard

    2016-01-01

    Epidemiological studies comprise heterogeneous data about a subject group to define disease-specific risk factors. These data contain information (features) about a subject's lifestyle, medical status as well as medical image data. Statistical regression analysis is used to evaluate these features and to identify feature combinations indicating a disease (the target feature). We propose an analysis approach of epidemiological data sets by incorporating all features in an exhaustive regression-based analysis. This approach combines all independent features w.r.t. a target feature. It provides a visualization that reveals insights into the data by highlighting relationships. The 3D Regression Heat Map, a novel 3D visual encoding, acts as an overview of the whole data set. It shows all combinations of two to three independent features with a specific target disease. Slicing through the 3D Regression Heat Map allows for the detailed analysis of the underlying relationships. Expert knowledge about disease-specific hypotheses can be included into the analysis by adjusting the regression model formulas. Furthermore, the influences of features can be assessed using a difference view comparing different calculation results. We applied our 3D Regression Heat Map method to a hepatic steatosis data set to reproduce results from a data mining-driven analysis. A qualitative analysis was conducted on a breast density data set. We were able to derive new hypotheses about relations between breast density and breast lesions with breast cancer. With the 3D Regression Heat Map, we present a visual overview of epidemiological data that allows for the first time an interactive regression-based analysis of large feature sets with respect to a disease.

  8. Gait pattern in myotonic dystrophy (Steinert disease): a kinematic, kinetic and EMG evaluation using 3D gait analysis.

    Science.gov (United States)

    Galli, Manuela; Cimolin, Veronica; Crugnola, Veronica; Priano, Lorenzo; Menegoni, Francesco; Trotti, Claudio; Milano, Eva; Mauro, Alessandro

    2012-03-15

    We investigated the gait pattern of 10 patients with myotonic dystrophy (Steinert disease; 4 females, 6 males; age: 41.5+7.6 years), compared to 20 healthy controls, through manual muscle test and gait analysis, in terms of kinematic, kinetic and EMG data. In most of patients (80%) distal muscle groups were weaker than proximal ones. Weakness at lower limbs was in general moderate to severe and MRC values evidenced a significant correlation between tibialis anterior and gastrocnemius medialis (R=0.91). An overall observation of gait pattern in patients when compared to controls showed that most spatio-temporal parameters (velocity, step length and cadence) were significantly different. As concerns kinematics, patients' pelvic tilt was globally in a higher position than control group, with reduced hip extension ability in stance phase and limited range of motion; 60% of the limbs revealed knee hyperextension during midstance and ankle joints showed a quite physiological position at initial contact and higher dorsiflexion during stance phase if compared to healthy individuals. Kinetic plots evidenced higher hip power during loading response and lower ankle power generation in terminal stance. The main EMG abnormalities were seen in tibialis anterior and gastrocnemius medialis muscles. In this study gait analysis gives objective and quantitative information about the gait pattern and the deviations due to the muscular situation of these patients; these results are important from a clinical point of view and suggest that rehabilitation programs for them should take these findings into account.

  9. THE KMOS{sup 3D} SURVEY: DESIGN, FIRST RESULTS, AND THE EVOLUTION OF GALAXY KINEMATICS FROM 0.7 ≤ z ≤ 2.7

    Energy Technology Data Exchange (ETDEWEB)

    Wisnioski, E.; Förster Schreiber, N. M.; Wuyts, S.; Wuyts, E.; Bandara, K.; Genzel, R.; Bender, R.; Davies, R.; Lang, P.; Mendel, J. T.; Beifiori, A.; Chan, J.; Fabricius, M.; Fudamoto, Y.; Kulkarni, S.; Kurk, J.; Lutz, D. [Max-Planck-Institut für extraterrestrische Physik (MPE), Giessenbachstr. 1, D-85748 Garching (Germany); Wilman, D.; Fossati, M. [Universitäts-Sternwarte, Ludwig-Maximilians-Universität, Scheinerstrasse 1, D-81679 München (Germany); Brammer, G., E-mail: emily@mpe.mpg.de [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others

    2015-02-01

    We present the KMOS{sup 3D} survey, a new integral field survey of over 600 galaxies at 0.7 < z < 2.7 using KMOS at the Very Large Telescope. The KMOS{sup 3D} survey utilizes synergies with multi-wavelength ground- and space-based surveys to trace the evolution of spatially resolved kinematics and star formation from a homogeneous sample over 5 Gyr of cosmic history. Targets, drawn from a mass-selected parent sample from the 3D-HST survey, cover the star formation-stellar mass (M {sub *}) and rest-frame (U – V) – M {sub *} planes uniformly. We describe the selection of targets, the observations, and the data reduction. In the first-year of data we detect Hα emission in 191 M {sub *} = 3 × 10{sup 9}-7 × 10{sup 11} M {sub ☉} galaxies at z = 0.7-1.1 and z = 1.9-2.7. In the current sample 83% of the resolved galaxies are rotation dominated, determined from a continuous velocity gradient and v {sub rot}/σ{sub 0} > 1, implying that the star-forming ''main sequence'' is primarily composed of rotating galaxies at both redshift regimes. When considering additional stricter criteria, the Hα kinematic maps indicate that at least ∼70% of the resolved galaxies are disk-like systems. Our high-quality KMOS data confirm the elevated velocity dispersions reported in previous integral field spectroscopy studies at z ≳ 0.7. For rotation-dominated disks, the average intrinsic velocity dispersion decreases by a factor of two from 50 km s{sup –1}at z ∼ 2.3 to 25 km s{sup –1}at z ∼ 0.9. Combined with existing results spanning z ∼ 0-3, we show that disk velocity dispersions follow an evolution that is consistent with the dependence of velocity dispersion on gas fractions predicted by marginally stable disk theory.

  10. On the use of a Euclidean norm function for the estimation of local dynamic stability from 3D kinematics using time-delayed Lyapunov analyses.

    Science.gov (United States)

    Beaudette, Shawn M; Howarth, Samuel J; Graham, Ryan B; Brown, Stephen H M

    2016-10-01

    Several different state-space reconstruction methods have been employed to assess the local dynamic stability (LDS) of a 3D kinematic system. One common method is to use a Euclidean norm (N) transformation of three orthogonal x, y, and z time-series' followed by the calculation of the maximum finite-time Lyapunov exponent (λmax) from the resultant N waveform (using a time-delayed state space reconstruction technique). By essentially acting as a weighted average, N has been suggested to account for simultaneous expansion and contraction along separate degrees of freedom within a 3D system (e.g. the coupling of dynamic movements between orthogonal planes). However, when estimating LDS using N, non-linear transformations inherent within the calculation of N should be accounted for. Results demonstrate that the use of N on 3D time-series data with arbitrary magnitudes of relative bias and zero-crossings cause the introduction of error in estimates of λmax obtained through N. To develop a standard for the analysis of 3D dynamic kinematic waveforms, we suggest that all dimensions of a 3D signal be independently shifted to avoid the incidence of zero-crossings prior to the calculation of N and subsequent estimation of LDS through the use of λmax.

  11. A study on developing customized bolus using 3D prints

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Sang Min; Yang, Jin Ho; Lee, Seung Hyun; Kim, Jin Uk; Yeom, Du Seok [Dept. of Proton Therapy Center, National Cancer Center, Ilsan (Korea, Republic of)

    2015-06-15

    3D Printers are used to create three-dimensional models based on blueprints. Based on this characteristic, it is feasible to develop a bolus that can minimize the air gap between skin and bolus in radiotherapy. This study aims to compare and analyze air gap and target dose at the branded 1 cm bolus with the developed customized bolus using 3D printers. RANDO phantom with a protruded tumor was used to procure images using CT simulator. CT DICOM file was transferred into the STL file, equivalent to 3D printers. Using this, customized bolus molding box (maintaining the 1 cm width) was created by processing 3D printers, and paraffin was melted to develop the customized bolus. The air gap of customized bolus and the branded 1 cm bolus was checked, and the differences in air gap was used to compare D{sub max}, D{sub min}, D{sub mean}, D{sub 95%} and V{sub 95%} in treatment plan through Eclipse. Customized bolus production period took about 3 days. The total volume of air gap was average 3.9 cm{sup 3} at the customized bolus. And it was average 29.6cm{sup 3} at the branded 1 cm bolus. The customized bolus developed by the 3D printer was more useful in minimizing the air gap than the branded 1 cm bolus. In the 6 MV photon, at the customized bolus, D{sub max}, D{sub min}, D{sub mean}, D{sub 95%}, V{sub 95%} of GTV were 102.8%, 88.1%, 99.1%, 95.0%, 94.4% and the D{sub max}, D{sub min}, D{sub mean}, D{sub 95%}, V{sub 95%} of branded 1 cm bolus were 101.4%, 92.0%, 98.2%, 95.2%, 95.7%, respectively. In the proton, at the customized bolus, D{sub max}, D{sub min}, D{sub mean}, D{sub 95%}, V{sub 95%} of GTV were 104.1%, 84.0%, 101.2%, 95.1%, 99.8% and the D{sub max}, D{sub min}, D{sub mean}, D{sub 95%}, V{sub 95%} of branded 1cm bolus were 104.8%, 87.9%, 101.5%, 94.9%, 99.9%, respectively. Thus, in treatment plan, there was no significant difference between the customized bolus and 1 cm bolus. However, the normal tissue nearby the GTV showed relatively lower radiation dose. The

  12. From nearby to distant galaxies: kinematical and dynamical studies

    CERN Document Server

    Epinat, Benoit

    2009-01-01

    Kinematical studies of low and high redshift galaxies enables to probe galaxy formation and evolution scenarios. Integral field spectroscopy is a powerful tool to study with accuracy nearby galaxies kinematics. Recent observations also gives a new 2D vision of high redshift galaxies kinematics. This work mostly relies on the kinematical sample of galaxies GHASP. This control sample, composed of 203 local spiral and irregular galaxies in low density environments observed with Fabry-Perot techniques in the Ha line (6563 A), is by now the largest sample of Fabry-Perot data. After a revue on Fabry-Perot interferometry and a presentation of new data reduction procedures, my implications on both 3D-NTT Fabry-Perot instrument and the wide field spectrograph project (WFSpec) for galaxy evolution study with the european ELT are developed. The second section is dedicated to GHASP data. This sample have been fully reduced and analysed using new methods. The kinematical analysis of 2D kinematical maps has been undertaken...

  13. Surface topography study of prepared 3D printed moulds via 3D printer for silicone elastomer based nasal prosthesis

    Science.gov (United States)

    Abdullah, Abdul Manaf; Din, Tengku Noor Daimah Tengku; Mohamad, Dasmawati; Rahim, Tuan Noraihan Azila Tuan; Akil, Hazizan Md; Rajion, Zainul Ahmad

    2016-12-01

    Conventional prosthesis fabrication is highly depends on the hand creativity of laboratory technologist. The development in 3D printing technology offers a great help in fabricating affordable and fast yet esthetically acceptable prostheses. This study was conducted to discover the potential of 3D printed moulds for indirect silicone elastomer based nasal prosthesis fabrication. Moulds were designed using computer aided design (CAD) software (Solidworks, USA) and converted into the standard tessellation language (STL) file. Three moulds with layer thickness of 0.1, 0.2 and 0.3mm were printed utilizing polymer filament based 3D printer (Makerbot Replicator 2X, Makerbot, USA). Another one mould was printed utilizing liquid resin based 3D printer (Objet 30 Scholar, Stratasys, USA) as control. The printed moulds were then used to fabricate maxillofacial silicone specimens (n=10)/mould. Surface profilometer (Surfcom Flex, Accretech, Japan), digital microscope (KH77000, Hirox, USA) and scanning electron microscope (Quanta FEG 450, Fei, USA) were used to measure the surface roughness as well as the topological properties of fabricated silicone. Statistical analysis of One-Way ANOVA was employed to compare the surface roughness of the fabricated silicone elastomer. Result obtained demonstrated significant differences in surface roughness of the fabricated silicone (p<0.01). Further post hoc analysis also revealed significant differences in silicone fabricated using different 3D printed moulds (p<0.01). A 3D printed mould was successfully prepared and characterized. With surface topography that could be enhanced, inexpensive and rapid mould fabrication techniques, polymer filament based 3D printer is potential for indirect silicone elastomer based nasal prosthesis fabrication.

  14. Development of a Kinematic 3D Carpal Model to Analyze In Vivo Soft-Tissue Interaction Across Multiple Static Postures

    OpenAIRE

    Marai, G. Elisabeta; Crisco, Joseph J; Laidlaw, David H.

    2009-01-01

    We developed a subject-specific kinematic model to analyze in vivo soft-tissue interaction in the carpus in static, unloaded postures. The bone geometry was extracted from a reference computed tomography volume image. The soft-tissue geometry, including cartilage and ligament tissues, was computationally modeled based on kinematic constraints; the constraints were extracted from multiple computed tomography scans corresponding to different carpal postures. The data collected in vivo was next ...

  15. 3D ultrasound computer tomography: update from a clinical study

    Science.gov (United States)

    Hopp, T.; Zapf, M.; Kretzek, E.; Henrich, J.; Tukalo, A.; Gemmeke, H.; Kaiser, C.; Knaudt, J.; Ruiter, N. V.

    2016-04-01

    Ultrasound Computer Tomography (USCT) is a promising new imaging method for breast cancer diagnosis. We developed a 3D USCT system and tested it in a pilot study with encouraging results: 3D USCT was able to depict two carcinomas, which were present in contrast enhanced MRI volumes serving as ground truth. To overcome severe differences in the breast shape, an image registration was applied. We analyzed the correlation between average sound speed in the breast and the breast density estimated from segmented MRIs and found a positive correlation with R=0.70. Based on the results of the pilot study we now carry out a successive clinical study with 200 patients. For this we integrated our reconstruction methods and image post-processing into a comprehensive workflow. It includes a dedicated DICOM viewer for interactive assessment of fused USCT images. A new preview mode now allows intuitive and faster patient positioning. We updated the USCT system to decrease the data acquisition time by approximately factor two and to increase the penetration depth of the breast into the USCT aperture by 1 cm. Furthermore the compute-intensive reflectivity reconstruction was considerably accelerated, now allowing a sub-millimeter volume reconstruction in approximately 16 minutes. The updates made it possible to successfully image first patients in our ongoing clinical study.

  16. 3D modelling of slow landslides: the Portalet case study (Spain)

    Science.gov (United States)

    Fernandez-Merodo, Jose Antonio; Bru, Guadalupe; García-Davalillo, Juan Carlos; Herrera, Gerardo; Fernandez, Jose

    2014-05-01

    Slow landslide deformation evolution is generally cast using 1D or 2D numerical models. This paper aims to explore 3D effects on the kinematic behavior of a real landslide, the Portalet landslide (Central Spanish Pyrenees). This is a very well characterized and documented active paleo-landslide that has been reactivated by the construction of a parking area at the toe of the slope. The proposed 3D model is based on a time dependent hydro-mechanical finite element formulation that takes into account i) groundwater changes due to daily rainfall records and ii) viscous behavior and delayed creep deformation through a viscoplastic constitutive model based on Perzyna's theory. The model reproduces the nearly constant strain rate (secondary creep) and the acceleration/deceleration of the moving mass due to hydrological changes. Furthermore, the model is a able to catch the superficial 3D kinematics revealed by advanced in-situ monitoring like ground based SAR or DInSAR processing of satellite SAR images. References [1] Herrera G, Fernández-Merodo JA, Mulas J, Pastor M, Luzi G, Monserrat O (2009) A landslide forecasting model using ground based SAR data: The Portalet case study. Engineering Geology 105: 220-230 [2] Fernández-Merodo JA, Herrera G, Mira P, Mulas J, Pastor M, Noferini L, Me-catti D and Luzi G (2008). Modelling the Portalet landslide mobility (Formigal, Spain). iEMSs 2008: International Congress on Environmental Modelling and Software. Sànchez-Marrè M, Béjar J, Comas J, Rizzoli A and Guariso G (Eds.) International Environmental Modelling and Software Society (iEMSs) [3] Fernández-Merodo JA, García-Davalillo JC, Herrera G, Mira P, Pastor M (2012). 2D visco-plastic finite element modelling of slow landslides: the Portalet case study (Spain). Landslides, DOI: 10.1007/s10346-012-0370-4

  17. Finite Element Modeling of CNS White Matter Kinematics: Use of a 3D-RVE to Determine Material Properties

    Directory of Open Access Journals (Sweden)

    Yi ePan

    2013-12-01

    Full Text Available Axonal injury represents a critical target area for the prevention and treatment of traumatic brain and spinal cord injuries. Finite element (FE models of the head and/or brain are often used to predict brain injury caused by external mechanical loadings, such as explosive waves and direct impact. The accuracy of these numerical models depends on correctly determining the material properties and on the precise depiction of the tissues’ microstructure (microscopic level. Moreover, since the axonal microstructure for specific regions of the brain white matter is locally oriented, the stress and strain fields are highly anisotropic and axon orientation dependent. Additionally, mechanical strain has been identified as the proximal cause of axonal injury, which further demonstrates the importance of this multi-scale relationship. In this study, our previously developed FE and kinematic axonal models are coupled and applied to a pseudo 3-dimensional representative volume element (RVE of central nervous system white matter to investigate the multi-scale mechanical behavior. An inverse FE procedure was developed to identify material parameters of spinal cord white matter by combining the results of uniaxial testing with FE modeling. A satisfactory balance between simulation and experiment was achieved via optimization by minimizing the squared error between the simulated and experimental force-stretch curve. The combination of experimental testing and FE analysis provides a useful analysis tool for soft biological tissues in general, and specifically enables evaluations of the axonal response to tissue-level loading and subsequent predictions of axonal damage.

  18. Improved Surgery Planning Using 3-D Printing: a Case Study.

    Science.gov (United States)

    Singhal, A J; Shetty, V; Bhagavan, K R; Ragothaman, Ananthan; Shetty, V; Koneru, Ganesh; Agarwala, M

    2016-04-01

    The role of 3-D printing is presented for improved patient-specific surgery planning. Key benefits are time saved and surgery outcome. Two hard-tissue surgery models were 3-D printed, for orthopedic, pelvic surgery, and craniofacial surgery. We discuss software data conversion in computed tomography (CT)/magnetic resonance (MR) medical image for 3-D printing. 3-D printed models save time in surgery planning and help visualize complex pre-operative anatomy. Time saved in surgery planning can be as much as two thirds. In addition to improved surgery accuracy, 3-D printing presents opportunity in materials research. Other hard-tissue and soft-tissue cases in maxillofacial, abdominal, thoracic, cardiac, orthodontics, and neurosurgery are considered. We recommend using 3-D printing as standard protocol for surgery planning and for teaching surgery practices. A quick turnaround time of a 3-D printed surgery model, in improved accuracy in surgery planning, is helpful for the surgery team. It is recommended that these costs be within 20 % of the total surgery budget.

  19. 3D RECORDING FOR 2D DELIVERING – THE EMPLOYMENT OF 3D MODELS FOR STUDIES AND ANALYSES –

    Directory of Open Access Journals (Sweden)

    A. Rizzi

    2012-09-01

    Full Text Available In the last years, thanks to the advances of surveying sensors and techniques, many heritage sites could be accurately replicated in digital form with very detailed and impressive results. The actual limits are mainly related to hardware capabilities, computation time and low performance of personal computer. Often, the produced models are not visible on a normal computer and the only solution to easily visualized them is offline using rendered videos. This kind of 3D representations is useful for digital conservation, divulgation purposes or virtual tourism where people can visit places otherwise closed for preservation or security reasons. But many more potentialities and possible applications are available using a 3D model. The problem is the ability to handle 3D data as without adequate knowledge this information is reduced to standard 2D data. This article presents some surveying and 3D modeling experiences within the APSAT project ("Ambiente e Paesaggi dei Siti d’Altura Trentini", i.e. Environment and Landscapes of Upland Sites in Trentino. APSAT is a multidisciplinary project funded by the Autonomous Province of Trento (Italy with the aim documenting, surveying, studying, analysing and preserving mountainous and hill-top heritage sites located in the region. The project focuses on theoretical, methodological and technological aspects of the archaeological investigation of mountain landscape, considered as the product of sequences of settlements, parcelling-outs, communication networks, resources, and symbolic places. The mountain environment preserves better than others the traces of hunting and gathering, breeding, agricultural, metallurgical, symbolic activities characterised by different lengths and environmental impacts, from Prehistory to the Modern Period. Therefore the correct surveying and documentation of this heritage sites and material is very important. Within the project, the 3DOM unit of FBK is delivering all the surveying

  20. The study of the extraction of 3-D informations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Ki [Korea Univ., Seoul (Korea); Kim, Jin Hun; Kim, Hui Yung; Lee, Gi Sik; Lee, Yung Shin [Sokyung Univ., Seoul (Korea)

    1998-04-01

    To extract three dimensional information in 3 dimensional real world two methods are applied (stereo image method, virtual reality environment method). 1. Stereo image method. From the paris of stereo image matching methods are applied to find the corresponding points in the two images. To solve the problem various methods are applied 2. Virtual reality environment method. As an alternate method to extract 3-D information, virtual reality environment is use. It is very useful to fine 6 DOF for a some given target points in 3-D space. We considered the accuracies and reliability of the 3-D informations. 34 figs., 4 tabs. (Author)

  1. Development of a Kinematic 3D Carpal Model to Analyze In Vivo Soft-Tissue Interaction Across Multiple Static Postures

    Science.gov (United States)

    Marai, G. Elisabeta; Crisco, Joseph J.; Laidlaw, David H.

    2012-01-01

    We developed a subject-specific kinematic model to analyze in vivo soft-tissue interaction in the carpus in static, unloaded postures. The bone geometry was extracted from a reference computed tomography volume image. The soft-tissue geometry, including cartilage and ligament tissues, was computationally modeled based on kinematic constraints; the constraints were extracted from multiple computed tomography scans corresponding to different carpal postures. The data collected in vivo was next coupled with numerical simulation in order to analyze the role of soft-tissues in different postures. The resulting model extends the state of biomecanical modeling by incorporating soft-tissue constraints across the carpus range of motion, while successfully using only physiological constraints. The model results suggest that soft-tissue wrapping constraints have substantial impact on carpus stability. PMID:19965271

  2. 3D detectors at ITC-irst: first irradiation studies

    Energy Technology Data Exchange (ETDEWEB)

    Ronchin, S.; Boscardin, M. [ITC-irst Microsystems Division, via Sommarive, 18 - 38050 Povo di Trento (Italy); Bosisio, L. [INFN and Department of Physics, University of Trieste, via A. Valerio, 2 - 34127 Trieste (Italy); Cindro, V. [Jozef Stefan Institute and University of Ljubljana, Jamova 39, Si-1000, Ljubljana (Slovenia); Dalla Betta, G.-F. [INFN and Department of ICT, University of Trento, via Sommarive, 14 - 38050 Povo di Trento (Italy); Piemonte, C.; Pozza, A. [ITC-irst Microsystems Division, via Sommarive, 18 - 38050 Povo di Trento (Italy); Zoboli, A. [INFN and Department of ICT, University of Trento, via Sommarive, 14 - 38050 Povo di Trento (Italy); Zorzi, N. [ITC-irst Microsystems Division, via Sommarive, 18 - 38050 Povo di Trento (Italy)

    2007-10-15

    In the past two years, we have developed 3D detector technologies at ITC-irst (Trento, Italy). We have proposed a new 3D architecture, having columnar electrodes of one doping type only, allowing for a simplified fabrication process. In this paper, we report on preliminary results from the electrical characterization of devices irradiated with neutrons, showing that low depletion voltage values can be achieved even after very large fluences.

  3. Kinematic Analysis on the Serve Technique of Elite Tennis Player Grigor•Dimitrov Based on 3D Virtual Reality Technology

    Directory of Open Access Journals (Sweden)

    Du Chuan Jia

    2016-01-01

    Full Text Available By using three-dimensional video analysis, we made a kinematic analysis on Grigor Dimitrov’s Serve technique, aiming at finding the kinematic characteristics of his serve technique during various stages. The results showed that: (1 During the stage of tossing the ball and lifting the racket, the tossing height of the ball was at minimum appropriately, while the elbow extension of the tossing arm was stright, and the angle of his left knee was 95.4°, which is beneficial to making greater kicking power; (2 At the back-swing stage, Dimitrov’s both feet made a great range of pedal and stretch quickly, and the “scratch-back” posture is obvious, and momentum caused by the kicking and coxae-turning was rather large; (3 When hitting the ball, the contact point was accurate and the speed of the racket head was high, which passed a relatively large initial momentum to the ball; (4 Dimitrov’s entire service action was integral and coordinate, smooth and powerful, which was in accordance relatedly with kinematic characteristics

  4. Kinematic Analysis of Fold-Thrust-Belt Using Integrated Analogue Sandbox Modeling and 3D Palinspatic Reconstructions in Babar-Selaru Area, Banda Sea Region, Indonesia

    Science.gov (United States)

    Sapiie, Benyamin; Hadiana, Meli; Kurniawan, Ade; Daniel, Dicky; Danio, Harya; Fujimoto, Masamichi; Ohara, Michio; Alam Perdana, Lisnanda; Saputra, Afif

    2016-04-01

    Kinematic analysis of Babar-Selaru fold-thrust-belt is challenging and often difficult particularly in conducting seismic interpretation due to complex structural geometries. Resolving such as issue, in this study we proposed to use integrated seismic interpretation, analogue sandbox modeling and 3D palinspatic reconstructions. This paper is presented results of detail kinematic analysis for understanding tectonic evolution as well as mechanism of fold-thrust-belt in relation to their hydrocarbon prospect. Babar-Selaru Area is located within the collisional boundary between Australian continental margin and Banda Arc region of Indonesia. The area is characterized by complex deformation zone of fold-thrust-belt, involving Mesozoic and Tertiary sedimentary sequences of Australian continental margin. The age of deformation is ranging from 8-5 Ma. Seismic interpretations show two styles of faults developed in the area, which are thrust and normal faults system. The last deformation observed in the Babar Selaru area is controlled by south verging imbricated thin-skinned thrust fault system, with the staircase style of fault detachment. Although, both structural styles occurred in separated locations, they are formed not only in the same time but also related in time and space. Total extension is ranging from 1-3 % where average shortening is in the order of 35-38%. Sandbox modeling is an effective way to study and understand the style, pattern and geometry of the deformed sedimentary sequences in the study area. Based on comparison of five settings experiments (mainly different geological boundary condition) with more than 50 different modeling; deformation is particularly controlled by types and thickness of lithology package and detachment geometry. These two parameters were quite sensitive in generating different deformation style and pattern in Babar-Selaru fold-thrust-belt. Therefore, choosing the right combination of stratigraphy model and material setting are

  5. Plasma environment of Titan: a 3-D hybrid simulation study

    Directory of Open Access Journals (Sweden)

    S. Simon

    2006-05-01

    Full Text Available Titan possesses a dense atmosphere, consisting mainly of molecular nitrogen. Titan's orbit is located within the Saturnian magnetosphere most of the time, where the corotating plasma flow is super-Alfvénic, yet subsonic and submagnetosonic. Since Titan does not possess a significant intrinsic magnetic field, the incident plasma interacts directly with the atmosphere and ionosphere. Due to the characteristic length scales of the interaction region being comparable to the ion gyroradii in the vicinity of Titan, magnetohydrodynamic models can only offer a rough description of Titan's interaction with the corotating magnetospheric plasma flow. For this reason, Titan's plasma environment has been studied by using a 3-D hybrid simulation code, treating the electrons as a massless, charge-neutralizing fluid, whereas a completely kinetic approach is used to cover ion dynamics. The calculations are performed on a curvilinear simulation grid which is adapted to the spherical geometry of the obstacle. In the model, Titan's dayside ionosphere is mainly generated by solar UV radiation; hence, the local ion production rate depends on the solar zenith angle. Because the Titan interaction features the possibility of having the densest ionosphere located on a face not aligned with the ram flow of the magnetospheric plasma, a variety of different scenarios can be studied. The simulations show the formation of a strong magnetic draping pattern and an extended pick-up region, being highly asymmetric with respect to the direction of the convective electric field. In general, the mechanism giving rise to these structures exhibits similarities to the interaction of the ionospheres of Mars and Venus with the supersonic solar wind. The simulation results are in agreement with data from recent Cassini flybys.

  6. The ATLA$^{\\rm{3D}}$ project - XXV: Two-dimensional kinematic analysis of simulated galaxies and the cosmological origin of fast and slow rotators

    CERN Document Server

    Naab, T; Emsellem, E; Cappellari, M; Krajnovic, D; McDermid, R M; Alatalo, K; Bayet, E; Blitz, L; Bois, M; Bournaud, F; Bureau, M; Crocker, A; Davies, R L; Davis, T A; de Zeeuw, P T; Duc, P -A; Hirschmann, M; Johansson, P H; Khochfar, S; Kuntschner, H; Morganti, R; Oosterloo, T; Sarzi, M; Scott, N; Serra, P; van de Ven, G; Weijmans, A; Young, L M

    2013-01-01

    We present a detailed two-dimensional stellar dynamical analysis of a sample of 44 cosmological hydrodynamical simulations of individual central galaxies and their satellites. Kinematic maps of the stellar line-of-sight velocity, velocity dispersion, and higher-order Gauss-Hermite moments $h_3$ and $h_4$ are constructed for each central galaxy and for the most massive satellites. The amount of rotation is quantified using the $\\lambda_{\\mathrm{R}}$-parameter. The velocity, velocity dispersion, $h_3$, and $h_4$ fields of the simulated galaxies show a diversity similar to observed kinematic maps of early-type galaxies in the ATLAS$^{\\rm{3D}}$ survey. This includes fast (regular), slow, and misaligned rotation, hot spheroids with embedded cold disk components as well as galaxies with counter-rotating cores or central depressions in the velocity dispersion. We link the present day kinematic properties to the individual cosmological formation histories of the galaxies. In general, major galaxy mergers have a signi...

  7. Study, simulation and design of a 3D clinostat

    Science.gov (United States)

    Pavone, Valentina; Guarnieri, Vincenzo; Lobascio, Cesare; Soma, Aurelio; Bosso, Nicola; Lamantea, Matteo Maria

    High cost and limited number of physically executable experiments in space have introduced the need for ground simulation systems that enable preparing experiments to be carried out on board, identifying phenomena associated with the altered gravity conditions, and taking advantage of these conditions, as in Biotechnology. Among systems developed to simulate microgravity, especially for life sciences experiments, different types of clinostats were realized. This work deals with mechanical design of a three-dimensional clinostat and simulation of the dynamic behavior of the system by varying the operating parameters. The design and simulation phase was preceded by a careful analysis of the state of art and by the review of the most recent results, in particular from the major investigators of Life Sciences in Space. The mechanical design is quite innovative by adoption of a structure entirely in aluminum, which allows robustness while reducing the overall weight. The transmission system of motion has been optimized by means of brushless DC micro motors, light and compact, which helped to reduce weight, dimensions, power consumption and increase the reliability and durability of the system. The study of the dynamic behavior using SIMPACK, a multibody simulation software, led to results in line with those found in the most important and recent scientific publications. This model was also appropriately configured to represent any desired operating condition, and for eventual system scalability. It would be interesting to generate simulated hypogravity - e.g.: 0.38-g (Mars) or 0.17-g (Moon). This would allow to investigate how terrestrial life forms can grow in other planetary habitats, or to determine the gravity threshold response of different organisms. At the moment, such a system can only be achieved by centrifuges in real microgravity. We are confident that simulation and associated tests with our 3D clinostat can help adjusting the parameters allowing variable g

  8. A 3D measurement of the offset in paleoseismological studies

    Science.gov (United States)

    Ferrater, Marta; Echeverria, Anna; Masana, Eulàlia; Martínez-Díaz, José J.; Sharp, Warren D.

    2016-05-01

    The slip rate of a seismogenic fault is a crucial parameter for establishing the contribution of the fault to the seismic hazard. It is calculated from measurements of the offset of linear landforms, such channels, produced by the fault combined with their age. The three-dimensional measurement of offset in buried paleochannels is subject to uncertainties that need to be quantitatively assessed and propagated into the slip rate. Here, we present a set of adapted scripts to calculate the net, lateral and vertical tectonic offset components caused by faults, together with their associated uncertainties. This technique is applied here to a buried channel identified in the stratigraphic record during a paleoseismological study at the El Saltador site (Alhama de Murcia fault, Iberian Peninsula). After defining and measuring the coordinates of the key points of a buried channel in the walls of eight trenches excavated parallel to the fault, we (a) adjusted a 3D straight line to these points and then extrapolated the tendency of this line onto a simplified fault plane; (b) repeated these two steps for the segment of the channel in the other side of the fault; and (c) measured the distance between the two resulting intersection points with the fault plane. In doing so, we avoided the near fault modification of the channel trace and obtained a three-dimensional measurement of offset and its uncertainty. This methodology is a substantial modification of previous procedures that require excavating progressively towards the fault, leading to possible underestimation of offset due to diffuse deformation near the fault. Combining the offset with numerical dating of the buried channel via U-series on soil carbonate, we calculated a maximum estimate of the net slip rate and its vertical and lateral components for the Alhama de Murcia fault.

  9. 3D-QSAR and Docking Studies of Pyrido[2,3-d]pyrimidine Derivatives as Weel Inhibitors

    Institute of Scientific and Technical Information of China (English)

    Guo-hua Zeng; Wen-juan Wu; Rong Zhang; Jun Sun; Wen-guo Xie; Yong Shen

    2012-01-01

    In order to investigate the inhibiting mechanism and obtain some helpful information for designing functional inhibitors against Weel,three-dimensional quantitative structure-activity relationship (3D-QSAR) and docking studies have been performed on 45 pyrido[2,3-d] pyrimidine derivatives acting as Weel inhibitors.Two optimal 3D-QSAR models with significant statistical quality and satisfactory predictive ability were established,including the CoMFA model (q2=0.707,R2=0.964) and CoMSIA model (q2=0.645,R2=0.972).The external validation indicated that both CoMFA and CoMSIA models were quite robust and had high predictive power with the predictive correlation coefficient values of 0.707 and 0.794,essential parameter r2m values of 0.792 and 0.826,the leave-one-out r2m(LOO) values of 0.781 and 0.809,r2m(overall) values of 0.787 and 0.810,respectively.Moreover,the appropriate binding orientations and conformations of these compounds interacting with Weel were revealed by the docking studies.Based on the CoMFA and CoMSIA contour maps and docking analyses,several key structural requirements of these compounds responsible for inhibitory activity were identified as follows:simultaneously introducing high electropositive groups to the substituents R1 and R5 may increase the activity,the substituent R2 should be smaller bulky and higher electronegative,moderate-size and strong electron-withdrawing groups for the substituent R3 is advantageous to the activity,but the substituent X should be medium-size and hydrophilic.These theoretical results help to understand the action mechanism and design novel potential Weel inhibitors.

  10. OB3D, a new set of 3D Objects available for research: a web-based study

    Directory of Open Access Journals (Sweden)

    Stéphane eBuffat

    2014-10-01

    Full Text Available Studying object recognition is central to fundamental and clinical research on cognitive functions but suffers from the limitations of the available sets that cannot always be modified and adapted to meet the specific goals of each study. We here present a new set of 3D scans of real objects available on-line as ASCII files, OB3D. These files are lists of dots, each defined by a triplet of spatial coordinates and their normal that allow simple and highly versatile transformations and adaptations. We performed a web-based experiment to evaluate the minimal number of dots required for the denomination and categorization of these objects, thus providing a reference threshold. We further analyze several other variables derived from this data set, such as the correlations with object complexity. This new stimulus set, which was found to activate the Lower Occipital Complex (LOC in another study, may be of interest for studies of cognitive functions in healthy participants and patients with cognitive impairments, including visual perception, language, memory, etc.

  11. Interdisciplinary Collaboration through Designing 3D Simulation Case Studies

    CERN Document Server

    Bai, Xin; 10.5121/ijma.2011.3109

    2011-01-01

    Interdisciplinary collaboration is essential for the advance of research. As domain subjects become more and more specialized, researchers need to cross disciplines for insights from peers in other areas to have a broader and deeper understand of a topic at micro- and macro-levels. We developed a 3D virtual learning environment that served as a platform for faculty to plan curriculum, share educational beliefs, and conduct cross-discipline research for effective learning. Based upon the scripts designed by faculty from five disciplines, virtual doctors, nurses, or patients interact in a 3D virtual hospital. The teaching vignettes were then converted to video clips, allowing users to view, pause, replay, or comment on the videos individually or in groups. Unlike many existing platforms, we anticipated a value-added by adding a social networking capacity to this virtual environment. The focus of this paper is on the cost-efficiency and system design of the virtual learning environment.

  12. Interdisciplinary Collaboration through Designing 3D Simulation Case Studies

    Directory of Open Access Journals (Sweden)

    Xin Bai

    2011-02-01

    Full Text Available Interdisciplinary collaboration is essential for the advance of research. As domain subjects become more and more specialized, researchers need to cross disciplines for insights from peers in other areas to have a broader and deeper understand of a topic at micro- and macro-levels. We developed a 3D virtual learning environment that served as a platform for faculty to plan curriculum, share educational beliefs,and conduct cross-discipline research for effective learning. Based upon the scripts designed by facultyfrom five disciplines, virtual doctors, nurses, or patients interact in a 3D virtual hospital. The teaching vignettes were then converted to video clips, allowing users to view, pause, replay, or comment on the videos individually or in groups. Unlike many existing platforms, we anticipated a value-added by adding a social networking capacity to this virtual environment. The focus of this paper is on the cost-efficiency and system design of the virtual learning environment.

  13. Interdisciplinary Collaboration through Designing 3D Simulation Case Studies

    Directory of Open Access Journals (Sweden)

    Xin Bai

    2011-02-01

    Full Text Available Interdisciplinary collaboration is essential for the advance of research. As domain subjects become more and more specialized, researchers need to cross disciplines for insights from peers in other areas to have a broader and deeper understand of a topic at micro- and macro-levels. We developed a 3D virtual learning environment that served as a platform for faculty to plan curriculum, share educational beliefs, and conduct cross-discipline research for effective learning. Based upon the scripts designed by faculty from five disciplines, virtual doctors, nurses, or patients interact in a 3D virtual hospital. The teaching vignettes were then converted to video clips, allowing users to view, pause, replay, or comment on the videos individually or in groups. Unlike many existing platforms, we anticipated a value-added by adding a social networking capacity to this virtual environment. The focus of this paper is on the cost-efficiency and system design of the virtual learning environment.

  14. On 3D Dimension: Study cases for Archaeological sites

    Science.gov (United States)

    D'Urso, M. G.; Marino, C. L.; Rotondi, A.

    2014-04-01

    For more than a century the tridimensional vision has been of interest for scientists and users in several fields of application. The mathematical bases have remained substantially unchanged but only the new technologies have allowed us to make the vision really impressive. Photography opens new frontiers and has enriched of physical, mathematical, chemical, informatical and topographic notions by making the images so real to make the observer fully immersed into the represented scene. By means of active googless the 3D digital technique, commonly used for video games, makes possible animations without limitations in the dimension of the images thanks to the improved performances of the graphic processor units and related hardware components. In this paper we illustrate an experience made by the students of the MSc'degree course of Topography, active at the University of Cassino and Southern Lazio, in which the photography has been applied as an innovative technique for the surveying of cultural heritage. The tests foresee the use of traditional techniques of survey with 3D digital images and use of GPS sensors. The ultimate objective of our experience is the insertion in the web, allowing us the visualization of the 3D images equipped with all data. In conclusion these new methods of survey allow for the fusion of extremely different techniques, in such an impressive way to make them inseparable and justifying the origin of the neologism "Geomatics" coined at the Laval University (Canada) during the eighties.

  15. Clinical Study of 3D Imaging and 3D Printing Technique for Patient-Specific Instrumentation in Total Knee Arthroplasty.

    Science.gov (United States)

    Qiu, Bing; Liu, Fei; Tang, Bensen; Deng, Biyong; Liu, Fang; Zhu, Weimin; Zhen, Dong; Xue, Mingyuan; Zhang, Mingjiao

    2017-01-25

    Patient-specific instrumentation (PSI) was designed to improve the accuracy of preoperative planning and postoperative prosthesis positioning in total knee arthroplasty (TKA). However, better understanding needs to be achieved due to the subtle nature of the PSI systems. In this study, 3D printing technique based on the image data of computed tomography (CT) has been utilized for optimal controlling of the surgical parameters. Two groups of TKA cases have been randomly selected as PSI group and control group with no significant difference of age and sex (p > 0.05). The PSI group is treated with 3D printed cutting guides whereas the control group is treated with conventional instrumentation (CI). By evaluating the proximal osteotomy amount, distal osteotomy amount, valgus angle, external rotation angle, and tibial posterior slope angle of patients, it can be found that the preoperative quantitative assessment and intraoperative changes can be controlled with PSI whereas CI is relied on experience. In terms of postoperative parameters, such as hip-knee-ankle (HKA), frontal femoral component (FFC), frontal tibial component (FTC), and lateral tibial component (LTC) angles, there is a significant improvement in achieving the desired implant position (p implantation compared against control method, which indicates potential for optimal HKA, FFC, and FTC angles.

  16. Markerless 3D motion capture for animal locomotion studies

    Directory of Open Access Journals (Sweden)

    William Irvin Sellers

    2014-06-01

    Full Text Available Obtaining quantitative data describing the movements of animals is an essential step in understanding their locomotor biology. Outside the laboratory, measuring animal locomotion often relies on video-based approaches and analysis is hampered because of difficulties in calibration and often the limited availability of possible camera positions. It is also usually restricted to two dimensions, which is often an undesirable over-simplification given the essentially three-dimensional nature of many locomotor performances. In this paper we demonstrate a fully three-dimensional approach based on 3D photogrammetric reconstruction using multiple, synchronised video cameras. This approach allows full calibration based on the separation of the individual cameras and will work fully automatically with completely unmarked and undisturbed animals. As such it has the potential to revolutionise work carried out on free-ranging animals in sanctuaries and zoological gardens where ad hoc approaches are essential and access within enclosures often severely restricted. The paper demonstrates the effectiveness of video-based 3D photogrammetry with examples from primates and birds, as well as discussing the current limitations of this technique and illustrating the accuracies that can be obtained. All the software required is open source so this can be a very cost effective approach and provides a methodology of obtaining data in situations where other approaches would be completely ineffective.

  17. Organizational Learning Goes Virtual?: A Study of Employees' Learning Achievement in Stereoscopic 3D Virtual Reality

    Science.gov (United States)

    Lau, Kung Wong

    2015-01-01

    Purpose: This study aims to deepen understanding of the use of stereoscopic 3D technology (stereo3D) in facilitating organizational learning. The emergence of advanced virtual technologies, in particular to the stereo3D virtual reality, has fundamentally changed the ways in which organizations train their employees. However, in academic or…

  18. 3D-Simulation Studies of SNS Ring Doublet Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.G.; Tsoupas N.; Venturini, M.

    2005-05-05

    The accumulator ring of the Spallation Neutron Source (SNS) at ORNL employs in its straight sections closely packed quadrupole doublemagnets with large aperture of R=15.1 cm an relatively short iron-to-iron distance of 51.4 cm. These quads have much extended fringe field, and magnetic interferences among them in the doublet assemblies is not avoidable. Though each magnet in the assemblies has been individually mapped to high accuracy of lower than 0.01 percent level, the experimental data including the magnetic interference effect will not be available. We have performed 3D computing simulations on a quadrupole doublet model in order to assess the degree of the interference and to obtain relevant data for the SNS commissioning and operation.

  19. The Evolution of Resolved Kinematics and Metallicity from Redshift 2.7 to 0.7 with LUCI, SINS/zC-SINF and KMOS3D

    Science.gov (United States)

    Wuyts, Eva

    2015-02-01

    The KMOS3D survey will provide near-IR IFU observations of a mass-selected sample of ~600 star-forming galaxies at 0.7Object Spectrograph (KMOS) at the VLT. We present kinematic results for a first sample of ~200 galaxies, focusing on the evolution of the gas velocity dispersion with redshift. Combined with existing measurements, we find an approximate (1+z) evolution from z~4 to the present day, which can be understood from the co-evolution of the gas fraction and specific star formation rate (sSFR) in the the equilibrium picture of galaxy evolution. We combine the KMOS3D sample with data from the LUCI and SINFONI spectrographs, as well as multi-wavelength HST imaging from CANDELS, to address the relations between stellar mass, SFR, and the [N II]/Hα flux ratio as an indicator of gas-phase metallicity for a sample of 222 star-forming galaxies. We find a constant slope at the low-mass end of the mass-metallicity relation and can fully describe its redshift evolution through the evolution of the characteristic turnover mass where the relation begins to flatten at the asymptotic metallicity. At a fixed mass and redshift, our data do not show a correlation between the [N II]/Hα ratio and SFR.

  20. Study on Combined Method Based on 3-D ESPI

    Institute of Scientific and Technical Information of China (English)

    Sun Ping; Zhang Xi; Wang Haifeng

    2002-01-01

    The finite element method (FEM),whether the calculation is accurate or not,depends closely on object boundary condition.If the three dimensional displacement of the object obtained in experiment is regarded as its boundary condition,a new method combining the results of experiment and calculation,called combined method (CM),is formed.The combined method possess advantages of experiment and calculation.It can correct calculation and improve the accuracy of FEM.Accordingly it has more practicability.In this paper,the three dimensional displacement fields of a typical beam loaded at three points are tested by using 3-D electric speckle pattern interferometry (ESPI).Using the experimental results as boundary condition the whole three-dimensional displacement fields can be calculated by FEM.The beam′s three-dimensional displacement fields obtained by FEM agree very well with those obtained by experiment.This proves that the combined method is effective and practicable.

  1. 3D-QSAR Study on Apicidin Inhibit Histone Deacetylase

    Institute of Scientific and Technical Information of China (English)

    陈海峰; 康九红; 李强; 曾宝珊; 姚小军; 范波涛; 袁身刚; Panay,A.; Doucet,J.P.

    2003-01-01

    For Histone Deacetylase (HDAC) Inhibitor, four 3D-QSAR models for four types of different activities, were constructed.The cross-valldated q2 value of CoMFA Model 1 is 0.624 and the noncross-validated r2 value is 0.939. The cross-validated q2 value of Model 2 for training set is 0.652 and the noncross-validated r2 value is 0.963. The cross-validated q2 value for Model 3 is 0.713, with noncross-validated r2 value 0.947. The crossvalidated q2 value for Model 4 is 0.566 with noncross-validated r2 value 0.959. Their predicted abilities were validated by different test sets which did not include in training set. Then the relationship between substituents and activities was analyzed by using these models and the main influence elements in different positions (positions 8 and 14) were found. The polar donor electron group of position 8 could increase the activity of inhibition of HDAC, because it could form chelation with the catalytic Zn. Suitable bulk and positive groups at position 14 are favorable to anti-HDAC activity. These models could web interpret the relationship between inhibition activity and apicidin structure affording us important information for structurebased drug design.

  2. Deciphering the bipolar planetary nebula Abell 14 with 3D ionization and morphological studies

    CERN Document Server

    Akras, S; Boumis, P; Monteiro, H; Gonçalves, D R; Redman, M P; Williams, S

    2016-01-01

    Abell 14 is a poorly studied object despite being considered a born again planetary nebula. We performed a detailed study of its 3D morphology and ionization structure using the SHAPE and MOCASSIN codes. We found that Abell 14 is a highly evolved, bipolar nebula with a kinematical age of $\\sim$19,400 yr for a distance of 4 kpc. The high He abundance, and N/O ratio indicate a progenitor of 5 $M_{\\odot}$ that has experienced the third dredge-up and hot bottom burning phases. The stellar parameters of the central source reveal a star at a highly evolved stage near to the white dwarf cooling track, being inconsistent with the born again scenario. The nebula shows unexpectedly strong [N I] $\\lambda 5200$ and [O I] $\\lambda 6300$ emission lines indicating possible shock interactions. Abell 14 appears to be a member of a small group of highly evolved, extreme Type-I PNe. The members of this group lie at the lower-left corner of the PNe regime on the [N II]/H$\\alpha$ vs. [S II]/H$\\alpha$ diagnostic diagram, where sho...

  3. Deciphering the bipolar planetary nebula Abell 14 with 3D ionization and morphological studies

    Science.gov (United States)

    Akras, S.; Clyne, N.; Boumis, P.; Monteiro, H.; Gonçalves, D. R.; Redman, M. P.; Williams, S.

    2016-04-01

    Abell 14 is a poorly studied object despite being considered a born-again planetary nebula. We performed a detailed study of its 3D morphology and ionization structure using the SHAPE and MOCASSIN codes. We found that Abell 14 is a highly evolved, bipolar nebula with a kinematical age of ˜19 400 yr for a distance of 4 kpc. The high He abundance, and N/O ratio indicate a progenitor of 5 M⊙ that has experienced the third dredge-up and hot bottom burning phases. The stellar parameters of the central source reveal a star at a highly evolved stage near to the white dwarf cooling track, being inconsistent with the born-again scenario. The nebula shows unexpectedly strong [N I] λ5200 and [O I] λ6300 emission lines indicating possible shock interactions. Abell 14 appears to be a member of a small group of highly evolved, extreme type-I planetary nebulae (PNe). The members of this group lie at the lower-left corner of the PNe regime on the [N II]/Hα versus [S II]/Hα diagnostic diagram, where shock-excited regions/objects are also placed. The low luminosity of their central stars, in conjunction with the large physical size of the nebulae, result in a very low photoionization rate, which can make any contribution of shock interaction easily perceptible, even for small velocities.

  4. 3D-SPACE与3D-CISS序列内耳成像的比较研究%Comparative study of MRI 3D-SPACE,3D-CISS sequences at inner-ear

    Institute of Scientific and Technical Information of China (English)

    程亚宝; 范伟雄; 刘可夫; 孙岩

    2016-01-01

    目的:比较MRI三维可变翻转角快速自旋回波序列(3-dimensional sampling perfection with application optimized contrast using different flip angle evolutions,3D-SPACE)、三维稳态进动结构相干(3D-constructive interference in the steady sate,3D-CISS)成像序列在内耳半规管的成像质量.方法:在1.5 T MRI仪上对15例志愿者进行检查.比较3D-SPACE和3D-CISS序列在前庭和脑干的对比信噪比(contrast to noise ratio,CNR).用三分法评价2种序列对半规管、面神经、位听神经的显示,同样用三分法对诊断信心进行评价.结果:3D-SPACE序列的CNR和对半规管的显示与3D-CISS差异有统计学意义(P<0.05);而在面神经和听神经的显示上2种序列差异无统计学意义(P=0.059);3D-SPACE序列的诊断信心比3D-CISS序列更高(P<0.05).结论:相比3D-CISS序列,3D-SPACE序列能更好地显示内耳半规管结构.

  5. Description of an evaluation system for knee kinematics in ligament lesions, by means of optical tracking and 3D tomography,

    Directory of Open Access Journals (Sweden)

    Tiago Lazzaretti Fernandes

    2014-10-01

    Full Text Available Objective:To describe and demonstrate the viability of a method for evaluating knee kine matics, by means of a continuous passive motion (CPM machine, before and after anterio cruciate ligament (ACL injury.Methods:This study was conducted on a knee from a cadaver, in a mechanical pivot-shif simulator, with evaluations using optical tracking, and also using computed tomography.Results:This study demonstrated the viability of a protocol for measuring the rotation an translation of the knee, using reproducible and objective tools (error<0.2mm. The mech anized provocation system of the pivot-shift test was independent of the examiner an always allowed the same angular velocity and traction of 20 N throughout the movement.Conclusion:The clinical relevance of this method lies in making inferences about the in viv behavior of a knee with an ACL injury and providing greater methodological quality in futur studies for measuring surgical techniques with grafts in relatively close positions.

  6. CBM in 3-D: coalbed methane multicomponent 3-D reservoir characterisation study, Cedar Hill Field, San Juan Basin, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Davis, T.; Shuck, E.; Benson, R. [Colorado School of Mines, Golden, CO (United States). Dept. of Geophysics

    1995-10-01

    The article explains how 3-D multicomponent seismic surveys could substantially improve the production and development of fractured coalbed methane reservoirs. The technique has been used by Northern Geophysical for the detection of geological faults and zones of enhanced fracture permeability proximal to the fault in the western side of the Cedar Hill field in San Juan Basin, NM, USA. 3 figs.

  7. 3D stellar kinematics at the Galactic center: measuring the nuclear star cluster spatial density profile, black hole mass, and distance

    CERN Document Server

    Do, T; Yelda, S; Ghez, A M; Bullock, J; Kaplinghat, M; Lu, J R; Peter, A G H; Phifer, K

    2013-01-01

    We present 3D kinematic observations of stars within the central 0.5 pc of the Milky Way nuclear star cluster using adaptive optics imaging and spectroscopy from the Keck telescopes. Recent observations have shown that the cluster has a shallower surface density profile than expected for a dynamically relaxed cusp, leading to important implications for its formation and evolution. However, the true three dimensional profile of the cluster is unknown due to the difficulty in de-projecting the stellar number counts. Here, we use spherical Jeans modeling of individual proper motions and radial velocities to constrain for the first time, the de-projected spatial density profile, cluster velocity anisotropy, black hole mass ($M_\\mathrm{BH}$), and distance to the Galactic center ($R_0$) simultaneously. We find that the inner stellar density profile of the late-type stars, $\\rho(r)\\propto r^{-\\gamma}$ to have a power law slope $\\gamma=0.05_{-0.60}^{+0.29}$, much more shallow than the frequently assumed Bahcall $\\&am...

  8. A 3D kinematic estimation of knee prosthesis using X-ray projection images: clinical assessment of the improved algorithm for fluoroscopy images.

    Science.gov (United States)

    Hirokawa, Shunji; Abrar Hossain, M; Kihara, Yuichi; Ariyoshi, Shogo

    2008-12-01

    In this paper, we propose three ideas to improve a kinematic estimation algorithm for total knee arthroplasty. The first is a two-step estimation algorithm that improves estimation accuracy by excluding certain assumptions needed for the pattern matching algorithm reported by Banks and Hodge. The second is incorporating a 3D geometric articulation model into the algorithm to improve estimation accuracy substantially for the depth translation, and to introduce contact points' trajectories between the articular surfaces. The third is an algorithm to process estimation even when the silhouettes of two components overlap. To assess our algorithm's potential for clinical application, we carried out two experiments. First, we used a robot to position the prosthesis. Estimation accuracy was checked by comparing input data to the robot with the estimates from X-ray photographs. Incorporating our articulation model remarkably reduced the error in the depth translation. Next, we performed a clinical assessment by applying the algorithm and articulation model to fluoroscopy images of a patient who had recently had TKA.

  9. Possibility of reconstruction of dental plaster cast from 3D digital study models

    OpenAIRE

    Kasparova, Magdalena; Grafova, Lucie; Dvorak, Petr; Dostalova,Tatjana; Prochazka, Ales; Eliasova, Hana; Prusa, Josef; Kakawand, Soroush

    2013-01-01

    Objectives To compare traditional plaster casts, digital models and 3D printed copies of dental plaster casts based on various criteria. To determine whether 3D printed copies obtained using open source system RepRap can replace traditional plaster casts in dental practice. To compare and contrast the qualities of two possible 3D printing options – open source system RepRap and commercially available 3D printing. Design and settings A method comparison study on 10 dental plaster casts from th...

  10. DIY 3D printing of custom orthopaedic implants: a proof of concept study.

    Science.gov (United States)

    Frame, Mark; Leach, William

    2014-03-01

    3D printing is an emerging technology that is primarily used for aiding the design and prototyping of implants. As this technology has evolved it has now become possible to produce functional and definitive implants manufactured using a 3D printing process. This process, however, previously required a large financial investment in complex machinery and professionals skilled in 3D product design. Our pilot study's aim was to design and create a 3D printed custom orthopaedic implant using only freely available consumer hardware and software.

  11. 3D-QSAR Studies of Dimethoxyphenoxyphenoxy pyrimidines and Analogues

    Institute of Scientific and Technical Information of China (English)

    李爱秀; 王瑾玲; 苏华庆; 缪方明

    2000-01-01

    Three-dimensional quantitative structure-activity relationships (3DQSAR) of a series of dimethoxyphenoxyphenoxypyrimidines and analogues which are known to be photosystem Ⅱ (PS Ⅱ )inhibitors have been studied using comparative molecular field analysis (CoMFA) method. The results suggest that the steric and electronic properties of substitutes at m-position on the end phenyl ring have important influence on the Hill reaction inhibition.

  12. 3-D LDA study of a rectangular jet

    Science.gov (United States)

    Morrison, Gerald L.; Tatterson, Gary B.; Swan, David H.

    1988-01-01

    The flow field of a rectangular jet with a 2:1 aspect ratio was studied at an axial Reynolds number of 100,000 (Mach number 0.09) using three-dimensional laser Doppler velocimetry. The flow field survey resulted in mean velocity vector field plots and contour plots of the Reynolds stress tensor components. This paper presents contour plots in the planes of the jet minor and major axes at different axial locations. These data contribute substantially to currently available data of jet flow fields and will provide a valuable database for three-dimensional modeling.

  13. Plasma boundaries at Mars: a 3-D simulation study

    Directory of Open Access Journals (Sweden)

    A. Bößwetter

    2004-12-01

    Full Text Available The interaction of the solar wind with the ionosphere of planet Mars is studied using a three-dimensional hybrid model. Mars has only a weak intrinsic magnetic field, and consequently its ionosphere is directly affected by the solar wind. The gyroradii of the solar wind protons are in the range of several hundred kilometers and therefore comparable with the characteristic scales of the interaction region. Different boundaries emerge from the interaction of the solar wind with the continuously produced ionospheric heavy-ion plasma, which could be identified as a bow shock (BS, ion composition boundary (ICB and magnetic pile up boundary (MPB, where the latter both turn out to coincide. The simulation results regarding the shape and position of these boundaries are in good agreement with the measurements made by Phobos-2 and MGS spacecraft. It is shown that the positions of these boundaries depend essentially on the ionospheric production rate, the solar wind ram pressure, and the often unconsidered electron temperature of the ionospheric heavy ion plasma. Other consequences are rays of planetary plasma in the tail and heavy ion plasma clouds, which are stripped off from the dayside ICB region by some instability.

    Key words. Magnetospheric physics (solar wind interactions with unmagnetized bodies – Space plasma physics (discontinuities; numerical simulation studies

  14. Scalable nanohelices for predictive studies and enhanced 3D visualization.

    Science.gov (United States)

    Meagher, Kwyn A; Doblack, Benjamin N; Ramirez, Mercedes; Davila, Lilian P

    2014-11-12

    Spring-like materials are ubiquitous in nature and of interest in nanotechnology for energy harvesting, hydrogen storage, and biological sensing applications. For predictive simulations, it has become increasingly important to be able to model the structure of nanohelices accurately. To study the effect of local structure on the properties of these complex geometries one must develop realistic models. To date, software packages are rather limited in creating atomistic helical models. This work focuses on producing atomistic models of silica glass (SiO₂) nanoribbons and nanosprings for molecular dynamics (MD) simulations. Using an MD model of "bulk" silica glass, two computational procedures to precisely create the shape of nanoribbons and nanosprings are presented. The first method employs the AWK programming language and open-source software to effectively carve various shapes of silica nanoribbons from the initial bulk model, using desired dimensions and parametric equations to define a helix. With this method, accurate atomistic silica nanoribbons can be generated for a range of pitch values and dimensions. The second method involves a more robust code which allows flexibility in modeling nanohelical structures. This approach utilizes a C++ code particularly written to implement pre-screening methods as well as the mathematical equations for a helix, resulting in greater precision and efficiency when creating nanospring models. Using these codes, well-defined and scalable nanoribbons and nanosprings suited for atomistic simulations can be effectively created. An added value in both open-source codes is that they can be adapted to reproduce different helical structures, independent of material. In addition, a MATLAB graphical user interface (GUI) is used to enhance learning through visualization and interaction for a general user with the atomistic helical structures. One application of these methods is the recent study of nanohelices via MD simulations for

  15. Understanding Human Perception of Building Categories in Virtual 3d Cities - a User Study

    Science.gov (United States)

    Tutzauer, P.; Becker, S.; Niese, T.; Deussen, O.; Fritsch, D.

    2016-06-01

    Virtual 3D cities are becoming increasingly important as a means of visually communicating diverse urban-related information. To get a deeper understanding of a human's cognitive experience of virtual 3D cities, this paper presents a user study on the human ability to perceive building categories (e.g. residential home, office building, building with shops etc.) from geometric 3D building representations. The study reveals various dependencies between geometric properties of the 3D representations and the perceptibility of the building categories. Knowledge about which geometries are relevant, helpful or obstructive for perceiving a specific building category is derived. The importance and usability of such knowledge is demonstrated based on a perception-guided 3D building abstraction process.

  16. Improving Assistive Technology Service by Using 3D Printing: Three Case Studies.

    Science.gov (United States)

    Watanabe, Takashi; Hatakeyama, Takuro; Tomiita, Mitsuru

    2015-01-01

    Assistive technology services are essential for adapting assistive devices to the individual needs of users with disabilities. In this study, we attempted to apply three-dimensional (3D) printing technology to three actual cases, and to study its use, effectiveness, and future applications. We assessed the usefulness of 3D printing technology by categorizing its utilization after reviewing the outcomes of these case studies. In future work, we aim to gather additional case studies and derive information on using 3D printing technology that will enable its effective application in the process of assistive technology services.

  17. Investigation of the accuracy of close-range photogrammetry – a 3D printing case study

    Directory of Open Access Journals (Sweden)

    Ognjan Lužanin

    2015-12-01

    Full Text Available 3D scanning of physical objects is one of the frequently used methods for generating input data for 3D printing process. Close-range photogrammetry represents a cost-efficient alternative to conventional 3D scanning. However, one of the basic problems in application of this method is accuracy, especially in the case of small objects with complex geometry. In this case study, a 3D-printed object of small dimensions was used to test the accuracy and precision of close-range photogrammetry. CAD Inspection was used to obtain measurements of the scanned model and compare it with the original CAD model, while the results were statistically analyzed. The results of statistical analysis showed that the scanning accuracy in this experiment did not depend on the particular cross-section of the model, while the precision of 3D scanning depended on the selection of cross-sectional profile curve.

  18. Genre Matters: A Comparative Study on the Entertainment Effects of 3D in Cinematic Contexts

    Science.gov (United States)

    Ji, Qihao; Lee, Young Sun

    2014-09-01

    Built upon prior comparative studies of 3D and 2D films, the current project investigates the effects of 2D and 3D on viewers' perception of enjoyment, narrative engagement, presence, involvement, and flow across three movie genres (Action/fantasy vs. Drama vs. Documentary). Through a 2 by 3 mixed factorial design, participants (n = 102) were separated into two viewing conditions (2D and 3D) and watched three 15-min film segments. Result suggested both visual production methods are equally efficient in terms of eliciting people's enjoyment, narrative engagement, involvement, flow and presence, no effects of visual production method was found. In addition, through examining the genre effects in both 3D and 2D conditions, we found that 3D works better for action movies than documentaries in terms of eliciting viewers' perception of enjoyment and presence, similarly, it improves views' narrative engagement for documentaries than dramas substantially. Implications and limitations are discussed in detail.

  19. Three-dimensional (3D) printed endovascular simulation models: a feasibility study

    Science.gov (United States)

    Nesbitt, Craig; McCaslin, James; Bagnall, Alan; Davey, Philip; Bose, Pentop; Williams, Rob

    2017-01-01

    Background Three-dimensional (3D) printing is a manufacturing process in which an object is created by specialist printers designed to print in additive layers to create a 3D object. Whilst there are initial promising medical applications of 3D printing, a lack of evidence to support its use remains a barrier for larger scale adoption into clinical practice. Endovascular virtual reality (VR) simulation plays an important role in the safe training of future endovascular practitioners, but existing VR models have disadvantages including cost and accessibility which could be addressed with 3D printing. Methods This study sought to evaluate the feasibility of 3D printing an anatomically accurate human aorta for the purposes of endovascular training. Results A 3D printed model was successfully designed and printed and used for endovascular simulation. The stages of development and practical applications are described. Feedback from 96 physicians who answered a series of questions using a 5 point Likert scale is presented. Conclusions Initial data supports the value of 3D printed endovascular models although further educational validation is required. PMID:28251121

  20. A KINEMATIC STUDY OF FINSWIMMING AT SURFACE

    Directory of Open Access Journals (Sweden)

    Pier-Giorgio Zanone

    2004-06-01

    Full Text Available Finswimming is a sport of speed practiced on the surface or underwater, in which performance is based on whole-body oscillations. The present study investigated the undulatory motion performed by finswimmers at the surface. This study aiming to analyze the influence of the interaction of gender, practice level, and race distance on selected kinematic parameters. Six elite and six novices finswimmers equipped with joints markers (wrist, elbow, shoulder, hip, knee, and ankle were recorded in the sagittal plane. The position of these anatomical marks was digitized at 50 Hz. An automated motion analysis software yielded velocity, vertical amplitude, frequency, and angular position. Results showed that stroke frequency decreased whereas the mean amplitude of all joints increased with increasing race distance (p < 0.01. Mean joint amplitude for the upper limbs (wrist, elbow and shoulder was smaller for experts than for novices. Whereas that of the ankle was larger, so that the oscillation amplitude increased from shoulder to ankle. Elite male finswimmers were pitching more acutely than female. Moreover, elite male finswimmers showed a smaller knee bending than novices and than elite females (p < 0.01. This indicated that elite male finswimmers attempt to reduce drag forces thanks to a weak knee bending and a low upper limbs pitch. To sum up, gender, expertise, and race distance affect the performance and its kinematics in terms frontal drag. Expertise in finswimming requires taking advantage of the mechanical constraints pertaining to hydrodynamic constraints in order to optimize performance

  1. Oxygen ingress study of 3D printed gaseous radiation detector enclosures

    Energy Technology Data Exchange (ETDEWEB)

    Steer, Christopher A.; Durose, Aaron [AWE, Alderrnaston, Reading, Berkshire, RG7 4PR (United Kingdom)

    2015-07-01

    As part of our ongoing studies into the potential application of 3D printing techniques to gaseous radiation detectors, we have studied the ability of 3D printed enclosures to resist environmental oxygen ingress. A set of cuboid and hexagonal prism shaped enclosures with wall thicknesses of 4 mm, 6 mm, 8 mm and 10 mm were designed and printed in nylon using a EOSINT P 730 Selective Laser Sintering 3D printer system These test enclosures provide a comparison of different environmental gas ingress for different 3D printing techniques. The rate of change of oxygen concentration was found to be linear, decreasing as the wall thickness increases. It was also found that the hexagonal prism geometry produced a lower rate of change of oxygen concentration compared with the cuboid shaped enclosures. Possible reasons as to why these results were obtained are discussed The implications for the this study for deployable systems are also discussed (authors)

  2. The application of transabdominal 3D ultrasound for the diagnosis of gastric varices: A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Hitoshi, E-mail: maru-cib@umin.ac.jp; Kamezaki, Hidehiro, E-mail: ugn29814@yahoo.co.jp; Kondo, Takayuki, E-mail: takakondonaika@yahoo.co.jp; Sekimoto, Tadashi, E-mail: tad_sekimoto@yahoo.co.jp; Shimada, Taro, E-mail: bobtaro51@yahoo.co.jp; Takahashi, Masanori, E-mail: machat1215@yahoo.co.jp; Yokosuka, Osamu, E-mail: yokosukao@faculty.chiba-u.jp

    2013-09-15

    Objective: The aim of this study was to determine the feasibility of using transabdominal three-dimensional (3D) colour Doppler ultrasound as a non-invasive tool to demonstrate and quantify gastric varices. Subjects and methods: A phantom study compared the 3D water flow volume data in a hose with the actual volume inside the hose at three different flow velocities. The prospective clinical study examined the reliability and reproducibility of 3D volume data for gastric varices (mild 28, moderate 26, large 8) in 62 patients. The 3D images were acquired using the colour Doppler with both convex and micro-convex probes. Results: The phantom study showed a 12.4–17.6% difference between the 3D data and the actual volume with no difference between the two types of probes or three velocities. The detectability of gastric varices was identical between the two probes (54/62, 87.1%). However, the scanning efficiency was significantly greater for the micro-convex probe (66.9 ± 14.1%) than the convex probe (57.3 ± 14%, p = 0.012). Body mass index was the only factor that had a significant relationship with the detectability of varices. The mean volume (mL) of the 3D signal was 0.82 ± 0.74 for mild varices, 5.48 ± 3.84 for moderate varices, and 10.63 ± 6.67 for large varices with significant differences between different grades. The intra-/inter-rater reliability was excellent. Conclusion: The method of 3D colour Doppler ultrasound is reliable and reproducible in the quantitative assessment of vascular volume and is applicable for grading gastric varices. This study may offer a practical usefulness for 3D ultrasonography as an alternative to endoscopy.

  3. Comparison of 2D versus 3D mammography with screening cases: an observer study

    Science.gov (United States)

    Fernandez, James Reza; Deshpande, Ruchi; Hovanessian-Larsen, Linda; Liu, Brent

    2012-02-01

    Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using human studies collected from was performed to compare traditional 2D mammography with this new 3D mammography technique. A prior study using a mammography phantom revealed no difference in calcification detection, but improved mass detection in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Data for this current study is currently being obtained, and a full report should be available in the next few weeks.

  4. 3D Propagation and Geoacoustic Inversion Studies in the Mid-Atlantic Bight

    Science.gov (United States)

    2016-06-07

    bathymetric features and ocean fronts near the shelf break of the mid-Atlantic Bight, and use of various data for geoacoutic inversion studies . The results ...Island (using a propagation model with a genetic algorithm approach). WORK COMPLETED Numerical analysis of significance of 3D propagation influences ... influences of geoacoustic properties have been completed. RESULTS The numerical analysis showed that the dominant mechanism for 3-D azimuthal

  5. 3D-QSAR and docking studies of arylmethylamine-based DPP IV inhibitors

    Directory of Open Access Journals (Sweden)

    Chaoyi Jiang

    2012-08-01

    Full Text Available The present work was focused on the study of the three-dimensional (3D structural requirements for the highly potent bioactivity of dipeptidyl peptidase (DPP IV's inhibitor. At first, molecular dynamic and mechanic (MD/MM simulations were performed to research the conformations of the potent DPP IV's inhibitor 5-(aminomethyl-6-(2,4-dichlorophenyl-2-(3,5-dimethoxy-phenylpyrimidin-4-amine. Using the MD/MM-determined molecular conformers as templates, the 3D quantitative structure activity relationship (QSAR studies were carried out based on a set of arylmethylamine DPP IV inhibitors with the comparative molecular field analysis (CoMFA approach. The best 3D-QSAR model was constructed with good statistic values of rcv2 and R2 using PLS analyses (CoMFA: rcv2=0.660, R2=0.953. The generated 3D-QSAR model was proved to be reliable by internal and external validations. Docking studies were further performed to analyze the interaction mode between the highly potent or low potent arylmethylamine derivatives and DPP IV. Our flexible docking results also confirmed the possible bioactive conformation obtained from the 3D-QSAR model, of arylmethylamine-based DPP IV inhibitors. The 3D-QSAR model may provide information of pharmacophoric features for further design and optimization of new scaffold compounds with high inhibitory activity to DPP IV.

  6. Why 3D Cameras are Not Popular: A Qualitative User Study on Stereoscopic Photography Acceptance

    Science.gov (United States)

    Hakala, Jussi; Westman, Stina; Salmimaa, Marja; Pölönen, Monika; Järvenpää, Toni; Häkkinen, Jukka

    2014-03-01

    Digital stereoscopic 3D cameras have entered the consumer market in recent years, but the acceptance of this novel technology has not yet been studied. The aim of this study was to identify the benefits and problems that novice users encounter in 3D photography by equipping five users with 3D cameras for a 4-week trial. We gathered data using a weekly questionnaire, an exit interview, and a stereoscopic disparity analysis of the 699 photographs taken during the trial. The results indicate that the participants took photographs at too-close distances, which caused excessive disparities. They learned to avoid the problem to some extent; the number of failed photographs due to excessive stereoscopic disparity decreased 70 % in 4 weeks. The participants also developed a preference for subjects that included clear depth differences and started to avoid photographing people because they looked unnatural in 3D photographs. They also regarded flash-induced shadows and edge violations problematic because of the unnatural effects in the photographs. We propose in-camera assistance tools for 3D cameras to make 3D photography easier.

  7. The performance & flow visualization studies of three-dimensional (3-D) wind turbine blade models

    Science.gov (United States)

    Sutrisno, Prajitno, Purnomo, W., Setyawan B.

    2016-06-01

    Recently, studies on the design of 3-D wind turbine blades have a less attention even though 3-D blade products are widely sold. In contrary, advanced studies in 3-D helicopter blade tip have been studied rigorously. Studies in wind turbine blade modeling are mostly assumed that blade spanwise sections behave as independent two-dimensional airfoils, implying that there is no exchange of momentum in the spanwise direction. Moreover, flow visualization experiments are infrequently conducted. Therefore, a modeling study of wind turbine blade with visualization experiment is needed to be improved to obtain a better understanding. The purpose of this study is to investigate the performance of 3-D wind turbine blade models with backward-forward swept and verify the flow patterns using flow visualization. In this research, the blade models are constructed based on the twist and chord distributions following Schmitz's formula. Forward and backward swept are added to the rotating blades. Based on this, the additional swept would enhance or diminish outward flow disturbance or stall development propagation on the spanwise blade surfaces to give better blade design. Some combinations, i. e., b lades with backward swept, provide a better 3-D favorable rotational force of the rotor system. The performance of the 3-D wind turbine system model is measured by a torque meter, employing Prony's braking system. Furthermore, the 3-D flow patterns around the rotating blade models are investigated by applying "tuft-visualization technique", to study the appearance of laminar, separated, and boundary layer flow patterns surrounding the 3-dimentional blade system.

  8. A Kinematical Approach to Dark Energy Studies

    Energy Technology Data Exchange (ETDEWEB)

    Rapetti, David; Allen, Steven W.; Amin, Mustafa A.; Blandford, Roger D.; /KIPAC, Menlo Park

    2006-06-06

    We present and employ a new kinematical approach to cosmological ''dark energy'' studies. We construct models in terms of the dimensionless second and third derivatives of the scale factor a(t) with respect to cosmic time t, namely the present-day value of the deceleration parameter q{sub 0} and the cosmic jerk parameter, j(t). An elegant feature of this parameterization is that all {Lambda}CDM models have j(t) = 1 (constant), which facilitates simple tests for departures from the {Lambda}CDM paradigm. Applying our model to the three best available sets of redshift-independent distance measurements, from type Ia supernovae and X-ray cluster gas mass fraction measurements, we obtain clear statistical evidence for a late time transition from a decelerating to an accelerating phase. For a flat model with constant jerk, j(t) = j, we measure q{sub 0} = -0.81 {+-} 0.14 and j = 2.16{sub -0.75}{sup +0.81}, results that are consistent with {Lambda}CDM at about the 1{sigma} confidence level. A standard ''dynamical'' analysis of the same data, employing the Friedmann equations and modeling the dark energy as a fluid with an equation of state parameter, w (constant), gives {Omega}{sub m} = 0.306{sub -0.040}{sup +0.042} and w = -1.15{sub -0.18}{sup +0.14}, also consistent with {Lambda}CDM at about the 1{sigma} level. In comparison to dynamical analyses, the kinematical approach uses a different model set and employs a minimum of prior information, being independent of any particular gravity theory. The results obtained with this new approach therefore provide important additional information and we argue that both kinematical and dynamical techniques should be employed in future dark energy studies, where possible. Our results provide further interesting support for the concordance {Lambda}CDM paradigm.

  9. Rapid prototyping for tissue-engineered bone scaffold by 3D printing and biocompatibility study.

    Science.gov (United States)

    He, Hui-Yu; Zhang, Jia-Yu; Mi, Xue; Hu, Yang; Gu, Xiao-Yu

    2015-01-01

    The prototyping of tissue-engineered bone scaffold (calcined goat spongy bone-biphasic ceramic composite/PVA gel) by 3D printing was performed, and the biocompatibility of the fabricated bone scaffold was studied. Pre-designed STL file was imported into the GXYZ303010-XYLE 3D printing system, and the tissue-engineered bone scaffold was fabricated by 3D printing using gel extrusion. Rabbit bone marrow stromal cells (BMSCs) were cultured in vitro and then inoculated to the sterilized bone scaffold obtained by 3D printing. The growth of rabbit BMSCs on the bone scaffold was observed under the scanning electron microscope (SEM). The effect of the tissue-engineered bone scaffold on the proliferation and differentiation of rabbit BMSCs using MTT assay. Universal testing machine was adopted to test the tensile strength of the bone scaffold. The leachate of the bone scaffold was prepared and injected into the New Zealand rabbits. Cytotoxicity test, acute toxicity test, pyrogenic test and intracutaneous stimulation test were performed to assess the biocompatibility of the bone scaffold. Bone scaffold manufactured by 3D printing had uniform pore size with the porosity of about 68.3%. The pores were well interconnected, and the bone scaffold showed excellent mechanical property. Rabbit BMSCs grew and proliferated on the surface of the bone scaffold after adherence. MTT assay indicated that the proliferation and differentiation of rabbit BMSCs on the bone scaffold did not differ significantly from that of the cells in the control. In vivo experiments proved that the bone scaffold fabricated by 3D printing had no acute toxicity, pyrogenic reaction or stimulation. Bone scaffold manufactured by 3D printing allows the rabbit BMSCs to adhere, grow and proliferate and exhibits excellent biomechanical property and high biocompatibility. 3D printing has a good application prospect in the prototyping of tissue-engineered bone scaffold.

  10. Receptor-based 3D-QSAR in Drug Design: Methods and Applications in Kinase Studies.

    Science.gov (United States)

    Fang, Cheng; Xiao, Zhiyan

    2016-01-01

    Receptor-based 3D-QSAR strategy represents a superior integration of structure-based drug design (SBDD) and three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis. It combines the accurate prediction of ligand poses by the SBDD approach with the good predictability and interpretability of statistical models derived from the 3D-QSAR approach. Extensive efforts have been devoted to the development of receptor-based 3D-QSAR methods and two alternative approaches have been exploited. One associates with computing the binding interactions between a receptor and a ligand to generate structure-based descriptors for QSAR analyses. The other concerns the application of various docking protocols to generate optimal ligand poses so as to provide reliable molecular alignments for the conventional 3D-QSAR operations. This review highlights new concepts and methodologies recently developed in the field of receptorbased 3D-QSAR, and in particular, covers its application in kinase studies.

  11. Study on 3D visualization application for the Grand Canal heritage site research

    Science.gov (United States)

    Du, Xiaoping; Fan, Xiangtao; Tan, Jian; Zhu, Junjie

    2010-11-01

    This study focuses on two problems in 3D visualization application for heritage site research. Firstly, methods for large scale terrain modeling and rendering were presented. Complex virtual environments were constructed with sequences of remote sensing images and DEM data. The algorithm of precise 3D scenes modeling was optimized. At the same time, the spatial index of quadtree and the images cache management strategies were introduced for improving the performance of interactive 3D visualization system. A novel method creating a mapping between 3D models and the image textures were put forward, so that the models and the textures can be managed respectively. As a result, the capacity of massive 3D terrain surface models management was enhanced as well as the real-time rendering was accelerated. Secondly, methods for 3D culture relics modeling were presented. The culture relics and ancient buildings of the Canal were simulated, which will contribute to its reconstruction and protection. Some ancient water facilities such as ship-lock and docks models and animated navigation scenes were created based on the construction principle and architecture of the Canal transport hub.

  12. 3D printed nanocomposite matrix for the study of breast cancer bone metastasis.

    Science.gov (United States)

    Zhu, Wei; Holmes, Benjamin; Glazer, Robert I; Zhang, Lijie Grace

    2016-01-01

    Bone is one of the most common metastatic sites of breast cancer, but the underlying mechanisms remain unclear, in part due to an absence of advanced platforms for cancer culture and study that mimic the bone microenvironment. In the present study, we integrated a novel stereolithography-based 3D printer and a unique 3D printed nano-ink consisting of hydroxyapatite nanoparticles suspended in hydrogel to create a biomimetic bone-specific environment for evaluating breast cancer bone invasion. Breast cancer cells cultured in a geometrically optimized matrix exhibited spheroid morphology and migratory characteristics. Co-culture of tumor cells with bone marrow mesenchymal stem cells increased the formation of spheroid clusters. The 3D matrix also allowed for higher drug resistance of breast cancer cells than 2D culture. These results validate that our 3D bone matrix can mimic tumor bone microenvironments, suggesting that it can serve as a tool for studying metastasis and assessing drug sensitivity. From the Clinical Editor: Cancer remains a major cause of mortality for patients in the clinical setting. For breast cancer, bone is one of the most common metastatic sites. In this intriguing article, the authors developed a bone-like environment using 3D printing technology to investigate the underlying biology of bone metastasis. Their results would also allow a new model for other researchers who work on cancer to use.

  13. Application of 3D photo-reconstruction in soil erosion studies

    Science.gov (United States)

    Castillo, Carlos; James, Michael; Pérez, Rafael; Gómez, Jose Alfonso

    2014-05-01

    3D photo-reconstruction (3D-PR) has been applied successfully to obtain elevation models using uncalibrated and nonmetric cameras for a range of geoscience applications (e.g. James and Robson, 2012), including gully erosion assessment (Castillo et al., 2012). However, its application in soil erosion studies is currently at the outset. The aim of this work is to compare 3D-PR with conventional techniques that have been employed traditionally for different purposes in soil erosion studies. In this preliminary work, we tested three applications that involve volume calculations: estimation of soil bulk density (BD), quantification of soil erosion at road banks (RB) and sedimentation rates behind check dams (CD). For each analysis, a PR field survey was carried out simultaneously with a conventional method (volume of water was used for BD, and total station surveys for RB and CD). For the 3D-PR technique, the accuracy as a function of the number of pictures taken was evaluated. In this study we explore the difference in the volume estimates between 3D-PR and conventional techniques as well as the time requirements for each method in order to compare their performance and optimal field of application.

  14. Studies of the 3D Structure of the Nucleon at Jlab

    Energy Technology Data Exchange (ETDEWEB)

    Avakian, Harut [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-07-01

    Studies of the 3D structure of the nucleon encoded in Transverse Momentum Dependent distribution and fragmentation functions of partons and Generalized Parton Distributions are among the key objectives of the JLab 12 GeV upgrade and the Electron Ion Collider. Main challenges in extracting 3D partonic distributions from precision measurements of hard scattering processes include clear understanding of leading twist QCD fundamentals, higher twist effects, and also correlations of hadron production in target and current fragmentation regions. In this contribution we discuss some ongoing studies and future measurements of spin-orbit correlations at Jefferson Lab.

  15. Studies of the 3D Structure of the Nucleon at JLab

    Science.gov (United States)

    Avakian, Harut

    2016-08-01

    Studies of the 3D structure of the nucleon encoded in transverse momentum dependent distribution and fragmentation functions of partons and generalized parton distributions are among the key objectives of the JLab 12 GeV upgrade and the electron ion collider. Main challenges in extracting 3D partonic distributions from precision measurements of hard scattering processes include clear understanding of leading twist QCD fundamentals, higher twist effects, and also correlations of hadron production in target and current fragmentation regions. In this contribution we discuss some ongoing studies and future measurements of spin-orbit correlations at Jefferson Lab.

  16. Virgo Cluster and field dwarf ellipticals in 3D: I. On the variety of stellar kinematic and line-strength properties

    CERN Document Server

    Ryś, Agnieszka; van de Ven, Glenn

    2012-01-01

    We present the first large-scale stellar kinematic and line-strength maps for dwarf elliptical galaxies (9 in the Virgo Cluster and 3 in the field environment) obtained with the SAURON integral-field unit. No two galaxies in our sample are alike: we see that the level of rotation is not tied to flattening (we have, e.g. round rotators and flattened nonrotators); we observe kinematic twists in 1 Virgo and 1 field object; we discover large-scale kinematically-decoupled components in 2 field galaxies; we see varying gradients in line-strength maps, from nearly flat to strongly peaked in the center. The great variety of morphological, kinematic, and stellar population parameters seen in our data points to a formation scenario in which properties are shaped stochastically. A combined effect of ram-pressure stripping and galaxy harassment is the most probable explanation. We show the need for a comprehensive analysis of kinematic, dynamical, and stellar population properties which will enable us to place dwarf elli...

  17. Preliminary Study for Dosimetric Characteristics of 3D-printed Materials with Megavoltage Photons

    CERN Document Server

    Jeong, Seonghoon; Chung, Weon Kuu; Kim, Dong Wook

    2015-01-01

    In these days, 3D-printer is on the rise in various fields including radiation therapy. This preliminary study aimed to estimate the dose characteristics of the 3D-printer materials which could be used as the compensator or immobilizer in radiation treatment. The cubes which have 5cm length and different densities as 50%, 75% and 100% were printed by 3D-printer. A planning CT scans for cubes were performed using a CT simulator (Brilliance CT, Philips Medical System, Netherlands). Dose distributions behind the cube were calculated when 6MV photon beam passed through cube. The dose response for 3D-printed cube, air and water were measured by using EBT3 film and 2D array detector. When results of air case were normalized to 100, dose calculated by TPS and measured dose of 50% and 75% cube were 96~99. Measured and calculated doses of water and 100% cube were 82~84. HU values of 50%, 75% and 100% were -910, -860 and -10, respectively. From these results, 3D-printer in radiotherapy could be used for medical purpose...

  18. The Investigation on Using Unity3D Game Engine in Urban Design Study

    Directory of Open Access Journals (Sweden)

    Aswin Indraprastha

    2009-05-01

    Full Text Available Developing a virtual 3D environment by using game engine is a strategy to incorporate various multimedia data into one platform. The characteristic of game engine that is preinstalled with interactive and navigation tools allows users to explore and engage with the game objects. However, most CAD and GIS applications are not equipped with 3D tools and navigation systems intended to the user experience. In particular, 3D game engines provide standard 3D navigation tools as well as any programmable view to create engaging navigation thorough the virtual environment. By using a game engine, it is possible to create other interaction such as object manipulation, non playing character (NPC interaction with player and/or environment. We conducted analysis on previous game engines and experiment on urban design project with Unity3D game engine for visualization and interactivity. At the end, we present the advantages and limitations using game technology as visual representation tool for architecture and urban design studies.

  19. DEVELOPING AND TESTING A 3D CADASTRAL DATA MODEL A CASE STUDY IN AUSTRALIA

    Directory of Open Access Journals (Sweden)

    A. Aien

    2012-07-01

    Many jurisdictions, organizations and software developers have built their own cadastral data model. Land Administration Domain Model (DIS-ISO 19152, The Netherlands and ePlan (Intergovernmental Committee on Surveying and Mapping, Australia are examples of existing data models. The variation between these data models is the result of different attitudes towards cadastres. However, there is a basic common thread among them all. Current cadastral data models use a 2D land-parcel concept and extend it to support 3D requirements. These data models cannot adequately manage and represent the spatial extent of 3D RRRs. Most of the current cadastral data models have been influenced by a very broad understanding of 3D cadastral concepts because better clarity in what needs to be represented and analysed in the cadastre needs to be established. This paper presents the first version of a 3D Cadastral Data Model (3DCDM_Version 1.0. 3DCDM models both the legal and physical extent of 3D properties and associated interests. The data model extends the traditional cadastral requirements to cover other applications such as urban planning and land valuation and taxation. A demonstration of a test system on the proposed data model is also presented. The test is based on a case study in Victoria, Australia to evaluate the effectiveness of the data model.

  20. Experimental studies on 3D printing of barium titanate ceramics for medical applications

    Directory of Open Access Journals (Sweden)

    Schult Mark

    2016-09-01

    Full Text Available The present work deals with the 3D printing of porous barium titanate ceramics. Barium titanate is a biocompatible material with piezoelectric properties. Due to insufficient flowability of the starting material for 3D printing, the barium titanate raw material has been modified in three different ways. Firstly, barium titanate powder has been calcined. Secondly, flow additives have been added to the powder. And thirdly, flow additives have been added to the calcined powder. Finally, a polymer has been added to the three materials and specimens have been printed from these three material mixtures. The 3D printed parts were then sintered at 1320°C. The sintering leads to shrinkage which differs between 29.51–71.53% for the tested material mixtures. The porosity of the parts is beneficial for cell growth which is relevant for future medical applications. The results reported in this study demonstrate the possibility to fabricate porous piezoelectric barium titanate parts with a 3D printer that can be used for medical applications. 3D printed porous barium titanate ceramics can especially be used as scaffold for bone tissue engineering, where the bone formation can be promoted by electrical stimulation.

  1. Lossless data compression studies for NOAA hyperspectral environmental suite using 3D integer wavelet transforms with 3D embedded zerotree coding

    Science.gov (United States)

    Huang, Bormin; Huang, Hung-Lung; Chen, Hao; Ahuja, Alok; Baggett, Kevin; Schmit, Timothy J.; Heymann, Roger W.

    2003-09-01

    Hyperspectral sounder data is a particular class of data that requires high accuracy for useful retrieval of atmospheric temperature and moisture profiles, surface characteristics, cloud properties, and trace gas information. Therefore compression of these data sets is better to be lossless or near lossless. The next-generation NOAA/NESDIS GOES-R hyperspectral sounder, now referred to as the HES (Hyperspectral Environmental Suite), will have hyperspectral resolution (over one thousand channels with spectral widths on the order of 0.5 wavenumber) and high spatial resolution (less than 10 km). Given the large volume of three-dimensional hyperspectral sounder data that will be generated by the HES instrument, the use of robust data compression techniques will be beneficial to data transfer and archive. In this paper, we study lossless data compression for the HES using 3D integer wavelet transforms via the lifting schemes. The wavelet coefficients are then processed with the 3D embedded zerotree wavelet (EZW) algorithm followed by context-based arithmetic coding. We extend the 3D EZW scheme to take on any size of 3D satellite data, each of whose dimensions need not be divisible by 2N, where N is the levels of the wavelet decomposition being performed. The compression ratios of various kinds of wavelet transforms are presented along with a comparison with the JPEG2000 codec.

  2. Data compression studies for NOAA Hyperspectral Environmental Suite (HES) using 3D integer wavelet transforms with 3D set partitioning in hierarchical trees

    Science.gov (United States)

    Huang, Bormin; Huang, Hung-Lung; Chen, Hao; Ahuja, Alok; Baggett, Kevin; Schmit, Timothy J.; Heymann, Roger W.

    2004-02-01

    The next-generation NOAA/NESDIS GOES-R hyperspectral sounder, now referred to as the HES (Hyperspectral Environmental Suite), will have hyperspectral resolution (over one thousand channels with spectral widths on the order of 0.5 wavenumber) and high spatial resolution (less than 10 km). Hyperspectral sounder data is a particular class of data requiring high accuracy for useful retrieval of atmospheric temperature and moisture profiles, surface characteristics, cloud properties, and trace gas information. Hence compression of these data sets is better to be lossless or near lossless. Given the large volume of three-dimensional hyperspectral sounder data that will be generated by the HES instrument, the use of robust data compression techniques will be beneficial to data transfer and archive. In this paper, we study lossless data compression for the HES using 3D integer wavelet transforms via the lifting schemes. The wavelet coefficients are processed with the 3D set partitioning in hierarchical trees (SPIHT) scheme followed by context-based arithmetic coding. SPIHT provides better coding efficiency than Shapiro's original embedded zerotree wavelet (EZW) algorithm. We extend the 3D SPIHT scheme to take on any size of 3D satellite data, each of whose dimensions need not be divisible by 2N, where N is the levels of the wavelet decomposition being performed. The compression ratios of various kinds of wavelet transforms are presented along with a comparison with the JPEG2000 codec.

  3. Reaching the limit of the oculomotor plant: 3D kinematics after abducens nerve stimulation during the torsional vestibulo-ocular reflex.

    Science.gov (United States)

    Klier, Eliana M; Meng, Hui; Angelaki, Dora E

    2012-09-19

    Accumulating evidence shows that the oculomotor plant is capable of implementing aspects of three-dimensional kinematics such as Listing's law and the half-angle rule. But these studies have only examined the eye under static conditions or with movements that normally obey these rules (e.g., saccades and pursuit). Here we test the capability of the oculomotor plant to rearrange itself as necessary for non-half-angle behavior. Three monkeys (Macaca mulatta) fixated five vertically displaced targets along the midsagittal plane while sitting on a motion platform that rotated sinusoidally about the naso-occipital axis. This activated the torsional, rotational vestibulo-ocular reflex, which exhibits a zero-angle or negative-angle rule (depending on the visual stimulus). On random sinusoidal cycles, we stimulated the abducens nerve and observed the resultant eye movements. If the plant has rearranged itself to implement this non-half-angle behavior, then stimulation should reveal this behavior. On the other hand, if the plant is only capable of half-angle behavior, then stimulation should reveal a half-angle rule. We find the latter to be true and therefore additional neural signals are likely necessary to implement non-half-angle behavior.

  4. Carboxy-Methyl-Cellulose (CMC) hydrogel-filled 3-D scaffold: Preliminary study through a 3-D antiproliferative activity of Centella asiatica extract

    Science.gov (United States)

    Aizad, Syazwan; Yahaya, Badrul Hisham; Zubairi, Saiful Irwan

    2015-09-01

    This study focuses on the effects of using the water extract from Centella asiatica on the mortality of human lung cancer cells (A549) with the use of novel 3-D scaffolds infused with CMC hydrogel. A biodegradable polymer, poly (hydroxybutyrate-co-hydroxyvalerate) (PHBV) was used in this study as 3-D scaffolds, with some modifications made by introducing the gel structure on its pore, which provides a great biomimetic microenvironment for cells to grow apart from increasing the interaction between the cells and cell-bioactive extracts. The CMC showed a good hydrophilic characteristic with mean contact angle of 24.30 ± 22.03°. To ensure the CMC gel had good attachments with the scaffolds, a surface treatment was made before the CMC gel was infused into the scaffolds. The results showed that these modified scaffolds contained 42.41 ± 0.14% w/w of CMC gel, which indicated that the gel had already filled up the entire pore of 3-D scaffolds. Besides, the infused hydrogel scaffolds took only 24 hours to be saturated when absorbing the water. The viability of cancer cells by MTS assay after being treated with Centella asiatica showed that the scaffolds infused with CMC hydrogel had the cell viability of 46.89 ± 1.20% followed by porous 3-D model with 57.30 ± 1.60% of cell viability, and the 2-D model with 67.10 ± 1.10% of cell viability. The inhibitory activity in cell viability between 2-D and 3-D models did not differ significantly (p>0.05) due to the limitation of time in incubating the extract with the cell in the 3-D model microenvironment. In conclusion, with the application of 3-D scaffolds infused with CMC hydrogel, the extracts of Centella asiatica has been proven to have the ability to kill cancer cells and have a great potential to become one of the alternative methods in treating cancer patients.

  5. Study of the signal formation in single-type column 3D silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Piemonte, Claudio [ITC-irst, Divisione Microsistemi, 38050 Povo di Trento, Via Sommarive 18, 38050 Povo di Trento (Italy)], E-mail: piemonte@itc.it; Boscardin, Maurizio [ITC-irst, Divisione Microsistemi, 38050 Povo di Trento, Via Sommarive 18, 38050 Povo di Trento (Italy); Bosisio, Luciano [INFN and Physics Department, University of Trieste, Via A. Valerio 2, 34127 Trieste (Italy); Dalla Betta, Gian-Franco [INFN and ICT Department, University of Trento, Via Sommarive 14, 38050 Povo di Trento (Italy); Pozza, Alberto; Ronchin, Sabina; Zorzi, Nicola [ITC-irst, Divisione Microsistemi, 38050 Povo di Trento, Via Sommarive 18, 38050 Povo di Trento (Italy)

    2007-09-01

    Because of their superior radiation resistance, three-dimensional (3D) silicon sensors are receiving more and more interest for application in the innermost layers of tracker systems for experiments running in very high luminosity colliders. Their short electrode distance allows for both a low depletion voltage and a high charge collection efficiency even at extremely high radiation fluences. In order to fully understand the properties of a 3D detector, a thorough characterization of the signal formation mechanism is of paramount importance. In this work the shape of the current induced by localized and uniform charge depositions in a single-type column 3D detector is studied. A first row estimation is given applying the Ramo theorem, then a more complete TCAD simulation is used to provide a more realistic pulse shape.

  6. A Study on the Exploration of Electrostatic Powder Coating Materials Suitable for 3D Scanning

    Directory of Open Access Journals (Sweden)

    Maeng Hee-young

    2016-01-01

    Full Text Available There are many difficulty in collecting data from a diffused reflection surface using an optical 3D scanning device. A spray-type developer and silicon molds are used for solving this problem. However, using developer can cause chemical reactions between objects and developer particles and uneven surfaces of the object. To overcome these problems, it is suggested an electrostatic powder coating method for even coating of particles onto surfaces for collecting 3D shape data. We have developed an automatic, electrostatic powder coating machine. The present study is aimed to explore powder materials suitable for electrostatic powder coating in terms of the easiness of coating work considering the characteristics of object surface. It was also conducted to verify materials that are smoothly coated well under various coating conditions and are advantageous in collecting 3D shape data.

  7. Registration of 3D and Multispectral Data for the Study of Cultural Heritage Surfaces

    Directory of Open Access Journals (Sweden)

    Frank Boochs

    2013-01-01

    Full Text Available We present a technique for the multi-sensor registration of featureless datasets based on the photogrammetric tracking of the acquisition systems in use. This method is developed for the in situ study of cultural heritage objects and is tested by digitizing a small canvas successively with a 3D digitization system and a multispectral camera while simultaneously tracking the acquisition systems with four cameras and using a cubic target frame with a side length of 500 mm. The achieved tracking accuracy is better than 0.03 mm spatially and 0.150 mrad angularly. This allows us to seamlessly register the 3D acquisitions and to project the multispectral acquisitions on the 3D model.

  8. Quantitative Morphological and Biochemical Studies on Human Downy Hairs using 3-D Quantitative Phase Imaging

    CERN Document Server

    Lee, SangYun; Lee, Yuhyun; Park, Sungjin; Shin, Heejae; Yang, Jongwon; Ko, Kwanhong; Park, HyunJoo; Park, YongKeun

    2015-01-01

    This study presents the morphological and biochemical findings on human downy arm hairs using 3-D quantitative phase imaging techniques. 3-D refractive index tomograms and high-resolution 2-D synthetic aperture images of individual downy arm hairs were measured using a Mach-Zehnder laser interferometric microscopy equipped with a two-axis galvanometer mirror. From the measured quantitative images, the biochemical and morphological parameters of downy hairs were non-invasively quantified including the mean refractive index, volume, cylinder, and effective radius of individual hairs. In addition, the effects of hydrogen peroxide on individual downy hairs were investigated.

  9. 3D evaluation of palatal rugae for human identification using digital study models

    Science.gov (United States)

    Taneva, Emilia D.; Johnson, Andrew; Viana, Grace; Evans, Carla A.

    2015-01-01

    Background: While there is literature suggesting that the palatal rugae could be used for human identification, most of these studies use two-dimensional (2D) approach. Aim: The aims of this study were to evaluate palatal ruga patterns using three-dimensional (3D) digital models; compare the most clinically relevant digital model conversion techniques for identification of the palatal rugae; develop a protocol for overlay registration; determine changes in palatal ruga individual patterns through time; and investigate the efficiency and accuracy of 3D matching processes between different individuals’ patterns. Material and Methods: Five cross sections in the anteroposterior dimension and four cross sections in the transverse dimension were computed which generated 18 2D variables. In addition, 13 3D variables were defined: The posterior point of incisive papilla (IP), and the most medial and lateral end points of the palatal rugae (R1MR, R1ML, R1LR, R1LL, R2MR, R2ML, R2LR, R2LL, R3MR, R3ML, R3LR, and R3LL). The deviation magnitude for each variable was statistically analyzed in this study. Five different data sets with the same 31 landmarks were evaluated in this study. Results: The results demonstrated that 2D images and linear measurements in the anteroposterior and transverse dimensions were not sufficient for comparing different digital model conversion techniques using the palatal rugae. 3D digital models proved to be a highly effective tool in evaluating different palatal ruga patterns. The 3D landmarks showed no statistically significant mean differences over time or as a result of orthodontic treatment. No statistically significant mean differences were found between different digital model conversion techniques, that is, between OrthoCAD™ and Ortho Insight 3D™, and between Ortho Insight 3D™ and the iTero® scans, when using 12 3D palatal rugae landmarks for comparison. Conclusion: Although 12 palatal 3D landmarks could be used for human

  10. A Survey Study of the Blast Furnace at Kuangshan Village Using 3D Laser Scanning

    Science.gov (United States)

    Wang, Jin; Huang, Xing; Qian, Wei

    2017-01-01

    The blast furnace from the Northern Song Dynasty at Kuangshan Village is the tallest blast furnace that remains from ancient China. Previous studies have assumed that the furnace had a closed mouth. In this paper, a three-dimensional (3D) model of the blast furnace is constructed using 3D laser scanning technology, and accurate profile data are obtained using software. It is shown that the furnace throat is smaller than had been previously thought and that the furnace mouth is of the open type. This new furnace profile constitutes a discovery in the history of iron-smelting technology.

  11. 3D evaluation of palatal rugae for human identification using digital study models

    Directory of Open Access Journals (Sweden)

    Emilia D Taneva

    2015-01-01

    Full Text Available Background: While there is literature suggesting that the palatal rugae could be used for human identification, most of these studies use two-dimensional (2D approach. Aim: The aims of this study were to evaluate palatal ruga patterns using three-dimensional (3D digital models; compare the most clinically relevant digital model conversion techniques for identification of the palatal rugae; develop a protocol for overlay registration; determine changes in palatal ruga individual patterns through time; and investigate the efficiency and accuracy of 3D matching processes between different individuals′ patterns. Material and Methods: Five cross sections in the anteroposterior dimension and four cross sections in the transverse dimension were computed which generated 18 2D variables. In addition, 13 3D variables were defined: The posterior point of incisive papilla (IP, and the most medial and lateral end points of the palatal rugae (R1MR, R1ML, R1LR, R1LL, R2MR, R2ML, R2LR, R2LL, R3MR, R3ML, R3LR, and R3LL. The deviation magnitude for each variable was statistically analyzed in this study. Five different data sets with the same 31 landmarks were evaluated in this study. Results: The results demonstrated that 2D images and linear measurements in the anteroposterior and transverse dimensions were not sufficient for comparing different digital model conversion techniques using the palatal rugae. 3D digital models proved to be a highly effective tool in evaluating different palatal ruga patterns. The 3D landmarks showed no statistically significant mean differences over time or as a result of orthodontic treatment. No statistically significant mean differences were found between different digital model conversion techniques, that is, between OrthoCAD™ and Ortho Insight 3D™, and between Ortho Insight 3D™ and the iTero; scans, when using 12 3D palatal rugae landmarks for comparison. Conclusion: Although 12 palatal 3D landmarks could be used for

  12. Towards a Real Estate Registry 3d Model in Portugal: Some Illustrative Case Studies

    Science.gov (United States)

    de Almeida, J.-P.; Ellul, C.; Rodrigues-de-Carvalho, M. M.

    2013-09-01

    The 3D concept emerged as a key concept within geoinformation science. 3D geoinformation has been proved to be feasible and its added value over 2D geoinformation is widely acknowledged by researchers from various fields. Even so, 3D concept merits still need to be exploited further and more specific applications and associate products are needed - such as within real estate cadastre, our ultimate field of interest. The growing densification of urban land use is consequently increasing situations of vertical stratification of ownership rights. Traditional 2D cadastral models are not able to fully handle spatial information on those rights in the third dimension. Thus, 3D cadastre has been attracting researchers to better register and spatially represent real world overlapping situations. A centralised distributed cadastral management system, implementing a 2D cadastral model, has been conceived by the national cadastral agency in Portugal: the so-called SiNErGIC. The authors seek to show with this paper that there is room though for further investigation on the suitability of a 3D modelling approach instead, which should not be confined only to topologicalgeometric representations but should also be extended in order to be able to incorporate the legal/administrative component. This paper intends to be the first step towards the design of a prototype of a 3D cadastral model capable of handling the overall multipurpose cadastral reality in Portugal; it focuses primarily on the clear identification of some case studies that may illustrate the pertinence of such an approach in the context of this country.

  13. Effect of mental fatigue caused by mobile 3D viewing on selective attention: an ERP study.

    Science.gov (United States)

    Mun, Sungchul; Kim, Eun-Soo; Park, Min-Chul

    2014-12-01

    This study investigated behavioral responses to and auditory event-related potential (ERP) correlates of mental fatigue caused by mobile three-dimensional (3D) viewing. Twenty-six participants (14 women) performed a selective attention task in which they were asked to respond to the sounds presented at the attended side while ignoring sounds at the ignored side before and after mobile 3D viewing. Considering different individual susceptibilities to 3D, participants' subjective fatigue data were used to categorize them into two groups: fatigued and unfatigued. The amplitudes of d-ERP components were defined as differences in amplitudes between time-locked brain oscillations of the attended and ignored sounds, and these values were used to calculate the degree to which spatial selective attention was impaired by 3D mental fatigue. The fatigued group showed significantly longer response times after mobile 3D viewing compared to before the viewing. However, response accuracy did not significantly change between the two conditions, implying that the participants used a behavioral strategy to cope with their performance accuracy decrement by increasing their response times. No significant differences were observed for the unfatigued group. Analysis of covariance revealed group differences with significant and trends toward significant decreases in the d-P200 and d-late positive potential (LPP) amplitudes at the occipital electrodes of the fatigued and unfatigued groups. Our findings indicate that mentally fatigued participants did not effectively block out distractors in their information processing mechanism, providing support for the hypothesis that 3D mental fatigue impairs spatial selective attention and is characterized by changes in d-P200 and d-LPP amplitudes.

  14. Supporting Distributed Team Working in 3D Virtual Worlds: A Case Study in Second Life

    Science.gov (United States)

    Minocha, Shailey; Morse, David R.

    2010-01-01

    Purpose: The purpose of this paper is to report on a study into how a three-dimensional (3D) virtual world (Second Life) can facilitate socialisation and team working among students working on a team project at a distance. This models the situation in many commercial sectors where work is increasingly being conducted across time zones and between…

  15. Reproducibility study of 3D SSFP phase-based brain conductivity imaging

    NARCIS (Netherlands)

    Stehning, C.; Katscher, U.; Keupp, J.

    2012-01-01

    Noninvasive MR-based Electric Properties Tomography (EPT) forms a framework for an accurate determination of local SAR, and may providea diagnostic parameter in oncology. 3D SSFP sequences were found tobe a promising candidate for fast volumetric conductivity imaging. In this work, an in vivo study

  16. Testing the effectiveness of 3D film for laboratory-based studies of emotion.

    Directory of Open Access Journals (Sweden)

    Daniel L Bride

    Full Text Available Research in psychology and affective neuroscience often relies on film as a standardized and reliable method for evoking emotion. However, clip validation is not undertaken regularly. This presents a challenge for research with adolescent and young adult samples who are exposed routinely to high-definition (HD three-dimensional (3D stimuli and may not respond to older, validated film clips. Studies with young people inform understanding of emotional development, dysregulated affect, and psychopathology, making it critical to assess whether technological advances improve the study of emotion. In the present study, we examine whether 3D film is more evocative than 2D using a tightly controlled within-subjects design. Participants (n  =  408 viewed clips during a concurrent psychophysiological assessment. Results indicate that both 2D and 3D technology are highly effective tools for emotion elicitation. However, 3D does not add incremental benefit over 2D, even when individual differences in anxiety, emotion dysregulation, and novelty seeking are considered.

  17. Study of heat transfer in 3D fuel rods of the EPRI-9R reactor modified; Estudo da transferencia de calor em varetas combustiveis 3D do reator EPRI-9R 3D modificado

    Energy Technology Data Exchange (ETDEWEB)

    Affonso, Renato Raoni Werneck; Lava, Deise Diana; Borges, Diogo da Silva; Sampaio, Paulo Augusto Berquo de; Moreira, Maria de Lourdes, E-mail: raoniwa@yahoo.com.br, E-mail: deisedy@gmail.com, E-mail: diogosb@outlook.com, E-mail: sampaio@ien.gov.br, E-mail: malu@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    This paper aims to conduct a case study of the fuel rods that have the highest and the lowest average power of the EPRI-9R 3D reactor modified , for various positions of the control rods banks. For this, will be addressed the verification of computer code, comparing the results obtained with analytical solutions. This check is important so that, subsequently, it is possible use the program to understand the behavior of the fuel rods and the coolant channel of the EPRI-9R 3D reactor modified. Thus, in view of the scope of this paper, first a brief introducing on the heat transfer is done, including the rod equations and the equation of energy in the channel to allow the analysis of the results.

  18. 3D Visualization Types in Multimedia Applications for Science Learning: A Case Study for 8th Grade Students in Greece

    Science.gov (United States)

    Korakakis, G.; Pavlatou, E. A.; Palyvos, J. A.; Spyrellis, N.

    2009-01-01

    This research aims to determine whether the use of specific types of visualization (3D illustration, 3D animation, and interactive 3D animation) combined with narration and text, contributes to the learning process of 13- and 14- years-old students in science courses. The study was carried out with 212 8th grade students in Greece. This…

  19. Studying primate carpal kinematics in three dimensions using a computed-tomography-based markerless registration method.

    Science.gov (United States)

    Orr, Caley M; Leventhal, Evan L; Chivers, Spencer F; Marzke, Mary W; Wolfe, Scott W; Crisco, Joseph J

    2010-04-01

    The functional morphology of the wrist pertains to a number of important questions in primate evolutionary biology, including that of hominins. Reconstructing locomotor and manipulative capabilities of the wrist in extinct species requires a detailed understanding of wrist biomechanics in extant primates and the relationship between carpal form and function. The kinematics of carpal movement, and the role individual joints play in providing mobility and stability of the wrist, is central to such efforts. However, there have been few detailed biomechanical studies of the nonhuman primate wrist. This is largely because of the complexity of wrist morphology and the considerable technical challenges involved in tracking the movements of the many small bones that compose the carpus. The purpose of this article is to introduce and outline a method adapted from human clinical studies of three-dimensional (3D) carpal kinematics for use in a comparative context. The method employs computed tomography of primate cadaver forelimbs in increments throughout the wrist's range of motion, coupled with markerless registration of 3D polygon models based on inertial properties of each bone. The 3D kinematic principles involved in extracting motion axis parameters that describe bone movement are reviewed. In addition, a set of anatomically based coordinate systems embedded in the radius, capitate, hamate, lunate, and scaphoid is presented for the benefit of other primate functional morphologists interested in studying carpal kinematics. Finally, a brief demonstration of how the application of these methods can elucidate the mechanics of the wrist in primates illustrates the closer-packing of carpals in chimpanzees than in orangutans, which may help to stabilize the midcarpus and produce a more rigid wrist beneficial for efficient hand posturing during knuckle-walking locomotion.

  20. Kinematic finite fault and 3D seismic wave propagation of the 24 August, 2016, Mw 6.0 central Italy earthquake

    Directory of Open Access Journals (Sweden)

    Federica Magnoni

    2016-12-01

    Full Text Available The magnitude Mw 6.0 earthquake of 24th August 2016 caused severe damages and nearly 300 fatalities in the central Italy region. Initial reports revealed an asymmetrical distribution of damage and coseismic effects, suggesting a major role of heterogeneities, both in the rupture history and in the geological structure of the region. Near realtime availability of seismological data afforded a timely determination of a finite fault model (Tinti et al., 2016. Here we test this source model by performing a 3D simulation of seismic wave propagation within a 3D structural model containing the major geological features of the region. Agreement between modeled seismograms and observed seismograms suggests that some complexities in the waveforms, such as high amplification in the region of the Mt. Vettore fault system, can be accounted for by complexities in the fault rupture and 3D structural models. Finally, the consistency of the hypothesis of two distinct events has been analyzed.

  1. Comparative study of MR 3D-SPACE,3D-True FISP sequences at measuring defect area in articular cartilage of knee%3D-SPACE、3D-True FISP序列测量膝关节软骨缺损面积的比较研究

    Institute of Scientific and Technical Information of China (English)

    陈浩; 孙岩; 秦卫; 胡丹; 郝跃峰; 刘可夫; 庄启湘; 郑志勇

    2016-01-01

    Objective:To assess the accuracy of defect area in articular cartilage of knee by comparing results from the 3D-SPACE sequence and the 3D-True FISP sequence. Methods:A 1.5 T MRI system was used to perform a study of 38 pa-tients,and lesion visualization of articular cartilage of knee joint was compared. Measurement results of defect area in articular cartilage of knee (52 lesions) by 3D-SPACE sequence and 3D-True FISP sequence was compared with the measurement re-sults by arthroscopy. Results:The average size of defective articular cartilage of knee joint in 3D-SPACE sequence was (2.337±0.868)cm2,and in 3D-True FISP sequence was (1.423±0.560)cm2. 3D-SPACE sequence were significantly higher than with the 3D-True FISP sequence (P<0.05) in visualization of articular cartilage of knee joint,also in assessing the accuracy of defect area. Conclusion:For the depiction of articular cartilage of knee,the 3D-SPACE sequence is superior to the 3D-CISS se-quence,also in assessing the accuracy of defect area in articular cartilage of knee.%目的:比较三维可变翻转角快速自旋回波序列(3-dimensional sampling perfection with application optimized contrast using different flip angle evolutions,3D-SPACE)、三维真稳态进动快速成像序列(3D-true fast imaging with steady-state precession,3D-True FISP)测量膝关节软骨缺损面积的准确性。方法:选取38例膝关节软骨缺损患者,在1.5 T MRI仪上对比3D-SPACE、3D-True FISP序列对膝关节软骨的显示质量,并将2组序列测量的缺损软骨面积(52处)与关节镜测量结果进行比较。结果:3D-SPACE、3D-True FISP序列测量的膝软骨缺损面积平均每膝分别为(2.337±0.868)cm2、(1.423±0.560)cm2。3D-SPACE序列比3D-True FISP序列在对膝关节软骨显示质量上更优(P<0.05),且对软骨缺损面积的显示更准确(P<0.05)。结论:3D-SPACE序列比3D-True FISP序列能更好地显示膝关节软骨,对膝关节

  2. Studying Host-Pathogen Interactions In 3-D: Organotypic Models For Infectious Disease And Drug Development

    Science.gov (United States)

    Nickerson, Cheryl A.; Richter, Emily G.; Ott, C. Mark

    2006-01-01

    Representative, reproducible and high-throughput models of human cells and tissues are critical for a meaningful evaluation of host-pathogen interactions and are an essential component of the research developmental pipeline. The most informative infection models - animals, organ explants and human trials - are not suited for extensive evaluation of pathogenesis mechanisms and screening of candidate drugs. At the other extreme, more cost effective and accessible infection models such as conventional cell culture and static co-culture may not capture physiological and three-dimensional aspects of tissue biology that are important in assessing pathogenesis, and effectiveness and cytotoxicity of therapeutics. Our lab has used innovative bioengineering technology to establish biologically meaningful 3-D models of human tissues that recapitulate many aspects of the differentiated structure and function of the parental tissue in vivo, and we have applied these models to study infectious disease. We have established a variety of different 3-D models that are currently being used in infection studies - including small intestine, colon, lung, placenta, bladder, periodontal ligament, and neuronal models. Published work from our lab has shown that our 3-D models respond to infection with bacterial and viral pathogens in ways that reflect the infection process in vivo. By virtue of their physiological relevance, 3-D cell cultures may also hold significant potential as models to provide insight into the neuropathogenesis of HIV infection. Furthermore, the experimental flexibility, reproducibility, cost-efficiency, and high throughput platform afforded by these 3-D models may have important implications for the design and development of drugs with which to effectively treat neurological complications of HIV infection.

  3. Laboratory Study of Magnetic Reconnection in 3D Geometry Relevant to Magnetopause and Magnetotail

    Science.gov (United States)

    Ren, Y.; Lu, Q.; Ji, H.; Mao, A.; Wang, X.; E, P.; Wang, Z.; Xiao, Q.; Ding, W.; Zheng, J.

    2015-12-01

    Laboratory Study of Magnetic Reconnection in 3D Geometry Relevant to Magnetopause and Magnetotail Y. Ren1,2, Quaming Lu3, Hantao Ji1,2, Aohua Mao1, Xiaogang Wang1, Peng E1, Zhibin Wang1, Qingmei Xiao1, Weixing Ding4, Jinxing Zheng51 Harbin Institute of Technology, Harbin, China2 Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 3University of Science and Technology of China, Hefei, China 4University of California at Los Angeles, Los Angeles, CA, 90095 5ASIPP, Hefei, China A new magnetic reconnection experiment, Harbin reconnection eXperiment (HRX), is currently being designed as a key part of Space Plasma Environment Research Facility (SPERF) at Harbin Institute of Technology in Harbin, China. HRX aims to provide a unique experimental platform for studying reconnections in 3D geometry relevant to magnetopause and magnetotail to address: the role of electron and ion-scale dynamics in the current sheet; particle and energy transfer from magnetosheath to magnetosphere; particle energization/heating mechanisms during magnetic reconnection; 3D effects in fast reconnection, e.g. the role of 3D magnetic null point. HRX employs a unique set of coils to generate the required 3D magnetic geometry and provides a wide range of plasma parameters. Here, important motivating scientific problems are reviewed and the physics design of HRX is presented, including plasma parameters determined from Vlasov scaling law, reconnection scenarios explored using vacuum magnetic field calculations and numerical simulations of HRX using hybrid and MHD codes. Plasma diagnostics plan and engineering design of important coils will also be briefly presented.

  4. Preliminary study of the dosimetric characteristics of 3D-printed materials with megavoltage photons

    Science.gov (United States)

    Jeong, Seonghoon; Yoon, Myonggeun; Chung, Weon Kuu; Kim, Dong Wook

    2015-07-01

    These days, 3D-printers are on the rise in various fields including radiation therapy. This preliminary study aimed to estimate the dose characteristics of 3D-printer materials that could be used as compensators or immobilizers in radiation treatment. The cubes with length of 5 cm and different densities of 50%, 75% and 100% were printed by using a 3D-printer. Planning CT scans of the cubes were performed by using a CT simulator (Brilliance CT, Philips Medical System, Netherlands). Dose distributions behind the cube were calculated after a 6 MV photon beam had passed through the cube. The dose responses for the 3D-printed cube, air and water were measured by using EBT3 film and a 2D array detector. When the results of air case were normalized to 100, the dose calculated by the TPS and the measured doses to 50% and 75% cube were of the 96 ~ 99. The measured and the calculated doses to water and to 100% of the cube were 82 ~ 84. The HU values for the 50%, 75% and 100% density cases were -910, -860 and -10, respectively. The dose characteristics of the 50% and the 75% products were similar to that of air while the 100% product seemed to be similar to that of water. This information will provide guidelines for making an immobilization tool that can play the role of a compensator and for making a real human phantom that can exactly describe the inside of the human body. This study was necessary for Poly Lactic Acid (PLA) based 3D-printer users who are planning to make something related to radiation therapy.

  5. Adaptive clutter rejection for 3D color Doppler imaging: preliminary clinical study.

    Science.gov (United States)

    Yoo, Yang Mo; Sikdar, Siddhartha; Karadayi, Kerem; Kolokythas, Orpheus; Kim, Yongmin

    2008-08-01

    In three-dimensional (3D) ultrasound color Doppler imaging (CDI), effective rejection of flash artifacts caused by tissue motion (clutter) is important for improving sensitivity in visualizing blood flow in vessels. Since clutter characteristics can vary significantly during volume acquisition, a clutter rejection technique that can adapt to the underlying clutter conditions is desirable for 3D CDI. We have previously developed an adaptive clutter rejection (ACR) method, in which an optimum filter is dynamically selected from a set of predesigned clutter filters based on the measured clutter characteristics. In this article, we evaluated the ACR method with 3D in vivo data acquired from 37 kidney transplant patients clinically indicated for a duplex ultrasound examination. We compared ACR against a conventional clutter rejection method, down-mixing (DM), using a commonly-used flow signal-to-clutter ratio (SCR) and a new metric called fractional residual clutter area (FRCA). The ACR method was more effective in removing the flash artifacts while providing higher sensitivity in detecting blood flow in the arcuate arteries and veins in the parenchyma of transplanted kidneys. ACR provided 3.4 dB improvement in SCR over the DM method (11.4 +/- 1.6 dB versus 8.0 +/- 2.0 dB, p < 0.001) and had lower average FRCA values compared with the DM method (0.006 +/- 0.003 versus 0.036 +/- 0.022, p < 0.001) for all study subjects. These results indicate that the new ACR method is useful for removing nonstationary tissue motion while improving the image quality for visualizing 3D vascular structure in 3D CDI.

  6. D Recording for 2d Delivering - the Employment of 3d Models for Studies and Analyses -

    Science.gov (United States)

    Rizzi, A.; Baratti, G.; Jiménez, B.; Girardi, S.; Remondino, F.

    2011-09-01

    In the last years, thanks to the advances of surveying sensors and techniques, many heritage sites could be accurately replicated in digital form with very detailed and impressive results. The actual limits are mainly related to hardware capabilities, computation time and low performance of personal computer. Often, the produced models are not visible on a normal computer and the only solution to easily visualized them is offline using rendered videos. This kind of 3D representations is useful for digital conservation, divulgation purposes or virtual tourism where people can visit places otherwise closed for preservation or security reasons. But many more potentialities and possible applications are available using a 3D model. The problem is the ability to handle 3D data as without adequate knowledge this information is reduced to standard 2D data. This article presents some surveying and 3D modeling experiences within the APSAT project ("Ambiente e Paesaggi dei Siti d'Altura Trentini", i.e. Environment and Landscapes of Upland Sites in Trentino). APSAT is a multidisciplinary project funded by the Autonomous Province of Trento (Italy) with the aim documenting, surveying, studying, analysing and preserving mountainous and hill-top heritage sites located in the region. The project focuses on theoretical, methodological and technological aspects of the archaeological investigation of mountain landscape, considered as the product of sequences of settlements, parcelling-outs, communication networks, resources, and symbolic places. The mountain environment preserves better than others the traces of hunting and gathering, breeding, agricultural, metallurgical, symbolic activities characterised by different lengths and environmental impacts, from Prehistory to the Modern Period. Therefore the correct surveying and documentation of this heritage sites and material is very important. Within the project, the 3DOM unit of FBK is delivering all the surveying and 3D material to

  7. Sand transverse dune aerodynamics: 3D Coherent Flow Structures from a computational study

    CERN Document Server

    Bruno, Luca

    2015-01-01

    The engineering interest about dune fields is dictated by the their interaction with a number of human infrastructures in arid environments. The aerodynamic behaviour of sand dunes in atmospheric boundary layer belongs to the class of bluff bodies. Because of their simple geometry and their frequent occurrence in desert area, transverse sand dunes are usually adopted in literature as a benchmark to investigate dune aerodynamics by means of both computational or experimental approach, usually in nominally 2D setups. The writers suspect the flow in the wake is characterised by 3D features and affected by wind tunnel setup - e.g. blockage effect, duct side wall boundary layer, incoming velocity profile - when experimental studies are carried out. The present study aims at evaluating the 3D flow features of an idealised transverse dune under different setup conditions by means of computational simulations and to compare the obtained results with experimental measurements.

  8. A Design Study of Direct-Touch Interaction for Exploratory 3D Scientific Visualization

    OpenAIRE

    Klein, Tijmen; Guéniat, Florimond; Pastur, Luc; Vernier, Frédéric; Isenberg, Tobias

    2012-01-01

    International audience; We present an interaction design study of several non-overlapping direct-touch interaction widgets, postures, and bi-manual techniques to support the needs of scientists who are exploring a dataset. The final interaction design supports navigation/zoom, cutting plane interaction, a drilling exploration, the placement of seed particles in 3D space, and the exploration of temporal data evolution. To ground our design, we conducted a requirements analysis and used a parti...

  9. Interface study of FeMgOFe magnetic tunnel junctions using 3D Atom Probe

    CERN Document Server

    Mazumder, B; Vella, A; Vurpillot, F; Deconihout, B

    2011-01-01

    A detailed interface study was conducted on a Fe/MgO/Fe system using laser assisted 3D atom probe. It exhibits an additional oxide formation at the second interface of the multilayer structure independent of laser wavelength, laser fluence and the thickness of the tunnel barrier. We have shown with the help of simulation that this phenomena is caused by the field evaporation of two layers having two different evaporation

  10. Study on orthorhombic parameters for 3D elastic full waveform inversion

    KAUST Repository

    Oh, Ju-Won

    2015-08-21

    For a better understanding of the influence of the parameterizations on the multi-parameter full waveform inversion (FWI) for 3D elastic orthorhombic media, we analyze the virtual sources for each cij parameter. Because the virtual sources for cij parameters can be regarded as bases of the virtual sources for other parameterizations, the insights developed here explains many of the scattering phenomena of the different parameters. The resulting radiation patterns provide insights on which parameter set is the best in the multi-parameter FWI for 3D elastic orthorhombic media. In this study, we analyze the virtual source for each cij parameter as a linear combination of several moment tensors. After that, we analyze the strain fields deformed by incident waves as momenta of the virtual source and their influences on sensitivity kernels of each cij parameter.

  11. Calculating the 3D magnetic field of ITER for European TBM studies

    CERN Document Server

    Äkäslompolo, Simppa; Bergmans, Thijs; Gagliardi, Mario; Galabert, Jose; Hirvijoki, Eero; Kurki-Suonio, Taina; Sipilä, Seppo; Snicker, Antti

    2015-01-01

    The magnetic perturbation due to the ferromagnetic test blanket modules (TBMs) may deteriorate fast ion confinement in ITER. This effect must be quantified by numerical studies in 3D. We have implemented a combined finite element method (FEM) -- Biot-Savart law integrator method (BSLIM) to calculate the ITER 3D magnetic field and vector potential in detail. Unavoidable geometry simplifications changed the mass of the TBMs and ferritic inserts (FIs) up to 26%. This has been compensated for by modifying the nonlinear ferromagnetic material properties accordingly. Despite the simplifications, the computation geometry and the calculated fields are highly detailed. The combination of careful FEM mesh design and using BSLIM enables the use of the fields unsmoothed for particle orbit-following simulations. The magnetic field was found to agree with earlier calculations and revealed finer details. The vector potential is intended to serve as input for plasma shielding calculations.

  12. The use of a low cost 3D scanning and printing tool in the manufacture of custom-made foot orthoses: a preliminary study

    Science.gov (United States)

    2014-01-01

    Background Custom foot orthoses are currently recognized as the gold standard for treatment of foot and lower limb pathology. While foam and plaster casting methods are most widely used in clinical practice, technology has emerged, permitting the use of 3D scanning, computer aided design (CAD) and computer aided manufacturing (CAM) for fabrication of foot molds and custom foot orthotic components. Adoption of 3D printing, as a form of CAM, requires further investigation for use as a clinical tool. This study provides a preliminary description of a new method to manufacture foot orthoses using a novel 3D scanner and printer and compare gait kinematic outputs from shod and traditional plaster casted orthotics. Findings One participant (male, 25 years) was included with no lower extremity injuries. Foot molds were created from both plaster casting and 3D scanning/printing methods. Custom foot orthoses were then fabricated from each mold. Lower body plug-in-gait with the Oxford Foot Model on the right foot was collected for both orthotic and control (shod) conditions. The medial longitudinal arch was measured using arch height index (AHI) where a decrease in AHI represented a drop in arch height. The lowest AHI was 21.2 mm in the running shoes, followed by 21.4 mm wearing the orthoses made using 3D scanning and printing, with the highest AHI of 22.0 mm while the participant wore the plaster casted orthoses. Conclusion This preliminary study demonstrated a small increase in AHI with the 3D printing orthotic compared to the shod condition. A larger sample size may demonstrate significant patterns for the tested conditions. PMID:25015013

  13. 3D Geological Modeling and Visualization of Rock Masses Based on Google Earth: A Case Study

    CERN Document Server

    Mei, Gang; Xu, Nengxiong

    2013-01-01

    Google Earth (GE) has become a powerful tool for geological modeling and visualization. An interesting and useful feature of GE, Google Street View, can allow the GE users to view geological structure such as layers of rock masses at a field site. In this paper, we introduce a practical solution for building 3D geological models for rock masses based on the data acquired by use with GE. A real study case at Haut-Barr, France is presented to demonstrate our solution. We first locate the position of Haut-Barr in GE, and then determine the shape and scale of the rock masses in the study area, and thirdly acquire the layout of layers of rock masses in the Google Street View, and finally create the approximate 3D geological models by extruding and intersecting. The generated 3D geological models can simply reflect the basic structure of the rock masses at Haut-Barr, and can be used for visualizing the rock bodies interactively.

  14. A study of Forbush Decreases with a full 3-D cosmic ray modulation model

    Science.gov (United States)

    Luo, Xi; Zhang, Ming; Potgieter, Marius

    2016-07-01

    We have constructed a 3-D numerical model for studying Forbush Decreases (FDs) in the global heliosphere. It incorporates 3-D propagation barriers, with enhanced cooling inside, into a time-dependent Parker type modulation model using a Stochastic Differential Equation (SDE) approach. This numerical model simultaneously takes into account the effect of solar wind convection with associated adiabatic energy changes; gradient, curvature and current sheet drifts; as well as parallel and perpendicular diffusion. This state-of-the-art numerical model enables us to find and study some new 3-D features for FD type events: 1. The cosmic ray intensity at Earth varies depending on the relative location of the Earth to the current sheet, and is reflected also in the amplitude of the FDs. The local modulation conditions, at a given observational point, determine the total amplitude. 2. The radial, latitudinal and longitudinal extent of a diffusion barrier significantly affects the amplitude of a FD. 3. The recovery time of a FD, at a given observational location, is determined by the modulation conditions which the corresponding propagation barrier encounters as it moves outwards in the heliosphere.

  15. Structural and property studies on metal–organic compounds with 3-D supramolecular network

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qi-Ying; Ma, Ke-Fang; Xiao, Hong-Ping; Li, Xin-Hua; Shi, Qian, E-mail: shiq@wzu.edu.cn

    2014-07-01

    Two carboxylato-bridged allomeric compounds, ([Cu{sub 2}(dbsa){sub 2}(hmt) (H{sub 2}O){sub 4}]{sub 1/2}·2H{sub 2}O){sub n} (1), ([Ni(dbsa)(H{sub 2}O){sub 2}]{sub 1/2}[Ni(dbsa)(hmt)(H{sub 2}O){sub 2}]{sub 1/2}·2H{sub 2}O){sub n} (2) (H{sub 2}dbsa=meso-2,3-dibromosuccinic acid, hmt=hexamethylenetetramine) have been synthesized and characterized by X-ray structral analyses. The metal ions have two kinds of coordination fashion in one unit, and bridged by carboxylate and hmt ligands along with weak interactions existing in the solid structure, forming a 3-D supramolecular network. Variable-temperature magnetic property studies reveal the existence of antiferromagnetic interactions in 1 and 2 with g=2.2, J{sub 1}=−3.5 cm{sup −1}, J{sub 2}=−2.8 cm{sup −1} for 1, and g=2.1, J=−3.5 cm{sup −1} for 2. - Graphical abstract: Variable-temperature magnetic property studies of two 3-D supramolecular compounds reveal the existence of antiferromagnetic interactions between the metal ions, through the effective super-exchange media. - Highlights: • Two 3-D allomeric Cu(II) and Ni(II) metal–organic compounds have been prepared. • The 3-D networks were constructed by coordination bonds, weak interactions and hydrogen bond interactions. • There are antiferromagnetic super-exchange interactions between the metal ions.

  16. The Local Universe: Galaxies in 3D

    CERN Document Server

    Koribalski, B S

    2016-01-01

    Here I present results from individual galaxy studies and galaxy surveys in the Local Universe with particular emphasis on the spatially resolved properties of neutral hydrogen gas. The 3D nature of the data allows detailed studies of the galaxy morphology and kinematics, their relation to local and global star formation as well as galaxy environments. I use new 3D visualisation tools to present multi-wavelength data, aided by tilted-ring models of the warped galaxy disks. Many of the algorithms and tools currently under development are essential for the exploration of upcoming large survey data, but are also highly beneficial for the analysis of current galaxy surveys.

  17. Molecular docking, MM/GBSA and 3D-QSAR studies on EGFR inhibitors

    Indian Academy of Sciences (India)

    RAJU BATHINI; SREE KANTH SIVAN; SABIHA FATIMA; VIJJULATHA MANGA

    2016-07-01

    Epidermal growth factor receptor (EGFR) is the first growth factor receptor proposed as a target for cancer therapy. Molecular modeling protocols like molecular docking, molecular mechanics/generalized born surface area (MM/GBSA) calculations and three dimensional-quantitative structure activity relationship(3D-QSAR) studies were performed on 45 molecules to understand the structural requirements for EGFR tyrosine kinase inhibitors. Conformation for all the molecules obtained from molecular docking were used as is for 3D-QSAR analysis. Comparative molecular field analysis (CoMFA) and comparative molecular similarityindices analysis (CoMSIA) models were obtained by performing partial least square analysis on 35 training molecules and these models were validated using 10 test moleucles. The models showed good statistical results in terms of r², q² loo and r² pred values. Information rendered from 3D-QSAR model and sitemap analysis was used to optimize lead molecule to design prospective inhibitors. Improvement in EGFR binding affinity can be achieved by substitutional modification on phenyl ring attached to alkynyl group with bulkier hydrogen bond donor and acceptor substituents that can increase favourable interaction with the receptor.

  18. Dual Langmuir-probe array for 3D plasma studies in TORPEX

    Science.gov (United States)

    Baquero-Ruiz, M.; Avino, F.; Chellai, O.; Fasoli, A.; Furno, I.; Jacquier, R.; Manke, F.; Patrick, S.

    2016-11-01

    We have designed and installed a new Langmuir-probe (LP) array diagnostic to determine basic three-dimensional (3D) features of plasmas in TORPEX. The diagnostic consists of two identical LP arrays, placed on opposite sides of the apparatus, which provide comprehensive coverage of the poloidal cross section at the two different toroidal locations. Cross correlation studies of signals from the arrays provide a basic way to extract 3D information from the plasmas, as experiments show. Moreover, the remarkable signal-to-noise performance of the front-end electronics allows us to follow a different approach in which we combine information from all probes in both arrays to reconstruct elementary 3D plasma structures at each acquisition time step. Then, through data analysis, we track the structures as they evolve in time. The LP arrays include a linear-motion mechanism that can displace radially the probes located on the low field side for experiments that require fine-tuning of the probe locations, and for operational compatibility with the recently installed in-vessel toroidal conductor.

  19. Sensitivity studies for 3-D rod ejection analyses on axial power shape

    Energy Technology Data Exchange (ETDEWEB)

    Park, Min-Ho; Park, Jin-Woo; Park, Guen-Tae; Ryu, Seok-Hee; Um, Kil-Sup; Lee, Jae-Il [KEPCO NF, Daejeon (Korea, Republic of)

    2015-10-15

    The current safety analysis methodology using the point kinetics model combined with numerous conservative assumptions result in unrealistic prediction of the transient behavior wasting huge margin for safety analyses while the safety regulation criteria for the reactivity initiated accident are going strict. To deal with this, KNF is developing a 3-D rod ejection analysis methodology using the multi-dimensional code coupling system CHASER. The CHASER system couples three-dimensional core neutron kinetics code ASTRA, sub-channel analysis code THALES, and fuel performance analysis code FROST using message passing interface (MPI). A sensitivity study for 3-D rod ejection analysis on axial power shape (APS) is carried out to survey the tendency of safety parameters by power distributions and to build up a realistic safety analysis methodology while maintaining conservatism. The currently developing 3-D rod ejection analysis methodology using the multi-dimensional core transient analysis code system, CHASER was shown to reasonably reflect the conservative assumptions by tuning up kinetic parameters.

  20. Quantification of blood perfusion using 3D power Doppler: an in-vitro flow phantom study

    Science.gov (United States)

    Raine-Fenning, N. J.; Ramnarine, K. V.; Nordin, N. M.; Campbell, B. K.

    2004-01-01

    Three-dimensional (3D) power Doppler data is increasingly used to assess and quantify blood flow and tissue perfusion. The objective of this study was to assess the validity of common 3D power Doppler ‘vascularity’ indices by quantification in well characterised in-vitro flow models. A computer driven gear pump was used to circulate a steady flow of a blood mimicking fluid through various well characterised flow phantoms to investigate the effect of the number of flow channels, flow rate, depth dependent tissue attenuation, blood mimic scatter particle concentration and ultrasound settings. 3D Power Doppler data were acquired with a Voluson 530D scanner and 7.5 MHz transvaginal transducer (GE Kretz). Virtual Organ Computer-aided Analysis software (VOCAL) was used to quantify the vascularisation index (VI), flow index (FI) and vascularisation-flow index (VFI). The vascular indices were affected by many factors, some intuitive and some with more complex or unexpected relationships (e.g. VI increased linearly with an increase in flow rate, blood mimic scatter particle concentration and number of flow channels, and had a complex dependence on pulse repetition frequency). Use of standardised settings and appropriate calibration are required in any attempt at relating ‘vascularity indices’ with flow.

  1. The role of 3D plating system in mandibular fractures: A prospective study

    Directory of Open Access Journals (Sweden)

    Rajendra Prasad

    2013-01-01

    Full Text Available Aim: The aim of our study was to evaluate the advantages and disadvantages of 3D plating system in the treatment of mandibular fractures. Patients and Methods: 20 mandibular fractures in 18 patients at various anatomic locations and were treated by open reduction and internal fixation using 3D plates. All patients were followed at regular intervals of 4 th , 8 th and 12 th weeks respectively. Patients were assessed post-operatively for lingual splay and occlusal stability. The incidence of neurosensory deficit, infection, masticatory difficulty, non-union, malunion was also assessed. Results: A significant reduction in lingual splay (72.2% and occlusal stability (72.2% was seen. The overall complication rate was (16.6% which included two patients who developed post-operative paresthesia of lip, three patients had infection and two cases of masticatory difficulty which later subsided by higher antibiotics and 4 weeks of MMF. No evidence of non-union, malunion was noted. Conclusion: A single 3D 2 mm miniplate with 2 mm × 8 mm screws is a reliable and an effective treatment modality for mandibular fracture.

  2. A 3D high-resolution gamma camera for radiopharmaceutical studies with small animals

    CERN Document Server

    Loudos, G K; Giokaris, N D; Styliaris, E; Archimandritis, S C; Varvarigou, A D; Papanicolas, C N; Majewski, S; Weisenberger, D; Pani, R; Scopinaro, F; Uzunoglu, N K; Maintas, D; Stefanis, K

    2003-01-01

    The results of studies conducted with a small field of view tomographic gamma camera based on a Position Sensitive Photomultiplier Tube are reported. The system has been used for the evaluation of radiopharmaceuticals in small animals. Phantom studies have shown a spatial resolution of 2 mm in planar and 2-3 mm in tomographic imaging. Imaging studies in mice have been carried out both in 2D and 3D. Conventional radiopharmaceuticals have been used and the results have been compared with images from a clinically used system.

  3. A 3-D Computational Study of a Variable Camber Continuous Trailing Edge Flap (VCCTEF) Spanwise Segment

    Science.gov (United States)

    Kaul, Upender K.; Nguyen, Nhan T.

    2015-01-01

    Results of a computational study carried out to explore the effects of various elastomer configurations joining spanwise contiguous Variable Camber Continuous Trailing Edge Flap (VCCTEF) segments are reported here. This research is carried out as a proof-of-concept study that will seek to push the flight envelope in cruise with drag optimization as the objective. The cruise conditions can be well off design such as caused by environmental conditions, maneuvering, etc. To handle these off-design conditions, flap deflection is used so when the flap is deflected in a given direction, the aircraft angle of attack changes accordingly to maintain a given lift. The angle of attack is also a design parameter along with the flap deflection. In a previous 2D study,1 the effect of camber was investigated and the results revealed some insight into the relative merit of various camber settings of the VCCTEF. The present state of the art has not advanced sufficiently to do a full 3-D viscous analysis of the whole NASA Generic Transport Model (GTM) wing with VCCTEF deployed with elastomers. Therefore, this study seeks to explore the local effects of three contiguous flap segments on lift and drag of a model devised here to determine possible trades among various flap deflections to achieve desired lift and drag results. Although this approach is an approximation, it provides new insights into the "local" effects of the relative deflections of the contiguous spanwise flap systems and various elastomer segment configurations. The present study is a natural extension of the 2-D study to assess these local 3-D effects. Design cruise condition at 36,000 feet at free stream Mach number of 0.797 and a mean aerodynamic chord (MAC) based Reynolds number of 30.734x10(exp 6) is simulated for an angle of attack (AoA) range of 0 to 6 deg. In the previous 2-D study, the calculations revealed that the parabolic arc camber (1x2x3) and circular arc camber (VCCTEF222) offered the best L

  4. A Case Study in Astronomical 3-D Printing: The Mysterious Eta Carinae

    CERN Document Server

    Madura, Thomas I

    2016-01-01

    3-D printing moves beyond interactive 3-D graphics and provides an excellent tool for both visual and tactile learners, since 3-D printing can now easily communicate complex geometries and full color information. Some limitations of interactive 3-D graphics are also alleviated by 3-D printable models, including issues of limited software support, portability, accessibility, and sustainability. We describe the motivations, methods, and results of our work on using 3-D printing (1) to visualize and understand the Eta Car Homunculus nebula and central binary system and (2) for astronomy outreach and education, specifically, with visually impaired students. One new result we present is the ability to 3-D print full-color models of Eta Car's colliding stellar winds. We also demonstrate how 3-D printing has helped us communicate our improved understanding of the detailed structure of Eta Car's Homunculus nebula and central binary colliding stellar winds, and their links to each other. Attached to this article are f...

  5. Molecular field analysis and 3D-quantitative structure-activity relationship study (MFA 3D-QSAR) unveil novel features of bile acid recognition at TGR5.

    Science.gov (United States)

    Macchiarulo, Antonio; Gioiello, Antimo; Thomas, Charles; Massarotti, Alberto; Nuti, Roberto; Rosatelli, Emiliano; Sabbatini, Paola; Schoonjans, Kristina; Auwerx, Johan; Pellicciari, Roberto

    2008-09-01

    Bile acids regulate nongenomic actions through the activation of TGR5, a membrane receptor that is G protein-coupled to the induction of adenylate cyclase. In this work, a training set of 43 bile acid derivatives is used to develop a molecular interaction field analysis (MFA) and a 3D-quantitative structure-activity relationship study (3D-QSAR) of TGR5 agonists. The predictive ability of the resulting model is evaluated using an external set of compounds with known TGR5 activity, and six bile acid derivatives whose unknown TGR5 activity is herein assessed with in vitro luciferase assay of cAMP formation. The results show a good predictive model and indicate a statistically relevant degree of correlation between the TGR5 activity and the molecular interaction fields produced by discrete positions of the bile acid scaffold. This information is instrumental to extend on a quantitative basis the current structure-activity relationships of bile acids as TGR5 modulators and will be fruitful to design new potent and selective agonists of the receptor.

  6. 2D and 3D Terahertz Imaging and X-Rays CT for Sigillography Study

    Science.gov (United States)

    Fabre, M.; Durand, R.; Bassel, L.; Recur, B.; Balacey, H.; Bou Sleiman, J.; Perraud, J.-B.; Mounaix, P.

    2017-04-01

    Seals are part of our cultural heritage but the study of these objects is limited because of their fragility. Terahertz and X-Ray imaging are used to analyze a collection of wax seals from the fourteenth to eighteenth centuries. In this work, both techniques are compared in order to discuss their advantages and limits and their complementarity for conservation state study of the samples. Thanks to 3D analysis and reconstructions, defects and fractures are detected with an estimation of their depth position. The path from the parchment tongue inside the seals is also detected.

  7. Feasibility study for the manufacturing of a shock absorber using 3D printing technology

    OpenAIRE

    Bixby Mera, Sergio

    2014-01-01

    El presente estudio identifica los beneficios y ventajas de la utilización de impresoras 3D para la fabricación de productos industriales. Mediante el uso de impresoras 3D se diseña y elabora un amortiguador funcional. Se estudia y analiza nuevos materiales que pueden ser utilizados con impresoras 3D.

  8. Portable high-intensity focused ultrasound system with 3D electronic steering, real-time cavitation monitoring, and 3D image reconstruction algorithms: a preclinical study in pigs

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin Woo; Lee, Jae Young; Hwang, Eui Jin; Hwang, In Pyeong; Woo, Sung Min; Lee, Chang Joo; Park, Eun Joo; Choi, Byung Ihn [Dept. of Radiology and Institute of Radiation Medicine, Seoul National University Hospital, Seoul (Korea, Republic of)

    2014-10-15

    The aim of this study was to evaluate the safety and accuracy of a new portable ultrasonography-guided high-intensity focused ultrasound (USg-HIFU) system with a 3-dimensional (3D) electronic steering transducer, a simultaneous ablation and imaging module, real-time cavitation monitoring, and 3D image reconstruction algorithms. To address the accuracy of the transducer, hydrophones in a water chamber were used to assess the generation of sonic fields. An animal study was also performed in five pigs by ablating in vivo thighs by single-point sonication (n=10) or volume sonication (n=10) and ex vivo kidneys by single-point sonication (n=10). Histological and statistical analyses were performed. In the hydrophone study, peak voltages were detected within 1.0 mm from the targets on the y- and z-axes and within 2.0-mm intervals along the x-axis (z-axis, direction of ultrasound propagation; y- and x-axes, perpendicular to the direction of ultrasound propagation). Twenty-nine of 30 HIFU sessions successfully created ablations at the target. The in vivo porcine thigh study showed only a small discrepancy (width, 0.5-1.1 mm; length, 3.0 mm) between the planning ultrasonograms and the pathological specimens. Inordinate thermal damage was not observed in the adjacent tissues or sonic pathways in the in vivo thigh and ex vivo kidney studies. Our study suggests that this new USg-HIFU system may be a safe and accurate technique for ablating soft tissues and encapsulated organs.

  9. Comparison of User Performance with Interactive and Static 3d Visualization - Pilot Study

    Science.gov (United States)

    Herman, L.; Stachoň, Z.

    2016-06-01

    Interactive 3D visualizations of spatial data are currently available and popular through various applications such as Google Earth, ArcScene, etc. Several scientific studies have focused on user performance with 3D visualization, but static perspective views are used as stimuli in most of the studies. The main objective of this paper is to try to identify potential differences in user performance with static perspective views and interactive visualizations. This research is an exploratory study. An experiment was designed as a between-subject study and a customized testing tool based on open web technologies was used for the experiment. The testing set consists of an initial questionnaire, a training task and four experimental tasks. Selection of the highest point and determination of visibility from the top of a mountain were used as the experimental tasks. Speed and accuracy of each task performance of participants were recorded. The movement and actions in the virtual environment were also recorded within the interactive variant. The results show that participants deal with the tasks faster when using static visualization. The average error rate was also higher in the static variant. The findings from this pilot study will be used for further testing, especially for formulating of hypotheses and designing of subsequent experiments.

  10. The Traveling Optical Scanner – Case Study on 3D Shape Models of Ancient Brazilian Skulls

    DEFF Research Database (Denmark)

    Trinderup, Camilla Himmelstrup; Dahl, Vedrana Andersen; Gregersen, Kristian Murphy

    2016-01-01

    Recovering detailed morphological information from archaeological or paleontological material requires extensive hands-on time. Creating 3D scans based on e.g. computed tomography (CT) will recover the geometry of the specimen, but can inflict bimolecular degradation. Instead, we propose a fast...... morphological modelling is possible with accurate description of the specimens provided by the models. Furthermore, performing studies on models reduces the risk of damage to the original specimen. In our work we employ a high resolution structured light scanner for digitalizing a collection of 8500 year old...

  11. Automated 3D ultrasound elastography of the breast: a phantom validation study

    Science.gov (United States)

    Hendriks, Gijs A. G. M.; Holländer, Branislav; Menssen, Jan; Milkowski, Andy; Hansen, Hendrik H. G.; de Korte, Chris L.

    2016-04-01

    In breast cancer screening, the automated breast volume scanner (ABVS) was introduced as an alternative for mammography since the latter technique is less suitable for women with dense breasts. Although clinical studies show promising results, clinicians report two disadvantages: long acquisition times (>90 s) introducing breathing artefacts, and high recall rates due to detection of many small lesions of uncertain malignant potential. Technical improvements for faster image acquisition and better discrimination between benign and malignant lesions are thus required. Therefore, the aim of this study was to investigate if 3D ultrasound elastography using plane-wave imaging is feasible. Strain images of a breast elastography phantom were acquired by an ABVS-mimicking device that allowed axial and elevational movement of the attached transducer. Pre- and post-deformation volumes were acquired with different constant speeds (between 1.25 and 40.0 mm s-1) and by three protocols: Go-Go (pre- and post-volumes with identical start and end positions), Go-Return (similar to Go-Go with opposite scanning directions) and Control (pre- and post-volumes acquired per position, this protocol can be seen as reference). Afterwards, 2D and 3D cross-correlation and strain algorithms were applied to the acquired volumes and the results were compared. The Go-Go protocol was shown to be superior with better strain image quality (CNRe and SNRe) than Go-Return and to be similar as Control. This can be attributed to applying opposite mechanical forces to the phantom during the Go-Return protocol, leading to out-of-plane motion. This motion was partly compensated by using 3D cross-correlation. However, the quality was still inferior to Go-Go. Since these results were obtained in a phantom study with controlled deformations, the effect of possible uncontrolled in vivo tissue motion artefacts has to be addressed in future studies. In conclusion, it seems feasible to implement 3D ultrasound

  12. Study of a high-resolution, 3-D positioning cadmium zinc telluride detector for PET

    OpenAIRE

    Gu, Y.; Matteson, J. L.; Skelton, R T; Deal, A C; Stephan, E A; Duttweiler, F; Gasaway, T M; Levin, C S

    2011-01-01

    This paper investigates the performance of 1 mm resolution Cadmium Zinc Telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3-D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06±0.39% at 511 keV thr...

  13. A Study of the dimensional accuracy obtained by low cost 3D printing for possible application in medicine

    Science.gov (United States)

    Kitsakis, K.; Alabey, P.; Kechagias, J.; Vaxevanidis, N.

    2016-11-01

    Low cost 3D printing' is a terminology that referred to the fused filament fabrication (FFF) technique, which constructs physical prototypes, by depositing material layer by layer using a thermal nozzle head. Nowadays, 3D printing is widely used in medical applications such as tissue engineering as well as supporting tool in diagnosis and treatment in Neurosurgery, Orthopedic and Dental-Cranio-Maxillo-Facial surgery. 3D CAD medical models are usually obtained by MRI or CT scans and then are sent to a 3D printer for physical model creation. The present paper is focused on a brief overview of benefits and limitations of 3D printing applications in the field of medicine as well as on a dimensional accuracy study of low-cost 3D printing technique.

  14. Does the mitral annulus shrink or enlarge during systole? A real-time 3D echocardiography study.

    Science.gov (United States)

    Kwan, Jun; Jeon, Min-Jae; Kim, Dae-Hyeok; Park, Keum-Soo; Lee, Woo-Hyung

    2009-04-01

    This study was conducted to explore the geometrical changes of the mitral annulus during systole. The 3D shape of the mitral annulus was reconstructed in 13 normal subjects who had normal structure of the mitral apparatus using real-time 3D echocardiography (RT3DE) and 3D computer software. The two orthogonal (antero-posterior and commissure-commissure) dimensions, the areas (2D projected and 3D surface) and the non-planarity of the mitral annulus were estimated during early, mid and late systole. We demonstrated that the MA had a "saddle shape" appearance and it consistently enlarged mainly in the antero-posterior direction from early to late systole with lessening of its non-planarity, as was determined by 3D reconstruction using RT3DE and 3D computer software.

  15. 3D elastic full waveform inversion: case study from a land seismic survey

    Science.gov (United States)

    Kormann, Jean; Marti, David; Rodriguez, Juan-Esteban; Marzan, Ignacio; Ferrer, Miguel; Gutierrez, Natalia; Farres, Albert; Hanzich, Mauricio; de la Puente, Josep; Carbonell, Ramon

    2016-04-01

    Full Waveform Inversion (FWI) is one of the most advanced processing methods that is recently reaching a mature state after years of solving theoretical and technical issues such as the non-uniqueness of the solution and harnessing the huge computational power required by realistic scenarios. BSIT (Barcelona Subsurface Imaging Tools, www.bsc.es/bsit) includes a FWI algorithm that can tackle with very complex problems involving large datasets. We present here the application of this system to a 3D dataset acquired to constrain the shallow subsurface. This is where the wavefield is the most complicated, because most of the wavefield conversions takes place in the shallow region and also because the media is much more laterally heterogeneous. With this in mind, at least isotropic elastic approximation would be suitable as kernel engine for FWI. The current study explores the possibilities to apply elastic isotropic FWI using only the vertical component of the recorded seismograms. The survey covers an area of 500×500 m2, and consists in a receivers grid of 10 m×20 m combined with a 250 kg accelerated weight-drop as source on a displaced grid of 20 m×20 m. One of the main challenges in this case study is the costly 3D modeling that includes topography and substantial free surface effects. FWI is applied to a data subset (shooting lines 4 to 12), and is performed for 3 frequencies ranging from 15 to 25 Hz. The starting models are obtained from travel-time tomography and the all computation is run on 75 nodes of Mare Nostrum supercomputer during 3 days. The resulting models provide a higher resolution of the subsurface structures, and show a good correlation with the available borehole measurements. FWI allows to extend in a reliable way this 1D knowledge (borehole) to 3D.

  16. Spreading and Deposit Characteristics of a Rapid Dry Granular Avalanche Across 3D Topography: Experimental Study

    Science.gov (United States)

    Wang, Yu-Feng; Xu, Qiang; Cheng, Qian-Gong; Li, Yan; Luo, Zhong-Xu

    2016-11-01

    Aiming to understand the propagation and deposit behaviours of a granular avalanche along a 3D complex basal terrain, a new 3D experimental platform in 1/400 scale was developed according to the natural terrain of the Xiejiadianzi rock avalanche, with a series of laboratory experiments being conducted. Through the conduction of these tests, parameters, including the morphological evolution of sliding mass, run-outs and velocities of surficial particles, thickness contour and centre of final deposit, equivalent frictional coefficient, and energy dissipation, are documented and analysed, with the geomorphic control effect, material grain size effect, drop angle effect, and drop distance effect on rock avalanche mobility being discussed primarily. From the study, some interesting conclusions for a better understanding of rock avalanche along a 3D complex basal topography are reached. (1) For the granular avalanche tested in this study, great differences between the evolutions of the debris along the right and left branch valleys were observed, with an obvious geomorphic control effect on avalanche mobility presented. In addition, some other interesting features, including groove-like trough and superelevation, were also observed under the control of the topographic interferences. (2) The equivalent frictional coefficients of the granular avalanches tested here range from 0.48 to 0.57, which is lower than that reached with a set-up composed of an inclined chute and horizontal plate and higher than that reached using a set-up composed of only an inclined chute. And the higher the drop angle and fine particle content, the higher the equivalent frictional coefficient. The effect of drop distance on avalanche mobility is minor. (3) For a granular avalanche, momentum transfer plays an important role in the motion of mass, which can accelerate the mobility of the front part greatly through delivering the kinetic energy of the rear part to the front.

  17. Micro-CT studies on 3-D bioactive glass-ceramic scaffolds for bone regeneration.

    Science.gov (United States)

    Renghini, Chiara; Komlev, Vladimir; Fiori, Fabrizio; Verné, Enrica; Baino, Francesco; Vitale-Brovarone, Chiara

    2009-05-01

    The aim of this study was the preparation and characterization of bioactive glass-ceramic scaffolds for bone tissue engineering. For this purpose, a glass belonging to the system SiO2-P2O5-CaO-MgO-Na2O-K2O (CEL2) was used. The sponge-replication method was adopted to prepare the scaffolds; specifically, a polymeric skeleton was impregnated with a slurry containing CEL2 powder, polyvinyl alcohol (PVA) as a binding agent and distilled water. The impregnated sponge was then thermally treated to remove the polymeric phase and to sinter the inorganic one. The obtained scaffolds possessed an open and interconnected porosity, analogous to cancellous bone texture, and with a mechanical strength above 2 MPa. Moreover, the scaffolds underwent partial bioresorption due to ion-leaching phenomena. This feature was investigated by X-ray computed microcomputed tomography (micro-CT). Micro-CT is a three-dimensional (3-D) radiographic imaging technique, able to achieve a spatial resolution close to 1 microm(3). The use of synchrotron radiation allows the selected photon energy to be tuned to optimize the contrast among the different phases in the investigated samples. The 3-D scaffolds were soaked in a simulated body fluid (SBF) to study the formation of hydroxyapatite microcrystals on the scaffold struts and on the internal pore walls. The 3-D scaffolds were also soaked in a buffer solution (Tris-HCl) for different times to assess the scaffold bioresorption according to the ISO standard. A gradual resorption of the pores walls was observed during the soakings both in SBF and in Tris-HCl.

  18. A 3D approach to equilibrium, stability and transport studies in RFX-mod improved regimes

    Energy Technology Data Exchange (ETDEWEB)

    Terranova, D. [Association Euratom ENEA Fusion, Consorzio RFX, Padua; Bonfiglio, D. [Association Euratom ENEA Fusion, Consorzio RFX, Padua; Boozer, A. H. [Columbia University; Cooper, W Anthony [CRPP/EPFL, Association Euratom-Suisse, Lausanne, Switzerland; Gobbin, M. [Association Euratom ENEA Fusion, Consorzio RFX, Padua; Hirshman, Steven Paul [ORNL; Lorenzini, R. [Association Euratom ENEA Fusion, Consorzio RFX, Padua; Marrelli, L. [Association Euratom ENEA Fusion, Consorzio RFX, Padua; Martines, E. [RFX, Padova, Italy; Momo, B. [RFX, Padova, Italy; Pomphrey, N. [Princeton Plasma Physics Laboratory (PPPL); Predebon, I. [RFX, Padova, Italy; Sanchez, Raul [ORNL; Spizzo, G. [Association Euratom ENEA Fusion, Consorzio RFX, Padua; Agnostini, M. [Association Euratom ENEA Fusion, Consorzio RFX, Padua; Alfier, A. [Association Euratom ENEA Fusion, Consorzio RFX, Padua; Apolloni, L. [Association Euratom ENEA Fusion, Consorzio RFX, Padua; Auriemma, F. [Association Euratom ENEA Fusion, Consorzio RFX, Padua; Baruzzo, M. [Association Euratom ENEA Fusion, Consorzio RFX, Padua; Bolzonella, T. [Association Euratom ENEA Fusion, Consorzio RFX, Padua; Bonomo, F. [Consorzio RFX, Italy; Brombin, M. [Association Euratom ENEA Fusion, Consorzio RFX, Padua; Canton, A. [Association Euratom ENEA Fusion, Consorzio RFX, Padua; Cappello, S. [Association Euratom ENEA Fusion, Consorzio RFX, Padua; Carraro, L. [Association Euratom ENEA Fusion, Consorzio RFX, Padua

    2010-01-01

    The full three-dimensional (3D) approach is now becoming an important issue for all magnetic confinement configurations. It is a necessary condition for the stellarator but also the tokamak and the reversed field pinch (RFP) now cannot be completely described in an axisymmetric framework. For the RFP the observation of self-sustained helical configurations with improved plasma performances require a better description in order to assess a new view on this configuration. In this new framework plasma configuration studies for RFX-mod have been considered both with tools developed for the RFP as well as considering codes originally developed for the stellarator and adapted to the RFP. These helical states are reached through a transition to a very low/reversed shear configuration leading to internal electron transport barriers. These states are interrupted by MHD reconnection events and the large T(e) gradients at the barriers indicate that both current and pressure driven modes are to be considered. Furthermore the typically flat T(e) profiles in the helical core have raised the issue of the role of electrostatic and electromagnetic turbulence in these reduced chaos regions, so that a stability analysis in the correct 3D geometry is required to address an optimization of the plasma setup. In this view the VMEC code proved to be an effective way to obtain helical equilibria to be studied in terms of stability and transport with a suite of well tested codes. In this work, the equilibrium reconstruction technique as well as the experimental evidence of 3D effects and their first interpretation in terms of stability and transport are presented using both RFP and stellarator tools.

  19. A 3D approach to equilibrium, stability and transport studies in RFX-mod improved regimes

    Energy Technology Data Exchange (ETDEWEB)

    Terranova, D; Bonfiglio, D; Gobbin, M; Lorenzini, R; Marrelli, L; Martines, E; Momo, B; Predebon, I; Spizzo, G; Agostini, M; Alfier, A; Apolloni, L; Auriemma, F; Baruzzo, M; Bolzonella, T [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Padova (Italy); Boozer, A H [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY (United States); Cooper, A W [EPFL, Association EURATOM-Confederation Suisse, Centre de Recherches en Physique des Plasmas, Lausanne (Switzerland); Hirshman, S P; Sanchez, R [ORNL Fusion Energy Division, Oak Ridge, TN (United States); Pomphrey, N, E-mail: david.terranova@igi.cnr.i [Princeton Plasma Physics Laboratory, Princeton, NJ (United States)

    2010-12-15

    The full three-dimensional (3D) approach is now becoming an important issue for all magnetic confinement configurations. It is a necessary condition for the stellarator but also the tokamak and the reversed field pinch (RFP) now cannot be completely described in an axisymmetric framework. For the RFP the observation of self-sustained helical configurations with improved plasma performances require a better description in order to assess a new view on this configuration. In this new framework plasma configuration studies for RFX-mod have been considered both with tools developed for the RFP as well as considering codes originally developed for the stellarator and adapted to the RFP. These helical states are reached through a transition to a very low/reversed shear configuration leading to internal electron transport barriers. These states are interrupted by MHD reconnection events and the large T{sub e} gradients at the barriers indicate that both current and pressure driven modes are to be considered. Furthermore the typically flat T{sub e} profiles in the helical core have raised the issue of the role of electrostatic and electromagnetic turbulence in these reduced chaos regions, so that a stability analysis in the correct 3D geometry is required to address an optimization of the plasma setup. In this view the VMEC code proved to be an effective way to obtain helical equilibria to be studied in terms of stability and transport with a suite of well tested codes. In this work, the equilibrium reconstruction technique as well as the experimental evidence of 3D effects and their first interpretation in terms of stability and transport are presented using both RFP and stellarator tools.

  20. Utilising a Collaborative Macro-Script to Enhance Student Engagement: A Mixed Method Study in a 3D Virtual Environment

    Science.gov (United States)

    Bouta, Hara; Retalis, Symeon; Paraskeva, Fotini

    2012-01-01

    This study examines the effect of using an online 3D virtual environment in teaching Mathematics in Primary Education. In particular, it explores the extent to which student engagement--behavioral, affective and cognitive--is fostered by such tools in order to enhance collaborative learning. For the study we used a purpose-created 3D virtual…

  1. Mechanisms of clay smear formation in 3D - a field study

    Science.gov (United States)

    Kettermann, Michael; Tronberens, Sebastian; Urai, Janos; Asmus, Sven

    2016-04-01

    Clay smears in sedimentary basins are important factors defining the sealing properties of faults. However, as clay smears are highly complex 3D structures, processes involved in the formation and deformation of clay smears are not well identified and understood. To enhance the prediction of sealing properties of clay smears extensive studies of these structures are necessary including the 3D information. We present extraordinary outcrop data from an open cast lignite mine (Hambach) in the Lower Rhine Embayment, Germany. The faults formed at a depth of 150 m, and have Shale Gouge Ratios between 0.1 and 0.3. Material in the fault zones is layered, with sheared sand, sheared clay and tectonically mixed sand-clay gouge. We studied the 3D thickness distribution of clay smear from a series of thin-spaced incremental cross-sections and several cross-sections in larger distances along the fault. Additionally, we excavated two large clay smear surfaces. Our observations show that clay smears are strongly affected by R- and R'-shears, mostly at the footwall side of our outcrops. These shears can locally cross and offset clay smears, forming holes. Thinnest parts of the clay smears are often located close to source layer cutoffs. Investigating the 3D thickness of the clay smears shows a heterogeneous distribution, rather than a continuous thinning of the smear with increasing distance to the source layers. We found two types of layered clay smears: one with continuous sheared sand between two clay smears providing vertical pathways for fluid flow, and one which consists of overlapping clay patches separated by sheared sand that provide a tortuous pathway across the clay smear. On smaller scale we identified grain-scale mixing as an important process for the formation of clay smears. Sand can be entrained into the clay smear by mixing from the surrounding host rock as well as due to intense shearing of sand lenses that were incorporated into the smear. This causes clay smears

  2. 3D virtual human atria: A computational platform for studying clinical atrial fibrillation.

    Science.gov (United States)

    Aslanidi, Oleg V; Colman, Michael A; Stott, Jonathan; Dobrzynski, Halina; Boyett, Mark R; Holden, Arun V; Zhang, Henggui

    2011-10-01

    Despite a vast amount of experimental and clinical data on the underlying ionic, cellular and tissue substrates, the mechanisms of common atrial arrhythmias (such as atrial fibrillation, AF) arising from the functional interactions at the whole atria level remain unclear. Computational modelling provides a quantitative framework for integrating such multi-scale data and understanding the arrhythmogenic behaviour that emerges from the collective spatio-temporal dynamics in all parts of the heart. In this study, we have developed a multi-scale hierarchy of biophysically detailed computational models for the human atria--the 3D virtual human atria. Primarily, diffusion tensor MRI reconstruction of the tissue geometry and fibre orientation in the human sinoatrial node (SAN) and surrounding atrial muscle was integrated into the 3D model of the whole atria dissected from the Visible Human dataset. The anatomical models were combined with the heterogeneous atrial action potential (AP) models, and used to simulate the AP conduction in the human atria under various conditions: SAN pacemaking and atrial activation in the normal rhythm, break-down of regular AP wave-fronts during rapid atrial pacing, and the genesis of multiple re-entrant wavelets characteristic of AF. Contributions of different properties of the tissue to mechanisms of the normal rhythm and arrhythmogenesis were investigated. Primarily, the simulations showed that tissue heterogeneity caused the break-down of the normal AP wave-fronts at rapid pacing rates, which initiated a pair of re-entrant spiral waves; and tissue anisotropy resulted in a further break-down of the spiral waves into multiple meandering wavelets characteristic of AF. The 3D virtual atria model itself was incorporated into the torso model to simulate the body surface ECG patterns in the normal and arrhythmic conditions. Therefore, a state-of-the-art computational platform has been developed, which can be used for studying multi

  3. Image informatics for studying signal transduction in cells interacting with 3D matrices

    Science.gov (United States)

    Tzeranis, Dimitrios S.; Guo, Jin; Chen, Chengpin; Yannas, Ioannis V.; Wei, Xunbin; So, Peter T. C.

    2014-03-01

    Cells sense and respond to chemical stimuli on their environment via signal transduction pathways, complex networks of proteins whose interactions transmit chemical information. This work describes an implementation of image informatics, imaging-based methodologies for studying signal transduction networks. The methodology developed focuses on studying signal transduction networks in cells that interact with 3D matrices. It utilizes shRNA-based knock down of network components, 3D high-content imaging of cells inside the matrix by spectral multi-photon microscopy, and single-cell quantification using features that describe both cell morphology and cell-matrix adhesion pattern. The methodology is applied in a pilot study of TGFβ signaling via the SMAD pathway in fibroblasts cultured inside porous collagen-GAG scaffolds, biomaterials similar to the ones used clinically to induce skin regeneration. Preliminary results suggest that knocking down all rSMAD components affects fibroblast response to TGFβ1 and TGFβ3 isoforms in different ways, and suggest a potential role for SMAD1 and SMAD5 in regulating TGFβ isoform response. These preliminary results need to be verified with proteomic results that can provide solid evidence about the particular role of individual components of the SMAD pathway.

  4. Heritability of face shape in twins: a preliminary study using 3D stereophotogrammetry and geometric morphometrics

    Directory of Open Access Journals (Sweden)

    Seth M. Weinberg

    2013-11-01

    Full Text Available Introduction: Previous research suggests that aspects of facial surface morphology are heritable.  Traditionally, heritability studies have used a limited set of linear distances to quantify facial morphology and often employ statistical methods poorly designed to deal with biological shape.  In this preliminary report, we use a combination of 3D photogrammetry and landmark-based morphometrics to explore which aspects of face shape show the strongest evidence of heritability in a sample of twins. Methods: 3D surface images were obtained from 21 twin pairs (10 monozygotic, 11 same-sex dizygotic.  Thirteen 3D landmarks were collected from each facial surface and their coordinates subjected to geometric morphometric analysis.  This involved superimposing the individual landmark configurations and then subjecting the resulting shape coordinates to a principal components analysis.  The resulting PC scores were then used to calculate rough narrow-sense heritability estimates. Results: Three principal components displayed evidence of moderate to high heritability and were associated with variation in the breadth of orbital and nasal structures, upper lip height and projection, and the vertical and forward projection of the root of the nose due to variation in the position of nasion. Conclusions: Aspects of facial shape, primarily related to variation in length and breadth of central midfacial structures, were shown to demonstrate evidence of strong heritability. An improved understanding of which facial features are under strong genetic control is an important step in the identification of specific genes that underlie normal facial variation.

  5. Combined 3D-QSAR modeling and molecular docking study on azacycles CCR5 antagonists

    Science.gov (United States)

    Ji, Yongjun; Shu, Mao; Lin, Yong; Wang, Yuanqiang; Wang, Rui; Hu, Yong; Lin, Zhihua

    2013-08-01

    The beta chemokine receptor 5 (CCR5) is an attractive target for pharmaceutical industry in the HIV-1, inflammation and cancer therapeutic areas. In this study, we have developed quantitative structure activity relationship (QSAR) models for a series of 41 azacycles CCR5 antagonists using comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), and Topomer CoMFA methods. The cross-validated coefficient q2 values of 3D-QASR (CoMFA, CoMSIA, and Topomer CoMFA) methods were 0.630, 0.758, and 0.852, respectively, the non-cross-validated R2 values were 0.979, 0.978, and 0.990, respectively. Docking studies were also employed to determine the most probable binding mode. 3D contour maps and docking results suggested that bulky groups and electron-withdrawing groups on the core part would decrease antiviral activity. Furthermore, docking results indicated that H-bonds and π bonds were favorable for antiviral activities. Finally, a set of novel derivatives with predicted activities were designed.

  6. Cross-validation of 3D particle tracking velocimetry for the study of granular flows down rotating chutes

    NARCIS (Netherlands)

    Shirsath, S.S.; Padding, J.T.; Clercx, H.J.H.; Kuipers, J.A.M.

    2015-01-01

    Three-dimensional particle tracking velocimetry (3D-PTV) is a promising technique to study the behavior of granular flows. The aim of this paper is to cross-validate 3D-PTV against independent or more established techniques, such as particle image velocimetry (PIV), electronic ultrasonic sensor meas

  7. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    Science.gov (United States)

    Rimjaem, S.; Kusoljariyakul, K.; Thongbai, C.

    2014-02-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012©. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.

  8. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    Energy Technology Data Exchange (ETDEWEB)

    Rimjaem, S., E-mail: sakhorn.rimjaem@cmu.ac.th [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP), Commission on Higher Education, Bangkok 10400 (Thailand); Kusoljariyakul, K.; Thongbai, C. [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP), Commission on Higher Education, Bangkok 10400 (Thailand)

    2014-02-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012{sup ©}. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.

  9. Shear Behavior of 3D Woven Hollow Integrated Sandwich Composites: Experimental, Theoretical and Numerical Study

    Science.gov (United States)

    Zhou, Guangming; Liu, Chang; Cai, Deng'an; Li, Wenlong; Wang, Xiaopei

    2016-11-01

    An experimental, theoretical and numerical investigation on the shear behavior of 3D woven hollow integrated sandwich composites was presented in this paper. The microstructure of the composites was studied, then the shear modulus and load-deflection curves were obtained by double lap shear tests on the specimens in two principal directions of the sandwich panels, called warp and weft. The experimental results showed that the shear modulus of the warp was higher than that of the weft and the failure occurred in the roots of piles. A finite element model was established to predict the shear behavior of the composites. The simulated results agreed well with the experimental data. Simultaneously, a theoretical method was developed to predict the shear modulus. By comparing with the experimental data, the accuracy of the theoretical method was verified. The influence of structural parameters on shear modulus was also discussed. The higher yarn number, yarn density and dip angle of the piles could all improve the shear modulus of 3D woven hollow integrated sandwich composites at different levels, while the increasing height would decrease the shear modulus.

  10. High Throughput Studies of Cell Migration in 3D Microtissues Fabricated by a Droplet Microfluidic Chip

    Directory of Open Access Journals (Sweden)

    Xiangchen Che

    2016-05-01

    Full Text Available Arrayed three-dimensional (3D micro-sized tissues with encapsulated cells (microtissues have been fabricated by a droplet microfluidic chip. The extracellular matrix (ECM is a polymerized collagen network. One or multiple breast cancer cells were embedded within the microtissues, which were stored in arrayed microchambers on the same chip without ECM droplet shrinkage over 48 h. The migration trajectory of the cells was recorded by optical microscopy. The migration speed was calculated in the range of 3–6 µm/h. Interestingly, cells in devices filled with a continuous collagen network migrated faster than those where only droplets were arrayed in the chambers. This is likely due to differences in the length scales of the ECM network, as cells embedded in thin collagen slabs also migrate slower than those in thick collagen slabs. In addition to migration, this technical platform can be potentially used to study cancer cell-stromal cell interactions and ECM remodeling in 3D tumor-mimicking environments.

  11. A biofidelic 3D culture model to study the development of brain cellular systems

    Science.gov (United States)

    Ren, M.; Du, C.; Herrero Acero, E.; Tang-Schomer, M. D.; Özkucur, N.

    2016-01-01

    Little is known about how cells assemble as systems during corticogenesis to generate collective functions. We built a neurobiology platform that consists of fetal rat cerebral cortical cells grown within 3D silk scaffolds (SF). Ivermectin (Ivm), a glycine receptor (GLR) agonist, was used to modulate cell resting membrane potential (Vmem) according to methods described in a previous work that implicated Ivm in the arrangement and connectivity of cortical cell assemblies. The cells developed into distinct populations of neuroglial stem/progenitor cells, mature neurons or epithelial-mesenchymal cells. Importantly, the synchronized electrical activity in the newly developed cortical assemblies could be recorded as local field potential (LFP) measurements. This study therefore describes the first example of the development of a biologically relevant cortical plate assembly outside of the body. This model provides i) a preclinical basis for engineering cerebral cortex tissue autografts and ii) a biofidelic 3D culture model for investigating biologically relevant processes during the functional development of cerebral cortical cellular systems. PMID:27112667

  12. 3D-quantitative structure-activity relationship study of organophosphate compounds

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jinsong; WANG Bin; DAI Zhaoxia; WANG Xiaodong; KONG Lingren; WANG Liansheng

    2004-01-01

    The biological effects of most organophosphate compounds (OP) are arising by inhibition of the enzyme acetylcholinesterase (AChE). The 3D-quantitative structure-activity relationship (3D-QSAR) on the acute toxicity to housefly (Musca nobulo L.) of 35 dialkyl phenyl phosphate compounds are studied by using comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) methods, and the reaction mechanism between the OP and the AChE are discussed. In contrast to classical QSAR methods, CoMFA and CoMSIA, especially the combination of both approaches, can give more comprehensive and accurate perspectives on the mechanism of the reaction between OP and AChE. The results show that the length of alkyl, and the electronegative of substituent on phenyl of OP have significant effects on the AChE activity, whereas, the hydrophobicity of OP has little influence. The steric and electronic properties of OP have a dominant influence on the reaction between OP and AChE.

  13. 3D-2D ultrasound feature-based registration for navigated prostate biopsy: A feasibility study

    OpenAIRE

    Selmi, Sonia,; Promayon, Emmanuel; Troccaz, Jocelyne

    2016-01-01

    International audience; The aim of this paper is to describe a 3D-2D ultrasound feature-based registration method for navigated prostate biopsy and its first results obtained on patient data. A system combining a low-cost tracking system and a 3D-2D registration algorithm was designed. The proposed 3D-2D registration method combines geometric and image-based distances. After extracting features from ultrasound images, 3D and 2D features within a defined distance are matched using an intensity...

  14. 3D-2D ultrasound feature-based registration for navigated prostate biopsy: a feasibility study.

    Science.gov (United States)

    Selmi, Sonia Y; Promayon, Emmanuel; Troccaz, Jocelyne

    2016-08-01

    The aim of this paper is to describe a 3D-2D ultrasound feature-based registration method for navigated prostate biopsy and its first results obtained on patient data. A system combining a low-cost tracking system and a 3D-2D registration algorithm was designed. The proposed 3D-2D registration method combines geometric and image-based distances. After extracting features from ultrasound images, 3D and 2D features within a defined distance are matched using an intensity-based function. The results are encouraging and show acceptable errors with simulated transforms applied on ultrasound volumes from real patients.

  15. Are there side effects to watching 3D movies? A prospective crossover observational study on visually induced motion sickness.

    Directory of Open Access Journals (Sweden)

    Angelo G Solimini

    Full Text Available BACKGROUND: The increasing popularity of commercial movies showing three dimensional (3D images has raised concern about possible adverse side effects on viewers. METHODS AND FINDINGS: A prospective carryover observational study was designed to assess the effect of exposure (3D vs. 2D movie views on self reported symptoms of visually induced motion sickness. The standardized Simulator Sickness Questionnaire (SSQ was self administered on a convenience sample of 497 healthy adult volunteers before and after the vision of 2D and 3D movies. Viewers reporting some sickness (SSQ total score>15 were 54.8% of the total sample after the 3D movie compared to 14.1% of total sample after the 2D movie. Symptom intensity was 8.8 times higher than baseline after exposure to 3D movie (compared to the increase of 2 times the baseline after the 2D movie. Multivariate modeling of visually induced motion sickness as response variables pointed out the significant effects of exposure to 3D movie, history of car sickness and headache, after adjusting for gender, age, self reported anxiety level, attention to the movie and show time. CONCLUSIONS: Seeing 3D movies can increase rating of symptoms of nausea, oculomotor and disorientation, especially in women with susceptible visual-vestibular system. Confirmatory studies which include examination of clinical signs on viewers are needed to pursue a conclusive evidence on the 3D vision effects on spectators.

  16. PEPT: An invaluable tool for 3-D particle tracking and CFD simulation verification in hydrocyclone studies

    Directory of Open Access Journals (Sweden)

    Hoffmann Alex C.

    2013-05-01

    Full Text Available Particle tracks in a hydrocyclone generated both experimentally by positron emission particle tracking (PEPT and numerically with Eulerian-Lagranian CFD have been studied and compared. A hydrocyclone with a cylinder-on-cone design was used in this study, the geometries used in the CFD simulations and in the experiments being identical. It is shown that it is possible to track a fast-moving particle in a hydrocyclone using PEPT with high temporal and spatial resolutions. The numerical 3-D particle trajectories were generated using the Large Eddy Simulation (LES turbulence model for the fluid and Lagrangian particle tracking for the particles. The behaviors of the particles were analyzed in detail and were found to be consistent between experiments and CFD simulations. The tracks of the particles are discussed and related to the fluid flow field visualized in the CFD simulations using the cross-sectional static pressure distribution.

  17. Screening-Dependent Study of Superconductivity in 3d-Transition Metals Binary Alloys Superconductors

    Institute of Scientific and Technical Information of China (English)

    Aditya M. Vora

    2009-01-01

    In the present article, we report the screening-dependent study of the superconducting state parameters (SSPs), viz. electron-phonon coupling strength A, Coulomb pseudopotential μ*, transition temperature Tc, isotope effect exponent a, and effective interaction strength NoV of 3d-band transition metals binary alloys superconductors have been made extensively in the present work using a model potential formalism and employing the pseudo-alloy-atom (PAA) model for the first time. Five local field correction functions proposed by Hartree (H), Taylor (T), Ichimaxu-Utsumi (IU), Farid et al. (F) and Sarkar et al. (S) are used in the present investigation to study the screening influence on the aforesaid properties. The present results of the SSPs obtained from H-screening are found in qualitative agreement with the available experimental data wherever exist.

  18. A comparative study of three methods for robot kinematics.

    Science.gov (United States)

    Aspragathos, N A; Dimitros, J K

    1998-01-01

    Three methods for the formulation of the kinematic equations of robots with rigid links are presented in this paper. The first and most common method in the robotics community is based on 4x4 homogeneous matrix transformation, the second one is based on Lie algebra, and the third one on screw theory expressed via dual quaternions algebra. These three methods are compared in this paper for their use in the kinematic analysis of robot arms. The basic theory and the transformation operators, upon which every method is based, are referenced. Three analytic algorithms are presented for the solution of the direct kinematic problem corresponding to each method, and the geometric significance of the transformation operators and parameters is explained. Finally, a comparative study on the computation and storage requirements for the three methods is worked out.

  19. Assessment of prosthesis alignment after revision total knee arthroplasty using EOS 2D and 3D imaging: a reliability study.

    Directory of Open Access Journals (Sweden)

    Marrigje F Meijer

    Full Text Available INTRODUCTION: A new low-dose X-ray device, called EOS, has been introduced for determining lower-limb alignment in 2D and 3D. Reliability has not yet been assessed when using EOS on lower limbs containing a knee prosthesis. Therefore purpose of this study was to determine intraobserver and interobserver reliability of EOS 2D and 3D knee prosthesis alignment measurements after revision total knee arthroplasty (rTKA. METHODS: Forty anteroposterior and lateral images of 37 rTKA patients were included. Two observers independently performed measurements on these images twice. Varus/valgus angles were measured in 2D (VV2D and 3D (VV3D. Intraclass correlation coefficients and the Bland and Altman method were used to determine reliability. T-tests were used to test potential differences. RESULTS: Intraobserver and interobserver reliability were excellent for VV2D and VV3D. No significant difference or bias between the first and second measurements or the two observers was found. A significant mean and absolute difference of respectively 1.00° and 1.61° existed between 2D and 3D measurements. CONCLUSIONS: EOS provides reliable varus/valgus measurements in 2D and 3D for the alignment of the knee joint with a knee prosthesis. However, significant differences exist between varus/valgus measurements in 2D and 3D.

  20. 3D Surface Realignment Tracking for Medical Imaging: A Phantom Study with PET Motion Correction

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Paulsen, Rasmus Reinhold; Jensen, Rasmus Ramsbøl

    2013-01-01

    . The structured light system is equipped with a near infrared diode and uses phase-shift interferometry (PSI) to compute 3D point clouds of the forehead of the patient. These 3D point clouds are progressively aligned to a reference surface, thereby giving the head pose changes. The estimated pose changes are used...

  1. Study on embedding fiber Bragg grating sensor into the 3D printing structure for health monitoring

    Science.gov (United States)

    Li, Ruiya; Tan, Yuegang; Zhou, Zude; Fang, Liang; Chen, Yiyang

    2016-10-01

    3D printing technology is a rapidly developing manufacturing technology, which is known as a core technology in the third industrial revolution. With the continuous improvement of the application of 3D printing products, the health monitoring of the 3D printing structure is particularly important. Fiber Bragg grating (FBG) sensing technology is a new type of optical sensing technology with unique advantages comparing to traditional sensing technology, and it has great application prospects in structural health monitoring. In this paper, the FBG sensors embedded in the internal structure of the 3D printing were used to monitor the static and dynamic strain variation of 3D printing structure during loading process. The theoretical result and experimental result has good consistency and the characteristic frequency detected by FBG sensor is consistent with the testing results of traditional accelerator in the dynamic experiment. The results of this paper preliminary validate that FBG embedded in the 3D printing structure can effectively detecting the static and dynamic stain change of the 3D printing structure, which provide some guidance for the health monitoring of 3D printing structure.

  2. Experimental study on water seepage constitutive law of fracture in rock under 3D stress

    Institute of Scientific and Technical Information of China (English)

    赵阳升; 杨栋; 郑少河; 胡耀青

    1999-01-01

    The test method and test result of water seepage constitutive law of fracture in rock under 3D stress are introduced. A permeability coefficient formula including the coefficient of fracture connection, normal stiffness, 3D stress, initial width of fracture and Poisson ratio is presented based on the analysis of the test theory and its result.

  3. Browsing through 3D representations of unstructured picture collections: an empirical study

    CERN Document Server

    Christmann, Olivier

    2007-01-01

    The paper presents a 3D interactive representation of fairly large picture collections which facilitates browsing through unstructured sets of icons or pictures. Implementation of this representation implies choosing between two visualization strategies: users may either manipulate the view (OV) or be immersed in it (IV). The paper first presents this representation, then describes an empirical study (17 participants) aimed at assessing the utility and usability of each view. Subjective judgements in questionnaires and debriefings were varied: 7 participants preferred the IV view, 4 the OV one, and 6 could not choose between the two. Visual acuity and visual exploration strategies seem to have exerted a greater influence on participants' preferences than task performance or feeling of immersion.

  4. 3-D electromagnetic induction studies using the Swarm constellation: Mapping conductivity anomalies in the Earth's mantle

    DEFF Research Database (Denmark)

    Kuvshinov, A.; Sabaka, T.; Olsen, Nils

    2006-01-01

    An approach is presented to detect deep-seated regional conductivity anomalies by analysis of magnetic observations taken by low-Earth-orbiting satellites. The approach deals with recovery of C-responses on a regular grid and starts with a determination of time series of external and internal....... For validation of the approach, 3 years of realistic synthetic data at Simulated orbits of the forthcoming Swarm constellation of 3 satellites have been used. To obtain the synthetic data for a given 3-D conductivity Earth's model a time-domain scheme has been applied which relies oil a Fourier transformation...... satellite data that contain contributions from the core and lithosphere, from the rnagnetosphere and ionosphere (and their Earth-induced counterparts), as well as payload noise has been investigated. The model Studies have shown that C-responses obtained oil a regular grid might be used to map regional deep...

  5. Study of negative hydrogen ion beam optics using the 3D3V PIC model

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K., E-mail: kmiyamot@naruto-u.ac.jp [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima, 772-8502 (Japan); Nishioka, S.; Goto, I.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522 (Japan); Hanada, M.; Kojima, A. [Japan Atomic Energy Agency, 801-1,Mukoyama, Naka, 319-0913 (Japan)

    2015-04-08

    The mechanism of negative ion extraction under real conditions with the complex magnetic field is studied by using the 3D PIC simulation code. The extraction region of the negative ion source for the negative ion based neutral beam injection system in fusion reactors is modelled. It is shown that the E x B drift of electrons is caused by the magnetic filter and the electron suppression magnetic field, and the resultant asymmetry of the plasma meniscus. Furthermore, it is indicated that that the asymmetry of the plasma meniscus results in the asymmetry of negative ion beam profile including the beam halo. It could be demonstrated theoretically that the E x B drift is not significantly weakened by the elastic collisions of the electrons with neutral particles.

  6. 3D MODELS FOR THE RESTORATION PROJECT: SOME ISSUES AND A CASE STUDY

    Directory of Open Access Journals (Sweden)

    G. Novello

    2012-09-01

    Full Text Available This contribute aim to explore 3D modelling and its practical applications investigating scales of representation and scales of contents. The goal of this research work was to test the flexibility of modeling tools to different field of application and to draw shared methods, even if they are applied. During the research occurred some problems that should be considered as central for future developments. They will drive the mainlines for the refinement of software and application technologies, but it must be remembered that, first of all, the direct experience and the validation with practical case studies must be absolutely taken into account. On the basis of the outcomes and of research directions for the future, it has paved the way to thinking useful to the implementation of the method and to the management of the graphic results.

  7. 3D-QSAR studies on glycogen phosphorylase inhibitors by flexible comparative molecular field analysis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Canceling grids accommodating probes in comparative molecular field analysis (CoMFA), the idea of flexibleness is introduced into the CoMFA, and in combination with swarm intelligent algorithm which attempts to optimize distributions of diverse probes around drug molecules, a new 3D-QSAR method is proposed in this context as flexible comparative molecular field analysis (FCoMFA). In preliminary at-tempts to performing QSAR studies on 47 glycogen phosphorylase inhibitors, FCoMFA is employed and confirmed to be potent to exploring ligand-receptor interaction manners at active positions and thus to generating stable and predictable models. Simultaneously by an intuitive graphics regarding probe distribution patterns, impacts of different substituted groups on activities is also given an insight into.

  8. 3D-QSAR studies on glycogen phosphorylase inhibitors by flexible comparative molecular field analysis

    Institute of Scientific and Technical Information of China (English)

    ZHOU Peng; LI ZhiLiang

    2007-01-01

    Canceling grids accommodating probes in comparative molecular field analysis (CoMFA), the idea of flexibleness is introduced into the CoMFA, and in combination with swarm intelligent algorithm which attempts to optimize distributions of diverse probes around drug molecules, a new 3D-QSAR method is proposed in this context as flexible comparative molecular field analysis (FCoMFA). In preliminary attempts to performing QSAR studies on 47 glycogen phosphorylase inhibitors, FCoMFA is employed and confirmed to be potent to exploring ligand-receptor interaction manners at active positions and thus to generating stable and predictable models. Simultaneously by an intuitive graphics regarding probe distribution patterns, impacts of different substituted groups on activities is also given an insight into.

  9. 3D-QSAR study on phenoxy-alkylamine compounds of a 1-adrenoceptor antagonist

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The study of three-dimensional quantitative structure-activityrelationship (3D-QSAR) of DDPH and its derivatives that have been known with their activity parameters has been developed using the comparative molecular field analysis (CoMFA) method. Here, (+)-DDPH crystal structure was selected as the active conformation model and comparisons between the influences of different charge calculation methods and grid setup were conducted. The coefficients of cross-validation (q2 ) and regression (r2) are 0.481 and 0.997, respectively. The standard error (SE) is 0.102. The research result suggests that the steric field makes more contributions to the activity than the electrostatic field. This model can help us not only in improving our understanding of the receptor-ligand interactions, but also in predicting the activity of derivatives and designing new compounds with better potency.

  10. Roughness receptivity studies in a 3-D boundary layer - Flight tests and computations

    Science.gov (United States)

    Carpenter, Andrew L.; Saric, William S.; Reed, Helen L.

    The receptivity of 3-D boundary layers to micron-sized, spanwise-periodic Discrete Roughness Elements (DREs) was studied. The DREs were applied to the leading edge of a 30-degree swept-wing at the wavelength of the most unstable disturbance. In this case, calibrated, multi-element hotfilm sensors were used to measure disturbance wall shear stress. The roughness height was varied from 0 to 50 microns. Thus, the disturbance-shear-stress amplitude variations were determined as a function of modulated DRE heights. The computational work was conducted parallel to the flight experiments. The complete viscous flowfield over the O-2 aircraft with the SWIFT model mounted on the port wing store pylon was successfully modeled and validated with the flight data. This highly accurate basic-state solution was incorporated into linear stability calculations and the wave growth associated with the crossflow instability was calculated.

  11. Structural and property studies on metal-organic compounds with 3-D supramolecular network

    Science.gov (United States)

    Zhang, Qi-Ying; Ma, Ke-Fang; Xiao, Hong-Ping; Li, Xin-Hua; Shi, Qian

    2014-07-01

    Two carboxylato-bridged allomeric compounds, {[Cu2(dbsa)2(hmt) (H2O)4]1/2·2H2O}n (1), {[Ni(dbsa)(H2O)2]1/2[Ni(dbsa)(hmt)(H2O)2]1/2·2H2O}n (2) (H2dbsa=meso-2,3-dibromosuccinic acid, hmt=hexamethylenetetramine) have been synthesized and characterized by X-ray structral analyses. The metal ions have two kinds of coordination fashion in one unit, and bridged by carboxylate and hmt ligands along with weak interactions existing in the solid structure, forming a 3-D supramolecular network. Variable-temperature magnetic property studies reveal the existence of antiferromagnetic interactions in 1 and 2 with g=2.2, J1=-3.5 cm-1, J2=-2.8 cm-1 for 1, and g=2.1, J=-3.5 cm-1 for 2.

  12. 3-D conformal HDR brachytherapy as monotherapy for localized prostate cancer. A pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Martin, T.; Baltas, D.; Kurek, R.; Roeddiger, S.; Kontova, M.; Anagnostopoulos, G.; Skazikis, G.; Zamboglou, N. [Dept. of Radiation Oncology, Klinikum Offenbach, Offenbach/Main (Germany); Dannenberg, T.; Buhleier, T.; Tunn, U. [Dept. of Urology, Klinikum Offenbach, Offenbach/Main (Germany)

    2004-04-01

    Purpose: pilot study to evaluate feasibility, acute toxicity and conformal quality of three-dimensional (3-D) conformal high-dose-rate (HDR) brachytherapy as monotherapy for localized prostate cancer using intraoperative real-time planning. Patients and methods: between 05/2002 and 05/2003, 52 patients with prostate cancer, prostate-specific antigen (PSA) {<=} 10 ng/ml, Gleason score {<=} 7 and clinical stage {<=} T2a were treated. Median PSA was 6.4 ng/ml and median Gleason score 5. 24/52 patients had stage T1c and 28/52 stage T2a. For transrectal ultrasound-(TRUS-)guided transperineal implantation of flexible plastic needles into the prostate, the real-time HDR planning system SWIFT trademark was used. After implantation, CT-based 3-D postplanning was performed. All patients received one implant for four fractions of HDR brachytherapy in 48 h using a reference dose (D{sub ref}) of 9.5 Gy to a total dose of 38.0 Gy. Dose-volume histograms (DVHs) were analyzed to evaluate the conformal quality of each implant using D{sub 90}, D{sub 10} urethra, and D{sub 10} rectum. Acute toxicity was evaluated using the CTC (common toxicity criteria) scales. Results: median D{sub 90} was 106% of D{sub ref} (range: 93-115%), median D{sub 10} urethra 159% of D{sub ref} (range: 127-192%), and median D{sub 10} rectum 55% of D{sub ref} (range: 35-68%). Median follow-up is currently 8 months. In 2/52 patients acute grade 3 genitourinary toxicity was observed. No gastrointestinal toxicity > grade 1 occurred. Conclusion: 3-D conformal HDR brachytherapy as monotherapy using intraoperative real-time planning is a feasible and highly conformal treatment for localized prostate cancer associated with minimal acute toxicity. Longer follow-up is needed to evaluate late toxicity and biochemical control. (orig.)

  13. Study on 3D printer production of auxiliary device for upper limb for medical imaging test

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeong Gyun [Dept. of Radiological Science, Far East University, Eumsung (Korea, Republic of); Yoon, Jae Ho [Jukwang Precision Co., Ltd., Gumi (Korea, Republic of); Choi, Seong Dae [Dept. of Mechanical system engineering, Kumoh Institute of Technology, Gumi (Korea, Republic of)

    2015-12-15

    There is a progressive development in the medical imaging technology, especially of descriptive capability for anatomical structure of human body thanks to advancement of information technology and medical devices. But however maintenance of correct posture is essential for the medical imaging checkup on the shoulder joint requiring rotation of the upper limb due to the complexity of human body. In the cases of MRI examination, long duration and fixed posture are critical, as failure to comply with them leads to minimal possibility of reproducibility only with the efforts of the examiner and will of the patient. Thus, this study aimed to develop an auxiliary device that enables rotation of the upper limb as well as fixing it at quantitative angles for medical imaging examination capable of providing diagnostic values. An auxiliary device has been developed based on the results of precedent studies, by designing a 3D model with the CATIA software, an engineering application, and producing it with the 3D printer. The printer is Objet350 Connex from Stratasys, and acrylonitrile- butadiene-styrene(ABS) is used as the material of the device. Dimensions are 120 X 150 X 190 mm, with the inner diameter of the handle being 125.9 mm. The auxiliary device has 4 components including the body (outside), handle (inside), fixture terminal and the connection part. The body and handle have the gap of 2.1 mm for smooth rotation, while the 360 degree of scales have been etched on the handle so that the angle required for observation may be recorded per patient for traceability and dual examination.

  14. Comparative study of DSC-PWI and 3D-ASL in ischemic stroke patients.

    Science.gov (United States)

    Zhang, Shui-xia; Yao, Yi-hao; Zhang, Shun; Zhu, Wen-jie; Tang, Xiang-yu; Qin, Yuan-yuan; Zhao, Ling-yun; Liu, Cheng-xia; Zhu, Wen-zhen

    2015-12-01

    The purpose of this study was to quantitatively analyze the relationship between three dimensional arterial spin labeling (3D-ASL) and dynamic susceptibility contrast-enhanced perfusion weighted imaging (DSC-PWI) in ischemic stroke patients. Thirty patients with ischemic stroke were included in this study. All subjects underwent routine magnetic resonance imaging scanning, diffusion weighted imaging (DWI), magnetic resonance angiography (MRA), 3D-ASL and DSC-PWI on a 3.0T MR scanner. Regions of interest (ROIs) were drawn on the cerebral blood flow (CBF) maps (derived from ASL) and multi-parametric DSC perfusion maps, and then, the absolute and relative values of ASL-CBF, DSC-derived CBF, and DSC-derived mean transit time (MTT) were calculated. The relationships between ASL and DSC parameters were analyzed using Pearson's correlation analysis. Receiver operative characteristic (ROC) curves were performed to define the thresholds of relative value of ASL-CBF (rASL) that could best predict DSC-CBF reduction and MTT prolongation. Relative ASL better correlated with CBF and MTT in the anterior circulation with the Pearson correlation coefficients (R) values being 0.611 (P1.0 were 75.7%, 89.2% and 87.8% respectively. ASL-CBF map has better linear correlations with DSC-derived parameters (DSC-CBF and MTT) in anterior circulation in ischemic stroke patients. Additionally, when rASL is lower than 0.585, it could predict DSC-CBF decrease with moderate accuracy. If rASL values range from 0.585 to 0.952, we just speculate the prolonged MTT.

  15. A novel asymmetric 3D in-vitro assay for the study of tumor cell invasion

    Directory of Open Access Journals (Sweden)

    Neufeld Gera

    2009-11-01

    Full Text Available Abstract Background The induction of tumor cell invasion is an important step in tumor progression. Due to the cost and slowness of in-vivo invasion assays, there is need for quantitative in-vitro invasion assays that mimic as closely as possible the tumor environment and in which conditions can be rigorously controlled. Methods We have established a novel asymmetric 3D in-vitro invasion assay by embedding a monolayer of tumor cells between two layers of collagen. The cells were then allowed to invade the upper and lower layers of collagen. To visualize invading cells the gels were sectioned perpendicular to the monolayer so that after seeding the monolayer appears as a thin line precisely defining the origin of invasion. The number of invading tumor cells, their proliferation rate, the distance they traverse and the direction of invasion could then be determined quantitatively. Results The assay was used to compare the invasive properties of several tumor cell types and the results compare well with those obtained by previously described assays. Lysyl-oxidase like protein-2 (Loxl2 is a potent inducer of invasiveness. Using our assay we show for the first time that inhibition of endogenous Loxl2 expression in several types of tumor cells strongly inhibits their invasiveness. We also took advantage of the asymmetric nature of the assay in order to show that fibronectin enhances the invasiveness of breast cancer cells more potently than laminin. The asymmetric properties of the assay were also used to demonstrate that soluble factors derived from fibroblasts can preferentially attract invading breast cancer cells. Conclusion Our assay displays several advantages over previous invasion assays as it is allows the quantitative analysis of directional invasive behavior of tumor cells in a 3D environment mimicking the tumor microenvironment. It should be particularly useful for the study of the effects of components of the tumor microenvironment on

  16. Study of City Landscape Heritage Using Lidar Data and 3d-City Models

    Science.gov (United States)

    Rubinowicz, P.; Czynska, K.

    2015-04-01

    In contemporary town planning protection of urban landscape is a significant issue. It regards especially those cities, where urban structures are the result of ages of evolution and layering of historical development process. Specific panoramas and other strategic views with historic city dominants can be an important part of the cultural heritage and genius loci. Other hand, protection of such expositions introduces limitations for future based city development. Digital Earth observation techniques creates new possibilities for more accurate urban studies, monitoring of urbanization processes and measuring of city landscape parameters. The paper examines possibilities of application of Lidar data and digital 3D-city models for: a) evaluation of strategic city views, b) mapping landscape absorption limits, and c) determination protection zones, where the urbanization and buildings height should be limited. In reference to this goal, the paper introduces a method of computational analysis of the city landscape called Visual Protection Surface (VPS). The method allows to emulate a virtual surface above the city including protection of a selected strategic views. The surface defines maximum height of buildings in such a way, that no new facility can be seen in any of selected views. The research includes also analyses of the quality of simulations according the form and precision of the input data: airborne Lidar / DSM model and more advanced 3D-city models (incl. semantic of the geometry, like in CityGML format). The outcome can be a support for professional planning of tall building development. Application of VPS method have been prepared by a computer program developed by the authors (C++). Simulations were carried out on an example of the city of Dresden.

  17. Distal Insertional Footprint of the Brachialis Muscle: 3D Morphometric Study

    Directory of Open Access Journals (Sweden)

    Srinath Kamineni

    2015-01-01

    Full Text Available Objective. The purpose of this study is to describe the three-dimensional morphometry of the brachialis muscle at its distal attachment to the ulna. Methods. Fifty cadaveric elbows were dissected and the brachialis distal insertion was isolated on the ulna bone and probed with a three-dimensional digitizer, to create a three-dimensional model of the footprint. Measurements and analysis of each footprint shape were recorded and compared based on gender and size. Results. There was significant gender difference in the surface length (P= 0.002 and projected length (P= 0.001 of the brachialis footprint. The shapes of the footprint also differed among the specimens. Conclusion. The shape of the brachialis muscle insertion differed among all the specimens without significant variation in gender or sides. There was also a significant difference in muscle length between males and females with little difference in the width and surface area. Significance. The information obtained from this study is important for kinematic understanding and surgical procedures around the elbow joint as well as the understanding of the natural age related anatomy of the brachialis footprint morphology.

  18. Pedestrian kinematics: a detailed study from the aspects project

    NARCIS (Netherlands)

    Rodarius, C.; Hair-Buijssen, S.H.H.M. de; Mottola, E.; Schaub, S.

    2013-01-01

    This study aims at providing insight on pedestrian kinematics during vehicle impact for the following variables: pedestrian size, position and posture as well as vehicle related variables like shape, speed and pre-crash braking. It is part of the work conducted within work package 3 “Injury assessme

  19. Study on the Construction and Application of 3D Geographic Information Services for the Smart City

    Science.gov (United States)

    Mao, W.-Q.

    2014-04-01

    Smart City, whose main characteristics are intelligence and interconnection capability, has become an important goal of some cities' development. This paper, based on urban three-dimensional geographic information characteristics, analyses 3D geographic information requirements in the Smart City construction and development process, proposes construction and management methods for 3D geographic information. Furthermore, this paper takes Shanghai Geographic Information Public Service Platform as an example, discusses 3D geographic information application in multiple fields, and proves that it is an effective ways to promote Intelligent City construction.

  20. EXPERIMENTAL STUDY OF 3-D TURBULENT BEND FLOWS IN OPEN CHANNEL

    Institute of Scientific and Technical Information of China (English)

    LIU Yue-qin; ZHENG Shao-wen; WU Qiang

    2005-01-01

    A generalized bend flow model, treating a 90° single bend and 60° continuous bends, was designed to quantitatively describe 3-D turbulence mechanism of circulating not-fully-developed flow in open channels with bends.The 3-D fluctuating velocities of turbulent flow were measured and analyzed with a 3-D acoustic-Doppler velocimeter.Formula for 3-D turbulent intensity was derived using the dimension analysis approach.Expressions of vertical turbulent-intensity distributions were obtained with the multivariant-regression theory, which agree with experiment data.Distributions of turbulent intensity and turbulent stress were characterized, and their relationships were concluded.In the bend-turbulent-flow core region, longitudinal and lateral turbulent-intensity distributions are coincident with linear distribution, but in near-wall region are coincident with the Gamma distribution.Vertical turbulent intensity distributions are coincident with the Rayleigh distribution.Herein, it is concluded that the bend turbulence is anisotropic.

  1. Synthesis of novel bisindolylmethanes: New carbonic anhydrase II inhibitors, docking, and 3D pharmacophore studies.

    Science.gov (United States)

    Imran, Syahrul; Taha, Muhammad; Ismail, Nor Hadiani; Fayyaz, Sharmeen; Khan, Khalid Mohammed; Choudhary, Muhammad Iqbal

    2016-10-01

    In this study, 45 bisindolylmethanes having sulfonamide moiety had been synthesized through 3 steps. In vitro assay for inhibition of carbonic anhydrase showed that some of the compounds having sulfonamide moiety are capable of inhibiting carbonic anhydrase II. Bisindoles having halogens at fifth position showed better inhibitory activity as compared to unsubstituted bisindoles. The results obtained from in vitro inhibitory activity were subjected through 3D QSAR and docking studies to identify important features contributing to the activity and further improve the structure. Pharmacophore studies suggest that bisindolylmethane moiety is contributing significantly towards the inhibition activity. Docking studies showed that compounds having nitro substituent (5g and 5i) were found to be able interact with Zn(2+) ion, Thr199, His94, His96, and His119, which interferes with the ZnOHThr199Glu106 hydrogen bond network. Bulky nitro substituent at ortho position for compound 5g prevents the compound from interacting with other residues like Thr199 and Thr200. Methyl substituent at ortho position for Compound 5i induces less steric hindrance effect, thus allowing second oxygen atom of sulfonamide to interact with Thr199 (2.51Å). Hydrogen bonding between NH on indole ring with Glu69 might have increased stability of ligand-receptor complex.

  2. EMPulse, a new 3-D simulation code for electromagnetic pulse studies

    Science.gov (United States)

    Cohen, Bruce; Eng, Chester; Farmer, William; Friedman, Alex; Grote, David; Kruger, Hans; Larson, David

    2016-10-01

    EMPulse is a comprehensive and modern 3-D simulation code for electro-magnetic pulse (EMP) formation and propagation studies, being developed at LLNL as part of a suite of codes to study E1 EMP originating from prompt gamma rays. EMPulse builds upon the open-source Warp particle-in-cell code framework developed by members of this team and collaborators at other institutions. The goal of this endeavor is a new tool enabling the detailed and self-consistent study of multi-dimensional effects in geometries that have typically been treated only approximately. Here we present an overview of the project, the models and methods that have been developed and incorporated into EMPulse, tests of these models, comparisons to simulations undertaken in CHAP-lite (derived from the legacy code CHAP due to C. Longmire and co-workers), and some approaches to increased computational efficiency being studied within our project. This work was performed under the auspices of the U.S. DOE by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  3. Study of filled dolines by using 3D stereo image processing and electrical resistivity imaging

    Directory of Open Access Journals (Sweden)

    Mateja Breg Valjavec

    2014-01-01

    Full Text Available This article deals with doline degradation due to uncontrolled waste dumping in the past in the Logatec Polje in Slovenia. It introduces a concept for determining 3D geometric characteristics (shape, depth, radius, area, and volume of formerly concave landforms (i.e., recently filled dolines by using a combination of two methods: (1 photogrammetric stereo processing of archival aerial photographs and (2 electrical resistivity imaging (ERI. To represent, visualize, and study the characteristics of the former surface morphology (i.e., the dolines before they were filled, a digital terrain model (DTM for 1972 (DTM1972 was made using digital photogrammetry processing of five sequential archival aerial photographs (1972, © GURS. DTM1972 was visually and quantitatively compared with the DTM5 of the recent surface morfology (DTM5, © GURS, 2006 in order to define areas of manmade terrain differences. In general, a circular area with a higher terrain difference is an indicator of a filled doline. The calculated terrain differences also indicate the thickness of buried waste material. Three case-study dolines were selected for 3D geometric analysis and tested in the field using ERI. ERI was used to determine the genetic type of the original doline, to confirm that the buried material in the doline is actually waste, and to ascertain opportunities for further study of water pollution due to waste leakage. Based on a comparison among the ERI sections obtained using various electrode arrays, it was concluded that the basins are actually past concave landforms (i.e., dolines filled with mixed waste material having the lowest resistivity value (bellow 100 ohm-m, which differs measurably from the surrounding natural materials. The resistivity of hard stacked limestone is higher (above 1,000 ohm-m than resistivity of cracked carbonate rocks with cracks filled with loamy clay sediments while in loamy alluvial sediment resistivity falls below 150 ohm

  4. A study of detonation timing and fragmentation using 3-D finite element techniques and a damage constitutive model

    Energy Technology Data Exchange (ETDEWEB)

    Preece, D.S.; Thorne, B.J.

    1996-03-01

    The transient dynamics finite element computer program, PRONTO-3D, has been used in conjunction with a damage constitutive model to study the influence of detonation timing on rock fragmentation during blasting. The primary motivation of this study is to investigate the effectiveness of precise detonators in improving fragmentation. PRONTO-3D simulations show that a delay time of 0.0 sec between adjacent blastholes results in significantly more fragmentation than a 0.5 ms delay.

  5. A study for high accuracy real-time 3D ultrasonic location system.

    Science.gov (United States)

    Zhou, Ping; Ha, Zhang; Zhou, Kangyuan

    2006-12-22

    We discussed a high accuracy real-time 3D ultrasonic location system in this article. The signal received was sampled after it passed the TGC and the logarithmic amplifier. Inside the DSP, we used the dynamic threshold tracing technique to improve the accuracy. The result was processed with Weighted Arithmetic Average. By testing the 40 kHz 3D location system, we have arrived at the accuracy of 1 cm.

  6. Coupling high resolution 3D point clouds from terrestrial LiDAR with high precision displacement time series from GB-InSAR to understand landslide kinematic: example of the La Perraire instability, Swiss Alps.

    Science.gov (United States)

    Michoud, Clément; Baillifard, François; Harald Blikra, Lars; Derron, Marc-Henri; Jaboyedoff, Michel; Kristensen, Lene; Leva, Davide; Metzger, Richard; Rivolta, Carlo

    2014-05-01

    Terrestrial Laser Scanning and Ground-Based Radar Interferometry have changed our perception and interpretation of slope activities for the last 20 years and are now routinely used for monitoring and even early warning purposes. Terrestrial LiDAR allows indeed to model topography with very high point density, even in steep slopes, and to extract 3D displacements of rock masses by comparing successive datasets. GB-InSAR techniques are able to detect mm displacements over large areas. Nevertheless, both techniques suffer of some limitations. The precision of LiDAR devices actually limits its ability to monitor very slow-moving landslides, as well as by the dam resolution and the particular geometry (in azimuth/range) of GB-InSAR data may complicate their interpretations. To overcome those limitations, tools were produced to truly combine strong advantages of both techniques, by coupling high resolution geometrical data from terrestrial LiDAR or photogrammetry with high precision displacement time series from GB-InSAR. We thus developed a new exportation module into the processing chain of LiSAmobile (GB-InSAR) devices in order to wrap radar results from their particular geometry on high resolution 3D point clouds with cm mean point spacing. Furthermore, we also added new importation and visualization functionalities into Coltop3D (software for geological interpretations of laser scanning data) to display those results in 3D and even analyzing displacement time series. This new method has also been optimized to create as few and small files as possible and for time processing. Advantages of coupling terrestrial LiDAR and GB-InSAR data will be illustrated on the La Perraire instability, an active large rockslide involving frequent rockfalls and threatening inhabitant within the Val de Bagnes in the Swiss Alps. This rock mass, monitored by LiDAR and GPS since 2006, is huge enough and long-term movements are big (up to 1.6 m in 6 years) and complex enough to make

  7. Feasibility of a 3D human airway epithelial model to study respiratory absorption.

    Science.gov (United States)

    Reus, Astrid A; Maas, Wilfred J M; Jansen, Harm T; Constant, Samuel; Staal, Yvonne C M; van Triel, Jos J; Kuper, C Frieke

    2014-03-01

    The respiratory route is an important portal for human exposure to a large variety of substances. Consequently, there is an urgent need for realistic in vitro strategies for evaluation of the absorption of airborne substances with regard to safety and efficacy assessment. The present study investigated feasibility of a 3D human airway epithelial model to study respiratory absorption, in particular to differentiate between low and high absorption of substances. Bronchial epithelial models (MucilAir™), cultured at the air-liquid interface, were exposed to eight radiolabeled model substances via the apical epithelial surface. Absorption was evaluated by measuring radioactivity in the apical compartment, the epithelial cells and the basolateral culture medium. Antipyrine, caffeine, naproxen and propranolol were highly transported across the epithelial cell layer (>5%), whereas atenolol, mannitol, PEG-400 and insulin were limitedly transported (absorption. The intra-experimental reproducibility of the results was considered adequate based on an average coefficient of variation (CV) of 15%. The inter-experimental reproducibility of highly absorbed compounds was in a similar range (CV of 15%), but this value was considerably higher for those compounds that were limitedly absorbed. No statistical significant differences between different donors and experiments were observed. The present study provides a simple method transposable in any lab, which can be used to rank the absorption of chemicals and pharmaceuticals, and is ready for further validation with respect to reproducibility and capacity of the method to predict respiratory transport in humans.

  8. Study of the effects of surface cladding on 3D transmon

    Science.gov (United States)

    Yoscovits, Zachary Robert

    Quantum computing is a very interesting field, due to the ability of quantum computers to solve many problems much faster than a classical computer. Superconducting qubits are electronic circuits composed of superconducting capacitors, inductors and Josephson junctions, which can implement a physical qubit. However they need improvements in their coherence time to create a viable quantum computing. In this work I study the effect on decoherence caused by two level systems in the native oxide that forms on the surface of qubit. To this end I fabricate 3D transmon qubits using materials grown my molecular beam epitaxy, to which a variety of different surface treatments had been applied. I began by fabricating qubits from niobium/aluminum oxide/niobium trilayers. To this end I developed a self-aligned process for fabricating sub-micron Josephson junctions. This process presented many challenges. During the development of this process, it became clear that niobium was an inferior material for fabricating qubits compared to aluminum. I then switched to making qubits from Aluminum. I began by studying the growth of aluminum on sapphire, and was able to achieve aluminum films with an RMS roughness of 0.2 nm by growing on c-plane sapphire that had been annealed in oxygen at 1100 °C and dipped in BOE. Next I fabricated 3D transmon qubits by adapting the standard shadowmask process for use with MBE. I fabricated qubits with a long in situ oxidation to fully passivate the surface before exposure to air. I also passivated the surface by means of growing co deposited aluminum oxide, and by grown aluminum nitride using a nitrogen plasma source. The coherence times of these qubits were compared to those a control sample that had been exposed to air immediately after growth. Overall it doesn't appear that cladding the surface changes the coherence time much, however it is difficult to form conclusions with this small sample size. The coated samples appeared to have slightly

  9. Potentiometric and spectroscopic study of the interaction of 3d transition metal ions with inositol hexakisphosphate

    Science.gov (United States)

    Veiga, Nicolás; Macho, Israel; Gómez, Kerman; González, Gabriel; Kremer, Carlos; Torres, Julia

    2015-10-01

    Among myo-inositol phosphates, the most abundant in nature is the myo-inositol hexakisphosphate, InsP6. Although it is known to be vital to cell functioning, the biochemical research into its metabolism needs chemical and structural analysis of all the protonation, complexation and precipitation processes that it undergoes in the biological media. In view of its high negative charge at physiological level, our group has been leading a thorough research into the InsP6 chemical and structural behavior in the presence of the alkali and alkaline earth metal ions essential for life. The aim of this article is to extend these studies, dealing with the chemical and structural features of the InsP6 interaction with biologically relevant 3d transition metal ions (Fe(II), Fe(III), Mn(II), Co(II), Ni(II), Cu(II) and Zn(II)), in a non-interacting medium and under simulated physiological conditions. The metal-complex stability constants were determined by potentiometry, showing under ligand-excess conditions the formation of mononuclear species in different protonation states. Under metal ion excess, polymetallic species were detected for Fe(II), Fe(III), Zn(II) and Cu(II). Additionally, the 31P NMR and UV-vis spectroscopic studies provided interesting structural aspects of the strong metal ion-InsP6 interaction.

  10. A 3D velocimetry study of the flow through prosthetic heart valves

    Science.gov (United States)

    Ledesma, R.; Zenit, R.; Pulos, G.; Sanchez, E.; Juarez, A.

    2006-11-01

    Blood damage commonly appears in medical valve prothesis. It is a mayor concern for the designers and surgeons. It is well known that this damage and other complications result from the modified fluid dynamics through the replacement valve. To evaluate the performance of prosthetic heart valves, it is necessary to study the flow through them. To conduct this study , we have built a flow channel that emulates cardiac conditions and allows optical access such that a 3D-PIV velocimetry system could be used. The experiments are aimed to reconstruct the downstream structure of the flow through a mechanical and a bio-material tricuspid heart valve prothesis. Preliminary results show that the observed coherent structures can be related with haemolysis and trombosis, illnesses commonly found in valve prothesis recipients. The mean flow, the levels of strain rate and the turbulence intensity generated by the valves can also be directly related to blood damage. In general, bio-material made valves tend to reduce these complications.

  11. A novel code for numerical 3-D MHD studies of CME expansion

    Directory of Open Access Journals (Sweden)

    J. Kleimann

    2009-03-01

    Full Text Available A recent third-order, essentially non-oscillatory central scheme to advance the equations of single-fluid magnetohydrodynamics (MHD in time has been implemented into a new numerical code. This code operates on a 3-D Cartesian, non-staggered grid, and is able to handle shock-like gradients without producing spurious oscillations.

    To demonstrate the suitability of our code for the simulation of coronal mass ejections (CMEs and similar heliospheric transients, we present selected results from test cases and perform studies of the solar wind expansion during phases of minimum solar activity. We can demonstrate convergence of the system into a stable Parker-like steady state for both hydrodynamic and MHD winds. The model is subsequently applied to expansion studies of CME-like plasma bubbles, and their evolution is monitored until a stationary state similar to the initial one is achieved. In spite of the model's (current simplicity, we can confirm the CME's nearly self-similar evolution close to the Sun, thus highlighting the importance of detailed modelling especially at small heliospheric radii.

    Additionally, alternative methods to implement boundary conditions at the coronal base, as well as strategies to ensure a solenoidal magnetic field, are discussed and evaluated.

  12. Study on 3D simulation of wave fields in acoustic reflection image logging

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The borehole acoustic reflection imaging logging is a newly developed acoustic logging method that has attracted many interests. These converted and reflected waves for imaging are usually mixed up with borehole guided waves and therefore difficult to be clearly identified. To improve the downhole tool design and develop more sophisticate data processing and interpretation algorithms,studies on precisely numerical modeling of the wave fields in the acoustic reflection imaging logging are neces-sary and critical. This paper developed a parallelized scheme of 3D finite difference (3DFD) with non-uniform staggered grid and PML absorbing boundary to simulate the acoustic wave fields in isotropic and anisotropic formations. Applications of this scheme to the typical cases of isotropic and anisot-ropic formations and comparison with the results from published analytical solutions have demon-strated the validation and efficiency of the scheme. Higher accuracy and lower computation cost (3.5 times faster than the conventional schemes) have been achieved with this scheme for modeling such a complex wave fields of 60 dB dynamic range with higher frequency (10 kHz). This simulating program provides a quantitative analytical means for studying acoustic reflection imaging tool and development of the data processing and interpretation methods.

  13. Computed tomography study of VAPEX process in laboratory 3D model

    Energy Technology Data Exchange (ETDEWEB)

    Wu, G.Q.; Kantzas, A. [Calgary Univ., AB (Canada). Tomographic Imaging and Porous Media Laboratory; Salama, D. [Nexen Inc., Calgary, AB (Canada)

    2008-07-01

    This paper provided details of a 3-D laboratory model of the VAPEX process that used computerized tomography (CT) to examine vapour chamber expansion behaviour in longitudinal and radial directions. The model was comprised of an aluminum cylinder with 2 slotted tubes installed inside to act as injection and production wells. Propane was used as a solvent with heavy oil. The results of experiments conducted with the model showed that the V shape vapour chamber expansion pattern predicted by the 2-D model was a localized phenomenon. The dominant characteristic of the vapour chamber was an overriding of the injected solvent at the top of the model. The overriding was attributed to gravity segregation. The study also showed that longitudinal expansion was more significant than upwards expansion during the early stages of the VAPEX process. Oil production performance was then examined using different solvent injection rates. An analysis of the CT images was conducted to obtain model porosity, density, and oil saturation profiles. The study demonstrated that pressure cycles caused oil to be produced intermittently. Oil swelling by solvent gas dissolution was an important recovery mechanism. It was concluded that solvent soaking can be used to recover additional residual oil during the VAPEX process. 19 refs., 1 tab., 24 figs.

  14. Hybrid 3D pregnant woman and fetus modeling from medical imaging for dosimetry studies

    Energy Technology Data Exchange (ETDEWEB)

    Bibin, Lazar; Anquez, Jeremie; Angelini, Elsa; Bloch, Isabelle [Telecom ParisTech, CNRS UMR 5141 LTCI, Institut TELECOM, Paris (France)

    2010-01-15

    Numerical simulations studying the interactions between radiations and biological tissues require the use of three-dimensional models of the human anatomy at various ages and in various positions. Several detailed and flexible models exist for adults and children and have been extensively used for dosimetry. On the other hand, progress of simulation studies focusing on pregnant women and the fetus have been limited by the fact that only a small number of models exist with rather coarse anatomical details and a poor representation of the anatomical variability of the fetus shape and its position over the entire gestation. In this paper, we propose a new computational framework to generate 3D hybrid models of pregnant women, composed of fetus shapes segmented from medical images and a generic maternal body envelope representing a synthetic woman scaled to the dimension of the uterus. The computational framework includes the following tasks: image segmentation, contour regularization, mesh-based surface reconstruction, and model integration. A series of models was created to represent pregnant women at different gestational stages and with the fetus in different positions, all including detailed tissues of the fetus and the utero-fetal unit, which play an important role in dosimetry. These models were anatomically validated by clinical obstetricians and radiologists who verified the accuracy and representativeness of the anatomical details, and the positioning of the fetus inside the maternal body. The computational framework enables the creation of detailed, realistic, and representative fetus models from medical images, directly exploitable for dosimetry simulations. (orig.)

  15. 3D Printing Surgical Implants at the clinic: A Experimental Study on Anterior Cruciate Ligament Reconstruction.

    Science.gov (United States)

    Liu, An; Xue, Guang-huai; Sun, Miao; Shao, Hui-feng; Ma, Chi-yuan; Gao, Qing; Gou, Zhong-ru; Yan, Shi-gui; Liu, Yan-ming; He, Yong

    2016-02-15

    Desktop three-dimensional (3D) printers (D3DPs) have become a popular tool for fabricating personalized consumer products, favored for low cost, easy operation, and other advantageous qualities. This study focused on the potential for using D3DPs to successfully, rapidly, and economically print customized implants at medical clinics. An experiment was conducted on a D3DP-printed anterior cruciate ligament surgical implant using a rabbit model. A well-defined, orthogonal, porous PLA screw-like scaffold was printed, then coated with hydroxyapatite (HA) to improve its osteoconductivity. As an internal fixation as well as an ideal cell delivery system, the osteogenic scaffold loaded with mesenchymal stem cells (MSCs) were evaluated through both in vitro and in vivo tests to observe bone-ligament healing via cell therapy. The MSCs suspended in Pluronic F-127 hydrogel on PLA/HA screw-like scaffold showed the highest cell proliferation and osteogenesis in vitro. In vivo assessment of rabbit anterior cruciate ligament models for 4 and 12 weeks showed that the PLA/HA screw-like scaffold loaded with MSCs suspended in Pluronic F-127 hydrogel exhibited significant bone ingrowth and bone-graft interface formation within the bone tunnel. Overall, the results of this study demonstrate that fabricating surgical implants at the clinic (fab@clinic) with D3DPs can be feasible, effective, and economical.

  16. Gait Strategy in Patients with Ehlers-Danlos Syndrome Hypermobility Type: A Kinematic and Kinetic Evaluation Using 3D Gait Analysis

    Science.gov (United States)

    Galli, Manuela; Cimolin, Veronica; Rigoldi, Chiara; Castori, Marco; Celletti, Claudia; Albertini, Giorgio; Camerota, Filippo

    2011-01-01

    The aim of this study was to quantify the gait patterns of adults with joint hypermobility syndrome/Ehlers-Danlos syndrome (JHS/EDS-HT) hypermobility type, using Gait Analysis. We quantified the gait strategy in 12 JHS/EDS-HT adults individuals (age: 43.08 + 6.78 years) compared to 20 healthy controls (age: 37.23 plus or minus 8.91 years), in…

  17. Study of Electron Acceleration and Multiple Dipolarization Fronts in 3D kinetic models

    Science.gov (United States)

    Lapenta, Giovanni; Ashour-Abdalla, Maha; Walker, Raymond; El-Alaoui, Mostafa

    2014-05-01

    The THEMIS mission encountered a depolarization front (DF) during a magnetotail crossing in the interval 035600 - 035900 UT on February 15, 2008 [1]. We present the results of an innovative investigative approach: we combine a global MHD model of the full Earth environment with a local PIC simulation. The global MHD view is provided on the UCLA model applied to the conditions for the interval of interest on Feb 15, 2008. At the specific time of 034800UT, a reconnection site first appear at about x=-15RE, y=4RE. We then use this specific MHD state as the initial setup for a fully kinetic PIC simulation, performed with the iPic3D code [2]. We consider a one way coupling where the MHD state is used as initial state and boundary conditions for the kinetic study [3]. In the present case, the time span of the kinetic simulation is short form the perspective of the global MHD simulation and does not require a full coupling where the MHD then process the information received back from the kinetic run [4]. The fields and particles are advanced self-consistently from the MHD state using a completely kinetic treatment. Many features missed by the MHD model emerge. Most notably a fast reconnection pattern develops and an unsteady reconnection process develops. The typical signatures of fast kinetic reconnection (Hall field) are observed and particle acceleration is obtained self consistently in the fields generated by the PIC simulation. The focus of the presentation will be the mechanisms of unsteady reconnection leading to multiple DFs. We observe intense wave activity propagating off the separatrices. We conduct a spectral analysis to isolate the different wave components in the lower hybrid and whistler regime. The unsteady reconnection and multiple DFs are also analysed in their impact on the energy transfer. We track the conversion of magnetic energy to particle energy and Poynting flux. The processes observed in the simulation are then compared with in situ THEMIS data

  18. 3-D microphysical model studies of Arctic denitrification: comparison with observations

    Directory of Open Access Journals (Sweden)

    S. Davies

    2005-01-01

    Full Text Available Simulations of Arctic denitrification using a 3-D chemistry-microphysics transport model are compared with observations for the winters 1994/1995, 1996/1997 and 1999/2000. The model of Denitrification by Lagrangian Particle Sedimentation (DLAPSE couples the full chemical scheme of the 3-D chemical transport model, SLIMCAT, with a nitric acid trihydrate (NAT growth and sedimentation scheme. We use observations from the Microwave Limb Sounder (MLS and Improved Limb Atmospheric Sounder (ILAS satellite instruments, the balloon-borne Michelsen Interferometer for Passive Atmospheric Sounding (MIPAS-B, and the in situ NOy instrument on-board the ER-2. As well as directly comparing model results with observations, we also assess the extent to which these observations are able to validate the modelling approach taken. For instance, in 1999/2000 the model captures the temporal development of denitrification observed by the ER-2 from late January into March. However, in this winter the vortex was already highly denitrified by late January so the observations do not provide a strong constraint on the modelled rate of denitrification. The model also reproduces the MLS observations of denitrification in early February 2000. In 1996/1997 the model captures the timing and magnitude of denitrification as observed by ILAS, although the lack of observations north of ~67° N make it difficult to constrain the actual timing of onset. The comparison for this winter does not support previous conclusions that denitrification must be caused by an ice-mediated process. In 1994/1995 the model notably underestimates the magnitude of denitrification observed during a single balloon flight of the MIPAS-B instrument. Agreement between model and MLS HNO3 at 68 hPa in mid-February 1995 was significantly better. Sensitivity tests show that a 1.5 K overall decrease in vortex temperatures or a factor 4 increase in assumed NAT nucleation rates produce the best

  19. Monte Carlo study of a 3D Compton imaging device with GEANT4

    CERN Document Server

    Lenti, M; 10.1016/j.nima.2011.06.060

    2011-01-01

    In this paper we investigate, with a detailed Monte-Carlo simulation based on Geant4, the novel approach [Nucl. Instrum. Methods A588 (2008) 457] to 3D imaging with photon scattering. A monochromatic and well collimated gamma beam is used to illuminate the object to be imaged and the photons Compton scattered are detected by means of a surrounding germanium strip detector. The impact position and the energy of the photons are measured with high precision and the scattering position along the beam axis is calculated. We study as an application of this technique the case of brain imaging but the results can be applied as well to situations where a lighter object, with localized variations of density, is embedded in a denser container. We report here the attainable sensitivity in the detection of density variations as a function of the beam energy, the depth inside the object and size and density of the inclusions. Using a 600 keV gamma beam, for an inclusion with a density increase of 30% with respect to the so...

  20. 3D-QSAR and molecular docking studies on HIV protease inhibitors

    Science.gov (United States)

    Tong, Jianbo; Wu, Yingji; Bai, Min; Zhan, Pei

    2017-02-01

    In order to well understand the chemical-biological interactions governing their activities toward HIV protease activity, QSAR models of 34 cyclic-urea derivatives with inhibitory HIV were developed. The quantitative structure activity relationship (QSAR) model was built by using comparative molecular similarity indices analysis (CoMSIA) technique. And the best CoMSIA model has rcv2, rncv2 values of 0.586 and 0.931 for cross-validated and non-cross-validated. The predictive ability of CoMSIA model was further validated by a test set of 7 compounds, giving rpred2 value of 0.973. Docking studies were used to find the actual conformations of chemicals in active site of HIV protease, as well as the binding mode pattern to the binding site in protease enzyme. The information provided by 3D-QSAR model and molecular docking may lead to a better understanding of the structural requirements of 34 cyclic-urea derivatives and help to design potential anti-HIV protease molecules.

  1. Thermocapillary bubble flow and coalescence in a rotating cylinder: A 3D study

    Science.gov (United States)

    Alhendal, Yousuf; Turan, A.; Al-mazidi, M.

    2015-12-01

    The process of thermocapillary bubbles rising in a rotating 3D cylinder in zero gravity was analysed and presented numerically with the aid of computational fluid dynamics (CFD) by means of the volume of fluid (VOF) method. Calculations were carried out to investigate in detail the effect of the rotational speed of the hosted liquid on the trajectory of both single and group bubbles driven by the Marangoni force in zero-gravity conditions. For rotational speeds from 0.25 to 2 rad/s, bubble displacement with angular motion was found to be directed between the hotter surface and the rotational axis. This is contrary to the conventional bubble flow from areas of high pressure to low pressure, radial direction, or from cold to hot regions, axial direction. The results demonstrate that for the ratio of rotational speeds to the thermocapillary bubble velocity larger than unity, the surface tension gradient is the dominant force and the bubble motion towards the hotter. On the other hand, for ratio less than 1, the bubble motion is dominated and is significantly affected by centrifugal force. As rotation speed increases, the amount of deflection increases and the Marangoni effect vanishes. The current study is novel in the sense that single- and multi-bubble motion incorporating thermocapillary forces in a rotating liquid in a zero-gravity environment has never been numerically investigated.

  2. A 3D Computational Study on the Air-Blast Atomization of a Planar Liquid Layer

    Science.gov (United States)

    Chiodi, Robert; Desjardins, Olivier

    2016-11-01

    The air-blast atomization of a planar liquid layer is a complex fluid phenomenon involving the destabilization of a low speed liquid layer by a high speed gas coflow. While progress has been made in recent years on understanding the instability of the liquid surface, it remains difficult to accurately predict using stability analysis and requires special expertise and equipment to perform thorough experiments. Simulations provide an excellent way to conduct parametric studies to determine the effect of splitter plate geometry and momentum flux ratio on the frequency and wavelengths of instability, however, they are extremely difficult due to the high density ratio and large range of length and time scales present in the flow. Using an accurate conservative level set method in conjunction with a newly reformulated reinitialization equation, we perform 3D simulations of the air-blast atomization of a planar liquid layer and compare them to experiments. We then go on to explore the role momentum flux ratio plays in the longitudinal and transverse wavelengths of instability.

  3. Monte Carlo study of a 3D Compton imaging device with GEANT4

    Energy Technology Data Exchange (ETDEWEB)

    Lenti, M., E-mail: lenti@fi.infn.it [Sezione dell' INFN di Firenze, via G. Sansone 1, I-50019 Sesto F. (Italy); Veltri, M., E-mail: michele.veltri@uniurb.it [Sezione dell' INFN di Firenze, via G. Sansone 1, I-50019 Sesto F. (Italy); Dipartimento di Matematica, Fisica e Informatica, Universita di Urbino, via S. Chiara 27, I-61029 Urbino (Italy)

    2011-10-21

    In this paper we investigate, with a detailed Monte Carlo simulation based on Geant4, the novel approach of Lenti (2008) to 3D imaging with photon scattering. A monochromatic and well collimated gamma beam is used to illuminate the object to be imaged and the photons Compton scattered are detected by means of a surrounding germanium strip detector. The impact position and the energy of the photons are measured with high precision and the scattering position along the beam axis is calculated. We study as an application of this technique the case of brain imaging but the results can be applied as well to situations where a lighter object, with localized variations of density, is embedded in a denser container. We report here the attainable sensitivity in the detection of density variations as a function of the beam energy, the depth inside the object and size and density of the inclusions. Using a 600 keV gamma beam, for an inclusion with a density increase of 30% with respect to the surrounding tissue and thickness along the beam of 5 mm, we obtain at midbrain position a resolution of about 2 mm and a contrast of 12%. In addition the simulation indicates that for the same gamma beam energy a complete brain scan would result in an effective dose of about 1 mSv.

  4. Study of CT-based positron range correction in high resolution 3D PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Cal-Gonzalez, J., E-mail: jacobo@nuclear.fis.ucm.es [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Herraiz, J.L. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Espana, S. [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Vicente, E. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain); Herranz, E. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Desco, M. [Unidad de Medicina y Cirugia Experimental, Hospital General Universitario Gregorio Maranon, Madrid (Spain); Vaquero, J.J. [Dpto. de Bioingenieria e Ingenieria Espacial, Universidad Carlos III, Madrid (Spain); Udias, J.M. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain)

    2011-08-21

    Positron range limits the spatial resolution of PET images and has a different effect for different isotopes and positron propagation materials. Therefore it is important to consider it during image reconstruction, in order to obtain optimal image quality. Positron range distributions for most common isotopes used in PET in different materials were computed using the Monte Carlo simulations with PeneloPET. The range profiles were introduced into the 3D OSEM image reconstruction software FIRST and employed to blur the image either in the forward projection or in the forward and backward projection. The blurring introduced takes into account the different materials in which the positron propagates. Information on these materials may be obtained, for instance, from a segmentation of a CT image. The results of introducing positron blurring in both forward and backward projection operations was compared to using it only during forward projection. Further, the effect of different shapes of positron range profile in the quality of the reconstructed images with positron range correction was studied. For high positron energy isotopes, the reconstructed images show significant improvement in spatial resolution when positron range is taken into account during reconstruction, compared to reconstructions without positron range modeling.

  5. Study of a high-resolution, 3D positioning cadmium zinc telluride detector for PET

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Y; Levin, C S [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Matteson, J L; Skelton, R T; Deal, A C; Stephan, E A; Duttweiler, F; Gasaway, T M, E-mail: cslevin@stanford.edu [Center for Astrophysics and Space Sciences, University of California, San Diego, La Jolla, CA 92093 (United States)

    2011-03-21

    This paper investigates the performance of 1 mm resolution cadmium zinc telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm x 40 mm x 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06 {+-} 0.39% at 511 keV throughout most of the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44 {+-} 0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78 {+-} 0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes-as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system.

  6. Study of a high-resolution, 3D positioning cadmium zinc telluride detector for PET

    Science.gov (United States)

    Gu, Y.; Matteson, J. L.; Skelton, R. T.; Deal, A. C.; Stephan, E. A.; Duttweiler, F.; Gasaway, T. M.; Levin, C. S.

    2011-03-01

    This paper investigates the performance of 1 mm resolution cadmium zinc telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06 ± 0.39% at 511 keV throughout most of the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44 ± 0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78 ± 0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes—as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system.

  7. Study of a high-resolution, 3-D positioning cadmium zinc telluride detector for PET

    Science.gov (United States)

    Gu, Y; Matteson, J L; Skelton, R T; Deal, A C; Stephan, E A; Duttweiler, F; Gasaway, T M; Levin, C S

    2011-01-01

    This paper investigates the performance of 1 mm resolution Cadmium Zinc Telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3-D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06±0.39% at 511 keV throughout most the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44±0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78±0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes – as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system. PMID:21335649

  8. Monte Carlo studies of 3d N=6 SCFT via localization method

    CERN Document Server

    Honda, Masazumi; Honma, Yoshinori; Nishimura, Jun; Shiba, Shotaro; Yoshida, Yutaka

    2012-01-01

    We perform Monte Carlo study of the 3d N=6 superconformal U(N)*U(N) Chern-Simons gauge theory (ABJM theory), which is conjectured to be dual to M-theory or type IIA superstring theory on certain AdS backgrounds. Our approach is based on a localization method, which reduces the problem to the simulation of a simple matrix model. This enables us to circumvent the difficulties in the original theory such as the sign problem and the SUSY breaking on a lattice. The new approach opens up the possibility of probing the quantum aspects of M-theory and testing the AdS_4/CFT_3 duality at the quantum level. Here we calculate the free energy, and confirm the N^{3/2} scaling in the M-theory limit predicted from the gravity side. We also find that our results nicely interpolate the analytical formulae proposed previously in the M-theory and type IIA regimes.

  9. Intraosseous rotation of the scaphoid: assessment by using a 3D CT model - an anatomic study

    Energy Technology Data Exchange (ETDEWEB)

    Schmidle, Gernot; Gabl, Markus [Medical University Innsbruck, Department of Trauma Surgery, Innsbruck (Austria); Rieger, Michael [Regional Hospital Hall, Department of Radiology, Hall in Tirol (Austria); Klauser, Andrea Sabine; Thauerer, Michael [Medical University Innsbruck, Department of Radiology, Innsbruck (Austria); Hoermann, Romed [Medical University Innsbruck, Department of Anatomy, Histology and Embryology-Division of Clinical and Functional Anatomy, Innsbruck (Austria)

    2014-06-15

    The purpose of this study was to assess intraosseous rotation as the third dimension of scaphoid anatomy on a 3D CT model using common volume rendering software to impact anatomical reconstruction of scaphoid fractures. CT images of 13 cadaver wrist pairs were acquired. Reference axes for the alignment of distal and proximal scaphoid poles were defined three-dimensionally. Two methods for rotation measurement - the reference axis method (RAM) and the scapho-trapezio-trapezoidal joint method (STTM) - were developed and compared by three independent observers. Rotation measured by the RAM averaged 66.9 ± 7 for the right and 67.2 ± 5.8 for the left wrists. Using the STTM there was a mean rotation of 68.6 ± 6.6 for the right and 68.6 ± 6.8 for the left wrists. The overall results showed a significant variability of the measured values between different specimens (P < 0.05). There was no significant difference between left and right wrists of the same specimen, neither for the RAM (P = 0.268) nor for the STTM (P = 0.774). Repeatability coefficients between the observers were low, indicating good repeatability. The presented methods are practical tools to quantify intraosseous rotation between distal and proximal scaphoid poles using common volume rendering software. For clinical application the opposite side provides the best reference values to assess malrotation in scaphoid fracture cases. (orig.)

  10. Experimental study of 3D Rayleigh-Taylor convection between miscible fluids in a porous medium

    Science.gov (United States)

    Nakanishi, Yuji; Hyodo, Akimitsu; Wang, Lei; Suekane, Tetsuya

    2016-11-01

    The natural convection of miscible fluids in porous media has applications in several fields, such as geoscience and geoengineering, and can be employed for the geological storage of CO2. In this study, we used X-ray computer tomography to visualize 3D fingering structures associated with the Rayleigh-Taylor instability between miscible fluids in a porous medium. In the early stages of the onset of the Rayleigh-Taylor instability, a fine crinkling pattern gradually appeared at the interface. As the wavelength and amplitude increased, descending fingers formed on the interface and extended vertically downward; in addition, ascending and highly symmetric fingers formed. The adjacent fingers were cylindrical in shape and coalesced to form large fingers. The fingers appearing on the interface tended to become finer with increasing Rayleigh number, which is consistent with linear perturbation theory. When the Péclet number exceeded 10, transverse dispersion increased the finger diameter and enhanced the finger coalescence, strongly impacting the decrease in finger number density. When mechanical dispersion was negligible, the finger-extension velocity and the dimensionless mass-transfer rate scaled with the characteristic velocity and the Rayleigh number with an appropriate length scale. Mechanical dispersion not only reduced the onset time but also enhanced the mass transport.

  11. 3-D NUMERICAL STUDY AND COMPARISON OF ECCENTRIC AND CONCENTRIC ANNULAR-FINNED TUBE HEAT EXCHANGERS

    Directory of Open Access Journals (Sweden)

    FAROUK TAHROUR

    2015-11-01

    Full Text Available The use of 3-D computational fluid dynamics (CFD is proposed to simulate the conjugate conduction-convection of heat transfer problems in eccentric annularfinned tube heat exchangers. The numerical simulation results allow us to evaluate the heat transfer coefficient over fin surfaces, the fin efficiency and the pressure drop. The aim of the present paper is to determine the optimum tube position in the circular fin that maximizes heat dissipation and minimizes pressure drop. In addition, this study analyzes the effects of fin spacing and fin tube diameter on heat transfer and flow characteristics for a range of Reynolds numbers, 4500≤Re≤22500. A satisfactory qualitative and quantitative agreement was obtained between the numerical predictions and the results published in the literature. For small fin spacings, the eccentric annular finned tube is more efficient than the concentric one. Among the cases examined, the average heat transfer coefficient of the eccentric annular-finned tube, for a tube shift St =12 mm and a Reynolds number Re = 9923, was 7.61% greater than that of the concentric one. This gain is associated with a 43.09% reduction in pressure drop.

  12. Beam Test Studies of 3D Pixel Sensors Irradiated Non-Uniformly for the ATLAS Forward Physics Detector

    CERN Document Server

    Grinstein, S; Boscardin, M; Christophersen, M; Da Via, C; Betta, G -F Dalla; Darbo, G; Fadeyev, V; Fleta, C; Gemme, C; Grenier, P; Jimenez, A; Lopez, I; Micelli, A; Nelist, C; Parker, S; Pellegrini, G; Phlips, B; Pohl, D L; Sadrozinski, H F -W; Sicho, P; Tsiskaridze, S

    2013-01-01

    Pixel detectors with cylindrical electrodes that penetrate the silicon substrate (so called 3D detectors) offer advantages over standard planar sensors in terms of radiation hardness, since the electrode distance is decoupled from the bulk thickness. In recent years significant progress has been made in the development of 3D sensors, which culminated in the sensor production for the ATLAS Insertable B-Layer (IBL) upgrade carried out at CNM (Barcelona, Spain) and FBK (Trento, Italy). Based on this success, the ATLAS Forward Physics (AFP) experiment has selected the 3D pixel sensor technology for the tracking detector. The AFP project presents a new challenge due to the need for a reduced dead area with respect to IBL, and the in-homogeneous nature of the radiation dose distribution in the sensor. Electrical characterization of the first AFP prototypes and beam test studies of 3D pixel devices irradiated non-uniformly are presented in this paper.

  13. Beam test studies of 3D pixel sensors irradiated non-uniformly for the ATLAS forward physics detector

    Energy Technology Data Exchange (ETDEWEB)

    Grinstein, S., E-mail: sgrinstein@ifae.es [ICREA and Institut de Física d' Altes Energies (IFAE), Barcelona (Spain); Baselga, M. [Centro Nacional de Microelectronica, CNM-IMB (CSIC), Barcelona (Spain); Boscardin, M. [Fondazione Bruno Kessler, FBK-CMM, Trento (Italy); Christophersen, M. [U.S. Naval Research Laboratory, Washington (United States); Da Via, C. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); Dalla Betta, G.-F. [Universita degli Studi di Trento and INFN, Trento (Italy); Darbo, G. [INFN Sezione di Genova, Genova (Italy); Fadeyev, V. [Santa Cruz Institute for Particle Physics, University of California, Santa Cruz (United States); Fleta, C. [Centro Nacional de Microelectronica, CNM-IMB (CSIC), Barcelona (Spain); Gemme, C. [Universita degli Studi di Trento and INFN, Trento (Italy); Grenier, P. [SLAC National Accelerator Laboratory, Menlo Park (United States); Jimenez, A.; Lopez, I.; Micelli, A. [ICREA and Institut de Física d' Altes Energies (IFAE), Barcelona (Spain); Nelist, C. [INFN Sezione di Genova, Genova (Italy); Parker, S. [University of Hawaii, c/o Lawrence Berkeley Laboratory, Berkeley (United States); Pellegrini, G. [Centro Nacional de Microelectronica, CNM-IMB (CSIC), Barcelona (Spain); Phlips, B. [U.S. Naval Research Laboratory, Washington (United States); Pohl, D.-L. [University of Bonn, Bonn (Germany); Sadrozinski, H.F.-W. [Santa Cruz Institute for Particle Physics, University of California, Santa Cruz (United States); and others

    2013-12-01

    Pixel detectors with cylindrical electrodes that penetrate the silicon substrate (so called 3D detectors) offer advantages over standard planar sensors in terms of radiation hardness, since the electrode distance is decoupled from the bulk thickness. In recent years significant progress has been made in the development of 3D sensors, which culminated in the sensor production for the ATLAS Insertable B-Layer (IBL) upgrade carried out at CNM (Barcelona, Spain) and FBK (Trento, Italy). Based on this success, the ATLAS Forward Physics (AFP) experiment has selected the 3D pixel sensor technology for the tracking detector. The AFP project presents a new challenge due to the need for a reduced dead area with respect to IBL, and the in-homogeneous nature of the radiation dose distribution in the sensor. Electrical characterization of the first AFP prototypes and beam test studies of 3D pixel devices irradiated non-uniformly are presented in this paper.

  14. Digital Curvatures Applied to 3D Object Analysis and Recognition: A Case Study

    CERN Document Server

    Chen, Li

    2009-01-01

    In this paper, we propose using curvatures in digital space for 3D object analysis and recognition. Since direct adjacency has only six types of digital surface points in local configurations, it is easy to determine and classify the discrete curvatures for every point on the boundary of a 3D object. Unlike the boundary simplicial decomposition (triangulation), the curvature can take any real value. It sometimes makes difficulties to find a right value for threshold. This paper focuses on the global properties of categorizing curvatures for small regions. We use both digital Gaussian curvatures and digital mean curvatures to 3D shapes. This paper proposes a multi-scale method for 3D object analysis and a vector method for 3D similarity classification. We use these methods for face recognition and shape classification. We have found that the Gaussian curvatures mainly describe the global features and average characteristics such as the five regions of a human face. However, mean curvatures can be used to find ...

  15. Retrieval of cloud microphysical parameters from INSAT-3D: a feasibility study using radiative transfer simulations

    Science.gov (United States)

    Jinya, John; Bipasha, Paul S.

    2016-05-01

    Clouds strongly modulate the Earths energy balance and its atmosphere through their interaction with the solar and terrestrial radiation. They interact with radiation in various ways like scattering, emission and absorption. By observing these changes in radiation at different wavelength, cloud properties can be estimated. Cloud properties are of utmost importance in studying different weather and climate phenomena. At present, no satellite provides cloud microphysical parameters over the Indian region with high temporal resolution. INSAT-3D imager observations in 6 spectral channels from geostationary platform offer opportunity to study continuous cloud properties over Indian region. Visible (0.65 μm) and shortwave-infrared (1.67 μm) channel radiances can be used to retrieve cloud microphysical parameters such as cloud optical thickness (COT) and cloud effective radius (CER). In this paper, we have carried out a feasibility study with the objective of cloud microphysics retrieval. For this, an inter-comparison of 15 globally available radiative transfer models (RTM) were carried out with the aim of generating a Look-up- Table (LUT). SBDART model was chosen for the simulations. The sensitivity of each spectral channel to different cloud properties was investigated. The inputs to the RT model were configured over our study region (50°S - 50°N and 20°E - 130°E) and a large number of simulations were carried out using random input vectors to generate the LUT. The determination of cloud optical thickness and cloud effective radius from spectral reflectance measurements constitutes the inverse problem and is typically solved by comparing the measured reflectances with entries in LUT and searching for the combination of COT and CER that gives the best fit. The products are available on the website www.mosdac.gov.in

  16. Maxillary length in 11- to 26-week-old normal fetuses studied by 3D ultrasound

    DEFF Research Database (Denmark)

    Hermann, N V; Darvann, T A; Sundberg, K

    2015-01-01

    OBJECTIVES: The objective of this article is to investigate normal prenatal maxillary length using 3D ultrasound and to correlate this with previously reported results for the mandible and the biparietal diameter (BPD). METHODS: Seventy-two 3D ultrasound volumes from normal pregnancies in 52...... volunteers (gestational age: 11-26 weeks) were obtained using a GE Voluson 730 Expert 3D scanner. Maxillary length and BPD were measured. Growth velocity and rate were calculated. Maxillary values were correlated with BPD and previously reported mandibular values. RESULTS: The mean total maxillary length...... maxilla and mandible, whereas the velocity of the increase in BPD growth was significantly larger than that of the jaws. However, the growth rate was larger for the jaws than for the BPD. CONCLUSIONS: Normative measures for the maxilla in 11- to 26-week-old fetuses are presented. Change in maxillary...

  17. Investigations and improvements of digital holographic tomography applied for 3D studies of transmissive photonics microelements

    Science.gov (United States)

    Kujawinska, Malgorzata; Jozwicka, Agata; Kozacki, Tomasz

    2008-08-01

    In order to control performance of photonics microelements it is necessary to receive 3D information about their amplitude and phase distributions. To perform this task we propose to apply tomography based on projections gather by digital holography (DH). Specifically the DH capability to register several angular views of the object during a single hologram capture is employed, which may in future shorten significantly the measurement time or even allow for tomographic analysis of dynamic media. However such a new approach brings a lot of new issues to be considered. Therefore, in this paper the method limitations, with special emphasis on holographic reconstruction process, are investigated through extensive numerical experiments with special focus on 3D refractive index distribution determination.. The main errors and means of their elimination are presented. The possibility of 3D refractive index distribution determination by means of DHT is proved numerically and experimentally.

  18. Study of 3-D Numerical Simulation for Gas Transfer in the Goaf of the Coal Mining

    Institute of Scientific and Technical Information of China (English)

    WU Zheng-yan; JIANG Shu-guang; HE Xin-jian; WANG Lan-yun; LIN Bai-quan

    2007-01-01

    In order to simulate field distribution rules, mathematical models for 3-D air flows and gas transfer in the goaf of the coal mining are established, based on theories of permeability and dynamic dispersion through porous media. A gas dispersion equation in a 3-D field is calculated by use of numerical method on a weighted upstream multi-element balance. Based on data of an example with a U type ventilation mode, surface charts of air pressure distribution and gas concentration are drawn by Graphtool software. Finally, a comparison between actually measured results in the model test and the numerical simulation results is made to proves the numerical implementation feasible.

  19. VIX: AN OPEN SOFTWARE FOR THE 3D VISUALIZATION AND INTERACTIVE STUDY OF ANATOMY

    OpenAIRE

    Alberto Prats Galino; Juan Antonio Juanes Méndez

    2010-01-01

    This paper describes the functional characteristics and applications in the field of anatomy of a 3D visualization software called ViX, short for directX viewer. This is an open software, i.e not limited to the representation of a particular anatomical region. It can be configured externally through the modification of text files that define the elements composing the scene graph. It consists of a 3D viewer, developed in Visual C, and supports two types of graphic elements: (1) simultaneous...

  20. A feasibility study of a 3-D finite element solution scheme for aeroengine duct acoustics

    Science.gov (United States)

    Abrahamson, A. L.

    1980-01-01

    The advantage from development of a 3-D model of aeroengine duct acoustics is the ability to analyze axial and circumferential liner segmentation simultaneously. The feasibility of a 3-D duct acoustics model was investigated using Galerkin or least squares element formulations combined with Gaussian elimination, successive over-relaxation, or conjugate gradient solution algorithms on conventional scalar computers and on a vector machine. A least squares element formulation combined with a conjugate gradient solver on a CDC Star vector computer initially appeared to have great promise, but severe difficulties were encountered with matrix ill-conditioning. These difficulties in conditioning rendered this technique impractical for realistic problems.

  1. 3D Surface Realignment Tracking for Medical Imaging: A Phantom Study with PET Motion Correction

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Paulsen, Rasmus Reinhold; Jensen, Rasmus Ramsbøl

    2011-01-01

    We present a complete system for motion correction in high resolution brain positron emission tomography (PET) imaging. It is based on a compact structured light scanner mounted above the patient tunnel of the Siemens High Resolution Research Tomograph PET brain scanner. The structured light system...... is equipped with a near infrared diode and uses phase-shift interferometry to compute 3D representations of the forehead of the patient. These 3D point clouds are progressively aligned to a reference surface and thereby giving the head pose changes. The estimated pose changes are used to reposition a sequence...

  2. Mapping of coma anisotropies to plasma structures of weak comets: a 3-D hybrid simulation study

    Directory of Open Access Journals (Sweden)

    N. Gortsas

    2009-04-01

    Full Text Available The effects of coma anisotropies on the plasma environment of comets have been studied by means of a 3-D hybrid model which treats electrons as a massless, charge-neutralizing fluid, whereas ion dynamics are covered by a kinetic approach. From Earth-based observations as well as from in-situ spacecraft measurements the shape of the coma of many comets is ascertained to be anisotropic. However, most plasma simulation studies deploy a spherically symmetric activity pattern. In this paper anisotropy is studied by considering three different coma shape models. The first model is derived from the Haser model and is characterised by spherically symmetry. This reference model is then compared with two different neutral gas shape models: the dayside restricted model with no nightside activity and a cone shaped model with opening angle of π/2. In all models the integrated surface activity is kept constant. The simulations have been done for the Rosetta target comet 67P/Churyumov-Gerasimenko for two heliocentric distances, 1.30 AU and 3.25 AU. It is found that shock formation processes are modified as a result of increasing spatial confinement. Characteristic plasma structures of comets such as the bow shock, magnetic barrier region and the ion composition boundary exhibit a shift towards the sun. In addition, the cone shaped model leads to a strong increase of the mass-loaded region which in turn leads to a smooth deceleration of the solar wind flow and an increasing degree of mixture between the solar wind and cometary ion species. This creates an additional transport channel of the magnetic field from the magnetic barrier region away which in turn leads to a broadening of this region. In addition, it leads to an ion composition boundary which is only gradually developed.

  3. Studies of mixed HEU-LEU-MTR cores using 3D models

    Energy Technology Data Exchange (ETDEWEB)

    Haenggi, P.; Lehmann, E.; Hammer, J.; Christen, R. [Paul Scherrer Institute, Villigen (Switzerland)

    1997-08-01

    Several different core loadings were assembled at the SAPHIR research reactor in Switzerland combining the available types of MTR-type fuel elements, consisting mainly of both HEU and LEU fuel. Bearing in mind the well known problems which can occur in such configurations (especially power peaking), investigations have been carried out for each new loading with a 2D neutron transport code (BOXER). The axial effects were approximated by a global buckling value and therefore the radial effects could be studied in considerably detail. Some of the results were reported at earlier RERTR meetings and were compared to those obtained by other methods and with experimental values. For the explicit study of the third dimension of the core, another code (SILWER), which has been developed in PSI for LWR power plant cores, has been selected. With the help of an adapted model for the MTR-core of SAPHIR, several important questions have been addressed. Among other aspects, the estimation of the axial contribution to the hot channel factors, the influence of the control rod position and of the Xe-poisoning on the power distribution were studied. Special attention was given to a core position where a new element was assumed placed near a empty, water filled position. The comparison of elements of low and high enrichments at this position was made in terms of the induced power peaks, with explicit consideration of axial effects. The program SILWER has proven to be applicable to MTR-cores for the investigation of axial effects. For routine use as for the support of reactor operation, this 3D code is a good supplement to the standard 2D model.

  4. Study of a viewer tracking system with multiview 3D display

    Science.gov (United States)

    Yang, Jinn-Cherng; Wu, Chang-Shuo; Hsiao, Chuan-Heng; Yang, Ming-Chieh; Liu, Wen-Chieh; Hung, Yi-Ping

    2008-02-01

    An autostereoscopic display provides users great enjoyment of stereo visualization without uncomfortable and inconvenient drawbacks of wearing stereo glasses. However, bandwidth constraints of current multi-view 3D display severely restrict the number of views that can be simultaneously displayed without degrading resolution or increasing display cost unacceptably. An alternative to multiple view presentation is that the position of observer can be measured by using viewer-tracking sensor. It is a very important module of the viewer-tracking component for fluently rendering and accurately projecting the stereo video. In order to render stereo content with respect to user's view points and to optically project the content onto the left and right eyes of the user accurately, the real-time viewer tracking technique that allows the user to move around freely when watching the autostereoscopic display is developed in this study. It comprises the face detection by using multiple eigenspaces of various lighting conditions, fast block matching for tracking four motion parameters of the user's face region. The Edge Orientation Histogram (EOH) on Real AdaBoost to improve the performance of original AdaBoost algorithm is also applied in this study. The AdaBoost algorithm using Haar feature in OpenCV library developed by Intel to detect human face and enhance the accuracy performance with rotating image. The frame rate of viewer tracking process can achieve up to 15 Hz. Since performance of the viewer tracking autostereoscopic display is still influenced under variant environmental conditions, the accuracy, robustness and efficiency of the viewer-tracking system are evaluated in this study.

  5. The 3-D Kinematics on Our Hill Women Shot Putters at the Last Exertion%女子铅球运动员最后用力技术的三维运动学分析

    Institute of Scientific and Technical Information of China (English)

    范秦海

    2000-01-01

    女子铅球运动是我国田径运动的优势项目,但这种优势只保持在曾创造过优异成绩的李梅素、黄志红和隋新梅3人身上,而新的运动员则没有这种优势.根据三维运动学的方法对我国新老女子铅球运动员的最后用力技术进行了分析.发现她们之间存在技术差异,%Woman shot putting is the dominant item of the track and field sports in China. The dominance only exists on the three woman athletes Huang Zhi-hong,Li Mei-su and Sui Xin-mei who had ever given extraordinary performance. But the new athletes do not have this kind of dominance. In this thesis the auther analyses the technique of the new and the old woman shot putters at the last exertion by the way of 3-D kinematics and finds that there exists some difference between them.

  6. Designing with 3D Printed Textiles: A case study of Material Driven Design

    NARCIS (Netherlands)

    Lussenburg, K.; Van der Velden, N.M.; Doubrovski, E.L.; Geraedts, J.M.P.; Karana, E.

    2014-01-01

    This paper describes the findings and results of a design project with the goal to design a wearable garment using 3D Printed textiles, which not only has functional or environmental superiorities, but also experiential ones. The approach that was adopted for this project is a recently developed met

  7. 3D Imaging of Dead Sea Area Using Weighted Multipath Summation: A Case Study

    Directory of Open Access Journals (Sweden)

    Shemer Keydar

    2013-01-01

    Full Text Available The formation of sinkholes along the Dead Sea is caused by the rapid decline of the Dead Sea level, as a possible result of human extensive activity. According to one of the geological models, the sinkholes in several sites are clustered along a narrow coastal strip developing along lineaments representing faults in NNW direction. In order to understand the relationship between a developing sinkhole and its tectonic environment, a high-resolution (HR three-dimensional (3D seismic reflection survey was carried out at the western shoreline of the Dead Sea. A recently developed 3D imaging approach was applied to this 3D dataset. Imaging of subsurface is performed by a spatial summation of seismic waves along time surfaces using recently proposed multipath summation with proper weights. The multipath summation is performed by stacking the target waves along all possible time surfaces having a common apex at the given point. This approach does not require any explicit information on parameters since the involved multipath summation is performed for all possible parameters values within a wide specified range. The results from processed 3D time volume show subhorizontal coherent reflectors at approximate depth of 50–80 m which incline on closer location to the exposed sinkhole and suggest a possible linkage between revealed fault and the sinkholes.

  8. Initial design of an LADM-based 3D Cadastre - Case study from Korea

    NARCIS (Netherlands)

    Jeong, D.H.; Jang, B.B.; Lee, J.Y.; Hong, S.I.; Van Oosterom, P.J.M.; de Zeeuw, K.; Stoter, J.E.; Lemmen, C.H.J.; Zevenbergen, J.A.

    2012-01-01

    Korea and The Netherlands have started a 3 year cooperation covering joint research, capacity building and international advisory in the domain of cadastre and land administration with a special focus on 3D developments. At the Korean side the Korea Cadastral Survey Corporation and the University of

  9. 3D homogeneity study in PMMA layers using a Fourier domain OCT system

    Science.gov (United States)

    Briones-R., Manuel de J.; Torre-Ibarra, Manuel H. De La; Tavera, Cesar G.; Luna H., Juan M.; Mendoza-Santoyo, Fernando

    2016-11-01

    Micro-metallic particles embedded in polymers are now widely used in several industrial applications in order to modify the mechanical properties of the bulk. A uniform distribution of these particles inside the polymers is highly desired for instance, when a biological backscattering is simulated or a bio-framework is designed. A 3D Fourier domain optical coherence tomography system to detect the polymer's internal homogeneity is proposed. This optical system has a 2D camera sensor array that records a fringe pattern used to reconstruct with a single shot the tomographic image of the sample. The system gathers the full 3D tomographic and optical phase information during a controlled deformation by means of a motion linear stage. This stage avoids the use of expensive tilting stages, which in addition are commonly controlled by piezo drivers. As proof of principle, a series of different deformations were proposed to detect the uniform or non-uniform internal deposition of copper micro particles. The results are presented as images coming from the 3D tomographic micro reconstruction of the samples, and the 3D optical phase information that identifies the in-homogeneity regions within the Poly methyl methacrylate (PMMA) volume.

  10. Theoretical study of relative width of photonic band gap for the 3-D dielectric structure

    Indian Academy of Sciences (India)

    G K Johri; Akhilesh Tiwari; Saumya Saxena; Rajesh Sharma; Kuldeep Srivastava; Manoj Johri

    2002-03-01

    Calculations for the relative width (/0) as a function of refractive index and relative radius of the photonic band gap for the fcc closed packed 3-D dielectric microstructure are reported and comparison of experimental observations and theoretical predictions are given. This work is useful for the understanding of photonic crystals and occurrence of the photonic band gap.

  11. 2D or 3D? New user interfaces for control rooms in process industries. A feasibility study; 2D eller 3D? Nya graenssnitt foer processindustrins kontrollrum

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, MariAnne

    2008-01-15

    Three dimensional user interfaces and techniques for visualisation have been discussed as possible ways to improve the work situation for control room operators in process industries. The aims of the project, which is a pilot project, has been: (i) to compile existing knowledge on the pro's and con's of 2D versus 3D user interfaces in order to assess and conclude if, and how, 3-dimensional visualisations could be applied when designing new user interfaces for modern process control rooms and (ii) to investigate operators' attitudes towards and acceptance of 3-dimensional user interfaces for visualisation of information. The project has included the following activities: a literature review has been completed in order to collect information on different projects and tests in which 3-dimensional user interfaces have been evaluated for different tasks; an identification of feasible use cases has been made, partly on basis of a workshop in which participated researchers from the field and partly on basis of study visits to different process plants on the west coast of Sweden; an interview study has been carried with control room operators at four different power plants in order to find out the operators' assessments of and attitudes towards 3-dimensional information visualisation; and interviews with representatives of system developers have been completed in order to elicit information on ongoing development work and experiences of developing and implementing 3-dimensional user interfaces in control rooms. On basis of the literature review as well as the interview studies cannot be concluded that 3-dimensional user interfaces and 3-dimensional visualisation of information hold any general advantages compared to 2-dimensional solutions. Pro's and con's are, instead, highly contextual and dependant upon (i) the characteristics of user (in terms e.g. of computer skills); (ii) the (work) task; and (iii) the specific design of the user

  12. A novel 3-D mineralized tumor model to study breast cancer bone metastasis.

    Directory of Open Access Journals (Sweden)

    Siddharth P Pathi

    Full Text Available BACKGROUND: Metastatic bone disease is a frequent cause of morbidity in patients with advanced breast cancer, but the role of the bone mineral hydroxyapatite (HA in this process remains unclear. We have developed a novel mineralized 3-D tumor model and have employed this culture system to systematically investigate the pro-metastatic role of HA under physiologically relevant conditions in vitro. METHODOLOGY/PRINCIPAL FINDINGS: MDA-MB231 breast cancer cells were cultured within non-mineralized or mineralized polymeric scaffolds fabricated by a gas foaming-particulate leaching technique. Tumor cell adhesion, proliferation, and secretion of pro-osteoclastic interleukin-8 (IL-8 was increased in mineralized tumor models as compared to non-mineralized tumor models, and IL-8 secretion was more pronounced for bone-specific MDA-MB231 subpopulations relative to lung-specific breast cancer cells. These differences were pathologically significant as conditioned media collected from mineralized tumor models promoted osteoclastogenesis in an IL-8 dependent manner. Finally, drug testing and signaling studies with transforming growth factor beta (TGFbeta confirmed the clinical relevance of our culture system and revealed that breast cancer cell behavior is broadly affected by HA. CONCLUSIONS/SIGNIFICANCE: Our results indicate that HA promotes features associated with the neoplastic and metastatic growth of breast carcinoma cells in bone and that IL-8 may play an important role in this process. The developed mineralized tumor models may help to reveal the underlying cellular and molecular mechanisms that may ultimately enable more efficacious therapy of patients with advanced breast cancer.

  13. 3-D habitat suitability of jack mackerel Trachurus murphyi in the Southeastern Pacific, a comprehensive study

    Science.gov (United States)

    Bertrand, Arnaud; Habasque, Jérémie; Hattab, Tarek; Hintzen, Niels T.; Oliveros-Ramos, Ricardo; Gutiérrez, Mariano; Demarcq, Hervé; Gerlotto, François

    2016-08-01

    South Pacific jack mackerel, Trachurus murphyi, has an ocean-scale distribution, from the South American coastline to New Zealand and Tasmania. This fish, captured by Humans since the Holocene, is nowadays heavily exploited and its population has decreased substantially since the mid-1990s. The uncertainty associated to jack mackerel population structure currently hampers management. Several hypotheses have been proposed from a single population up to several discrete populations. Still no definitive answer was given. Determining how environmental conditions drive jack mackerel distribution can provide insights on its population structure. To do so, here we performed in three steps. First, we used satellite data to develop a statistical model of jack mackerel horizontal habitat suitability. Model predictions based on interaction between temperature and chlorophyll-a match the observed jack mackerel distribution, even during extreme El Niño event. Second, we studied the impact of oxygen and show that jack mackerel distribution and abundance is correlated to oxygen over a wide variety of scales and avoid low oxygen areas and periods. Third, on the basis of the above we built a conceptual 3D model of jack mackerel habitat in the Southeastern Pacific. We reveal the presence of a low suitable habitat along the Chilean and Peruvian coast, figuratively presenting a closed door caused by a gap in the horizontal habitat at ∼19-22°S and a shallow oxycline off south-centre Peru. This kind of situation likely occurs on a seasonal basis, in austral summer but also at longer temporal scales. A lack of exchanges at some periods/seasons partially isolate jack mackerel distributed off Peru. On the other hand the continuity in the habitat during most of the year explains why exchanges occur. We conclude that the more likely population structure for jack mackerel is a pelagic metapopulation.

  14. Mid-latitude ozone changes: studies with a 3-D CTM forced by ERA-40 analyses

    Directory of Open Access Journals (Sweden)

    W. Feng

    2007-01-01

    Full Text Available We have used an off-line three-dimensional (3-D chemical transport model (CTM to study long-term changes in stratospheric O3. The model was run from 1977–2004 and forced by ECMWF ERA-40 and operational analyses. Model runs were performed to examine the impact of increasing halogens and additional stratospheric bromine from short-lived source gases. The analyses capture much of the observed interannual variability in column ozone, but there are also unrealistic features. In particular the ERA-40 analyses cause a large positive anomaly in northern hemisphere (NH column O3 in the late 1980s. Also, the change from ERA-40 to operational winds at the start of 2002 introduces abrupt changes in some model fields (e.g. temperature, ozone which affect analysis of trends. The model reproduces the observed column increase in NH mid-latitudes from the mid 1990s. Analysis of a run with fixed halogens shows that this increase is not due to a significant decrease in halogen-induced loss, i.e. is not an indication of recovery. The model predicts only a small decrease in halogen-induced loss after 1999. In the upper stratosphere, despite the modelled turnover of chlorine around 1999, O3 does not increase because of the effects of increasing ECMWF temperatures, decreasing modelled CH4 at this altitude, and abrupt changes in the SH temperatures at the end of the ERA-40 period. The impact of an additional 5 pptv stratospheric bromine from short-lived species decreases mid-latitude column O3 by about 10 DU. However, the impact on the modelled relative O3 anomaly is generally small except during periods of large volcanic loading.

  15. High 3D:5D ratio: A possible correlate of externalizing and internalizing problems: An exploratory study

    Directory of Open Access Journals (Sweden)

    Esther I. de Bruin

    2011-03-01

    Full Text Available Background and Objectives: The second to fourth (2D:4D digit ratio is a sexually dimorphic trait which has been studied to examine the association between fetal hormones and a variety of behaviors. Lower 2D:4D ratios, suggestive of exposure to higher levels of prenatal testosterone, have been associated with male-linked disorders, while higher 2D:4D ratios, suggestive of exposure to weaker prenatal androgen action, have been associated with female-linked disorders. Past research has concentrated on the 2D:4D ratio, whereas the relationship between other ratios, such as the 3D:5D ratio, and psychopathology has not much been studied before. Therefore, the aim of this study was to assess the correlation between the 2D:4D and 3D:5D ratio, and internalizing as well as externalizing symptoms, in a large non-clinical sample (143 boys, 150 girls of white Caucasian children aged 7 to 13 years. Methods: Externalizing and internalizing symptoms were assessed with the Child Behavior Checklist (CBCL. Results: The 3D:5D ratio in boys and in girls was positively associated with scores on Externalizing Problems. Further, in girls only, the 3D:5D ratio was positively correlated to scores on Internalizing Problems. Conclusions: The 3D:5D ratio can be considered a correlate of externalizing and internalizing problems in children from the general population.

  16. Fundamental Study on Applicability of Powder-Based 3D Printer for Physical Modeling in Rock Mechanics

    Science.gov (United States)

    Fereshtenejad, Sayedalireza; Song, Jae-Joon

    2016-06-01

    Applications of 3D printing technology become more widespread in many research fields because of its rapid development and valuable capabilities. In rock mechanics and mining engineering, this technology has the potential to become a useful tool that might help implement a number of research studies previously considered impractical. Most commercial 3D printers cannot print prototypes with mechanical properties that match precisely those of natural rock samples. Therefore, some additional enhancements are required for 3D printers to be effectively utilized for rock mechanics applications. In this study, we printed and studied specimens using a powder-based commercial ZPrinter® 450 with ZP® 150 powder and Zb® 63 binder used as raw materials. The specimens printed by this 3D printer exhibited relatively low strength and ductile behavior, implying that it needs further improvements. Hence, we focused on several ways to determine the best combination of printing options and post-processing including the effects of the printing direction, printing layer thickness, binder saturation level, and heating process on the uniaxial compressive strength (UCS) and stress-strain behavior of the printed samples. The suggested procedures have demonstrated their effectiveness by obtaining the printed samples that behave similarly to the natural rocks with low UCS. Although our optimization methods were particularly successful, further improvements are required to expand 3D printer application in the area of rock mechanics.

  17. The estimation of 3D SAR distributions in the human head from mobile phone compliance testing data for epidemiological studies.

    Science.gov (United States)

    Wake, Kanako; Varsier, Nadège; Watanabe, Soichi; Taki, Masao; Wiart, Joe; Mann, Simon; Deltour, Isabelle; Cardis, Elisabeth

    2009-10-07

    A worldwide epidemiological study called 'INTERPHONE' has been conducted to estimate the hypothetical relationship between brain tumors and mobile phone use. In this study, we proposed a method to estimate 3D distribution of the specific absorption rate (SAR) in the human head due to mobile phone use to provide the exposure gradient for epidemiological studies. 3D SAR distributions due to exposure to an electromagnetic field from mobile phones are estimated from mobile phone compliance testing data for actual devices. The data for compliance testing are measured only on the surface in the region near the device and in a small 3D region around the maximum on the surface in a homogeneous phantom with a specific shape. The method includes an interpolation/extrapolation and a head shape conversion. With the interpolation/extrapolation, SAR distributions in the whole head are estimated from the limited measured data. 3D SAR distributions in the numerical head models, where the tumor location is identified in the epidemiological studies, are obtained from measured SAR data with the head shape conversion by projection. Validation of the proposed method was performed experimentally and numerically. It was confirmed that the proposed method provided good estimation of 3D SAR distribution in the head, especially in the brain, which is the tissue of major interest in epidemiological studies. We conclude that it is possible to estimate 3D SAR distributions in a realistic head model from the data obtained by compliance testing measurements to provide a measure for the exposure gradient in specific locations of the brain for the purpose of exposure assessment in epidemiological studies. The proposed method has been used in several studies in the INTERPHONE.

  18. The estimation of 3D SAR distributions in the human head from mobile phone compliance testing data for epidemiological studies

    Science.gov (United States)

    Wake, Kanako; Varsier, Nadège; Watanabe, Soichi; Taki, Masao; Wiart, Joe; Mann, Simon; Deltour, Isabelle; Cardis, Elisabeth

    2009-10-01

    A worldwide epidemiological study called 'INTERPHONE' has been conducted to estimate the hypothetical relationship between brain tumors and mobile phone use. In this study, we proposed a method to estimate 3D distribution of the specific absorption rate (SAR) in the human head due to mobile phone use to provide the exposure gradient for epidemiological studies. 3D SAR distributions due to exposure to an electromagnetic field from mobile phones are estimated from mobile phone compliance testing data for actual devices. The data for compliance testing are measured only on the surface in the region near the device and in a small 3D region around the maximum on the surface in a homogeneous phantom with a specific shape. The method includes an interpolation/extrapolation and a head shape conversion. With the interpolation/extrapolation, SAR distributions in the whole head are estimated from the limited measured data. 3D SAR distributions in the numerical head models, where the tumor location is identified in the epidemiological studies, are obtained from measured SAR data with the head shape conversion by projection. Validation of the proposed method was performed experimentally and numerically. It was confirmed that the proposed method provided good estimation of 3D SAR distribution in the head, especially in the brain, which is the tissue of major interest in epidemiological studies. We conclude that it is possible to estimate 3D SAR distributions in a realistic head model from the data obtained by compliance testing measurements to provide a measure for the exposure gradient in specific locations of the brain for the purpose of exposure assessment in epidemiological studies. The proposed method has been used in several studies in the INTERPHONE.

  19. Kinematics Comparative Study of Two Overconstrained Parallel Manipulators

    Directory of Open Access Journals (Sweden)

    Qiang Yan

    2016-01-01

    Full Text Available A comparison study of kinematics characteristics of two overconstrained 2-RPU&SPR parallel manipulators (PMs is introduced in this paper. The two 2-RPU&SPR PMs have the same kinematics properties in terms of one translational degree of freedom (DOF and two rotational DOFs kinematics outputs. But there are some differences between the two PMs as far as joints distribution is concerned, leading to the differences in respect of workspace and dexterity of the two PMs. Firstly, based on screw theory, the structural characteristics and DOFs of the two PMs are analyzed. Secondly, the inverse and forward displacements problems for the two PMs are formulated by analytic formulae. Some numerical examples are simulated by software. Thirdly, based on algorithm for the direct displacement solution, the workspace characteristics of the two PMs are analyzed and compared. Then, the Jacobian matrices of the mechanisms are formulated. Based on the Jacobian matrices, the dexterities of the two PMs are established and compared. Finally, according to the comparisons of the properties between the two PMs, some useful conclusions are provided.

  20. VIX: AN OPEN SOFTWARE FOR THE 3D VISUALIZATION AND INTERACTIVE STUDY OF ANATOMY

    Directory of Open Access Journals (Sweden)

    Alberto Prats Galino

    2010-07-01

    Full Text Available This paper describes the functional characteristics and applications in the field of anatomy of a 3D visualization software called ViX, short for directX viewer. This is an open software, i.e not limited to the representation of a particular anatomical region. It can be configured externally through the modification of text files that define the elements composing the scene graph. It consists of a 3D viewer, developed in Visual C, and supports two types of graphic elements: (1 simultaneous display of images in the three orthogonal planes of space, and (2 surface solid models defined by polygon meshes of triangles, coregistered with the images. Models can be associated with a short description that is displayed in a text window. The functionality of the software has been tested in different topographic regions and functional systems.

  1. Study of Tip-loss Using an Inverse 3D Navier-Stokes Method

    DEFF Research Database (Denmark)

    Mikkelsen, Robert; Sørensen, Jens Nørkær; Shen, Wen Zhong;

    2003-01-01

    The tip-correction for air-screws described by Prandtl (1919) and implemented into the Blade Element Momentum (BEM) theory by Glauert (1930), is founded on certain assumptions which the present analysis seeks to overcome. In the paper we propose a method to derive the tip-correction by solving...... the 3D Navier-Stokes equations combined with the actuator line technique where blade loading is applied using an inverse method. The numerical simulations shows that the method captures the tip-correction when comparing with the theories of Prandtl and Goldstein, however, the accuracy of the obtained...... results reveal that further refinements still is needed. Keywords: Tip-loss; Actuator line; 3D Navier-Stokes methods....

  2. 220GHz wideband 3D imaging radar for concealed object detection technology development and phenomenology studies

    Science.gov (United States)

    Robertson, Duncan A.; Macfarlane, David G.; Bryllert, Tomas

    2016-05-01

    We present a 220 GHz 3D imaging `Pathfinder' radar developed within the EU FP7 project CONSORTIS (Concealed Object Stand-Off Real-Time Imaging for Security) which has been built to address two objectives: (i) to de-risk the radar hardware development and (ii) to enable the collection of phenomenology data with ~1 cm3 volumetric resolution. The radar combines a DDS-based chirp generator and self-mixing multiplier technology to achieve a 30 GHz bandwidth chirp with such high linearity that the raw point response is close to ideal and only requires minor nonlinearity compensation. The single transceiver is focused with a 30 cm lens mounted on a gimbal to acquire 3D volumetric images of static test targets and materials.

  3. Simulation study of a 3-D device integrating FinFET and UTBFET

    KAUST Repository

    Fahad, Hossain M.

    2015-01-01

    By integrating 3-D nonplanar fins and 2-D ultrathin bodies, wavy FinFETs merge two formerly competing technologies on a silicon-on-insulator platform to deliver enhanced transistor performance compared with conventional trigate FinFETs with unprecedented levels of chip-area efficiency. This makes it suitable for ultralarge-scale integration high-performance logic at and beyond the 10-nm technology node.

  4. Study of a Microfluidic Chip Integrating Single Cell Trap and 3D Stable Rotation Manipulation

    Directory of Open Access Journals (Sweden)

    Liang Huang

    2016-08-01

    Full Text Available Single cell manipulation technology has been widely applied in biological fields, such as cell injection/enucleation, cell physiological measurement, and cell imaging. Recently, a biochip platform with a novel configuration of electrodes for cell 3D rotation has been successfully developed by generating rotating electric fields. However, the rotation platform still has two major shortcomings that need to be improved. The primary problem is that there is no on-chip module to facilitate the placement of a single cell into the rotation chamber, which causes very low efficiency in experiment to manually pipette single 10-micron-scale cells into rotation position. Secondly, the cell in the chamber may suffer from unstable rotation, which includes gravity-induced sinking down to the chamber bottom or electric-force-induced on-plane movement. To solve the two problems, in this paper we propose a new microfluidic chip with manipulation capabilities of single cell trap and single cell 3D stable rotation, both on one chip. The new microfluidic chip consists of two parts. The top capture part is based on the least flow resistance principle and is used to capture a single cell and to transport it to the rotation chamber. The bottom rotation part is based on dielectrophoresis (DEP and is used to 3D rotate the single cell in the rotation chamber with enhanced stability. The two parts are aligned and bonded together to form closed channels for microfluidic handling. Using COMSOL simulation and preliminary experiments, we have verified, in principle, the concept of on-chip single cell traps and 3D stable rotation, and identified key parameters for chip structures, microfluidic handling, and electrode configurations. The work has laid a solid foundation for on-going chip fabrication and experiment validation.

  5. 3-D NUMERICAL STUDY AND COMPARISON OF ECCENTRIC AND CONCENTRIC ANNULAR-FINNED TUBE HEAT EXCHANGERS

    OpenAIRE

    2015-01-01

    The use of 3-D computational fluid dynamics (CFD) is proposed to simulate the conjugate conduction-convection of heat transfer problems in eccentric annularfinned tube heat exchangers. The numerical simulation results allow us to evaluate the heat transfer coefficient over fin surfaces, the fin efficiency and the pressure drop. The aim of the present paper is to determine the optimum tube position in the circular fin that maximizes heat dissipation and minimizes pressure drop. In addition, th...

  6. 3D contrast-enhanced MR portography and direct X-ray portography: a correlation study

    Energy Technology Data Exchange (ETDEWEB)

    Lin Jiang; Zhou Kangrong; Chen Zuang; Wang Jianhua; Yan Ziping [Department of Radiology, ZhongShan Hospital, Fudan University, Shanghai (China); Wang Yixiang J. [Department of Radiology, Rui Jin Hospital, Shanghai Second Medical Univeristy, Shanghai (China)

    2003-06-01

    Our objective was to compare 3D contrast-enhanced MR portography (3D CE MRP) on a 1.5-T MR imager with direct X-ray portography. Twenty-six consecutive patients underwent 3D CE MRP with in-plane resolution of 1.4 or 1.8 mm, and direct X-ray portography. The findings of these two methods were evaluated and compared. The main portal vein (PV), right PV with its anterior and posterior segmental branches, and left PV including its sagittal segment were shown clearly without diagnostic problem in all cases on MRP. The main PV appearance was accordant with MRP and X-ray. For intrahepatic PVs, the results agreed in 21 patients but disagreed in 5 patients. In 1 patient with a huge tumor in right liver, the right posterior PV was classified as occluded at MRP, but diffusely narrowed at X-ray. The findings of left intrahepatic PV were discordant in 3 patients with hepatocelluar carcinoma in the left lobe. The MRP demonstrated complete occlusion of the left PVs, whereas X-ray showed proximal narrowing and distal occlusion. In another patient with hepatocelluar carcinoma, a small non-occlusive thrombus involving the sagittal segment of the left PV was seen on MRP but not on X-ray. With demonstration of varices and portosystemic shunts, MRP showed results similar to those of X-ray, except one recanalized para-umbilical vein was excluded from the field of view at MRP due to the patient's limited ability of breathholding. The 3D CE MRP correlated well with direct X-ray portography in most cases, it was limited in distinguishing narrowing of an intrahepatic PV from occlusion, but it showed advantage in demonstrating small thrombus within PV. (orig.)

  7. Study of macroporous silicon electrochemical etching in 3D structured N type silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kouassi, Sebastien; Gautier, Gael; Desplobain, Sebastien; Ventura, Laurent [Laboratoire de Microelectronique de Puissance, Universite Francois Rabelais Tours, 16 Rue Pierre et Marie Curie, 37071 Tours Cedex 2 (France)

    2011-06-15

    In this paper, the electrochemical etching of 3D n-type substrates is investigated. These types of 3D structures are of interest to increase the active surface of some systems. Our aim is to improve a MEMS (Micro-Electro Mechanical System) micro fuel cell power through total surface enhancement without any modification of the cell footprint. To reach this objective, we perform a gas diffusion layer using localized macro-porous silicon. The porous area total surface is improved through trench formation (before porous silicon etching). This is supposed to allow a better power to surface ratio for manufactured fuel cell. The Figure on the right hand side introduces the aimed MEMS based micro fuel cell. The geometrical parameters of the designed structures and the manufacturing process influence are presented. To perform 3D structures, two types of anisotropic etching techniques have been used, alkaline etching of silicon and deep reactive ion etching (DRIE). Additional steps such as a doping layer have been used to improve the results obtained with the initial micro-fabrication process. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Weak lensing reconstructions in 2D & 3D: implications for cluster studies

    CERN Document Server

    Leonard, Adrienne; Starck, Jean-Luc

    2015-01-01

    We compare the efficiency with which 2D and 3D weak lensing mass mapping techniques are able to detect clusters of galaxies using two state-of-the-art mass reconstruction techniques: MRLens in 2D and GLIMPSE in 3D. We simulate otherwise-empty cluster fields for 96 different virial mass-redshift combinations spanning the ranges $3\\times10^{13}h^{-1}M_\\odot \\le M_{vir}\\le 10^{15}h^{-1}M_\\odot$ and $0.05 \\le z_{\\rm cl} \\le 0.75$, and for each generate 1000 realisations of noisy shear data in 2D and 3D. For each field, we then compute the cluster (false) detection rate as the mean number of cluster (false) detections per reconstruction over the sample of 1000 reconstructions. We show that both MRLens and GLIMPSE are effective tools for the detection of clusters from weak lensing measurements, and provide comparable quality reconstructions at low redshift. At high redshift, GLIMPSE reconstructions offer increased sensitivity in the detection of clusters, yielding cluster detection rates up to a factor of $\\sim 10\\...

  9. Study on developing method of HVAC 3D CAD based on BIM%基于BIM的暖通3D CAD开发研究

    Institute of Scientific and Technical Information of China (English)

    邱勇云; 邱相武; 赵志安; 胡世阳

    2011-01-01

    Aiming at the current situation that for lack of enough available information from the architects and related disciplines the HVAC designershave to input lots of data by hand, resulting in low accuracy and efficiency, makes an HVAC 3D CAD model based on BIM, and discusses some related realization technology.%针对暖通专业无法获取足够的建筑信息,从而造成设计过程中暖通设计人员数据输入工作量大、准确率低,设计效率低等现状,建立了基于BIM的暖通3DCAD模型,探讨了相关的实现技术.

  10. Estudos de QSAR 3D para um conjunto de inibidores de butirilcolinesterase humana QSAR 3D studies of a series of human butyrylcholinesterase inhibitors

    Directory of Open Access Journals (Sweden)

    Humberto F. Freitas

    2009-01-01

    Full Text Available Alzheimer's disease (AD is considered the main cause of cognitive decline in adults. The available therapies for AD treatment seek to maintain the activity of cholinergic system through the inhibition of the enzyme acetylcholinesterase. However, butyrylcholinesterase (BuChE can be considered an alternative target for AD treatment. Aiming at developing new BuChE inhibitors, robust QSAR 3D models with high predictive power were developed. The best model presents a good fit (r²=0.82, q²=0.76, with two PCs and high predictive power (r²predict=0.88. Analysis of regression vector shows that steric properties have considerable importance to the inhibition of the BuChE.

  11. Study of a vibrating fiber probing system for 3-D micro-structures: performance improvement

    Science.gov (United States)

    Murakami, H.; Katsuki, A.; Sajima, T.; Suematsu, T.

    2014-09-01

    This paper presents a system for measuring 3D micro-structures that uses an optical fiber probe equipped with a piezo element that causes the probe to vibrate. The optical fiber probe consists of a stylus shaft with a diameter of 3 µm and a glass ball with a diameter of 5 µm attached to the tip. The stylus is vibrated in a circular motion in a single plane. The vibrator mechanism is introduced to prevent adhesion of the stylus tip to the surface being measured. This adhesion, which adversely affects the accuracy and time of the measurement, is caused by intermolecular, electrostatic, and liquid bridge forces. The measuring principle involves monitoring the vibrational amplitude of the stylus shaft that is required to prevent the adhesion of the stylus tip to the surface being measured, this amplitude being measured optically. In our previous report (Murakami et al 2012 Key Eng. Mater. 523-524 907-12), we found that the stylus shaft actually moves in an elliptical motion when it is set to describe a circular motion in the X-Y plane. Therefore, when a measurement is taken, it is necessary to adjust the motion of the piezoelectric tube to compensate for the difference between the diameter of the perfect circle and the actual elliptical motion of the stylus shaft displacement. In this study, the stylus characteristics were examined and the motion of the stylus shaft was then corrected to attain the desired circular motion. Next, the expansion of the measuring area by using a line laser was investigated. Finally, an experiment involving the measurement of a micro-hole was performed to demonstrate the practicality of the vibrating fiber probe. As a result, it was shown that the displacement between the diameter of the perfect circle and the actual elliptical motion of the stylus tip was about 0.034 µm after compensation. In addition, it was confirmed that the measurement area can be expanded by using an optical slit, but the standard deviation of the

  12. Full 3D Microwave Tomography enhanced GPR surveys: a case study

    Science.gov (United States)

    Catapano, Ilaria; Soldovieri, Francesco; Affinito, Antonio; Hugenschmidt, Johannes

    2014-05-01

    Ground Penetrating Radar (GPR) systems are well assessed non-invasive diagnostic tools capable of providing high resolution images of the inner structure of the probed spatial region. Owing to this capability, GPR systems are nowadays more and more considered in the frame of civil engineering surveys since they may give information on constructive details as well as on the aging and risk factors affecting the healthiness of an infrastructure. In this frame, accurate, reliable and easily interpretable images of the probed scenarios are mandatory in order to support the management of maintenance works and assure the safety of structures. Such a requirement motivates the use of different and sophisticated data processing approaches in order to compare more than one image of the same scene, thus improving the reliability and objectiveness of the GPR survey results. Among GPR data processing procedures, Microwave Tomography approaches based on the Born approximation face the imaging as the solution of a linear inverse problem, which is solved by using the Truncated Singular Value Decomposition as a regularized inversion scheme [1]. So far, an approach exploiting a 2D scalar model of the scattering phenomenon have been adopted to process GPR data gathered along a single scan. In this case, 3D images are obtained by interpolating 2D reconstructions (this is referred commonly as pseudo 3D imaging). Such an imaging approach have provided valuable results in several real cases dealing with not only surveys for civil engineering but also archeological prospection, subservice monitoring, security surveys and so on [1-4]. These encouraging results have motivated the development of a full 3D Microwave Tomography approach capable of accounting for the vectorial nature of the wave propagation. The reconstruction capabilities of this novel approach have been assessed mainly against experimental data collected in laboratory controlled conditions. The obtained results corroborate

  13. Subtle traps prediction using sequence stratigraphy and 3D seismic technology: A case study from Qikou depression in Huanghua basin

    Institute of Scientific and Technical Information of China (English)

    MAO Ning-bo; DAI Ta-gen; PENG Sheng-lin

    2005-01-01

    Forecasting subtle traps by sequence stratigraphy and 3D seismic data is a sensitive topic in hydrocarbon exploration. Research on subtle traps by geophysical data is the most popular and difficult. Based on the sufficiently drilling data, log data, core data and 3D seismic data, sediment sequence of Qikou depression, Huanghua basin was partitioned by using sequence stratigraphy theory. Each sediment sequence system mode was built. Sediment faces of subtle traps were pointed out. Dominating factors forming subtle traps were analyzed. Sandstone seismic rock physics and its response were studied in Tertiary System. Sandstone geophysical response and elastic modulus vary laws with pressure, temperature, porosity, depth were built. Experimental result and practice shows that it is possible using seismic information forecasting subtle traps. Integrated using geology, log, drilling data, special seismic processing technique, interpretation technique, high precision horizon calibration technique, 3D seismic visualizing interpretation, seismic coherence analysis, attribute analysis, logging-constrained inversion, time frequency analysis, subtle trapsobject is identified and interpreted. Finally, advantage object of subtle trap in this area was determined. Bottomland sand stratigraphic and lithologic reservoirs in Qinan slope zone have been founded by means of high resolution 3D seismic data field technique, high resolution 3D seismic data processing technique and seismic wave impendence inversion technique.

  14. Impact of aircraft exhaust on the atmosphere. Box model studies and 3-D mesoscale numerical case studies of seasonal differences

    Energy Technology Data Exchange (ETDEWEB)

    Petry, H.; Ebel, A.; Franzkowiak, V.; Hendricks, J.; Lippert, E.; Moellhoff, M. [Koeln Univ. (Germany). Inst. fuer Geophysik und Meteorologie

    1997-12-31

    The impact of aircraft emissions released in the tropopause region on atmospheric trace gases as O{sub 3} or HNO{sub 3} is investigated by means of model studies. Special emphasis is drawn on seasonal effects. A box model is applied as well as a 3-D mesoscale chemistry transport model. These model studies show that the impact of aircraft emissions on ozone in the tropopause region is much stronger in summer than in late autumn with a difference of one order of magnitude. (author) 14 refs.

  15. Studying Kittel-like modes in a 3D YIG disk using Torque-mixing Magnetic Resonance Spectroscopy

    Science.gov (United States)

    Fani Sani, Fatemeh; Losby, Joseph; Grandmont, Dylan; Diao, Zhu; Belov, Miro; Burgess, Jacob; Compton, Shawn; Hiebert, Wayne; Vick, Doug; Mohammad, Kaveh; Salimi, Elham; Bridges, Gregory; Thomson, Douglas; Freeman, Mark

    We report a study of ferrimagnetic resonance in a mesoscopic, single-crystalline YIG disk using torque-mixing magnetic resonance spectroscopy (TMRS). The Kittel model for magnetic resonance is a touchstone in measuring fundamental magnetic properties for magnetic films, which does not significantly depend on the film size. In 3D structures, ladders of confined resonance modes are observed, and these can exhibit the non-monotonic evolution of frequency with field familiar from Kittel modes. TMRS is a tool uniquely suited for observing this physics in individual 3D structures, on account of its combination of high sensitivity and broadband capability coupled with fine frequency resolution.

  16. Micro 3D Printing Using a Digital Projector and its Application in the Study of Soft Materials Mechanics

    Science.gov (United States)

    Lee, Howon; Fang, Nicholas X.

    2012-01-01

    Buckling is a classical topic in mechanics. While buckling has long been studied as one of the major structural failure modes1, it has recently drawn new attention as a unique mechanism for pattern transformation. Nature is full of such examples where a wealth of exotic patterns are formed through mechanical instability2-5. Inspired by this elegant mechanism, many studies have demonstrated creation and transformation of patterns using soft materials such as elastomers and hydrogels6-11. Swelling gels are of particular interest because they can spontaneously trigger mechanical instability to create various patterns without the need of external force6-10. Recently, we have reported demonstration of full control over buckling pattern of micro-scaled tubular gels using projection micro-stereolithography (PμSL), a three-dimensional (3D) manufacturing technology capable of rapidly converting computer generated 3D models into physical objects at high resolution12,13. Here we present a simple method to build up a simplified PμSL system using a commercially available digital data projector to study swelling-induced buckling instability for controlled pattern transformation. A simple desktop 3D printer is built using an off-the-shelf digital data projector and simple optical components such as a convex lens and a mirror14. Cross-sectional images extracted from a 3D solid model is projected on the photosensitive resin surface in sequence, polymerizing liquid resin into a desired 3D solid structure in a layer-by-layer fashion. Even with this simple configuration and easy process, arbitrary 3D objects can be readily fabricated with sub-100 μm resolution. This desktop 3D printer holds potential in the study of soft material mechanics by offering a great opportunity to explore various 3D geometries. We use this system to fabricate tubular shaped hydrogel structure with different dimensions. Fixed on the bottom to the substrate, the tubular gel develops inhomogeneous stress

  17. Micro 3D printing using a digital projector and its application in the study of soft materials mechanics.

    Science.gov (United States)

    Lee, Howon; Fang, Nicholas X

    2012-11-27

    Buckling is a classical topic in mechanics. While buckling has long been studied as one of the major structural failure modes(1), it has recently drawn new attention as a unique mechanism for pattern transformation. Nature is full of such examples where a wealth of exotic patterns are formed through mechanical instability(2-5). Inspired by this elegant mechanism, many studies have demonstrated creation and transformation of patterns using soft materials such as elastomers and hydrogels(6-11). Swelling gels are of particular interest because they can spontaneously trigger mechanical instability to create various patterns without the need of external force(6-10). Recently, we have reported demonstration of full control over buckling pattern of micro-scaled tubular gels using projection micro-stereolithography (PμSL), a three-dimensional (3D) manufacturing technology capable of rapidly converting computer generated 3D models into physical objects at high resolution(12,13). Here we present a simple method to build up a simplified PμSL system using a commercially available digital data projector to study swelling-induced buckling instability for controlled pattern transformation. A simple desktop 3D printer is built using an off-the-shelf digital data projector and simple optical components such as a convex lens and a mirror(14). Cross-sectional images extracted from a 3D solid model is projected on the photosensitive resin surface in sequence, polymerizing liquid resin into a desired 3D solid structure in a layer-by-layer fashion. Even with this simple configuration and easy process, arbitrary 3D objects can be readily fabricated with sub-100 μm resolution. This desktop 3D printer holds potential in the study of soft material mechanics by offering a great opportunity to explore various 3D geometries. We use this system to fabricate tubular shaped hydrogel structure with different dimensions. Fixed on the bottom to the substrate, the tubular gel develops

  18. Detecting falls with 3D range camera in ambient assisted living applications: a preliminary study.

    Science.gov (United States)

    Leone, Alessandro; Diraco, Giovanni; Siciliano, Pietro

    2011-07-01

    In recent years several world-wide ambient assisted living (AAL) programs have been activated in order to improve the quality of life of older people, and to strengthen the industrial base through the use of information and communication technologies. An important issue is extending the time that older people can live in their home environment, by increasing their autonomy and helping them to carry out activities of daily living (ADLs). Research in the automatic detection of falls has received a lot of attention, with the object of enhancing safety, emergency response and independence of the elderly, at the same time comparing the social and economic costs related to fall accidents. In this work, an algorithmic framework to detect falls by using a 3D time-of-flight vision technology is presented. The proposed system presented complementary working requirements with respect to traditional worn and non-worn fall-detection devices. The vision system used a state-of-the-art 3D range camera for elderly movement measurement and detection of critical events, such as falls. The depth images provided by the active sensor allowed reliable segmentation and tracking of elderly movements, by using well-established imaging methods. Moreover, the range camera provided 3D metric information in all illumination conditions (even night vision), allowing the overcoming of some typical limitations of passive vision (shadows, camouflage, occlusions, brightness fluctuations, perspective ambiguity). A self-calibration algorithm guarantees different setup mountings of the range camera by non-technical users. A large dataset of simulated fall events and ADLs in real dwellings was collected and the proposed fall-detection system demonstrated high performance in terms of sensitivity and specificity.

  19. Study, Design and Manufacturing of a 3D Printed Wind Turbine

    OpenAIRE

    Vallès Messa, Xavier

    2014-01-01

    The main objective of the work is to design and simulate the 3D printing of a wind turbine blade. Because of the limited printing areas of the machines, the blade will be printed in different parts to be assembled together. The purpose of the wind turbine is to generate electric power in a domestic scale. That is why the length of the blade measures between one and two meters and the power of the turbine is below 1000 W. Steps that will be followed: - Choose a profile and a ...

  20. Bioavailable atmospheric phosphorous supply to the global ocean: a 3-D global modeling study

    Science.gov (United States)

    Myriokefalitakis, Stelios; Nenes, Athanasios; Baker, Alex R.; Mihalopoulos, Nikolaos; Kanakidou, Maria

    2016-12-01

    The atmospheric cycle of phosphorus (P) is parameterized here in a state-of-the-art global 3-D chemistry transport model, taking into account primary emissions of total P (TP) and soluble P (DP) associated with mineral dust, combustion particles from natural and anthropogenic sources, bioaerosols, sea spray and volcanic aerosols. For the present day, global TP emissions are calculated to be roughly 1.33 Tg-P yr-1, with the mineral sources contributing more than 80 % to these emissions. The P solubilization from mineral dust under acidic atmospheric conditions is also parameterized in the model and is calculated to contribute about one-third (0.14 Tg-P yr-1) of the global DP atmospheric source. To our knowledge, a unique aspect of our global study is the explicit modeling of the evolution of phosphorus speciation in the atmosphere. The simulated present-day global annual DP deposition flux is 0.45 Tg-P yr-1 (about 40 % over oceans), showing a strong spatial and temporal variability. Present-day simulations of atmospheric P aerosol concentrations and deposition fluxes are satisfactory compared with available observations, indicating however an underestimate of about 70 % on current knowledge of the sources that drive the P atmospheric cycle. Sensitivity simulations using preindustrial (year 1850) anthropogenic and biomass burning emission scenarios showed a present-day increase of 75 % in the P solubilization flux from mineral dust, i.e., the rate at which P is converted into soluble forms, compared to preindustrial times, due to increasing atmospheric acidity over the last 150 years. Future reductions in air pollutants due to the implementation of air-quality regulations are expected to decrease the P solubilization flux from mineral dust by about 30 % in the year 2100 compared to the present day. Considering, however, that all the P contained in bioaerosols is readily available for uptake by marine organisms, and also accounting for all other DP sources, a total

  1. Identifying the Functional Flexion-extension Axis of the Knee: An In-Vivo Kinematics Study.

    Directory of Open Access Journals (Sweden)

    Li Yin

    Full Text Available This study aimed to calculate the flexion-extension axis (FEA of the knee through in-vivo knee kinematics data, and then compare it with two major anatomical axes of the femoral condyles: the transepicondylar axis (TEA defined by connecting the medial sulcus and lateral prominence, and the cylinder axis (CA defined by connecting the centers of posterior condyles.The knee kinematics data of 20 healthy subjects were acquired under weight-bearing condition using bi-planar x-ray imaging and 3D-2D registration techniques. By tracking the vertical coordinate change of all points on the surface of femur during knee flexion, the FEA was determined as the line connecting the points with the least vertical shift in the medial and lateral condyles respectively. Angular deviation and distance among the TEA, CA and FEA were measured.The TEA-FEA angular deviation was significantly larger than that of the CA-FEA in 3D and transverse plane (3.45° vs. 1.98°, p < 0.001; 2.72° vs. 1.19°, p = 0.002, but not in the coronal plane (1.61° vs. 0.83°, p = 0.076. The TEA-FEA distance was significantly greater than that of the CA-FEA in the medial side (6.7 mm vs. 1.9 mm, p < 0.001, but not in the lateral side (3.2 mm vs. 2.0 mm, p = 0.16.The CA is closer to the FEA compared with the TEA; it can better serve as an anatomical surrogate for the functional knee axis.

  2. Assessment of Prosthesis Alignment after Revision Total Knee Arthroplasty Using EOS 2D and 3D Imaging : A Reliability Study

    NARCIS (Netherlands)

    Meijer, Marrigje F.; Boerboom, Alexander L.; Stevens, Martin; Bulstra, Sjoerd K.; Reininga, Inge H. F.

    2014-01-01

    Introduction: A new low-dose X-ray device, called EOS, has been introduced for determining lower-limb alignment in 2D and 3D. Reliability has not yet been assessed when using EOS on lower limbs containing a knee prosthesis. Therefore purpose of this study was to determine intraobserver and interobse

  3. Concentric Gel System to Study the Biophysical Role of Matrix Microenvironment on 3D Cell Migration

    Science.gov (United States)

    Kurniawan, Nicholas Agung; Chaudhuri, Parthiv Kant; Lim, Chwee Teck

    2015-01-01

    The ability of cells to migrate is crucial in a wide variety of cell functions throughout life from embryonic development and wound healing to tumor and cancer metastasis. Despite intense research efforts, the basic biochemical and biophysical principles of cell migration are still not fully understood, especially in the physiologically relevant three-dimensional (3D) microenvironments. Here, we describe an in vitro assay designed to allow quantitative examination of 3D cell migration behaviors. The method exploits the cell’s mechanosensing ability and propensity to migrate into previously unoccupied extracellular matrix (ECM). We use the invasion of highly invasive breast cancer cells, MDA-MB-231, in collagen gels as a model system. The spread of cell population and the migration dynamics of individual cells over weeks of culture can be monitored using live-cell imaging and analyzed to extract spatiotemporally-resolved data. Furthermore, the method is easily adaptable for diverse extracellular matrices, thus offering a simple yet powerful way to investigate the role of biophysical factors in the microenvironment on cell migration. PMID:25867104

  4. MR neurography with multiplanar reconstruction of 3D MRI datasets: an anatomical study and clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Freund, Wolfgang; Aschoff, Andrik J.; Stuber, Gregor; Schmitz, Bernd [University Hospitals Ulm, Clinic for Diagnostic and Interventional Radiology, Ulm (Germany); Brinkmann, Alexander; Wagner, Florian; Dinse, Alexander [University Hospitals Ulm, Department of Anesthesiology, Ulm (Germany)

    2007-04-15

    Extracranial MR neurography has so far mainly been used with 2D datasets. We investigated the use of 3D datasets for peripheral neurography of the sciatic nerve. A total of 40 thighs (20 healthy volunteers) were examined with a coronally oriented magnetization-prepared rapid acquisition gradient echo sequence with isotropic voxels of 1 x 1 x 1 mm and a field of view of 500 mm. Anatomical landmarks were palpated and marked with MRI markers. After MR scanning, the sciatic nerve was identified by two readers independently in the resulting 3D dataset. In every volunteer, the sciatic nerve could be identified bilaterally over the whole length of the thigh, even in areas of close contact to isointense muscles. The landmark of the greater trochanter was falsely palpated by 2.2 cm, and the knee joint by 1 cm. The mean distance between the bifurcation of the sciatic nerve and the knee-joint gap was 6 cm ({+-}1.8 cm). The mean results of the two readers differed by 1-6%. With the described method of MR neurography, the sciatic nerve was depicted reliably and objectively in great anatomical detail over the whole length of the thigh. Important anatomical information can be obtained. The clinical applications of MR neurography for the brachial plexus and lumbosacral plexus/sciatic nerve are discussed. (orig.)

  5. 3D silicon microdosimetry and RBE study using 12C ion of different energies

    Science.gov (United States)

    Tran, L. T.; Chartier, L.; Bolst, D.; Prokopovich, D.; Guatelli, S.; Petasecca, M.; Lerch, M.; Reinhard, M.; Perevertaylo, V.; Jackson, M.; Matsufuji, N.; Hinde, D.; Dasgupta, M.; Stuchbery, A.; Rosenfeld, A. B.

    2017-02-01

    This paper presents a new version of the 3D mesa “bridge” microdosimeter comprised of an array of 4248 silicon cells fabricated on 10 µm thick silicon-on-insulator substrate. This microdosimeter has been designed to overcome limitations existing in previous generation silicon microdosimeters and it provides well-defined sensitive volumes and high spatial resolution. The charge collection characteristics of the new 3D mesa microdosimeter were investigated using the ANSTO heavy ion microprobe, utilizing 5.5 MeV He2+ ions. Measurement of microdosimetric quantities allowed for the determination of the Relative Biological Effectiveness of 290 MeV/u and 350 MeV/u 12C heavy ion therapy beams at the Heavy Ion Medical Accelerator in Chiba (HIMAC), Japan. The microdosimetric RBE obtained showed good agreement with the tissue-equivalent proportional counter. Utilizing the high spatial resolution of the SOI microdosimeter, the LET spectra for 70 MeV 12C+6 ions, like those present at the distal edge of 290 and 350 MeV/u beams, were obtained as the ions passed through thin layers of polyethylene film. This microdosimeter can provide useful information about the lineal energy transfer (LET) spectra downstream of the protective layers used for shielding of electronic devices for single event upset prediction.

  6. Study of the thermal properties of filaments for 3D printing

    Science.gov (United States)

    Trhlíková, Lucie; Zmeskal, Oldrich; Psencik, Petr; Florian, Pavel

    2016-07-01

    Various materials are used for 3D printing, most commonly Acrylonitrile butadiene styrene (ABS), Polylactic acid (PLA), Polyethylene (PET) and Polypropylene (PP). These materials differ mainly in their melting point, which significantly influences the properties of the final products. Filaments are melted in the print head during the printing process. The temperature range is from 150 °C to 250 °C depending on the technology used. The optimum temperature for the cooling substrate on which printing is carried out is chosen so as to ensure uniform cooling and deformation. It generally varies between (40 - 100) °C. From the above it is clear that both temperatures can significantly affect the properties of the printed 3D object. It is therefore important to determine the thermal parameters (thermal conductivity, specific heat and thermal diffusivity) of the materials used across the entire range of temperatures. For evaluating the properties of different types of PLA materials, the step transient method was used, which allows determination of all required parameters using a fractal heat transfer model.

  7. First-principles study on structural stability of 3d transition metal alloying magnesium hydride

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A first-principles plane-wave pseudopotential method based on the density functional theory was used to investigate the energy and electronic structure of magnesium hydride (MgH2) alloyed by 3d transition metal elements. Through calculations of the negative heat formation of magnesium hydride alloyed by X (X denotes 3d transition metal) element, it is found that when a little X (not including Sc) dissolves into magnesium hydride, the structural stability of alloying systems decreases, which indicates that the dehydrogenation properties of MgH2 can be improved. After comparing the densities of states(DOS) and the charge distribution of MgH2 with or without X alloying, it is found that the improvement for the dehydrogenation properties of MgH2 alloyed by X attributes to the fact that the weakened bonding between magnesium and hydrogen is caused by the stronger interactions between X (not including Cu) and hydrogen. The calculation results of the improvement for the dehydrogenation properties of MgH2-X (X=Ti, V, Mn, Fe, Co,Ni, Cu) systems are in agreement with the experimental results. Hence, the dehydrogenation properties of MgH2 are expected to be improved by addition of Cr, Zn alloying elements.

  8. 3D Projection Installations

    DEFF Research Database (Denmark)

    Halskov, Kim; Johansen, Stine Liv; Bach Mikkelsen, Michelle

    2014-01-01

    Three-dimensional projection installations are particular kinds of augmented spaces in which a digital 3-D model is projected onto a physical three-dimensional object, thereby fusing the digital content and the physical object. Based on interaction design research and media studies, this article...... contributes to the understanding of the distinctive characteristics of such a new medium, and identifies three strategies for designing 3-D projection installations: establishing space; interplay between the digital and the physical; and transformation of materiality. The principal empirical case, From...... Fingerplan to Loop City, is a 3-D projection installation presenting the history and future of city planning for the Copenhagen area in Denmark. The installation was presented as part of the 12th Architecture Biennale in Venice in 2010....

  9. A kinematic study on (unintentional imitation in bottlenose dolphins

    Directory of Open Access Journals (Sweden)

    Luisa eSartori

    2015-08-01

    Full Text Available The aim of the present study was to investigate the effect of observing other’s movements on subsequent performance in bottlenose dolphins. The imitative ability of non-human animals has intrigued a number of researchers. So far, however, studies in dolphins have been confined to intentional imitation concerned with the explicit request to imitate other agents. In the absence of instruction to imitate, do dolphins (unintentionally replicate other’s movement features? To test this, dolphins were filmed while reaching and touching a stimulus before and after observing another dolphin (i.e., model performing the same action. All videos were reviewed and segmented in order to extract the relevant movements. A marker was inserted post-hoc via software on the videos upon the anatomical landmark of interest (i.e. rostrum and was tracked throughout the time course of the movement sequence. The movement was analyzed using an in-house software developed to perform two-dimensional (2D post-hoc kinematic analysis. The results indicate that dolphins’ kinematics is sensitive to other’s movement features. Movements performed for the ‘visuomotor priming’ condition were characterized by a kinematic pattern similar to that performed by the observed dolphin (i.e., model. Addressing the issue of spontaneous imitation in bottlenose dolphins might allow ascertaining whether the potential or impulse to produce an imitative action is generated, not just when they intend to imitate, but whenever they watch another conspecific’s behavior. In closing, this will clarify whether motor representational capacity is a by-product of factors specific to humans or whether more general characteristics such as processes of associative learning prompted by high level of encephalization could help to explain the evolution of this ability.

  10. 3D SURVEY AND AUGMENTED REALITY FOR CULTURAL HERITAGE. THE CASE STUDY OF AURELIAN WALL AT CASTRA PRAETORIA IN ROME

    Directory of Open Access Journals (Sweden)

    M. Canciani

    2016-06-01

    Full Text Available The development of close-range photogrammetry has produced a lot of new possibility to study cultural heritage. 3D data acquired with conventional and low cost cameras can be used to document, investigate the full appearance, materials and conservation status, to help the restoration process and identify intervention priorities. At the same time, with 3D survey a lot of three-dimensional data are collected and analyzed by researchers, but there are a very few possibility of 3D output. The augmented reality is one of this possible output with a very low cost technology but a very interesting result. Using simple mobile technology (for iPad and Android Tablets and shareware software (in the case presented “Augment” it is possible to share and visualize a large number of 3D models with your own device. The case study presented is a part of an architecture graduate thesis, made in Rome at Department of Architecture of Roma Tre University. We have developed a photogrammetric survey to study the Aurelian Wall at Castra Praetoria in Rome. The surveys of 8000 square meters of surface have allowed to identify stratigraphy and construction phases of a complex portion of Aurelian Wall, specially about the Northern door of Castra. During this study, the data coming out of 3D survey (photogrammetric and topographic, are stored and used to create a reverse 3D model, or virtual reconstruction, of the Northern door of Castra. This virtual reconstruction shows the door in the Tiberian period, nowadays it's totally hidden by a curtain wall but, little and significative architectural details allow to know its original feature. The 3D model of the ancient walls has been mapped with the exact type of bricks and mortar, oriented and scaled according to the existing one to use augmented reality. Finally, two kind of application have been developed, one on site, were you can see superimposed the virtual reconstruction on the existing walls using the image

  11. Enhanced ICP for the Registration of Large-Scale 3D Environment Models: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Jianda Han

    2016-02-01

    Full Text Available One of the main applications of mobile robots is the large-scale perception of the outdoor environment. One of the main challenges of this application is fusing environmental data obtained by multiple robots, especially heterogeneous robots. This paper proposes an enhanced iterative closest point (ICP method for the fast and accurate registration of 3D environmental models. First, a hierarchical searching scheme is combined with the octree-based ICP algorithm. Second, an early-warning mechanism is used to perceive the local minimum problem. Third, a heuristic escape scheme based on sampled potential transformation vectors is used to avoid local minima and achieve optimal registration. Experiments involving one unmanned aerial vehicle and one unmanned surface vehicle were conducted to verify the proposed technique. The experimental results were compared with those of normal ICP registration algorithms to demonstrate the superior performance of the proposed method.

  12. Fatigue of hybrid glass/carbon composites: 3D computational studies

    DEFF Research Database (Denmark)

    Dai, Gaoming; Mishnaevsky, Leon

    2014-01-01

    3D computational simulations of fatigue of hybrid carbon/glass fiber reinforced composites is carried out using X-FEM and multifiber unit cell models. A new software code for the automatic generation of unit cell multifiber models of composites with randomly misaligned fibers of various properties...... and geometrical parameters is developed. With the use of this program code and the X-FEM method, systematic investigations of the effect of microstructure of hybrid composites (fraction of carbon versus glass fibers, misalignment, and interface strength) and the loading conditions (tensile versus compression...... cyclic loading effects) on fatigue behavior of the materials are carried out. It was demonstrated that the higher fraction of carbon fibers in hybrid composites is beneficial for the fatigue lifetime of the composites under tension-tension cyclic loading, but might have negative effect on the lifetime...

  13. Using 2D and 3D Computer Games to Detect Colorblindness – a Comparative Study

    Directory of Open Access Journals (Sweden)

    Laskowski Maciej

    2015-12-01

    Full Text Available Computer games have accompanied the development of computer technologies since the very beginning. Despite their basic, purely entertainment-targeted appliance, games can also be used for many other purposes. Medical applications are especially interesting, as games (especially different kinds of simulations are widely used for training personnel, e.g. to perform certain procedures or in learning to use equipment. This allows the trainees to gain knowledge and proper habits, as well as test themselves in different situations without any risk. Computer games can also be used as a diagnostic tool, although this topic is still insufficiently researched. This paper discusses the possibility of using serious games for diagnosing color vision disorders, focusing especially on two problems: differences in diagnosing colorblindness using 2D and 3D environments, and the influence of individual features, such as reflex or agility, on the diagnostic process.

  14. Scaffolds fabricated by 3D two-photon photopolymerization for live cell studies

    Science.gov (United States)

    Teplicky, T.; Cunderlikova, B.; Mateasik, A.; Vincze, A.; Chorvat, D.; Marcek Chorvatova, A.

    2016-12-01

    Design and fabrication of appropriate biocompatible microstructures that ensure fixation and control of experimental conditions for live cell and bacteria observations is an important prerequisite for number of real time experiments. Our approach is to design engineered microfabricated 3D structures for growth of cells in culture without significant modification of their metabolic state. Presented approach is aimed at evaluation of the potential applicability of biocompatible constructs in the biomedical field and thus live cell monitoring in controlled conditions. Design and evaluation of properties of materials and structures with mesoscopic arrangement and their interaction with biological objects is a prerequisite for establishment of physiologically relevant in vitro models of pathologies as well as for development of a new generation of nano / micro / bio-sensors.

  15. Simulation Study of Real Time 3-D Synthetic Aperture Sequential Beamforming for Ultrasound Imaging

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Rasmussen, Morten Fischer; Stuart, Matthias Bo;

    2014-01-01

    This paper presents a new beamforming method for real-time three-dimensional (3-D) ultrasound imaging using a 2-D matrix transducer. To obtain images with sufficient resolution and contrast, several thousand elements are needed. The proposed method reduces the required channel count from...... the transducer to the main imaging system, by including electronics in the transducer handle. The reduction of element channel count is achieved using a sequential beamforming scheme. The beamforming scheme is a combination of a fixed focus beamformer in the transducer and a second dynamic focus beamformer...... in the main system. The real-time imaging capability is achieved using a synthetic aperture beamforming technique, utilizing the transmit events to generate a set of virtual elements that in combination can generate an image. The two core capabilities in combination is named Synthetic Aperture Sequential...

  16. Study of improved ray tracing parallel algorithm for CGH of 3D objects on GPU

    Science.gov (United States)

    Cong, Bin; Jiang, Xiaoyu; Yao, Jun; Zhao, Kai

    2014-11-01

    An improved parallel algorithm for holograms of three-dimensional objects was presented. According to the physical characteristics and mathematical properties of the original ray tracing algorithm for computer generated holograms (CGH), using transform approximation and numerical analysis methods, we extract parts of ray tracing algorithm which satisfy parallelization features and implement them on graphics processing unit (GPU). Meanwhile, through proper design of parallel numerical procedure, we did parallel programming to the two-dimensional slices of three-dimensional object with CUDA. According to the experiments, an effective method of dealing with occlusion problem in ray tracing is proposed, as well as generating the holograms of 3D objects with additive property. Our results indicate that the improved algorithm can effectively shorten the computing time. Due to the different sizes of spatial object points and hologram pixels, the speed has increased 20 to 70 times comparing with original ray tracing algorithm.

  17. Application of ANSYS 3D FEM in Studies of Surface Deformation Caused by Pipe Jacking

    Institute of Scientific and Technical Information of China (English)

    LI Fabin; FANG Kun; LI Hechao

    2007-01-01

    By using site observation data and establishing 3D model using ANSYS software, this paper has discussed the strain change of stratum stress during process of jacking-in and the impact of machine head on ground surface under different frontal resistances. Analysis of the two cases shows that soil pressure reaches its maximum point when the soil is right above machine head, and soil stress will gradually decline when machine head passes over it. It also shows that impact brought by pipe-jacking construction on stress change of the surrounding soil is limited. The thesis suggest that road surface should be consolidated and soil condition be improved before construction to prevent loss and disaster caused by road surface deformation, jacking force can be increased so that jacking efficiency can be enhanced when ground stratum is well filled with soil, but the frontal resistance facing machine head should be equal to surrounding soil pressure in order to avoid rise of ground surface.

  18. Ab initio STUDIES ON MAGNETISM OF 3d TRANSITION METAL DIMERS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Ab initio calculations with the self-consistent full-potential linearized augmented-plane-wave method (FLAPW), under generalized gradient approximation, have been carried out to describe the electronic and magnetic properties of 3d transition metal dimers. It predicted the antiferromagneticity of Cr2 and ferromagneticity of other species. The Mn2 dimer was shown to be ferromagnetic coupling with a local magnetic moment of 5μB. Retaining the value of its free atom state. The V2 and Ni2 exhibited low spin-polarization with local magnetic moment of only 1μB per atom. On the other hand, Fe2 and Co2 were highly spin-polarized with local magnetic moments of 3 and 2μB.

  19. 3D study of the structure of primary crystals in a rheocast Al-Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Niroumand, B.; Xia, K. [Melbourne Univ., Parkville, Vic. (Australia). Dept. of Mech. and Manuf. Eng.

    2000-05-15

    An Al-10.25 wt.% Cu alloy was mechanically stirred at 1000 rpm while being cooled to and isothermally held at 619 C for various times before casting. The microstructure of as-cast materials consists of pseudo-particles and pseudo-clusters in two-dimensional (2D) views. Serial sectioning was performed and it was found that pseudo-particles belonging to a pseudo-cluster were connected in three dimensions and a pseudo-cluster was actually a single primary particle. A three dimensional (3-D) model of such a primary particle was constructed from 2D sections which showed the complexity of its structure. It is suggested that the theories based on agglomeration and disagglomeration of particles during rheocasting be re-examined in light of the experimental results. (orig.)

  20. The numerical study of the cavitation-structure interaction around 3D flexible hydrofoil

    Science.gov (United States)

    Shi-liang, Hu; Ying, Chen; Chuan-jing, Lu

    2015-12-01

    The closely coupled approach combined the Finite Volume Method (FVM) solver and the Finite Element Method (FEM) solver is applied to simulation the cavitation-structure interaction of a 3D cantilevered flexible hydrofoil in water tunnel. In the cavitating flow, the elastic hydrofoil would deform or vibrate in bending and twisting mode. And the motion of the foil would affect the characteristics of the cavity and the hydrodynamic load on the foil in turn. With smaller cavitation numbers (σv=2.15), the frequency spectrum of the lift on the foil would contain two frequencies which are associated to the cavity shedding and the first bend frequency of the hydrofoil. With larger cavitation number (σv=2.55), the frequency of the lift is completely dominated by the natural frequency of the foil.

  1. Enhanced ICP for the Registration of Large-Scale 3D Environment Models: An Experimental Study.

    Science.gov (United States)

    Han, Jianda; Yin, Peng; He, Yuqing; Gu, Feng

    2016-02-15

    One of the main applications of mobile robots is the large-scale perception of the outdoor environment. One of the main challenges of this application is fusing environmental data obtained by multiple robots, especially heterogeneous robots. This paper proposes an enhanced iterative closest point (ICP) method for the fast and accurate registration of 3D environmental models. First, a hierarchical searching scheme is combined with the octree-based ICP algorithm. Second, an early-warning mechanism is used to perceive the local minimum problem. Third, a heuristic escape scheme based on sampled potential transformation vectors is used to avoid local minima and achieve optimal registration. Experiments involving one unmanned aerial vehicle and one unmanned surface vehicle were conducted to verify the proposed technique. The experimental results were compared with those of normal ICP registration algorithms to demonstrate the superior performance of the proposed method.

  2. Quasi 3D ECE imaging system for study of MHD instabilities in KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Yun, G. S., E-mail: gunsu@postech.ac.kr; Choi, M. J.; Lee, J.; Kim, M.; Leem, J.; Nam, Y.; Choe, G. H. [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Lee, W.; Park, H. K. [Ulsan National Institute of Science and Technology, Ulsan 689-798 (Korea, Republic of); Park, H.; Woo, D. S.; Kim, K. W. [School of Electrical Engineering, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Domier, C. W.; Luhmann, N. C. [Department of Electrical and Computer Engineering, University of California, Davis, California 95616 (United States); Ito, N. [KASTEC, Kyushu University, Kasuga-shi, Fukuoka 812-8581 (Japan); Mase, A. [Ube National College of Technology, Ube-shi, Yamaguchi 755-8555 (Japan); Lee, S. G. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of)

    2014-11-15

    A second electron cyclotron emission imaging (ECEI) system has been installed on the KSTAR tokamak, toroidally separated by 1/16th of the torus from the first ECEI system. For the first time, the dynamical evolutions of MHD instabilities from the plasma core to the edge have been visualized in quasi-3D for a wide range of the KSTAR operation (B{sub 0} = 1.7∼3.5 T). This flexible diagnostic capability has been realized by substantial improvements in large-aperture quasi-optical microwave components including the development of broad-band polarization rotators for imaging of the fundamental ordinary ECE as well as the usual 2nd harmonic extraordinary ECE.

  3. AlgiMatrix™ based 3D cell culture system as an in-vitro tumor model for anticancer studies.

    Directory of Open Access Journals (Sweden)

    Chandraiah Godugu

    Full Text Available BACKGROUND: Three-dimensional (3D in-vitro cultures are recognized for recapitulating the physiological microenvironment and exhibiting high concordance with in-vivo conditions. Taking the advantages of 3D culture, we have developed the in-vitro tumor model for anticancer drug screening. METHODS: Cancer cells grown in 6 and 96 well AlgiMatrix™ scaffolds resulted in the formation of multicellular spheroids in the size range of 100-300 µm. Spheroids were grown in two weeks in cultures without compromising the growth characteristics. Different marketed anticancer drugs were screened by incubating them for 24 h at 7, 9 and 11 days in 3D cultures and cytotoxicity was measured by AlamarBlue® assay. Effectiveness of anticancer drug treatments were measured based on spheroid number and size distribution. Evaluation of apoptotic and anti-apoptotic markers was done by immunohistochemistry and RT-PCR. The 3D results were compared with the conventional 2D monolayer cultures. Cellular uptake studies for drug (Doxorubicin and nanoparticle (NLC were done using spheroids. RESULTS: IC(50 values for anticancer drugs were significantly higher in AlgiMatrix™ systems compared to 2D culture models. The cleaved caspase-3 expression was significantly decreased (2.09 and 2.47 folds respectively for 5-Fluorouracil and Camptothecin in H460 spheroid cultures compared to 2D culture system. The cytotoxicity, spheroid size distribution, immunohistochemistry, RT-PCR and nanoparticle penetration data suggested that in vitro tumor models show higher resistance to anticancer drugs and supporting the fact that 3D culture is a better model for the cytotoxic evaluation of anticancer drugs in vitro. CONCLUSION: The results from our studies are useful to develop a high throughput in vitro tumor model to study the effect of various anticancer agents and various molecular pathways affected by the anticancer drugs and formulations.

  4. The impact of active versus passive use of 3D technology: a study of dental students at Wuhan University, China.

    Science.gov (United States)

    Qi, Shengcai; Yan, Yanhong; Li, Rong; Hu, Jian

    2013-11-01

    A variety of computer-based 3D applications are becoming regular tools for dental students for self-learning. This study investigated the learning effectiveness of junior dental students in passively versus actively controlling the 3D virtual scenes of implant dentistry. Participants were randomized into three groups and were exposed to three designs of educational materials: traditional 2D webpages (2D); active-controlling 3D webpages (A3); and passive-controlling 3D webpages (P3). After reviewing the webpages, the participants were asked to complete a posttest to assess the relative quality of information acquisition. Their responses were compared and analyzed. The results indicated that the P3 group received the highest score of 26.4±3.1 on the post-test, significantly better than the A3 group, which had the worst performance with a score of 20.3±4.0. The 2D group received a score of 24.2±4.6. There was a significant correlation between the scores on a mental rotations test and the subjects' performance on the posttest (pimpacts on students, especially for individuals with low spatial ability.

  5. Estimating elastic moduli of rocks from thin sections: Digital rock study of 3D properties from 2D images

    Science.gov (United States)

    Saxena, Nishank; Mavko, Gary

    2016-03-01

    Estimation of elastic rock moduli using 2D plane strain computations from thin sections has several numerical and analytical advantages over using 3D rock images, including faster computation, smaller memory requirements, and the availability of cheap thin sections. These advantages, however, must be weighed against the estimation accuracy of 3D rock properties from thin sections. We present a new method for predicting elastic properties of natural rocks using thin sections. Our method is based on a simple power-law transform that correlates computed 2D thin section moduli and the corresponding 3D rock moduli. The validity of this transform is established using a dataset comprised of FEM-computed elastic moduli of rock samples from various geologic formations, including Fontainebleau sandstone, Berea sandstone, Bituminous sand, and Grossmont carbonate. We note that using the power-law transform with a power-law coefficient between 0.4-0.6 contains 2D moduli to 3D moduli transformations for all rocks that are considered in this study. We also find that reliable estimates of P-wave (Vp) and S-wave velocity (Vs) trends can be obtained using 2D thin sections.

  6. 3D-printed soft-tissue physical models of renal malignancies for individualized surgical simulation: a feasibility study.

    Science.gov (United States)

    Maddox, Michael M; Feibus, Allison; Liu, James; Wang, Julie; Thomas, Raju; Silberstein, Jonathan L

    2017-01-20

    To construct patient-specific physical three-dimensional (3D) models of renal units with materials that approximates the properties of renal tissue to allow pre-operative and robotic training surgical simulation, 3D physical kidney models were created (3DSystems, Rock Hill, SC) using computerized tomography to segment structures of interest (parenchyma, vasculature, collection system, and tumor). Images were converted to a 3D surface mesh file for fabrication using a multi-jet 3D printer. A novel construction technique was employed to approximate normal renal tissue texture, printers selectively deposited photopolymer material forming the outer shell of the kidney, and subsequently, an agarose gel solution was injected into the inner cavity recreating the spongier renal parenchyma. We constructed seven models of renal units with suspected malignancies. Partial nephrectomy and renorrhaphy were performed on each of the replicas. Subsequently all patients successfully underwent robotic partial nephrectomy. Average tumor diameter was 4.4 cm, warm ischemia time was 25 min, RENAL nephrometry score was 7.4, and surgical margins were negative. A comparison was made between the seven cases and the Tulane Urology prospectively maintained robotic partial nephrectomy database. Patients with surgical models had larger tumors, higher nephrometry score, longer warm ischemic time, fewer positive surgical margins, shorter hospitalization, and fewer post-operative complications; however, the only significant finding was lower estimated blood loss (186 cc vs 236; p = 0.01). In this feasibility study, pre-operative resectable physical 3D models can be constructed and used as patient-specific surgical simulation tools; further study will need to demonstrate if this results in improvement of surgical outcomes and robotic simulation education.

  7. Human Liver Infection in a Dish: Easy-To-Build 3D Liver Models for Studying Microbial Infection.

    Directory of Open Access Journals (Sweden)

    Debora B Petropolis

    Full Text Available Human liver infection is a major cause of death worldwide, but fundamental studies on infectious diseases affecting humans have been hampered by the lack of robust experimental models that accurately reproduce pathogen-host interactions in an environment relevant for the human disease. In the case of liver infection, one consequence of this absence of relevant models is a lack of understanding of how pathogens cross the sinusoidal endothelial barrier and parenchyma. To fill that gap we elaborated human 3D liver in vitro models, composed of human liver sinusoidal endothelial cells (LSEC and Huh-7 hepatoma cells as hepatocyte model, layered in a structure mimicking the hepatic sinusoid, which enable studies of key features of early steps of hepatic infection. Built with established cell lines and scaffold, these models provide a reproducible and easy-to-build cell culture approach of reduced complexity compared to animal models, while preserving higher physiological relevance compared to standard 2D systems. For proof-of-principle we challenged the models with two hepatotropic pathogens: the parasitic amoeba Entamoeba histolytica and hepatitis B virus (HBV. We constructed four distinct setups dedicated to investigating specific aspects of hepatic invasion: 1 pathogen 3D migration towards hepatocytes, 2 hepatocyte barrier crossing, 3 LSEC and subsequent hepatocyte crossing, and 4 quantification of human hepatic virus replication (HBV. Our methods comprise automated quantification of E. histolytica migration and hepatic cells layer crossing in the 3D liver models. Moreover, replication of HBV virus occurs in our virus infection 3D liver model, indicating that routine in vitro assays using HBV or others viruses can be performed in this easy-to-build but more physiological hepatic environment. These results illustrate that our new 3D liver infection models are simple but effective, enabling new investigations on infectious disease mechanisms. The

  8. Linearity of patient positioning detection. A phantom study of skin markers, cone beam computed tomography, and 3D ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Ballhausen, Hendrik; Hieber, Sheila; Li, Minglun; Belka, Claus; Reiner, Michael [University Hospital of LMU, Department of Radiation Oncology, Munich (Germany); Parodi, Katia [Ludwig-Maximilian-University, Department of Experimental Physics - Medical Physics, Munich (Germany)

    2015-05-01

    Three-dimensional ultrasound (3D-US) is a modality complementary to kilovoltage cone beam computed tomography (kV-CBCT) and skin markers for patient positioning detection. This study compares the linearity of evaluations based on measurements using a modern 3D-US system (Elekta Clarity {sup registered}; Elekta, Stockholm, Sweden), a kV-CBCT system (Elekta iView {sup registered}), and skin markers. An investigator deliberately displaced a multimodal phantom by up to ± 30 mm along different axes. The following data points were acquired: 27 along the lateral axis, 29 along the longitudinal axis, 27 along the vertical axis, and 27 along the space diagonal. At each of these 110 positions, the displacements according to skin' markers were recorded and scans were performed using both 3D-US and kV-CBCT. Shifts were detected by matching bony anatomy or soft tissue density to a reference planning CT in the case of kV-CBCT and for 3D-US, by matching ultrasound volume data to a reference planning volume. A consensus value was calculated from the average of the four modalities. With respect to this consensus value, the linearity (offset and regression coefficient, i.e., slope), average offset, systematic error, and random error of all four modalities were calculated for each axis. Linearity was similar for all four modalities, with regression coefficients between 0.994 and 1.012, and all offsets below 1 mm. The systematic errors of skin markers and 3D-US were higher than for kV-CBCT, but random errors were similar. In particular, 3D-US demonstrated an average offset of 0.36 mm to the right, 0.08 mm inferiorly, and 0.15 mm anteriorly; the systematic error was 0.36 mm laterally, 0.35 mm longitudinally, and 0.22 mm vertically; the random error was 0.15 mm laterally, 0.30 mm longitudinally, and 0.12 mm vertically. A total of 109 out of 110 (99 %) 3D-US measurements were within 1 mm of the consensus value on either axis. The linearity of 3D-US was no worse than that of skin

  9. Simulation study of a novel 3D SPAD pixel in an advanced FD-SOI technology

    Science.gov (United States)

    Vignetti, M. M.; Calmon, F.; Lesieur, P.; Savoy-Navarro, A.

    2017-02-01

    In this paper, a novel SPAD architecture implemented in a Fully-Depleted Silicon-On-Insulator (SOI) CMOS technology is presented. Thanks to its intrinsic vertical 3D structure, the proposed solution is expected to allow further scaling of the pixel size while ensuring high fill factors. Moreover the pixel and the detector electronics can benefit of the well-known advantages brought by SOI technology with respect to bulk CMOS, such as higher speed and lower power consumption. TCAD simulations based on realistic process parameters and dedicated post-processing analysis are carried out in order to optimize and validate the avalanche diode architecture for an optimal electric field distribution in the device but also to extract the main parameters of the SPAD, such as the breakdown voltage, the avalanche triggering probability, the dark count rate and the photon detection probability. A comparison between the efficiency in back-side and front-side approaches is carried out with a particular focus on time-of-flight applications.

  10. ARPES Study of the 3D Topological Insulator Bi2Se 3

    Science.gov (United States)

    Kim, Ahram

    The 3D topological insulator material Bi2Se3 is characterized with angle-resolved photoemission spectroscopy (ARPES) energy-momentum intensity spectra at various temperatures. High quality samples with relatively small band gaps and a low energy Dirac point were used. An ideal resolution was deter- mined to be taken at photon energy of 11eV. Scattering interaction at the surface can come from three main sources: electron-phonon, surface impurity, or electron-electron scattering, between the surface and the bulk conduction bands. Momemtum- and Energy- Distribution Curves (MDC and EDC) fits were modeled with Gaussian convoluted Lorentzian and extremely-correlated Fermi liquid theory, respectively. By comparing the binding energy at different temperatures for regions near the Fermi edge and near the Dirac point, and observing an increase in MDC self-energy near the Fermi edge, we conclude that a source of interaction is through phonon coupling channels. By calculating the coupling constant ? from self-energy at various temperatures, we present a very low value of ? = 0.049 +/- 0.007 which supports our conclusion that phonon coupling must be incorporated into the theory to provide accurate fit models. Data was taken at beam line 5-4 at the Stanford Synchrotron Radiation Lightsource in Menlo Park, with samples prepared by Genda Gu's group at Brookhaven National Laboratory.

  11. Study of strength properties of ceramic composites with soft filler based on 3D computer simulation

    Science.gov (United States)

    Smolin, Alexey Yu.; Smolin, Igor Yu.; Smolina, Irina Yu.

    2016-11-01

    The movable cellular automaton method which is a computational method of particle mechanics is applied to simulating uniaxial compression of 3D specimens of a ceramic composite. Soft inclusions were considered explicitly by changing the sort (properties) of automata selected randomly from the original fcc packing. The distribution of inclusions in space, their size, and the total fraction were varied. For each value of inclusion fraction, there were generated several representative specimens with individual pore position in space. The resulting magnitudes of the elastic modulus and strength of the specimens were scattered and well described by the Weibull distribution. We showed that to reveal the dependence of the elastic and strength properties of the composite on the inclusion fraction it is much better to consider the mathematical expectation of the corresponding Weibull distribution, rather than the average of the values for the specimens of the same inclusion fraction. It is shown that the relation between the mechanical properties of material and its inclusion fraction depends significantly on the material structure. Namely, percolation transition from isolated inclusions to interconnected clusters of inclusions strongly manifests itself in the dependence of strength on the fraction of inclusions. Thus, the curve of strength versus inclusion fraction fits different equations for a different kind of structure.

  12. Age dependence of wind properties for solar type stars: a 3d study

    CERN Document Server

    Réville, Victor; Strugarek, Antoine; Brun, Allan Sacha

    2016-01-01

    Young and rapidly rotating stars are known for intense, dynamo generated magnetic fields. Spectropolarimetric observations of those stars in precisely aged clusters are key input for gyrochronology and magnetochronology. We use ZDI maps of several young K-type stars of similar mass and radius but with various ages and rotational periods, to perform 3D numerical MHD simulations of their coronae and follow the evolution of their magnetic properties with age. Those simulations yield the coronal structure as well as the instant torque exerted by the magnetized, rotating wind on the star. As stars get older, we find that the angular momentum loss decreases with $\\Omega^3$, which is the reason for the convergence on the Skumanich law. For the youngest stars of our sample, the angular momentum loss show signs of saturation around $8\\Omega_{\\odot}$, which is a common value used in spin evolution models for K-type stars. We compare these results to semi-analytical models and existing braking laws. We observe a complex...

  13. A 3D theoretical model for green management: a case study of Chinese enterprises

    Institute of Scientific and Technical Information of China (English)

    Zhang Ying; Wen Xingzi

    2007-01-01

    Companies that not only abide by environmental regulations, but also discover new techniques and adopt new management methods to reduce negative environmental impacts often have positive effects on corporate profitability. In order to meet the needs of sustainability of enterprises and protect environment, the concept of green management is developed and regarded as an important direction of management theory of the 21st century. Though there are many theories and practices about green management in western countries, they are built based on the developed market economy, which are not suitable for Chinese enterprises absolutely. By analyzing the viewpoints and models of the overseas and domestic experts and scholars, combining characteristic of China's market economy, this paper points out the real connotation of enterprise green management - the combination of ecological harmony (harmony between human and nature) with human harmony (harmony among people), establishes a 3D theoretical model, points out the defects of enterprise's green management in China, reanalyzes and redesigned enterprise green management, which paves the way for the deeper and broader development of green management.

  14. Orthodontic intrusion of maxillary incisors: a 3D finite element method study

    Directory of Open Access Journals (Sweden)

    Armando Yukio Saga

    2016-02-01

    Full Text Available Objective: In orthodontic treatment, intrusion movement of maxillary incisors is often necessary. Therefore, the objective of this investigation is to evaluate the initial distribution patterns and magnitude of compressive stress in the periodontal ligament (PDL in a simulation of orthodontic intrusion of maxillary incisors, considering the points of force application. Methods: Anatomic 3D models reconstructed from cone-beam computed tomography scans were used to simulate maxillary incisors intrusion loading. The points of force application selected were: centered between central incisors brackets (LOAD 1; bilaterally between the brackets of central and lateral incisors (LOAD 2; bilaterally distal to the brackets of lateral incisors (LOAD 3; bilaterally 7 mm distal to the center of brackets of lateral incisors (LOAD 4. Results and Conclusions: Stress concentrated at the PDL apex region, irrespective of the point of orthodontic force application. The four load models showed distinct contour plots and compressive stress values over the midsagittal reference line. The contour plots of central and lateral incisors were not similar in the same load model. LOAD 3 resulted in more balanced compressive stress distribution.

  15. 3D Animation Essentials

    CERN Document Server

    Beane, Andy

    2012-01-01

    The essential fundamentals of 3D animation for aspiring 3D artists 3D is everywhere--video games, movie and television special effects, mobile devices, etc. Many aspiring artists and animators have grown up with 3D and computers, and naturally gravitate to this field as their area of interest. Bringing a blend of studio and classroom experience to offer you thorough coverage of the 3D animation industry, this must-have book shows you what it takes to create compelling and realistic 3D imagery. Serves as the first step to understanding the language of 3D and computer graphics (CG)Covers 3D anim

  16. 3D video

    CERN Document Server

    Lucas, Laurent; Loscos, Céline

    2013-01-01

    While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century.The chapters in this book cover a large spectrum of areas connected to 3D video, which are presented both theoretically and technologically, while taking into account both physiological and perceptual aspects. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide th

  17. A multifunctional 3D co-culture system for studies of mammary tissue morphogenesis and stem cell biology.

    Science.gov (United States)

    Campbell, Jonathan J; Davidenko, Natalia; Caffarel, Maria M; Cameron, Ruth E; Watson, Christine J

    2011-01-01

    Studies on the stem cell niche and the efficacy of cancer therapeutics require complex multicellular structures and interactions between different cell types and extracellular matrix (ECM) in three dimensional (3D) space. We have engineered a 3D in vitro model of mammary gland that encompasses a defined, porous collagen/hyaluronic acid (HA) scaffold forming a physiologically relevant foundation for epithelial and adipocyte co-culture. Polarized ductal and acinar structures form within this scaffold recapitulating normal tissue morphology in the absence of reconstituted basement membrane (rBM) hydrogel. Furthermore, organoid developmental outcome can be controlled by the ratio of collagen to HA, with a higher HA concentration favouring acinar morphological development. Importantly, this culture system recapitulates the stem cell niche as primary mammary stem cells form complex organoids, emphasising the utility of this approach for developmental and tumorigenic studies using genetically altered animals or human biopsy material, and for screening cancer therapeutics for personalised medicine.

  18. A multifunctional 3D co-culture system for studies of mammary tissue morphogenesis and stem cell biology.

    Directory of Open Access Journals (Sweden)

    Jonathan J Campbell

    Full Text Available Studies on the stem cell niche and the efficacy of cancer therapeutics require complex multicellular structures and interactions between different cell types and extracellular matrix (ECM in three dimensional (3D space. We have engineered a 3D in vitro model of mammary gland that encompasses a defined, porous collagen/hyaluronic acid (HA scaffold forming a physiologically relevant foundation for epithelial and adipocyte co-culture. Polarized ductal and acinar structures form within this scaffold recapitulating normal tissue morphology in the absence of reconstituted basement membrane (rBM hydrogel. Furthermore, organoid developmental outcome can be controlled by the ratio of collagen to HA, with a higher HA concentration favouring acinar morphological development. Importantly, this culture system recapitulates the stem cell niche as primary mammary stem cells form complex organoids, emphasising the utility of this approach for developmental and tumorigenic studies using genetically altered animals or human biopsy material, and for screening cancer therapeutics for personalised medicine.

  19. Preliminary study of the 270 Bloom Fricke xylenol gel phantom performance for 3D conformal radiotherapy using multiple radiation fields

    Energy Technology Data Exchange (ETDEWEB)

    Cavinato, Christianne C.; Campos, Leticia L., E-mail: ccavinato@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (DIRF/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Gerencia de Metrologia das Radiacoes; Souza, Benedito H.; Carrete Junior, Henrique; Daros, Kellen A.C.; Medeiros, Regina B. [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil). Dept. de Diagnostico por Imagens; Giordani, Adelmo J. [Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP (Brazil). Servico de Radioterapia

    2011-07-01

    The complex cancer treatment techniques require rigorous quality control (QC). The Fricke xylenol gel (FXG) dosimeter has been studied to be applied as a three-dimensional (3D) dosimeter since it is possible to produce 3D FXG phantoms of various shapes and sizes. In this preliminary study, the performance of the FXG spherical phantom developed at IPEN, prepared using 270 Bloom gelatin from porcine skin made in Brazil, was evaluated using magnetic resonance imaging technique, aiming to use this phantom to 3D conformal radiotherapy (3DCRT) with multiple radiation fields and clinical photon beams. The obtained results indicate that for all magnetic resonance images of the FXG phantom irradiated with 6 MV clinical photon beam can be observed clearly the target volume and, in the case of coronal image, can also be observed the radiation beam projection and the overlap of different radiation fields used. The Fricke xylenol gel phantom presented satisfactory results for 3DCRT and clinical photon beams in this preliminary study. These results encourage the additional tests using complex treatment techniques and indicate the viability of applying the phantom studied to routine quality control measurements and in 3DCRT and intensity modulated radiotherapy treatment planning. (author)

  20. Study of a non-diffusing radiochromic gel dosimeter for 3D radiation dose imaging

    Science.gov (United States)

    Marsden, Craig Michael

    2000-12-01

    This thesis investigates the potential of a new radiation gel dosimeter, based on nitro-blue tetrazolium (NBTZ) suspended in a gelatin mold. Unlike all Fricke based gel dosimeters this dosimeter does not suffer from diffusive loss of image stability. Images are obtained by an optical tomography method. Nitro blue tetrazolium is a common biological indicator that when irradiated in an aqueous medium undergoes reduction to a highly colored formazan, which has an absorbance maximum at 525nm. Tetrazolium is water soluble while the formazan product is insoluble. The formazan product sticks to the gelatin matrix and the dose image is maintained for three months. Methods to maximize the sensitivity of the system were evaluated. It was found that a chemical detergent, Triton X-100, in combination with sodium formate, increased the dosimeter sensitivity significantly. An initial G-value of formazan production for a dosimeter composed of 1mM NBTZ, gelatin, and water was on the order of 0.2. The addition of Triton and formate produced a G-value in excess of 5.0. The effects of NBTZ, triton, formate, and gel concentration were all investigated. All the gels provided linear dose vs. absorbance plots for doses from 0 to >100 Gy. It was determined that gel concentration had minimal if any effect on sensitivity. Sensitivity increased slightly with increasing NBTZ concentration. Triton and formate individually and together provided moderate to large increases in dosimeter sensitivity. The dosimeter described in this work can provide stable 3D radiation dose images for all modalities of radiation therapy equipment. Methods to increase sensitivity are developed and discussed.

  1. Integrative multicellular biological modeling: a case study of 3D epidermal development using GPU algorithms

    Directory of Open Access Journals (Sweden)

    Christley Scott

    2010-08-01

    Full Text Available Abstract Background Simulation of sophisticated biological models requires considerable computational power. These models typically integrate together numerous biological phenomena such as spatially-explicit heterogeneous cells, cell-cell interactions, cell-environment interactions and intracellular gene networks. The recent advent of programming for graphical processing units (GPU opens up the possibility of developing more integrative, detailed and predictive biological models while at the same time decreasing the computational cost to simulate those models. Results We construct a 3D model of epidermal development and provide a set of GPU algorithms that executes significantly faster than sequential central processing unit (CPU code. We provide a parallel implementation of the subcellular element method for individual cells residing in a lattice-free spatial environment. Each cell in our epidermal model includes an internal gene network, which integrates cellular interaction of Notch signaling together with environmental interaction of basement membrane adhesion, to specify cellular state and behaviors such as growth and division. We take a pedagogical approach to describing how modeling methods are efficiently implemented on the GPU including memory layout of data structures and functional decomposition. We discuss various programmatic issues and provide a set of design guidelines for GPU programming that are instructive to avoid common pitfalls as well as to extract performance from the GPU architecture. Conclusions We demonstrate that GPU algorithms represent a significant technological advance for the simulation of complex biological models. We further demonstrate with our epidermal model that the integration of multiple complex modeling methods for heterogeneous multicellular biological processes is both feasible and computationally tractable using this new technology. We hope that the provided algorithms and source code will be a

  2. 3D Case Studies of Monitoring Dynamic Structural Tests using Long Exposure Imagery

    Science.gov (United States)

    McCarthy, D. M. J.; Chandler, J. H.; Palmeri, A.

    2014-06-01

    Structural health monitoring uses non-destructive testing programmes to detect long-term degradation phenomena in civil engineering structures. Structural testing may also be carried out to assess a structure's integrity following a potentially damaging event. Such investigations are increasingly carried out with vibration techniques, in which the structural response to artificial or natural excitations is recorded and analysed from a number of monitoring locations. Photogrammetry is of particular interest here since a very high number of monitoring locations can be measured using just a few images. To achieve the necessary imaging frequency to capture the vibration, it has been necessary to reduce the image resolution at the cost of spatial measurement accuracy. Even specialist sensors are limited by a compromise between sensor resolution and imaging frequency. To alleviate this compromise, a different approach has been developed and is described in this paper. Instead of using high-speed imaging to capture the instantaneous position at each epoch, long-exposure images are instead used, in which the localised image of the object becomes blurred. The approach has been extended to create 3D displacement vectors for each target point via multiple camera locations, which allows the simultaneous detection of transverse and torsional mode shapes. The proposed approach is frequency invariant allowing monitoring of higher modal frequencies irrespective of a sampling frequency. Since there is no requirement for imaging frequency, a higher image resolution is possible for the most accurate spatial measurement. The results of a small scale laboratory test using off-the-shelf consumer cameras are demonstrated. A larger experiment also demonstrates the scalability of the approach.

  3. Study of materials and machines for 3D printed large-scale, flexible electronic structures using fused deposition modeling

    Science.gov (United States)

    Hwang, Seyeon

    The 3 dimensional printing (3DP), called to additive manufacturing (AM) or rapid prototyping (RP), is emerged to revolutionize manufacturing and completely transform how products are designed and fabricated. A great deal of research activities have been carried out to apply this new technology to a variety of fields. In spite of many endeavors, much more research is still required to perfect the processes of the 3D printing techniques especially in the area of the large-scale additive manufacturing and flexible printed electronics. The principles of various 3D printing processes are briefly outlined in the Introduction Section. New types of thermoplastic polymer composites aiming to specified functional applications are also introduced in this section. Chapter 2 shows studies about the metal/polymer composite filaments for fused deposition modeling (FDM) process. Various metal particles, copper and iron particles, are added into thermoplastics polymer matrices as the reinforcement filler. The thermo-mechanical properties, such as thermal conductivity, hardness, tensile strength, and fracture mechanism, of composites are tested to figure out the effects of metal fillers on 3D printed composite structures for the large-scale printing process. In Chapter 3, carbon/polymer composite filaments are developed by a simple mechanical blending process with an aim of fabricating the flexible 3D printed electronics as a single structure. Various types of carbon particles consisting of multi-wall carbon nanotube (MWCNT), conductive carbon black (CCB), and graphite are used as the conductive fillers to provide the thermoplastic polyurethane (TPU) with improved electrical conductivity. The mechanical behavior and conduction mechanisms of the developed composite materials are observed in terms of the loading amount of carbon fillers in this section. Finally, the prototype flexible electronics are modeled and manufactured by the FDM process using Carbon/TPU composite filaments and

  4. SU-E-T-419: Fabricating Cerrobend Grids with 3D Printing for Spatially Modulated Radiation Therapy: A Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X; Driewer, J; Lei, Y; Zheng, D; Li, S; Zhang, Q; Zhang, M; Zhou, S [University of Nebraska Medical Center, Omaha, NE (United States); Cullip, T; Chang, S [UNC Hospitals, Chapel Hill, NC (United States)

    2015-06-15

    Purpose: Grid therapy has promising applications in the radiation treatment of bulky and large tumors. However, research and applications of grid therapy is limited by the accessibility of the specialized blocks that produce the grid of pencil-like radiation beams. In this study, a Cerrobend grid block was fabricated using a 3D printing technique. Methods: A grid block mold was designed with divergent tubes following beam central rays. The mold was printed using a resin with the working temperature below 230 °C. The melted Cerrobend liquid at 120°oC was cast into the resin mold to yield a block with a thickness of 7.4 cm. The grid had a hexagonal pattern, with each pencil beam diameter of 1.4 cm at the iso-center plane; the distance between the beam centers was 2 cm. The dosimetric properties of the grid block were studied using radiographic film and small field dosimeters. Results: the grid block was fabricated to be mounted at the third accessory mount of a Siemens Oncor linear accelerator. Fabricating a grid block using 3D printing is similar to making cutouts for traditional radiotherapy photon blocks, with the difference being that the mold was created by a 3D printer rather than foam. In this study, the valley-to-peak ratio for a 6MV photon grid beam was 20% at dmax, and 30% at 10 cm depth, respectively. Conclusion: We have demonstrated a novel process for implementing grid radiotherapy using 3D printing techniques. Compared to existing approaches, our technique combines reduced cost, accessibility, and flexibility in customization with efficient delivery. This lays the groundwork for future studies to improve our understanding of the efficacy of grid therapy and apply it to improve cancer treatment.

  5. 3D photoacoustic imaging

    Science.gov (United States)

    Carson, Jeffrey J. L.; Roumeliotis, Michael; Chaudhary, Govind; Stodilka, Robert Z.; Anastasio, Mark A.

    2010-06-01

    Our group has concentrated on development of a 3D photoacoustic imaging system for biomedical imaging research. The technology employs a sparse parallel detection scheme and specialized reconstruction software to obtain 3D optical images using a single laser pulse. With the technology we have been able to capture 3D movies of translating point targets and rotating line targets. The current limitation of our 3D photoacoustic imaging approach is its inability ability to reconstruct complex objects in the field of view. This is primarily due to the relatively small number of projections used to reconstruct objects. However, in many photoacoustic imaging situations, only a few objects may be present in the field of view and these objects may have very high contrast compared to background. That is, the objects have sparse properties. Therefore, our work had two objectives: (i) to utilize mathematical tools to evaluate 3D photoacoustic imaging performance, and (ii) to test image reconstruction algorithms that prefer sparseness in the reconstructed images. Our approach was to utilize singular value decomposition techniques to study the imaging operator of the system and evaluate the complexity of objects that could potentially be reconstructed. We also compared the performance of two image reconstruction algorithms (algebraic reconstruction and l1-norm techniques) at reconstructing objects of increasing sparseness. We observed that for a 15-element detection scheme, the number of measureable singular vectors representative of the imaging operator was consistent with the demonstrated ability to reconstruct point and line targets in the field of view. We also observed that the l1-norm reconstruction technique, which is known to prefer sparseness in reconstructed images, was superior to the algebraic reconstruction technique. Based on these findings, we concluded (i) that singular value decomposition of the imaging operator provides valuable insight into the capabilities of

  6. Tyrosinase Inhibitory Activity, 3D QSAR, and Molecular Docking Study of 2,5-Disubstituted-1,3,4-Oxadiazoles

    Directory of Open Access Journals (Sweden)

    Ramesh L. Sawant

    2013-01-01

    Full Text Available In continuation with our research program, in search of potent enzyme tyrosinase inhibitor, a series of synthesized 2,5-disubstituted 1,3,4-oxadiazoles have been evaluated for enzyme tyrosinase inhibitory activity. Subsequently, 3D QSAR and docking studies were performed to find optimum structural requirements for potent enzyme tyrosinase inhibitor from this series. The synthesized 20 compounds of 2,5-disubstituted-1,3,4-oxadiazole series were screened for mushroom tyrosinase inhibitory activity at various concentrations by enzyme inhibition assay. The percentage enzyme inhibition was calculated by recording absorbance at 492 nm with microplate reader. 3D QSAR and docking studies were performed using VLife MDS 3.5 software. In the series 2,5-disubstituted-1,3,4-oxadiazoles enzyme tyrosinase inhibitory activity was found to be dose dependent with maximum activity for compounds 4c, 4h, 4m, and 4r. 3D QSAR and docking studies revealed that more electropositive and less bulky substituents if placed on 1,3,4-oxadiazole nucleus may result in better tyrosinase inhibitory activity in the series.

  7. STUDY OF AXIAL VELOCITY IN GAS CYCLONES BY 2D-PIV, 3D-PIY, AND SIMULATION

    Institute of Scientific and Technical Information of China (English)

    Zhengliang Liu; Jinyu Jiao; Ying Zheng

    2006-01-01

    The axial velocity distribution in a gas cyclone has been examined with two-dimensional particle image velocimetry (2D-PIV) and three-dimensional particle image velocimetry (3D-PIV) experiments in this study. Due to the limitation of 2D-PIV configuration, the contamination generated by the strong tangential velocity in the cyclone can be registered in the axial velocity detected by 2D-PIV. Efficient methods are proposed in this work to remove this contamination. The contamination-removed 2D-PIV data agree well with 3D-PIV results. The distributions of the axial velocity are also computed by the Reynolds stress model (RSM) and verified using the PIV experimental results. Reasonable agreements are obtained.

  8. A comparative study of Rayleigh-Taylor and Richtmyer-Meshkov instabilities in 2D and 3D in tantalum

    Science.gov (United States)

    Sternberger, Z.; Maddox, B. R.; Opachich, Y. P.; Wehrenberg, C. E.; Kraus, R. G.; Remington, B. A.; Randall, G. C.; Farrell, M.; Ravichandran, G.

    2017-01-01

    Driving a shock wave through the interface between two materials with different densities can result in the Richtmyer-Meshkov or Rayleigh-Taylor instability and initial perturbations at the interface will grow. If the shock wave is sufficiently strong, the instability will lead to plastic flow at the interface. Material strength will reduce the amount of plastic flow and suppress growth. While such instabilities have been investigated in 2D, no studies of this phenomena have been performed in 3D on materials with strength. Initial perturbations to seed the hydrodynamic instability were coined into tantalum recovery targets. Two types of perturbations were used, two dimensional (2D) perturbations (hill and valley) and three-dimensional (3D) perturbations (egg crate pattern). The targets were subjected to dynamic loading using the Janus laser at the Jupiter Laser Facility. Shock pressures ranged from 50 GPa up to 150 GPa and were calibrated using VISAR drive targets.

  9. Study of the structure of 3D-ordered macroporous GaN-ZnS:Mn nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Kurdyukov, D. A., E-mail: kurd@gvg.ioffe.ru; Shishkin, I. I.; Grudinkin, S. A.; Sitnikova, A. A.; Zamoryanskaya, M. V.; Golubev, V. G. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)

    2015-05-15

    A film-type 3D-ordered macroporous GaN-ZnS:Mn nanocomposite with the structure of an inverted opal is fabricated. Structural studies of the nanocomposite are performed, and it is shown that GaN and ZnS:Mn introduced into the pores of the silica opal are nanocrystallites misoriented with respect to each other. It is shown that the nanocomposite is a structurally perfect 3D photonic crystal. The efficiency of using a buffer of GaN crystallites to preclude interaction between the surface of the spherical a-SiO{sub 2} particles forming the opal matrix and chemically active substances introduced into the pores is demonstrated.

  10. Solar response in tropical stratospheric ozone: a 3-D chemical transport model study using ERA reanalyses

    Directory of Open Access Journals (Sweden)

    S. Dhomse

    2011-05-01

    Full Text Available We have used an off-line 3-D chemical transport model (CTM, to investigate the 11-year solar cycle response in tropical stratospheric ozone. The model is forced with European Centre for Medium-Range Weather Forecasts (ECMWF (reanalysis (ERA-40/Operational and ERA-Interim data for 1978–2005 time period. We have compared the modelled solar response in ozone to observational data from three satellite instruments, Solar Backscatter UltraViolet instrument (SBUV, Stratospheric Aerosol and Gas Experiment (SAGE and Halogen Occultation Experiment (HALOE. A significant difference is seen between simulated and observed ozone during the 1980s, which is probably due to inhomogeneities in the ERA-40 reanalyses. In general, the model with ERA-Interim dynamics shows better agreement with the observations from 1990 onwards than ERA-40. Overall both standard model simulations are partially able to simulate a "double peak"-structured ozone solar response profile with a minimum around 30 km, and these are in better agreement with HALOE than SBUV or SAGE. The largest model-observation differences occur in the upper stratosphere where SBUV and SAGE show a significant (up to 4 % solar response whereas the standard model and HALOE do not. This is partly due to a positive solar response in the ECMWF upper stratosphere analysed temperatures which reduces the modelled ozone signal. The large positive upper stratosphere response seen in SAGE/SBUV can be reproduced in a model run with fixed dynamical fields (i.e. no inter-annual meteorological changes. As this run effectively assumes no long-term temperature changes (solar-induced or otherwise it should provide an upper limit of the ozone solar response. Overall, full quantification of the upper stratosphere ozone solar response is limited by differences in the observed dataset and by uncertainties in the solar response in the stratospheric temperatures. In the lower stratosphere we find that transport by analysed winds

  11. Solar response in tropical stratospheric ozone: a 3-D chemical transport model study using ERA reanalyses

    Directory of Open Access Journals (Sweden)

    S. Dhomse

    2011-12-01

    Full Text Available We have used an off-line 3-D chemical transport model (CTM to investigate the 11-yr solar cycle response in tropical stratospheric ozone. The model is forced with European Centre for Medium-Range Weather Forecasts (ECMWF (reanalysis (ERA-40/operational and ERA-Interim data for the 1979–2005 time period. We have compared the modelled solar response in ozone to observation-based data sets that are constructed using satellite instruments such as Total Ozone Mapping Spectrometer (TOMS, Solar Backscatter UltraViolet instrument (SBUV, Stratospheric Aerosol and Gas Experiment (SAGE and Halogen Occultation Experiment (HALOE. A significant difference is seen between simulated and observed ozone during the 1980s, which is probably due to inhomogeneities in the ERA-40 reanalyses. In general, the model with ERA-Interim dynamics shows better agreement with the observations from 1990 onwards than with ERA-40. Overall both standard model simulations are partially able to simulate a "double peak"-structured ozone solar response with a minimum around 30 km, and these are in better agreement with HALOE than SAGE-corrected SBUV (SBUV/SAGE or SAGE-based data sets. In the tropical lower stratosphere (TLS, the modelled solar response with time-varying aerosols is amplified through aliasing with a volcanic signal, as the model overestimates ozone loss during high aerosol loading years. However, the modelled solar response with fixed dynamics and constant aerosols shows a positive signal which is in better agreement with SBUV/SAGE and SAGE-based data sets in the TLS. Our model simulations suggests that photochemistry contributes to the ozone solar response in this region. The largest model-observation differences occur in the upper stratosphere where SBUV/SAGE and SAGE-based data show a significant (up to 4% solar response whereas the standard model and HALOE do not. This is partly due to a positive solar response in the ECMWF upper stratospheric temperatures which

  12. 3D printed facial laser scans for the production of localised radiotherapy treatment masks - A case study.

    Science.gov (United States)

    Briggs, Matthew; Clements, Helen; Wynne, Neil; Rennie, Allan; Kellett, Darren

    This study investigates the use of 3D printing for patients that require localised radiotherapy treatment to the face. The current process involves producing a lead mask in order to protect the healthy tissue from the effects of the radiotherapy. The mask is produced by applying a thermoplastic sheet to the patient's face and allowing to set hard. This can then be used as a mould to create a plaster impression of the patient's face. A sheet of lead is then hammered on to the plaster to create a bespoke fitted face mask. This process can be distressing for patients and can be problematic when the patient is required to remain motionless for a prolonged time while the thermoplastic sets. In this study, a 1:1 scale 3D print of a patient's face was generated using a laser scanner. The lead was hammered directly on to the surface of the 3D print in order to create a bespoke fitted treatment mask. This eliminated the thermoplastic moulding stage and significantly reduced the time needed for the patient to be in clinic. The higher definition impression of the the face resulted in a more accurate, better fitting treatment mask.

  13. High-resolution 3D ultrasound jawbone surface imaging for diagnosis of periodontal bony defects: an in vitro study.

    Science.gov (United States)

    Mahmoud, Ahmed M; Ngan, Peter; Crout, Richard; Mukdadi, Osama M

    2010-11-01

    Although medical specialties have recognized the importance of using ultrasonic imaging, dentistry is only beginning to discover its benefit. This has particularly been important in the field of periodontics which studies infections in the gum and bone tissues that surround the teeth. This study investigates the feasibility of using a custom-designed high-frequency ultrasound imaging system to reconstruct high-resolution (3D) surface images of periodontal defects in human jawbone. The system employs single-element focused ultrasound transducers with center frequencies ranging from 30 to 60 MHz. Continuous acquisition using a 1 GHz data acquisition card is synchronized with a high-precision two-dimensional (2D) positioning system of ±1 μm resolution for acquiring accurate measurements of the mandible, in vitro. Signal and image processing algorithms are applied to reconstruct high-resolution ultrasound images and extract the jawbone surface in each frame. Then, all edges are combined and smoothed in order to render a 3D surface image of the jawbone. In vitro experiments were performed to assess the system performance using mandibles with teeth (dentate) or without (nondentate). The system was able to reconstruct 3D images for the mandible's outer surface with superior spatial resolution down to 24 μm, and to perform the whole scanning in images were confirmed with the anatomical structures on the mandibles. All the anatomical landmarks were detected and fully described as 3D images using this novel ultrasound imaging technique, whereas the 2D X-ray radiographic images suffered from poor contrast. These results indicate the great potential of utilizing high-resolution ultrasound as a noninvasive, nonionizing imaging technique for the early diagnosis of the more severe form of periodontal disease.

  14. 3D Spectroscopy in Astronomy

    Science.gov (United States)

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco

    2011-09-01

    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  15. 3D QSAR, pharmacophore indentification studies on series of 1-(2-ethoxyethyl-1H-pyrazolo [4,3-d]pyrimidines as phosphodiesterase V inhibitors

    Directory of Open Access Journals (Sweden)

    Prafulla Choudhari

    2015-05-01

    Conclusion: The two different QSAR models are generated by using two different principles, both the models are showing similar results which indicate that this kNN-MFA technique can be utilized for cross validation of the results of multiple linear regression studies.

  16. Biologic response of inguinal hernia prosthetics: a comparative study of conventional static meshes versus 3D dynamic implants.

    Science.gov (United States)

    Amato, Giuseppe; Romano, Giorgio; Agrusa, Antonino; Marasa, Salvatore; Cocorullo, Gianfranco; Gulotta, Gaspare; Goetze, Thorsten; Puleio, Roberto

    2015-01-01

    Despite improvements in prosthetics and surgical techniques, the rate of complications following inguinal hernia repair remains high. Among these, discomfort and chronic pain have become a source of increasing concern among surgeons. Poor quality of tissue ingrowth, such as thin scar plates or shrinking scars-typical results with conventional static implants and plugs-may contribute to these adverse events. Recently, a new type of 3D dynamically responsive implant was introduced to the market. This device, designed to be placed fixation-free, seems to induce ingrowth of viable and structured tissue instead of regressive fibrotic scarring. To elucidate the differences in biologic response between the conventional static meshes and this 3D dynamically responsive implant, a histological comparison was planned. The aim of this study was to determine the quality of tissue incorporation in both types of implants excised after short, medium, and long periods post-implantation. The results showed large differences in the biologic responses between the two implant types. Histologically, the 3D dynamic implant showed development of tissue elements more similar to natural abdominal wall structures, such as the ingrowth of loose and well-hydrated connective tissue, well-formed vascular structures, elastic fibers, and mature nerves, with negligible or absent inflammatory response. All these characteristics were completely absent in the conventional static implants, where a persistent inflammatory reaction was associated with thin, hardened, and shrunken fibrotic scar formation. Consequently, as herniation is a degenerative process, the 3D dynamic implants, which induce regeneration of the typical groin components, seem to address its pathogenesis.

  17. SHEAR WAVE SEISMIC STUDY COMPARING 9C3D SV AND SH IMAGES WITH 3C3D C-WAVE IMAGES

    Energy Technology Data Exchange (ETDEWEB)

    John Beecherl; Bob A. Hardage

    2004-07-01

    The objective of this study was to compare the relative merits of shear-wave (S-wave) seismic data acquired with nine-component (9-C) technology and with three-component (3-C) technology. The original proposal was written as if the investigation would be restricted to a single 9-C seismic survey in southwest Kansas (the Ashland survey), on the basis of the assumption that both 9-C and 3-C S-wave images could be created from that one data set. The Ashland survey was designed as a 9-C seismic program. We found that although the acquisition geometry was adequate for 9-C data analysis, the source-receiver geometry did not allow 3-C data to be extracted on an equitable and competitive basis with 9-C data. To do a fair assessment of the relative value of 9-C and 3-C seismic S-wave data, we expanded the study beyond the Ashland survey and included multicomponent seismic data from surveys done in a variety of basins. These additional data were made available through the Bureau of Economic Geology, our research subcontractor. Bureau scientists have added theoretical analyses to this report that provide valuable insights into several key distinctions between 9-C and 3-C seismic data. These theoretical considerations about distinctions between 3-C and 9-C S-wave data are presented first, followed by a discussion of differences between processing 9-C common-midpoint data and 3-C common-conversion-point data. Examples of 9-C and 3-C data are illustrated and discussed in the last part of the report. The key findings of this study are that each S-wave mode (SH-SH, SV-SV, or PSV) involves a different subsurface illumination pattern and a different reflectivity behavior and that each mode senses a different Earth fabric along its propagation path because of the unique orientation of its particle-displacement vector. As a result of the distinct orientation of each mode's particle-displacement vector, one mode may react to a critical geologic condition in a more optimal way than

  18. Molecular docking and 3D-QSAR studies on inhibitors of DNA damage signaling enzyme human PARP-1.

    Science.gov (United States)

    Fatima, Sabiha; Bathini, Raju; Sivan, Sree Kanth; Manga, Vijjulatha

    2012-08-01

    Poly (ADP-ribose) polymerase-1 (PARP-1) operates in a DNA damage signaling network. Molecular docking and three dimensional-quantitative structure activity relationship (3D-QSAR) studies were performed on human PARP-1 inhibitors. Docked conformation obtained for each molecule was used as such for 3D-QSAR analysis. Molecules were divided into a training set and a test set randomly in four different ways, partial least square analysis was performed to obtain QSAR models using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). Derived models showed good statistical reliability that is evident from their r², q²(loo) and r²(pred) values. To obtain a consensus for predictive ability from all the models, average regression coefficient r²(avg) was calculated. CoMFA and CoMSIA models showed a value of 0.930 and 0.936, respectively. Information obtained from the best 3D-QSAR model was applied for optimization of lead molecule and design of novel potential inhibitors.

  19. Three-dimensional immersive virtual reality for studying cellular compartments in 3D models from EM preparations of neural tissues

    KAUST Repository

    Cali, Corrado

    2015-07-14

    Advances for application of electron microscopy to serial imaging are opening doors to new ways of analyzing cellular structure. New and improved algorithms and workflows for manual and semiautomated segmentation allow to observe the spatial arrangement of the smallest cellular features with unprecedented detail in full three-dimensions (3D). From larger samples, higher complexity models can be generated; however, they pose new challenges to data management and analysis. Here, we review some currently available solutions and present our approach in detail. We use the fully immersive virtual reality (VR) environment CAVE (cave automatic virtual environment), a room where we are able to project a cellular reconstruction and visualize in 3D, to step into a world created with Blender, a free, fully customizable 3D modeling software with NeuroMorph plug-ins for visualization and analysis of electron microscopy (EM) preparations of brain tissue. Our workflow allows for full and fast reconstructions of volumes of brain neuropil using ilastik, a software tool for semiautomated segmentation of EM stacks. With this visualization environment, we can walk into the model containing neuronal and astrocytic processes to study the spatial distribution of glycogen granules, a major energy source that is selectively stored in astrocytes. The use of CAVE was key to observe a nonrandom distribution of glycogen, and led us to develop tools to quantitatively analyze glycogen clustering and proximity to other subcellular features. This article is protected by copyright. All rights reserved.

  20. From 1D chain to 3D network: A theoretical study on TiO{sub 2} low dimensional structures

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Ling-ju; He, Tao, E-mail: het@nanoctr.cn [CAS Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190 (China); Zeng, Zhi [Chinese Academy of Sciences, Institute of Solid State Physics, Hefei 230031 (China)

    2015-06-14

    We have performed a systematic study on a series of low dimensional TiO{sub 2} nanostructures under density functional theory methods. The geometries, stabilities, growth mechanism, and electronic structures of 1D chain, 2D ring, 2D ring array, and 3D network of TiO{sub 2} nanostructures are analyzed. Based on the Ti{sub 2}O{sub 4} building unit, a series of 1D TiO{sub 2} nano chains and rings can be built. Furthermore, 2D ring array and 3D network nanostructures can be constructed from 1D chains and rings. Among non-periodic TiO{sub 2} chain and ring structures, one series of ring structures is found to be more stable. The geometry model of the 2D ring arrays and 3D network structures in this work has provided a theoretical understanding on the structure information in experiments. Based on these semiconductive low dimensional structures, moreover, it can help to understand and design new hierarchical TiO{sub 2} nanostructure in the future.

  1. Engineering Multi-scale Electrospun Structure for Integration into Architected 3-D Nanofibers for Cimex Annihilation: Fabrication and Mechanism Study

    Science.gov (United States)

    He, Shan; Zhang, Linxi; Liu, Ying; Rafailovich, Miriam; Garcia CenterPolymers at Engineered Interfaces Team

    In this study, engineered electrospun scaffolds with fibers oriented with designed curvature in three dimensions (3D) including the looped structure were developed based on the principle of electrostatic repulsion. Here we illustrate that 3D electrospun recycled polystyrene fibers could closely mimic the unique architectures of multi-direction and multi-layer nano-spiderweb. In contrast to virgin PS, the recycled PS (Dart Styrofoam) are known to contain zinc stearate which acts as a surfactant resulting in higher electrical charge and larger fiber curvature, hence, lower modulus. The surfactant, which is known to decrease the surface tension, may have also been effective at decreasing the confinement of the PS, where chain stretching was shown to occur, in response to the high surface tension at the air interface. Three dimensional flexible architecture with complex structures are shown to be necessary in order to block the motion of Cimex lectularius. Here we show how an engineered electrospun network of surfactant modified polymer fibers with calculated dimensions can be used to immobilize the insects. The mechanical response of the fibers has to be specifically tailored so that it is elastically deformed, without fracturing or flowing. Carefully controlling and tailoring the electrospinning parameters we can now utilize architected 3D nanofiber to create an environmental-friendly Cimex immobilization device which can lead to annihilation solution for all the other harmful insects.

  2. The Representation of Cultural Heritage from Traditional Drawing to 3d Survey: the Case Study of Casamary's Abbey

    Science.gov (United States)

    Canciani, M.; Saccone, M.

    2016-06-01

    In 3D survey the aspects most discussed in the scientific community are those related to the acquisition of data from integrated survey (laser scanner, photogrammetric, topographic and traditional direct), rather than those relating to the interpretation of the data. Yet in the methods of traditional representation, the data interpretation, such as that of the philological reconstruction, constitutes the most important aspect. It is therefore essential in modern systems of survey and representation, filter the information acquired. In the system, based on the integrated survey that we have adopted, the 3D object, characterized by a cloud of georeferenced points, defined but their color values, defines the core of the elaboration. It allows to carry out targeted analysis, using section planes as a tool of selection and filtering data, comparable with those of traditional drawings. In the case study of the Abbey of Casamari (Veroli), one of the most important Cistercian Settlement in Italy, the survey made for an Agreement with the Ministry of Cultural Heritage and Activities and Tourism (MiBACT) and University of RomaTre, within the project "Accessment of the sismic safety of the state museum", the reference 3D model, consisting of the superposition and geo-references data from various surveys, is the tool with which yo develop representative models comparable to traditional ones. It provides the necessary spatial environment for drawing up plans and sections with a definition such as to develop thematic analysis related to phases of construction, state of deterioration and structural features.

  3. Study on Information Management for the Conservation of Traditional Chinese Architectural Heritage - 3d Modelling and Metadata Representation

    Science.gov (United States)

    Yen, Y. N.; Weng, K. H.; Huang, H. Y.

    2013-07-01

    After over 30 years of practise and development, Taiwan's architectural conservation field is moving rapidly into digitalization and its applications. Compared to modern buildings, traditional Chinese architecture has considerably more complex elements and forms. To document and digitize these unique heritages in their conservation lifecycle is a new and important issue. This article takes the caisson ceiling of the Taipei Confucius Temple, octagonal with 333 elements in 8 types, as a case study for digitization practise. The application of metadata representation and 3D modelling are the two key issues to discuss. Both Revit and SketchUp were appliedin this research to compare its effectiveness to metadata representation. Due to limitation of the Revit database, the final 3D models wasbuilt with SketchUp. The research found that, firstly, cultural heritage databasesmustconvey that while many elements are similar in appearance, they are unique in value; although 3D simulations help the general understanding of architectural heritage, software such as Revit and SketchUp, at this stage, could onlybe used tomodel basic visual representations, and is ineffective indocumenting additional critical data ofindividually unique elements. Secondly, when establishing conservation lifecycle information for application in management systems, a full and detailed presentation of the metadata must also be implemented; the existing applications of BIM in managing conservation lifecycles are still insufficient. Results of the research recommends SketchUp as a tool for present modelling needs, and BIM for sharing data between users, but the implementation of metadata representation is of the utmost importance.

  4. The influence of neighbouring clouds on the clear sky reflectance studied with the 3-D transport code RADUGA

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaeva, O.V. [Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya Sq. 4, 125047 Moscow (Russian Federation); Bass, L.P. [Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya Sq. 4, 125047 Moscow (Russian Federation); Germogenova, T.A. [Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya Sq. 4, 125047 Moscow (Russian Federation); Kokhanovsky, A.A. [Institute of Remote Sensing, Bremen University, Otto Hahn Allee 1, 28334 Bremen (Germany) and Institute of Physics, National Academy of Sciences of Belarus, F. Skarina Avenue 70, 220072 Minsk (Belarus)]. E-mail: alexk@iup.physik.uni-bremen.de; Kuznetsov, V.S. [Research Scientific Center ' Kurchatov Institute' , Kurchatov Sq. 1, 123182 Moscow (Russian Federation); Mayer, B. [Institute of Atmospheric Physics, DLR, 82234 Oberpfaffenhofen (Germany)

    2005-09-01

    Operational remote sensing of terrestrial atmosphere is heavily based on the 1-D radiative transfer equation. However, cloudy scenes are influenced by 3-D effects (e.g., illumination from cloud sides, etc.). This leads to biases in aerosol/cloud/land/ocean retrieval schemes for scenes with clouds. These biases can be understood and quantified only with the use of the 3-D radiative transfer theory, which allows to account for arbitrary spatial variation of atmospheric parameters. The task of this paper is twofold. First of all we introduce a novel technique for the solution of the 3-D radiative transfer equation based on the grid approximations and the straightforward iteration procedure realised on supercomputers with parallel architecture. We study the performance of our technique comparing with the solutions obtained by the Monte-Carlo code. A close correspondence is found. Secondly, we quantify the influence of neighbouring clouds on the clear sky reflection function at the nadir observation depending on the solar illumination conditions. We find that the influence of cloud on the clear sky reflectance function is not negligible (even outside the cloud geometrical shadow). Thus, the peculiar inner boundary layer arises in the sky reflectance function with shadowing and brightening effects.

  5. Use of 3-D magnetic resonance electrical impedance tomography in detecting human cerebral stroke: a simulation study

    Institute of Scientific and Technical Information of China (English)

    GAO Nuo; ZHU Shan-an; HE Bin

    2005-01-01

    We have developed a new three dimensional (3-D) conductivity imaging approach and have used it to detect human brain conductivity changes corresponding to acute cerebral stroke. The proposed Magnetic Resonance Electrical Impedance Tomography (MREIT) approach is based on the J-Substitution algorithm and is expanded to imaging 3-D subject conductivity distribution changes. Computer simulation studies have been conducted to evaluate the present MREIT imaging approach.Simulations of both types of cerebral stroke, hemorrhagic stroke and ischemic stroke, were performed on a four-sphere head model Simulation results showed that the correlation coefficient (CC) and relative error (RE) between target and estimated conductivity distributions were 0.9245±0.0068 and 8.9997%±0.0084%, for hemorrhagic stroke, and 0.6748±0.0197 and 8.8986%±0.0089%,for ischemic stroke, when the SNR (signal-to-noise radio) of added GWN (Gaussian White Noise) was 40. The convergence characteristic was also evaluated according to the changes of CC and RE with different iteration numbers. The CC increases and RE decreases monotonously with the increasing number of iterations. The present simulation results show the feasibility of the proposed 3-D MREIT approach in hemorrhagic and ischemic stroke detection and suggest that the method may become a useful alternative in clinical diagnosis of acute cerebral stroke in humans.

  6. Survey of Robot 3D Path Planning Algorithms

    OpenAIRE

    Liang Yang; Juntong Qi; Dalei Song; Jizhong Xiao; Jianda Han; Yong Xia

    2016-01-01

    Robot 3D (three-dimension) path planning targets for finding an optimal and collision-free path in a 3D workspace while taking into account kinematic constraints (including geometric, physical, and temporal constraints). The purpose of path planning, unlike motion planning which must be taken into consideration of dynamics, is to find a kinematically optimal path with the least time as well as model the environment completely. We discuss the fundamentals of these most successful robot 3D path...

  7. A comparison study of two Tricept units for reconfigurable parallel kinematic machines

    Institute of Scientific and Technical Information of China (English)

    Shi Junshan; Tang Xiaoqiang; Lin Chunshen; Wang Liping

    2005-01-01

    This paper presents a comparison study of workspace and dexterity of two Tricept units for Reconfigurable Parallel Kinematic Machines (RPKMs). The modular leg of RPKMs is designed and the RPKMs can be built by changing the setting of modules. A compositive kinematic model is developed accordingly. The inverse kinematics and Jacobian of these two Tricept units are analyzed. Considering workspace volume and dexterity, the effects of geometric size of some modules on the two Tricept units are discussed. In the end, comparison results of these two Tricept units are given. The comparison of two kinds of Parallel Kinematic Machines (PKMs) can be of help in the design and configuration planning of the RPKMs.

  8. Chromosome distribution in human sperm – a 3D multicolor banding-study

    Directory of Open Access Journals (Sweden)

    Mrasek Kristin

    2008-11-01

    Full Text Available Abstract Background Nuclear architecture studies in human sperm are sparse. By now performed ones were practically all done on flattened nuclei. Thus, studies close at the in vivo state of sperm, i.e. on three-dimensionally conserved interphase cells, are lacking by now. Only the position of 14 chromosomes in human sperm was studied. Results Here for the first time a combination of multicolor banding (MCB and three-dimensional analysis of interphase cells was used to characterize the position and orientation of all human chromosomes in sperm cells of a healthy donor. The interphase nuclei of human sperm are organized in a non-random way, driven by the gene density and chromosome size. Conclusion Here we present the first comprehensive results on the nuclear architecture of normal human sperm. Future studies in this tissue type, e.g. also in male patients with unexplained fertility problems, may characterize yet unknown mechanisms of infertility.

  9. A 3D biomechanical vocal tract model to study speech production control: How to take into account the gravity?

    CERN Document Server

    Buchaillard, S; Payan, Y; Buchaillard, St\\'{e}phanie; Perrier, Pascal; Payan, Yohan

    2007-01-01

    This paper presents a modeling study of the way speech motor control can deal with gravity to achieve steady-state tongue positions. It is based on simulations carried out with the 3D biomechanical tongue model developed at ICP, which is now controlled with the Lambda model (Equilibrium-Point Hypothesis). The influence of short-delay orosensory feedback on posture stability is assessed by testing different muscle force/muscle length relationships (Invariant Characteristics). Muscle activation patterns necessary to maintain the tongue in a schwa position are proposed, and the relations of head position, tongue shape and muscle activations are analyzed.

  10. 3D visualization and quantification of bone and teeth mineralization for the study of osteo/dentinogenesis in mice models

    Science.gov (United States)

    Marchadier, A.; Vidal, C.; Ordureau, S.; Lédée, R.; Léger, C.; Young, M.; Goldberg, M.

    2011-03-01

    Research on bone and teeth mineralization in animal models is critical for understanding human pathologies. Genetically modified mice represent highly valuable models for the study of osteo/dentinogenesis defects and osteoporosis. Current investigations on mice dental and skeletal phenotype use destructive and time consuming methods such as histology and scanning microscopy. Micro-CT imaging is quicker and provides high resolution qualitative phenotypic description. However reliable quantification of mineralization processes in mouse bone and teeth are still lacking. We have established novel CT imaging-based software for accurate qualitative and quantitative analysis of mouse mandibular bone and molars. Data were obtained from mandibles of mice lacking the Fibromodulin gene which is involved in mineralization processes. Mandibles were imaged with a micro-CT originally devoted to industrial applications (Viscom, X8060 NDT). 3D advanced visualization was performed using the VoxBox software (UsefulProgress) with ray casting algorithms. Comparison between control and defective mice mandibles was made by applying the same transfer function for each 3D data, thus allowing to detect shape, colour and density discrepencies. The 2D images of transverse slices of mandible and teeth were similar and even more accurate than those obtained with scanning electron microscopy. Image processing of the molars allowed the 3D reconstruction of the pulp chamber, providing a unique tool for the quantitative evaluation of dentinogenesis. This new method is highly powerful for the study of oro-facial mineralizations defects in mice models, complementary and even competitive to current histological and scanning microscopy appoaches.

  11. A 3D MHD simulation of SN 1006: a polarized emission study for the turbulent case

    Science.gov (United States)

    Velázquez, P. F.; Schneiter, E. M.; Reynoso, E. M.; Esquivel, A.; De Colle, F.; Toledo-Roy, J. C.; Gómez, D. O.; Sieyra, M. V.; Moranchel-Basurto, A.

    2017-01-01

    Three dimensional magnetohydrodynamical simulations were carried out in order to perform a new polarization study of the radio emission of the supernova remnant SN 1006. These simulations consider that the remnant expands into a turbulent interstellar medium (including both magnetic field and figuredensity perturbations). Based on the referenced-polar angle technique, a statistical study was done on observational and numerical magnetic field position-angle distributions. Our results show that a turbulent medium with an adiabatic index of 1.3 can reproduce the polarization properties of the SN 1006 remnant. This statistical study reveals itself as a useful tool for obtaining the orientation of the ambient magnetic field, previous to be swept up by the main supernova remnant shock.

  12. A Detailed Study of FDIRC Prototype with Waveform Digitizing Electronics in Cosmic Ray Telescope Using 3D Tracks

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, K.; Dey, B.; /Hawaii U. /UC, Riverside; Aston, D.; Leith, D.W.G.S.; Ratcliff, B.; /SLAC; Roberts, D.; /Maryland U.; Ruckman, L.; /Hawaii U.; Shtol, D.; /Novosibirsk, IYF; Varner, G.S.; /Hawaii U.; Va' vra, J.; Vavra, Jerry; /SLAC

    2012-07-30

    We present a detailed study of a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC) with waveform digitizing electronics. In this test study, the FDIRC prototype has been instrumented with seven Hamamatsu H-8500 MaPMTs. Waveforms from {approx}450 pixels are digitized with waveform sampling electronics based on the BLAB2 ASIC, operating at a sampling speed of {approx}2.5 GSa/s. The FDIRC prototype was tested in a large cosmic ray telescope (CRT) providing 3D muon tracks with {approx}1.5 mrad angular resolution and muon energy of E{sub muon} > 1.6 GeV. In this study we provide a detailed analysis of the tails in the Cherenkov angle distribution as a function of various variables, compare experimental results with simulation, and identify the major contributions to the tails. We demonstrate that to see the full impact of these tails on the Cherenkov angle resolution, it is crucial to use 3D tracks, and have a full understanding of the role of ambiguities. These issues could not be fully explored in previous FDIRC studies where the beam was perpendicular to the quartz radiator bars. This work is relevant for the final FDIRC prototype of the PID detector at SuperB, which will be tested this year in the CRT setup.

  13. A Detailed Study of FDIRC Prototype with Waveform Digitizing Electronics in Cosmic Ray Telescope Using 3D Tracks.

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, K

    2012-07-01

    We present a detailed study of a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC) with waveform digitizing electronics. In this test study, the FDIRC prototype has been instrumented with seven Hamamatsu H-8500 MaPMTs. Waveforms from ~450 pixels are digitized with waveform sampling electronics based on the BLAB2 ASIC, operating at a sampling speed of ~2.5 GSa/s. The FDIRC prototype was tested in a large cosmic ray telescope (CRT) providing 3D muon tracks with ~1.5 mrad angular resolution and muon energy of Emuon greater than 1.6 GeV. In this study we provide a detailed analysis of the tails in the Cherenkov angle distribution as a function of various variables, compare experimental results with simulation, and identify the major contributions to the tails. We demonstrate that to see the full impact of these tails on the Cherenkov angle resolution, it is crucial to use 3D tracks, and have a full understanding of the role of ambiguities. These issues could not be fully explored in previous FDIRC studies where the beam was perpendicular to the quartz radiator bars. This work is relevant for the final FDIRC prototype of the PID detector at SuperB, which will be tested this year in the CRT setup.

  14. Synthesis, biological evaluation and 3D-QSAR studies of new chalcone derivatives as inhibitors of human P-glycoprotein.

    Science.gov (United States)

    Parveen, Zahida; Brunhofer, Gerda; Jabeen, Ishrat; Erker, Thomas; Chiba, Peter; Ecker, Gerhard F

    2014-04-01

    P-glycoprotein (P-gp) is an ATP-dependent multidrug resistance efflux transporter that plays an important role in anticancer drug resistance and in pharmacokinetics of medicines. Despite a large number of structurally and functionally diverse compounds, also flavonoids and chalcones have been reported as inhibitors of P-gp. The latter share some similarity with the well studied class of propafenones, but do not contain a basic nitrogen atom. Furthermore, due to their rigidity, they are suitable candidates for 3D-QSAR studies. In this study, a set of 22 new chalcone derivatives were synthesized and evaluated in a daunomycin efflux inhibition assay using the CCRF.CEM.VCR1000 cell line. The compound 10 showed the highest activity (IC50=42nM), which is one order of magnitude higher than the activity for an equilipohillic propafenone analogue. 2D- and 3D-QSAR studies indicate the importance of H-bond acceptors, methoxy groups, hydrophobic groups as well as the number of rotatable bonds as pharmacophoric features influencing P-gp inhibitory activity.

  15. Study of proximal femoral bone perfusion with 3D T1 dynamic contrast-enhanced MRI: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Budzik, Jean-Francois [Groupe Hospitalier de l' Institut Catholique de Lille / Faculte Libre de Medecine, Service d' Imagerie Medicale, Lille (France); Centre de Consultation et d' Imagerie de l' Appareil Locomoteur, CHRU de Lille, Service de Radiologie et Imagerie Musculosquelettique, Lille (France); Universite Catholique de Lille, Lille (France); Universite Nord de France, Lille (France); EA 4490 PMOI (Physiopathologie des Maladies Osseuses Inflammatoires) IFR 114 PRES Universite Lille Nord de France, Lille (France); Lefebvre, Guillaume; El Rafei, Mazen [Centre de Consultation et d' Imagerie de l' Appareil Locomoteur, CHRU de Lille, Service de Radiologie et Imagerie Musculosquelettique, Lille (France); Universite Nord de France, Lille (France); CHU Lille, Lille (France); Forzy, Gerard [Universite Catholique de Lille, Lille (France); Universite Nord de France, Lille (France); Groupe Hospitalier de l' Institut Catholique de Lille, Laboratoire de Biologie, Departement de Biostatistiques, Lille (France); Chechin, David [Philips Medical Systems, Suresnes (France); Cotten, Anne [Centre de Consultation et d' Imagerie de l' Appareil Locomoteur, CHRU de Lille, Service de Radiologie et Imagerie Musculosquelettique, Lille (France); Universite Nord de France, Lille (France); EA 4490 PMOI (Physiopathologie des Maladies Osseuses Inflammatoires) IFR 114 PRES Universite Lille Nord de France, Lille (France); CHU Lille, Lille (France)

    2014-12-15

    The objective of this study was to compare measurements of semi-quantitative and pharmacokinetic parameters in areas of red (RBM) and yellow bone marrow (YBM) of the hip, using an in-house high-resolution DCE T1 sequence, and to assess intra- and inter-observer reproducibility of these measurements. The right hips of 21 adult patients under 50 years of age were studied. Spatial resolution was 1.8 x 1.8 x 1.8 mm{sup 3}, and temporal resolution was 13.5 seconds. Two musculoskeletal radiologists independently processed DCE images and measured semi-quantitative and pharmacokinetic parameters in areas of YBM and RBM. Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were calculated. Intra- and inter-observer reproducibility was assessed. Area under the curve (AUC) and initial slope (IS) were significantly greater for RBM than for YBM (p < 0.05). K{sup trans} and k{sub ep} were also significantly greater for RBM (p < 0.05). There was no significant difference in time to peak between the regions (p < 0.05). SNR, CNR, and intra- and inter-observer reproducibility were all good. DCE study of the whole hip is feasible with high spatial resolution using a 3D T1 sequence. Measures were possible even in low vascularized areas of the femoral head. K{sup trans}, k{sub ep}, AUC, and IS values were significantly different between red and yellow marrow, whereas TTP values were not. (orig.)

  16. A Design Study of Direct-Touch Interaction for Exploratory 3D Scientific Visualization

    NARCIS (Netherlands)

    Klein, Tijmen; Gueniat, Florimond; Pastur, Luc; Vernier, Frederic; Isenberg, Tobias

    2012-01-01

    We present an interaction design study of several non-overlapping direct-touch interaction widgets, postures, and bi-manual techniques to support the needs of scientists who are exploring a dataset. The final interaction design supports navigation/zoom, cutting plane interaction, a drilling explorat

  17. Comments and corrections on 3D modeling studies of locomotor muscle moment arms in archosaurs

    Directory of Open Access Journals (Sweden)

    Karl Bates

    2015-10-01

    Full Text Available In a number of recent studies we used computer modeling to investigate the evolution of muscle leverage (moment arms and function in extant and extinct archosaur lineages (crocodilians, dinosaurs including birds and pterosaurs. These studies sought to quantify the level of disparity and convergence in muscle moment arms during the evolution of bipedal and quadrupedal posture in various independent archosaur lineages, and in doing so further our understanding of changes in anatomy, locomotion and ecology during the group’s >250 million year evolutionary history. Subsequent work by others has led us to re-evaluate our models, which revealed a methodological error that impacted on the results obtained from the abduction–adduction and long-axis rotation moment arms in our published studies. In this paper we present corrected abduction–adduction and long axis rotation moment arms for all our models, and evaluate the impact of this new data on the conclusions of our previous studies. We find that, in general, our newly corrected data differed only slightly from that previously published, with very few qualitative changes in muscle moments (e.g., muscles originally identified as abductors remained abductors. As a result the majority of our previous conclusions regarding the functional evolution of key muscles in these archosaur groups are upheld.

  18. A Challenge to Classical Facial Proportionality Studies: Conventional Profile and 3d Photography Versus Silhouettes

    Science.gov (United States)

    2012-04-01

    facial asymmetry in stereophotogrammetry, video and laser scanning. In relating this to the face and the study of orthodontics, Drs. Gross, Trotman and...attractiveness. They used digital profile and cephalometric x-rays of three men and three women and altered them with aid of Dolphin Imaging

  19. Feasibility of a 3D human airway epithelial model to study respiratory absorption

    NARCIS (Netherlands)

    Reus, A.A.; Maas, W.J.M.; Jansen, H.T.; Constant, S.; Staal, Y.C.M.; Triel, J.J. van; Kuper, C.F.

    2014-01-01

    The respiratory route is an important portal for human exposure to a large variety of substances. Consequently, there is an urgent need for realistic in vitro strategies for evaluation of the absorption of airborne substances with regard to safety and efficacy assessment. The present study investiga

  20. Collapse and coalescence of spherical voids subject to intense shearing: studied in full 3D

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Dahl, Jonas; Tvergaard, Viggo

    2012-01-01

    Micro-mechanical 2D cell model studies have revealed ductile failure during intense shearing to be governed by the interaction of neighbouring voids, which collapse to micro-cracks and continuously rotate and elongate until coalescence occurs. For a three-dimensional void structure, this implies...

  1. 3D technology of Sony Bloggie has no advantage in decision-making of tennis serve direction: A randomized placebo-controlled study.

    Science.gov (United States)

    Liu, Sicong; Ritchie, Jason; Sáenz-Moncaleano, Camilo; Ward, Savanna K; Paulsen, Cody; Klein, Tyler; Gutierrez, Oscar; Tenenbaum, Gershon

    2017-03-21

    This study aimed at exploring whether 3D technology enhances tennis decision-making under the conceptual framework of human performance model. A 3 (skill-level: varsity, club, recreational) × 3 (experimental condition: placebo, weak 3D [W3D], strong 3D [S3D]) between-participant design was used. Allocated to experimental conditions by a skill-level stratified randomization, 105 tennis players judged tennis serve direction from video scenarios and rated their perceptions of enjoyment, flow, and presence during task performance. Results showed that varsity players made more accurate decisions than less skilled ones. Additionally, applying 3D technology to typical video displays reduced tennis players' decision-making accuracy, although wearing the 3D glasses led to a placebo effect that shortened the decision-making reaction time. The unexpected negative effect of 3D technology on decision-making was possibly due to participants being more familiar to W3D than to S3D, and relatedly, a suboptimal task-technology match. Future directions for advancing this area of research are offered. Highlights • 3D technology augments binocular depth cues to tradition video displays, and thus results in the attainment of more authentic visual representation. This process enhances task fidelity in researching perceptual-cognitive skills in sports. • The paper clarified both conceptual and methodological difficulties in testing 3D technology in sports settings. Namely, the nomenclature of video footage (with/without 3D technology) and the possible placebo effect (arising from wearing glasses of 3D technology) merit researchers' attention. • Participants varying in level of domain-specific expertise were randomized into viewing conditions using a placebo-controlled design. Measurement consisted of both participants' subjective experience (i.e., presence, flow, and enjoyment) and objective performance (i.e., accuracy and reaction time) in a decision-making task. • Findings

  2. A Case Study of a Hybrid Parallel 3D Surface Rendering Graphics Architecture

    DEFF Research Database (Denmark)

    Holten-Lund, Hans Erik; Madsen, Jan; Pedersen, Steen

    1997-01-01

    This paper presents a case study in the design strategy used inbuilding a graphics computer, for drawing very complex 3Dgeometric surfaces. The goal is to build a PC based computer systemcapable of handling surfaces built from about 2 million triangles, andto be able to render a perspective view...... of these on a computer displayat interactive frame rates, i.e. processing around 50 milliontriangles per second. The paper presents a hardware/softwarearchitecture called HPGA (Hybrid Parallel Graphics Architecture) whichis likely to be able to carry out this task. The case study focuses ontechniques to increase...... the clock frequency as well as the parallelismof the system. This paper focuses on the back-end graphics pipeline,which is responsible for rasterizing triangles.%with a practically linear increase in performance. A pure software implementation of the proposed architecture iscurrently able to process 300...

  3. Critical Exponents of the Classical 3D Heisenberg Model A Single-Cluster Monte Carlo Study

    CERN Document Server

    Holm, C; Holm, Christian; Janke, Wolfhard

    1993-01-01

    We have simulated the three-dimensional Heisenberg model on simple cubic lattices, using the single-cluster Monte Carlo update algorithm. The expected pronounced reduction of critical slowing down at the phase transition is verified. This allows simulations on significantly larger lattices than in previous studies and consequently a better control over systematic errors. In one set of simulations we employ the usual finite-size scaling methods to compute the critical exponents $\

  4. Coordination diversity of new mononucleating hydrazone in 3d metal complexes: Synthesis, characterization and structural studies

    Directory of Open Access Journals (Sweden)

    RAJESH S. BALIGAR

    2006-12-01

    Full Text Available The mononucleating hydrazone ligand LH3, a condensation product of salicyloylhydrazine and (2-formylphenoxyacetic acid, was synthesized and its coordination behavior with first row transition metal(II ions was investigated by isolating and elucidating the structure of the complexes using elemental analysis, conductivity and magnetic susceptibility measurements, as well as IR, 1H-NMR, electronic and EPR spectral techniques. The ligand forms mononuclear metal(II complexes of the type [CoLH(H2O2], [NiLH(H2O2, [CuLH] and [ZnLH]. The ligand field parameters, Dq, B and b values, in the case of the cobalt and nickel complexes support not only the octahedral geometry around the metal ion, but also imply the covalent nature of the bonding in the complexes. The EPR study revealed the presence of a spin exchange interaction in the solid copper complex and the covalent nature of the bonding. The 1H-NMR study of the zinc(II complex indicated the non-involvement of the COOH group in the coordination. The physico-chemical study supports for the presence of octahedral geometry around cobalt(II, nickel(II and tetrahedral geometry around copper(II and zinc(II ions.

  5. High-frequency 3D echodentographic imaging modality for early assessment of periodontal diseases: in vitro study

    Science.gov (United States)

    Mahmoud, Ahmed M.; Ngan, Peter; Crout, Richard; Mukdadi, Osama M.

    2009-02-01

    The use of ultrasound in dentistry is still an open growing area of research. Currently, there is a lack of imaging modalities to accurately predict minute structures and defects in the jawbone. In particular, the inability of 2D radiographic images to detect bony periodontal defects resulted from infection of the periodontium. This study investigates the feasibility of high frequency ultrasound to reconstruct high resolution 3D surface images of human jawbone. Methods: A dentate and non-dentate mandibles were used in this study. The system employs high frequency single-element ultrasound focused transducers (15-30 MHz) for scanning. Continuous acquisition using a 1 GHz data acquisition card is synchronized with a high precision two-dimensional stage positioning system of +/-1 μm resolution for acquiring accurate and quantitative measurements of the mandible in vitro. Radio frequency (RF) signals are acquired laterally 44-45.5 μm apart for each frame. Different frames are reconstructed 500 μm apart for the 3D reconstruction. Signal processing algorithms are applied on the received ultrasound signals for filtering, focusing, and envelope detection before frame reconstruction. Furthermore, an edge detection technique is adopted to detect the bone surface in each frame. Finally, all edges are combined together in order to render a 3D surface image of the jawbone. Major anatomical landmarks on the resultant images were confirmed with the anatomical structures on the mandibles to show the efficacy of the system. Comparison were also made with conventional 2D radiographs to show the superiority of the ultrasound imaging system in diagnosing small defects in the lateral, axial and elevation planes of space. Results: The landmarks on all ultrasound images matched with those on the mandible, indicating the efficacy of the system in detecting small structures in human jaw bones. Comparison with conventional 2D radiographic images of the same mandible showed superiority of

  6. Benchmark Study of 3D Pore-scale Flow and Solute Transport Simulation Methods

    Science.gov (United States)

    Scheibe, T. D.; Yang, X.; Mehmani, Y.; Perkins, W. A.; Pasquali, A.; Schoenherr, M.; Kim, K.; Perego, M.; Parks, M. L.; Trask, N.; Balhoff, M.; Richmond, M. C.; Geier, M.; Krafczyk, M.; Luo, L. S.; Tartakovsky, A. M.

    2015-12-01

    Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that benchmark study to include additional models of the first type based on the immersed-boundary method (IMB), lattice Boltzmann method (LBM), and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries in the manner of PNMs has not been fully determined. We apply all five approaches (FVM-based CFD, IMB, LBM, SPH and PNM) to simulate pore-scale velocity distributions and nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The benchmark study was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This study provides support for confidence in a variety of pore-scale modeling methods, and motivates further development and application of pore-scale simulation methods.

  7. 3D technology applied to quantification studies of pottery: Eve 2.0

    OpenAIRE

    Busto, Miguel; Carrero, Miguel

    2016-01-01

    In archaeological excavations, pottery fragments are the most common remains. As a consequence, it seems appropriate to propose a methodology that can help in their study. Therefore, we intend to propose a method that will alow us to identify from a fragment of pottery, the size of the vessel it came from, basing on partially completed pieces. This approach is not new, since between the 1980s and 1990s, C. Orton, P. Tyers and A. Vince started discussing about the estimated vessel equivalent (...

  8. Experimental study on gas permeability by adsorption under 3D-stress

    Institute of Scientific and Technical Information of China (English)

    LONG Qing-ming; WEN Guang-cai; ZOU Yin-hui; ZHAO Xu-sheng

    2009-01-01

    Using self-developed gas-seepage experimental installation, under the same effective stress conditions, coal permeability experiments on different adsorption charac-teristics of gases, different temperatures and different gas adsorption contents were per-formed, and the influence law of adsorption on coal permeability was studied. At the same time, experimental analogy showed clearly that gas drawing plucks the permeability varia-tion law. The results show that adsorption has a major impact on coal permeability. The greater the adsorption, the more the gas adsorption capacity and the coal permeability becomes smaller. Permeability becomes smaller along with confining of pressure and temperature, and this is in accord with local practice results.

  9. Plasma environment of magnetized asteroids: a 3-D hybrid simulation study

    Directory of Open Access Journals (Sweden)

    S. Simon

    2006-03-01

    Full Text Available The interaction of a magnetized asteroid with the solar wind is studied by using a three-dimensional hybrid simulation code (fluid electrons, kinetic ions. When the obstacle's intrinsic magnetic moment is sufficiently strong, the interaction region develops signs of magnetospheric structures. On the one hand, an area from which the solar wind is excluded forms downstream of the obstacle. On the other hand, the interaction region is surrounded by a boundary layer which indicates the presence of a bow shock. By analyzing the trajectories of individual ions, it is demonstrated that kinetic effects have global consequences for the structure of the interaction region.

  10. 3D Reconfigurable NoC Multiprocessor Portable Sounder for Plasmaspheric Studies

    Science.gov (United States)

    Dekoulis, George

    2016-07-01

    The paper describes the development of a prototype imaging sounder for studying the irregularities of the ionospheric plasma. Cutting edge three-dimensional reconfigurable logic has been implemented allowing highly-intensive scientific calculations to be performed in hardware. The new parallel processing algorithms implemented offer a significant amount of performance improvement in the range of 80% compared to existing digital sounder implementations. The current system configuration is taking into consideration the modern scientific needs for portability during scientific campaigns. The prototype acts as a digital signal processing experimentation platform for future larger-scale digital sounder instrumentations for measuring complex planetary plasmaspheric environments.

  11. Studies of the 3D structure of the proton at Jlab

    Energy Technology Data Exchange (ETDEWEB)

    Avakian, Harut A. [JLAB, Newport News, VA (United States)

    2014-01-01

    In recent years parton distributions, describing longitudinal momentum, helicity and transversity distributions of quarks and gluons, have been generalized to account also for transverse degrees of freedom. Two new sets of more general distributions, Transverse Momentum Distributions (TMDs) and Generalized Parton Distributions (GPDs) were introduced to describe transverse momentum and spatial distributions of partons. Great progress has been made since then in measurements of different Single Spin Asymmetries (SSAs) in semi-inclusive and hard exclusive processes, providing access to TMDs and GPDs, respectively. Studies of TMDs and GPDs are also among the main driving forces of the JLab 12 GeV upgrade project.

  12. A single particle plasmon resonance study of 3D conical nanoantennas.

    Science.gov (United States)

    Schäfer, Christian; Gollmer, Dominik A; Horrer, Andreas; Fulmes, Julia; Weber-Bargioni, Alexander; Cabrini, Stefano; Schuck, P James; Kern, Dieter P; Fleischer, Monika

    2013-09-07

    Metallic nanocones are well-suited optical antennas for near-field microscopy and spectroscopy, exhibiting a number of different plasmonic modes. A major challenge in using nanocones for many applications is maximizing the signal at the tip while minimizing the background from the base. It is shown that nanocone plasmon resonance properties can be shifted over a wide range of wavelengths by variation of the substrate, material, size and shape, enabling potential control over specific modes and field distributions. The individual resonances are identified and studied by correlated single particle dark field scattering and scanning electron microscopy in combination with numerical simulations.

  13. Computational studies of hard-body and 3-D effects in plume flows

    Science.gov (United States)

    Venkatapathy, Ethiraj; Feiereisen, William J.; Obayashi, Shigeru

    1989-01-01

    Axisymmetric and three-dimensional, multi-nozzle plume flows around generic rocket geometries are investigated with a three-dimensional Navier-Stokes solver to study the interactive effects between hard body and the plume. Time-asymptotic, laminar, ideal-gas solutions obtained with a two-factor, flux-split scheme and a diagonal, upwind scheme are presented. Computed solutions to three-dimensional, multi-nozzle problems and single-nozzle, axisymmetric problems demonstrate flow field features including three-dimensionality and hard-body effects. Geometry and three-dimensional effects are shown to be significant in multi-nozzle flows.

  14. Toxicity and biocompatibility profile of 3D bone scaffold developed by Universitas Indonesia: A preliminary study

    Science.gov (United States)

    Rahyussalim A., J.; Kurniawati, T.; Aprilya, D.; Anggraini, R.; Ramahdita, Ghiska; Whulanza, Yudan

    2017-02-01

    Scaffold as a biomaterial must fulfill some requirements to be safely implanted to the human body. Toxicity and biocompatibility test are needed to evaluate scaffold material in mediating cell proliferation and differentiation, secreting extracelullar matrix and carrying biomolecular signals for cell communication. An in vitro study with mesenchymal stem cells consisted of direct contact test and indirect contact test using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium reduction assay was conducted on 4 scaffolds made of poly-L-lactic acid (PLA), polyvinyl alcohol (PVA), and hydroxyapatite-poly (vinyl alcohol) composite. There were cells-substrate adhesion impairment, morphological changes, cell death and reduction in cell proliferation seen at 2nd and 6th day in most tested scaffold. Cell count result at day-6 showed proliferation inhibition of more than 50% cell death (inhibition value >50) in all tested scaffold. In MTT assay, two scaffolds were proven non-toxic. In conclusion, various scaffold materials showed different toxicity effect. The toxicity and biocompatibility profile in this study is a preliminary data for further research aiming to use those local-made scaffolds to fill human bone defect in various needs.

  15. A Study on the Compatibility of 3-D Seismic Velocity Structures with Gravity Data of Taiwan

    Directory of Open Access Journals (Sweden)

    Horng-Yuan Yen and Hsien-Hsiang Hsieh

    2010-01-01

    Full Text Available The Bouguer anomaly of Taiwan has been revised in this study based on more accurate terrain data provided by the Taiwanese Digital Terrain Model compiled by the Taiwan Forestry Bureau. Three seismic velocity models, those determined by Rau and Wu (1995, Kim et al. (2005, and Wu et al. (2007 respectively, were selected for our study. We converted their velocity models to density models using the relationship between P-wave velocity and rock density proposed by Ludwig et al. (1970 and Barton (1986, and then calculated their corresponding gravity anomalies. According to the correlation coefficient between the Bouguer anomalies calculated from the velocity models and the revised Bouguer anomalies, the Kim et al. model was more compatible with gravity data than the other two velocity models. The differences between the revised gravity anomaly and the calculated gravity anomalies trend toward positive values at elevations higher than 2000 m. This indicates that the velocities at the shallower depths beneath the mountainous area of the three models are overdetermined, i.e., higher than the real velocities. This ratiocination implies that the crustal thickness beneath the Central Range is less than 55 km which was obtained from the velocity models.

  16. 3D polylactide-based scaffolds for studying human hepatocarcinoma processes in vitro

    Directory of Open Access Journals (Sweden)

    Roberto Scaffaro, Giada Lo Re, Salvatrice Rigogliuso and Giulio Ghersi

    2012-01-01

    Full Text Available We evaluated the combination of leaching techniques and melt blending of polymers and particles for the preparation of highly interconnected three-dimensional polymeric porous scaffolds for in vitro studies of human hepatocarcinoma processes. More specifically, sodium chloride and poly(ethylene glycol (PEG were used as water-soluble porogens to form porous and solvent-free poly(L,D-lactide (PLA-based scaffolds. Several characterization techniques, including porosimetry, image analysis and thermogravimetry, were combined to improve the reliability of measurements and mapping of the size, distribution and microarchitecture of pores. We also investigated the effect of processing, in PLA-based blends, on the simultaneous bulk/surface modifications and pore architectures in the scaffolds, and assessed the effects on human hepatocarcinoma viability and cell adhesion. The influence of PEG molecular weight on the scaffold morphology and cell viability and adhesion were also investigated. Morphological studies indicated that it was possible to obtain scaffolds with well-interconnected pores of assorted sizes. The analysis confirmed that SK-Hep1 cells adhered well to the polymeric support and emitted surface protrusions necessary to grow and differentiate three-dimensional systems. PEGs with higher molecular weight showed the best results in terms of cell adhesion and viability.

  17. The study of aeroball system for measuring 3D neutron flux distribution in reactor core

    Institute of Scientific and Technical Information of China (English)

    LuoZheng-Pei; LiFu; 等

    1997-01-01

    Aeroball system is attractive in several aspects because it can easily transport the map of neutron flux distribution to be measured from incore to outside of a reactor vessel.However,before the aeroball system is put to practical use in the heating reactor.there are four topics that have to be further studied.They are the stability of the activated positions,enhancement of signal/noise(S/N)ratio,distributed control and data-acquisition system and on-lin nbeutron flux distribution reconstruction.Besides describing the rasons for them,this paper gives out the theory,concept and solution about the first two topics and it is helptul to give the possibility to enhance the reactor-power.

  18. Novel method to dynamically load cells in 3D-hydrogels culture for blast injury studies

    Science.gov (United States)

    Sory, David R.; Areias, Anabela C.; Overby, Darryl R.; Proud, William G.

    2017-01-01

    For at least a century explosive devices have been one of the most important causes of injuries in military conflicts as well as in terrorist attacks. Although significant experimental and modelling efforts have been focussed on blast injuries at the organ or tissue level, few studies have investigated the mechanisms of blast injuries at the cellular level. This paper introduces an in vitro method compatible with living cells to examine the effects of high stress and short-duration pulses relevant to blast loadings and blunt trauma. The experimental phase involves high strain-rate axial compression of cylindrical specimens within an hermetically sealed chamber made of biocompatible polymer. Numerical simulations were performed in order to verify the experimental loading conditions and to characterize the loading path within the sample. A proof of concept is presented so as to establish a new window to address fundamental questions regarding blast injury at the cellular level.

  19. From 3D to 4D: Integration of temporal information into CT angiography studies.

    Science.gov (United States)

    Haubenreisser, Holger; Bigdeli, Amir; Meyer, Mathias; Kremer, Thomas; Riester, Thomas; Kneser, Ulrich; Schoenberg, Stefan O; Henzler, Thomas

    2015-12-01

    CT angiography is the current clinical standard for the imaging many vascular illnesses. This is traditionally done with a single arterial contrast phase. However, advances in CT technology allow for a dynamic acquisition of the contrast bolus, thus adding temporal information to the examination. The aim of this article is to highlight the clinical possibilities of dynamic CTA using 2 examples. The accuracy of the detection and quantification of stenosis in patients with peripheral arterial occlusive disease, especially in stadium III and IV, is significantly improved when performing dynamic CTA examinations. The post-interventional follow-up of examinations of EVAR benefit from dynamic information, allowing for a higher sensitivity and specificity, as well as allowing more accurate classification of potential endoleaks. The described radiation dose for these dynamic examinations is low, but this can be further optimized by using lower tube voltages. There are a multitude of applications for dynamic CTA that need to be further explored in future studies.

  20. Parameter study of 3D synthetic aperture post-beamforming procedure

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Santén, Peter; Bjuvsten, Ola;

    2006-01-01

    of interest to scan a full volume. The same beamformation procedure is applied both in the azimuth and the elevation planes. This paper presents a study of the influence of the position of the transmit focus on the image resolution, the signal-to-noise ratio and penetration depth. The investigation is based...... depths. 100 different positions of the transmit focus are investigated. For every transmit focus the image is beamformed and evaluated. Finally the gain in signal-to-noise ratio and penetration depth are investigated experimentally for the setup, with which the best resolution is achieved. Simulations...... to 100 mm. The method can be applied in applications, where the image quality is of prime importance, such as in the classification of atherosclerotic lesions in the carotid artery....

  1. Natural interaction in Virtual Environments for Cultural Heritage: Giotto in 3D and Etruscanning study cases

    Directory of Open Access Journals (Sweden)

    Eva Pietroni

    2012-11-01

    Full Text Available A basic limit of most of VR applications created by the scientific community and reproducing cultural sites or artefacts is that they do not fire up the attention of public, in comparison with the great potentialities of VR system for cultural transmission: they are often lacking in emotional storytelling and difficult to manage. An important factor is the need of more natural and simple interfaces, especially for applications hosted inside museums. Starting from our experience in this domain, we propose new metaphors of narration and paradigm of interaction based on natural interfaces (body movements, presenting three study cases: “The Rule confirmation: virtual experience among Giotto's characters”, “Etruscanning3D”, “Virtual Exploration of the ancient Pharmacy of S. Maria della Scaletta Hospital at Imola”.

  2. Fluctuation-Driven Transport in Biological Nanopores. A 3D Poisson–Nernst–Planck Study

    Directory of Open Access Journals (Sweden)

    Marcel Aguilella-Arzo

    2017-03-01

    Full Text Available Living systems display a variety of situations in which non-equilibrium fluctuations couple to certain protein functions yielding astonishing results. Here we study the bacterial channel OmpF under conditions similar to those met in vivo, where acidic resistance mechanisms are known to yield oscillations in the electric potential across the cell membrane. We use a three-dimensional structure-based theoretical approach to assess the possibility of obtaining fluctuation-driven transport. Our calculations show that remarkably high voltages would be necessary to observe the actual transport of ions against their concentration gradient. The reasons behind this are the mild selectivity of this bacterial pore and the relatively low efficiencies of the oscillating signals characteristic of membrane cells (random telegraph noise and thermal noise.

  3. Numerical Study on the 3-D Complex Characteristics of Flow Around the Hull Structure of TLP

    Institute of Scientific and Technical Information of China (English)

    谷家扬; 朱新耀; 杨建民; 卢燕祥; 肖龙飞

    2015-01-01

    Vortex-induced motion is based on the complex characteristics of the flow around the tension leg platform (TLP) hull. By considering the flow field of the South China Sea and the configuration of the platform, three typical flow velocities and three flow directions are chosen to study the numerical simulation of the flow field characteristics around the TLP hull. Reynolds-averaged Navier–Stokes equations combined with the detached eddy simulation turbulence model are employed in the numerical study. The hydrodynamic coefficients of columns and pontoons, the total drag and lift coefficients of the TLP, the formation and development of the wake, and the vorticity iso-surfaces for different inlet velocities and current directions are discussed in this paper. The average value of the drag coefficient of the upstream columns is considerably larger than that of the downstream columns in the inlet direction of 0°. Although the time history of the lift coefficient demonstrates a “beating” behavior, the plot shows regularity in general. The Strouhal number decreases as the inlet velocity increases from the power spectral density plot at different flow velocities. The mean root values of the lift and drag coefficients of the front column decrease as the current direction increases. Under the symmetrical configuration of 45°, the streamwise force on C4 is the smallest, whereas the transverse force is the largest. The broken vortex conditions in current directions of 22.5° and 45° are more serious than that in the current direction of 0°. In addition, turbulence at the bottom of the TLP becomes stronger when the current direction changes from 0° to 45°. However, a high inlet velocity indicates a large region influenced by the broken vortex and shows the emergence of the wake behind the TLP under the same current angle.

  4. Quantification of Regional Breast Density in Four Quadrants Using 3D MRI—A Pilot Study

    Directory of Open Access Journals (Sweden)

    Peter T. Fwu

    2015-08-01

    Full Text Available PURPOSE: This study presented a three-dimensional magnetic resonance (MR–based method to separate a breast into four quadrants for quantitative measurements of the quadrant breast volume (BV and density. METHODS: Breast MR images from 58 healthy women were studied. The breast and the fibroglandular tissue were segmented by using a computer-based algorithm. A breast was divided into four quadrants using two perpendicular planes intersecting at the nipple or the nipple-centroid line. After the separation, the BV, the fibroglandular tissue volume, and the percent density (PD were calculated. The symmetry of the quadrant BV in the left and right breasts separated by using the nipple alone, or the nipple-centroid line, was compared. RESULTS: The quadrant separation made on the basis of the nipple-centroid line showed closer BVs in four quadrants than using the nipple alone. The correlation and agreement for the BV in corresponding quadrants of the left and the right breasts were improved after the nipple-centroid reorientation. Among the four quadrants, PD was the highest in the lower outer and the lowest in the upper outer (significant than the other three quadrants (P < .05. CONCLUSIONS: We presented a quantitative method to divide a breast into four quadrants. The reorientation based on the nipple-centroid line improved the left to right quadrant symmetry, and this may provide a better standardized method to measure quantitative quadrant density. The cancer occurrence rates are known to vary in different sites of a breast, and our method may provide a tool for investigating its association with the quantitative breast density.

  5. In vitro 3-D model based on extending time of culture for studying chronological epidermis aging.

    Science.gov (United States)

    Dos Santos, Morgan; Metral, Elodie; Boher, Aurélie; Rousselle, Patricia; Thepot, Amélie; Damour, Odile

    2015-09-01

    Skin aging is a complex phenomenon in which several mechanisms operate simultaneously. Among them, intrinsic aging is a time-dependent process, which leads to gradual skin changes affecting its structure and function such as thinning down of both epidermal and dermal compartments and a flattening and fragility of the dermo-epidermal junction. Today, several approaches have been proposed for the generation of aged skin in vitro, including skin explants from aged donors and three-dimensional skin equivalent treated by aging-inducing chemical compounds or engineered with human cells isolated from aged donors. The aim of this study was to develop and validate a new in vitro model of aging based on skin equivalent demonstrating the same phenotypic changes that were observed in chronological aging. By using prolonged culture as a proxy for cellular aging, we extended to 120 days the culture time of a skin equivalent model based on collagen-glycosaminoglycan-chitosan porous polymer and engineered with human skin cells from photo-protected sites of young donors. Morphological, immunohistological and ultrastructural analysis at different time points of the culture allowed characterizing the phenotypic changes observed in our model in comparison to samples of non photo-exposed normal human skin from different ages. We firstly confirmed that long-term cultured skin equivalents are still morphologically consistent and functionally active even after 120 days of culture. However, similar to in vivo chronological skin aging a significant decrease of the epidermis thickness as well as the number of keratinocyte expressing proliferation marker Ki67 are observed in extended culture time skin equivalent. Epidermal differentiation markers loricrin, filaggrin, involucrin and transglutaminase, also strongly decreased. Ultrastructural analysis of basement membrane showed typical features of aged skin such as duplication of lamina densa and alterations of hemidesmosomes. Moreover, the

  6. Temperature Mapping of 3D Printed Polymer Plates: Experimental and Numerical Study

    Directory of Open Access Journals (Sweden)

    Charoula Kousiatza

    2017-02-01

    Full Text Available In Fused Deposition Modeling (FDM, which is a common thermoplastic Additive Manufacturing (AM method, the polymer model material that is in the form of a flexible filament is heated above its glass transition temperature (Tg to a semi-molten state in the head’s liquefier. The heated material is extruded in a rastering configuration onto the building platform where it rapidly cools and solidifies with the adjoining material. The heating and rapid cooling cycles of the work materials exhibited during the FDM process provoke non-uniform thermal gradients and cause stress build-up that consequently result in part distortions, dimensional inaccuracy and even possible part fabrication failure. Within the purpose of optimizing the FDM technique by eliminating the presence of such undesirable effects, real-time monitoring is essential for the evaluation and control of the final parts’ quality. The present work investigates the temperature distributions developed during the FDM building process of multilayered thin plates and on this basis a numerical study is also presented. The recordings of temperature changes were achieved by embedding temperature measuring sensors at various locations into the middle-plane of the printed structures. The experimental results, mapping the temperature variations within the samples, were compared to the corresponding ones obtained by finite element modeling, exhibiting good correlation.

  7. Transition study of 3D aerodynamic configures using improved transport equations modeling

    Institute of Scientific and Technical Information of China (English)

    Xu Jiakuan; Bai Junqiang; Zhang Yang; Qiao Lei

    2016-01-01

    As boundary layer transition plays an important role in aerodynamic drag prediction, the proposal and study of transition prediction methods simulating the complex flow phenomena are prerequisite for aerodynamic design. In this paper, with the application of the linear stability theory based on amplification factor transport transition equations on the two-equation shear stress transport (SST) eddy-viscosity model, a new method, the SST-NTS-NCF model, is yielded. The new amplification factor transport equation for the crossflow instability induced transition is proposed to add to the NTS equation proposed by Coder, which simulates Tollmien–Schlichting wave tran-sition. The turbulent kinetic energy equation is modified by introducing a new source term that sim-ulates the transition process without the intermittency factor equation. Finally, coupled with these two amplification factor transport equations and SST turbulence model, a four-equation transition turbulence model is built. Comparisons between predictions using the new model and wind-tunnel experiments of NACA64(2)A015, NLF(2)-0415 and ONERA-D infinite swept wing and ONERA-M6 swept wing validate the predictive quality of the new SST-NTS-NCF model.

  8. Transition study of 3D aerodynamic configures using improved transport equations modeling

    Directory of Open Access Journals (Sweden)

    Xu Jiakuan

    2016-08-01

    Full Text Available As boundary layer transition plays an important role in aerodynamic drag prediction, the proposal and study of transition prediction methods simulating the complex flow phenomena are prerequisite for aerodynamic design. In this paper, with the application of the linear stability theory based on amplification factor transport transition equations on the two-equation shear stress transport (SST eddy-viscosity model, a new method, the SST-NTS-NCF model, is yielded. The new amplification factor transport equation for the crossflow instability induced transition is proposed to add to the NTS equation proposed by Coder, which simulates Tollmien–Schlichting wave transition. The turbulent kinetic energy equation is modified by introducing a new source term that simulates the transition process without the intermittency factor equation. Finally, coupled with these two amplification factor transport equations and SST turbulence model, a four-equation transition turbulence model is built. Comparisons between predictions using the new model and wind-tunnel experiments of NACA64(2A015, NLF(2-0415 and ONERA-D infinite swept wing and ONERA-M6 swept wing validate the predictive quality of the new SST-NTS-NCF model.

  9. Monte Carlo Study of Topological Defects in the 3D Heisenberg Model

    CERN Document Server

    Holm, C; Holm, Christian; Janke, Wolfhard

    1994-01-01

    We use single-cluster Monte Carlo simulations to study the role of topological defects in the three-dimensional classical Heisenberg model on simple cubic lattices of size up to $80^3$. By applying reweighting techniques to time series generated in the vicinity of the approximate infinite volume transition point $K_c$, we obtain clear evidence that the temperature derivative of the average defect density $d\\langle n \\rangle/dT$ behaves qualitatively like the specific heat, i.e., both observables are finite in the infinite volume limit. This is in contrast to results by Lau and Dasgupta [{\\em Phys. Rev.\\/} {\\bf B39} (1989) 7212] who extrapolated a divergent behavior of $d\\langle n \\rangle/dT$ at $K_c$ from simulations on lattices of size up to $16^3$. We obtain weak evidence that $d\\langle n \\rangle/dT$ scales with the same critical exponent as the specific heat.As a byproduct of our simulations, we obtain a very accurate estimate for the ratio $\\alpha/\

  10. Thermodynamic Study of 3D ``Harmonic'' Honeycomb Li2IrO3

    Science.gov (United States)

    Ruiz, Alejandro; Helm, Toni; Breznay, Nicholas; Lopez, Gilbert; Analytis, James

    2015-03-01

    Honeycomb iridates have been the focus of substantial interest due to the strong magnetic frustration that arises from their edge-shared bonding environment, which favors a strongly anisotropic Ising-like exchange between bonds. In materials with edge-shared IrO6 octahedra, spin-anisotropy of the exchange between neighboring effective spin-1/2 states is enhanced by the interference of the two exchange paths across the planar Ir-O2-Ir bond. In the honeycomb lattice, such an interaction couples different orthogonal spin components for the three nearest neighbors; no single exchange direction can be simultaneously satisfied, leading to strong frustration which can be described by the Kitaev-model. We have recently synthesized a new structure that retains the same bonding environment as the honeycomb lattice, and extends this physics to three-dimensions. Previous RMXD experiments on our orthorhombic  -Li2IrO3 samples revealed an incommensurate, non-coplanar magnetic structure with counter-rotating moments, suggesting that Kitaev exchange is the dominant spin interaction in this system. In this work, we study the thermal properties of our single crystals as a function of temperature and applied magnetic field. Berkeley Chancellor's Fellowship & NSF-GRFP.

  11. Studying topological structure of 21-cm line fluctuations with 3D Minkowski functionals before reionization

    Science.gov (United States)

    Yoshiura, Shintaro; Shimabukuro, Hayato; Takahashi, Keitaro; Matsubara, Takahiko

    2017-02-01

    The brightness temperature of the redshifted 21-cm line brings rich information about the intergalactic medium (IGM) from the cosmic dawn and epoch of reionization (EoR). While the power spectrum is a useful tool to investigate the 21-cm signal statistically, the 21-cm brightness temperature field is highly non-Gaussian and the power spectrum is inadequate to characterize the non-Gaussianity. Minkowski functionals (MFs) are promising tools to extract non-Gaussian features of the 21-cm signal and give topological information, such as morphology of ionized bubbles. In this work, we study the 21-cm line signal in detail with MFs. To promote understanding of basic features of the 21-cm signal, we calculate the MFs of not only the hydrogen neutral fraction but also the matter density and spin temperature, which contribute to brightness-temperature fluctuations. We find that the structure of the brightness temperature depends mainly on the ionized fraction and the spin temperature at late and early stages of the EoR, respectively. Further, we investigate the redshift evolution of MFs at 7 topology of ionized bubbles and we consider the possibility of constraining the parameters using future 21-cm signal observations.

  12. A Study of Dip-Coatable, High-Capacitance Ion Gel Dielectrics for 3D EWOD Device Fabrication

    Directory of Open Access Journals (Sweden)

    Carlos E. Clement

    2017-01-01

    Full Text Available We present a dip-coatable, high-capacitance ion gel dielectric for scalable fabrication of three-dimensional (3D electrowetting-on-dielectric (EWOD devices such as an n × n liquid prism array. Due to the formation of a nanometer-thick electric double layer (EDL capacitor, an ion gel dielectric offers two to three orders higher specific capacitance (c ≈ 10 μF/cm2 than that of conventional dielectrics such as SiO2. However, the previous spin-coating method used for gel layer deposition poses several issues for 3D EWOD device fabrication, particularly when assembling multiple modules. Not only does the spin-coating process require multiple repetitions per module, but the ion gel layer also comes in risks of damage or contamination due to handling errors caused during assembly. In addition, it was observed that the chemical formulation previously used for the spin-coating method causes the surface defects on the dip-coated gel layers and thus leads to poor EWOD performance. In this paper, we alternatively propose a dip-coating method with modified gel solutions to obtain defect-free, functional ion gel layers without the issues arising from the spin-coating method for 3D device fabrication. A dip-coating approach offers a single-step coating solution with the benefits of simplicity, scalability, and high throughput for deposition of high-capacitance gel layers on non-planar EWOD devices. An ion gel solution was prepared by combining the [EMIM][TFSI] ionic liquid and the [P(VDF-HFP] copolymer at various wt % ratios in acetone solvent. Experimental studies were conducted to fully understand the effects of chemical composition ratios in the gel solution and how varying thicknesses of ion gel and Teflon layers affects EWOD performance. The effectiveness and potentiality of dip-coatable gel layers for 3D EWOD devices have been demonstrated through fabricating 5 × 1 arrayed liquid prisms using a single-step dip-coating method. Each prism module has

  13. In-cloud oxalate formation in the global troposphere: a 3-D modeling study

    Directory of Open Access Journals (Sweden)

    S. Myriokefalitakis

    2011-01-01

    Full Text Available Organic acids attract increasing attention as contributors to atmospheric acidity, secondary organic aerosol mass and aerosol hygroscopicity. Oxalic acid is globally the most abundant dicarboxylic acid, formed via chemical oxidation of gas-phase precursors in the aqueous phase of aerosols and droplets. Its lifecycle and atmospheric global distribution remain highly uncertain and are the focus of this study. The first global spatial and temporal distribution of oxalate, simulated using a state-of-the-art aqueous phase chemical scheme embedded within the global 3-dimensional chemistry/transport model TM4-ECPL, is here presented. The model accounts for comprehensive gas-phase chemistry and its coupling with major aerosol constituents (including secondary organic aerosol. Model results are consistent with ambient observations of oxalate at rural and remote locations (slope = 0.83 ± 0.06, r2 = 0.67, N = 106 and suggest that aqueous phase chemistry contributes significantly to the global atmospheric burden of secondary organic aerosol. In TM4-ECPL most oxalate is formed in-clouds and less than 10% is produced in aerosol water. About 61% of the oxalate is removed via wet deposition, 35% by in-cloud reaction with hydroxyl radical and 4% by dry deposition. The global oxalate net chemical production is calculated to be about 17–27 Tg yr−1 with almost 91% originating from biogenic hydrocarbons, mainly isoprene. This condensed phase net source of oxalate in conjunction with a global mean turnover time against deposition of about 5 days, maintain oxalate's global tropospheric burden of 0.24–0.39 Tg that is about 13–19% of calculated total organic aerosol burden.

  14. In-cloud oxalate formation in the global troposphere: a 3-D modeling study

    Directory of Open Access Journals (Sweden)

    S. Myriokefalitakis

    2011-06-01

    Full Text Available Organic acids attract increasing attention as contributors to atmospheric acidity, secondary organic aerosol mass and aerosol hygroscopicity. Oxalic acid is globally the most abundant dicarboxylic acid, formed via chemical oxidation of gas-phase precursors in the aqueous phase of aerosols and droplets. Its lifecycle and atmospheric global distribution remain highly uncertain and are the focus of this study. The first global spatial and temporal distribution of oxalate, simulated using a state-of-the-art aqueous-phase chemical scheme embedded within the global 3-dimensional chemistry/transport model TM4-ECPL, is here presented. The model accounts for comprehensive gas-phase chemistry and its coupling with major aerosol constituents (including secondary organic aerosol. Model results are consistent with ambient observations of oxalate at rural and remote locations (slope = 1.16 ± 0.14, r2 = 0.36, N = 114 and suggest that aqueous-phase chemistry contributes significantly to the global atmospheric burden of secondary organic aerosol. In TM4-ECPL most oxalate is formed in-cloud and less than 5 % is produced in aerosol water. About 62 % of the oxalate is removed via wet deposition, 30 % by in-cloud reaction with hydroxyl radical, 4 % by in-cloud reaction with nitrate radical and 4 % by dry deposition. The in-cloud global oxalate net chemical production is calculated to be about 21–37 Tg yr−1 with almost 79 % originating from biogenic hydrocarbons, mainly isoprene. This condensed phase net source of oxalate in conjunction with a global mean turnover time against deposition of about 5 days, maintain oxalate's global tropospheric burden of 0.2–0.3 Tg, i.e. 0.05–0.1 Tg-C that is about 5–9 % of model-calculated water soluble organic carbon burden.

  15. 3D NUMERICAL STUDY ON LAMINAR FORCED CONVECTION IN V-BAFFLED SQUARE CHANNEL

    Directory of Open Access Journals (Sweden)

    Amnart Boonloi

    2013-01-01

    Full Text Available The article presents a mathematical study of fully developed periodic laminar flow visualization and heat transfer characteristics in an isothermal wall square-channel fitted with V-shaped baffles on one wall. The computations based on the finite volume method together with the SIMPLE algorithm have been performed. The investigation covers a range of Re based on the hydraulic diameter of the channel, Re = 100-1200. To create a pair of main streamwise vortex flows through the tested section, the V-baffles with the attack angle of 30° with the main flow direction are mounted in tandem and pointing downstream on the lower channel wall only. Effects of different baffle heights and pitches on heat transfer and pressure drop in the channel are examined and the results obtained are compared with smooth channel with no baffle. The numerical result shows that the presence of the V-baffle yields a significant heat transfer enhancement compared with the smooth channel. It is visible that the main vortex flows, a pair of streamwise twisted vortex (P-vortex can induce impingement flows on the walls leading to a drastic increase in heat transfer rate over the channel. In addition, the increase in the baffle height leads to the rise in the heat transfer and pressure loss while that in the baffle pitch provides the opposite trend. The predicted results expose that the maximum thermal enhancement factors for the V-baffles with BR = 0.3, 0.3 and 0.4; and PR = 1, 1.5 and 2 are, respectively, about 2.44, 2.29 and 2.37 at higher Re.

  16. A multinational deployment of 3D laser scanning to study craniofacial dysmorphology in fetal alcohol spectrum disorders

    Science.gov (United States)

    Rogers, Jeff; Wernert, Eric; Moore, Elizabeth; Ward, Richard; Wetherill, Leah F.; Foroud, Tatiana

    2007-01-01

    Craniofacial anthropometry (the measurement and analysis of head and face dimensions) has been used to assess and describe abnormal craniofacial variation (dysmorphology) and the facial phenotype in many medical syndromes. Traditionally, anthropometry measurements have been collected by the direct application of calipers and tape measures to the subject's head and face, and can suffer from inaccuracies due to restless subjects, erroneous landmark identification, clinician variability, and other forms of human error. Three-dimensional imaging technologies promise a more effective alternative that separates the acquisition and measurement phases to reduce these variabilities while also enabling novel measurements and longitudinal analysis of subjects. Indiana University (IU) is part of an international consortium of researchers studying fetal alcohol spectrum disorders (FASD). Fetal alcohol exposure results in predictable craniofacial dysmorphologies, and anthropometry has been proven to be an effective diagnosis tool for the condition. IU is leading a project to study the use of 3D surface scanning to acquire anthropometry data in order to more accurately diagnose FASD, especially in its milder forms. This paper describes our experiences in selecting, verifying, supporting, and coordinating a set of 3D scanning systems for use in collecting facial scans and anthropometric data from around the world.

  17. AutoGPA-Based 3D-QSAR Modeling and Molecular Docking Study on Factor Xa Inhibitors as Anticoagulant Agents

    Directory of Open Access Journals (Sweden)

    Guo Fang Yuan

    2016-01-01

    Full Text Available The three-dimensional-quantitative structure activity relationship (3D-QSAR studies were performed on a series of direct factor Xa (FXa inhibitors using AutoGPA-based modeling method in this paper. A training set of 38 molecules and a test set containing 10 molecules were used to build the 3D-QSAR model and validate the derived model, respectively. The developed model with correlation coefficients (r2 of 0.8564 and cross-validated correlation coefficients (q2 of 0.6721 were validated by an external test set of 10 molecules with predicted correlation coefficient (rpred2 of 0.6077. Docking study of FXa inhibitors and FXa active site was performed to check the induced pharmacophore query and comparative molecular field analysis (CoMFA contour maps using MOE2012.10. It was proved to be coincidence with the interaction information between ligand and FXa active site and was rendered to provide a useful tool to improve FXa inhibitors.

  18. Numerical and Experimental Study of the 3D Effect on Connecting Arm of Vertical Axis Tidal Current Turbine

    Institute of Scientific and Technical Information of China (English)

    郭伟; 康海贵; 陈兵; 谢宇; 王胤

    2016-01-01

    Vertical axis tidal current turbine is a promising device to extract energy from ocean current. One of the important components of the turbine is the connecting arm, which can bring about a significant effect on the pressure distribution along the span of the turbine blade, herein we call it 3D effect. However, so far the effect is rarely reported in the research, moreover, in numerical simulation. In the present study, a 3D numerical model of the turbine with the connecting arm was developed by using FLUENT software compiling the UDF (User Defined Function) command. The simulation results show that the pressure distribution along the span of blade with the connecting arm model is significantly different from those without the connecting arm. To facilitate the validation of numerical model, the laboratory experiment has been carried out by using three different types of NACA aerofoil connecting arm and circle section connecting arm. And results show that the turbine with NACA0012 connecting arm has the best start-up performance which is 0.346 m/s and the peak point of power conversion coefficient is around 0.33. A further study has been performed and a conclusion is drawn that the aerofoil and thickness of connecting arm are the most important factors on the power conversion coefficient of the vertical axis tidal current turbine.

  19. 3D standard brain of the red flour beetle Tribolium castaneum: a tool to study metamorphic development and adult plasticity

    Directory of Open Access Journals (Sweden)

    David Dreyer

    2010-03-01

    Full Text Available The red flour beetle Tribolium castaneum is emerging as a further standard insect model beside Drosophila. Its genome is fully sequenced and it is susceptible for genetic manipulations including RNA-interference. We use this beetle to study adult brain development and plasticity primarily with respect to the olfactory system. In the current study, we provide 3D standard brain atlases of freshly eclosed adult female and male beetles (A0. The atlases include eight paired and three unpaired neuropils including antennal lobes, optic lobe neuropils, mushroom body calyces and pedunculi, and central complex. For each of the two standard brains, we averaged brain areas of 20 individual brains. Additionally, we characterized eight selected olfactory glomeruli from 10 A0 female and male beetles respectively, which we could unequivocally recognize from individual to individual owing to their size and typical position in the antennal lobes. In summary, comparison of the averaged neuropil volumes revealed no sexual dimorphism in any of the reconstructed neuropils in A0 Tribolium brains. Both, the female and male 3D standard brain are also used for interspecies comparisons, and, very importantly, will serve as future volumetric references after genetical manipulation especially regarding metamorphic development and adult plasticity.

  20. 3D soft tissue predictions with a tetrahedral mass tensor model for a maxillofacial planning system: a quantitative validation study

    Science.gov (United States)

    Mollemans, W.; Schutyser, F.; Nadjmi, N.; Maes, F.; Suetens, P.

    2006-03-01

    In this paper we present an extensive quantitative validation on 3D facial soft tissue simulation for maxillofacial surgery planning. The study group contained 10 patients. In previous work we presented a new Mass Tensor Model to simulate the new facial appearance after maxillofacial surgery in a fast way. 10 patients were preoperatively CT-scanned and the surgical intervention was planned. 4 months after surgery, a post-operative control CT was acquired. In this study, the simulated facial outlook is compared with post-operative image data. After defining corresponding points between the predicted and actual post-operative facial skin surface, using a variant of the non-rigid TPS-RPM algorithm, distances between these correspondences are quantified and visualized in 3D. As shown, the average median distance measures only 0.60 mm and the average 90% percentile stays below 1.5 mm. We can conclude that our model clearly provides an accurate prediction of the real post-operative outcome and is therefore suitable for use in clinical practice.

  1. Studies of Bystander Effects in 3-D Tissue Systems Using a Low-LET Microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, David J.

    2009-07-17

    It is now accepted that biological effects may occur in cells that were not themselves traversed by ionizing radiation but are close to those that were. Little is known about the mechanism underlying such a bystander effect, although cell-to-cell communication is thought to be important. Previous work demonstrated a significant bystander effect for clonogenic survival and oncogenic transformation in C3H 10T(1/2) cells. Additional studies were undertaken to assess the importance of the degree of cell-to-cell contact at the time of irradiation on the magnitude of this bystander effect by varying the cell density. When 10% of cells were exposed to a range of 2-12 alpha particles, a significantly greater number of cells were inactivated when cells were irradiated at high density than at low density. In addition, the oncogenic transformation frequency was significantly higher in high-density cultures. These results suggest that when a cell is hit by radiation, the transmission of the bystander signal through cell-to-cell contact is an important mediator of the effect, implicating the involvement of intracellular communication through gap junctions. Additional studies to address the relationship between the bystander effect and the adaptive response were undertaken. A novel apparatus, where targeted and non-targeted cells were grown in close proximity, was used to investigate these. It was further examined whether a bystander effect or an adaptive response could be induced by a factor(s) present in the supernatants of cells exposed to a high or low dose of X-rays, respectively. When non-hit cells were co-cultured for 24 h with cells irradiated with 5 Gy alpha-particles, a significant increase in both cell killing and oncogenic transformation frequency was observed. If these cells were treated with 2 cGy X-rays 5 h before co-culture with irradiated cells, approximately 95% of the bystander effect was cancelled out. A 2.5-fold decrease in the oncogenic transformation

  2. Studies of Bystander Effects in 3-D Tissue Systems Using a Low-LET Microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, David J.

    2009-07-17

    It is now accepted that biological effects may occur in cells that were not themselves traversed by ionizing radiation but are close to those that were. Little is known about the mechanism underlying such a bystander effect, although cell-to-cell communication is thought to be important. Previous work demonstrated a significant bystander effect for clonogenic survival and oncogenic transformation in C3H 10T(1/2) cells. Additional studies were undertaken to assess the importance of the degree of cell-to-cell contact at the time of irradiation on the magnitude of this bystander effect by varying the cell density. When 10% of cells were exposed to a range of 2-12 alpha particles, a significantly greater number of cells were inactivated when cells were irradiated at high density than at low density. In addition, the oncogenic transformation frequency was significantly higher in high-density cultures. These results suggest that when a cell is hit by radiation, the transmission of the bystander signal through cell-to-cell contact is an important mediator of the effect, implicating the involvement of intracellular communication through gap junctions. Additional studies to address the relationship between the bystander effect and the adaptive response were undertaken. A novel apparatus, where targeted and non-targeted cells were grown in close proximity, was used to investigate these. It was further examined whether a bystander effect or an adaptive response could be induced by a factor(s) present in the supernatants of cells exposed to a high or low dose of X-rays, respectively. When non-hit cells were co-cultured for 24 h with cells irradiated with 5 Gy alpha-particles, a significant increase in both cell killing and oncogenic transformation frequency was observed. If these cells were treated with 2 cGy X-rays 5 h before co-culture with irradiated cells, approximately 95% of the bystander effect was cancelled out. A 2.5-fold decrease in the oncogenic transformation

  3. IZDELAVA TISKALNIKA 3D

    OpenAIRE

    Brdnik, Lovro

    2015-01-01

    Diplomsko delo analizira trenutno stanje 3D tiskalnikov na trgu. Prikazan je razvoj in principi delovanja 3D tiskalnikov. Predstavljeni so tipi 3D tiskalnikov, njihove prednosti in slabosti. Podrobneje je predstavljena zgradba in delovanje koračnih motorjev. Opravljene so meritve koračnih motorjev. Opisana je programska oprema za rokovanje s 3D tiskalniki in komponente, ki jih potrebujemo za izdelavo. Diploma se oklepa vprašanja, ali je izdelava 3D tiskalnika bolj ekonomična kot pa naložba v ...

  4. Geometry-based vs. intensity-based medical image registration: A comparative study on 3D CT data.

    Science.gov (United States)

    Savva, Antonis D; Economopoulos, Theodore L; Matsopoulos, George K

    2016-02-01

    Spatial alignment of Computed Tomography (CT) data sets is often required in numerous medical applications and it is usually achieved by applying conventional exhaustive registration techniques, which are mainly based on the intensity of the subject data sets. Those techniques consider the full range of data points composing the data, thus negatively affecting the required processing time. Alternatively, alignment can be performed using the correspondence of extracted data points from both sets. Moreover, various geometrical characteristics of those data points can be used, instead of their chromatic properties, for uniquely characterizing each point, by forming a specific geometrical descriptor. This paper presents a comparative study reviewing variations of geometry-based, descriptor-oriented registration techniques, as well as conventional, exhaustive, intensity-based methods for aligning three-dimensional (3D) CT data pairs. In this context, three general image registration frameworks were examined: a geometry-based methodology featuring three distinct geometrical descriptors, an intensity-based methodology using three different similarity metrics, as well as the commonly used Iterative Closest Point algorithm. All techniques were applied on a total of thirty 3D CT data pairs with both known and unknown initial spatial differences. After an extensive qualitative and quantitative assessment, it was concluded that the proposed geometry-based registration framework performed similarly to the examined exhaustive registration techniques. In addition, geometry-based methods dramatically improved processing time over conventional exhaustive registration.

  5. Microcomputer-aided reconstruction: a system designed for the study of 3-D microstructure in histology and histopathology.

    Science.gov (United States)

    Yaegashi, H; Takahashi, T; Kawasaki, M

    1987-04-01

    We have designed a microcomputer system to reproduce 3-D tissue structures graphically from serial microscopic sections. The system, based on a Hewlett-Packard model 310 desktop computer, comprises a floppy disc drive, a hard-disc that extends the available user memory by adding 40 Mbytes, a colour memory-mapped graphics display, a graphics tablet and a graphics printer. A set of serial 2-D images, manually extracted from serial sections using a microprojector, are digitized on the tablet by tracing the contours of the structure of interest; up to ten different structures can be inputted and reproduced using a 'hidden line' effect. The software, written mainly in HP-BASIC 4.0, produces 3-D pictures of a tissue structure either as a 'stack of slices' with or without being 'tiled' with triangular patches, or in 'wire framing'. Any angle of rotation around the x, y and z axes is assigned for the image to be reconstructed, allowing the operator to obtain the best perspective. The system also discloses the internal connectivity of an object by reducing the structure to a network diagram; this is especially useful in analysing the topological properties of tissue structure. It is shown how, in some examples, the system contributes to a better understanding of tissue microstructures and their morbid changes and how, as an effective tool in morphology, it will aid future studies of histology and histopathology.

  6. 3D Seismic Attributes for Structural Analysis in Compressional Context:A Case Study from Western Sichuan Basin

    Institute of Scientific and Technical Information of China (English)

    Bo Xu; Ancheng Xiao; Lei Wu; Liguang Mao; Youpu Dong; Lijun Zhou

    2014-01-01

    Compressional region usually forms complex thrust faults system, which is difficult to identify using traditional migration profiles. The successful application of three-dimensional (3D) seismic attributes analysis greatly reduces the difficulty, and improves the accuracy and efficiency of seismic interpretation and structural analysis. In this paper, we took Qiongxi area in the compression-al region of western Sichuan as an example, using two 3D seismic attributes, coherence and instanta-neous phase, to identify fault assemblages and variations both vertically and laterally. The results show that the study area mainly consists of NS-, NE- and NEE-trending faults. The NS-trending faults are the largest and have a component of sinistral slip controlling the formation of NEE-trending faults, while the NE-trending faults are intermediate in scale, formed earlier and were cut by the NS-trending faults. Our results demonstrate that using seismic attributes for structural analysis have the following advantages: (1) more details of major fault zones, (2) highlighting minor faults which are hardly traced in seismic migration cube, and (3) easier acquisition of accurate fault systems. The application of seismic attributes provides a new idea for deciphering fine and complicated structures, and will sig-nificantly contribute to the development of objective and precise geological interpretation in the fu-ture.

  7. 3D Assessment of Mandibular Growth Based on Image Registration: A Feasibility Study in a Rabbit Model

    Directory of Open Access Journals (Sweden)

    I. Kim

    2014-01-01

    Full Text Available Background. Our knowledge of mandibular growth mostly derives from cephalometric radiography, which has inherent limitations due to the two-dimensional (2D nature of measurement. Objective. To assess 3D morphological changes occurring during growth in a rabbit mandible. Methods. Serial cone-beam computerised tomographic (CBCT images were made of two New Zealand white rabbits, at baseline and eight weeks after surgical implantation of 1 mm diameter metallic spheres as fiducial markers. A third animal acted as an unoperated (no implant control. CBCT images were segmented and registered in 3D (Implant Superimposition and Procrustes Method, and the remodelling pattern described used color maps. Registration accuracy was quantified by the maximal of the mean minimum distances and by the Hausdorff distance. Results. The mean error for image registration was 0.37 mm and never exceeded 1 mm. The implant-based superimposition showed most remodelling occurred at the mandibular ramus, with bone apposition posteriorly and vertical growth at the condyle. Conclusion. We propose a method to quantitatively describe bone remodelling in three dimensions, based on the use of bone implants as fiducial markers and CBCT as imaging modality. The method is feasible and represents a promising approach for experimental studies by comparing baseline growth patterns and testing the effects of growth-modification treatments.

  8. 3D Application Study

    Science.gov (United States)

    1989-11-01

    accuracy or confusion as to the actual scale of objects in the scene. Man-made objects representing fixed cultural features are subject to many of...4.2.1.8 Pepper’s Ghost This is a commercially available embodiment of holographic technology that is used at The Haunted Mansion in Disneyland . The... cultural features were not available to the demonstration implementation team, it was necessary to create entities that appear on the landscape. As

  9. Determining sex with the clavicle in a contemporary Spanish reference collection: A study on 3D images.

    Science.gov (United States)

    Mediavilla, Elena Ruiz; Pérez, Bernardo Perea; González, Elena Labajo; Sánchez, José Antonio Sánchez; Fernández, Enrique Dorado; Sáez, Andrés Santiago

    2016-04-01

    Sexual dimorphism of the clavicle based on metric studies has been determined among different populations from different eras. Due to the need to know about sexual dimorphism in the Spanish population in order to apply the results to the field of Forensic Anthropology, a study has been carried out on a sample in the contemporary Spanish population, made up of the right and left clavicles of 50 males and 50 females. A metric, volumetric and curvature study was performed. To do so, 3D scanning was completed on the entire sample using the Picza 3D Laser Scanner, and the study was performed using reproductions. There were taken 6 metric measurements and 4 volumetric measurements using the Geomagic software, and for the study of curves, an index was calculated which related the direct length of the clavicle and its length as cast onto a surface. The data are presented for all of the variables, distinguishing between the right and left side, and there were processed using the statistical program PASW Statistics 18. The results show that the classification functions which best categorize the sample with an unique variable are volumetric, which classify the sample correctly in 94% of cases based on diaphysis volume, followed by total volume, which provides an accurate classification in 92% of all cases. The sagittal diameter at midshaft provides an accurate classification in 90% of cases and the maximum length in 88% of cases. The curvature index shows that there are no statistically significant differences by side and the only curvature index that shows significant differences by sex is the total anterior curve of the left clavicle being the males curve more pronounced. The validation study performed on a sample of 20 individuals confirms the high discriminatory power of the volume obtaining an accurate classification rate of 85-100% depending on the variable studied.

  10. Do fault-related folds follow the same scaling law as their associated faults? A study using 3D seismic reflection data

    Science.gov (United States)

    Pitcher, Eleanor; Imber, Jonathan

    2016-04-01

    Fractal distributions are largely agreed to follow a power-law distribution. Power-law scaling relationships describe the size distribution of fault lengths or displacements. Being able to identify these scaling properties provides a powerful tool for predicting the numbers of geological structures, such as small-scale faults in sedimentary basins that are below the resolution of seismic reflection data. The aim of this study is to determine whether fault-related folds follow the same power law scaling properties, or if they follow a different scaling law. We use TrapTester to interpret a 3D seismic volume from the Gulf of Mexico to construct fault planes and cut-off lines along selected horizons in the vicinity of fault upper tip lines. Fault-related folds are particularly well developed above steeply plunging tip lines, but are discontinuous along the strike of the fault plane. Folding is less well developed on horizons that intersect, or lie close to, the locus of maximum throw (bullseye) of the fault plane. We then measured fold amplitudes and fault throws across these same horizons using a one-dimensional multi-line sampling approach. Graphs of fault throw and fold amplitude vs. distance parallel to fault strike show that folds occur where there is no resolvable fault throw, and that fault throw and fold amplitudes show an approximately inverse relationship. Close to the locus of maximum throw, there is largely just faulting, whilst at the upper tip line folding predominates. By plotting cumulative frequency against throw for the fault and fold data we can investigate whether the data follow a power law, log normal or exponential distribution. Plotting the data on log vs. log (power law), linear vs. log (log normal) and log vs. linear (exponential) axes allow us to establish which displays the best "straight-line fit". We observed that the fault throw data satisfied a straight-line on a log vs. log graph - implying a power law distribution - and also returned

  11. The Atlas3D project - XX. Mass-size and Mass-sigma projections of the Virial Plane of early-type galaxies: variation of morphology, kinematics, mass-to-light ratio and stellar initial mass function

    CERN Document Server

    Cappellari, Michele; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frederic; Bureau, M; Crocker, Alison F; Davies, Roger L; Davis, Timothy A; de Zeeuw, P T; Duc, Pierre-Alain; Khochfar, Sadegh; Krajnovic, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M

    2013-01-01

    In the companion Paper XIX we derive accurate total (M/L)_JAM within a sphere of radius r=Re, as well as stellar (M/L)_stars for the volume-limited Atlas3D sample of 260 early-type galaxies. Here we study the two projections (M_JAM,sigma_e) and (M_JAM,R_e^max) of the thin Virial Plane (VP)(M_JAM,sigma_e,R_e^max) which describes the distribution of the galaxy population. The distribution of galaxy properties on both projections of the VP is characterized by (i) a boundary in the galaxy distribution, described by two power-laws, joined by a break at a characteristic mass M_JAM ~ 3*10^10 Msun, which corresponds to the minimum Re and maximum stellar density, and (ii) a characteristic mass M_JAM ~ 2*10^11 Msun which separates a population dominated by fast rotator with disks at lower masses, from one dominated by quite round slow rotators at larger masses. The distribution of ETGs properties on the two projections of the VP tends to be constant along lines of constant sigma_e, and forms a continuous and parallel s...

  12. In vitro study of 3D PLGA/n-HAp/β-TCP composite scaffolds with etched oxygen plasma surface modification in bone tissue engineering

    Science.gov (United States)

    Roh, Hee-Sang; Jung, Sang-Chul; Kook, Min-Suk; Kim, Byung-Hoon

    2016-12-01

    Three-dimensional (3D) scaffolds have many advantageous properties for bone tissue engineering application, due to its controllable properties such as pore size, structural shape and interconnectivity. In this study, effects on oxygen plasma surface modification and adding of nano-hydroxyapatite (n-HAp) and β-tricalcium phosphate (β-TCP) on the 3D PLGA/n-HAp/β-TCP scaffolds for improving preosteoblast cell (MC3T3-E1) adhesion, proliferation and differentiation were investigated. The 3D PLGA/n-HAp/β-TCP scaffolds were fabricated by 3D Bio-Extruder equipment. The 3D scaffolds were prepared with 0°/90° architecture and pore size of approximately 300 μm. In addition 3D scaffolds surface were etched by oxygen plasma to enhance the hydrophilic property and surface roughness. After oxygen plasma treatment, the surface chemistry and morphology were investigated by Fourier transform infrared spectroscopy, scanning electron microscopy, and atomic force microscopy. And also hydrophilic property was measured by contact angle. The MC3T3-E1 cell proliferation and differentiation were investigated by MTT assay and ALP activity. In present work, the 3D PLGA/HAp/beta-TCP composite scaffold with suitable structure for the growth of osteoblast cells was successfully fabricated by 3D rapid prototyping technique. The surface hydrophilicity and roughness of 3D scaffold increased by oxygen plasma treatment had a positive effect on cell adhesion, proliferation, and differentiation. Furthermore, the differentiation of MC3T3-E1 cell was significantly enhanced by adding of n-HAp and β-TCP on 3D PLGA scaffold. As a result, combination of bioceramics and oxygen plasma treatment showed a synergistic effect on biocompatibility of 3D scaffolds. This result confirms that this technique was useful tool for improving the biocompatibility in bone tissue engineering application.

  13. Study on the After Cavity Interaction in a 140 GHz Gyrotron Using 3D CFDTD PIC Simulations

    Science.gov (United States)

    Lin, M. C.; Illy, S.; Avramidis, K.; Thumm, M.; Jelonnek, J.

    2016-10-01

    A computational study on after cavity interaction (ACI) in a 140 GHz gryotron for fusion research has been performed using a 3-D conformal finite-difference time-domain (CFDTD) particle-in-cell (PIC) method. The ACI, i.e. beam wave interaction in the non-linear uptaper after the cavity has attracted a lot of attention and been widely investigated in recent years. In a dynamic ACI, a TE mode is excited by the electron beam at the same frequency as in the cavity, and the same mode is also interacting with the spent electron beam at a different frequency in the non-linear uptaper after the cavity while in a static ACI, a mode interacts with the beam both at the cavity and at the uptaper, but at the same frequency. A previous study on the dynamic ACI on a 140 GHz gyrotron has concluded that more advanced numerical simulations such as particle-in-cell (PIC) modeling should be employed to study or confirm the dynamic ACI in addition to using trajectory codes. In this work, we use a 3-D full wave time domain simulation based on the CFDTD PIC method to include the rippled-wall launcher of the quasi-optical output coupler into the simulations which breaks the axial symmetry of the original model employing a symmetric one. A preliminary simulation result has confirmed the dynamic ACI effect in this 140 GHz gyrotron in good agreement with the former study. A realistic launcher will be included in the model for studying the dynamic ACI and compared with the homogenous one.

  14. A study of the earth radiation budget using a 3D Monte-Carlo radiative transer code

    Science.gov (United States)

    Okata, M.; Nakajima, T.; Sato, Y.; Inoue, T.; Donovan, D. P.

    2013-12-01

    The purpose of this study is to evaluate the earth's radiation budget when data are available from satellite-borne active sensors, i.e. cloud profiling radar (CPR) and lidar, and a multi-spectral imager (MSI) in the project of the Earth Explorer/EarthCARE mission. For this purpose, we first developed forward and backward 3D Monte Carlo radiative transfer codes that can treat a broadband solar flux calculation including thermal infrared emission calculation by k-distribution parameters of Sekiguchi and Nakajima (2008). In order to construct the 3D cloud field, we tried the following three methods: 1) stochastic cloud generated by randomized optical thickness each layer distribution and regularly-distributed tilted clouds, 2) numerical simulations by a non-hydrostatic model with bin cloud microphysics model and 3) Minimum cloud Information Deviation Profiling Method (MIDPM) as explained later. As for the method-2 (numerical modeling method), we employed numerical simulation results of Californian summer stratus clouds simulated by a non-hydrostatic atmospheric model with a bin-type cloud microphysics model based on the JMA NHM model (Iguchi et al., 2008; Sato et al., 2009, 2012) with horizontal (vertical) grid spacing of 100m (20m) and 300m (20m) in a domain of 30km (x), 30km (y), 1.5km (z) and with a horizontally periodic lateral boundary condition. Two different cell systems were simulated depending on the cloud condensation nuclei (CCN) concentration. In the case of horizontal resolution of 100m, regionally averaged cloud optical thickness, , and standard deviation of COT, were 3.0 and 4.3 for pristine case and 8.5 and 7.4 for polluted case, respectively. In the MIDPM method, we first construct a library of pair of observed vertical profiles from active sensors and collocated imager products at the nadir footprint, i.e. spectral imager radiances, cloud optical thickness (COT), effective particle radius (RE) and cloud top temperature (Tc). We then select a best

  15. Modeling slope failure by the 3D discrete element method: A case study of the dip slope at the Huafan University campus in northern Taiwan

    Science.gov (United States)

    Tseng, C. H.; Chan, Y. C.; Jeng, C. J.; Hsieh, Y. C.

    2015-12-01

    Slope failure is a widely observed phenomenon in hill and mountainous areas in Taiwan, which is characterized by high erosion rates (up to 60 mm/yr) due to its climatic and geographical conditions. Slope failure events easily occur after intense rainfall, especially resulting from typhoons and accordingly cause a great loss of human lives and property. At the northern end of the Western Foothill belt in northern Taiwan, Huafan University campus (121.692448˚ E, 24.980724˚ N ) is founded on a dip slope, ~20˚ toward southwest, being composed of early Miocene alternations of sandstone and shale. Data from continuous monitoring over the years by means of inclinometers and groundwater gauges reveal that creep of 6-10 mm of the slope occurred when precipitation exceeded 300 mm during typhoons' striking. In addition, extension cracks on the ground are also found within and on the edge of the campus. Furthermore, potential slip surfaces are detected shown by rock cores to exist 10 and 30 m in depth as well. To understand the kinematic behaviors of the rock slope failure beneath the university campus, a 3D discrete element mothed is applied in this study. Results of the modeling indicate that creeping is the primary behavior pattern when the friction coefficient reduces owing to rise of groundwater during rainstorms. However, rapid slip may take place under influences of earthquake with large magnitude. Suggestions for preventing the slope creep are to construct catchpits to drainage runoff and lower the groundwater table and ground anchors through the slip surfaces to stabilize the slide blocks.

  16. 3D and Education

    Science.gov (United States)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  17. 3D-QSAR Study on Diindolylmethane and Its Analogues with Comparative Molecular Field Analysis (CoMFA)

    Institute of Scientific and Technical Information of China (English)

    BENABADJI,Sakina Hayat; CHEN,Hai-Feng; YUAN,Shen-Gang; WEN,Ren

    2003-01-01

    Comparative molecular field analysis (CoMFA), a three dimensional quantitative structure-activity relationship (3D-QSAR)method was applied to a series of diindolylmethane(DIM) analogs to study the relationship between their structure and theirinnduction of CYP 1A1-associated ethoxyresorufin-O-deethylase (EROD) activity. A DISCO model of pharmacophore was derived to guide the superposition of the compounds. The coefficient of cross-validation (p2) and non cross-validation (r2) for the model established by the study are 0.827 and 0.988 respectively, the value of variance ratio(F) is 103.53 and standard error estimate (SEE) is 0.044. These values indicate that the CoMFA model derived is significant and might have a good prediction for the catalytic activity of DIM compound. As a consequence, the predicted activity values of new designed compounds were all higher than that of the reported value.

  18. The Use of 3d Scanning and Photogrammetry Techniques in the Case Study of the Roman Theatre of Nikopolis. Surveying, Virtual Reconstruction and Restoration Study.

    Science.gov (United States)

    Bilis, T.; Kouimtzoglou, T.; Magnisali, M.; Tokmakidis, P.

    2017-02-01

    The aim of this paper is to present the specific methods by which 3D scanning and photogrammetric techniques were incorporated into the architectural study, the documentation and the graphic restoration study of the monument of the ancient theatre of Nikopolis. Traditional methods of surveying were enhanced by the use of 3D scanning and image-based 3D reconstruction and 3D remodelling and renderings. For this reason, a team of specialists from different scientific fields has been organized. This presented the opportunity to observe every change of the restoration design process, not only by the use of common elevations and ground plans, but also in 3D space. It has been also very liberating to know how the monument will look like in this unique site after the restoration, so as to obtain at the study stage the best intervention decisions possible. Moreover, these modern work tools helped of course to convince the authorities for the accuracy of the restoration actions and finally to make the proposal clear to the public.

  19. Data consistency checks for building a 3D model: A case study of Technical University, Delft Campus, The Netherlands

    NARCIS (Netherlands)

    Ghawana, T.; Zlatanova, S.

    2010-01-01

    GIS is changing rapidly its face with the advancement of computing technologies. From merely a 2D representation of real world features, it is moving to present more and more applications in 3D formats. Today 3D GIS is an essential way of handling the spatial data in urban planning. In cities where

  20. Feasibility Study for Ballet E-Learning: Automatic Composition System for Ballet "Enchainement" with Online 3D Motion Data Archive

    Science.gov (United States)

    Umino, Bin; Longstaff, Jeffrey Scott; Soga, Asako

    2009-01-01

    This paper reports on "Web3D dance composer" for ballet e-learning. Elementary "petit allegro" ballet steps were enumerated in collaboration with ballet teachers, digitally acquired through 3D motion capture systems, and categorised into families and sub-families. Digital data was manipulated into virtual reality modelling language (VRML) and fit…

  1. Study of the molecular gas in the central parsec of the Galaxy through regularized 3D spectroscopy

    Science.gov (United States)

    Ciurlo, A.; Paumard, T.; Rouan, D.; Clénet, Y.

    2014-05-01

    The cool gas in the central parsec of the Galaxy is organized in the surrounding circumnuclear disk, made of neutral gas, and the internal minispiral, composed of dust and ionized gas. In order to study the transition between them we have investigated the presence of H2 neutral gas in this area, through NIR spectro-imaging data observed with SPIFFI. To preserve the spatial resolution we implemented a new method consisting of a regularized 3D fit. We concentrated on the supposedly fully ionized central cavity and the very inner edge of the CND. H2 is detected everywhere: at the boundary of the CND and in the central cavity, where it seems to split in two components, one in the background of the minispiral and one inside the Northern arm.

  2. The Study on the Shape of 2-D Stator with Electromagnets and Permanent Magnets for 3-D Superconducting Actuator

    Science.gov (United States)

    Ozasa, S.; Kim, S. B.; Nakano, H.; Sawae, M.; Kobayashi, H.

    The electric device applications of a high temperature superconducting (HTS) bulk magnet having stable levitation and suspension properties due to their strong flux pinning force have been proposed and developed. We have been investigating the three-dimensional (3-D) superconducting actuator using HTS bulk to develop a non-contact transportation device. Probably, the cost of the manufactory will be increased to install the 2-D arranged electromagnets (EM) in a large area because many EMs are needed to cover the area. Therefore, we have been trying to find the method for reducing the number of EMs. In this study, all the EMs except for rotation were replaced in the 2-D arranged permanent magnets (PM), and gap length between PMs were experimentally investigated to improve the dynamic behavior of the mover and to reduce the cost of the manufacturing. As a result, we have succeeded in conveyance of the bulk and reduce the convergence time and maximum overshoot.

  3. 3D-QSAR Studies on a Series of Dihydroorotate Dehydrogenase Inhibitors: Analogues of the Active Metabolite of Leflunomide

    Directory of Open Access Journals (Sweden)

    Hong-Guang Du

    2011-05-01

    Full Text Available The active metabolite of the novel immunosuppressive agent leflunomide has been shown to inhibit the enzyme dihydroorotate dehydrogenase (DHODH. This enzyme catalyzes the fourth step in de novo pyrimidine biosynthesis. Self-organizing molecular field analysis (SOMFA, a simple three-dimensional quantitative structure-activity relationship (3D-QSAR method is u